SilverStream eXtend Workbench

Tutorial: Developing Web Services

Version 4.0

Jun 2002

SitverStream’

Copyright ©2002 SilverStream Software, Inc. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.
SilverStream and jBroker are registered trademarks and SilverStream eXtend is atrademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and itslicensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such noticeson all copies or extracts of the Software
or its documentation. You do not acquire any rights of ownershi p in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The A pache Software Foundation. All rightsreserved. Jakarta-Regexp, Ant, Xaan and Xerces softwareislicensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xercesin source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', “Xaan”, "Ant" and " Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS’ AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISSOFTWARE, EVEN IFADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin binary form must reproduce the above
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution. 3. Thename "JDOM " must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS’ AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network |s The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network |s Going,
SunWorkShop, X View, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM Jikes™ and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/devel operworks/opensource/license10.html. Source code for
JikesTM is available at <http://oss.software.ibm.com/devel operworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/devel operworks/projects/bsf.

SilverStream eXtend Workbench software contains Sun NetBeans software that has been modified by SilverStream. The source code for
such software may be found at http://www.silverstream.com/workbenchdownload together with the Sun Public License that governsthe
use of such modified software. The Original Code is NetBeans. The Initial Developer of the Origina Codeis Sun Microsystems, Inc.
Portions Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved. The Contributor to Covered Codeis SilverStream Software,
Inc.

Graph Layout Toolkit and Graph Editor Toolkit (C) 1992 - 2001 Tom Sawyer Software, Oakland, California, All Rights Reserved.

This Softwareis derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents

About This Book vii

Purpose vii
Audience vii
Prerequisites vii
Organization viii

Lesson 1l Registries and WSDL for Web Services 1
What you will learn 1
What you willdo 1
Registries for Web Services 1
About registries 2
Browsing registries in Workbench 2
EXERCISE 1-1: Create a profile for a public registry 2
EXERCISE 1-2: Search for businesses 4
Information about businesses 5
Examining the information for a service 6
EXERCISE 1-3: Examine the services for a business 6
Information about services 8
Using the WSDL Editor 9
EXERCISE 1-4. Create a WSDL file for the Calculator Web Service 9
Tools for inserting elements 11
EXERCISE 1-5: Add a binding element 12
EXERCISE 1-6: Add a service element 13
Stylized view 15
EXERCISE 1-7: Change the Stylized view 16
WSDL Editor toolbar 17
EXERCISE 1-8: Generate a Java remote interface from WSDL 18
About publishing 21
Summary of what you've done 22

Lesson 2 Creating a Web Service 23
What you will learn 23
What you willdo 23
Web Services using J2EE 24
JAX-RPC and RMI 24
Workbench and jBroker Web 24
Defining a WAR project for the service 25
EXERCISE 2-1: Set up directories for your project 25

Contents

EXERCISE 2-2: Create a new project 26
EXERCISE 2-3: Add source code to the project 28
EXERCISE 2-4: Add the jBroker Web libraries to the project 28
EXERCISE 2-5: Build the project 31
Generating Web Service code 31
EXERCISE 2-6: Runthe Web Service Wizard 32
Getting ready to deploy 38
About the deployment descriptor 38
EXERCISE 2-7: Build the archive 38
EXERCISE 2-8: Examine the deployment descriptor 39
Deploying the project 41
EXERCISE 2-9: Deploy the project 41
Updating the J2EE server's classpath 44
Testing the Web Service 45
EXERCISE 2-10: Edit the test client code 45
EXERCISE 2-11: Testthe Web Service with the generated client 46
Summary of what you've done 46

Lesson 3 Creating a Client Application for a Web Service 49
What you will learn 49
What you willdo 49
Getting information about a Web Service 50
Setting up your project 50
EXERCISE 3-1: Set up a project directory and get the WSDL file 50
EXERCISE 3-2: Create a new project 51
EXERCISE 3-3: Set up a classpath for building the project 52
Generating client code from WSDL 53
EXERCISE 3-4: Generate client code from WSDL 53
Wizard results 56
Editing and testing the client application 56
EXERCISE 3-5: Edit the test client code 57
EXERCISE 3-6: Test the Web Service with the generated client 58
Summary of what you've done 59

Lesson 4 Using Web Services in a J2EE Web Application 61
What you will learn 61
What you willdo 61

Defining a WAR project for the Web Service client application 62
EXERCISE 4-1: Create a new project 62
EXERCISE 4-2: Add the jBroker Web libraries to the project 64

Adding Web Service client code to the project 66
EXERCISE 4-3: Generate the client code for the Calculator Web

Tutorial: Building a Web Application

Service 67
Creating a form that calls the Calculator Web Service 67
EXERCISE 4-4: Create a new JSP page 68
EXERCISE 4-5: Edit the JSP page 70
EXERCISE 4-6: Create a second JSP page to include in
magicnumber.jsp 72
EXERCISE 4-7: Write a JavaBean to process the form 73
Deploying and testing the WAR 78
About the deployment descriptor 78
EXERCISE 4-8: Build the archive 78
EXERCISE 4-9: Edit the deployment descriptor 78
Deploying the project 81
EXERCISE 4-10: Deploy the project 81
EXERCISE 4-11: Test the Calculator Client application 84
Summary of what you've done 85

Lesson 5 Testing Techniques 87
What you will learn 87
What you willdo 87
Viewing the WSDL in your browser 87
EXERCISE 5-1: View the WSDL for the deployed Web Service 88
Inspecting message traffic with TcpTunnel 89
EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel
89
EXERCISE 5-3: Run the client and observe the message traffic with
TcpTunnel 90
Summary of what you've done 91

Contents

Vi

About This Book

Purpose

Thistutorial showsyou how to use SilverStream eXtend Workbench to devel op aWeb Service.
You will learn about:

* Web Servicesand WSDL

* Registry Manager

* WSDL Editor

* Web Service Wizard

* Workbench projects

* Web applications packaged in J2EE WARs

Audience

Thistutorial isfor devel opers who want an introduction to Workbench projects while learning
about building a Web Service.

Prerequisites

Experience Thistutorial assumesyou are a Java programmer who wants to use Workbench
to devel op J2EE applications. It assumes you have the following background:

» Experience with the Java programming language

e Understanding of the general structure of XML

» Understanding of a graphical development environment

e Genera understanding of J2EE concepts such as servlets

» Understanding of how browsers and application serversinteract in Web applications

Software In addition to the Workbench software, you need:
* A J2EE application server for deploying the application

If you aready have this software, you can deploy the standards-based J2EE WAR to your
application server using Workbench deployment commands when available or your server’s
deployment tools.

Vii

About This Book

If you don't have the required software, you can download thetrial version of the SilverStream
eXtend Application Server from www.silverstream.com/appserv-downl oad.

Organization

Here'sasummary of the lessons you'll find in this book:

Lesson Description

1 Registriesand WSDL for | Introduces the Registry Manager and the WSDL Editor
Web Services

2 Creating a Web Service Teaches how to use the Web Service Wizard to generate
the files that wrap your Java class as a Web Service and
how to deploy the Web Service asa WAR

3 Creating a Client Teaches how to use the Web Service Wizard to generate
Application for a Web filesthat a client application usesto call aremote Web
Service Service

4 Using Web Servicesina | Teaches how to build aWeb application with a JSP page
J2EE Web Application and JavaBean that call a Web Service; this client
application uses the same code as was generated in the
previous lesson

5 Testing Techniques Demonstrates how a Web Service can return WSDL and
how to use the TcpTunnel tool for viewing the SOAP
messages sent between the client and the Web Service

viii

http://www.silverstream.com/appserv-download

1 Registries and WSDL for Web Services

What you will learn

Thislesson describes the Workbench tools for working with online registries for Web Services.
It also showsyou how to use the WSDL Editor to create afile that describes aWeb Service and
can be published in aregistry.

You will learn about:

* Registriesfor Web Services
» Browsing registries in Workbench
e Using the WSDL Editor

What you will do

Create aprofile for apublic registry

Search for businesses

Examine the services for a business

Create aWSDL file for the Calculator Web Service
Add a binding element

Add a service element

Change the Stylized view

Generate a Java remote interface from WSDL

© N o g 0w DR

How long will it take? About 20 minutes

NOTE You don't need to be running your J2EE application server for thislesson.

Registries for Web Services

When you want to make aWeb Service publicly available or you want to find Web Servicesyou
can use, you use aregistry. Thislesson showsyou how to identify a set of registries and how to
search for offerings in those registries using the Registry Manager.

1 Registries and WSDL for Web Services

About registries

A Web Serviceregistry isarepository of information about Web Services and other services. It
supports finding and publishing information about a business and its services.

When providers create aWeb Service, they can publish information about that service and their
businessin aregistry so prospective consumers can discover the service and learn how to useit.
When consumerswant to find a Web Service, they can query theregistry to find the servicesand
businesses that fit their needs, and retrieve information about using those services.

Registries store this business and Web Service information in a standard XML -based format
such as Universal Description, Discovery, and Integration (UDDI) or Electronic Business
eXtensible Markup Language (ebXML). Typically businesses hosting registries provide Web
page or GUI interfacesto publish to and query the registry. Other tools can use standard APIsto
present their own interfaces.

Browsing registries in Workbench

+

-~

The Registry Manager is on the Registries tab of the Navigation Pane. It displays registered
businesses in the top panel and servicesin the lower panel. You can get listings from one or
more registries.

To use the Registry Manager, you define profilesfor the registries you want to access. (Profiles
for several major registries are already defined for you.) Then you search for businesses or
services by specifying a search string. Businesses or servicesthat begin with that string are
displayed in the browser.

EXERCISE 1-1: Create a profile for a public registry

Inthisexercise you'll look at the profile for the IBM Public Registry that is defined for you
when Workbench isinstalled.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.

2. Sdlect Edit>Profiles from the menu.

Browsing registries in Workbench

Tutorial: Building a Web Application

3. Inthe Profiles dialog, select the Registriestab.

2% Profiles E

Serversl @‘ Databazes

Registry Profiles are used for depl

]
information necessary to deploy and inguire & given registry.

Services, They specify the

Profile name: |IEM Public Registry

;I e |

Registry type: ool
Registry version: 1.0

Edit... |
Delete |

Registry specific information:

Uzer name

|7 Include in Registry Search

Inguiry URL hittp: Snessne-3 dbm comizervicesuddifinoguiryapi
Publish URL hitps: fhaewene-3 ibm.comiservicesuddifratectipublishapi

ancel Help

4. Select IBM Public Registry in the Profile name dropdown list box.
5. Click the Edit button to look at the profile. The profile has these values:

Option Value

Profile name IBM Public Registry

Registry type uDDI

Inquiry URL http://www-3.ibm.com/services/uddi/inquiryapi

Publish URL https://www-3.ibm.com/services/uddi/protect/publishapi
User name Blank

Credentia

Later if you create an account with IBM, you can fill in your
account information to enable publishing to the IBM registry.

Include in Registry
Search

Selected

You can prevent aregistry from being searched by clearing
this check box; you don’t have to delete the profile

6. Click OK to closethe Edit a Registry Profile dialog.
7. (Optional) Look at the profiles for the other registries that have been set up for you.

Browsing registries in Workbench

1 Registries and WSDL for Web Services

8. Click OK to close the Profiles dialog.

+

[
EXERCISE 1-2: Search for businesses
In this exercise you'll search for registered businesses whose names begin with X.

1. Inthe Navigation Pane, select the Registries tab.
The pane has two subpanes: Business and Service.

2. Inthe Business text box, type the letter X and click the curved blue arrow beside the text
box.
TIP You can enter multiple search terms by separating them with avertical bar (]). For

example, to find businesses that begin with X and W, type X|W.

The Registry Manager searches the registries you' ve defined. This can take awhile, so be
patient; the search can take from 15 secondsto 4 or 5 minutes. You can stop the search and
look at partial results by clicking the red Stop button. When the button isno longer red, the
search is done.
Theresults are displayed in the Business Pane. The first-level nodesin the expandable tree
areregistries, and the next level are business names.

3. Scroll through the list or collapse the top-level nodes to see which registries returned
results. You can make the pane wider or longer for better viewing.

4. Expand the nodes for various businesses to see what information they provide.

4 Browsing registries in Workbench

Tutorial: Building a Web Application

5. Find XM ethods—it’sin both registries—and expand its node to find out about its

offerings.

Business:

#

c; Services
------ HMethods Barnes and

HMS X Media Solutions

Wieh services resource site

------ HMethods Currency Exchange Rates
------ HMethods Delayed Stock Quotes J
------ FMethods Pacific Bell SMS Service
HMalpha Technologies, LLC.

)

5
(S

Moble Guate

A

Service:

X i ©

v

= Diredoryl [Project ﬂ%_, Registries |

Information about businesses

Theinformationin aregistry is self-supplied. A businesstells you what they want you to know
and selects their own categories.

The business section of aregistry might include these types of information:

Information Icon | Description

Business name - Business name used in this registry
Description — A short phrase describing the business
Categories N Categories to which the business belongs

Classification schemes come from at least three sources:
NAICS codes for industry segments, UNSPSC for product
and service classifications, and geographic information

Browsing registries in Workbench

1 Registries and WSDL for Web Services

Information Icon | Description
Identifiers Information about the business, such as a DUNS number
Services O A list of services offered by the business, such as Web

Services callable viaHTTP and other services such as sales
and technical support contact information

You can select a service name to display its detailsin the
lower pane

TIP Try other searches using the Advanced Search options (click the binoculars button). For
more information about Advanced Search, see Registry Manager in the Tools Guide.

Examining the information for a service

Web Servicesarejust asubset of the types of servicesthat abusiness might publishin aregistry.
A business might list services such as sales and support contact information, aswell as
programmed Web Services.

+

[
EXERCISE 1-3: Examine the services for a business

In this exercise you'll find out about the information available for a service and how to get a
WSDL filefor aserviceif oneisavailable.

1. Inthe Business Pane of the Registry Manager, find the XM ethods node and expand it to
show itslist of services.
2. Click the XMethods Barnes and Noble Quote service.

The Registry Manager retrieves information about the service and displaysit in the
Service Pane.

6 Examining the information for a service

toolsRegManager.html

Tutorial: Building a Web Application

3.

Expand the nodes in the Service Pane to see al of the information. You can resize the pane

S0 you can see more of the information at once.

Business: &

2

s HMethods

Wieh services resource site

E‘C;/ Services

------ HMethods Barnes and Noble Qudte
------ HMethods Currency Exchange Rates
------ HMethods Delayed Stock Quotes

------ FMethods Pacific Bell SMS Service

El

Service: 5 2 b 4 &4

I}(Methods Barnes and Moble Guote

E---{'_R_ } 1M Public Registry
E| i ds
) HMethods

z and Moble Guote

-S0AP Binding for tmodel: XMethods Book Quote [lang: en]
B 1M XMethods Book Quote

= Eg Categories
L uddi-orgtypes: wadlSpec

Returns book price from Barnes and Moble online stare, given ISBM [lang: en]

~Interface for retrieval of book price given itz ISBM number [lang: en]
verviesnw URL: it fhanaey somethods netdmodels BookGuate wesdl

= Diredoryl [Project ﬂ%_, Registries |

To retrieve the WSDL file that describes this service, highlight the line with the tModel

icon—it says XM ethods Book Quote.

S tM XMethods Book Quote

Click the Retrieve WSDL icon in the toolbar above the Service text box.

R
0.

The WSDL file for the Book Quote service opensin the WSDL Editor. For information
about the WSDL Editor, see “Using the WSDL Editor” on page 9.

For the Book Quote service you could aso click the Overview URL link to display the
WSDL inyour browser. A browser that understands XML is required.

Examining the information for a service

1 Registries and WSDL for Web Services

Information about services

In the Service Pane, you can find out the technical details of a service offering. For a
programmatically accessible service, the details include the URL for accessing the service and
where to find information about the methods the service offers.

A serviceentry in aregistry might include these types of information:

Information Icon | Description

Service name & The name of the service

Business name - The business offering the service

Description — A short phrase describing the service

Binding @ The URL for invoking the service

tModel M Data describing the service
A UDDI registry storesthe data asatModel, which is a set of
name/value pairs; the tModel node may be followed by a
description

Overview URL — The URL of adocument describing how to use the tModel
data
For aWeb Service, thisisusually aWSDL document.

Categories = Categories for the service
The categorization has two parts. a name (for example, uddi-
org:types) and avalue (for example, wsdlSpec). The value
wsdl Spec specifiesthat aWSDL document isavailablefor the
service. Other types of services can use other classification
schemes.

TIP You can search for serviceswithout searching for businessesfirst. The basic search finds
matches in service names, and Advanced Search (binoculars button) matches other
services data. For more information, see Registry Manager in the Tools Guide.

Examining the information for a service

toolsRegManager.html

Tutorial: Building a Web Application

Using the WSDL Editor

The WSDL Editor isan XML editor with extrafeatures for handling WSDL elements. Most of
thetime, you will use WSDL definitions for Web Servicesthat you get from registries or that
you generate with the Web Service Wizard. However, if you need to edit aWSDL file, the editor
comes in handy.

InLesson 2, “Creating aWeb Service”, you'll build aCal culator Web Service. The Web Service
Wizard generatesWSDL to describethe service, soit’snot necessary to create onefrom scratch.
But for thislesson, that'swhat you'll do.

+

[
EXERCISE 1-4: Create a WSDL file for the Calculator Web Service

In thisexercise you'll create anew WSDL file that describes the Calculator Web Service.

1. InWorkbench, select File>New from the menu.
2. Inthe New File diaog, select the Web Services tab, highlight WSDL , and click OK.

Choose file type:
JZEE 'WWeb Services | }{MLl
) New Web Service £ Existing Web Service
%5 Creste a new Web Service & Uze an existing Web Service
WSDL

¥ Creste a new WESDL file

|
3. Inthe WSDL Wizard, specify thisinformation:

Option Value

Definition Name CalculatorService

Target Namespace urn;CalculatorImpl

Documentation The four basic arithmetic operations

Include WSDL template Selected
If you don't include the template, the wizard uses
the definition name to name the file; but the other
fields areignored and the new file is empty

Using the WSDL Editor 9

1 Registries and WSDL for Web Services

Click Finish.

Workbench starts the WSDL Editor and displays the beginning of a WSDL Web Service
definition in the Edit Pane. If you compared this opening text with the file generated by
the Web Service Wizard, you would see minor differences—but don’t worry about it.

CalculatorService weadl

¥

<#xml wersion="1.0"2>
<definitions name="Calculatorfervice”

targetNamespace="urn: CalculatorInpl™
xulns: tns="urn:CalculatorInpl™
xmlns="http: //schenas.xnlsoap. org/wsdls/ ™"
xmlns:xsd="http: / fwmr. w3, org/ 1999 ML chena™
xmlns: soap="http: //schenas.xnlsoap. org/wsdl/so0ap /"=
<documentation-

The four basic arithmetic operations
</documentations

</definitiona>

-

@ WL I x5 Stylizedl

Select the following XML text and paste it into the editor on a blank line above the
definitions end tag </definitions>. It'srather long because it defines request and response
messages for al four arithmetic operations.
NOTE You could also use the editor’stoolsto insert the message and portType elements.
These tools are described in the next section.

<types/>
<message name="subtractRequest">

<part name="arg0" type="xsd:double"/>
<part name="argl" type="xsd:double"/>
</message>
<message name="subtractResponse">
<part name="arg2" type="xsd:double"/>
</message>

<message name="divideRequest">

<part name="arg3" type="xsd:double"/>
<part name="arg4" type="xsd:double"/>
</message>

<message name="divideResponse'>

<part name="arg5" type="xsd:double"/>
</message>

<message name="DivideFault"s>

<part name="reason" type="xsd:string"/>

<part name="x" type="xsd:double"/>
<part name="y" type="xsd:double"/>
</message>

<message name="addRequest'">

<part name="argé6" type="xsd:double"/>
<part name="arg7" type="xsd:double"/>

10

Using the WSDL Editor

Tutorial: Building a Web Application

</message>
<message name="addResponse'>
<part name="arg8" type="xsd:double"/>
</message>
<message name="multiplyRequest">
<part name="arg9" type="xsd:double"/>
<part name="argl0" type="xsd:double"/>
</message>
<message name="multiplyResponse">
<part name="argll" type="xsd:double"/>
</message>
<portType name="CalculatorImplWS">
<operation name="subtract"s>
<input message="tns:subtractRequest"/>
<output message="tns:subtractResponse"/>
</operations>
<operation name="divide">
<input message="tns:divideRequest"/>
<output message="tns:divideResponse"/>
<fault message="tns:DivideFault" name="faultl"/>
</operation>
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>
</operations>
<operation name="multiply"s>
<input message="tns:multiplyRequest"/>
<output message="tns:multiplyResponse"/>
</operation>
</portType>

Tools for inserting elements

The editor has dialogsto assist you with inserting top-level WSDL elements. The WSDL inthe
editor ismissing two important elements: binding and service. You'll use the editor toolsto add
them.

Using the WSDL Editor 11

1 Registries and WSDL for Web Services

%p

+

EXERCISE 1-5: Add a binding element

In this exercise you'll add a binding element, which specifies how messaging is handled.

1. Inthe Edit Pane near the end of the file, click to set the insertion point on a blank line
between the end tags for portType and definitions.

</portType>

[insertion point here]

</definitions>

2. Right-click to display the WSDL popup menu, select Insert WSDL Element, then select
Binding from the second menu.

</operatiomns
</portTyper

| Ra it Chtfe#
</defing oy CHrlrG
I Paste Clriey
@) o I Select All Clrl+d,
B coToline.. ctrisG
Text Tools »

Message...

Port Type...

Binding...

Service...

3. IntheBinding dialog, specify thisinformation:

Option

Value

Name

CalculatorBinding

Documentation

SOAP Binding for Calculator service

Port Type

CalculatorlmplWs

TIP Use the dropdown list box to select a port type defined in
thefile

Binding Protocol

SOAP Binding
Style: rpc
Transport: http://schemas.xmlsoap.org/soap/http

12

Using the WSDL Editor

Tutorial: Building a Web Application

Thefilled-in dialog looks like this:

Binding []
Enter infarmation far the binding element

Mame
FalculatorElinding

Documentation:
’SOAP Binding for Calculstor service

Fort Type:
F:alc:ulatorlmpIWS ;I

Binding Protocal
¥ SOAP Binding
Style:
fre =
Transport:
hﬂp: Hschemas xmlsoap orgfzoaphitp

€ HTTP Binding

fet]

" User Defined

4. Click OK.

The XML inserted in the file includes binding information for each operation defined in
the portType element.

*

[
EXERCISE 1-6;: Add a service element

In this exercise you'll add a service element, which specifies the URL aclient application uses
to invoke the deployed Web Service.

1. Inthe Edit Pane near the end of thefile, click to set the insertion point on a blank line
between the end tags for binding and definitions.
</binding>
[insertion point here]
</definitions>

Using the WSDL Editor 13

1 Registries and WSDL for Web Services

Right-click to display the WSDL popup menu, select Insert WSDL Element, then select
Service from the second menu.

<zsoap:binding style="rpc” transport="http://s

</binding>
"%. Gt gt
</definit Copy GirliG
| Paste Chrl+y
) o | Select Al Crbed,
' B cotoline.. ctrisG
Text Tools »

Inzert WIDL Element

Walicate

Message...
Port Type...

Binding...

In the Service dialog, specify thisinformation:

Option

Value

Name

CalculatorService

Documentation

URL for locally deployed Calculator Web Service

Click Add to add aline for port information.

Enter these values to describe the port:

Option Value
Name CalculatorPort
Binding CalculatorBinding
TIP Use the dropdown list box to select a binding defined in the
file
Address Type SOAP
TIP Usethe dropdown list box to select atype
Location http://loca host/ProverbsCloud/Cal cul ator/Cal cul atormpl
NOTE Location isthe URL where the Web Service will be
deployed. For this lesson, use the sample URL above; you
don’t need aworking URL yet.

14

Using the WSDL Editor

Tutorial: Building a Web Application

Thefilled-in dialog looks like this:

Service | =]
Enter information for the service element.

Mame
k:alculatorService

Documentation:
rJRL for locally deployed Calculstor VWeb Service

Pors:
Mame Binding Address Type Location | Add I
CalculatorPort CalculatorBinding SOAR o MocalhostProve
Delete |
¥ P Lial
OKS Cancel rﬁ@l
6. Click OK.

This XML isinserted in thefile:

<service name="CalculatorService">
<documentations>
URL for locally deployed Calculator Web Service
</documentations>
<port name="CalculatorPort" binding="CalculatorBinding">
<soap:address
location="http://localhost/ProverbsCloud/Calculator/CalculatorImpl"/>
</port>
</service>

Therest of this|esson shows you how to use some more features of the WSDL Editor.

Stylized view

The WSDL Editor has a second pane that displaysthe XML content of the WSDL document in
areport format. You can customize the content and layout using XSL style sheets. You cannot
edit in the Stylized view.

Using the WSDL Editor 15

1 Registries and WSDL for Web Services

+

[
EXERCISE 1-7: Change the Stylized view

In thisexercise you'll look at the views that are provided and find out where you can add your
own custom view.

1. Withthe WSDL file open in the Edit Pane, click the Stylized tab at the bottom of the pane.

@ ®hiL | s Stylized

The format of the WSDL changes to the Details view, which presents the information in a
more readable format.

Calculator Service weadl* ®

CalculatorService

GoTo: Top gervice hinding portType message twpes Imports References

namespace prefiz namespace URIs for: definitions
targetMatnespace: urn: CaleulatorImpl
tt1g wrn: CalculatorImpl
http://schemas.xmlsoap.orghvsdl/
xsd http: /s w3 .org/1999 XML Schema
soap htip: /scl xml org/wsdl !

5 i

The four basic arithmetic operations

service: CalculatorService
URL for locally deployed Cadewlator Wek service
pott: name: CaleulatorPort
binding: CaleulatorBinding
soapiaddress: location:
hittp:/localhost/Proverbs Cloud/Calculator/CalculatorImpl
GoTo: Top gervice hinding portType message twpes Imports References

hinding: CalculatorBinding =l

&) L x5 Stylized I

2. Right-click in the editing area, then select Stylesheets on the popup menu and Summary
on the second menu.

Back
Cpenlink i brayvser

»

Summary

[custon.._

16 Using the WSDL Editor

Tutorial: Building a Web Application

Another formatted view appears.

Right-click again in the editing area, then select Stylesheets on the popup menu and
Custom on the second menu.

In the Select Style Sheet dialog, you can choose the default style sheet: Details, Summary,
or acustom style sheet. You can create your own XSL style sheets to present the
information in different ways.

2Z Select Style Sheet

E |Summary ;I

€ Custom | |

[Set as defautt

Click Cancel to close the dialog.
Click the XML tab to return to the editable view.

Save the file in a convenient directory, for example c:\WorkbenchProjects. Its name is
Calculator Service.wsdl. Then close thefile.

WSDL Editor toolbar

When you open the WSDL Editor, several buttons are added to the main tool bar.

You can:

Validate the XML against the WSDL DTD

Publish the WSDL to aUDDI registry defined in the Workbench registry profiles; you
need an account with the registry you select

Generate a Java class that matches the methods defined in the WSDL file

The next exercise will show you how to generate a Java class from WSDL.

Using the WSDL Editor 17

1 Registries and WSDL for Web Services

+

[

EXERCISE 1-8: Generate a Java remote interface from WSDL

In thisexercise you'll create aremote interface and other Web Service classes from aWSDL
specification. You could use the resulting Javafilesto create anew Web Service or client
application.

NOTE You need an open project for thisexercise. You can use any project, since youwon't be
taking this any further than generating the code. Skip to Step 7 if you have an open
project and want to generate the files there.

1. InWorkbench, close any open projects and select File>New Project from the menu.
2. Inthe New Project Wizard, select JAR and then click OK.
Choose the project type, or select Deploy-only if you

you want to create a project for deployment of an
existing archive file that you don't want to build.

o EAR g; WAR

Erterprize Archive Weh Archive
é!;gﬂﬁ !!!2&1

Erterprize JavaBean Archive — Application Client Archive

RAR JAR

Resource Adapter Archive = |ava Archive
Eﬁ]mmhrumi

Mon-buildakle Archive

In the Project Name field, type CalcWSDL Test.

4. Click the ellipses beside the Project L ocation field and select a directory where you want
to put Workbench projects, then type a new directory name (such as CalcWSDL). The
Project Location field should end up with avalue like this:

C:\WorkbenchProjects\CalcWSDL

The rest of the diaog isfilled in automatically.

18 Using the WSDL Editor

Tutorial: Building a Web Application

Enter the name and location (directory path) for
the project and the archive file. (To use an
existing archive as-is, create a deploy-only
project instead.)

Project Mame:

[oalcSDLTest

Project Location:

pWorkbenchProjeds\CachSDL J

Archive Name (e.g. office war):

[oalcSDLTest
Archive Location (directory):
pWorkbenchProjeds\CachSDL J
< Szcie Nes Cancel| Help
5. Click Next. If the project location directory doesn’t exist, confirm that you want to create
it.

6. Onthelast panel, check the project details then click Finish.
7. Select File>Recent Files and open Calculator Service.wsdl again.
8. Inthe WSDL toolbar, click the Gener ate Java Class button.

| & ® iy SilverStreany
Generate Java Class])
Workbench displays the project location panel of the Web Service Wizard.

9. Fill inthe panel as shown below. The only value you should have to specify isthe calc
package.

Using the WSDL Editor 19

1 Registries and WSDL for Web Services

2Z Web Service Wizard [%]

Specify the project, package, and base directory for the
generated classes.

{* Addto open project: |Calc\u’\lSDLTest ;I Create project... |

% Mo project -- just write files to the: disk.

Base directory: F::\WorkbenchProjeds\CachSDL\src ;I Browse... |

Package: l:alc:

File directory: C:W\orkbenchProjects'CalcyWsDLisrcicalc
MOTE: The entire contents of this directory will be included in the archive.

& Addthe files ta the roct of the archive.

{1 Add the files to the archive with this prefix:

The files will be added to this location in the archive:
calc

I_|_|

package

Elo G xt =8 Cancel| Help

Once you click Next, Workbench displays the class-generation and SOAP options panel
of the Web Service Wizard.

10. Examine the settings on this panel (you don’t need to change any of them).

2Z Web Service Wizard [%]

Specify the Web Service classes you would like to
generate and any associated SOAP options.

Generation Options

[v| Generate stubs
[] Generate skeletons: & Tie-based & Mot tis-based

|_ Generate Broker Weh 1 x compatible classes
Directory with local XS0 files:
IC:WorkbenchProjeds |

|7 Map complex XML types to Java types

< Ba

Using the WSDL Editor

Tutorial: Building a Web Application

These settings tell the wizard to generate stub classes for a Web Service client. It will put
the generated files in the src\calc directory and add them to your project. You will learn
more about these optionsin Lesson 2, “ Creating a Web Service” and Lesson 3, “Creating a
Client Application for a Web Service”.

11. Click Finish.

When the wizard finishes generating its output, you' ll find the generated filesin the
src\calc directory under the project root directory.

Typicaly you use aWSDL file as the starting point for generating stubs (including aremote
interface and related classes) for aclient application. However, if you generate skeletons, you' |
have all you need to begin building a Web Service. The other code you need is a class that
implements the remote interface with the business logic for the Web Service methods.

About publishing

Workbench also provides facilities for publishing information about your service.

For most registries, you need to set up an account before you can publish. The registry profiles
can store the URL for publishing and your ID and password.

TIP To publish, you open aWSDL file describing your service in the Edit Pane. The toolbar
for the WSDL Editor includesaPublish to Registry button. It displaysadialog that lets
you specify the registry, the business name, and the service URL . For more information,
see Registry Manager in the Tools Guide.

WS5SDL Publishing Options [%]
Registry Profile:

IBM Public Registry

Business Mame:

| Lookup... |

WEDL Publish URL:

h‘tp:.f.f{enter server url CalculstorService wesdl

GRNCECE! Help |

Using the WSDL Editor 21

toolsRegManager.html

1 Registries and WSDL for Web Services

Summary of what you’'ve done

Using Workbench tools You used these toolsin Workbench:
* Registry profiles (Edit>Profiles)

* Registry Manager (Registries tab of Navigation Pane)

* WSDL Editor

Next lesson Inthenext lesson you will learn about the Web Service Wizard. You'll create a
project and devel op the code for the Calculator Web Service.

22 Summary of what you've done

2 Creating a Web Service

What you will learn

In thislesson you' Il learn how to set up a WAR project for a Web Service and run the Web
Service Wizard to generate SOAP processing code for the service. All you need to provideisthe
Java class that implements the methods that users of your service will call—in this sample, it
will be a Calculator with these simple methods: add, subtract, multiply, and divide. Thenyou'll
deploy the Calculator Web Service and test it with test tools provided by the wizard.

You will learn about:

* Web Servicesusing J2EE

» Defining aWAR project for the service
» Generating Web Service code

» Getting ready to deploy

e Updating the J2EE server’s classpath

» Testing the Web Service

What you will do

Set up directories for your project

Create a new project

Add source code to the project

Add the jBroker Web libraries to the project
Build the project

Run the Web Service Wizard

Build the archive

Examine the deployment descriptor

Deploy the project

Edit the test client code

11. Test the Web Service with the generated client

© © N o 0 &> NP

.
o

How long will it take? About 15 minutes

NOTE You do need to run your J2EE application server to deploy the Web Service you create
in this lesson.

23

2 Creating a Web Service

Web Services using J2EE

A Web Service isacomponent available on aremote server. Itsinterfaceis known, and you can
call its methods via a standardized messaging protocol.

In the J2EE world, you make a Web Service available by deploying it asaservlet in aWeb
archive (WAR) on a J2EE application server. A client application makes aremote method call
using SOAP XML messages. The SOAP dispatcher on the remote server receives the messages
and directs the method call to the Web Service servlet. The Web Service wraps the return value
as a SOAP message and sends it back to the client.

JAX-RPC and RMI

SilverStream supports the J2EE model for devel oping Web Services, which is based on JAX-

RPC (JavaAPI for XML-based RPC) and RMI (JavaRemote Method Invocation). The business
method signatures are declared in aremote interface. The service uses a skeleton class and the
client uses a stub to manage the communication between the service and the client application.

Skeleton and tie The Web Service's skeleton class implements the remote interface. The
skeleton receives a SOAP request, trandates arguments from XML to Javadatatypes, and calls
the business method. The Web Service can also include atie class that extends the skeleton and
delegates the method call to another class that implements the business method.

Stub Theclient application usesastub classthat also implementsthe remoteinterface. When
the client calls amethod defined in the remote interface, the stub directs the call to the Web
Service using an URL it has stored and transmits the method call as a SOAP message.

You don't need to worry about the implementation details of these classes; SilverStream
provides tools that generate this code.

Workbench and jBroker Web

Workbench SilverStream eXtend Workbench provides a Web Service Wizard that
generates the code for the communication between the Web Service and the client application.
For the Web Service, all you need to provideis codefor the business methods. For the client that
callsaWeb Service, you can generate the code from aWSDL file, whichisan XML description
of aWeb Service.

24

Web Services using J2EE

new http://java.sun.com/xml/jaxrpc
new http://java.sun.com/xml/jaxrpc

Tutorial: Building a Web Application

jBroker Web jBroker Web is a JAX-RPC implementation that provides compilers and
runtime support for Web Services on a J2EE application server. It'sincluded in Workbench, and
the Web Service Wizard uses its compilers to generate Web Service code. Asyou' |l see, your
deployed applications require accessto jBroker Web and related APl JARs.

jBroker Web includes command-line tools that invoke its compilers directly, but you will not
use them in this tutorial. For moreinformation, see the jBroker Web help.

Therest of thislesson teaches you how to build a Web Service, leading you through project
setup, generating code with the wizard, and deploying and testing the result.

Defining a WAR project for the service

B

*

The Web Service Wizard in Workbench starts with a source object that implements or defines
the business methods that you want to make available. There are severa possible starting points
in this process. You might begin with:

» A Javaclassthat implements your business methods

* Aninterface that specifies signatures for your business methods

* AnEJB session bean

A WSDL service definition that specifies the operations of the Web Service

The Calculator Web Service uses the Calculator I mpl class, which defines methods for basic
arithmetic. It also usesthe DivideFault class, which handles divide-by-zero exceptions.

Inthissectionyou'll createaWAR project for the Calculator Web Service. Firstyou’'ll do alittle
directory setup. Then you'll start Workbench to create the project file and add
Calculatorlmpl.javato the project.

EXERCISE 2-1: Set up directories for your project

In this exercise you will create directories for your sourcefiles.

1. Using your operating system tools, create aroot directory for your project called
CalculatorWsS. You can put it at the root level of your disk drive or in asubdirectory of
your choosing. The sample paths in the tutorial assume that you create CalculatorWSin
the WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\CalculatorWs

2. Inthe CalculatorWS directory, create a subdirectory called src, and in the src directory,
create a package subdirectory called calc.

Defining a WAR project for the service 25

new ../../jbroker-web/README.html

2 Creating a Web Service

3. Copy thefiles Calculator | mpl.java and DivideFault.java from the Workbench-install-
dir\docs\tutorial\Tutorial Files\webser vices directory to the Calculator W S\sr c\calc
project directory.

You now have a directory structure like this:

WorkbenchProjects\CalculatorWS\src\calc

+

[

EXERCISE 2-2: Create a new project

Inthisexerciseyou will start Workbench and use the New Project Wizard to create a project for
the Calculator Web Service.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.
3. Inthe New Project Wizard, select WAR and then click OK.
Choose the project type, or select Deploy-only if you

you want to create a project for deployment of an
existing archive file that you don't want to build.

o EAR § WAR

Erterprize Archive Weh Archive
dgiﬁﬂﬁ !!!2&1

Erterprize JavaBean Archive U Application Client Archive

RAR g JAR

Resource Adapter Archive Java Srchive
Eﬁ]mmhrumi

Mon-buildakle Archive

4. Inthe Project Name field, type Calculator.

5. Click the ellipses beside the Project L ocation field and select the CalculatorW S
directory you created in EXERCISE 2-1: “ Set up directories for your project”. When you
click OK, therest of the diadogisfilled in automatically.

26 Defining a WAR project for the service

Tutorial: Building a Web Application

6.

In the Project J2EE Version field, specify J2EE 1.2 (WAR 2.2) so your application will

run on any server that supports J2EE 1.2 or 1.3.

Enter the name and location (directory path) for
the project, the archive file, and the deployment
descriptor and select the desired J2EE version.
{To use an existing archive as-is, create a
deploy-only project instead.)

Project Mame:

kalculator
Project Location:

F::WorkbenchProjeds\Calculator‘\u’\lS Ij

Archive Name (e.g. office war):

kalculator
Archive Location (directory):

F::WorkbenchProjeds\Calculator‘\u’\lS J

Deployment Descriptar Mame:

Ivveb.xml
Deployment Descriptor Location:
F::WorkbenchProjeds\Calculator‘\u’\lSW\lEEl-INF J
Project J2EE Wersion: |J2EE 1.2 AR 221 ;I
= Bzl N Cancel Help
Click Next.

When the wizard asksiif it should create the WEB-INF directory, click Yes.

The wizard summarizes the project information.

NOTE If another project was open when you selected New Project, you might see a

panel about adding the project to the current project. If this happens, do not check

the Add this project option. Click Next to go to the summary panel.

Click Finish.

In the Navigation Pane, the Project tab displays the new project. You can use either a

Source Layout view or an Archive Layout view.

Defining a WAR project for the service

27

2 Creating a Web Service

+

-~

EXERCISE 2-3: Add source code to the project

In this exercise you will add the src directory to the project and specify where it will bein the

J2EE archive.

1. Inthe Navigation Pane, click the Directory tab.

2. Navigate to the Wor kbenchProjects/Calculator W S/sr ¢ directory.

3. Right-click the src directory and select Add to Project.

4. Inthe Add to Project dialog, select Add thefilesto the archive at thislocation. In the

5.

*

B

text box, type WEB-INF/classes. Leave Include subdirectories selected.

2Z Add to Project [%]

File: p\WorkbenchProjeds\CaIcuIator‘\u'\lS\src

Add to project: |Calculator B2 |
[¥| Include subdirectories

€ Add the files ta the roct of the archive.

& Add the files ta the archive at this location: IWEEI-INF.I’c:Iasses

Advanced == |

Click OK.

EXERCISE 2-4: Add the jBroker Web libraries to the project

The Web Service uses classes in jbroker-web.jar and supporting JARs for SOAP message
processing. In this exercise you will add these JARs to the archive for runtime access and to the
project classpath for compile-time access.

1.
2.
3.

In Workbench, select Project>Project Settings from the menu.
Select the Contentstab and click the Add Entry button.

In the Select Contents dialog, navigate to the directory Workbench-install-
directory/compilelib, then highlight the following files and click Open:

e jaxrpc-api.jar
e jbroker-web.jar
e sagj-api.jar

28

Defining a WAR project for the service

Tutorial: Building a Web Application

* Xercesjar
The Add to Project dialog will prompt you for information about each file, one at atime.

4. When you're prompted about jaxrpc-api.jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/jaxr pc-api.jar. Then click OK.

5. When you're prompted about jbroker-web.jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/jbroker-web.jar. Then click OK.

6. When you're prompted about sagj-api.jar, select Add thefileto the archive at this
location. In the text box, type WEB-INF/lib/saaj -api.jar. Then click OK.

7. When you're prompted about xerces,jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/xer cesjar. Then click OK.

The WEB-INF/lib directory of the archive will now include these JARSs.

2% Project Settings [%]
Project: |Calculator ;I

General Contents | Classpath.fDependenciesl

Source location Archive location
VWEB-IMFsareh sl VWEB-IMF Aareh sl
=rch WEB-INF iclazsess

CHProgram Files\Silver StreamieXtencdd... WEB-INFlibs:xrpc-api jar
CHProgram Files\Silver StreamieXtendd... WEB-INFlibjbroker-web jar
CHProgram Files\Silver StreamieXtendd... WEB-INFlib/sasj-api jar
CProgram Files\Silver StreamieXtendd... WEB-INFlibfxerces jar

o) e e e e e

ioAdd Entry... Add Directory... | Ect... | Delete |

Cancel| Help

8. Select the Classpath/Dependenciestab and click the Add Entry button.

9. Inthe Add to Classpath dialog, find the directory Workbench-install-directory/compilelib
again, then highlight the following files and click Open then OK.

e jaxrpc-api.jar

e jbroker-web.jar
e sagj-api.jar

e Xercesjar

Defining a WAR project for the service 29

2 Creating a Web Service

10.

11.

The Classpath/Dependencies tab should ook something like this:

2Z Project Settings [%]
Project: |Calculator ;I

Generall Cortents Classpath/Dependencies |

Clazsspath entries:

eamieXtendorkbenchicomil i j
SProgram F|IeS\SlIverStream\e}{tend\u’\l’orkbench\compllellb\;broker Web Jar |

SProgram FilesiSilver Streamie XtendWiorkbenchicompilelibisasj-api jar
SProgram FilesiSilver StreamieXtendWiorkbenchicompilelibxerces jar
9 SILYERS TREAM _¥WE_HOMES\compilelibi2ee_api_1_2 jar

In addition to directories and JAR files, you can add other project files (SPF files) to this
project's classpath. Before this project is built, any SPF files listed here will automstically
be built, and their generasted archives will be used in the classpath.

Add Ertry.. Add Directary .. | Edit.... | Delete |

ancel Help

NOTE An archive of J2EE classesis already on the WAR's classpath. Its path uses an
environment variable whose value is the Workbench install directory. The
variable was defined when you installed Workbench.

Click OK to close the Project Settings dialog.

The project now includes references to the required JARs. When you build the archive,
these JARs will beincluded. The JARs are also on the classpath for building the archive.

In the Navigation Pane, select the Proj ect tab to see the project contents. Select Source
layout, expand src, and select the calc directory. It contains Calculatorlmpl.java and
DivideFault.java. Click the Workbench-install-directory/compilelib entry to seejbroker-
web.jar and the other JARs in the lower pane.

The expanded Source layout looks something like this:

ey using: ISource layout - I

= g Calculstor spf

khenchicompilelib

|:| jaxrpc-api jar
|:| jhroker-vweh jar
|:| saaj-api jar

|:| HEFCES jar

Q Directory ﬁ Project | ﬂl_, Registries

30

Defining a WAR project for the service

Tutorial: Building a Web Application

+

[
EXERCISE 2-5: Build the project
The Web Service Wizard uses compiled files, so you need to build the project beforeinvokingiit.

e Select Project>Build from the menu.

If you get errors, the problem is probably in the classpath. Make sure you successfully
completed EXERCISE 2-4: “ Add the jBroker Web libraries to the project”.

Generating Web Service code

To convert your source object into aWeb Service, you run the Web Service Wizard. It generates
code that enablesthe server to translate XML SOAP requests into method calls for your source
object.

TIP The Web Service Wizard requires that you have an open project. It putsthe filesit
generatesin that project.

About the URL for the Web Service When you run the wizard, one of the pieces of
information you will provide isthe URL that clients use to access the service. The URL has

severa parts:
Part Description Example
Server URL for the server, including the port number http://local host/Pr
(if not the default port 80) and any server- overbsCloud/
specific data http://www.mydo
TIP For a SilverStream server, include the main.com: 8080/
database to which you deployed the WAR
Web application URL for the WAR Calculator/
TIP For a SilverStream server, thisisarelative
URL that you specify in the deployment
plan
Servlet mapping URL for the servlet; thisisthe URL pattern Caculatorimpl
assigned in the Servlet Mapping section of the
deployment descriptor

Generating Web Service code 31

2 Creating a Web Service

For example, when you deploy thisWeb Serviceto alocal SilverStream server, the URL will be
something like this:

http://localhost:80/ProverbsCloud/Calculator/CalculatorImpl

+

[

EXERCISE 2-6: Run the Web Service Wizard

In this exercise you' || generate classes that turn Cal culatorimpl into a Web Service.

1. With your project open in Workbench, select File>New from the menu.

2. Inthe New File dialog, select the Web Servicestab, select New Web Service, and click
OK.

2Z New File [%]
Choose file type:

JZEE 'WWeb Services | }{MLl

4 New Web Service
55" Create a new Weh Service
WSDL
=¥ Creste a new WSDL file

<) Existing Weh Service
5 Uze an existing Web Service

Workbench displays the project location panel of the Web Service Wizard.
3. You can accept the defaults on this panel (as shown below) and click Next.

2Z Web Service Wizard [%]

Specify the WAR or JAR project and base directory where
the new Web Service classes should be added.

{* Addto open project: |Calculator ;I Create project... |

% Mo project -- just write files to the: disk.

Base directory: p\WorkbenchProjeds\CaIcuIator‘\u'\lS\src ;I Browse... |

Package: |

File directory: C:WNorkbenchProjectsiCalculatortSisrcy
MOTE: The entire contents of this directory will be included in the archive.

& 2dd the files ta the root of the archive.

% Lddthe files to the archive with this prefix: IWEEl-lNF-"ClaSSES

=1 Cancel| Help

Generating Web Service code

Tutorial: Building a Web Application

4. When the class selection panel displays, highlight class calc.Calculator Impl and click

Next.
2Z Web Service Wizard [%]

Select the class from which you would like to generate new
Web Service classes.

’— Available Classes (2)

clazs calc DivideF autt

— Class location {directory or JAR)

CrivorkbenchProjectsiCalculston WS buildWCalculstor -clazsesWEB-INFiclasses |

— Class Filter

@& AllClasses O Remote Classes (O Mon-Remote Classes (O EJB Classes

<Back N Cancel| Help

NOTE By default, the wizard displays the compiled classes of your project. You can
optionally list classes located elsewhere (such asin an archive) and filter the list
to show only specific kinds of classes.

Generating Web Service code 33

34

2 Creating a Web Service

When the method selection panel displays, click Add All to use all four calculator
methods. Then click Next.

Select the methods you would like to expose in your new
Web Service.

ted class

|| calc Calculatorimpl

Methods (0}

thods (4)

couble add(double, double)
clouble multiplydouble, double)
couble subtract{double, double)
couble divideldouble, double)

Add | Remave | Remave Al |

= Back =1 Cancel

Help
The class generation and SOAP options panel displays.

In the Service address text box, specify the URL aclient uses to access your service.

The URL varies depending on your deployment server, as described in “ About the URL

for the Web Service” on page 31. For example, the URL for an application deployed to the
ProverbsCloud database on a SilverStream server at www.mydomain.com might be:

http://www.mydomain.com/ProverbsCloud/Calculator/CalculatorImpl

Generating Web Service code

Tutorial: Building a Web Application

2Z Web Service Wizard [%]

Specify the Web Service classes you would like to generate
and any associated SOAP options.

— Generation Options

[v] Generate stubs

[v| Generate VWSDL file
|_ Generate Broker Weh 1 x compatible classes

[v] Generate skeletons: (% Tie-based & Not tie-based

— S0AP Options

Target namespace: Iurn:calc.CaIcuIatorImpI

Service address: IHl'tp:.l’.l'loc:alhost.iCaIcuIator.iCalculatorlmpl

Binding style: ' Document style & literal encoding
(¥ RPC style & SOAP encoding
<Back >ancel| Help
7. Click Finish.

Wizard results

After you run the wizard, several files are added to the calc directory of your project. Because
the wizard adds them to a project directory, they are automatically part of the project.

When you select al the generation optionsin the wizard, your project includes thesefiles. The
Javafilesarein the calc package directory.

File

Description

Where used

CalculatorimplWSjava

A remote interface that has
declarations for the methods of
your source object. It extends
javarmi.Remote. Each of the
methods throws
RemoteException.

Web Service and
client program

CalculatorlmplWS_ServiceSkel et
on.java

A jBroker Web class that
processes SOAP messages on the
server. You should never need to
modify this class.

Web Service

Generating Web Service code

35

2 Creating a Web Service

File

Description

Where used

CalculatorlmplWS_ServiceTieSk
eleton.java

A jBroker Web class that extends
the ServiceSkeleton with a
setTarget() method for identifying
the object that implements the
Web Service methods. You should
never need to modify this class.

Web Service

CalculatorlmplWSTiejava

A delegator class that extends the
TieSkeleton and setsthetie’s
target to

CalculatorlmplWSDel egate.

Web Service

CalculatorlmplWSDelegate.java

A delegator class that implements
the remote interface and calls the
methods of the source object. It
implements all the constructors of
the source object.

Web Service

CalculatorlmplWSService.java

A Serviceinterface used by JAX-
RPC clients to obtain the stub for
the Web Service. You should
never need to modify this class.

Client program

CalculatorlmplWSServicelmpl.ja
va

A Service implementation class
that handles instantiation of the
stub (CalculatorlmplWS_Stub).
You should never need to modify
this class.

Client program

CdculatorimplWS_Stub.java

A jBroker Web class that
processes SOAP messages on the
client. You should never need to
modify this class.

Client program

36

Generating Web Service code

Tutorial: Building a Web Application

File Description Where used

CalculatorlmplWSClient.java A standalone Java program for Testing only
testing the Web Service. After you
edit the code, use it to verify that
the deployed Web Service works.
The sample code is amodel for
codein aclient program.

CalculatorlmplWS.wsdl An XML description of the Web Registry
Service for publishing in a
registry.

Thisfileissaved inthe src

directory of the project, not in the
calc package directory.

Thedelegator classes Calculatorl mplWSDel egate and Cal cul atorl mplWSTie work together to
bind the source object to the SOA P-processing objects. You don't have to edit anything to
produce aworking Web Service.

The binding—the URL for accessing the Web Service—is part of the code in the stub. You can
override this URL in the client code that instantiates the stub.

NOTE If you run the wizard again, all these files get regenerated. Therefore if you need to
changethe code, it isbetter to define aclassthat extends the delegator class than to edit
the generated code.

If the business logic isn’t written If you had started this process with an interface
instead of an implementation—if Calculatorimpl.javadidn’t exist and you had only thefile
CalculatorlmplWS.java—you would need to write the business logic at this point. You could
extend CalculatorlmplWSTie or CalculatorlmplWS_ServiceTieSkeleton and implement the
business logic there, or write another class and set the target of CalculatorlmplWSTie to point
toit.

Generating Web Service code 37

2 Creating a Web Service

Getting ready to deploy

Workbench can build and deploy archives for any J2EE application server. These instructions
provide the information you need to deploy this tutorial application. For details and server-
specific information, see Workbench Deployment Instructions. (You can aso use your own
server tools to deploy.)

To deploy your Web Service, you will:

1. Build thearchive
2. Look at servlet information that the wizard inserted in the deployment descriptor

3. Create aserver profile (already doneif you' ve deployed other applications to your server
in Workbench)

4. Create a server-specific file with runtime deployment information
5. Specify Workbench deployment settings
6. Deploy to your server

About the deployment descriptor

-~

+

When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For aWAR, thefileis called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows the XML
elementsin an expandabl e tree structure. You can also look at theraw XML. The editor usesthe
project’s compiled code to determine what to show, which iswhy you build the archivefirst. If
itisn't aready built, Workbench offersto build it for you.

EXERCISE 2-7: Build the archive

Inthisexercise you' Il include the generated WSDL file at the root of the archive, then build the
archive. Lesson 5, “Testing Techniques® explains the reason for including the WSDL file.
1. Select Project>Add to Project>File from the menu.

2. Inthe Add to Project dialog, find the src directory under the project root, highlight
Calculator ImplWS.wsdl, and click Open.

38

Getting ready to deploy

tutallDeploy.html

Tutorial: Building a Web Application

In the second Add to Project dialog, select Add thefileto theroot of the archive and
click OK.

2Z Add to Project [%]

File: F::WorkbenchProjeds\Calculator‘\u’\lS\src\Calculatorlmpl\u’\lS.Wsdl

Add to project: |Calculator B2

* &dd the file to the roct of the archive!

1 Add the file to the archive at this location: kalcula{orlmpl\u’\@.wsdl

In Workbench, select Project>Build and Archive from the menu to create a deployable
archive for your project.

EXERCISE 2-8: Examine the deployment descriptor

The wizard inserts information about the main servlet for the Web Serviceinto the deployment
descriptor. In this exercise you'll take alook at that information so you'll know where to find
and changeit if you ever need to.

1.

In the Navigation Pane, right-click the project file Calculator.spf and select Open
Deployment Descriptor from the popup menu.

NOTE You can aso find web.xml in any Source or Archive view and double-click it to
open it.
If Workbench displays the Select Build Option dialog, accept the defaults and click OK.

Workbench opens web.xml in the Edit Pane. The editor displays the Descriptor tab,
showing the types of information the descriptor can include.

Getting ready to deploy 39

2 Creating a Web Service

CrivarkbenchProjects\Calculstor WS WAVEB-INF ek xml ®

= @ Weh Archive
@j Context Parameters
= \Q Serviets

= & Calculatorimpl

g Initislization Parameters
‘g Role References
= 2 Servlet Mapping
a Calculatorimpl
@ Mime Mapping
@ Welcome Files
'L_-' Error Pages
@ Tag Libraries
ﬁ Resource References
@} Security Constraints
% Login Configuration
m Roles
* Environment
% EJB References

Descriptar I E XMLI

Notice the Calculator Impl item under the Servlets heading. It was added by the wizard.
Right-click Calculator Impl and select Properties from the popup menu.
The property sheet displays the deployment properties for the servlet.

2Z Properties E

Servlet name:
kalculatorlmpl

Type: @ Serviet O Jsp
Servlet class:
l:alc.CaIcuIatorImpI\u’\lSTie J

Load on startup: I

Description:

Notice that the value for Servlet classis calc.CalculatormplWSTie. Thisisthe class

that will run when the Web Service isinvoked.

Back in the Edit Pane, find and highlight the Calculator | mpl item in the Servlet

Mapping section.

40

Getting ready to deploy

Tutorial: Building a Web Application

The property sheet now displays the mapping properties.

2% Properties B
Servlet name:
kalculatorlmpl J
URL pattern:
kalculatorlmpl

Notice that the value for URL pattern is Calculatorimpl, the same as the servlet’s name.
You will use thisvaluein the URL that accesses the Web Service.

Close the deployment descriptor by clicking the button in the upper-right corner of the
editor or selecting File>Close from the menu.

Deploying the project

If you' ve done another Workbench tutorial, most of your deployment setup has already been
done. This exercise gives you the main steps and provides the project-specific information
you'll need to deploy this project. For detailed deployment instructions for all the supported
servers, see Workbench Deployment Instructions.

+

-~

EXERCISE 2-9: Deploy the project

1.

If you haven't created a profile for your server, select Edit>Profiles from the menu and
create one now.

L) For information, see the server profile procedure in the deployment instructions.
Use the following information to create the server-specific part of the deployment process.

For most J2EE servers, the server-specific deployment information isin a separate file,
usually in XML format. For some servers, you need to add it to your project so that it is
built into the archive.

Getting ready to deploy 41

tutallDeploy.html
tutallDeploy.html#Definingaserverprofile

2 Creating a Web Service

L For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server

What to do

What to specify

SilverStream

CreateaSilverStream
deployment plan. In
the Deployment Plan
Editor, set valueson
the property sheet for
the Web Archive
item.

Enabled — True
Deployed object name — Calculator

Server Profile— Select the profile you
defined from the dropdown list box

Session timeout — 5 minutes, the default
URL s— Calculator, the default

Sun Reference
I mplementation

Create aruntime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
inadirectory caled
META-INF and add
thefile to the project.

<?xml version="1.0"
encoding="Cpl252"?>

<j2ee-ri-specific-information>
<server-names></server-name>
<rolemapping />
<web>
<display-
name>Calculator</display-name>
<context-
root>Calculator</context-roots>
</web>
</j2ee-ri-specific-informations>

Jakarta Tomcat

BEA WebL ogic

Create aWebL ogic
descriptor called
weblogic.xml with
the content at right.
Add it to the project
in the WEB-INF
directory.

<!IDOCTYPE weblogic-web-app
PUBLIC "-//BEA

Systems, Inc.//DTD Web
Application 6.0//EN"
"http://www.bea.com/servers/wlsé
10/dtd/

weblogic-web-jar.dtd">

<weblogic-web-app>
<descriptions>
Calculator Web Service
</descriptions>
<weblogic-version>
</weblogic-version>
</weblogic-web-app>

42

Getting ready to deploy

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application

Server What to do What to specify

IBM WebSphere | — —

Oracle9iAS — —

3. Specify deployment settings for your server by selecting Project>Deployment Settings
from the menu.
On the Server Profilestab, select the server profile you defined above. If you have a
secure server, specify values for User name and Passwor d.
On the Deployment | nfo tab, specify additional application-specific information, as
follows.

NOTE For thesetutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the

Tools Guide.
Server Option and Value
SilverStream Silver Stream Deployment Plan — Select the plan you

defined in Step 2
Overwrite existing deployment — Selected
Verbosity — 3

Ignore compile errors— Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the

archive)
Sun Reference —
I mplementation
Jakarta Tomcat —
BEA WebL ogic WebL ogic Application Name — Calculator; used in the URL

for accessing the Web application

Getting ready to deploy 43

toolsDeployment.html

2 Creating a Web Service

Server Option and Value

IBM WebSphere Node Name — L eave blank or specify anode you' ve set up on
your server

Oracle9iAS Deployment Name — Calculator; used in the URL for

accessing the Web application

Target Path — Leave blank or specify apath you've set up on
your server

Website Name — Accept the default value or specify aname
you've set up on your server

L For more details, select the section for your server in the deployment instructions.

4. Click Deploy in the Deployment Settings dialog.

OR

Click OK in Deployment Settings and select Project>Deploy Archive from the menu.
Workbench displays progress messages, errors, and warnings on the Deploy tab of the
Output Pane.

TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.

Updating the J2EE server’s classpath

Before running the Web Service, there is one more thing to do. You must make sure that the

deployed WAR has runtime access to the following archives required by jBroker Web:

e jbroker-web.jar, which contains the jBroker Web API classes

* jaxrpc-api.jar and saaj-api.jar, which contain the Java APl classes for XML-based RPC
and SOAP processing

e Xxercesjar or another XML parser

How you set up this access depends on the type of J2EE server you use:

I f you deployed to oneof thefollowing servers, you must add the required JARsto the server’s
classpath. (Consult your server documentation to learn about adding to the classpath.)

« BEA WebLogic
* IBM WebSphere

44

Updating the J2EE server’s classpath

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application

o Jakarta Tomcat

e Oracle9i

If you deployed to the Silver Sream eXtend Application Server, you don’t need to add those
JARsto the server’s classpath (the fact that they are in the WEB-INF/lib directory in the WAR

issufficient for

the SilverStream server).

Testing the Web Service
The Web Service Wizard generates a Java class for testing the Web Service. After you make a

few modifications to the template code, you can run the program to see what happens.

+

B

EXERCISE 2-10: Edit the test client code

1. IntheNavigation Pane, find Calculator ImplW SClient.java and double-click it to open it

in the editor. In Source Layout, it'sin the src/calc directory; in Archive Layout, it'sin

WEB-INF/

2. Inthe process() method, replace the four commented System.out.printin() statements

classes/calc.

with this code. Do not remove the call to getRemote().

This new code gets arguments from the command line (or uses default values) and calls

the Calculatorlmpl methods.

double

X, Yi

if (args.length == 2)

{

b4
Y

System
System
System
System

new Double (args[0])
new Double (args[1])

.out.println ("Add
.out.println("Divide
.out.println("Multiply
.out.println("Subtract

+ o+ o+ o+

remote.
remote.
remote.
remote.

.doubleValue() ;
.doublevalue() ;

add(x, v));
divide(x, vy));
multiply(x, y));
subtract (x, y));

3. Select Project>Compile from the menu to save and compile the file.

4. Closethef

ile.

Testing the Web Service

45

2 Creating a Web Service

>
EXERCISE 2-11: Test the Web Service with the generated client
1. Select Project>Run Web Service Client Class from the menu.

The selection list in the Web Service Wizard Client Runner window displaysthe test client
class. If your project included other compiled classes with main() methods, they would be
listed too.

2. Inthe Argumentstext box, type two numbers, which are the input for the Calculator’s
arithmetic operations. For example, you might type:

4.0 5.5
3. Click Run.
The output from the System.out.printin() methods displays in the output box.
Client class to run:
Icalc.CaIcuIatorImpI\u’\lSCliem LI

["] Show command line

Arguments:
|40ss

Running calc.CalculatorInplWiClient. .. =
FEERERREFTTEXTTANEANESS

Add = 9.5

Divide 0.72727272T2727273

Multiply 22.0

Subtract = -1.5
FEERERREFTTEXTTANEANESS

Close Clear

4. Click Close when you are done.
Congratulations. You' ve successfully deployed and tested a Web Service.

Summary of what you've done

Developing the application Inthislesson you built and deployed aWAR for aWeb
Servicethat provides several methods for basic arithmetic. You edited the code of the generated
client program and ran the client to test the Web Service.

Using Workbench tools You used these tools in Workbench:

* New Project Wizard (File>New Project)

46 Summary of what you've done

Tutorial: Building a Web Application

* Add to Project menu item (Project>Add to Project)
» Project Settings dialog (Project>Project Settings)
* Web Service Wizard (File>New, Web Services tab)

» Deployment tools (Open Deployment Descriptor on project popup menu, Edit>Profiles,
Project>Deployment Settings, Project>Deploy Archive)

* Web Service Wizard Client Runner window (Project>Run Web Service Client Class)

Next lesson Inthenext lesson you will learn about generating client code fromaWSDL file
that describes aWeb Service.

Summary of what you’ve done 47

2 Creating a Web Service

48

Summary of what you've done

Creating a Client Application for a Web
Service

What you will learn
When working with Web Services, there are two basic roles:

* Theservice provider who writes and deploys a service
* Theservice consumer who writesaclient application that callsthe methods offered by the
service

In Lesson 2, “Creating a Web Service” you played the role of provider and deployed the
Calculator Web Service. In thislesson you'll be a service consumer and use the Web Service
Wizard to generate code that calls the Cal culator Web Service.

Thislesson uses WSDL generated in Lesson 2, “Creating a Web Service” asits starting point.
Although much of the code you need was already generated in that lesson, this lesson will
proceed asif you had no source code for the Web Service, only a description filein Web
Services Description Language (WSDL) format.

You will learn about:

» Getting information about a Web Service
e Setting up your project
» Generating client code from WSDL

What you will do

Set up a project directory and get the WSDL file
Create a new project

Set up aclasspath for building the project
Generate client code from WSDL

Edit the test client code

Test the Web Service with the generated client

I T o

How long will it take? About 15 minutes

NOTE Thislesson assumes you completed Lesson 2, “ Creating aWeb Service” and deployed
the Calculator Web Service. When you test this project, the J2EE application server
where the Calculator Web Service is deployed needs to be running.

49

3 Creating a Client Application for a Web Service

Getting information about a Web Service

Setting

B

*

Web Services Description Language (WSDL) isa standard way to exchange information about
adeployed Web Service. A WSDL fileisan XML document that specifies the methods, data
types, and URL of the Web Service. It allowsthe serviceto be described in an abstract, reusable
way.

There are several scenarios for getting aWSDL file. You might:

» GetaWSDL filedirectly from avendor who is deploying a service you want to use—for
example, from a Web page or viae-mail

» DefineaWSDL specification for a service jointly with business partners
» Usethe Registry Manager to download aWSDL file from a public registry

Onceyou have aWSDL filefor aWeb Service, you can use Workbench’s Web Service Wizard
to generate client code that invokes the service. The generated filesinclude aremote interface,
service classes, astub, and aclient program for testing.

Calculator Web Service Inthislessonimaginethat yougotaWSDL filefor the Calculator
Web Service from another developer or business. In reality, you generated it in Lesson 2,
“Creating a Web Service”.

up your project

The client program you will build isasimple Java program, not a J2EE application stored in an
archive. In Workbench you have to choose an archive type, so you'll choose a JAR project.
When you run the application, you can use either the command line or the Client Runner
window. You won't need to build and deploy an archive—just compile the files.

EXERCISE 3-1. Set up a project directory and get the WSDL file

1. Using your operating system tools, create a root directory for your project called
CalculatorClient. You can put it at theroot level of your disk drive or in asubdirectory of
your choosing. The sample pathsin this tutorial assume you created CalculatorClient in
the WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\CalculatorClient

2. Copy thefile Calculator | mplW S.wsdl to the CalculatorClient directory. You'll find this
filein the src directory of the project for Lesson 2, “ Creating a Web Service”—for
example, c:\WorkbenchProjects\Calculator W S\src.

50

Getting information about a Web Service

Tutorial: Building a Web Application

NOTE You can aso get thisfile from Workbench-install-
directory\docs\tutorial\Tutorial Files\webservices. If you do, it isimportant to
open thefile and edit the URL in the soap:address element at the end of thefileto
specify the URL where the Calculator Web Service is deployed.

+

[

EXERCISE 3-2: Create a new project

Inthis exercise you will start Workbench and use the New Project Wizard to create a project for
aclient application that uses the Calculator Web Service.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.
3. Inthe New Project Wizard, select JAR and then click OK.
Choose the project type, or select Deploy-only if you

you want to create a project for deployment of an
existing archive file that you don't want to build.

o EAR g; WAR
Erterprize Archive Weh Archive
& EIR CAR
Erterprize JavaBean Archive V— Application Client Archive
RAR JAR
Resource Adapter Archive = |ava Archive
ﬁ Deploy-only
Mon-buildakle Archive

Cancel Help

4. Onthe next panel, in the Project Name text box type Calculator Client.

Setting up your project 51

3 Creating a Client Application for a Web Service

5.

6.

+

[

EXERCISE 3-3: Set up a classpath for building the project

Click the ellipses beside the Project Location text box and select the Calculator Client
directory you created in EXERCISE 3-1: “ Set up a project directory and get the WSDL
file”. When you click OK, the rest of the panel isfilled in automatically.

Enter the name and location (directory path) for
the project and the archive file. (To use an
existing archive as-is, create a deploy-only
project instead.)

Project Mame:

[alculatorCliert
Project Location:

F::WorkbenchProjeds\CalculatorCIient

Archive Name (e.g. office war):

[oalculstorClient
Archive Location (directory):

F::WorkbenchProjeds\CalculatorCIient J

T IEG

Click Next, check the project specifications on the final panel, then click Finish.
In the Navigation Pane, the Project tab displays the new project.

In thisexercise you will use the Project Settings dialog to specify acompile-time classpath. For
Web Services and Web Service clients, the classpath needsto include jbroker-web.jar and some
supporting JARS.

1
2
3.
4

With your project open, choose Project>Project Settings from the menu.

Select the Classpath/Dependencies tab.
Click the Add Entry button.

In the Add to Classpath dialog, navigate to the Workbench-install-directory/compilelib
directory. Highlight the following files and click Open then OK.

e jaxrpc-api.jar
e jbroker-web.jar

52

Setting up your project

Tutorial: Building a Web Application

* sag-api.jar
e Xercesjar
Now the Classpath/Dependencies tab should look something like this:

2Z Project Settings [%]
Project: [CalculatorClient B2 |

Generall Cortents Classpath/Dependencies |

Clazsspath entries:

eamieXtendorkbenchicomil i jar
SProgram FilesiSilver Streamie XtendWiorkbenchicompilelibjbroker -web jar
SProgram FilesiSilver Streamie XtendWiorkbenchicompilelibisasj-api jar _l
SProgram FilesiSilver StreamieXtendWiorkbenchicompilelibxerces jar
9 SILYERS TREAM _¥WE_HOMES\compileliby2ee_api_1_3 jar

In addition to directories and JAR files, you can add other project files (SPF files) to this
project's classpath. Before this project is built, any SPF files listed here will asutomatically be
built, and their genersted archives will be used in the classpath.

Add Ertry.. Add Directary .. | Edit.... | Delete |

ancel| Help

5. Click OK to close the Project Settings dialog.

Generating client code from WSDL

In Lesson 2, “Creating aWeb Service”, you created anew Web Service starting with a Java
class. Hereyou'll start with aWSDL file that represents an existing Web Service.

Ih *
EXERCISE 3-4. Generate client code from WSDL
1. With your project open in Workbench, select File>New from the menu.

2. Inthe New File dialog, click the Web Servicestah, select Existing Web Service, and
click OK.

Generating client code from WSDL 53

3 Creating a Client Application for a Web Service

2Z New File [%]
Choose file type:

JZEE 'WWeb Services | }{MLl

4 New Web Service

85" Creste a new Weh Service
@) WSDL

=¥ Creste a new WSDL file

<) Existing Weh Service
5 Uze an existing Web Service

Workbench displays the project location panel of the Web Service Wizard.

Fill in the panel as shown below. The only value you should have to specify isthe calc
package.

2Z Web Service Wizard [%]

Specify the project, package, and base directory for the
generated classes.

{* Addto open project: |Calculatorclient ;I Create project... |

% Mo project -- just write files to the: disk.

Base directory: p\WorkbenchProjeds\CaIcuIatorCIierd\src ;I Browse... |

Package: l:alc:
File directory:

CivorkhenchProjects\CalculstorClientisrcicalc
MOTE: The entire contents of this directory will be included in the archive.
& Addthe files ta the roct of the archive.

{1 Add the files to the archive with this prefix:

The files will be added to this location in the archive:
calc

package

Help

Once you click Next, Workbench displays the WSDL file selection panel of the Web

Service Wizard. The file CalculatorlmplWS.wsdl that you saved in the project root
directory appearsin the WSDL Filesin Project list box.

Highlight Calculator I mplW S.wsdl so that it appearsin the WSDL file or URL to use
box. Then click Next.

54 Generating client code from WSDL

Tutorial: Building a Web Application

Select the WSDL file or URL from which you would like
to generate Web Services classes.

’— WSDL Files In Project

culstorClientvCalculstorlmehy

r WSDL file or URL to use

|| CrivorkbenchProjects\CalculstorClientyZalculstormphAs swesdl _I
= Back Cancel Help

The class generation and SOAP options panel displays.

5. Examine the settings on this panel (you don’t need to change any of them).

2Z Web Service Wizard [%]

Specify the Web Service classes you would like to
generate and any associated SOAP options.

Generation Options
[v| Generate stubs
[] Generate skeletons: & Tie-based & Mot tis-based

|_ Generate Broker Weh 1 x compatible classes
Directory with local XS0 files:
IC:WorkbenchProjeds\CalculatorCIient |

|7 Map complex XML types to Java types

6. Click Finish.

Generating client code from WSDL

55

3 Creating a Client Application for a Web Service

Wizard results

After you run the wizard, anew directory srcisadded to your project. The calc package
directory under it contains several new files. The Gener ate stubsoption producesthesefilesfor
usein aclient application:

File Description

CalculatorimplWS.java A remote interface that has declarations for the methods
specified in the WSDL file. It extends java.rmi.Remote.
Each of the methods throws RemoteException.

CalculatorimplWSServiceja | A Serviceinterface used by JAX-RPC clientsto obtain the
va stub for the Web Service. You should never need to modify
this class.

CalculatorlmplWSServicelm | A Service implementation class that handles instantiation
pl.java of the stub (Calculatorlmpl WSBinding_Stub). You should
never need to modify this class.

CalculatorlmplWSBinding_S | A jBroker Web class that processes SOAP messageson the

tub.java client. You should never need to modify this class.

CalculatorimplWSClient.jav | A standal one Java program for accessing the Web Service.

a After you edit the code, useit to call methods of the Web
Service.

DivideFault.java An exception class thrown by the divide() method in the
remote interface for this project. Thisfileis specific to this
project.

DivideFaultMarshaler.java A marshaler that serializes and deserializes the
DivideFault data type when it needsto be sent in a SOAP
message. Thisfileis specific to this project.

Editing and testing the client application

Code to instantiate the stub The generated client code obtains the stub by calling a
method of the Service object (whichis obtained via JNDI). The code looks like this:

public CalculatorImplWS getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

56 Generating client code from WSDL

Tutorial: Building a Web Application

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup (lookup) ;
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort () ;

return remote;

About the binding When you created the Calculator Web Servicein Lesson 2, “Creating a
Web Service”, you specified the binding—the URL for the Web Service—according to where
you were going to deploy the Web Service. For the Calculator client, the wizard gets that
binding from the WSDL and includesit in the generated stub.

If the URL changes, you can override the binding in the stub like this:

public CalculatorImplWS getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup (lookup) ;
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort () ;

((javax.xml.rpc.Stub) remote) . setProperty("javax.xml.rpc.service.endpoint.address",
"http://www.myserver.com:80/Calculator/CalculatorImpl") ;

return remote;

For now, the original binding iswhat you want. Before you run thetest client, all you need to do
is edit the calls to the Web Service. You did these same steps when you tested the Web Service
in Lesson 2, “ Creating a Web Service’.

+

[
EXERCISE 3-5: Edit the test client code

In this exercise you'll use the same client test code as you used for testing the Web Servicein
Lesson 2, “Creating a Web Service”.

1. IntheNavigation Pane, find Calculator | mplW SClient.java and double-click it to open it
in the Edit Pane. In Source Layout, it's in the src/calc directory.

2. Inthe process() method, replace the four commented System.out.printin() statements
with the following code. Do not remove the call to getRemote().

Generating client code from WSDL 57

3 Creating a Client Application for a Web Service

This new code gets arguments from the command line (or uses default values) and calls

the four Calculator methods.
double x, y;

if (args.length == 2)
{
x = new Double(args[0]) .doubleValue () ;
y = new Double (args[1l]) .doubleValue () ;
}
else
{
X = 4.0;
y = 5.0;
1
System.out.println ("Add = " + remote.add(x, y));
System.out.println("Divide = " + remote.divide(x, y));
System.out.println("Multiply = " + remote.multiply(x, vy));
System.out.println("Subtract = " + remote.subtract(x, y));

3. Savethefile.
4. Select Project>Build from the menu.
The Build tab of the Output Pane should report a successful build.

Building project "CalculatorClient™ - June 13, 2002 12:54 PM

Buildfile: C:\WorkbenchProjects'CalculatorClientibuildybuild-CalculatorClient.xml

Deleting directory C:‘\WorkbenchProjectsh\CalculatorClient\buildhCalculatorClient-classes

Could not find file C:%\WorkbenchProjectshCalculatorClientiCalculatorClient.jar to delete.
Created dir: C:\WorkbenchProjectsiCalculatorClienthbuildyCalculatorClient-classes

Compiling 7 source files to C:vWorkbenchProjectsiCalculatorClientibuildyCalculatorClient-classes

BUILD SUCCESSFUL

Total time: 3 seconds

o

4
| % Buildd E‘ Validatel r3 Deployl [En Findl o Todol

+

-~

EXERCISE 3-6: Test the Web Service with the generated client
1. Select Project>Run Web Service Client Class from the menu.

The selection list in the Web Service Wizard Client Runner window displaysthetest client
class. If your project included other compiled classes with main() methods, they would be

listed too.

2. Inthe Arguments text box, type two numbers—for example:
4.0 5.5

58 Generating client code from WSDL

Tutorial: Building a Web Application

3. Click Run.
The output from the System.out.printin() methods displays in the output box.

Web Service Wizard Client Runner []

Cliert class to run:
Icalc.CaIcuIatorImpI\u’\lSCliem LI

["] Show command line

Arguments:
|40ss

Running calc.CalculatorInplWiClient. ..
FEERERREFTTEXTTANEANESS

| v

Add 9.5
Divide 0.72727272T2727273
Multiply = 22.0

Subtract = -1.5
FEERERREFTTEXTTANEANESS

Close Clear

4. Click Close when you are done.

Congratulations. You’ ve successfully invoked the publicly available Calculator Web Service.

Summary of what you’ve done

Developing the application Inthislesson you used a Web Service description (WSDL)
file to generate code that accesses a Web Service.

Using Workbench tools You used these tools in Workbench:

* New Project Wizard (File>New Project)

» Project Settings dialog (Project>Project Settings)

* Web Service Wizard (File>New, Web Services tab)

* Web Service Wizard Client Runner window (Project>Run Web Service Client Class)

Next lesson Inthenext lessonyou will learn about building aWeb application asaclient for
the Calculator Web Service.

Summary of what you’ve done 59

3 Creating a Client Application for a Web Service

60

Summary of what you've done

Using Web Services in a J2EE Web
Application

What you will learn

Thislesson teaches you how to create a J2EE Web application that isaclient of aWeb Service.
The Web application isasingle JSP page. The JavaBean for the page has methods that
instanti ate aremote object and call the Cal culator Web Service from Lesson 2, “ Creating a\Web
Service”.

You will learn about:

» Defining a WAR project for the Web Service client application
» Adding Web Service client code to the project

* Creating aform that calls the Calculator Web Service

* Deploying and testing the WAR

What you will do

Create a new project

Add the jBroker Web libraries to the project

Generate the client code for the Calculator Web Service
Create a new JSP page

Edit the JSP page

Create a second JSP page to include in magicnumber.jsp
Write a JavaBean to process the form

Build the archive

Edit the deployment descriptor

Deploy the project

11. Test the Calculator Client application

© © N o 0 > NP

.
o©

How long will it take? About 20 minutes

NOTE You need to run your J2EE application server to deploy the WAR you createin this
lesson. The Web Service you deployed in Lesson 2, “Creating a Web Service” must
also be running.

61

4 Using Web Services in a J2EE Web Application

Defining a WAR project for the Web Service client application

In this section you'll create a WAR project for a Web application whose pages call the
Calculator Web Service.

In the previous lesson you created the project directory, then defined the project in Workbench.
Thistime you'll et Workbench create the project root directory.

EXERCISE 4-1: Create a new project

In this exercise you will start Workbench and use the New Project Wizard to create a project for
aWeb application.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.
3. Inthe New Project Wizard, select WAR and then click OK.
Choose the project type, or select Deploy-only if you

you want to create a project for deployment of an
existing archive file that you don't want to build.

o EAR § WAR
Erterprize Archive Weh Archive
& EIR CAR
Erterprize JavaBean Archive U Application Client Archive
RAR g JAR
Resource Adapter Archive Java Srchive
ﬁ Deploy-only
Mon-buildakle Archive

Cancell Help

4. Inthe Project Namefield, type CalcWARClient.

62

Defining a WAR project for the Web Service client application

Tutorial: Building a Web Application

5. Specify the full path for a project root directory called CalcWARCIient in the Project
L ocation text box.

You can type something like c:\Wor kbenchPr oj ects\Calc(WARClient, or you can click
the ellipses to select a parent directory in the Choose Directory dialog. Then you can type
the new directory name in the Project Location text box after the selected directory.

Asyou type, you see the rest of the dialog filled in automatically.

6. Inthe Project J2EE Version field, specify J2EE 1.2 (WAR 2.2) so your application will
run on any server that supports J2EE 1.2 or 1.3.

Enter the name and location (directory path) for
the project, the archive file, and the deployment
descriptor and select the desired J2EE version.
{To use an existing archive as-is, create a
deploy-only project instead.)

Project Mame:

[CalcaRClient
Project Location:

p\WorkbenchProjeds\CaIcWARCIierd J

Archive Name (e.g. office war):

[oalcvaRClient

Archive Location (directory):

p\WorkbenchProjeds\CaIcWARCIierd J

Deployment Descriptar Mame:

Ivveb.xml
Deployment Descriptor Location:
p\WorkbenchProjeds\CaIcWARCIierdW\lEEl-lNF J
Project J2EE Wersion: |J2EE 1.2 AR 221 ;I
S5E20 Next = Cancel| Help
7. Click Next.
8. When thewizard asksif it should create the project root and WEB-INF directories, click
Yes.
The wizard summarizes the project information.
9. Click Finish.

In the Navigation Pane, the Project tab displays the new project.

Defining a WAR project for the Web Service client application 63

4 Using Web Services in a J2EE Web Application

+

-~

EXERCISE 4-2: Add the jBroker Web libraries to the project

The Web Service client uses classesin jbroker-web.jar and supporting JARsfor SOAP message
processing. In this exercise you will add these JARsto the archive for runtime access and to the
project classpath for compile-time access.

1.
2.
3.

With your project open, select Project>Project Settings from the menu.
Select the Contentstab and click the Add Entry button.

In the Select Contents dialog, navigate to the directory Workbench-install-
directory/compilelib, then highlight the following files and click Open:

e jaxrpc-api.jar

» jbroker-web.jar

e sagj-api.jar

e Xercesjar

The Add to Project dialog will prompt you for information about each file, one at atime.

When you' re prompted about jaxrpc-api.jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/jaxr pc-api.jar. Then click OK.

When you’ re prompted about jbroker-web.jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/jbroker-web.jar. Then click OK.

When you' re prompted about saaj-api.jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/saaj-api.jar. Then click OK.

64

Defining a WAR project for the Web Service client application

Tutorial: Building a Web Application

7. When you're prompted about xerces,jar, select Add thefileto the archive at this
location. In the text box, type WEB-I NF/lib/xer cesjar. Then click OK.

The WEB-INF/lib directory of the archive will now include these JARS.

2% Project Settings [x]
Project: [CalciaRClient =]

General Contents | Classpath.fDependenciesl

Source location Archive location
WWEB-IMF et sl WWEB-IMF faveds sl
CProgram Files\Silver StreamieXtendio. .. [WEB-IMF flibJjaxrpc-api jar
CHProgram Files\Silver StreamieXtencdio. . WEB-IMF libibroker -web jar
CHProgram Files\Silver StreamieXtendWio .. WEB-INF libisasj-api jar
CHProgram Files\Silver StreamieXtendio. . [WEB-IMF flibixerces jar

o e e e

Add Directary... | Edit.... | Delete |

Cancell Help

8. Select the Classpath/Dependencies tab and click the Add Entry button.

9. Inthe Add to Classpath dialog, find the directory Workbench-install-directory/compilelib
again, then highlight the following files and click Open then OK.

e jaxrpc-api.jar
» jbroker-web.jar
e sagj-api.jar

e Xercesjar

Defining a WAR project for the Web Service client application 65

Using Web Services in a J2EE Web Application

The Classpath/Dependencies tab should ook something like this:

2Z Project Settings [x]
Project: [CalciaRClient =]

Generall Cortents Classpath/Dependencies |

Clazsspath entries:

SProgram FilesiSilver Streamie XtendWiorkbenchicompilelibisasj-api jar t |
SProgram FilesiSilver StreamieXtendWiorkbenchicompilelibxerces jar
9 SILYERS TREAM _¥WE_HOMES\compilelibi2ee_api_1_2 jar

In addition to directories and JAR files, you can add other project files (SPF files) to this
project's classpath. Before this project is built, any SPF files listed here will automstically
be built, and their generasted archives will be used in the classpath.

Add Eritry.. Add Directary .. | Edit.... | Delete |

ancel| Help

10. Click OK to close the Project Settings dialog.

Adding Web Service client code to the project

Thereare several classesthat the Cal culator WAR Client needsfor accessing the Cal cul ator Web
Service:

e CdculatorimplWS.java

e CaculatorlmplWSServicejava

* CaculatorlmplWSServicelmpl.java

e CalculatorimplWSBinding_Stub.java

» DivideFault.java

e DivideFaultMarshaler.java

If you did Lesson 2, “Creating aWeb Service” or Lesson 3, “Creating a Client Application for

aWeb Service’, the client files already exist in a calc package in those projects. Those lessons
aso explain what each file does. Although you could copy the files to this project or add them

from their current location, instead you'll use the WSDL file from Lesson 2, “Creating a Web
Service” to generate them again—it’s quick and easy to do.

66

Adding Web Service client code to the project

Tutorial: Building a Web Application

EXERCISE 4-3: Generate the client code for the Calculator Web Service

In this exercise you'll generate the client code from the WSDL file for the Web Service. This
exerciseisasynopsis of the same stepsyou did in Lesson 3, “ Creating a Client Application for
aWeb Service”. For pictures and information about the results of the Web Service Wizard, see
that lesson.

1.

Using your system tools, copy the file Calculator ImplW S.wsdl to the CalcWARClient
directory. You'll find thisfile in the src directory of the project for Lesson 2, “ Creating a
Web Service”—for example, c:\Wor kbenchPr oj ects\Calculator W S\src.

TIP If youdidn't do Lesson 2, “Creating a Web Service” and will use someone else’s
deployed Calculator Web Service, you can get the file from the Workbench-install-
directory\docs\tutorial\Tutorial Files\webser vices directory. If you use thisfile, it
isimportant to open it and edit the URL in the soap:address element at the end of
thefile to specify the URL where the Calculator Web Service is deployed.

In Workbench, select File>New from the menu.

Inthe New File diaog, click the Web Services tab, select Existing Web Service, and
click OK.

Workbench displays the project location panel of the Web Service Wizard.
Specify the package calc and click Next.

When the WSDL file selection panel displays, highlight Calculator | mplW S.wsdl and
click Next.

The class generation and SOAP options panel displays.

Examine the settings on this panel (you don’'t need to change any of them), then click
Finish.

Your project should now contain the client code for calling the Calculator Web Service.

Creating a form that calls the Calculator Web Service

A JSP page with aform uses a companion JavaBean to manage the datain the form fields.
Properties of the JavaBean store the entered val ues and make them available to methodsin the
bean for further processing.

Creating a form that calls the Calculator Web Service 67

4 Using Web Services in a J2EE Web Application

The simple application in this lesson uses that approach. When the user submits the form with
data, the associated JavaBean stores the submitted values. When the JSP page is redisplayed, it
tests whether data was submitted. If so, it calls amethod of the JavaBean that invokes the
Calculator Web Service. When the application successfully cal culates the “ magic number”, a
second JSP fragment isincluded in the original page to display the result.

With the exercisesin this section, you'll create thesefiles:

File Description

magicnumber.jsp The main page of the application with an input form

MagicNumberBean.java JavaBean that handles the data from magicnumber.jsp

calcnumber.jsp JSP fragment that displays the calculated result via an
include directive in magicnumber.jsp

+

[

EXERCISE 4-4: Create a new JSP page
In this exercise you will use the JSP Wizard to create a new page.
1. InWorkbench, select File>New from the menu.
Chaose fil type:

J2EE | Web Servicesl }{MLI

EIB Servlet
" Create a nevw Enterprize JavaBean Create a new Serviet

JSP Java file
Create a new JavaServer Page Create a new Java class file

JavaBean Tag handler
Create a new JavaBean class file Create a new JSP tag handler

@ Generic text file @ SilverStream Deployment Plan
Create a generic empty file Create a new SilverStream deployment plan
Deployment Descriptor
Create a new deployment descriptor

¥ Use wizard

Cancel| Help

2. Inthe New File dialog, select JSP and click OK.
Workbench displays the JSP Wizard.

68 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application

3. Fill out the first panel of the wizard with thisinformation:

Option

Value

JSP name

magicnumber (don’t specify the jsp extension)

Page title

Magic Number

Content type

HTML (the default)

Template

Standard JSP template (the default)

Other options

Use session, Thread safe, Form-based page

Now the first panel looks like this:

2Z JSP Wizard [%]

Specify the JSP name and other options.

JEP name: hagicnumber

Page title: Nagic Murmber

Content type: IHTML - I

Template: |Standard JEP template ;l

[v| Use session

[+ Thread safe

[v| Form-based page

[Create errar page

[Specify impart values

=522 Next> Cancel| Help

4. Click Next.

5. Onthe second panel, leave Add to open WAR project selected.
6. Specify whereto put the file in the project and the archive:

» For Basedirectory, specify the full path for a new jsps directory—for example,

c:\WorkbenchProjects\CalcWARClient\jsps. You can select another project directory
path from the dropdown list and edit it.

» For Package, leaveit blank. In this project the JSP pages are at the root of the archive.
* Leave Addthefilestotheroot of the archive selected.

Creating a form that calls the Calculator Web Service

69

4 Using Web Services in a J2EE Web Application

Specify the project, directory and package for the new JSP.

{3 Add to open YWAR project: [CalcWARClient x| Creste project... |

' Mo project -- just write files to the: disk.

Base directory: F::WorkbenchProjeds\CachARCIient\jsps ;I Browse... |

Package: |

File directory: C:WNorkbenchProjectsiCalcWWARClientyspst
MOTE: The entire contents of this directory will be included in the archive.

& Addthe files ta the roct of the archive.

{1 Add the files to the archive with this prefix:

The files will be added to this location in the archive:

!
|

roat

=Back Finish| Cancel| Help

7. Click Finish.

8. When the JSP Wizard dialog reportsthat it is done creating the JSP page, click OK.

The new fileis open in the Edit Pane. In the Navigation Pane you can see

magicnumber.jsp in the jsps directory of the Source layout and at the archive root of the
Archive Layout.

EXERCISE 4-5: Edit the JSP page

In this exercise you'll writethe HTML and JSP code for aform that provides datafor a
calculation.

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/Tutorial Files/webser vices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
magicnumber -sample.jsp in the same directory. Use your operating system tools to
copy it to your project’s jsps directory and rename it magicnumber.j sp, replacing the
fileyou just created with the JSP Wizard.

1. With magichnumber.jsp open in the Edit Pane, add these lines after </head>:

<jsp:useBean id="magicnumber" class="com.client.MagicNumberBean"/>
<jsp:setProperty name="magicnumber" property="*"/>

70

Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application

2. Add these lines between <body> and </body>, replacing the existing text:
<hl>Your Magic Number</hl>

<p>Your magic number changes every day.</p>

<form method="post">
<table>
<tr>
<td>Your age</td>
<td>
<input type="text" name="age" value="<%= magicnumber.getAge ()

</td>
</tr>
<tr>
<td>Day of month you were born</td>
<td>
<input type="text" name="birthday" value="<%=
magicnumber.getBirthday () %>" >
</td>
</tr>
<tr>
<td>Hour you went to bed last night</td><td>
<input type="text" name="bedtime" value="<%=
magicnumber.getBedtime () %>" >
</td>
</tr>
<tr>
<td span="2">
<input type="submit" name="Submit" value="Submit">
</td>
</tr>
</table>
</form>

A
o°

if (request.getParameter ("age") != null)

{

magicnumber.calcNumber () ;

o°
\%2

<%@ include file="calcnumber.jsp" %>

A
o°

o°

>

3. Saveand closethefile.

o
PR

Creating a form that calls the Calculator Web Service

71

4

Using Web Services in a J2EE Web Application

+

-~

EXERCISE 4-6: Create a second JSP page to include in magichnumber.jsp

In thisexercise you'll create a JSP fragment that isincluded in magicnumber.jsp when thereis
acalculated result to display.

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/Tutorial Files'webser vices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
calcnumber -sample.jsp in the same directory. Use your operating system toolsto
copy it to the project’s jsps directory and rename it calcnumber .j sp.

1. In Workbench, select File>New from the menu.
2. IntheNew Filedialog, select JSP and click OK.
Workbench displays the JSP Wizard.

3. For JSP name, specify calcnumber. Therest of the values don’t matter since you'll be
replacing all the generated code.

4. Click Next.

5. Onthe second panel, leave Add to open WAR project selected.

6. Specify whereto put the file in the project and the archive:

» For Basedirectory, specify the full path for the jsps directory—for example,
c:\WorkbenchProjects\CalcWARCIient\jsps. You can use the dropdown list box or the
Browse button to select it.

» For Package, leaveit blank. In this project the JSP pages are at the root of the archive.

* Leave Addthefilestotheroot of the archive selected.

7. Click Finish.

8. When the JSP Wizard dialog reports that it is done creating the JSP page, click OK.
Thefileisopenin the Edit Pane. In the Navigation Pane you can see that calcnumber.jsp
has been added to the jsps directory in the Source layout and the archive root in the
Archive layout.

9. Edit thefile, replacing al the contents with this code:

<h2>Drumroll...</h2>

<table>

<tr>

<td>Your number is:</td>

<td><%= magicnumber.getMagicNumber () %></td>
</tr>

72

Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application

<tr>
<td span="2">Did you expect a winning lottery number?</td>

</tr>
</table>

Asyou can see, the code is not acomplete HTML page. It will be included in the other
JSP page.

10. Save and close thefile.

+

[
EXERCISE 4-7: Write a JavaBean to process the form

In thisexercise you'll create a new Java source file by using the Java Class Wizard and then
copy in the code for the JavaBean. (An alternative would be to use the JavaBean Wizard
provided by Workbench. It is most useful when you' re creating your own JavaBeans from
scratch.)

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/Tutorial Files'webser vices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
MagicNumber Bean-sample.java in the same directory. Use your operating system

toolsto create adirectory called com\client under the src directory of your project, copy

thefile there, and rename it M agicNumber Bean.java.

1. In Workbench, select File>New from the menu.

Creating a form that calls the Calculator Web Service

73

4 Using Web Services in a J2EE Web Application

2% New File [%]

Choose file type:

J2EE | Web Servicesl }{MLI

Generic text file
Create a generic empty file

@ Deployment Descriptor

E EIB Servlet

Create a new Erterprize JavaBean Create a new Serviet
JSP Java file

Create a new JavaServer Page Create a new Java class file
JavaBean Tag handler

Create a nevy JavaBean class file

Create a new deployment descriptor

Create a new JSP tag handler

@ SilverStream Deployment Plan
Create a new SilverStream deployment plan

[v] Use wizard

2. Inthe New File dialog, select Java fileand click OK.

3. Inthe Java Class Wizard, specify these values:
Option Value
Class name MagicNumberBean (don’t specify the java extension)
Base class Leave blank
Create class or interface Class (the default)
Template Standard Java class template (the default)
Other options Public scope, Create default constructor, Serializable

74

Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application

Specify the class name and other options.

Class name: MagicNumberElean

Base class: |
Create class or interface?
& Class

 Interface

Template: |Standard Java class template ;I

[v] Public scope.
[v| Create defautt canstructar.
[Create main() method.

[v| Serializable.

Click Next.

When the wizard prompts for interfaces to add, click Next to skip to the next panel.
When the wizard prompts for additional imports, click Next to skip to the next panel.
On the next panel, leave Add to open project selected.

Specify where to put the file in the project and the archive:

» For Basedirectory, specify the full path for the src directory—for example,
c:\WorkbenchProjects\CalcWARCIient\src. You will find this path on the dropdown
list.

» For Package, specify com.client.

* Select Add thefilestothearchivewith thisprefix and specify WEB-I NF/classes as
the prefix.

© N o o &

Creating a form that calls the Calculator Web Service 75

4 Using Web Services in a J2EE Web Application

10.

11.

12.

Specify the project, directory and package for the new Java class.

{* Addto open project: |Calc:WARCIient ;I Create project... |

' Mo project -- just write files to the: disk.

Base directory: F::\WorkbenchProjeds\CaIcWARCliem\src ;I Browse... |

Package: l:om.c:lient

File directory: C:W\orkbenchProjects'CalcyWaARClienthsrcicomiclient
MOTE: The entire contents of this directory will be included in the archive.

€ Add the files ta the roct of the archive.

% Add the files to the archive with this prefix: IWEEl-lNF-"CIaSSES

The files will be added to this location in the archive:
WEB-INF iclaszesicomiclient

prefix package

Click Finish.

When the Java Class Wizard dialog reports that it is done creating the new Javafile, click
OK.

The file MagicNumberBean.java is open in the Edit Pane.
In the Edit Pane, add these import statements after the package statement:

import javax.naming.InitialContext;
import calc.*;

Replace the constructor, which looks like this:

public MagicNumberBean ()

{

}

with these property variables, constructor, and getter and setter methods. The properties
with their getter and setter methods correspond to fields in the form in magicnumber.jsp.
private int age=0;
private int birthday=0;
private int bedtime=0;
private double magicNumber=0.0;

/** @todo: implement this constructor */

public MagicNumberBean() { }
public int getAge() { return this.age; }
public void setRAge(int age) { this.age=age; }

76

Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application

public int getBirthday() { return this.birthday; }
public void setBirthday (int day) { this.birthday=day; }

public int getBedtime() { return this.bedtime; }
public void setBedtime (int bedtime) { this.bedtime=bedtime; }

public double getMagicNumber () { return this.magicNumber; }
public void setMagicNumber (double num) { this.magicNumber=num; }

13. Beforethefinal closing } for the class, add the calcNumber() and getCal culatorRemote()
methods, which have the code for calling the Web Service.

public void calcNumber ()

{

double result=0;

try

{

}

CalculatorImplWS remote = getCalculatorRemote () ;

result = remote.add(age, birthday) ;
if (result != 0)
{
result = remote.multiply(result, bedtime) ;

}

setMagicNumber (result) ;

catch (Exception _e)

{

}
}

System.out.println("*** Error calculating number **=*");
_e.printStackTrace() ;

private CalculatorImplWS getCalculatorRemote () throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service =
(CalculatorImplWSService) ctx.lookup (lookup) ;
CalculatorImplWS remote =
(CalculatorImplWS) service.getCalculatorImplWSPort () ;

return remote;

}

14. Save and close thefile.

Creating a form that calls the Calculator Web Service 77

4

Using Web Services in a J2EE Web Application

Deploying and testing the WAR

To deploy the application, you need to specify:
» Information in the deployment descriptor about the starting servlet or JSP page
» Information your server needsin the format it expects

You will do this next.

About the deployment descriptor

When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For aWAR, thefileis called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows the XML
elementsin an expandabl e tree structure. You can also look at theraw XML. The editor usesthe
project’s compiled code to determine what to show, which iswhy you build the archivefirst. If
itisn't already built, Workbench offersto build it for you.

=

EXERCISE 4-8: Build the archive

* InWorkbench, select Project>Rebuild All and Archive from the menu to create a
deployable archive for your project.

=

EXERCISE 4-9: Edit the deployment descriptor
In this exercise you'll identify the JSP page that isthe entry point for the application.
1. Inthe Navigation Pane, right-click the project file CalcWARCIient.spf and select Open

Deployment Descriptor from the popup menu.

NOTE If Workbench displays the Select Build Option dialog, select No, don’t build
now and click OK. You can set options that cause this dialog to always or never
display.

Workbench opens web.xml in the Edit Pane. The editor displays the Descriptor tab,

showing the types of information the descriptor can include.

78

Deploying and testing the WAR

Tutorial: Building a Web Application

CivorkbenchProjectsiCalcWARCIent WYEB-INF weeb xml

1

= Q Web Archive

@J Context Parameters
-Q Serviets

Q Serviet Mapping
¥ Mime Mapping

(g‘-}_.\ Welcome Files

Q Error Pages

@ Tag Libraries

ﬁ Resource References
@} Security Constraints
% Login Configuration
M Roles

* Environment

~ EJB References

| 2]

o w DN

I Descriptar I E XML’I
Right-click Web Archive and select Properties from the popup menu.

On the property sheet, specify CalcWARCIient for Display Name.

In the Edit Pane, right-click Servlets and select Add from the popup menu.
On the property sheet, specify these values:

Option Value

Servlet name

magi cnumber

Type JSP

JSPfile

magicnumber.jsp

Deploying and testing the WAR

79

4 Using Web Services in a J2EE Web Application

2Z Properties E

VAR Serviet |

Servlet name:

hagicnumber

Type: Serviet * Jsp
JSP file:

}'nagicnumber.jsp J
Load on startup: I

Description:

6. Inthe Edit Pane, right-click Servlet M apping and select Add from the popup menu.
7. Onthe property sheet, specify these values:

Option Value
Servlet name magicnumber
URL pattern magicnumber

WaR Serviet Mapping |

Servlet name:

hagicnumber J

URL pattern:

hagicnumber

8. Inthe Edit Pane, right-click Welcome Files and select Add from the popup menu.
9. Onthe property sheet, specify these values:

Option Value

Welcome File magicnumber.jsp

10. Save and close the deployment descriptor.

80 Deploying and testing the WAR

Tutorial: Building a Web Application

Deploying the project

If you’ ve donethe previouslessons, most of your deployment setup has already been done. This
exercise gives you the main steps and provides the project-specific information you'll need to
deploy this project. For detailed deployment instructions for all the supported servers, see
Workbench Deployment Instructions.

+

e

EXERCISE 4-10: Deploy the project
1. If you haven't created a profile for your server, select Edit>Profiles and create one now.

L) For information, see the server profile procedure in the deployment instructions.
2. Usethefollowing information to create the server-specific part of the deployment process.

L For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server

What to do

What to specify

SilverStream

Createa SilverStream
deployment plan and
set values on the
property sheet for the
Web Archive item.

Enabled — True

Deployed object name —
CalcWARClient

Server Profile— Select the profile you
defined from the dropdown list box

Session timeout — 5 minutes, the default
URL s— CalcWARCIient, the default
Excluded JSPs— calcnumber.jsp

Deploying and testing the WAR

81

tutallDeploy.html
tutallDeploy.html#Definingaserverprofile
tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

4 Using Web Services in a J2EE Web Application

Server

What to do

What to specify

Sun Reference
Implementation

Create aruntime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
in adirectory caled
META-INF and add
the file to the project.

<?xml version="1.0"
encoding="Cpl252"?>

<j2ee-ri-specific-information>
<server-names</server-names
<rolemapping />
<web>
<display-
name>CalcWARClient</display-
name>
<context-
root>CalcWARClient</context-
root>
</web>
</j2ee-ri-specific-informations>

Jakarta Tomcat — —
BEA WebLogic | Create aWebLogic <!DOCTYPE weblogic-web-app
descriptor called zUBTt“IC "‘;/BEZ/*/DTD .
weblogic.xml with yezems, nc c
X Application 6.0//EN"
the Cpntent at rlght' "http://www.bea.com/servers/wlsé
Add it to the project 10/dtd/
in the WEB-INF weblogic-web-jar.dtd">
directory. .
<weblogic-web-app>
<descriptions>
Calculator Client
</descriptions>
<weblogic-version>
</weblogic-versions>
</weblogic-web-app>
IBM WebSphere | — —
Oracle9iAS — —

Specify deployment settings for your server by selecting Project>Deployment Settings

from the menu.

On the Server Profilestab, select the server profile you defined above. If you have a
secure server, specify values for User name and Passwor d.

On the Deployment I nfo tab, specify additional application-specific information, as

follows.

82

Deploying and testing the WAR

Tutorial: Building a Web Application

NOTE For thesetutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the

Tools Guide.

Server Option and Value

SilverStream Silver Stream Deployment Plan — Select the plan you
defined in Step 2
Overwrite existing deployment — Selected
Verbosity — 3
Ignore compile errors— Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the
archive)

Sun Reference —

Implementation

Jakarta Tomcat —

BEA WebL ogic WebL ogic Application Name — Cal culatorWARClient; used
in the URL for accessing the Web application

IBM WebSphere Node Name — Leave blank or specify anode you' ve set up on
your server

Oracle9iAS Deployment Name — CalculatorWARCIient; used in the

URL for accessing the Web application

Target Path — Leave blank or specify apath you' ve set up on
your server

Website Name — Accept the default value or specify aname
you've Set up on your server

L) For more details, select the section for your server in the deployment instructions.
4. Click Deploy in the Deployment Settings dialog.

OR

Click OK in Deployment Settings and select Project>Deploy Archive from the menu.
Workbench displays progress messages, errors, and warnings on the Deploy tab of the

Output Pane.

Deploying and testing the WAR

83

tutallDeploy.html#Settingupyourdeploymentenvironment
toolsDeployment.html

4 Using Web Services in a J2EE Web Application
TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.
Ih +
EXERCISE 4-11: Test the Calculator Client application
1. Open your browser and enter the URL for the application. It will generally include:
Part of URL Description Typical value
Server URL for the server, including the http://localhost/Prov
port number (if not the default port erbsCloud/
80) and any server-specific data http://www.mydoma
TIP For a SilverStream server, in.com:8080/
include the database to which
you deployed the WAR
Web application URL for the WAR CacWARClient/
TIP For aSilverStream server, thisis
arelative URL that you specify
in the deployment plan
Page (Optional) URL for the page you (blank)
want to view; if blank the application
displays the welcome page specified
in the deployment descriptor
For example, if the application is deployed to alocal SilverStream server in a database
called ProverbsCloud and the URL for the application is CalcWARCIient, the URL would
be:
http://localhost/ProverbsCloud/CalcWARClient
You see the welcome page with aform for specifying the calculation data.
2. Enter some values (integers only) in the form and click Submit.
The results, displayed by calcnumber.jsp, appear below the form.
84 Deploying and testing the WAR

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application

/ Magic Humber - Microzoft Internet Explorer M= E3

J File Edit “iew Favortes Toolz Help |ﬁ

JAgdress I@ http: #flocalhost/ProverbsCloud/Calcw/a R Client, j @Go |J Links **

J &Back - = - B ot | Q) Search [Favoites <4 History | Ehe e 550w

Your Magic Number

Tour magic number changes every day.

Tour age |55

Diay of month you were born |31

Hour you went to bed last night |5

Submit |

Drumroll...

Tour number 1s: 430.0
Did wou expect a winning lottery number?

-

|@ Done ’_’_Eﬂ Local intranet

H
4

Summary of what you've done

Developing the application

In thislesson you built aWeb application that displayed a

form to users, used the form data when it called the Calculator Web Service, and presented the
results of the calculation on the same JSP page.

Using Workbench tools You used these toolsin Workbench:

New Project Wizard (File>New Project)

Project Settings dialog (Project>Project Settings)
Web Service Wizard (File>New, Web Services tab)
JSP Wizard and Editor

Java Class Wizard and Editor

Deployment tools (Open Deployment Descriptor on project popup menu, Edit>Profiles,

Project>Deployment Settings, Project>Deploy Archive)

Summary of what you’ve done

85

4 Using Web Services in a J2EE Web Application

Next lesson Inthe next lesson you will learn about additional tools for testing Web
Services.

86 Summary of what you've done

5 Testing Techniques

What you will learn
This lesson teaches you how to use tools for testing your Web Service. You will learn about:
* Viewing the WSDL in your browser
* Inspecting message traffic with TcpTunnel

You'll use the project for the Cal culator Web Service you developed in Lesson 2, “Creating a
Web Service”.

What you will do

1. View the WSDL for the deployed Web Service
2. Edit the client code to redirect messages to TcpTunnel
3. Runthe client and observe the message traffic with TcpTunnel

How long will it take? About 10 minutes

NOTE You need to run your J2EE application server to query the Cal culator Web Service you
deployed in Lesson 2, “Creating a Web Service”.

Viewing the WSDL in your browser

Asyou’ve seen, the Web Service Wizard adds several Javaclassesto your project. In addition,
thewizard's Generate WSDL file option adds aWSDL fileto the project. The WSDL file
describes your Web Servicefor clientsthat don’t have accessto the actual Web Service code. In
Source layout it’sin the src directory, and in Archive layout it's in the WEB-INF/classes
directory.

If you type the URL for the Web Service in your browser, the jBroker Web code on the server
getsaplain GET request, not aSOAP message. So instead of running aWeb Service method and
returning a SOAP message, it displays the WSDL for the Web Service. With this feature, you
can use the Web to give other developers the information they need to develop a client
application that calls your Web Service.

NOTE Another way of sharing information about a deployed Web Serviceisin aregistry,
described in Lesson 1, “Registries and WSDL for Web Services'.

87

5 Testing Techniques

[

+

EXERCISE 5-1: View the WSDL for the deployed Web Service

This procedure requires a browser that understands and displays XML, such as Internet
Explorer 5 and later.

1.

If the application server where you deployed the Calculator Web Serviceisn’t running,

start it now.
Open your Internet Explorer browser.

In Lesson 2, “Creating a Web Service” you specified an URL for the Web Service
binding—for example, http://localhost/Prover bsCloud/Calculator/Calculator I mpl. Go

to that URL in the browser.

The browser displays the WSDL for the Web Service.

3 http: /flocalhost/Calculator/Calculatorlmpl - Microsoft Internet Explorer

File Edit “iew Favorites Toolz Help |

L ¥
S s A el e
Back Fanward Stop Fiefrezh Home Search Favortes History

Address @ hitp: #flocalhost/Calculator/Calculator mpl

| @Bo | Liks »

=7xml version="1.0" encoding="UTF-8" 7=
- =definitions name="CalculatorimplWSsService"
targetMamespace="urn:calc.CalculatorImpl"
smins="http://schemas.xmlsoap.org/wsdl/"

smins: ths="urn:calc.CalculatorImpl"
smins: wsdl="http://schemas.xmlsoap.org/wsdl/"
amins: xsd="http:/ fwww.w3.0rg/ 2001/ XMLSchem
<types /=
<message name="addRequest">
<part name="arg0" type="xsd:double" />
<part name="argl" type="xsd:double" />
</message:>
<message name="addResponse">
<part name="result" type="xsd:double" />
</message:>
- <message name="subtractRequest":
<part name="arg0" type="xsd:double" />
<part name="argl" type="xsd:double" />
</message:>
— rmescane name="suhtrartRecnnnsr"~

4]

smins: soap="http:/ fschemas.xmlsoap.org/wsdl/soap/"
umins: soapenc="http:/ /schemas.xmlsoap.org/soap/encoding/"

a"s

| itk

DR

|ﬁ§j Done

3
= Local intranet i

88

Viewing the WSDL in your browser

Tutorial: Building a Web Application

Inspecting message traffic with TcpTunnel

One of thetoolsin jBroker Web is TcpTunnel, a console that displays SOAP request and
response messages and HT TP headers sent between aclient and a\Web Service. The basic steps
for using TcpTunnel are:

1. Alter thebinding URL for the Web Service in the client code to redirect requests to
TepTunnel using localhost and a unique port number.

2. Sart TepTunnel with arguments specifying the new port number and the original server
name and port number.
3. Run theclient program and observe the messages on the TcpTunnel console.

These exercises provide detailed steps for running the Calculator client with TcpTunnel. The
steps show you how to include the altered binding URL in the test client’s code; you could also
change the client code to accept the URL as a command-line argument.

EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel

In this exercise you'll change the binding URL in the client to redirect message traffic through
TepTunnel.

1. Start Workbench and open the Calculator project in the CalculatorWs directory.
TIP If you opened that project recently, you can use the File>Recent Files menu item.
2. Open CalculatorImplWS_Sub.javain the editor. Find and highlight the binding URL
and copy it to the clipboard. The URL isthe second string in aline that looks like this:

new com.sssw.jbroker.web.Binding("soap",
"http://localhost/ProverbsCloud/Calculator/CalculatorImpl"),

3. Closethefile.
4. Open CalculatormplWSClient.javain the editor.

5. Edit the getRemote() method to include code for setting the binding, then pastein the
URL from the stub:

public CalculatorImplWS getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup (lookup) ;
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort () ;

((javax.xml.rpc.Stub) remote) . setProperty("javax.xml.rpc.service.endpoint.address",
"http://localhost/ProverbsCloud/Calculator/CalculatorImpl") ;

Inspecting message traffic with TcpTunnel 89

5 Testing Techniques

return remote;

6. Inthe pasted URL, change the server and port to localhost: 9090 but keep the rest of the
Web Service'sreal URL. The port 9090 is an arbitrary unused port number.

The resulting line of code looks like this:

((javax.xml.rpc.Stub) remote) . setProperty("javax.xml.rpc.service.endpoint.address",
"http://localhost:9090/ProverbsCloud/Calculator/CalculatorImpl") ;

7. Savethefileand closeit.
8. Select Project>Build to recompile Calculatorl mplWSClient.

+

[
EXERCISE 5-3: Run the client and observe the message traffic with TcpTunnel
In thisexercise you'll start TcpTunnel and run the test client with the Client Runner window.
1. Start TcpTunnel by opening a DOS window in the Workbench-install-
directory\bin\win32 directory and typing a command in this format:
tcptunnel 9090 server-with-deployed-web-service port
For example, if the Web Service was deployed to localhost:80, type:
tcptunnel 9090 localhost 80
If the service was deployed to www.myweb.com, type:

tcptunnel 9090 www.myweb.com 80

2. In Workbench, run the test client the same way you did in Lesson 2, “ Creating a Web
Service”: select Project>Run Web Service Client Class from the menu, select the
CalculatorlmplWSClient class, enter two numbers as arguments, and click Run.

3. Look at the TcpTunnel console window to see the HTTP headers and SOAP messages
being exchanged.
The left pane contains the SOAP requests made by the client, and the right pane displays
the responses from the Web Service.

90 Inspecting message traffic with TcpTunnel

Tutorial: Building a Web Application

Summary of what you’'ve done

Developing the application Inthislessonyoufound out how to display WSDL for aWeb
Service published using jBroker Web and you learned how to examine the SOA P message
traffic using TcpTunnel.

Using Workbench tools You used these toolsin Workbench:

+ Edit Pane
e TcpTunnel (jBroker Web command-line tool)

What's next Congratulations. You've finished building the Calculator Web Service and a
client Web application for it.

To learn more about J2EE and Workbench, try the WAR tutorial.

Summary of what you’ve done 91

5 Testing Techniques

92

Summary of what you've done

Index

A

archives
JAR project (tutorial) 50
WAR project (tutorial) 25, 62

C

Calculator Web Service (tutorial)
creating 23
deploying 41
deployment descriptor 38
generating client code 49
running test client 45, 56
CalculatorClient application (tutorial)
about 61
deploying 81
deployment descriptor 78
JavaServer Pagesfor user interface 67
testing 84
Web Serviceclient code 66

J

Javaclass
creating (tutorial) 73
JavaServer Pages
for Web Service client (tutorial) 67
JavaBean for form (tutorial) 67
JAX-RPC
support for (tutorial) 24
jBroker Web
adding librariesto project (tutorial) 28
defined (tutorial) 24

N

Navigation Pane
Registry tab (tutorial) 2

P
projects
creating (tutoria) 25
JAR (tutoria) 50
WAR for Web Service client (tutorial) 62

T

TepTunnel

testing Web Service (tutorial) 89
tutorials

developing aWeb Service 23

Web Service Wizard, client code 49

U

URLs
Web Service (tutorial) 31

wW

Web applications
Web Serviceclient (tutorial) 61
Web Service Wizard
generating client code (tutorial) 49, 53, 66
generating from source object (tutorial) 31
list of generated files (tutorial) 35, 56
Web Services
client WAR application (tutorial) 61
creating (tutorial) 23
generating client code (tutorial) 49
JAX-RPC support (tutorial) 24
project classpath (tutorial) 28
registries (tutorial) 1
registries, about publishing (tutorial) 21
registries, businessinformation (tutorial) 5
registries, serviceinformation (tutorial) 6
registry profiles (tutorial) 2
RMI model (tutorial) 24
skeleton, tie, stub classes (tutorial) 24

93

Index

testing message traffic (tutoria) 89

UDDI, defined (tutorial) 2

Wizard, availablein WSDL Editor (tutorial) 18
WSDL, about (tutorial) 50

WSDL, creating client from (tutorial) 49
WSDL, getting from Web Service (tutoria) 87

WSDL Editor

about (tutoriad) 9

inserting elements (tutorial) 11
stylized view (tutoria) 15
toolbar (tutorial) 17

94

	Tutorial: Developing Web Services
	Contents
	About This Book
	Purpose
	Audience
	Prerequisites
	Organization

	Registries and WSDL for Web Services
	What you will learn
	What you will do

	Registries for Web Services
	About registries

	Browsing registries in Workbench
	EXERCISE 1-1: Create a profile for a public registry
	EXERCISE 1-2: Search for businesses
	Information about businesses

	Examining the information for a service
	EXERCISE 1-3: Examine the services for a business
	Information about services

	Using the WSDL Editor
	EXERCISE 1-4: Create a WSDL file for the Calculator Web Service
	Tools for inserting elements
	EXERCISE 1-5: Add a binding element
	EXERCISE 1-6: Add a service element

	Stylized view
	EXERCISE 1-7: Change the Stylized view

	WSDL Editor toolbar
	EXERCISE 1-8: Generate a Java remote interface from WSDL

	About publishing

	Summary of what you’ve done

	Creating a Web Service
	What you will learn
	What you will do

	Web Services using J2EE
	JAX-RPC and RMI
	Workbench and jBroker Web

	Defining a WAR project for the service
	EXERCISE 2-1: Set up directories for your project
	EXERCISE 2-2: Create a new project
	EXERCISE 2-3: Add source code to the project
	EXERCISE 2-4: Add the jBroker Web libraries to the project
	EXERCISE 2-5: Build the project

	Generating Web Service code
	EXERCISE 2-6: Run the Web Service Wizard

	Getting ready to deploy
	About the deployment descriptor
	EXERCISE 2-7: Build the archive
	EXERCISE 2-8: Examine the deployment descriptor

	Deploying the project
	EXERCISE 2-9: Deploy the project

	Updating the J2EE server’s classpath
	Testing the Web Service
	EXERCISE 2-10: Edit the test client code
	EXERCISE 2-11: Test the Web Service with the generated client

	Summary of what you’ve done

	Creating a Client Application for a Web Service
	What you will learn
	What you will do

	Getting information about a Web Service
	Setting up your project
	EXERCISE 3-1: Set up a project directory and get the WSDL file
	EXERCISE 3-2: Create a new project
	EXERCISE 3-3: Set up a classpath for building the project

	Generating client code from WSDL
	EXERCISE 3-4: Generate client code from WSDL
	Wizard results
	Editing and testing the client application
	EXERCISE 3-5: Edit the test client code
	EXERCISE 3-6: Test the Web Service with the generated client

	Summary of what you’ve done

	Using Web Services in a J2EE Web Application
	What you will learn
	What you will do

	Defining a WAR project for the Web Service client application
	EXERCISE 4-1: Create a new project
	EXERCISE 4-2: Add the jBroker Web libraries to the project

	Adding Web Service client code to the project
	EXERCISE 4-3: Generate the client code for the Calculator Web Service

	Creating a form that calls the Calculator Web Service
	EXERCISE 4-4: Create a new JSP page
	EXERCISE 4-5: Edit the JSP page
	EXERCISE 4-6: Create a second JSP page to include in magicnumber.jsp
	EXERCISE 4-7: Write a JavaBean to process the form

	Deploying and testing the WAR
	About the deployment descriptor
	EXERCISE 4-8: Build the archive
	EXERCISE 4-9: Edit the deployment descriptor

	Deploying the project
	EXERCISE 4-10: Deploy the project
	EXERCISE 4-11: Test the Calculator Client application

	Summary of what you’ve done

	Testing Techniques
	What you will learn
	What you will do

	Viewing the WSDL in your browser
	EXERCISE 5-1: View the WSDL for the deployed Web Service

	Inspecting message traffic with TcpTunnel
	EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel
	EXERCISE 5-3: Run the client and observe the message traffic with TcpTunnel

	Summary of what you’ve done

	Index

