
Pervasive.SQL 2000i

What’s New in Pervasive.SQL 2000i
Pervasive.SQL 2000 Service Pack 3

Pervasive Software, Inc.
12365 Riata Trace Parkway

Building II
Austin, TX 78727 USA

Telephone: +1 512 231 6000 or 800 287 4383
Fax: +1 512 231 6010

E-Mail: info@pervasive.com
Web: http://www.pervasive.com

 Copyright 2001 Pervasive Software Inc. All rights reserved. Reproduction,
photocopying, or transmittal of this publication, or portions of this publication, is
prohibited without the express prior written consent of the publisher.

This product includes software developed by Powerdog Industries.
 Copyright 1994 Powerdog Industries. All rights reserved.

The ODBC Driver Manager for NetWare (ODBC.NLM) included in this product is
based on the GNU iODBC software  Copyright 1995 by Ke Jin
<kejin@empress.com> and was modified by Simba Technologies Inc. in June 1999.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

A copy of the GNU Lesser General Public License is included in your installation of
Pervasive.SQL 2000 at \pvsw\doc\lesser.htm. If you cannot find this license, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA. You may contact Pervasive Software Inc. using the contact information on
the back cover of this manual.

What’s New in Pervasive.SQL 2000i
March 2001
100-004067-002

d i s c l a i m e r PERVASIVE SOFTWARE INC. LICENSES THE SOFTWARE AND
DOCUMENTATION PRODUCT TO YOU OR YOUR COMPANY SOLELY ON AN “AS
IS” BASIS AND SOLELY IN ACCORDANCE WITH THE TERMS AND CONDITIONS
OF THE ACCOMPANYING LICENSE AGREEMENT. PERVASIVE SOFTWARE INC.
MAKES NO OTHER WARRANTIES WHATSOEVER, EITHER EXPRESS OR IMPLIED,
REGARDING THE SOFTWARE OR THE CONTENT OF THE DOCUMENTATION;
PERVASIVE SOFTWARE INC. HEREBY EXPRESSLY STATES AND YOU OR YOUR
COMPANY ACKNOWLEDGES THAT PERVASIVE SOFTWARE INC. DOES NOT
MAKE ANY WARRANTIES, INCLUDING, FOR EXAMPLE, WITH RESPECT TO
MERCHANTABILITY, TITLE, OR FITNESS FOR ANY PARTICULAR PURPOSE OR
ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, AMONG OTHERS.

t r a d e m a r k s Btrieve, Tango, Client/Server in a Box, and the Pervasive Software logo are registered
trademarks of Pervasive Software Inc.
Built on Pervasive, Built on Pervasive Software, Extranet in a Box, Pervasive.SQL, Jtrieve, Plug n’ Play
Databases, SmartScout, Solution Network, Ultra-light Z-DBA, Z-DBA, ZDBA, UltraLight,
MicroKernel Database Engine, and MicroKernel Database Architecture are trademarks of Pervasive
Software Inc.

Microsoft, MS-DOS, Windows, Windows NT, Win32, Win32s, and Visual Basic are registered
trademarks of Microsoft Corporation.

Windows 95 is a trademark of Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

NetWare Loadable Module, NLM, Novell DOS, Transaction Tracking System, and TTS are
trademarks of Novell, Inc.

All other company and product names are the trademarks or registered trademarks of their
respective companies.

iii

Contents

Contents

About This Manual . vii
Who Should Read This Manual . viii
Manual Organization . ix
Conventions . x

1 What’s New in Pervasive.SQL 2000i SP3 1-1
An Overview of New Features in Service Pack 3

List of New Features and Improvements . 1-2
Programming Interfaces . 1-3

Full Support for OLE DB IRowset and ICommand 1-3
Full Support for JDBC 2.0 . 1-3
Dynamic Cursors. . 1-3
Updated OEM/Partner Toolkit (PTK) . 1-3
Enhanced Stat Extended (65) Operation . 1-4

Performance and Reliability Enhancements . 1-12
Client/Server Version Checking. . 1-12
Row Level Locking . 1-12
SRDE Improvements . 1-13

Expanded Operating System Support . 1-15
Terminal Server Support . 1-15
NSS Volume Support . 1-15
Comma as Decimal Separator. . 1-16

Easier Installation and Configuration . 1-19
Pervasive System Analyzer. . 1-19
All Size Configuration Settings Now in Bytes . 1-19
Dynamic Configuration Settings . 1-19
Updated Default Settings . 1-20
No Dependence on PERVASIVE_PATH. . 1-23
Improved Workgroup Gateway Behavior . 1-23

Improved Networking Support . 1-29
Pervasive Auto-Reconnect. . 1-29

Improved SQL Support. . 1-31
Additional SQL Syntax. . 1-31

New and Enhanced Documentation. . 1-34

2 Pervasive System Analyzer (PSA) 2-1
An Overview of the New Diagnostic Utility in Pervasive.SQL 2000i SP3

Overview of Pervasive System Analyzer . 2-2
Summary of Functionality. . 2-2

iv

Contents

Replaces Previously Released Utilities . 2-2
Using PSA During Installation . 2-3

Steps Performed During Installation . 2-3
Using PSA Outside of the Installation Process . 2-8

Why Use PSA? . 2-8
Starting PSA . 2-8
Common PSA Tasks . 2-9

3 SQL Syntax Enhancements . 3-1
Detailed Information on New and Improved SQL Syntax

Global Variables . 3-2
@@IDENTITY. 3-2
@@ROWCOUNT . 3-4

USING, IN DICTIONARY, WITH REPLACE. 3-6
Changed Grammar . 3-6
USING . 3-6
IN DICTIONARY . 3-10
WITH REPLACE . 3-11

SELECT in UPDATE. 3-14
Changed Grammar . 3-14
Remarks . 3-14
Examples . 3-15

Improved ALTER TABLE Support . 3-17
Changed Syntax . 3-17
Remarks . 3-17
Examples . 3-19

Additional Scalar Functions . 3-20
String Functions . 3-20
Numeric Functions . 3-22
Date and Time Functions. 3-25
Logical Functions . 3-28
Utility Functions . 3-29

4 Dynamic Cursors in Pervasive.SQL 2000i SP3. 4-1
An Overview of the New Dynamic Cursor Functionality in Pervasive.SQL 2000i SP3

Features at a Glance . 4-2
Overview of Dynamic Cursors and the ODBC API . 4-3

Terminology . 4-3
ODBC Cursor Library . 4-3
ODBC APIs that are Affected. 4-4
Temporary Tables . 4-4

ODBC APIs Affected by New Functionality . 4-5
Updated ODBC Functionality . 4-5
New ODBC Functionality . 4-10

v

Contents

Temporary Tables. . 4-12
New Limitations . 4-12
Performance . 4-13

Positioned UPDATE and DELETE . 4-14
New Limitations . 4-14
Performance . 4-14

5 Improved OLE DB Provider in Pervasive.SQL 2000i 5-1
An Overview of the Updated OLE DB provider in Pervasive.SQL 2000i

Overview of New Features in ADO and OLE DB Provider 5-2
Command-Based Recordsets Supported . 5-2
ADOX . 5-2
Navigational Recordsets in the New Provider . 5-2
Large Binary Objects . 5-3

Programming Notes for Pervasive OLE DB Provider 5-4
Seek with Static Cursors . 5-4
Remote Connections. . 5-4
Table Definitions . 5-4
Default LockType . 5-5
Initialization Properties . 5-5

Performance Considerations with OLE DB. . 5-7
Best Performance is Navigational . 5-7
Static vs. Dynamic Cursors . 5-7
Disable Unused Services . 5-7

COM+ Services Support . 5-8
What is COM+ Services? . 5-8
Example of COM+ Services for Visual Basic Programmers 5-8

Execute Method (ADO Command) . 5-11
SELECT operations . 5-11
Batch Insert, Update, or Delete . 5-11

Limitations of the OLE DB Provider . 5-13

6 JDBC 2 Enhancements in Pervasive.SQL 2000i 6-1
An Overview of the New JDBC 2 Functionality in Pervasive.SQL 2000i

Overview of Pervasive JDBC 2 Driver . 6-2
Specifications . 6-2
JDBC API Improvements . 6-2
JDBC Optional Package Support . 6-2
Backward Compatibility . 6-2
Class Names . 6-3
Unsupported APIs . 6-3
Driver Limitations . 6-3

JDBC Connection String Enhancements . 6-4
How to Connect . 6-4

vi

Contents

Using Character Encoding . 6-4
Notes on Character Encoding . 6-5

JDBC 2.0 Standard Extension API . 6-6
DataSource. 6-6

Connection and Concurrency Notes . 6-10
Scrollable Result Set Notes . 6-11
JDBC Programming Sample . 6-12

vii

About This Manual

This manual contains information about the features and
enhancements that are new in this release of Pervasive.SQL. This
release is referred to as Pervasive.SQL 2000i or Pervasive.SQL 2000
SP3. The internal version number is 7.9.

This manual describes the new and changed behaviors of the
product relative to Pervasive.SQL 2000 SP2.

viii

About This Manual

Who Should Read This Manual

This document is designed for any user who is familiar with
Pervasive.SQL and wants to know what has changed in this release of
the software.

This manual does not provide comprehensive usage instructions for
the software. Its purpose is to explain what is new and different in
this particular release of the product.

Pervasive Software, Inc. would appreciate your comments and
suggestions about this manual. As a user of our documentation, you
are in a unique position to provide ideas that can have a direct impact
on future releases of this and other manuals. If you have comments
or suggestions for the product documentation, post your request at
http://www.pervasive.com/devtalk or send e-mail to
docs@pervasive.com.

ix

Manual Organization

Manual Organization

This manual begins with an overview of the new features, then
provides chapters containing additional details where appropriate.
What’s New in Pervasive.SQL 2000i is divided into the following
sections:

! Chapter 1—“What’s New in Pervasive.SQL 2000i SP3”

This chapter provides an overview of the changes in this release
of the software.

! Chapter 2—“Pervasive System Analyzer (PSA)”

This chapter covers how to use PSA to troubleshoot problems.

! Chapter 3—“SQL Syntax Enhancements”

This chapter covers the elements that have been added or
changed in the SQL syntax grammar, excluding those for
dynamic cursor support, which are described in Chapter 4.

! Chapter 4—“Dynamic Cursors in Pervasive.SQL 2000i SP3”

This chapter covers the SQL syntax and programming
considerations specific to the new dynamic cursors
implementation.

! Chapter 5—“Improved OLE DB Provider in Pervasive.SQL
2000i”

This chapter details improvements to the OLE DB provider that
are available to programmers who use the Microsoft Data Access
Components.

! Chapter 6—“JDBC 2 Enhancements in Pervasive.SQL 2000i”

This chapter details the enhancements in this version of the
JDBC driver.

This manual also contains an index.

x

About This Manual

Conventions

Unless otherwise noted, command syntax, code, and examples use
the following conventions:

CASE Commands and reserved words typically appear in uppercase
letters. Unless the manual states otherwise, you can enter
these items using uppercase, lowercase, or both. For example,
you can type MYPROG, myprog, or MYprog.

Bold Words appearing in bold include the following: menu names,
dialog box names, commands, options, buttons, statements,
etc.

Monospaced
font

Monospaced font is reserved for words you enter, such as
command syntax.

[] Square brackets enclose optional information, as in [log_name].
If information is not enclosed in square brackets, it is required.

| A vertical bar indicates a choice of information to enter, as in
[file_name | @file_name].

< > Angle brackets enclose multiple choices for a required item, as
in /D=<5|6|7>.

variable Words appearing in italics are variables that you must replace
with appropriate values, as in file_name.

... An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter ...].

::= The symbol ::= means one item is defined in terms of another.
For example, a::=b means the item a is defined in terms of b.

1-1

c h a p t e r

1What’s New in
Pervasive.SQL 2000i SP3

An Overview of New Features in Service Pack 3

The purpose of this chapter is to summarize and explain the major
new features and differences in behavior between this product and
the previous service pack. If further information is available for a
given change or feature, a hot-link or cross-reference to that
information is provided.

! “List of New Features and Improvements” on page 1-2

! “Programming Interfaces” on page 1-3

! “Performance and Reliability Enhancements” on page 1-12

! “Expanded Operating System Support” on page 1-15

! “Easier Installation and Configuration” on page 1-19

! “Improved Networking Support” on page 1-29

! “Improved SQL Support” on page 1-31

! “New and Enhanced Documentation” on page 1-34

1-2

What’s New in Pervasive.SQL 2000i SP3

List of New Features and Improvements

This release offers the following new features and improvements
over the last release of the product:

! Programming Interfaces

" Full Support for OLE DB IRowset and ICommand

" Full Support for JDBC 2.0

" Dynamic Cursors

" Updated OEM/Partner Toolkit (PTK)

" Enhanced Stat Extended (65) Operation

! Performance and Reliability Enhancements

" Client/Server Version Checking

" Row Level Locking

" SRDE Improvements

! Expanded Operating System Support

" Terminal Server Support

" NSS Volume Support

" Comma as Decimal Separator

! Easier Installation and Configuration

" Pervasive System Analyzer

" All Size Configuration Settings Now in Bytes

" Dynamic Configuration Settings

" Updated Default Settings

" No Dependence on PERVASIVE_PATH

" Improved Workgroup Gateway Behavior

! Improved Networking Support

" Pervasive Auto-Reconnect

! Improved SQL Support

" Additional SQL Syntax

! New and Enhanced Documentation

These features are described in the sections that follow.

1-3

Programming Interfaces

Programming Interfaces

This section describes the interface improvements offered in this
release.

Full Support for
OLE DB
IRowset and
ICommand

This release offers full OLE DB IRowset and ICommand support,
including support for COM+ (Microsoft Transaction Server). For
detailed information, see “Improved OLE DB Provider in
Pervasive.SQL 2000i” on page 5-1.

The updated OLE DB interfaces are part of the client and engine
installation packages and are immediately available for use after
installing the SP3 client and engine. No additional software is
needed.

Full Support for
JDBC 2.0

This release offers full JDBC 2.0 support, including forward and
backward scrollable cursors using live data. For detailed
information, see “JDBC 2 Enhancements in Pervasive.SQL 2000i” on
page 6-1.

The updated JDBC interfaces are part of the client and engine
installation packages and are immediately available for use after
installing the SP3 client and engine. No additional software is
needed.

Dynamic
Cursors

An all-new implementation of dynamic cursors allows developers to
build applications that scroll forward and backward through live
data. Applications based on Pervasive.SQL 7 that use dynamic
cursors can now be upgraded without losing this functionality. For
detailed information on this topic, see Chapter 4, “Dynamic Cursors
in Pervasive.SQL 2000i SP3.”

Dynamic Cursors support is an integral part of the engine, and is
automatically available after the SP3 engine is installed. No
additional software is needed.

Updated OEM/
Partner Toolkit
(PTK)

The Partner Toolkit for OEMs and ISVs has been updated to reflect
Pervasive System Analyzer replacing InstallScout and SmartScout.

1-4

What’s New in Pervasive.SQL 2000i SP3

Enhanced Stat
Extended (65)
Operation

As a result of customer requests, a variety of new sub-function
behaviors have been added to the Stat Extended (65) operation code.
The position block is now returned by the engine.

The following new sub-functions are now available:

! you can determine the record address and key number of a
record that generated a Status Code 5 (Duplicate Key) in the
previous operation.

! you can gather a variety of information about an open data file,
including the unique file ID used by the MicroKernel, the system
time when the file was opened, the number of file handles
currently open on that file, and a number of other statistics,
detailed later in this section.

! you can identify the Gateway engine that is handling data access
requests for the given file handle.

! you can identify the client ID and the type of lock that generated
the most recent Status Code 84 or 85.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the Operation Code to 65.

2 Pass the Position Block for the file.

3 Store the extended stat structure in the Data Buffer. See the section
“Details” on page 1-5 for more information about the extended stat
structure.

4 Specify the Data Buffer Length.

Op Code Pos Block Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent ✔ ✔ ✔ ✔ ✔

Returned ✔ ✔ ✔

1-5

Programming Interfaces

5 Set the Key Number to 0.

Result

If the operation is successful, the return structure required by the
sub-function is returned and the data buffer length is set to the
length of the data returned.

If the operation is unsuccessful, the MicroKernel may return one of
the following non-zero status codes:

Positioning

This operation does not require a current position to be established.
It only requires a valid position block.

Details

The Extended Stat descriptor is a structure placed in the data buffer
that defines how the Extended Stat operation will be executed. The
first four bytes in the structure define a signature that helps to assure
to the MicroKernel that this is a valid Extended Stat descriptor. Use
the four characters "ExSt" as a four byte string with no termination.
Another representation is 0x74537845 as a LoHi Integer.

The next four bytes is a LoHi integer indicating the sub-function to
be executed by the MicroKernel. The valid sub-functions are:

Table 1-1 Stat Extended (65) Status Codes

Status Code Meaning

8 The current positioning is not valid.

22 The data buffer parameter is too short.

62 The descriptor is incorrect.

139 The key number is not a valid option.

Table 1-2 Stat Extended (65) Sub-functions

Sub-function ID Description

1 Listing of extension file names

2 System Data information for the file

3 Duplicate conflict record and key identification

1-6

What’s New in Pervasive.SQL 2000i SP3

Because the first two sub-functions are already documented in API
Programmer’s Reference available with the SDK, this section discusses
sub-functions 3 through 6.

Duplicate Conflict Information

The purpose of this function is to identify the record address and key
number that caused a status 5 (Duplicate Key) on a previous failed
insert or update operation.

Set the sub-function to 3 and the databuf length to 8.

Output Structure

typedef struct duplicate_error_info
{
 BYTE DuplicateRecord[4];
 WORD DuplicateKeyNum;
} DUPLICATE_ERROR_INFO;

File Information

This sub-function is designed to return a variety of status
information about the file open with the specified handle. It returns
the unique file ID used internally in the MicroKernel to identify the
file and additional information that is usually retrieved through the
Distributed Tuning Interface.

Set the sub-function to 4 and the databuf length to 20.

Output Structure

#define FLAG_EXT_STAT_FI_LOCKS 0x00000001
#define FLAG_EXT_STAT_FI_TRANS 0x00000002
#define FLAG_EXT_STAT_FI_READ_ONLY 0x00000004
#define FLAG_EXT_STAT_FI_CONT_OPS 0x00000008
#define FLAG_EXT_STAT_FI_RI 0x00000010
#define FLAG_EXT_STAT_FI_OWNER_RW 0x00000020

4 File information

5 Gateway identification

6 Lock owner identification

Table 1-2 Stat Extended (65) Sub-functions

Sub-function ID Description

1-7

Programming Interfaces

#define FLAG_EXT_STAT_FI_OWNER_ROK 0x00000040
#define FLAG_EXT_STAT_FI_WRONG_OWNER 0x00000080

typedef struct
{
 unsigned long FileID;
 unsigned long NumberOfHandles;
 unsigned long OpenTimeStamp;
 unsigned long FileUsageCount;
 unsigned long Flags;
} FILE_DATA_INFO;

The structure elements and the permitted values for the Flags field
are described in the tables below.

Table 1-3 File Information Structure

Element Description

FileID A unique number which the MicroKernel uses to identify the
file.

NumberOfHandles The current number of handles that the MicroKernel has open
on this file.

OpenTimeStamp The system time when the file was last opened by the
MicroKernel.

FileUsageCount This number gets incremented at each checkpoint or System
Transaction. It is also the usage count placed in the FCR.
The number returned here is the usage count of the file as it
is represented in the Microkernel cache. When a checkpoint
starts, this number gets incremented.

Flags A four-byte bitmap in which various values may be set. See
the table below for descriptions of the possible values. More
flags may be added in the future.

Table 1-4 File Information Flags

Value Name Description

0x00000001 Explicit Locks There are explicit locks currently on the
file.

0x00000002 Client
Transactions

There is at least one client transaction
currently open on the file.

0x00000004 Read Only The file was opened by the MicroKernel
as ReadOnly. This may be a CD-ROM
drive or a read-only directory.

1-8

What’s New in Pervasive.SQL 2000i SP3

Gateway Identification

This sub-function returns an identification structure for the
MicroKernel engine that is executing the requests associated with the
specified handle. In a Gateway environment using the workgroup
engines, it may be difficult to determine which engine in the
workgroup is servicing the requests. Without this API, the only way
to know for sure is to view the contents of the locator file in the
directory where the file exists. With Pervasive.SQL 2000 SP2, the
introduction of redirectable locator files made this even more
confusing. This sub-function allows applications to display to the
user the name of the Gateway engine.

Set the sub-function to 5 and the databuf length to at least 74.

Output Structure

typedef struct ext_stat_gateway_info
{
 WORD MajorVersion;
 WORD MinorVersion;
 WORD PatchLevel;
 WORD Platform;
 BYTE GatewayName[64];
} EXT_STAT_GATEWAY_INFO;

0x00000008 Continuous
Operations

The file is currently in continuous
operations.

0x00000010 Referential
Integrity

The file has referential integrity
constraints on it.

0x00000020 Owner Read/
Write

The file has a Read/Write Owner name
assigned to it. The owner name is
required to read from or write to the file.

0x00000040 Owner Reads
OK

The file has an owner name that is
required only to write to the file. Reads
can be done without an owner name.

0x00000080 Opened with
Wrong Owner

The file has a Reads-OK Owner name
assigned to it and the handle was opened
with the wrong owner name.

Table 1-4 File Information Flags

Value Name Description

1-9

Programming Interfaces

The GatewayName field is a null-terminated string. The data buffer
length returned reflects the actual length of the structure including
the null terminator in GatewayName.

Lock Owner Identification

The purpose of this sub-function is to identify what client caused the
most recent Status Code 84 or 85. As soon as you get a status 84 or
85, call this sub-function and you can gather information about the
client that is holding that lock. This information reflects the most
recent blocking client and is stored with your client information in
the MicroKernel. It is overwritten each time a Lock error occurs, so
this sub-function must be called immediately upon receiving a status
84 or 85.

Set the sub-function to 6 and the databuf length to at least 104.

Output Structure

#define FLAG_EXT_STAT_LI_IMPLICIT 0x00000001
#define FLAG_EXT_STAT_LI_EXPLICIT 0x00000002
#define FLAG_EXT_STAT_LI_FILE 0x00000010
#define FLAG_EXT_STAT_LI_PAGE 0x00000020
#define FLAG_EXT_STAT_LI_RECORD 0x00000040
#define FLAG_EXT_STAT_LI_DATA_PAGE 0x00000100
#define FLAG_EXT_STAT_LI_KEY_PAGE 0x00000200
#define FLAG_EXT_STAT_LI_VAR_PAGE 0x00000400
#define FLAG_EXT_STAT_LI_SAME_PROCESS 0x00000800
#define FLAG_EXT_STAT_LI_WRITE_NO_WAIT 0x00001000
#define FLAG_EXT_STAT_LI_WRITE_HOLD 0x00002000
#define FLAG_EXT_STAT_LI_READ_NO_WAIT 0x00004000
#define FLAG_EXT_STAT_LI_READ_MULTIPLE 0x00008000

typedef struct ext_stat_lock_owner
{
 BYTE ClientId[16];
 ULONG Flags;
ULONG TimeInTrans;
 ULONG KeyNum;
 ULONG TransLevel;
 CHAR Reserved[8];
 CHAR DisplayName[64];
} EXT_STAT_LOCK_OWNER;

The data buffer length returned reflects the actual length of the
structure including the null terminator in DisplayName.

If there is no record in the MicroKernel of a previous blocking client,
then the output data buffer length is set to zero.

1-10

What’s New in Pervasive.SQL 2000i SP3

The structure elements and the permitted values for the Flags field
are described in the tables below.

Table 1-5 Lock Owner Structure

Element Description

ClientID The 16-byte client ID of the blocking client.

Flags A four-byte bitmap containing flags indicating the type of
conflict that occurred. See the table below for a description of
each flag value.

TimeInTrans Number of milliseconds in which the blocking client has been
in a transaction. This can be helpful in determining whether
to retry the operation.

KeyNum If the conflict occurred on a key page, this element indicates
which key is involved. Tracking this information can be useful
in designing a database with fewer potential conflicts.

TransLevel If this number is non-zero, then the blocking client is currently
in a transaction. Since some page and record locks are held
until the transaction completes, this information might be
useful in determining if the operation should be retried.

Reserved Reserved for future use. If there is some information about
the blocking client which you think may be useful, please
contact Pervasive Software.

DisplayName This is a null-terminated string which is the same identifying
name that is displayed in Monitor for each client. Use at least
64 bytes since that is the current maximum display name
length.

Table 1-6 Lock Owner Flags

Value Name Description

0x00000001 Implicit Lock The blocking client is using an implicit lock.

0x00000002 Explicit Lock The blocking client is using an explicit lock.

0x00000010 File Lock The blocking client is using a file lock.

0x00000020 Page Lock The blocking client is using a page lock.

0x00000040 Record Lock The blocking client is using a record lock.

0x00000100 Data Page If the conflict was a Page Lock, this flag indicates
the conflict occurred on a data page.

1-11

Programming Interfaces

0x00000200 Key Page If the conflict was a Page Lock, this flag indicates
the conflict occurred on a key page.

0x00000400 Variable
Page

If the conflict was a Page Lock, this flag indicates
the conflict occurred on a variable page.

0x00000800 Same
Process

If this flag is set, then the first 12 bytes of the
blocking client ID are the same as the first 12 bytes
of the client that got blocked, that is, the client that
is issuing the Stat Extended call. In this case, it
means that the two blocking clients came from the
same process on the same computer. If you have a
single threaded application making Btrieve calls,
then retrying this operation will not help. You need
to complete or abort the work that is blocking.

0x00001000 Write No
Wait

Indicates that the blocking client is using the 500
bias.

0x00002000 Write Hold Indicates that the blocking client made a change to
a page that caused that client to keep the full page
lock until its transaction completes. This situation
can occur on implicit key page locks when a change
causes key entries to move to another page.

0x00004000 Read No
Wait

For explicit record locks, this flag indicates that the
blocking client is using either lock bias 200 or 400.

0x00008000 Read
Multiple

For explicit record locks, this flag indicates that the
blocking client is using either lock bias 300 or 400.

Table 1-6 Lock Owner Flags

Value Name Description

1-12

What’s New in Pervasive.SQL 2000i SP3

Performance and Reliability Enhancements

This section describes the performance and reliability enhancements
offered in this release.

Client/Server
Version
Checking

This release introduces a new feature designed to guarantee engine-
to-client version compatibility. When a client requester first connects
to an engine, the client requester compares its internal router version
with the value returned from the engine by a Btrieve Version (26)
call. If the client version is older than the engine, a message dialog
box is displayed on the client system with the message “Engine
components’ Version is different from Clients’” along with a
suggestion to run Pervasive System Analyzer (PSA). The same
message is also logged in the client’s PVSW.LOG file. This message is
only a warning. Although the client is not prevented from
connecting to the engine in this situation, keep in mind that older
clients are not tested against newer engines. Pervasive only
guarantees compatibility between engines and clients if the clients
are the same version as, or newer than, the engines. If you choose not
to run PSA when prompted by this message, you can expect the
product to behave unpredictably until the client version is equal to
or greater than the engine version.

After running PSA and archiving the old client components, you
should upgrade to the latest client.

Row Level
Locking

Row level locking improves database engine performance in multi-
user environments in which many updates occur at the same time, or
in which transactions remain open for an extended period of time.

Prior to this release, the database engine locked an entire page
containing more than one record in order to update any record on
that page. Any other client attempting to update records on that page
while the page was still locked had to wait until the first operation
released the page lock. This behavior occurred even though the
records needed by the second operation were not affected by the first
operation.

With the new row level locking architecture, a transaction locks only
the records that it affects directly, not the entire page. One client can
update records on a given page at the same time as another client
updates different records on the same page. Waiting is necessary only

1-13

Performance and Reliability Enhancements

when a second operation attempts to modify the exact same records
currently locked by the first operation. Thus, row level locking
decreases overall wait time and improves performance in a multi-
user environment.

This feature is completely transparent within the MicroKernel
Database Engine. There are no changes to the Btrieve API, data file
format, configuration settings, or any external component. This
feature is always on and is supported across Server, Workgroup, and
Workstation on all supported operating system platforms. This
feature is supported for data file format v6.x and later. It is not
supported for data file format v5.x or earlier.

In this release, row level locking is implemented for key pages and
data pages only, not variable pages. Furthermore, a small percentage
of key page changes may cause key entries to move from one page to
another. An example is when a key page is split or combined. These
changes retain a full page lock until the transaction is completed.

SRDE
Improvements

Several improvements have been made to the SQL Relational
Database Engine (SRDE).

Column Number Limits Increased

The maximum number of columns permitted in a table and the
maximum number of columns that can be listed in a SELECT
statement have both increased.

Optimized Queries Involving Predicates with Scalar
Functions

Queries containing a WHERE clause with a scalar function are now
optimized. The only scalar functions that can be optimized are
RTRIM and LEFT. They cannot be optimized if they are contained in
a complex expression on either side of the predicate.

For example, consider the following query:

Table 1-7 Column Number Limits

Attribute Value

Maximum number of columns allowed in a table 1536

Maximum number of columns allowed in a SELECT statement 1600

1-14

What’s New in Pervasive.SQL 2000i SP3

SELECT * FROM T1, T2 WHERE T1.C1 = LEFT(T2.C1, 2)

In this case, both sides of the predicate are optimized. The predicate
is the complete search condition following the WHERE keyword.
Depending on the size of the tables involved in the join, the
optimizer chooses the appropriate table to process first.

If you have similar queries in your applications, you should expect to
see a significant performance gain on these queries.

1-15

Expanded Operating System Support

Expanded Operating System Support

This section describes the expanded operating system support
offered in this release.

Terminal Server
Support

Pervasive.SQL has in the past supported installation of client
software only on systems running a terminal server. The server
engine components had to be installed on a separate system. With
Service Pack 3, access from terminal sessions to server engine
components located on the same system is supported.

The following environments are supported:

! Windows NT 4.0 Terminal Server Edition (Service Pack 6)

! Windows 2000

! Citrix MetaFrame

Server, Workgroup, and Workstation engines are supported on the
above terminal server configurations. In each case, the engine must
be started by the administrator prior to any terminal users logging
onto the terminal server. Terminal users may not start up their own
database engine.

Installing on Microsoft Terminal Server

Prior to installation on a computer with Microsoft terminal server
installed, you must switch the terminal server to install mode using
the change user /install command. This ensures that the
software is available to all users after installation. When the
installation is complete, you should set the terminal server back to
runtime mode using the command change user /execute.

For more information about this command, see the Microsoft
knowledge base article (especially the “Additional Notes” at the
bottom of the article):

http://support.microsoft.com/support/kb/articles/Q186/5/04.ASP

NSS Volume
Support

This is not a new feature in the product, but rather a clarification.
Pervasive.SQL supports NetWare Storage Services (NSS) volumes on
NetWare 5 and up, provided that you load the NSS volumes prior to
starting the database engine. For example, you should issue the

1-16

What’s New in Pervasive.SQL 2000i SP3

BSTART or MGRSTART command only after loading the NSS
volumes as shown here:

LOAD NSS
MOUNT ALL
SYS:ETC\INITSYS.NCF
MGRSTART or BSTART

Also, please note that database updates performed against data files
on NSS volumes may run more slowly than with earlier versions of
NetWare. As noted in Novell TID 2952147 (http://www.novell.com),
“NSS is optimized for reading files.” Updates “will almost always
perform a little faster on the legacy file system.”

Based on this information, you may wish to store frequently-
updated data files on regular NetWare volumes rather than NSS
volumes.

Comma as
Decimal
Separator

Many locales, especially in Europe, use a comma to separate whole
numbers from fractional numbers within a floating point numeric
field. For example, these locales would use 1,5 instead of 1.5 to
represent the number one-and-one-half.

Starting with Service Pack 3, Pervasive.SQL 2000i can support both
the period “.” and the comma “,” as decimal separators. The database
engine uses the decimal separator that is defined by the regional
settings in the operating system.

Note When the decimal separator is not a period, numbers appearing
in SQL statements must be enclosed in quotes.

Client/Server Considerations

Support for the comma as decimal separator is based on the locale
setting in the operating system. Both the client operating system and
the server operating system have a locale setting. The expected
behavior varies according to both settings.

! If the server and/or client locale setting uses the comma as
decimal separator, then the SRDE accepts both period-separated
values and quoted comma-separated values.

! If neither the server nor the client locale setting uses the comma
decimal separator, then the SRDE does not accept comma-
separated values.

1-17

Expanded Operating System Support

Changing the Locale Setting

Decimal separator information can only be retrieved or changed for
a Win32 machine (Windows95/98/NT/2000).

The decimal setting for NetWare and Unix is not configurable, and it
is set to a period. If you have a NetWare or Unix server engine and
you want to use the comma as decimal separator, you must ensure
that all your client computers are set to a locale that uses the decimal
separator.

➤ To view or change your locale setting on Windows

1 From the Start menu, open the Control Panel.

2 In the Control Panel window, double-click Regional Settings.

3 On the Regional Settings tab, select the desired country.

4 You must stop and restart the Pervasive.SQL engines.

Examples

Example A - Server locale uses the comma for decimal
separator

Client’s locale uses comma “,” as decimal separator:

create table t1 (c1 decimal(10,3), c2 double)

insert into t1 values (10.123, 1.232)

insert into t1 values ('10,123', '1.232')

select * from t1 where c1 = 10.123

select * from t1 where c1 = '10,123'

The above two select statements, if executed from the client,
return:

10,123, 1,232

10,123, 1,232

Client’s locale uses period “.” as decimal separator:

create table t1 (c1 decimal(10,3), c2 double)

insert into t1 values (10.123, 1.232)

insert into t1 values ('10,123', '1.232')

select * from t1 where c1 = 10.123

select * from t1 where c1 = '10,123'

1-18

What’s New in Pervasive.SQL 2000i SP3

The above two select statements, if executed from the client,
return:

10.123, 1.232

10.123, 1.232

Example B - Server locale uses the period for decimal separator

Client’s locale uses comma “,” as decimal separator:

Same as client using comma “,” in Example A.

Client’s locale uses period “.” as decimal separator:

create table t1 (c1 decimal(10,3), c2 double)

insert into t1 values (10.123, 1.232)

insert into t1 values ('10,123', '1,232')
-- error in assignment

select * from t1 where c1 = 10.123

select * from t1 where c1 = '10,123'
-- error in assignment

The first select statement above, if executed from the client,
returns:

10.123, 1.232

1-19

Easier Installation and Configuration

Easier Installation and Configuration

This section describes new features that make installing and
configuring Pervasive.SQL easier.

Pervasive
System
Analyzer

Pervasive System Analyzer (PSA) is a new graphical program that
detects network problems, previous versions of Btrieve or
Pervasive.SQL, and other notable environmental factors. It also
allows you to archive or restore previous installations of
Pervasive.SQL. If you choose, PSA can auto-fix a variety of problems
for you.

PSA replaces the features that were previously offered by SmartScout
and InstallScout. These two programs are no longer available in
Pervasive.SQL 2000i.

By default, PSA runs automatically during installation before and
after the database engine is installed. You can also run it manually to
search for problems later. To run it manually, choose Start |
Programs | Pervasive | Pervasive.SQL 2000i | Utilities | Pervasive
System Analyzer.

For further details, see Chapter 2, “Pervasive System Analyzer
(PSA).”

All Size
Configuration
Settings Now in
Bytes

Previous releases of Configuration measured some size settings in
bytes, and others in kilobytes. Starting with this release, all size
settings are standardized in bytes to prevent confusion over different
units.

Please note, if your company has documentation about how to
change configuration settings, be sure to verify that this material is
still accurate. For example, with the previous release, the default
value for a buffer size setting may have been 32(KB). Your company’s
instructions may specify to change this value to 64. Now that the
values are measure in bytes, not kilobytes, you may think your
instructions mean 64 bytes, when your instructions actually intend
64 kilobytes (a value of 65536, not 64). Please review any
documentation you have in order to address this issue.

Dynamic
Configuration
Settings

With this release, several configuration settings related to memory
management have become obsolete. These resources are now
managed dynamically by the database engine. The engine allocates

1-20

What’s New in Pervasive.SQL 2000i SP3

additional memory as needed during runtime operation to allow for
increased resource usage.

If memory usage decreases, each chunk of memory is returned to the
operating system when none of the objects within that chunk remain
in use. If the engine is configured with the Server | Memory Usage |
Back to Minimal State if Inactive setting enabled, the engine returns
nearly all memory to the operating system when the engine goes to
minimal state.

Obsolete Settings

The following settings are now dynamically configured on all
supported platforms. These settings have been removed from
Configuration in Pervasive Control Center, but some of them still
appear in Monitor. These settings can be read, but not set, by DTI
and DTO. All of these settings were previously located in the Server
| Access category of Configuration:

Active Clients
Logical File Handles
Maximum Databases
Maximum Open Files

Also, please recall that two additional configuration settings in the
Server category were made obsolete (dynamically configured by the
engine) starting in Service Pack 2:

Largest Compressed Record Buffer Size
Extended Operation Buffer Size

Updated
Default
Settings

An assortment of default configuration settings have been changed
to provide better performance and improved support for modern
computing environments. These settings can be accessed through
Configuration within PCC.

Server | Performance Tuning | Log Buffer Size

Previous default value: 65,536 bytes
New default value: 262,144 bytes

If Server | Data Integrity | Transaction Durability is set to On, then
all changes, whether transactional or not, are logged. Many Btrieve
customers do not use transactions and thus have no interest in
transaction durability. In fact, it can slow these customers down by

1-21

Easier Installation and Configuration

as much as 50%. When no transactions are occurring, the log buffer
is flushed whenever it gets full. Batch updates and inserts can be
accomplished faster if Transaction Durability is set to Off or if the
transaction Log Buffer Size is larger.

This performance increase occurs because each flush of the log has a
certain amount of fixed overhead. Flushing the log less frequently
may take slightly longer for each flush because the log data is larger,
but the overall effect can be a significant increase in performance.
Increasing the default buffer size to 256KB instead of 64KB helps
significantly without incurring too much memory usage. Further
performance advantages diminish above that level.

Server | Performance Tuning | Communications Threads

Previous default value: 3
New default value: 16

Pervasive AutoReconnect requires more resources from the
communications threads than previous releases of the product. As a
result, Pervasive has increased the default number of
communications threads to 16.

Server | Communications Buffer Size | MKDE
Communications Buffer Size

Previous default value: 16,384 bytes
New default value: 65,536 bytes; 64,512 bytes on Win32

Previously, if your application used records larger than the default
value, you had to set this parameter. Pervasive has changed the
default value to the maximum value so that applications always work
(you will not receive “Buffer size too small” error), but more
memory is used by default. The MicroKernel allocates one buffer of
this size per worker thread. If you know the exact record size, you can
save a small amount of memory by tuning this value down to the
approximate size of your records.

Server | Communications Buffer Size | Communications
Buffer Size

Previous default value: 16,384 bytes
New default value: 65,536 bytes; 64,512 bytes on Win32

1-22

What’s New in Pervasive.SQL 2000i SP3

This value should be kept the same as that for MKDE
Communications Buffer Size parameter.

Server | Data Integrity | Operation Bundle Limit

Previous default value: 1000
New default value: 65,535

The operation bundle limit specifies how many operations can occur
against a single file before a system transaction occurs. During batch
inserts, it is very possible to insert 5,000 - 10,000 small records within
a few seconds. There is no compelling reason to initiate a system
transaction 5 to 10 times within such a small time interval.
Increasing the number of operations between system transactions
allows fewer system transactions to occur and thus can improve
overall performance.

Server | Data Integrity | Wait Lock Timeout

Previous default value: 30
New default value: 15

Most timeout situations that will return a Status Code after 15
seconds are unlikely to be resolved by waiting an additional 15
seconds. By reducing the wait timeout, control is returned to the
application 15 seconds sooner with most likely the same result as if
the user had waited the full 30 seconds.

Server | Access | Number of Sessions

Previous default value: 15
New default value: 500 (dynamic value on Win32, see below)

The Communications module uses only a small amount of memory
per session, so there is little harm in allowing many more sessions. A
higher default value can avoid errors that occur when the server runs
out of available sessions.

On Win32 platforms, this default value is adjusted based on the
maximum number of users reported by the user count manager. The
engine starts with a default value equal to five times the installed user
count, then adjusts that number so that it is between 100 and 1000,
inclusive. The current value as read from the registry is adjusted to
100 if it is less than the calculated number. If the calculated value is
different than the value in the registry, the calculated value is written

1-23

Easier Installation and Configuration

to the registry. Note that Win32 systems that currently have the old
default value of 15 will get replaced by 100. On UNIX and NetWare
platforms, the default is now 500, but no adjustments are made
based on the user count since these are server-only platforms.

No Dependence
on
PERVASIVE_PATH

Pervasive.SQL no longer depends on the environment variable
PERVASIVE_PATH at installation or runtime on Windows.

In order to provide installation and run-time reliability, the
environment variable PERVASIVE_PATH is no longer used during
component loading of the Pervasive.SQL engines. When the engine
is first started, the operating system searches the default path for
w3btrv7.dll and w3scmv7.dll. On Windows 9X, these DLLs are
installed into the system directory.

Once these DLLs are loaded, when looking for additional
downstream components, Smart Components first explores the
directory where Pervasive.SQL is installed. If the requested
component is not found, Smart Components then searches on the
platform’s default path.

Improved
Workgroup
Gateway
Behavior

This release introduces a new feature of Gateway engine operation
that guarantees transaction atomicity for multi-directory databases
and also makes it much easier to change the name of a Gateway
engine across multiple data directories.

Limitations of Previous Model

The previous version of the product supported two modes of
Workgroup Gateway operation:

! a permanent Gateway database engine always serves the data files
in a given directory—if the specified database engine is not up,
then the data in that directory is not available.

! with a dynamic Gateway, whichever database engine opens the
data files first serves as the Gateway; this architecture is also
referred to as a floating Gateway.

This model was useful but had two limitations. First, if you had data
in many different directories, and you wanted to change the
permanent Gateway to a different engine, you had to use the
Gateway Locator Utility to update the Locator File in every data
directory (or update all the Locator Files by hand).

1-24

What’s New in Pervasive.SQL 2000i SP3

Second, if you had a single database consisting of data files in more
than one directory, it became possible for two different engines to
handle data access within the same database, thus failing to ensure
transaction atomicity. This situation could occur if the Gateway
Locator files in the two directories pointed to different Gateway
engines. For some users this may not be an issue, but transaction
durability can only be guaranteed if a single database engine
performs all data access operations on a given database. If
transaction durability is important, then you must ensure that the
same engine services all data files within the same database,
regardless of their directory locations.

New Behavior

First, recall that the Pervasive.SQL client uses the following approach
to access remote data files:

! First, attempt to connect to a database engine on the same
computer as the data files.

! Second, if no database engine is available on the remote
machine, attempt to use a local engine to take ownership of the
remote directory and create a Locator File. If a Gateway Locator
File already exists, the local engine is not used.

! Third, try to use the specified Gateway engine.

It is important to remember that the Gateway configuration only
goes into effect when there is no database engine available on the
same computer as the data files.

In this release, you can now allow a dynamic (floating) Gateway
engine while at the same time preserving transaction durability for
multi-directory databases on the same volume. This benefit is
provided by a new type of Gateway Locator File that points to
another Gateway Locator File. The new type is called a Redirecting
Locator File. By having Redirecting Locator Files in directories A, B,
and C that point to the Locator File in directory D, you can ensure
that the Gateway engine specified by the Locator File in directory D
services data files in the other directories as well.

Regardless of whether the Locator file in directory D specifies a
permanent Gateway or is dynamically created by the first engine to
open those files, this architecture ensures that all the specified
directories use the same Gateway engine. Likewise, if you decide to
change the permanently assigned Gateway engine for several

1-25

Easier Installation and Configuration

directories, Redirecting Locator Files allow you to do so by changing
only one Locator File, rather than all of them. Thus, it is possible to
specify that all data files on a given hard drive must use the same
Gateway engine, with or without designating a permanent Gateway.

Redirecting Locator File Requirements

The first line of a Redirecting Locator File must start with “=>” and
be followed by a path specifying another Locator File, which must be
on the same drive. You can use any combination of forward slash and
back slash in the path name. All slashes are converted to the type of
separator used by the local operating system.

If your specified path ends with a slash, the database engine assumes
the default Locator File name (~PVSW~.LOC) and appends it to the
path. If the specified path does not end with a slash, the database
engine assumes that the path already contains the file name.

The table below lists the ways a Redirecting Locator File path can be
specified:

You can assign multiple levels of redirection to these Locator Files.
For example, you can have the first Locator File pointing to a second
Locator File, the second Locator File pointing to a third Locator File,
and so on. Each engine opens each Locator File sequentially, looking
for the actual Gateway name. It stops searching once it has found the
locator file that does not start with “=>”. The engine then assumes
this Locator File specifies the Gateway engine.

Creating Redirecting Locator Files

As with any Locator File, a Redirecting Locator File is a plain text file.
You can create Redirecting Locator Files by hand or

Table 1-8 Redirecting Locator File Path Descriptions

Path Meaning

=>\path_name Specifies the path from the root of the drive
where the current Locator File is stored.

=>.\path_name Specifies the path relative to the current
directory.

=>..\path_name Specifies the path relative to the parent
directory of the current directory.

1-26

What’s New in Pervasive.SQL 2000i SP3

programmatically. A Redirecting Locator File must be flagged as
read-only, or it will be overwritten by the first engine to attempt to
access the data files in that directory.

➤ To Create a Redirecting Locator File

1 Open Notepad or a text editor, and open a new text file.

2 Decide where you are going to save the file when you are
finished. You will save the file in the same directory as the data
files which you want to redirect to another locator file.

For example, if you want to ensure that the data files in C:\data
are accessed by the same Gateway engine as other data files, then
you will want to keep in mind the folder C:\data.

3 Type in => and the path name of the next Locator File.
Continuing the example from the previous step, if you want the
current data files in C:\data to be owned by the Gateway engine
specified in the Locator File located in c:\moredata, then you
would type the following:

=>..\moredata\ (recommended) or

=>\moredata\ (not recommended)

In the first case, you are specifying a relative path from the
current directory. In the second case, you are specifying an
absolute path from the root of the current drive. In this
particular example, both cases resolve to the same target
directory.

Note Pervasive strongly recommends that you use relative path names
(starting with ./ or ../) in your Redirecting Locator Files, and that you
use the same share names on all workstations to access the same data.
Following these two recommendations can prevent errors that may
occur with network path name resolution over mapped drives.

4 Save the file as ~PVSW~.LOC in the directory where the data
files exist that you want to specify a Gateway engine for.

5 Close Notepad or the text editor.

6 Flag the text file as read-only.

1-27

Easier Installation and Configuration

To mark the file as read-only on Windows, you can use the
Properties dialog box (right-click on the file icon) in Windows
Explorer, or you can use the ATTRIB command in a DOS session
or in a program:

ATTRIB +R ~PVSW~.LOC

➤ To synchronize many data directories on a permanent
Gateway

1 Either by hand or by using the Gateway Locator program, create
a read-only (permanent) Locator File that does not redirect. It
must specify a Workgroup engine to use as the Gateway.

For example, your locator file may specify the computer named
“workgroup1” as the Gateway engine, and the file may be located
in C:\DATA\DB1.

2 For each of the other data directories that you want to use the
Gateway engine specified in the previous step, you need to create
a Redirecting Locator File in that directory. Each Redirecting
Locator File must point to the file you created in the previous
step.

Continuing the example, each Redirecting Locator File in
C:\DATA\DB2 and C:\DATA\DB3 would then contain the
following text:

=>..\DB1\

This causes any engine reading this file to follow the relative path
and search the specified directory C:\DATA\DB1 for another
Locator File. In this case, the specified directory contains a
Locator File that names “workgroup1” as the Gateway computer.

➤ To synchronize many data directories on a dynamic
Gateway

1 Follow the steps above, only in step #1, ensure that the Locator
File is writable, not permanently-assigned.

In this case, remember that if no engines are accessing any data
files in the redirecting hierarchy, then there will be no Locator
File in the target directory. This is normal. The dynamic Locator
File is created each session by the first engine to access the data,

1-28

What’s New in Pervasive.SQL 2000i SP3

and the file is deleted when the last user session ends. It is
permissible to have Redirecting Locator Files that point to a data
directory that has no Locator File in it. In this case, the first
engine to open those data files creates the Locator File.

Example

Using the example Locator Files shown in Figure 1-1, the Redirecting
Locator File on the left forces the database engine to go up one
directory, then look in the sub-directory newdir for another Locator
File with the default name (~PVSW~.LOC). This Locator File, in
turn, specifies that the Workgroup engine on the computer named
ntserver1 is the correct Gateway engine. As a result, the database
engine on ntserver1 is used to access the data files in the directory
mydir.

Figure 1-1 Redirecting Locator File Example

mydir/~pvsw~.loc

=>../newdir/ ntserver1

newdir/~pvsw~.loc

1-29

Improved Networking Support

Improved Networking Support

This section describes features in this release that improve reliability
across product versions and over imperfect networks, and provide
easier troubleshooting of network-related problems.

Pervasive Auto-
Reconnect

Pervasive Auto-Reconnect (PARC) allows client-server or
workgroup applications to endure temporary network interruptions
without canceling the current database operation. When
Pervasive.SQL detects a network interruption, it automatically
attempts to reconnect at specific intervals for a configurable amount
of time. This feature also preserves the client context so that when
communications are re-established, database access continues
exactly where it left off when the network interruption occurred.

This feature preserves the application context and attempts to
reconnect regardless of whether the client or server was attempting
to send data at the moment when the network communications were
interrupted.

When a network interruption occurs, the reconnect attempts occur
at specific intervals. For all connections, successive attempts are
made at 0.5, 1, 2, 4, and 8 seconds, continuing every 8 seconds
thereafter until the AutoReconnect Timeout value is reached. If no
attempt is successful before the maximum wait time is reached, then
the current operation fails and the client connection is reset. The
maximum wait time is configurable between 45 seconds and 65,535
seconds.

Interface Support

Options for this feature are supported by Distributed Tuning
Interface (DTI), Distributed Tuning Objects (DTO), and Pervasive
Control Center (PCC) Configuration program.

Configuration

Server | Communications Protocols | Enable AutoReconnect
Type: Bool
Range: On/Off
Default: Off
This setting specifies whether you want the server to support clients

1-30

What’s New in Pervasive.SQL 2000i SP3

attempting to auto-reconnect during a network outage. A setting of
“On” means AutoReconnect is enabled.

Server | Communications Protocols | AutoReconnect Timeout
Type: Numeric
Range: 45 - 65535 seconds
Default: 180 seconds
This setting specifies how long the client will attempt to connect to
the server before giving up. When a AutoReconnect-enabled client
first connects to a AutoReconnect-enabled server, the server
communicates this value to the client so that both components know
how long to attempt to reconnect in the event of a network
interruption.

Client | Communications Protocols | Enable AutoReconnect
Type: Bool
Range: On/Off
Default: Off
This setting specifies whether you want the client to attempt to
reconnect during a network outage, if it is initially connected to a
server with AutoReconnect enabled. A setting of “On” means the
AutoReconnect feature is enabled.

Other Considerations

This feature is supported for Btrieve, ODBC, and DTI connections.
All 16-bit (when thunking to Win32) and 32-bit Windows
applications are supported, but not pure DOS or Windows 3.x
platforms. DOS using Btrieve DOS box support on 32-bit Windows
platforms is supported. This feature is supported on all supported
server platforms.

The Btrieve communication servers may write out *.PAR or *.SAR
files to the Transaction Log Directory. These are temporary files that
contain the context for the last item that the server tried to send to
the client. When a reconnection occurs, the client may ask for data
to be re-sent. The server reads these files to obtain the appropriate
data. These files are normally deleted by the server after the data is
read or later when the connection is finally terminated.

1-31

Improved SQL Support

Improved SQL Support

This section describes new features that make it easier to work with
SQL and give you more flexibility to develop powerful relational
applications.

Additional SQL
Syntax

An assortment of additional SQL functions and keywords have been
added. These new features improve backward compatibility, improve
compatibility with Microsoft SQL Server, and offer greater power
and flexibility in your SQL statements.

These new features are discussed in detail in Chapter 3, “SQL Syntax
Enhancements.” Summaries are provided below:

@@IDENTITY, @@ROWCOUNT

These two new global variables allow you to access the most recent
IDENTITY column value inserted by the SRDE for the current
database connection, or to access the number of rows affected by the
most recently executed SQL statement for the current database
connection. For further details, see “Global Variables” on page 3-2.

USING, IN DICTIONARY, WITH REPLACE

These keywords are additions to CREATE TABLE, ALTER TABLE,
and DROP TABLE allowing you to specify a file name when creating
a table. This set of keywords also allows you to make certain changes
to the DDFs without affecting the data files. This functionality was
available in Pervasive.SQL 7, but until now was not available in
Pervasive.SQL 2000. For further details, see “USING, IN
DICTIONARY, WITH REPLACE” on page 3-6.

SELECT in UPDATE

In the SET clause of an UPDATE statement, you may specify a sub-
query. This feature allows you to update information in a table based
on information in another table or another part of the same table.
This functionality was available in Pervasive.SQL 7, but until now
was not available in Pervasive.SQL 2000. For further details, see
“SELECT in UPDATE” on page 3-14.

1-32

What’s New in Pervasive.SQL 2000i SP3

Table Creation with Legacy Null Support

This version of the product allows you to set the default format for
creation of tables with regard to NULL support. Normally,
Pervasive.SQL creates new tables using the true NULL data record
format first offered in Pervasive.SQL 2000, which adds a NULL
indicator byte to the beginning of every field. By turning off this
engine setting using a SQL statement, you can create new tables that
use the legacy NULL data record format that was used in
Pervasive.SQL 7.

The creation mode remains in effect until it is changed by issuing the
statement again, or until the connection is disconnected. Because
this setting is maintained on a per-connection basis, separate
database connections can maintain different creation modes, even
within the same application. Every connection starts with the setting
in default mode, where new tables are created with true NULL
support.

This feature does not affect existing tables or available column data
types. All tables are created using Pervasive.SQL 2000 data types. For
example, old data types such as NOTE or LVAR will not be available
for use regardless of which type of NULL support is selected.

To toggle the setting and specify that new tables should be created
with legacy NULL support, use this SQL statement:

SET TRUENULLCREATE=OFF

To toggle the setting and return the engine to the default, which is
table creation with true NULL support, use this SQL statement:

SET TRUENULLCREATE=ON

This setting can only be toggled using SQL, it cannot be set using
Pervasive Control Center.

ALTER TABLE—Change Data Type or Nullability

In Pervasive.SQL 7, you could change the nullability or the data type
of an existing column in a table. In releases of Pervasive.SQL 2000
prior to SP3, this capability was not available. In this release of the
product, this capability has been restored and enhanced. For further
details, see “Improved ALTER TABLE Support” on page 3-17.

1-33

Improved SQL Support

Additional Scalar Functions

This release supports a variety of new string, numeric, date, time,
and logical functions. For further details, see “Additional Scalar
Functions” on page 3-20.

Improved OEM to ANSI Support

Applications can now store or retrieve character data in the OEM
character set using Pervasive.SQL, while allowing the data to be
manipulated and displayed using the ANSI Windows character set.
The Pervasive ODBC driver translation DLL can perform all
necessary translations between the two character sets. This feature
can be turned on or off for each DSN. To access the switch, click
Options... on the Pervasive ODBC DSN Setup dialog box.

The Pervasive Control Center (PCC) and the SQL Data Manager
(SQLDM) are not fully OEM-character aware if you use extended
ASCII characters for column or table names. However, any character
data that is passed to and from the database is correctly translated
between the OEM and ANSI character sets. OEM-character-aware
column and table names within PCC and SQLDM will be fully
enabled in a future service pack.

If your application connects to the data source using
SQLDriverConnect, you can also specify the translation DLL using
the connection string option
TRANSLATIONDLL=path_and_DLL_name. The translation DLL
name for Pervasive is W32BTXLT.DLL, and it is located in the bin
sub-directory of the installation directory (C:\pvsw\bin by default).

Note The OEM to ANSI translation option is available only for Client
DSNs or local Engine DSNs.

1-34

What’s New in Pervasive.SQL 2000i SP3

New and Enhanced Documentation

This release introduces a host of new and improved material and
provides an enhanced format on platforms where support for the
format is available.

Support for Microsoft HTML Help

On Windows platforms, this release supports both RTF-based
Windows 95 Help and HTML-based Windows 98/2000 Help, also
known as Microsoft HTML Help. If you choose the Typical
installation or if you use the Custom installation to install the online
documentation, Pervasive.SQL automatically detects which version
of Help is supported on your computer, and installs the appropriate
set of online documentation.

Getting Started with Pervasive.SQL

Both the Server and Workstation/Workgroup editions of this title
have been re-structured, re-written, and expanded to provide more
of the information you need when you’re getting started, and to
make it easier for you to find relevant information quickly. This
release includes a new chapter specifically dedicated to help you
successfully upgrade Btrieve 6.x installations to Pervasive.SQL 2000i.

Advanced Operations Guide

This release offers a brand new title, Advanced Operations Guide,
aimed squarely at network administrators, value-added resellers,
and other technical staff who need to know a lot more than just the
basics. This book goes into specific detail on backup/restore,
database security, client and engine configuration, periodic
maintenance, and a variety of other useful topics.

Status Codes and Messages

This resource includes updated and expanded troubleshooting and
problem resolution information.

2-1

c h a p t e r

2Pervasive System Analyzer
(PSA)

An Overview of the New Diagnostic Utility in Pervasive.SQL 2000i SP3

The Pervasive System Analyzer is a new utility that replaces and
extends SmartScout and InstallScout utilities.

The following are the sections found in this chapter:

! “Overview of Pervasive System Analyzer” on page 2-2

! “Using PSA During Installation” on page 2-3

! “Using PSA Outside of the Installation Process” on page 2-8

2-2

Pervasive System Analyzer (PSA)

Overview of Pervasive System Analyzer

The Pervasive System Analyzer (PSA) is a utility that searches your
system for previous Pervasive components and provides feedback
regarding the appropriate course of action to remedy potential
version conflicts.

PSA also provides you with the ability to archive previous
installations.

Summary of
Functionality

! Checks a machine at the start of an installation to ensure that
preexisting components will not interfere

! If existing components are found, you have the option to move
them to an archive directory from which they can be later
restored if necessary

! If you are installing a client, PSA tests the network connectivity
to the machine running the Pervasive.SQL server.

! After your new Pervasive.SQL files are installed, PSA tests the
new client’s ability to perform basic database operations.

Replaces
Previously
Released
Utilities

If you have been a Pervasive customer before this release, you will
notice that certain utilities are no longer included with
Pervasive.SQL 2000i. PSA integrates the most useful functionality of
these utilities in one convenient user interface and further extends
their functionality. For reference, these utilities are:

! InstallScout

! SmartScout

! Supportability

2-3

Using PSA During Installation

Using PSA During Installation

PSA performs two primary functions during your Pervasive.SQL
installation process:

! Before copying new files, PSA scans your system for previous
versions of Pervasive products and allows you to archive them so
that they do not interfere with your new installation

If you are installing a client, PSA also tests your Network
connectivity to the machine on which a Pervasive.SQL server
engine is installed.

! After installing new files, PSA allows you to test your new
installation’s ability to perform basic database functions.

Steps
Performed
During
Installation

1 Early in the installation process, PSA displays its welcome screen.

Figure 2-1 PSA Welcome Screen

Click Next to begin the analysis.

2 The analysis may take several minutes, depending on your
system. When PSA runs during installation, only the Pervasive
installation path and the system path are searched for existing
components.

2-4

Pervasive System Analyzer (PSA)

Figure 2-2 Analysis in Progress

When the analysis is complete, click Next to display the results.

3 PSA displays the files it found from previous installations. The
default is to archive all files as shown in the following screen.

Figure 2-3 Archive All Files

4 If you do not wish to archive all files, select Archive selected files
and select only the groups you wish to archive as shown in the
following screen.

2-5

Using PSA During Installation

Figure 2-4 Archive Selected Files

Caution Failure to archive old files may lead to runtime problems
after installation.

The files are archived to the selected archive drive, in the path
\pvswarch\version, where version describes the product release
that was discovered and is being archived.

5 After PSA has archived existing files, client installs ONLY
perform the Network Connectivity test. If you are installing a
Pervasive.SQL server or workstation/workgroup engine locally,
then this test is skipped.

2-6

Pervasive System Analyzer (PSA)

Figure 2-5 Network Connectivity Test (CLIENT installs only)

6 The current installation now copies its files to your machine.
When the files are finished copying, PSA then displays the
Transactional test screen as shown in the following illustration:

Figure 2-6 Start of Transactional Test

7 After completing the Transactional test, the following screen is
displayed. If any errors occurred during the test, this screen
shows which tests failed and offers additional information to
help diagnose the cause.

2-7

Using PSA During Installation

Figure 2-7 Transactional Test Completed

8 Your Pervasive.SQL installation completes at this point. Please
read the README file for important information.

2-8

Pervasive System Analyzer (PSA)

Using PSA Outside of the Installation Process

You may want to use PSA after the installation process if another
installation interferes with Pervasive operations.

Why Use PSA? Here are some scenarios where you might use PSA after installation:

! You installed another application based on Pervasive.SQL and
now one or more of your Pervasive-based applications are no
longer functioning.

! You are encountering network errors and wish to test your
client’s connectivity to a machine running a Pervasive.SQL
server.

! Your Pervasive-based application is not functioning correctly
and you wish to test the functionality of the Transactional or
Relational interface components to the Pervasive.SQL engine.

! You wish to restore Pervasive components archived previously
by PSA.

! You wish to archive components currently in use on your system
in preparation for another install. PSA runs automatically
during the installation of Pervasive.SQL 2000 SP3 and higher.

Starting PSA From the Start Menu:

1 Click Start, point to Programs | Pervasive | Pervasive.SQL 2000i

2 Select Utilities | Pervasive System Analyzer

From the Command Prompt:

1 Click Start | Run

2 Type C:\Program Files\Common Files\Pervasive
Software\psawizrd and press Enter.

2-9

Using PSA Outside of the Installation Process

Common PSA
Tasks

The following shows common tasks that you can perform using PSA:

! “Choosing the Functions You Wish to Perform”

! “Testing Your Network” on page 2-11

! “Testing the Transactional Interface” on page 2-12

! “Archiving Previous Pervasive Components” on page 2-13

! “Restoring Archived Pervasive Components” on page 2-13

! “Viewing PSA Log Information” on page 2-15

Choosing the Functions You Wish to Perform

1 PSA starts by displaying its welcome screen. Click Next to begin
the analysis.

Figure 2-8 PSA Welcome Screen

Click Next to select the tests that you wish to perform.

2-10

Pervasive System Analyzer (PSA)

Figure 2-9 PSA Available Tests

Select the tests you wish to perform. Also, choose the path to which
you wish to write the PSA log file. The PSA log can be viewed later
using any text editor such as Notepad. You also have the option of
viewing it at the end of your PSA session.

If you specify the same file for more than one test, the results of
subsequent tests are appended to the file.

2-11

Using PSA Outside of the Installation Process

Testing Your Network

This test reports on the connectivity to a given machine running
Pervasive.SQL.

Figure 2-10 PSA Network Connectivity Test

Note This test only functions if you are connecting to a remote
machine running a Pervasive.SQL engine via a mapped drive. This test
cannot be run against a local Pervasive.SQL engine.

2-12

Pervasive System Analyzer (PSA)

Testing the Transactional Interface

This test verifies the ability of your client interface to connect to the
Pervasive.SQL transactional engine (Btrieve).

When you run this test, PSA attempts to perform basic database
operations that are common to most Btrieve applications. If your
machine passes this test, then the following is verified:

! Your Pervasive.SQL engine is running

! Your client interface components are installed correctly

! Btrieve applications running on your computer should function
correctly

Figure 2-11 PSA Transactional Test

2-13

Using PSA Outside of the Installation Process

Archiving Previous Pervasive Components

PSA moves the selected files from their current locations to the
archive folder.

All archived files are written to the Program Files subdirectory of the
selected archive volume.

For example, if you selected C:\ as your archive volume, then
Pervasive archived files are stored at:

C:\PVSWARCH\

Figure 2-12 PSA Archiving

Restoring Archived Pervasive Components

All archived files are written to the Program Files subdirectory of the
drive that was selected when the archive was performed.

For example, if the archive was performed to drive D:\ then Pervasive
archived files are stored at:

D:\PVSWARCH\

PSA scans this directory and displays the components available for
restoration as shown in the following screen.

2-14

Pervasive System Analyzer (PSA)

Figure 2-13 PSA Restore

If you do not wish to restore all components, then select Restore
selected files and choose the components that you wish to restore to
their previous location.

Figure 2-14 PSA Restore Selected Files

2-15

Using PSA Outside of the Installation Process

Viewing PSA Log Information

The PSA Log contains useful information. You can view this log by
selecting the View Log File option at the end of your PSA session.

Figure 2-15 PSA Completion and Viewing the Log File

This file is written to the location specified when you started your
PSA session and selected which tests you wished to perform.

It is a text file and can be viewed by Notepad or any file editor later if
you choose. If the same file name is specified for more than one test
run, the results of each test are appended to the file.

Figure 2-16 Specifying the PSA Log File Location

2-16

Pervasive System Analyzer (PSA)

3-1

c h a p t e r

3SQL Syntax Enhancements

Detailed Information on New and Improved SQL Syntax

The purpose of this chapter is to provide specific technical detail on
the new and improved SQL syntax available in this release of the
product.

New SQL syntax in support of Dynamic Cursors is covered in
Chapter 4, “Dynamic Cursors in Pervasive.SQL 2000i SP3.”

This chapter is divided into the following sections:

! “Global Variables” on page 3-2

! “USING, IN DICTIONARY, WITH REPLACE” on page 3-6

! “SELECT in UPDATE” on page 3-14

! “Improved ALTER TABLE Support” on page 3-17

! “Additional Scalar Functions” on page 3-20

3-2

SQL Syntax Enhancements

Global Variables

A new global variable, @@IDENTITY, allows you to access the most
recent IDENTITY column value inserted by the SRDE for the
current database connection. Another new global variable,
@@ROWCOUNT, allows you to access the number of rows affected
by the most recently executed SQL statement for the current
database connection.

Either variable can be prefaced with two at-signs (@@) or an at-sign
and a colon (@:). For example, @@IDENTITY and @:IDENTITY are
equivalent.

@@IDENTITY This variable returns the value of the most recently inserted
IDENTITY column value (IDENTITY or SMALLIDENTITY). The
value is a signed integer value. The initial value is NULL.

This variable can only refer to a single column. If the target table
includes more than one IDENTITY column, the value of this
variable refers to the IDENTITY column that is the table’s primary
key. If no such column exists, then the value of this variable refers to
the first IDENTITY column in the table.

If the most recent insert was to a table without an IDENTITY
column, then the value of @@IDENTITY is set to NULL.

Changed Grammar

Old Grammar

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [GROUP BY expression [, expression]...
 [HAVING search-condition]]

New Grammar

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] select-list [table-expression]

table-expression :: =
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [GROUP BY expression [, expression]...

3-3

Global Variables

 [HAVING search-condition]]

An expression is now permitted to contain:

@:IDENTITY
| @:ROWCOUNT
| @@IDENTITY
| @@ROWCOUNT

Examples

SELECT @@IDENTITY

Returns NULL if no records have been inserted in the current
connection, otherwise returns the IDENTITY column value of the
most recently inserted row.

SELECT * FROM T1 WHERE @:IDENTITY = 12

Returns the most recently inserted row if it has an IDENTITY
column value of 12. Otherwise, returns no rows.

INSERT INTO T1(C2) VALUES (@@IDENTITY)

Inserts the IDENTITY value of the last row inserted into column C2
of the new row.

UPDATE T1 SET T1.C1 = (SELECT @@IDENTITY) WHERE T1.C1 =
@@IDENTITY + 10

Updates column C1 with the IDENTITY value of the last row
inserted, if the value of C1 is 10 greater than the IDENTITY column
value of the last row inserted.

UPDATE T1 SET T1.C1 = (SELECT NULL FROM T2 WHERE T2.C1 =
@@IDENTITY)

Updates column C1 with the value NULL if the value of C1 equals
the IDENTITY column value of the last row inserted.

The example below creates a stored procedure and calls it. The
procedure sets variable V1 equal to the sum of the input value and
the IDENTITY column value of the last row updated. The procedure
then deletes rows from the table anywhere column C1 equals V1. The
procedure then prints a message stating how many rows were
deleted.

CREATE PROCEDURE TEST (IN :P1 INTEGER);
 BEGIN
 DECLARE :V1 INTERGER;

SET :V1 = :P1 + @@IDENTITY;
DELETE FROM T1 WHERE T1.C1 = :V1;

3-4

SQL Syntax Enhancements

IF (@@ROWCOUNT = 0) THEN
PRINT 'No row deleted';

ELSE
PRINT CONVERT(@@ROWCOUNT, SQL_CHAR) +

' rows deleted';
END IF;

END;

CALL TEST (@@IDENTITY)

@@ROW-
COUNT

This variable returns the number of rows that were affected by the
most recent operation in the current connection. The value is an
unsigned integer. The initial value is zero (0).

Changed Grammar

See “Changed Grammar” for @@IDENTITY.

Examples

SELECT @@ROWCOUNT

Returns zero (0) if no records were affected by the previous
operation in the current connection, otherwise returns the number
of rows affected by the previous operation.

CREATE TABLE T1 (C1 INTEGER, C2 INTEGER)
INSERT INTO T1 (C1, C2) VALUES (100,200)
INSERT INTO T1(C2) VALUES (100, @@ROWCOUNT)
SELECT * FROM T1
SELECT @@ROWCOUNT FROM T1

Results:

C1 C2
---- ----
100 200
100 1

2

As shown above, the first SELECT generates 2 rows, and shows that
the value of @@ROWCOUNT was 1 when it was used to insert a row.
The second SELECT returns 2 as the value of @@ROWCOUNT, that
is, after the first SELECT returned 2 rows.

If you cut and paste these examples into SQL Data Manager to run
them, you must terminate each statement with the appropriate
statement delimiter, either the pound sign (#) or the semi-colon (;).

3-5

Global Variables

See Also Examples for @@IDENTITY.

3-6

SQL Syntax Enhancements

USING, IN DICTIONARY, WITH REPLACE

The USING clause is an addition to CREATE TABLE, ALTER
TABLE, and DROP TABLE allowing you to specify a file name when
manipulating a table. This feature also allows you to make certain
changes to the DDFs without affecting the data files. This
functionality was available in Pervasive.SQL 7, but until now was not
available in Pervasive.SQL 2000.

Changed
Grammar

CREATE TABLE table-name [IN DICTIONARY] [USING 'path_name'
[WITH REPLACE]]
(table-element [, table-element]...)

ALTER TABLE table-name [IN DICTIONARY] [USING 'path_name'
[WITH REPLACE]]

alter-option-list

DROP TABLE table-name [IN DICTIONARY]

USING The USING keyword allows you to associate a new or existing table
with a particular data file.

Note The USING clause is a powerful feature that can easily be
misused. You can use this statement to associate a table definition with
simply any file, with no errors. When you attempt to access the file
later, however, then you will receive errors if the file is not a
MicroKernel data file with exactly the record structure defined in the
associated table definition.

When a CREATE TABLE USING or ALTER TABLE USING
statement is executed, no check or verification is performed on the
contents of the specified file. It is not checked to see if it is already
referenced in another table definition in the database, nor is it
checked to ensure that it is even readable by the database engine. If
you specify a file that has the wrong structure or is not a MicroKernel
file, you will not receive any errors until you attempt to access the file.

Path Name Notes

Because Pervasive.SQL requires a Named Database in order to
connect, the path_name provided must always be a simple file name
or relative path and file name. Paths are always relative to the first

3-7

USING, IN DICTIONARY, WITH REPLACE

Data Path specified for the Named Database to which you are
connected.

The path/file name passed is partially validated when SQLPrepare is
called. The following rules must be followed when specifying the
path name:

! The text must be enclosed in single quotes, per the grammar
definition.

! Text must be 1 to 64 characters in length, such that the entry as
specified fits in Xf$Loc in X$File. The entry is stored in Xf$Loc
exactly as typed (trailing spaces are truncated and ignored).

! The path must be a simple, relative path. Paths that reference a
server or volume are not allowed. For NetWare, a volume-based
path (such as SYS:/path/testfile.btr) is not considered a simple,
relative path.

! Relative paths containing a period (‘.’ - current directory) ,
double-period (‘..’ - parent directory), slash ‘\’, or any
combination of the three are allowed. The path must contain a
file name representing the SQL table name (path_name cannot
end in a slash ‘\’ or a directory name). All file names, including
those specified with relative paths, are relative to the first Data
Path as defined in the Named Database configuration.

! Root-based relative paths are also allowed. For example,
assuming that the first data path is D:\PVSW\DEMODATA, the
SRDE interprets the path name in the following statement as
D:\TEMP\TEST123.BTR.

CREATE TABLE t1 USING '\temp\test123.btr' (c1 int)

! Slash (‘\’) characters in relative paths may be specified either
UNIX style (‘/’) or in the customary backslash notation (‘\’),
depending on your preference. You may use a mixture of the two
types, if desired. This is a convenience feature since you may
know the directory structure scheme, but not necessarily know
(or care) what type of server you are connected to. The path is
stored in X$File exactly as typed. The SRDE engine converts the
slash characters to the appropriate platform type when utilizing
the path to open the file. Also, since data files share binary
compatibility between all supported platforms, this means that
as long as the directory structure is the same between platforms
(and path-based file names are specified as relative paths), the

3-8

SQL Syntax Enhancements

database files and DDFs can be moved from one platform to
another with no modifications. This makes for a much simpler
cross-platform deployment with a standardized database
schema.

! If specifying a relative path, the directory structure in the USING
clause must first exist. The SRDE does not create directories to
satisfy the path specified in the USING clause.

CREATE TABLE

Include a USING clause to specify the physical location of the data
file associated with the table. This is necessary when you are creating
a table definition for an existing data file, or when you want to
specify explicitly the name or physical location of a new data file.

If you do not include a USING clause, Pervasive.SQL generates a
unique file name (based on the table name with the extension
.MKD) and creates the data file in the first directory specified in the
data file path associated with the database name.

If the USING clause points to an existing data file, the SRDE creates
the table in the DDFs and returns SQL_SUCCESS_WITH_INFO.
The informational message returned indicates that the dictionary
entry now points to an existing data file. If you want CREATE
TABLE to return only SQL_SUCCESS, specify IN DICTIONARY on
the CREATE statement. If WITH REPLACE is specified (see below),
then any existing data file with the same name is destroyed and
overwritten with a newly created file.

Note Change in behavior: Pervasive.SQL v7 returned a Status Code 59
if you specified an existing data file. Pervasive.SQL 2000i SP3 returns a
successful status code.

Examples

See “Examples” on page 3-12.

ALTER TABLE

Include a USING clause to specify the physical location and name of
an existing data file to associate with an existing table. A USING
clause also allows you to create a new data file at a particular location
using an existing dictionary definition. (The string supplied in the

3-9

USING, IN DICTIONARY, WITH REPLACE

USING clause is stored in the Xf$Loc column of the dictionary file
X$File.)

In the sample database, the Person table is associated with the file
PERSON.MKD. If you create a new file named PERSON2.MKD, the
statement in the following example changes the dictionary definition
of the Person table so that the table is associated with the new file.

ALTER TABLE Person IN DICTIONARY USING 'person2.mkd'#

You must use either a simple file name or a relative path in the
USING clause. If you specify a relative path, Pervasive.SQL interprets
it relative to the data file path associated with the database name.

For Pervasive.SQL 2000i, the USING clause functions the same as it
did in Pervasive.SQL v7, but with the following changes and
improvements in behavior:

! The USING clause can be specified in addition to any other
standard ALTER TABLE option. This means columns can be
manipulated in the same statement that specifies the USING
path.

! Previously in Pervasive.SQL v7, whenever ALTER TABLE
USING was specified without IN DICTIONARY, and the
specified file did not exist, the specified file was created as a new,
empty file. Even though the old physical Btrieve file still existed,
no data was transferred to the new file.

Because Pervasive.SQL 2000i allows all other ALTER TABLE
options at the same time as USING, the new data file created is
fully populated with the existing tables data. The file structure is
not simply copied, but instead the entire contents are moved
over, similar to a Btrieve BUTIL -CREATE and BUTIL -COPY.
This can be helpful for rebuilding a SQL table, or compressing a
file that once contained a large number of records but now
contains only a few. The original, physical data file (previously
pointed to by the table) remains intact.

Note Change in behavior: When Pervasive.SQL v7 performed an
ALTER TABLE USING, the new data file it created contained no data.
Pervasive.SQL 2000i copies the contents of the existing data file into the
newly specified data file, leaving the old data file intact but unlinked.

3-10

SQL Syntax Enhancements

Examples

See “Examples” on page 3-13.

IN DICTIONARY The purpose of using this keyword is to notify the SRDE that you
wish to make modifications to the DDFs, while leaving the
underlying physical data unchanged. IN DICTIONARY is a very
powerful and advanced feature. It should only be used by system
administrators or when absolutely necessary. Normally, the SRDE
keeps DDFs and data files totally synchronized, but this feature
allows users the flexibility to force table dictionary definitions to
match an existing data file. This can be useful when you want to
create a definition in the dictionary to match an existing data file, or
when you want to use a USING clause to change the data file path
name for a table.

You cannot use this keyword on a bound database.

The following text outlines the differences between this
implementation and the previous implementation:

! IN DICTIONARY is now allowed on CREATE and DROP
TABLE, in addition to ALTER TABLE. It was only available on
ALTER TABLE in Pervasive.SQL v7. This change was made to
allow Pervasive.SQL 2000i users greater flexibility over their
table definitions via SQL statements.

! In Pervasive.SQL 2000i, IN DICTIONARY affects dictionary
entries only, no matter what CREATE/ALTER options are
specified. Previously, Pervasive.SQL 7 only allowed one option
at a time for ALTER, and for primary or foreign key alterations,
this option was ignored. Since Pervasive.SQL 2000i allows
multiple options (any combination of ADD, DROP, ADD
CONSTRAINT, and so on), IN DICTIONARY is honored under
all circumstances to guarantee only the DDFs are affected by the
schema changes.

Remarks

Tables that exist in the DDFs only (the data file does not exist) are
called detached entries. These tables are inaccessible via queries or
other operations that attempt to open the physical underlying file.
For this reason, IN DICTIONARY was added to DROP TABLE,
because it is now possible to create detached entries using CREATE
TABLE. Note that errors such as “Table not found” are generated by

3-11

USING, IN DICTIONARY, WITH REPLACE

attempts to access these detached entries. One can verify whether a
table really exists by using SQLTables or directly querying the
Xf$Name column of X$File:

SELECT * FROM X$File WHERE Xf$Name = 'table_name'

It is possible for a detached table to cause confusion, so the IN
DICTIONARY feature must be used with extreme care. It is crucial
that it should be used to force table definitions to match physical
files, not to detach them. Consider the following examples, assuming
that the file test123.btr does not exist:

CREATE TABLE t1 USING 't1.btr' (c1 INT)
ALTER TABLE t1 IN DICTIONARY USING 'test123.btr'

Or, combining both statements:

CREATE TABLE t1 IN DICTIONARY USING 'test123.btr' (c1
INT)

If you then attempt to SELECT from t1, you receive an error that the
table was not found. Confusion can arise, because you just created
the table—how can it not be found? Likewise, if you attempt to
DROP the table without specifying IN DICTIONARY, you receive
the same error. These errors are generated because there is no data
file associated with the table.

WITH REPLACE Whenever WITH REPLACE is specified in conjunction with the
USING keyword, Pervasive.SQL automatically overwrites any
existing file content with the specified file content. The existing file is
always overwritten as long as the operating system allows it.

WITH REPLACE only affects the data file, it never affects the DDFs.

The following rules apply when using WITH REPLACE:

! WITH REPLACE can only be used with USING.

! When used with IN DICTIONARY, WITH REPLACE is ignored
because IN DICTIONARY specifies that only the DDFs are
affected.

CREATE TABLE

If you include WITH REPLACE in your CREATE TABLE statement,
Pervasive.SQL creates a new data file to replace the existing file (if the
file exists at the location you specified in the USING clause).
Pervasive.SQL discards any data stored in the original file with the

3-12

SQL Syntax Enhancements

same name. If you do not include WITH REPLACE and a file exists
at the specified location, Pervasive.SQL returns
SQL_SUCCESS_WITH_INFO and does not create a new file.

WITH REPLACE affects only the data file; it does not affect the table
definition in the dictionary.

Examples

Example A

CREATE T1 USING ’f1.mkd’ (c1 int)

If f1.mkd does not exist, the file is created.

If f1.mkd already exists, then the table definition for table T1 is
associated with the designated file. The file is not verified in any way,
nor is any association with an existing table definition canceled. That
is, if f1.mkd already exists and already has a table definition
associated with it, associating another table definition with it will
succeed so that both table definitions access the same data file. If
f1.mkd is not a MicroKernel file, or does not contain the record
structure defined in the table definition, errors will occur only when
you attempt to access table T1.

Example B

CREATE T1 USING ’f1.mkd’ WITH REPLACE (c1 int)

If f1.mkd does not exist, the file is created.

If f1.mkd already exists, then the existing file is deleted, and a new,
empty file with the same name is created in its place.

ALTER TABLE

Include WITH REPLACE in a USING clause to instruct
Pervasive.SQL to replace an existing file (the file must reside at the
location you specified in the USING clause). If you include WITH
REPLACE, Pervasive.SQL creates a new file and copies all the data
from the existing file into it. If you do not include WITH REPLACE
and a file exists at the specified location, Pervasive.SQL returns a
status code and does not create the new file.

3-13

USING, IN DICTIONARY, WITH REPLACE

Note Change in behavior: With Pervasive.SQL 2000i, no data is lost or
discarded when WITH REPLACE is used with ALTER TABLE. The
newly created data file, even if overwriting an existing file, still contains
all data from the previous file. You cannot lose data by issuing an
ALTER TABLE command.

Examples

Example A

ALTER TABLE T1 USING ’f1.mkd’

If f1.mkd does not exist, the file is created and the data in the
previous data file associated with table T1 is copied into f1.mkd. The
previous data file is not deleted, but any future changes to table T1
are written to f1.mkd.

If f1.mkd already exists, no action is taken and the database engine
returns status code 59.

Example B

ALTER TABLE T1 USING ’f1.mkd’ WITH REPLACE

If f1.mkd does not exist, the file is created and the data in the
previous data file associated with table T1 is copied into f1.mkd. The
previous data file is not deleted, but any future changes to table T1
are written to f1.mkd.

If f1.mkd already exists, its contents are erased and the data in the
previous data file associated with table T1 is copied into f1.mkd. The
previous data file is not deleted, but any future changes to table T1
are written to f1.mkd.

3-14

SQL Syntax Enhancements

SELECT in UPDATE

In the SET clause of an UPDATE statement, you may specify a sub-
query. This feature allows you to update information in a table based
on information in another table or another part of the same table.
This functionality was available in Pervasive.SQL v7, but until now
was not available in Pervasive.SQL 2000.

The UPDATE statement can only update a single table at a time.
UPDATE can relate to other tables via a subquery in the SET clause.
This can be a correlated subquery that depends in part on the
contents of the table being updated, or it can be a non-correlated
subquery that depends only on another table.

Correlated Subquery

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1
= T1.C1)

Non-correlated Subquery

UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2 WHERE
T2.C1 = 10)

Changed
Grammar

The following SQL grammar addition has been implemented to
support this feature:

Old Grammar

UPDATE table-name [alias-name]
SET column-name = expression [, column-name = expression]...
[WHERE search-condition]

New Grammar

UPDATE table-name [alias-name]
SET column-name = expression-or-subquery [, column-name = expression-

or-subquery]...
[WHERE search-condition]

Remarks The same logic is used to process pure SELECT statements and
subqueries, so the subquery can consist of any valid SELECT
statement. There are no special rules for subqueries.

If SELECT within an UPDATE returns no rows, then the UPDATE
inserts NULL. If the given column(s) is/are not nullable, then the

3-15

SELECT in UPDATE

UPDATE fails. If select returns more than one row, then UPDATE
fails.

Comparison to Pervasive.SQL 7 Behavior

The UPDATE syntax in the Pervasive.SQL v7 engine is not the same
as that of Pervasive.SQL 2000i. Although the previous UPDATE
syntax was not ANSI compliant, the v7 engine allowed several join
tables in an UPDATE statement. For example, the following
statement was permitted:

UPDATE T1, T2 SET T1.C2 = T2.C2 WHERE T1.C1 = T2.C1

This syntax is not supported by the SRDE. The above query needs to
be rewritten via a correlated subquery in the SET clause as follows:

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1
= T1.C1)

Examples Example A

In Example A, two tables are created and rows are inserted. The first
table, t5, is updated with a column value from the second table, t6, in
each row where table t5 has the value 2 for column c1. Because there
is more than one row in table t6 containing a value of 3 for column
c2, the first UPDATE fails because more than one row is returned by
the subquery. This result occurs even though the result value is the
same in both cases. As shown in the second UPDATE, using the
DISTINCT keyword in the subquery eliminates the duplicate results
and allows the statement to succeed.

CREATE TABLE t5 (c1 INT, c2 INT)
CREATE TABLE t6 (c1 INT, c2 INT)
INSERT INTO t5(c1, c2) VALUES (1,3)
INSERT INTO t5(c1, c2) VALUES (2,4)

INSERT INTO t6(c1, c2) VALUES (2,3)
INSERT INTO t6(c1, c2) VALUES (1,2)
INSERT INTO t6(c1, c2) VALUES (3,3)

select * from t5
c1 c2
---------- -----
1 3
2 4

UPDATE t5 SET t5.c1=(SELECT c2 FROM t6 WHERE c2=3) WHERE
t5.c1=2 -- query fails

3-16

SQL Syntax Enhancements

UPDATE t5 SET t5.c1=(SELECT DISTINCT c2 FROM t6 WHERE
c2=3) WHERE t5.c1=2 -- query succeeds

SELECT * FROM t5
c1 c2
---------- -----
1 3
3 4

Example B

In Example B, two tables are created and a variety of valid syntax
examples are demonstrated. Note the cases where UPDATE fails
because the subquery returns more than one row. Note that
UPDATE succeeds and NULL is inserted if the subquery returns no
rows (where NULL values are allowed).

CREATE TABLE T1 (C1 INT, C2 INT)
CREATE TABLE T2 (C1 INT, C2 INT)

INSERT INTO T1 VALUES (1, 0)
INSERT INTO T1 VALUES (2, 0)
INSERT INTO T1 VALUES (3, 0)
INSERT INTO T2 VALUES (1, 100)
INSERT INTO T2 VALUES (2, 200)

UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2)
UPDATE T1 SET T1.C2 = 0
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= T1.C1)

UPDATE T1 SET T1.C2 = @@IDENTITY
UPDATE T1 SET T1.C2 = @@ROWCOUNT
UPDATE T1 SET T1.C2 = (SELECT @@IDENTITY)
UPDATE T1 SET T1.C2 = (SELECT @@ROWCOUNT)

UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2) -- update fails
INSERT INTO T2 VALUES (1, 150)
INSERT INTO T2 VALUES (2, 250)
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= T1.C1) -- update fails
UPDATE T1 SET T1.C2 = (SELECT T2.C2 FROM T2 WHERE T2.C1

= 5) -- update succeeds, NULL is inserted for all rows of T1.C2

UPDATE T1 SET T1.C2 = (SELECT SUM(T2.C2) FROM T2 WHERE
T2.C1 = T1.C1)

3-17

Improved ALTER TABLE Support

Improved ALTER TABLE Support

In Pervasive.SQL v7, you could change the nullability or the data
type of an existing column in a table. In more recent releases of
Pervasive.SQL 2000i, the same capability was not available. In this
release of the product, the capability has been restored and
enhanced. You can now modify the data type or NULL property of
an existing column.

Changed
Syntax

The grammar that has been added to support this feature is shown
in bold type below:

ALTER TABLE table-name alter-option-list

table-name ::=user-defined-name

alter-option-list ::=alter-option
| (alter-option [, alter-option]...)

alter-option ::= ADD [COLUMN] column-definition
| ADD table-constraint-definition
| DROP [COLUMN] column-name
| DROP CONSTRAINT constraint-name
| DROP PRIMARY KEY
| MODIFY [COLUMN] column-definition
| ALTER [COLUMN] column-definition

Remarks The ability to modify the nullability or data type of a column is
subject to the following restrictions:

! The target column cannot have a PRIMARY/FOREIGN KEY
constraint defined on it.

! If converting the old type to the new type causes an overflow
(arithmetic or size), the ALTER TABLE operation is aborted.

! If a nullable column contains NULL values, the column cannot
be changed to a non-nullable column.

If you must change the data type of a key column, you can do so by
dropping the key, changing the data type, and re-adding the key.
Keep in mind that you must ensure that all associated key columns
remain synchronized. For example, if you have a primary key in table
T1 that is referenced by foreign keys in tables T2 and T3, you must
first drop the foreign keys. Then you can drop the primary key. Then

3-18

SQL Syntax Enhancements

you need to change all three columns to the same data type. Finally,
you must re-add the primary key and then the foreign keys.

The syntax supported in Pervasive.SQL v7 is different from ANSI
standard. Pervasive.SQL v7 uses the MODIFY keyword while ANSI
uses the ALTER keyword. Pervasive.SQL 2000i allows both keywords
in the ALTER TABLE statement as follows:

ALTER TABLE T1 MODIFY C1 INTEGER
ALTER TABLE T1 ALTER C1 INTEGER
ALTER TABLE T1 MODIFY COLUMN C1 INTEGER
ALTER TABLE T1 ALTER COLUMN C1 INTEGER

Comparison to Pervasive.SQL v7 Behavior

Version 7 does not allow altering a column to a smaller length
regardless of whether the actual data can be converted.
Pervasive.SQL 2000i allows altering a column to a smaller length if
the actual data does not overflow the new, smaller length of the
column. This behavior is similar to that of Microsoft SQL Server.

Pervasive.SQL 2000i allows adding, dropping, or modifying multiple
columns on a single ALTER TABLE statement. Although it simplifies
operations, this behavior is not considered ANSI-compliant.
Pervasive.SQL v7 only allowed you to add, drop, or modify a single
column at a time. A sample multi-column ALTER statement is
shown below.

ALTER TABLE T1 (ALTER C2 INT, ADD D1 CHAR(20), DROP C4,
ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT NULL)

Conversion of Legacy Data Types

All legacy data types (Pervasive.SQL v7 or earlier) can be converted
to data types that are natively supported by Pervasive.SQL 2000i. But
the new data types cannot be converted backwards to legacy data
types.

A LONGVARCHAR/LONGVARBINARY column is no longer
allowed to be added to a legacy table that contains a NOTE/LVAR
column. In order to add a LONGVARCHAR/LONGVARBINARY
column to a legacy table that contains a NOTE/LVAR column, the
NOTE/LVAR column has to first be converted to a LONGVARCHAR
or LONGVARBINARY column. After converting the NOTE/LVAR
column to LONGVARCHAR/LONGVARBINARY, more
LONGVARCHAR/LONGVARBINARY columns can be added to the

3-19

Improved ALTER TABLE Support

table. But the legacy engine will not be able to work with this legacy
table because the old engine can only work with one variable length
column per table.

Examples ALTER TABLE T1 (ALTER C2 INT, ADD D1 CHAR(20), DROP C4,
ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT NULL)

ALTER TABLE T2 (ALTER C1 CHAR(50), DROP CONSTRAINT
MY_KEY, DROP PRIMARY KEY, ADD MYCOLUMN INT)

3-20

SQL Syntax Enhancements

Additional Scalar Functions

This section describes the additional scalar functions that are
available in this release. They are divided into the following
categories:

! String Functions on page 3-20

! Numeric Functions on page 3-22

! Date and Time Functions on page 3-25

! Logical Functions on page 3-28

String
Functions

String functions are used to process and manipulate columns that
consist of text information, such as CHAR or LONGVARCHAR data
types.

ASCII

ASCII (string_exp)

Returns the ASCII value of the leftmost character of string_exp.

Example

This example creates a new table with an integer and a character
column. It inserts 4 rows with values for the character column only,
then updates the integer column of those rows with the ASCII
character code for each character.

CREATE TABLE numchars(num INTEGER, chr CHAR(1) CASE)

INSERT INTO numchars (chr) VALUES('a')
INSERT INTO numchars (chr) VALUES('b')
INSERT INTO numchars (chr) VALUES('A')
INSERT INTO numchars (chr) VALUES('B')

UPDATE numchars SET num=ASCII(chr)

SELECT * FROM numchars

Results of SELECT:

num chr
---------- ---
97 a
98 b
65 A
66 B

3-21

Additional Scalar Functions

SELECT num FROM numchars WHERE num=ASCII(‘a’)

Results of SELECT:

num

97

BIT_LENGTH

BIT_LENGTH (string_exp)

Returns the length in bits of string_exp.

CHAR

CHAR (Code)

Returns the ASCII character corresponding to ASCII value Code.
The argument must be an integer value.

CHAR_LENGTH

CHAR_LENGTH(string_exp)

Returns the number of characters in string_exp.

CHARACTER_LENGTH

CHARACTER_LENGTH(string_exp)

Same as CHAR_LENGTH.

OCTET_LENGTH

OCTET_LENGTH (string_exp)

Returns the length in bytes of String_Exp.

POSITION

POSITION(string_exp1, string_exp2)

Returns the position of string_exp1 in string_exp2. If string_exp1
does not exist in string_exp2, a zero is returned.

REPLICATE

REPLICATE(string_exp, count)

3-22

SQL Syntax Enhancements

Returns a character string composed of string_exp repeated count
times. The value of count is an integer.

REPLACE

REPLACE(string_exp1, string_exp2, string_exp3)

Searches string_exp1 for occurrences of string_exp2 and replaces
each with string_exp3. Returns the result. If no occurrences are
found, string_exp1 is returned.

If string_exp3 is empty, string_exp1 is returned. If string_exp2 is
longer than string_exp1, string_exp1 is returned.

SPACE

SPACE(count)

Returns a character string consisting of count spaces.

STUFF

STUFF(string_exp1, start, length, string_exp2)

Returns a character string where length characters in string_exp1
beginning at position start have been replaced by string_exp2. The
values of start and length are integers. If length is greater than the size
of string_exp1 or string_exp2, the replacement occurs to the end of
string_exp1 or string_exp2, whichever is greater. If start is beyond the
length of string_exp1, nothing is returned.

Numeric
Functions

Numeric functions are used to process and manipulate columns that
consist of strictly numeric information, such as decimal and integer
values.

ABS

ABS(numeric_exp)

Returns the absolute value of numeric_exp.

ACOS

ACOS(float_exp)

Returns the arccosine of float_exp as an angle, expressed in radians.

3-23

Additional Scalar Functions

ASIN

ASIN(float_exp)

Returns the arcsine of float_exp as an angle, expressed in radians.

ATAN

ATAN(float_exp)

Returns the arctangent of float_exp as an angle, expressed in radians.

ATAN2

ATAN2(float_exp1, float_exp2)

Returns the arctangent of the x and y coordinates, specified by
float_exp1 and float_exp2, respectively, as an angle, expressed in
radians.

CEILING

CEILING(numeric_exp)

Returns the smallest integer greater than or equal to numeric_exp.

COS

COS(float_exp)

Returns the cosine of float_exp, where float_exp is an angle expressed
in radians.

COT

COT(float_exp)

Returns the cotangent of float_exp, where float_exp is an angle
expressed in radians.

DEGREES

DEGREES(numeric_exp)

Converts numeric_exp radians to degrees and returns the result.

EXP

EXP(float_exp)

Returns the value of e raised to the power of float_exp.

3-24

SQL Syntax Enhancements

FLOOR

FLOOR(numeric_exp)

Returns the largest integer less than or equal to numeric_exp.

LOG

LOG(float_exp)

Returns the natural logarithm (base e) of float_exp.

LOG10

LOG10(float_exp)

Returns the base 10 logarithm of float_exp.

PI

PI()

Returns the constant value Pi as a floating point value.

POWER

POWER(numeric_exp, integer_exp)

Returns the value of numeric_exp to the power of integer_exp.

RADIANS

RADIANS(numeric_exp)

Converts numeric_exp degrees to radians and returns the result.

RAND

RAND([integer_exp])

Returns a random floating-point value using integer_exp as the
optional seed value.

ROUND

ROUND(numeric_exp, integer_exp)

Returns numeric_exp rounded to integer_exp places right of the
decimal point. If integer_exp is negative, numeric_exp is rounded to
|integer_exp| (absolute value of integer_exp) places to the left of the
decimal point.

3-25

Additional Scalar Functions

SIGN

SIGN(numeric_exp)

Returns an indicator of the sign of numeric_exp. If numeric_exp is
less than zero, -1 is returned. If numeric_exp equals zero, 0 is
returned. If numeric_exp is greater than zero, 1 is returned.

SIN

SIN(float_exp)

Returns the sine of float_exp, where float_exp is an angle expressed in
radians.

SQRT

SQRT(float_exp)

Returns the square root of float_exp.

TAN

TAN(float_exp)

Returns the tangent of float_exp, where float_exp is an angle
expressed in radians.

TRUNCATE

TRUNCATE(numeric_exp, integer_exp)

Returns numeric_exp truncated to integer_exp places right of the
decimal point. If integer_exp is negative, numeric_exp is truncated to
|integer_exp| (absolute value) places to the left of the decimal point.

Date and Time
Functions

Date and time functions can be used to generate, process, and
manipulate data that consists of date or time data types, such as
DATE and TIME.

CURRENT_DATE

CURRENT_DATE()

Returns the current date in format yyyy-mm-dd. In INSERT
statements, you should use the CURDATE variable in the values
clause to insert the current date into a table.

3-26

SQL Syntax Enhancements

CURRENT_TIME

CURRENT_TIME()

Returns the current time in format hh:mm:ss. In INSERT
statements, you should use the CURTIME variable in the values
clause to insert the current time into a table.

DAYNAME

DAYNAME(date_exp)

Returns a character string containing the data source-specific name
of the day (for example, Sunday through Saturday or Sun. through
Sat. for a data source that uses English, or Sonntag through Samstag
for a data source that uses German) for the day portion of date_exp.

DAYOFYEAR

DAYOFYEAR(date_exp)

Returns the day of the year based on the year field in date_exp as an
integer value in the range of 1-366.

EXTRACT

EXTRACT(extract_field, extract_source)

Returns the extract_field portion of the extract_source. The
extract_source argument is a date, time or interval expression.

The permitted values of extract_field are as follows:

Table 3-1 EXTRACT Field Codes

Code Description

YEAR Specifies the function should return the year field from the
target expression.

MONTH Specifies the function should return the month field from the
target expression.

DAY Specifies the function should return the day-of-month field
from the target expression.

HOUR Specifies the function should return the hours field from the
target expression.

3-27

Additional Scalar Functions

Example

To extract the year from the current date, you can use the following
statement:

SELECT EXTRACT(YEAR, CURRENT_DATE()) FROM "room"

MONTHNAME

MONTHNAME(date_exp)

Returns a character string containing the data source-specific name
of the month (for example, September through December or Sept.
through Dec. for a data source that uses English, or Settembre
through Dicembre for a data source that uses Italian) for the month
portion of date_exp.

QUARTER

QUARTER()

Returns the quarter in date_exp as an integer value in the range of 1-
4, where 1 represents January 1 through March 31.

TIMESTAMPADD

TIMESTAMPADD(interval, integer_exp, timestamp_exp)

Returns the timestamp calculated by adding integer_exp intervals of
type interval to timestamp_exp. The allowed values for interval are
specified here:

MINUTE Specifies the function should return the minutes field from the
target expression.

SECOND Specifies the function should return the seconds field from
the target expression.

Table 3-2 TIMESTAMP Interval Types

Type Code Description

SQL_TSI_YEAR Specifies the interval as a year.

SQL_TSI_QUARTER Specifies the interval as a calendar quarter.

Table 3-1 EXTRACT Field Codes

Code Description

3-28

SQL Syntax Enhancements

TIMESTAMPDIFF

TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals of type interval by which
timestamp_exp2 is greater than timestamp_exp1. If timestamp_exp2
is earlier than timestamp_exp1, the returned value is negative. For a
description of permitted values of interval, see Table 3-2,
“TIMESTAMP Interval Types.”

WEEK

WEEK(date_exp)

Returns the week of the year based on the week field in date_exp as
an integer value in the range of 1-53.

Logical
Functions

Logical functions are used to manipulate data based on certain
conditions.

IFNULL

IFNULL(exp, value)

If exp is null, value is returned. If exp is not null, exp is returned. The
possible data type or types of value must be compatible with the data
type of exp.

NULLIF

NULLIF(exp1, exp2)

SQL_TSI_MONTH Specifies the interval as a month.

SQL_TSI_WEEK Specifies the interval as a week.

SQL_TSI_DAY Specifies the interval as a day.

SQL_TSI_HOUR Specifies the interval as a hour.

SQL_TSI_MINUTE Specifies the interval as a minute.

SQL_TSI_SECOND Specifies the interval as a second.

Table 3-2 TIMESTAMP Interval Types

Type Code Description

3-29

Additional Scalar Functions

NULLIF returns exp1 if the two expressions are not equivalent. If the
expressions are equivalent, NULLIF returns a null value.

Utility
Functions

USER

USER()

This function returns the login name of the current user.

3-30

SQL Syntax Enhancements

4-1

c h a p t e r

4Dynamic Cursors in
Pervasive.SQL 2000i SP3

An Overview of the New Dynamic Cursor Functionality in Pervasive.SQL 2000i SP3

This chapter explains the effects and ramifications of the dynamic
cursors support that has been added in this service pack. This
chapter is divided into the following sections:

! “Features at a Glance” on page 4-2

! “Overview of Dynamic Cursors and the ODBC API” on page 4-3

! “ODBC APIs Affected by New Functionality” on page 4-5

! “Temporary Tables” on page 4-12

! “Positioned UPDATE and DELETE” on page 4-14

4-2

Dynamic Cursors in Pervasive.SQL 2000i SP3

Features at a Glance

Dynamic cursors are now supported in Pervasive.SQL 2000. The
table below summarizes the changes that have been made.

Note Information relevant to developing Pervasive.SQL applications
discussed in this chapter supersedes that of the Pervasive.SQL 2000
SDK documentation found in Service Pack 2. The SDK documentation
will be updated after the release of Pervasive.SQL 2000i Service Pack 3.

Table 4-1 Summary of New Functionality with Pervasive dynamic cursors

Feature Element Notes

Cursor and concurrency types Not previously supported by driver. Now
they are.

SQLExtendedFetch Now fully supported by Pervasive driver.

SQLSetPos Not supported by ODBC cursor library,
but is now fully supported by Pervasive
ODBC driver.

positioned UPDATE and DELETE Now supported by Pervasive driver.

OLE DB developers OLE DB 2.5 Command objects now
supported.

JDBC developers JDBC 2.0 API now supported with bi-
directional cursors.

4-3

Overview of Dynamic Cursors and the ODBC API

Overview of Dynamic Cursors and the ODBC API

This section provides an overview of the changes made to the
Pervasive ODBC driver in the Pervasive.SQL 2000i (SP3) release.

Terminology

ODBC Cursor
Library

Previous versions of our Pervasive.SQL 2000 ODBC driver relied on
the ODBC cursor library to provide scrollable cursors via the
SQLExtendedFetch API. The primary limitation of the ODBC cursor
library is that it does not support dynamic cursors, cursors that
display the most current image of the data when scrolling through a
result set rather than a static image. The static image used by the
ODBC cursor library may not reflect the actual state of the database,
in terms of actual data values in a given row in a given table, at any
given time.

Table 4-2 Dynamic Cursors Terminology

Term Definition

SP3 driver The ODBC driver of Pervasive.SQL 2000i Service Pack 3.

Pre-SP3 driver The ODBC driver of Pervasive.SQL 2000 prior to Service
Pack 3.

Result set A result set is the set of all rows that exist in the database that
match the specifications of a query.

A result set is the same as a record set in ADO, or a rowset
in OLE DB.

Cursor set A cursor set is a subset of a result set. A cursor set is a
window on the result set that moves as the application makes
fetch requests.

A cursor set is the same as active rows in ADO or OLE DB. A
cursor set is also the same as ODBC’s definition of rowset.
Specifically, the cursor set is the set of rows retrieved by the
most recent SQLExtendedFetch call.

ODBC cursor
library

A dynamic-link library (DLL) that resides between the Driver
Manager and the driver. When an application calls a function,
the Driver Manager calls the function in the cursor library,
which either executes the function or calls it in the specified
driver. For a given connection, an application specifies
whether the cursor library is always used, is used if the driver
does not support scrollable cursors, or is never used.

4-4

Dynamic Cursors in Pervasive.SQL 2000i SP3

The ODBC driver of the Pervasive.SQL 2000i (Service Pack 3) release
provides all the functionality provided by the ODBC cursor library,
while adding support for additional cursor types, concurrency
control types and full support for the SQLSetPos API.

ODBC APIs that
are Affected

The APIs affected by this new feature are listed here. The differences
are described in more detail in the section that follows.

! “SQLSetConnectOption” on page 4-5

! “SQLGetFunctions” on page 4-6

! “SQLGetInfo” on page 4-7

! “SQLSetStmntOption” on page 4-8

! “SQLExtendedFetch” on page 4-10

! “SQLSetPos” on page 4-10

Temporary
Tables

Temporary tables are used internally to process queries when an
index is required but one is not available. For example, the query

SELECT c1, c2, c3 FROM t1 ORDER BY c1

will require the use of a temporary table unless column c1 is specified
as the leading segment in an index.

The internal processing of temporary tables has changed. These
changes may affect both the performance and/or the functionality of
some queries. These changes are described in detail in a subsequent
section in this document.

4-5

ODBC APIs Affected by New Functionality

ODBC APIs Affected by New Functionality

This section lists the APIs with behavioral differences from the
previous version.

! “Updated ODBC Functionality” on page 4-5

! “New ODBC Functionality” on page 4-10

Updated ODBC
Functionality

This section describes ODBC functionality that was previously
supported but now has changed behavior.

SQLSetConnectOption

The option of interest is SQL_ODBC_CURSORS.

For both the pre-SP3 driver and the SP3 driver,
SQL_CUR_USE_ODBC causes the ODBC cursor library to be used
while SQL_CUR_USE_DRIVER bypasses the ODBC cursor library
and forces all calls to go directly to the ODBC driver.

The difference involves SQL_CUR_USE_IF_NEEDED. Because the
pre-SP3 driver did not support the SQL_FETCH_PRIOR option in
SQLExtendedFetch, (it did not support SQLExtendedFetch at all)
SQL_CUR_USE_IF_NEEDED caused the ODBC cursor library to
be used. Since the SP3 driver supports the SQL_FETCH_PRIOR
option in SQLExtendedFetch, SQL_CUR_USE_IF_NEEDED now
causes the ODBC cursor library to be bypassed.

SQLSetConnectOption also supports the following options, just as
they are supported in SQLSetStmtOption:

Table 4-3 SQL_ODBC_CURSORS Options

Using SQL_CUR_USE_IF_NEEDED Option

Pre-SP3 driver ODBC Cursor Library used

SP3 driver Pervasive driver used

Table 4-4 Other Supported SQLSetConnectOption Options

SQL_CURSOR_TYPE SQL_CONCURRENCY

4-6

Dynamic Cursors in Pervasive.SQL 2000i SP3

If these options are set at the connection level, then all statement
handles allocated through the given connection automatically have
these options set as specified in SQLSetConnectOption.

In terms of functionality, the pre-SP3 driver without use of the
ODBC cursor library provides the least desirable scenario. The pre-
SP3 driver and the SP3 driver provide identical functionality when
the ODBC cursor library is used. The SP3 driver without use of the
ODBC cursor library (bypassing the ODBC cursor library) provides
the most functionality including all functionality provided by both
the pre-SP3 driver and the ODBC cursor library with the exceptions
involving temporary tables as described in “Temporary Tables” on
page 4-12.

SQLGetFunctions

The pre-SP3 driver, when bypassing the ODBC cursor library,
indicates that SQLExtendedFetch, SQLSetPos and
SQLSetScrollOptions are not supported.

The ODBC cursor library (used with either the pre-SP3 or SP3
driver) and the SP3 driver (bypassing the ODBC cursor library) both
indicate that SQLExtendedFetch and SQLSetPos are supported.
Because the driver is ODBC 2.0 compliant, it supports
SQLSetStmtOptions as opposed to SQLSetScrollOptions.

SQL_RETRIEVE_DATA SQL_BIND_TYPE

SQL_ROWSET_SIZE SQL_USE_BOOKMARKS

Table 4-5 SQLGetFunctions Results

Using SQL Functions SQLGetFunctions
Reports Supported

Pre-SP3
driver

SQLExtendedFetch
SQLSetPos

ODBC cursor
library

SQLExtendedFetch
SQLSetPos

✔

SP3 driver SQLExtendedFetch
SQLSetPos

✔

Table 4-4 Other Supported SQLSetConnectOption Options

4-7

ODBC APIs Affected by New Functionality

SQLGetInfo

The options that have changes for Service Pack 3:

! SQL_BOOKMARK_PERSISTENCE

! SQL_FETCH_DIRECTION

! SQL_LOCK_TYPES

! SQL_POS_OPERATIONS

! SQL_SCROLL_CONCURRENCY

! SQL_SCROLL_OPTIONS

! SQL_STATIC_SENSITIVITY.

The following tables indicate the returned values for each of these
options for the pre-SP3 driver, the ODBC cursor library and the SP3
driver.

Table 4-6 Bookmark Persistence

Using SQL_BOOKMARK_
PERSISTENCE

SQL_FETCH_DIRECTION SQL_LOCK_TYPES

Pre-SP3 driver Not available SQL_FD_FETCH_NEXT Not available

ODBC cursor library SQL_BP_DELETE |
SQL_BP_UPDATE |
SQL_BP_SCROLL

SQL_FD_FETCH_NEXT |
SQL_FD_FETCH_FIRST |
SQL_FD_FETCH_LAST |
SQL_FD_FETCH_PRIOR |
SQL_FD_FETCH_ABSOLUTE |
SQL_FD_FETCH_RELATIVE |
SQL_FD_FETCH_BOOKMARK

SQL_LCK_NO_CHANGE

SP3 driver SQL_BP_UPDATE |
SQL_BP_SCROLL

SQL_FD_FETCH_NEXT |
SQL_FD_FETCH_FIRST |
SQL_FD_FETCH_LAST |
SQL_FD_FETCH_PRIOR |
SQL_FD_FETCH_ABSOLUTE |
SQL_FD_FETCH_RELATIVE |
SQL_FD_FETCH_BOOKMARK

SQL_LCK_NO_CHANGE

4-8

Dynamic Cursors in Pervasive.SQL 2000i SP3

SQLSetStmntOption

The options of interest:

! SQL_BIND_TYPE

! SQL_CONCURRENCY

! SQL_CURSOR_TYPE

! SQL_RETRIEVE_DATA

! SQL_ROWSET_SIZE

! SQL_USE_BOOKMARKS

The following tables indicate valid set values for each option.

Table 4-7 Scrolling

Using SQL_POS_OPERATIONS SQL_SCROLL_CONCURRENCY SQL_SCROLL_OPTIONS

Pre-SP3
driver

Not available SQL_SCCO_READ_ONLY SQL_SO_FORWARD_ONLY
| SQL_SO_STATIC

ODBC
cursor
library

SQL_POS_POSITION SQL_SCCO_READ_ONLY |
SQL_SCCO_OPT_VALUES

SQL_SO_FORWARD_ONLY
| SQL_SO_STATIC

SP3
driver

SQL_POS_POSITION |
SQL_POS_REFRESH |
SQL_POS_UPDATE |
SQL_POS_DELETE |
SQL_POS_ADD

SQL_SCCO_READ_ONLY |
SQL_SCCO_LOCK |
SQL_SCCO_OPT_ROWVER

SQL_SO_FORWARD_ONLY
| SQL_SO_STATIC |
SQL_SO_DYNAMIC

Table 4-8 Static Sensitivity

Using SQL_STATIC_SENSITIVITY

Pre-SP3 driver Not available

ODBC cursor library SQL_SS_UPDATES

SP3 driver SQL_SS_ADDITIONS | SQL_SS_DELETIONS |
SQL_SS_UPDATES

4-9

ODBC APIs Affected by New Functionality

Table 4-9 Binding, Concurrency, and Cursor Types

Using SQL_BIND_TYPE SQL_CONCURRENCY SQL_CURSOR_TYPE

Pre-
SP3
driver

Returns SQL_ERROR and
sets SQLSTATE to S1C00

Returns SQL_ERROR and sets
SQLSTATE to S1C00

SQL_CURSOR_FORWARD_ONLY

(the driver returns SQL_ERROR
and sets SQLSTATE to S1C00 for all
other values)

ODBC
cursor
library

SQL_BIND_BY_COLUMN
or a length to indicate row-
wise binding

SQL_CONCUR_READ_ONLY
or SQL_CONCUR_ VALUES

(for SQL_CONCUR_ROWVER
the library substitutes
SQL_CONCUR_VALUES,
returns
SQL_SUCCESS_WITH_INFO
and sets SQLSTATE to 01S02)

(for SQL_CONCUR_LOCK the
library returns SQL_ERROR
returned with SQLSTATE of
S1C00)

SQL_CURSOR_FORWARD_ONLY
or SQL_CURSOR_STATIC

(for
SQL_CURSOR_KEYSET_DRIVEN
and SQL_CURSOR_DYNAMIC the
library substitutes
SQL_CURSOR_STATIC, returns
SQL_SUCCESS_WITH_INFO and
sets SQLSTATE to 01S02)

SP3
driver

SQL_BIND_BY_COLUMN
or a length to indicate row-
wise binding

SQL_CONCUR_READ_ONLY
or SQL_CONCUR_LOCK or
SQL_CONCUR_ROWVER

(for SQL_CONCUR_VALUES
the driver substitutes
SQL_CONCUR_ROWVER,
returns
SQL_SUCCESS_WITH_INFO
and sets SQLSTATE to 01S02)

SQL_CURSOR_FORWARD_ONLY
or SQL_CURSOR_STATIC or
SQL_CURSOR_DYNAMIC

(for
SQL_CURSOR_KEYSET_DRIVEN
the driver substitutes
SQL_CURSOR_STATIC, returns
SQL_SUCCESS_WITH_INFO and
sets SQLSTATE to 01S02)

4-10

Dynamic Cursors in Pervasive.SQL 2000i SP3

New ODBC
Functionality

This section describes ODBC functionality supported previously in
Pervasive.SQL with the ODBC cursor library but that is now
supported by the Pervasive driver.

SQLExtendedFetch

The pre-SP3 driver relied entirely on the ODBC cursor library for
SQLExtendedFetch support.

The ODBC cursor library and the SP3 driver both support all fetch
types except SQL_FETCH_RESUME. Furthermore, both the library
and the driver support row-wise and column-wise binding and
binding of column zero, the bookmark column.

SQLSetPos

The pre-SP3 driver relied entirely on the ODBC cursor library for
SQLSetPos support.

The ODBC cursor library only supports the SQL_POSITION option
and only the SQL_LOCK_NO_CHANGE lock type.

The SP3 driver supports all the options but only the
SQL_LOCK_NO_CHANGE lock type. Furthermore, the SP3 driver
supports data-at-execution columns for the SQL_ADD and
SQL_UPDATE options.

Table 4-10 Rowset Size and Bookmarks

SQL_RETRIEVE_DATA SQL_ROWSET_SIZE SQL_USE_BOOKMARKS

Pre-SP3
driver

Returns SQL_ERROR and
sets SQLSTATE to S1C00

Returns SQL_ERROR and sets
SQLSTATE to S1C00

Returns SQL_ERROR and
sets SQLSTATE to S1C00

ODBC
cursor
library

SQL_RD_ON

(for SQL_RD_OFF the
library returns SQL_ERROR
returned with SQLSTATE of
S1C00)

Any value indicating number of
rows in the rowset as long as it
does not exceed maximum rowset
size.

SQL_UB_ON or
SQL_UB_OFF

SP3
driver

SQL_RD_ON or
SQL_RD_OFF

Any value indicating number of
rows in the rowset as long as it
does not exceed maximum rowset
size.

SQL_UB_ON or
SQL_UB_OFF

4-11

ODBC APIs Affected by New Functionality

Of course the SQL_ADD, SQL_DELETE and SQL_UPDATE options
are only supported on updateable result sets. If the result set is not
updateable, then SQLSetPos returns SQL_ERROR and sets
SQLSTATE to 42000. A result set is not updateable if:

! it is defined by a query that contains more than one table in the
FROM clause

! contains an aggregate function in the selection list (for example,
COUNT, SUM and AVG)

! contains DISTINCT in the selection list

! or contains a UNION.

Even if the result set is updateable, particular columns in the result
set may not be updateable. If an attempt is made to use result set
columns that are not updateable to specify values for the SQL_ADD
or SQL_UPDATE option of a SQLSetPos call, the driver returns
SQL_ERROR and sets SQLSTATE to 22005.

A result set column is not updateable if any of the following is true:

! It is defined by any expression other than a single column name
(e.g.: <column name> + 1 and RTRIM(<column name>) are
legal selection-list items that are not updateable).

4-12

Dynamic Cursors in Pervasive.SQL 2000i SP3

Temporary Tables

Special consideration needs to be taken for the case where a
temporary table is required to process a query when the cursor type
(SQL_CURSOR_TYPE) has been defined as dynamic
(SQL_CURSOR_DYNAMIC). This consideration is necessary
because a result set generated through the use of a temporary table is
in fact a static cursor rather than a dynamic cursor. Therefore, a
SQLPrepare, SQLExecute or SQLExecDirect that generates a result
set requiring a temporary table with the cursor type defined as
dynamic, returns SQL_SUCCESS_WITH_INFO and sets
SQLSTATE to 01000.

New
Limitations

The new implementation of temporary tables has introduced a
limitation that only a single LONGVARCHAR or CLOB column may
be referenced in a manner that would make it part of the index in the
temporary table. Specifically, only one column of type
LONGVARCHAR or CLOB may appear

! in a query’s selection-list if DISTINCT is specified

! in the ORDER BY clause or in the GROUP BY clause

! in any selection-list in a UNION query.

This limitation can be largely overcome though through the use of
the LEFT, RIGHT, and SUBSTRING scalar functions. Multiple
columns of type LONGVARCHAR and CLOB may be referenced in
a manner that would make them part of the index in the temporary
table, such as those cases listed above, if all or all but one of the
columns are referenced inside of a LEFT, RIGHT or SUBSTRING
scalar function.

For performance reasons, a column of type LONGVARCHAR or
CLOB should always be specified within a LEFT, RIGHT, or
SUBSTRING scalar function, preferably resulting in a value less than
251 bytes in length (for example, LEFT(co1, 250)).

Similar to the notes above, only a single LONGVARBINARY or
BLOB may be referenced in a manner that would make it part of the
index in the temporary table. Specifically, only one column of type
LONGVARBINARY or BLOB may appear in a query’s selection-list if
DISTINCT is specified or in any selection-list in a UNION query.
Columns of type LONGVARBINARY and BLOB are not allowed in

4-13

Temporary Tables

an ORDER BY or GROUP BY clause in either the pre-SP3 or SP3
drivers.

Performance The SP3 driver executes some queries requiring temporary tables
more slowly than the pre-SP3 driver while executing some queries
much more quickly. In general, expect queries requiring temporary
tables that contain 256KB or less of data to execute more slowly with
the SP3 driver, but expect queries requiring temporary tables that
contain greater than 256KB of data to execute more quickly.

4-14

Dynamic Cursors in Pervasive.SQL 2000i SP3

Positioned UPDATE and DELETE

Positioned updates and deletes as supported by the ODBC cursor
library are supported in the SP3 driver. Positioned updates and
deletes are the UPDATE and DELETE statements that contain the
‘WHERE CURRENT OF’ phrase as defined in the Pervasive.SQL
2000i Pervasive.SQL Programmer’s Reference manual.

In previous versions of this manual, these statements are supported
by the Pervasive.SQL 2000 ODBC driver only within a stored
procedure or trigger and rely on the ODBC cursor library to support
these statements at the session level. The SP3 driver supports these
statements within stored procedures and triggers as well as at the
session level.

New
Limitations

The limitations involving whether or not a result set is updateable
and whether or not a particular column within an updateable result
set is updateable that apply to the SQL_ADD, SQL_DELETE and
SQL_UPDATE options of the SQLSetPos API also apply to the
positioned update statement.

Performance The ODBC cursor library transforms a positioned update or delete
into a regular searched update or delete statement. The SP3 driver
takes advantage of SQLSetPos implementation thus not requiring a
search through the result set in order to find the ‘current’ row and in
general it executes much more quickly than the ODBC cursor
library.

5-1

c h a p t e r

5Improved OLE DB Provider
in Pervasive.SQL 2000i

An Overview of the Updated OLE DB provider in Pervasive.SQL 2000i

The following are the overview sections found in this chapter:

! “Overview of New Features in ADO and OLE DB Provider” on
page 5-2

! “Programming Notes for Pervasive OLE DB Provider” on page
5-4

! “Performance Considerations with OLE DB” on page 5-7

! “COM+ Services Support” on page 5-8

! “Execute Method (ADO Command)” on page 5-11

! “Limitations of the OLE DB Provider” on page 5-13

5-2

Improved OLE DB Provider in Pervasive.SQL 2000i

Overview of New Features in ADO and OLE DB Provider

This section provides an overview of the changes made to the
Pervasive OLE DB driver in the Pervasive.SQL 2000i SP3 release.

Command-
Based
Recordsets
Supported

The OLE DB provider that shipped with Pervasive.SQL 2000 prior to
SP3 did not include support for SQL statements. This meant that
Command objects were not supported and that result sets required
table names to open successfully. This version includes support for
SQL commands and conforms to 2.5 specifications. Unlike the SQL
Server provider or the ODBC bridge, the provider can open result
sets that are either command based or purely navigational.
Additionally, server-side cursors on either can be forward-only,
static, or dynamic. Both command-based result sets and
navigational (table-based) result sets can be open and operated on at
the same time.

Command-based recordsets provide the power and flexibility of the
SQL engine, but server-side navigational result sets provide direct
access to indexes; this feature is not available with command-based
result sets (indirect access is provided by the query optimizer). With
the index capability comes the ability to perform Seek operations. A
routine that uses Seek can significantly outperform a similar routine
that performs the same functions via a SQL statement. When used
properly, server-side navigational recordsets can improve
application performance by allowing rapid positioning on records
that contain specific values.

ADOX We now support ADO Extensions for Data Definition Language and
Security (ADOX). ADOX is used to create tables, modify schema
definitions, and view the contents of database tables. Currently,
catalog, table, column, and index objects are supported. The
creation of tables and indexes is supported; database creation is not
supported at this time.

Navigational
Recordsets in
the New
Provider

In order to open a navigational result set, adCmdTableDirect must
be used in the options of the Open method. In the previous version,
adCmdTable would successfully open a navigational result set.
However, ADO will turn this into a "SELECT * FROM" SQL statement.
This will make the result set command-based, and indexes will be
unavailable.

5-3

Overview of New Features in ADO and OLE DB Provider

Note Since ADO treated this differently when command support was
unavailable, existing applications that take advantage of index
capabilities will no longer function unless the Open method calls use
adCmdTableDirect.

Large Binary
Objects

ISequentialStream support has been added to the OLE DB provider.
In ADO, this translates into AppendChunk/GetChunk functionality
of the recordset object. It also allows complex data binding to
transfer BLOB data to and from visual controls.

5-4

Improved OLE DB Provider in Pervasive.SQL 2000i

Programming Notes for Pervasive OLE DB Provider

The following section lists notes about the Pervasive OLEDB driver:

Seek with Static
Cursors

To use seek on a static cursor, the index must be set before opening
the result set. For example:

Dim rs AsNew ADODB.Recordset
 rs.Index = "segment"
 rs.Open "Simple", "Provider=PervasiveOLEDB;Data

Source=MyData", adOpenStatic, adLockOptimistic,
adCmdTableDirect

 rs.Seek Array(2, 9)
 rs.Close

Remote
Connections

Pervasive's OLE DB provider cannot create a remote connection.
This means you cannot set a remote server within the connection
string. However, there are alternatives for our provider to perform
the same functionality.

! Use RDS, which has been tested with the Pervasive provider

! Develop a business object using COM+ services, and create the
object using CreateObject. For example:

Dim m_busObj As projDLL.busObj

rs As New ADODB.Recordset

Set m_busObj =
CreateObject("sampProj2.TwoPhaseSampleProduct",
"RemoteServer")

Set rs = m_busObj.GetData()

Table
Definitions

ITableDefinition does not support creation of the following
columns because they are not supported by the underlying
Pervasive.SQL engine.

! BSTR

! WCHAR

! VarWChar

! LongVarWChar

! UserDefined Types

! GUID

5-5

Programming Notes for Pervasive OLE DB Provider

Default
LockType

If no LockType is specified, the cursor is set to immediate update
mode. This has a couple of repercussions:

! All changes are immediately transferred to the database (without
the need to call update)

! Update and UpdateBatch really have no meaning (as the
database is already updated). However, the Supports method
will still return true of update, but will return false for
UpdateBatch.

! GetOriginalValue is not usable.

To programmatically determine when GetOriginalValue is available,
you must use the "supports" method with adUpdateBatch as the
argument. For example:

if rs.Supports(adUpdateBatch) then
someValue = rs.fields(iCol).OriginalValue

end if

Initialization
Properties

The following table lists the properties Pervasive supports for
initialization in OLE DB, and the corresponding connection string
identifiers

Table 5-1 Connection String Identifiers

Connection
String Identifier

Property

Cache
Authentication

DBPROP_AUTH_CACHE_AUTHINFO

Connect Timeout DBPROP_INIT_TIMEOUT

Data Source DBPROP_INIT_DATASOURCE

Encrypt Password DBPROP_AUTH_ENCRYPT_PASSWORD

Locale Identifier DBPROP_INIT_LCID

Location DBPROP_INIT_LOCATION

Password DBPROP_AUTH_PASSWORD

Persist Encrypted DBPROP_AUTH_PERSIST_ENCRYPTED

Persist Security
Info

DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO

User ID DBPROP_AUTH_USERID

5-6

Improved OLE DB Provider in Pervasive.SQL 2000i

You can also set the following properties:

! DBPROP_INIT_HWND,

! DBPROP_INIT_PROMPT,

! DBPROP_INIT_ASYNCH,

! DBPROP_INIT_OLEDBSERVICES

5-7

Performance Considerations with OLE DB

Performance Considerations with OLE DB

The performance of the provider has been significantly improved
from the previous release.

Best
Performance is
Navigational

As mentioned previously, server-side navigational recordsets will
have a significant performance advantage over command-based
recordsets for tasks that require frequent positioning on records that
contain specific values.

Static vs.
Dynamic
Cursors

Static cursors will create a temporary table behind the scenes
whenever one would not have been created by the relational engine
(as described previously in “Temporary Tables” on page 4-12). This
will be the case for both command-based and navigational tables.
When bandwidth is not a significant consideration, dynamic cursors
can provide higher performance, since they do not always involve
temporary tables. However, in low bandwidth scenarios, round-trips
can be too expensive to justify dynamic cursors; in this case RDS is
often a good solution. The drawback to RDS is that Microsoft has
implemented it as a command-based only solution, which means
that index functionality (using Seek) is unavailable. Performance can
be maintained regardless of deployment by implementing an
abstraction layer that works identically on RDS-based and local
recordsets. The nature of this abstraction would depend on the needs
of the application and would likely take the form of a runtime
business object.

Disable Unused
Services

When developing OLEDB applications, a way to improve
performance is to turn off any OLE DB Services that are not being
used. See the documentation for
DBPROP_INIT_OLEDBSERVICES for more information.

Turning off the Automatic Transaction Enlistment will not
instantiate the ITransactionJoin interface on the session and will also
keep the provider from looking for MTS objects.

5-8

Improved OLE DB Provider in Pervasive.SQL 2000i

COM+ Services Support

This section describes how Pervasive’s OLE DB provider interacts
with Microsoft’s COM+ Services.

What is COM+
Services?

COM+ services (Component Object Model) is a Microsoft specific
technology used to create business objects in a multi-threaded
context. COM+ is primarily designed for, but not limited to, Visual
Basic programmers. COM+ allows for rapid creation of multi-tier
applications and includes many benefits that would normally have to
be implemented by the developer. The benefits of COM+ include

! contexts

! concurrency

! added security

! object pooling

! just-in-time activation

! queued components

! events

For further information about COM+, see Microsoft’s
documentation.

COM+ services are an extension to the benefits provided by MTS
(Microsoft Transaction Server). MTS is Microsoft’s previous
business object server implementation. In general, references (in
Microsoft and Pervasive documentation) to MTS can be substituted
with COM+ services.

Pervasive’s OLE DB provider is supported in COM+ services. ADO
calls made within COM+ services behave like any ADO client call.

Example of
COM+ Services
for Visual Basic
Programmers

As a Visual Basic programmer, you must be aware of the
MTSTransactionMode property. Setting this to anything other than
NoTransactions will invoke Microsoft transactions. Please refer to
COM+ services documentation for the complete reference of this
feature.

The following example demonstrates use of Microsoft Transactions.
In order for the calls to GetObjectContext to succeed, you must set
the MTSTransactionMode property to something other than

5-9

COM+ Services Support

NoTransactions. Using Microsoft Transactions will allow Microsoft’s
Transaction Coordinator to do a two-phase commit.

Public Function UpdatePayroll(employeeID As
Integer, salary As Currency)
 On Error GoTo ErrHandler
 Dim rs As New ADODB.Recordset
 rs.Index = "employeeID"
 rs.Open "PayrollTable",
"Provider=PervasiveOLEDB;Data Source=CompanyDB",
adOpenDynamic, adLockOptimistic, adCmdTableDirect
 rs.Seek employeeID, adSeekFirstEQ

 If rs.EOF = True Then
 GetObjectContext.SetAbort
 Else
 rs!salary = salary
 End If
 rs.Update
 rs.Close
 rs = Nothing
 GetObjectContext.SetComplete
Exit Function
ErrHandler:
 GetObjectContext.SetAbort
 If Not IsNull(rs) Then
 If rs.State = adStateOpen Then
 rs.Close
 End If
 End If
 rs = Nothing
End Function

However, you could rewrite this business object using ADO
transactions (with a connection object). This would allow you to set
the MTSTransactionMode property to NoTransactions. Without
Microsoft Transactions, you no longer have the overhead of the two-
phase commit. Also, objects that do not support transactions are
allowed to stay resident in memory, whereas those that do are
constructed and destroyed on each reference.

Public Function UpdatePayroll(employeeID As
Integer, salary As Currency)
 On Error GoTo ErrHandler
 Dim cn As New Connection
 Dim rs As New ADODB.Recordset

5-10

Improved OLE DB Provider in Pervasive.SQL 2000i

 cn.Open "Provider=PervasiveOLEDB;Data
Source=CompanyDB"
 cn.BeginTrans
 rs.Index = "employeeID"
 rs.Open "PayrollTable", cn, adOpenDynamic,
adLockOptimistic, adCmdTableDirect
 rs.Seek employeeID, adSeekFirstEQ

 If rs.EOF = True Then
 cn.RollbackTrans
 Else
 rs!salary = salary
 End If
 rs.Update
 rs.Close
 cn.CommitTrans
Exit Function
ErrHandler:
 cn.RollbackTrans
 If Not IsNull(rs) Then
 If rs.State = adStateOpen Then
 rs.Close
 End If
 End If
End Function

5-11

Execute Method (ADO Command)

Execute Method (ADO Command)

When using the Pervasive OLE DB Provider, the RecordsAffected
parameter of the Execute Method on a command will return
different results based on the type of operation.

SELECT
operations

When performing a SELECT statement, RecordsAffected will return a
–1 (negative one), which means that this option is not supported.
For example:

cn.Open "Provider=PervasiveOLEDB;Data Source=TestData;"
SQLst = "Select * From MyData”
cmd.ActiveConnection = cn
cmd.CommandText = SQLst
Set rs = cmd.Execute(RecordsAffected)

In this scenario RecordsAffected equals –1.

If you want to obtain the number of records returned by a SELECT
query, use the RecordCount property, as shown in the following
example:

recordcount = rs.RecordCount

’ number of records on MyData

Batch Insert,
Update, or
Delete

RecordsAffected will return the correct number of records that the
operation affected when performing a batch insert, update or delete.

Example - Batch Insert

cn.Open "Provider=PervasiveOLEDB;Data Source=TestData;"
SQLst = "Insert into MyData(utinyint_,

usmallint_,uinteger_, ubigint_, char_, character_,
bit_) Values (1, 12, 13, 100, 'testdata', 'chardata',
1)”

cmd.ActiveConnection = cn
cmd.CommandText = SQLst
cmd.Execute RecordsAffected

In this scenario RecordsAffected equals 1.

Example - Batch Update

SQLst = "Update MyData set char_ = ‘SampleTest’ where
uinteger_ = 13"

5-12

Improved OLE DB Provider in Pervasive.SQL 2000i

 cmd.ActiveConnection = cn
 cmd.CommandText = SQLst
 cmd.Execute RecordsAffected

In this scenario RecordsAffected equals x, which is all the records that
have the value 13.

5-13

Limitations of the OLE DB Provider

Limitations of the OLE DB Provider

! The OLE DB Provider is a thick client. It communicates with the
Pervasive.SQL engine using the navigational interface only; this
means that some SQL queries will be disproportionately affected
by client-server operation. Navigational recordsets should be
relatively unaffected by client-server deployment. Remote access
to the provider can be accomplished by using either RDS or
DCOM. See the Microsoft documentation for in-depth
understanding of these two Microsoft technologies.

! Asynchronous operations are not supported.

! The Record and Stream objects are not supported.

! The Index property cannot be set on a static navigational cursor
once the recordset has been used. Set the index appropriately
before performing the open operation on the recordset. After
opening the recordset, the index cannot be changed.

5-14

Improved OLE DB Provider in Pervasive.SQL 2000i

6-1

c h a p t e r

6JDBC 2 Enhancements in
Pervasive.SQL 2000i

An Overview of the New JDBC 2 Functionality in Pervasive.SQL 2000i

JDBC 2 API is now supported in Pervasive.SQL 2000i.

Note Information relevant to developing Pervasive.SQL applications
discussed in this chapter supersedes that of the Pervasive.SQL 2000
SDK documentation found in Service Pack 2. The SDK documentation
will be updated after the release of Pervasive.SQL 2000i Service Pack 3.

The following are the sections found in this chapter:

! “Overview of Pervasive JDBC 2 Driver”

! “JDBC Connection String Enhancements” on page 6-4

! “JDBC 2.0 Standard Extension API” on page 6-6

! “Connection and Concurrency Notes” on page 6-10

! “Scrollable Result Set Notes” on page 6-11

! “JDBC Programming Sample” on page 6-12

Table 6-1 Summary of New Functionality with Pervasive JDBC driver

Feature Element Notes

Connection Strings Extra parameter added that allows you
to specify which code page to use with
the connection.

DataSource Interface Support Register Pervasive.SQL databases in
JNDI and your applications can be
shielded from Pervasive-specific driver
features.

6-2

JDBC 2 Enhancements in Pervasive.SQL 2000i

Overview of Pervasive JDBC 2 Driver

Specifications ! 100% Java certified

! JDBC 2 compliant driver

! Type 4 JDBC driver

JDBC API
Improvements

! Scrollable – ability to perform both relative and absolute
positioning.

! Updateable – ability to insert, update, and delete without the
need to execute more SQL.

! Dynamic & Static server-side cursors – ability to choose whether
you want to see changes made by you or other users.

! Batch Updates – ability to queue up many operations and have
them execute at once.

! Character Encoding support - allows you to change encoding
per connection.

JDBC Optional
Package
Support

! DataSource interface - allows data source objects to be registered
in JNDI.

! Connection Pooling support – complete implementation of the
connection pooling interfaces.

Backward
Compatibility

Pervasive JDBC version 2 is backward compatible. Applications
compiled with previous releases of Pervasive JDBC drivers will work
with the new driver without the need to recompile. Applets will need
to change the jar file name from pervasiveJDBC.jar to pvjdbc2.jar in
the HTML file.

The new driver is accessed through a different package name:

! com.pervasive.jdbc.v2.Driver will load a JDBC 2 driver

! pervasive.jdbc.PervasiveDriver will load the JDBC 1 driver

6-3

Overview of Pervasive JDBC 2 Driver

Class Names With the Pervasive JDBC version 2 driver, class names have changed
to comply with Sun recommended standard. All Pervasive classes
now are prefaced by com.pervasive.jdbc.v2. In older versions,
classes were prefaced by pervasive.jdbc.

Unsupported
APIs

Pervasive’s JDBC driver does not support the following JDBC
interfaces:

! Array

! Blob

! Clob

! Ref

! Struct

! SQLData

! SQLInput

! SQLOutput

These are not supported due to the fact the Pervasive.SQL engine
does not currently support the underlying SQL 3 data types.

Driver
Limitations

! You cannot use long data in “out” parameters

! The smallest actual fetch size is two rows.

! You cannot have an updateable result set with a join.

! You cannot have an updateable result set with a “group by”.

6-4

JDBC 2 Enhancements in Pervasive.SQL 2000i

JDBC Connection String Enhancements

The Pervasive JDBC driver now supports character encoding, which
allows you to filter data you read through a specified code page so
that it is formatted and sorted correctly.

How to Connect The following shows how to connect to a Pervasive.SQL database
using JDBC:

Driver Classpath

com.pervasive.jdbc.v2

Instantiate Driver

Class.forName(“com.pervasive.jdbc.v2.Driver”);

URL

jdbc:pervasive://server:port/DSN;encoding

Using
Character
Encoding

Character encoding is specified using a parameter in the connection
string passed to the driver manager.

Encoding parameter allows user to specify the code page to be used
for translating the string data stored in the database. The default
system encoding is used if no encoding is explicitly specified.

Example of Using Character Encoding

public static void main(String[] args)
{

//specify latin 2 encoding

argument description

server Enter the server name using an ID or a URL.

port Pervasive’s relational engine default port is 1583. If no port is
specified, the default is used.

DSN Set up a DSN on the server using regular ODBC methods.

encoding See “Using Character Encoding”

6-5

JDBC Connection String Enhancements

String url = "jdbc:pervasive://MYSERVR:1583/
SWEDISH_DB;encoding=cp850";

try{

Class.forName("com.pervasive.jdbc.v2.Driver");
Connection conn =

DriverManager.getConnection(url);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select *

from SwedishTable");
rs.close();
stmt.close();
conn.close();

}
catch(Exception e)
{

e.printStackTrace();
}

}

Notes on
Character
Encoding

! If one database contains tables that were populated using two
different encodings, two distinct connections need to be
established.

! Pervasive JDBC driver uses Java native support for code pages.
The list of supported code pages can be obtained from http://
java.sun.com/products/jdk/1.2/docs/guide/internat/
encoding.doc.html

6-6

JDBC 2 Enhancements in Pervasive.SQL 2000i

JDBC 2.0 Standard Extension API

Because connection strings are vendor-specific, Sun specified a
DataSource interface. It takes advantage of JNDI, which functions as
a Java registry. The DataSource interface allows JDBC developers to
create named databases. As a developer, you register the database in
JNDI along with the vendor-specific driver information. Then, your
JDBC applications can be completely database agnostic and be "pure
JDBC".

Pervasive JDBC driver now supports JDBC 2.0 Standard Extension
API. Currently Pervasive JDBC supports the following interfaces

! javax.sql.ConnectionEvent

! javax.sql.ConnectionEventListener

! javax.sql.ConnectionPoolDataSource

! javax.sql.DataSource

! javax.sql.PooledConnection

Note These interfaces are packaged separately in pvjdbc2x.jar in order
to keep the core JDBC API 100% pure java.

Although at this time Pervasive does not provide implementation of
RowSet interfaces, Pervasive JDBC driver has been tested with Sun's
implementation of RowSet interface.

DataSource Sun has provided a way for application developers to write
applications that are driver independent. By using DataSource
interface and JNDI applications can access data using standard
methods completely illuminating things like connection strings and
other driver specifics aspects. In order to use DataSource interface,
a database has to be registered with a JNDI service provider. An
application can then access it by name.

The following is an example of using the DataSource interface:

// this code will have to be executed by the
// administrator in order to register the
// DataSource.
// This sample uses Sun's reference JNDI
// implementation

6-7

JDBC 2.0 Standard Extension API

public void registerDataSources()
 {
// this example uses the JNDI file system
// object as its registry

 Context ctx;
 jndiDir = "c:\\jndi";

 try
 {
 Hashtable env = new Hashtable (5);
 env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

 env.put(Context.PROVIDER_URL, jndiDir);
 ctx = new InitialContext(env);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }

 //register demodata as regular data source
 com.pervasive.jdbc.v2.DataSource ds = new
com.pervasive.jdbc.v2.DataSource();
 String dsName = "";

 try
 {
 // Set the user name, password, driver
type and network protocol
 ds.setUser("administrator");
 ds.setPassword("admin");
 ds.setPortNumber("1583");
 ds.setDatabaseName("DEMODATA");
 ds.setServerName("127.0.0.1");

ds.setDataSourceName("DEMODATA_DATA_SOURCE");

ds.setEncoding("cp850");
 dsName = "jdbc/demodata";

// Bind it
 try
 {
 ctx.bind(dsName,ds);

 System.out.println("Bound data source
[" + dsName + "]");
 }
 catch (NameAlreadyBoundException ne)

6-8

JDBC 2 Enhancements in Pervasive.SQL 2000i

 {
 System.out.println("Data source [" +
dsName + "] already bound");
 }
 catch (Throwable e)

 {
System.out.println("Error in JNDI

binding occurred:");
throw new Exception(e.toString());

 }
 }

 }
}

//in order to use this DataSource in application the
following code needs to be executed

public DataSource lookupDataSource(String ln)
throws SQLException
 {
 Object ods = null;

Context ctx;

 try
 {
 Hashtable env = new Hashtable (5);
 env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");

 //this will create the jndi directory and
return its name
 //if the directory does not already exist
 String jndiDir = "c:\\jndi";

 env.put(Context.PROVIDER_URL, jndiDir);
 ctx = new InitialContext(env);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 try
 {
 ods = ctx.lookup(ln);
 if (ods != null)
 System.out.println("Found data source
[" + ln + "]");
 else

6-9

JDBC 2.0 Standard Extension API

 System.out.println("Could not find
data source [" + ln + "]");
 }
 catch (Exception e)
 {
 throw new SQLException(e.toString());
 }

 return (DataSource)ods;
 }

//note that ConnectionPoolDataSource is handled
similarly.

6-10

JDBC 2 Enhancements in Pervasive.SQL 2000i

Connection and Concurrency Notes

A single Pervasive JDBC connection can easily serve multiple
threads. However, while the Connection may be thread-safe, the
objects created by the Connection are not. For example, a user can
create four threads. Each of these threads could be given their own
Statement object (all created by the same Connection object). All
four threads could be sending or requesting data over the same
connection at the same time. This works because all four Statement
objects have a reference to the same Connection object and their
reading and writing is synchronized on this object. However, thread
#1 cannot access the Statement object in thread #2 without this
access being synchronized. The above is true for all other objects in
the JDBC API.

6-11

Scrollable Result Set Notes

Scrollable Result Set Notes

Scrollable result sets allow you to move forward and backward
through a result set. This type of movement is classified as either
relative or absolute. You can position absolutely on any scrollable
result set by calling the methods first(), last(), beforeFirst(),
afterLast(), and absolute(). Relative positioning is done with
the methods next(), previous(), and relative().

A scrollable result set can also either be updateable or read-only. This
refers to whether or not you are able to make changes to the
underlying database. Another term, sensitivity, refers to whether
these changes are reflected in your current result set.

A sensitive result set will reflect any insert, updates, or deletes made
to it. In Pervasive.SQL's case, an insensitive result set does not reflect
any changes made to it (it is a static snapshot of the data). In other
words, you do not see your updates or those made by anyone else.

Sensitive and insensitive result sets correspond to dynamic and static
in ODBC, respectively. A sensitive result set reflects your own
changes and can reflect others changes if the transaction isolation
level is set to READ_COMMITTED. Transaction isolation is set using the
Connection object. The result set type is set upon statement
creation.

If your result set is insensitive, then it is possible to make calls to the
method getRow() in order to determine your current row number.
On an insensitive result set, you can also make calls to isLast(),
isFirst(), isBeforeFirst(), and isAfterLast(). On a sensitive
result set, you can only make calls to isBeforeFirst() and
isAfterLast(). Also, on an insensitive result set, the driver will
honor the fetch direction suggested by the user. The driver ignores
the suggested fetch direction on sensitive result sets.

6-12

JDBC 2 Enhancements in Pervasive.SQL 2000i

JDBC Programming Sample

The following example creates a connection to the database named
“DB” on server “MYSERVER”. It then creates a statement object on
that connection that is sensitive and updateable. Using the statement
object a “SELECT” query is performed. Once the result set object is
obtained a call to “absolute” is made in order to move to the fifth
row. Once on the fifth row the second column is updated with an
integer value of 101. Then a call to “updateRow” is made to actually
make the update.

Class.forName("com.pervasive.jdbc.v2.Driver");
Connection conn=
DriverManager.getConnection("jdbc:pervasive://
MYSERVER:1583/DB");

Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_SENSITI
VE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs =
m_stmt.executeQuery("SELECT * FROM mytable");

rs.absolute(5);
rs.updateInt(2, 101);
rs.updateRow();

rs.close();
stmt.close();
conn.close();

Index 1

Index

Symbols
@@IDENTITY 3-2
@@ROWCOUNT 3-4
~PVSW~.LOG file 1-25

A
ABS() 3-22
Absolute value

how to find 3-22
ACOS() 3-22
Active Clients (obsolete) 1-20
Adding

timestamp values 3-27
ADO 5-1
Advanced Operations Guide 1-34
ALTER COLUMN 3-17
ALTER TABLE 1-32, 3-17

Pervasive.SQL 7 compared 3-18
Analyzer results 2-15
Analyzing your system 2-1
Arccosine value

how to find 3-22
Archiving previous components 2-13
Arcsine value

how to find 3-23
Arctangent of x,y coords

how to find 3-23
Arctangent value

how to find 3-23
ASCII character for ASCII value

how to find 3-21
ASCII value of character

how to find 3-20
ASCII() 3-20
ASIN() 3-23
ATAN() 3-23
ATAN2() 3-23
AutoReconnect Timeout 1-30
Auto-reconnect, see Pervasive auto-reconnect

B
Back to Minimal State if Inactive 1-20
Base-10 log

how to find 3-24
BIT_LENGTH() 3-21
Bits in string, number of

how to find 3-21
BLOB

and temporary tables 4-12
prohibited in ORDER BY or GROUP BY 4-12
UNION and 4-12

Bound databases

IN DICTIONARY not permitted 3-10
BSTART, loading NSS volumes first 1-15
Btrieve, testing 2-1, 2-12
Bytes

Configuration settings measured in 1-19
Bytes in string, number of

how to find 3-21

C
Cache manager 1-20
CEILING() 3-23
Changing

column datatype

Changing

column NULL property 3-17
Changing a table

specifying file name 3-8
CHAR() 3-21
CHAR_LENGTH() 3-21
Character encoding 6-4
Character translation

OEM to ANSI 1-33
Characters in string, number of

how to find 3-21
Checking

client and server versions at load time 1-12
for NULL value 3-28

Citrix MetaFrame 1-15
Client version

2 Index

server and, checking compatibility 1-12
CLOB

and temporary tables 4-12
LEFT and 4-12
RIGHT and 4-12
SUBSTRING and 4-12
UNION and 4-12

Columns

maximum number in SELECT 1-13
maximum number in table 1-13

COM+ services 5-8
Comma

as decimal separator 1-16
Communications

auto-reconnect feature 1-29
Communications Buffer Size 1-21
Communications Threads 1-21
Components

detecting 2-13
restoring previous 2-13

Concurrency in JDBC 6-10
Configuration settings

all size settings now in bytes 1-19
Communications Buffer Size 1-21
Communications Threads 1-21
dynamic 1-19
Log Buffer Size 1-20
MKDE Communications Buffer Size 1-21
newly obsolete 1-19
Number of Sessions 1-22
obsolete 1-20
Operation Bundle Limit 1-22
Wait Lock Timeout 1-22

Connection pools 6-6
Connection strings

in JDBC 6-4
TRANSLATIONDLL 1-33

Converting

ASCII character to ASCII code 3-20
ASCII code to ASCII character 3-21
data types of columns 3-17
date expr to month name 3-27
date expr to quarter (ordinal) 3-27
date expr to week of year 3-28
date to any date sub-field 3-26
date to day of year (ordinal) 3-26

date to name of day 3-26
degrees to radians 3-24
legacy data types to newer types 3-18
radians to degrees 3-23

Correlated subquery 3-14
COS() 3-23
Cosine value

how to find 3-23
COT() 3-23
Cotangent value

how to find 3-23
CREATE TABLE USING 3-6
Creating

redirecting Gateway Locator File 1-26
tables with legacy null support 1-32
tables,

specifying file name 3-6
CURDATE 3-25
CURRENT_DATE() 3-25
CURRENT_TIME() 3-26
Cursors

dynamic 2-1, 4-1, 4-2
CURTIME 3-26

D
Data files

binary compatible cross-platform 3-7
replacing existing 3-11

Data Manipulation

statements 4-12
Data type

changing for a column 3-17
Data types

converting legacy 3-18
DataSource interface 6-6
Date

converting to month of year (name) 3-27
converting to quarter of year (ordinal) 3-27
converting to week of year (ordinal) 3-28

Date functions

see Functions, date and time

Date value, how to extract sub-fields 3-26
Date, today’s, how to find 3-25
Day

of year (ordinal), determining from date 3-26
DAYNAME() 3-26

Index 3

DAYOFYEAR() 3-26
DDFs

changing data definitions without affecting data

files 3-10
Decimal separator

comma as 1-16
Degrees

converting from radians 3-23
converting to radians 3-24

DEGREES() 3-23
Detecting previous components 2-13
DISTINCT

BLOB and 4-12
CLOB and 4-12
in subquery 3-15
LONGVARBINARY and 4-12
LONGVARCHAR and 4-12

Documentation

new and enhanced 1-34
DTI, and Pervasive auto-reconnect 1-29
DTO, and Pervasive auto-reconnect 1-29
Duplicating a string 3-21
Dynamic configuration 1-19
Dynamic cursors 2-1, 4-1, 4-2

E
Enable Auto Reconnect

client 1-30
server 1-29

Encoding, character 6-4
EXP() 3-23
Exponential value

how to find 3-23
Extended Operation Buffer Size (obsolete) 1-20
EXTRACT() 3-26

F
File name

changing for a table 3-8
specifying for table 3-6

FLOOR() 3-24
FOREIGN KEY

cannot ALTER column 3-17
Functions

date and time 3-25
CURRENT_DATE() 3-25

CURRENT_TIME() 3-26
DAYNAME() 3-26
DAYOFYEAR() 3-26
EXTRACT() 3-26
MONTHNAME() 3-27
QUARTER() 3-27
TIMESTAMPADD() 3-27
TIMESTAMPDIFF() 3-28
WEEK() 3-28

logical 3-28
IFNULL() 3-28
NULLIF() 3-28

numeric 3-22
ABS() 3-22
ACOS() 3-22
ASIN() 3-23
ATAN() 3-23
ATAN2() 3-23
CEILING() 3-23
COS() 3-23
COT() 3-23
DEGREES() 3-23
EXP() 3-23
FLOOR() 3-24
LOG() 3-24
LOG10() 3-24
PI() 3-24
POWER() 3-24
RADIANS() 3-24
RAND() 3-24
ROUND() 3-24
SIGN() 3-25
SIN() 3-25
SQRT() 3-25
TAN() 3-25
TRUNCATE() 3-25

scalar 3-20
optimized predicates with 1-13

string 3-20
ASCII() 3-20
BIT_LENGTH() 3-21
CHAR() 3-21
CHAR_LENGTH() 3-21
OCTET_LENGTH() 3-21
POSITION() 3-21
REPLACE() 3-22

4 Index

REPLICATE() 3-21
SPACE() 3-22
STUFF() 3-22

utility 3-29
USER() 3-29

Functions, scalar 1-33

G
Gateway engine, see Workgroup engine

Gateway Locator File 1-23
redirecting 1-24

creating a 1-26
Getting Started Guide 1-34
Global variables, see Variables, global

Greater than zero, determining if 3-25
GROUP BY

BLOB columns prohibited 4-12
CLOB and 4-12
LONGVARBINARY columns prohibited 4-12
LONGVARCHAR and 4-12

H
HTML Help 1-34

I
IFNULL() 3-28
IN DICTIONARY 3-10

not permitted on bound databases 3-10
Installation Toolkit 1-3
Installation, tests performed during 2-3
Installing

on a terminal server 1-15
InstallScout

Installation Toolkit and 1-3
OEM Toolkit and 1-3
replaced by Pervasive System Analyzer 1-19, 2-1

Integer

largest less than or equal to

how to find 3-24
smallest greater than or equal to

how to find 3-23
Internal version number vii
Intervals

adding to timestamp values 3-27
subtracting from timestamp values 3-28

Invalid row-count in subquery

returned if SELECT within UPDATE returns

multiple rows 3-15

J
javax extensions 6-6
JDBC 2 API 6-1
JDBC standard extension API 6-6

K
Kilobytes

Configuration settings changed to bytes 1-19

L
Largest Compressed Record Buffer Size (obsolete) 1-

20
Legacy data types, converting 3-18
Length

of path name in USING 3-7
Length of string in bits

how to find 3-21
Length of string in bytes

how to find 3-21
Length of string in characters

how to find 3-21
Less than zero, determining if 3-25
Loading

NSS volumes before BSTART/MGRSTART 1-15
Locale-specific behavior

comma as decimal separator 1-16
Locator Files, see Gateway Locator Files

Locking

row level 1-12
Locks, see Locking

Log Buffer Size 1-20
Log file, viewing 2-15
LOG() 3-24
LOG10() 3-24
Logarithm

base-10, how to find 3-24
natural, how to find 3-24

Logical File Handles (obsolete) 1-20
Logical functions

see Functions, logical

Login name

Index 5

how to determine current 3-29
LONGVARBINARY

and temporary tables 4-12
prohibited in ORDER BY or GROUP BY 4-12
UNION and 4-12

LONGVARCHAR

and temporary tables 4-12
LEFT and 4-12
RIGHT and 4-12
SUBSTRING and 4-12
UNION and 4-12

LVAR column

converting to newer type 3-18

M
Management

memory 1-20
Maximum

number of columns allowed in SELECT 1-13
number of columns allowed in table 1-13

Maximum Databases (obsolete) 1-20
Maximum Open Files (obsolete) 1-20
Memory

now measured in bytes in Configuration 1-19
Memory management 1-20
MGRSTART, loading NSS volumes first 1-15
Microsoft Terminal Server 1-15
Microsoft Transaction Server 5-8
MKDE Communications Buffer Size 1-21
MODIFY COLUMN 3-17
Month

name, determining from date expr 3-27
MONTHNAME() 3-27
Moving a table

specifying file name 3-8
MTS 5-8

N
Name

of this product vii
Name of day, determining 3-26
Named Database

and file names 3-6
Natural log

how to find 3-24
NetWare NSS volumes 1-15

slower on updates 1-16
Network

auto-reconnect feature 1-29
Network connectivity, testing 2-1
Network testing 2-11
New utilities 2-1
Non-correlated subquery 3-14
NOTE column

converting to newer type 3-18
NSS volume support 1-15
NULL

cannot make column nullable 3-17
inserted by UPDATE if subquery returns no rows

3-14
modifying column property 3-17

Null support

creating tables with legacy 1-32
NULL value

how to check for 3-28
how to return if 2 expr are equal 3-28

NULLIF() 3-28
Number of bits in string

how to find 3-21
Number of bytes in string

how to find 3-21
Number of characters in string

how to find 3-21
Number of Sessions 1-22
Numeric functions, see Functions, numeric

O
Obsolete configuration settings 1-20
OCTET_LENGTH() 3-21
OEM to ANSI

character translation 1-33
connection string 1-33

OEM Toolkit 1-3
OLE DB provider 5-1
Online help 1-34
Operation Bundle Limit 1-22
Optimization

predicates with scalar functions 1-13
Options

obsolete configuration 1-20
ORDER BY

BLOB columns prohibited 4-12

6 Index

CLOB and 4-12
LONGVARBINARY columns prohibited 4-12
LONGVARCHAR and 4-12

Ordinal day of year, determining 3-26

P
Page level concurrency, see Row level locking

PAR file 1-30
PARC, see Pervasive auto-reconnect

Path name

length in USING 3-7
Performance

NSS volumes slower on updates 1-16
Pervasive auto-reconnect

defined 1-29
Pervasive Control Center

OEM characters and 1-33
Pervasive System Analyzer utility 2-1
Pervasive.SQL 7

ALTER TABLE comparison 3-18
status code 59 3-8
UPDATE comparison 3-15

PI() 3-24
Pi, value of

how to find 3-24
Position of sub-string in string

how to find 3-21
POSITION() 3-21
Positional replace in a string 3-22
POWER() 3-24
Predicates

optimized with scalar functions 1-13
PRIMARY KEY

cannot ALTER column 3-17
PSA, see Pervasive System Analyzer

PVSW.LOG

client and server compatibility 1-12

Q
Quarter (ordinal), determining from date expr 3-27
QUARTER() 3-27

R
Radians

converting from degrees 3-24

converting to degrees 3-23
RADIANS() 3-24
Raising x to the power of y

how to find the value 3-24
RAND() 3-24
Random numbers

how to generate 3-24
Redirecting Locator File, see Gateway Locator File

Regional settings

comma as decimal separator 1-16
Release version vii
Repeating a string 3-21
REPLACE() 3-22
Replacing data files 3-11
REPLICATE() 3-21
Restoring previous components 2-13
Retrieving

current user name 3-29
ROUND() 3-24
Rounding

down

use FLOOR() 3-24
to x decimal places

use ROUND() 3-24
up

use CEILING() 3-23
Row level locking 1-12

S
SAR file 1-30
Scalar functions, see Functions, scalar

Search and replace 3-22
SELECT

in UPDATE 3-14
maximum number of columns permitted 1-13

Server version

client and, checking compatibility 1-12
Settings

all sizes now measured in bytes 1-19
dynamic, new 1-19
obsolete 1-20

Sign of a value, how to find 3-25
SIGN() 3-25
SIN() 3-25
Sine value

how to find 3-25

Index 7

Sizes

now measured in bytes in Configuration 1-19
SmartScout

Installation Toolkit and 1-3
OEM Toolkit and 1-3
replaced by Pervasive System Analyzer 1-19, 2-1

SPACE() 3-22
Space-padding

how to create 3-22
SQL Data Manager

OEM characters and 1-33
SQL Statements

data manipulation 4-12
SQL syntax

changed 3-1
global variables 3-2
new 3-1
SELECT subquery in UPDATE 3-14
TRUENULLCREATE 1-32
USING 3-6

SQRT() 3-25
Square root

how to find 3-25
SRDE

optimizations for scalar functions 1-13
Statements

data manipulation 4-12
Status Code 59 3-8
Status Codes and Messages manual 1-34
String

consisting of spaces, how to create 3-22
finding number of bits 3-21
finding number of bytes 3-21
finding number of characters 3-21
how to repeat 3-21
how to replace characters by position 3-22
how to search and replace a sub-string 3-22

String functions, see Functions, string

Structured Query Language. See SQL

STUFF() 3-22
Subquery

correlated 3-14
eliminating duplicate rows with DISTINCT 3-15
in UPDATE 3-14
non-correlated 3-14

Sub-string

how to search and replace in a string 3-22
in a string, how to find position 3-21
inserting into a string by position 3-22

Subtracting

timestamp values 3-28

T
Table

maximum number of columns allowed 1-13
Tables

creating with legacy null support 1-32
TAN() 3-25
Tangent value

how to find 3-25
Tasks

archiving existing components 2-13
choosing PSA functions 2-9
restoring previous components 2-13
testing transactional interface 2-12
testing your network 2-11
viewing PSA log 2-15

Temporary tables

BLOB columns and 4-12
CLOB columns and 4-12
LONGVARBINARY columns and 4-12
LONGVARCHAR columns and 4-12

Terminal Server 1-15
Testing

Btrieve 2-12
for NULL value 3-28
network connectivity 2-11
your system 2-1

Time

how to find current 3-26
Time functions

see Functions, date and time

TIMESTAMPADD() 3-27
TIMESTAMPDIFF() 3-28
Today’s date, how to find 3-25
TRANSLATIONDLL connection string 1-33
Troubleshooting information

added to Status Codes and Messages 1-34
TRUENULLCREATE 1-32
TRUNCATE() 3-25

8 Index

U
UNC pathnames

and Gateway Locator Files 1-25
UNION

BLOB and 4-12
CLOB and 4-12
LONGVARBINARY and 4-12
LONGVARCHAR and 4-12

UPDATE

fails if subquery returns multiple rows 3-15
Pervasive.SQL 7 compared 3-15
with SELECT 3-14

Updates

slower on NetWare NSS volumes 1-16
User name

how to determine current 3-29
USER() 3-29
USING 3-6

length of path name 3-7
Utilities

new 2-1
obsolete 2-2
replaced 2-2

Utility functions

see Functions, utility

V
Variables

CURDATE 3-25
CURTIME 3-26

Variables, global 3-2
@@IDENTITY 3-2
@@ROWCOUNT 3-4
indicated by @@ or @ 3-2

Version

client and server compatibility 1-12
Version checking, automatic 1-12
Version number

internal vii
Visual Basic programming 5-1

W
W32BTXLT 1-33
Wait Lock Timeout 1-22

Week of year (ordinal), determining from date expr
3-28

WEEK() 3-28
Windows 2000 Terminal Server 1-15
Windows 98 Help 1-34
WITH REPLACE 3-11
Workgroup engine

and transaction durability 1-24
floating Gateway 1-23
new Gateway behavior 1-23
syncronizing multiple data directories under one

Gateway 1-27

	Contents
	About This Manual vii
	1 What’s New in Pervasive.SQL 2000i SP3 1-1
	2 Pervasive System Analyzer (PSA) 2-1
	3 SQL Syntax Enhancements 3-1
	4 Dynamic Cursors in Pervasive.SQL 2000i SP3 4-1
	5 Improved OLE DB Provider in Pervasive.SQL 2000i 5-1
	6 JDBC 2 Enhancements in Pervasive.SQL 2000i 6-1

	About This Manual
	Who Should Read This Manual
	Manual Organization
	Conventions

	What’s New in Pervasive.SQL 2000i SP3
	List of New Features and Improvements
	Programming Interfaces
	Full Support for OLE DB IRowset and ICommand
	Full Support for JDBC 2.0
	Dynamic Cursors
	Updated OEM/ Partner Toolkit (PTK)
	Enhanced Stat Extended (65) Operation

	Performance and Reliability Enhancements
	Client/Server Version Checking
	Row Level Locking
	SRDE Improvements

	Expanded Operating System Support
	Terminal Server Support
	NSS Volume Support
	Comma as Decimal Separator

	Easier Installation and Configuration
	Pervasive System Analyzer
	All Size Configuration Settings Now in Bytes
	Dynamic Configuration Settings
	Updated Default Settings
	No Dependence on PERVASIVE_PATH
	Improved Workgroup Gateway Behavior

	Improved Networking Support
	Pervasive Auto- Reconnect

	Improved SQL Support
	Additional SQL Syntax

	New and Enhanced Documentation

	Pervasive System Analyzer (PSA)
	Overview of Pervasive System Analyzer
	Summary of Functionality
	Replaces Previously Released Utilities

	Using PSA During Installation
	Steps Performed During Installation

	Using PSA Outside of the Installation Process
	Why Use PSA?
	Starting PSA
	Common PSA Tasks

	SQL Syntax Enhancements
	Global Variables
	@@IDENTITY
	@@ROWCOUNT

	USING, IN DICTIONARY, WITH REPLACE
	Changed Grammar
	USING
	IN DICTIONARY
	WITH REPLACE

	SELECT in UPDATE
	Changed Grammar
	Remarks
	Examples

	Improved ALTER TABLE Support
	Changed Syntax
	Remarks
	Examples

	Additional Scalar Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	Logical Functions
	Utility Functions

	Dynamic Cursors in Pervasive.SQL 2000i SP3
	Features at a Glance
	Overview of Dynamic Cursors and the ODBC API
	Terminology
	ODBC Cursor Library
	ODBC APIs that are Affected
	Temporary Tables

	ODBC APIs Affected by New Functionality
	Updated ODBC Functionality
	New ODBC Functionality

	Temporary Tables
	New Limitations
	Performance

	Positioned UPDATE and DELETE
	New Limitations
	Performance

	Improved OLE DB Provider in Pervasive.SQL 2000i
	Overview of New Features in ADO and OLE DB Provider
	Command- Based Recordsets Supported
	ADOX
	Navigational Recordsets in the New Provider
	Large Binary Objects

	Programming Notes for Pervasive OLE DB Provider
	Seek with Static Cursors
	Remote Connections
	Table Definitions
	Default LockType
	Initialization Properties

	Performance Considerations with OLE DB
	Best Performance is Navigational
	Static vs. Dynamic Cursors
	Disable Unused Services

	COM+ Services Support
	What is COM+ Services?
	Example of COM+ Services for Visual Basic Programmers

	Execute Method (ADO Command)
	SELECT operations
	Batch Insert, Update, or Delete

	Limitations of the OLE DB Provider

	JDBC 2 Enhancements in Pervasive.SQL 2000i
	Overview of Pervasive JDBC 2 Driver
	Specifications
	JDBC API Improvements
	JDBC Optional Package Support
	Backward Compatibility
	Class Names
	Unsupported APIs
	Driver Limitations

	JDBC Connection String Enhancements
	How to Connect
	Using Character Encoding
	Notes on Character Encoding

	JDBC 2.0 Standard Extension API
	DataSource

	Connection and Concurrency Notes
	Scrollable Result Set Notes
	JDBC Programming Sample

	Index

