SilverStream eXtend Workbench

Tutorial: Developing a Web Application

Version 4.0

June 2002

Copyright ©2002 SilverStream Software, Inc. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.
SilverStream and jBroker are registered trademarks and SilverStream eXtend is atrademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and itslicensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such noticeson all copies or extracts of the Software
or its documentation. You do not acquire any rights of ownershi p in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The A pache Software Foundation. All rightsreserved. Jakarta-Regexp, Ant, Xaan and Xerces softwareislicensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xercesin source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software devel oped by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', “Xaan”, "Ant" and " Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE ISPROVIDED “ASIS’ AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISSOFTWARE, EVEN IFADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin binary form must reproduce the above
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution. 3. Thename "JDOM " must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS’ AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network |s The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network |s Going,
SunWorkShop, X View, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM Jikes™ and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/devel operworks/opensource/license10.html. Source code for
JikesTM is available at <http://oss.software.ibm.com/devel operworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/devel operworks/projects/bsf.

SilverStream eXtend Workbench software contains Sun NetBeans software that has been modified by SilverStream. The source code for
such software may be found at http://www.silverstream.com/workbenchdownload together with the Sun Public License that governsthe
use of such modified software. The Original Code is NetBeans. The Initial Developer of the Origina Codeis Sun Microsystems, Inc.
Portions Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved. The Contributor to Covered Codeis SilverStream Software,
Inc.

Graph Layout Toolkit and Graph Editor Toolkit (C) 1992 - 2001 Tom Sawyer Software, Oakland, California, All Rights Reserved.

This Softwareis derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents

About This Book ix

Purpose ix
Audience ix
Prerequisites ix
Lessons X

PART |

Lesson 1

CREATING A WEB APPLICATION PROJECT

Architecture of an MVC Application 3

What you will learn 3
What you willdo 3
How the Proverbs application implements MVC and Struts 4
What is MVC? 4
What is Struts? 4
MVC structure of the tutorial application 6
Examining the tutorial application 6

EXERCISE 1-1: Start Workbench and open the ProverbFinal project

Implementing the view 8

EXERCISE 1-2: Look at source code for the navigation bar 11

How Struts enables internationalization and localization 13

EXERCISE 1-3: Look at the text resources file 14

How to create a form using Struts tags 15

EXERCISE 1-4: Look at the Struts version of an HTML form 15

Implementing the controller 16

EXERCISE 1-5: Look at the ActionServlet javadoc and the
ProverbActionServlet class 16

How Struts handles actions 16

EXERCISE 1-6: Look at the Struts configuration file 18

Implementing the model 19

EXERCISE 1-7: Look at the source code for the TodayAction class

Data for the application 19

EXERCISE 1-8: Look at source code for accessing proverb data

Summary of what you've done 21

7

19

20

Contents

Lesson 2 Setting Up Your Data Source 23

What you will learn 23
What you willdo 23

Choices for setting up a data source 24
Building your own database 24

EXERCISE 2-1: Build a database and import proverb data 24

Using the Cloudscape database 25

Adding the Cloudscape database to SilverStream 25

EXERCISE 2-2: Add the Cloudscape database to the SilverStream
server 26

Using the Cloudscape database with BEA WebLogic 28
EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape
28
EXERCISE 2-4: Configure a WebLogic connection pool 29
EXERCISE 2-5: Configure a WebLogic data source 30

EXERCISE 2-6: Configure the connections for the WebLogic pool 30
Summary of what you've done 31

Lesson 3 Working with Projects and Archives 33
What you will learn 33
What you willdo 33
The relationship between projects and archives 33
Where source files reside 34
Typical directory structure of an archive 35
Creating a project 36
EXERCISE 3-1: Set up directories for your project 36
EXERCISE 3-2: Create a new project 37
Adding content to the project 39
EXERCISE 3-3: Add directories to the project 39
EXERCISE 3-4. Add content from elsewhere in the file system 41
Setting up the project’s classpath 44

EXERCISE 3-5: Set up a classpath for building the project 44
Summary of what you've done 45

Lesson 4 Deploying and Testing the Welcome Page 47
What you will learn 47

What you willdo 47
Adding new files to the project 48
EXERCISE 4-1: Add files to the project 48
Working with JSP pages 50
EXERCISE 4-2: Create a new JSP page 50
EXERCISE 4-3: Editthe JSP page 53

Tutorial: Developing a Web Application

Building and archiving 55

EXERCISE 4-4: Compile the Java code and generate the archive file
55

Working with the deployment descriptor 57
EXERCISE 4-5: Begin editing the deployment descriptor 57
EXERCISE 4-6: Add initialization parameters for the serviet 60
EXERCISE 4-7: Add a servlet mapping 62
EXERCISE 4-8: Specify the project’s default page 63
EXERCISE 4-9: Add tag libraries 63
EXERCISE 4-10: Rebuild the archive 64

Deploying the project 64

EXERCISE 4-11: Deploy the project 65

Testing the application 69
EXERCISE 4-12: Test the application in the browser 69

Summary of what you've done 70

PART Il FORMS AND DATA IN A WEB APPLICATION

Lesson 5 Setting Up Database Access 77
What you will learn 77
What you willdo 77
Making the data source available to the application 77
Resource references in the deployment descriptor 78
EXERCISE 5-1: Add aresource reference to the deployment descriptor
78
Identifying the database in the server deployment information 82
EXERCISE 5-2: Identify the database in the server deployment
information 82
Getting the data source when the application starts 84
EXERCISE 5-3: Extend the Struts ActionServlet to get the data source
during initialization = 84
EXERCISE 5-4: Change the class for the application’s startup servlet
85
Summary of what you've done 86

Lesson 6 Defining an Action That Displays Data 87
What you will learn 87
What you willdo 87
Querying the database 88
EXERCISE 6-1: Retrieve data from the database 88

Contents

Struts support for an action 89
Telling the controller about a Struts action 90

EXERCISE 6-2: Define the action in the Struts configuration file 91
Retrieving data in the Action class 92

EXERCISE 6-3: Use an Action class to set up the data for a JSP page

92

Struts tags for displaying data 93

EXERCISE 6-4: Display the retrieved data in a JSP page 93
Deploying and testing data access 94

EXERCISE 6-5: Deploy the application 94

EXERCISE 6-6: Testtoday.jsp 95
Summary of what you've done 96

Lesson 7 Defining a Form and Results Page 97
What you will learn 97
What you willdo 97
Two actions for one form 98
EXERCISE 7-1: Define two actions in the Struts configuration file 98
Setting up the form 99
Using Struts tags to define a form 99
EXERCISE 7-2: Examine the form elements in the JSP page 100
Supporting the form with an ActionForm class 100
EXERCISE 7-3: Examine the SelectForm class 101
Processing for the actions 102
EXERCISE 7-4: Examine the SelectAction class 102
Displaying the retrieved data 102
EXERCISE 7-5: Examine the JSP pages that show the results of the
search 103
Deploying and testing the form 104
EXERCISE 7-6: Deploy the application 104
EXERCISE 7-7: Test the Find Proverbs activity 104
Summary of what you've done 105

Lesson 8 Defining a Form for Database Update 107
What you will learn 107
What you willdo 107
Configuring actions for contributing a proverb 107
EXERCISE 8-1: Define the contribute actions in the Struts
configuration file 108
The classes that support the contribute actions 109
EXERCISE 8-2: Examine the code for the contribute actions 109
Deploying and testing the finished application 110

Vi

Tutorial: Developing a Web Application

EXERCISE 8-3: Deploy the application 110
EXERCISE 8-4: Test the contribute action and the rest of the
application’s activities 110
Summary of what you've done 112

Vil

Contents

viii

About This Book

Purpose

Thistutorial shows you how to use SilverStream eXtend Workbench to develop a Web
application. You will learn about:

Audience

Workbench projects

J2EE WARSs (Web applications packaged in Web archives)

J2EE application servers

Struts open source framework for the Model-View-Controller application architecture
J2EE techniques for database access

Thistutorial isfor developers who want an introduction to Workbench projects or want to learn
more about Web applications.

Prerequisites

Experience Thistutorial assumesyou are a Java programmer who wants to use Workbench
to develop J2EE applications. It assumes you have the following background:

Experience with the Java programming language

Understanding of the general structure of XML

Understanding of a graphical development environment

General understanding of J2EE concepts such as servlets, JavaServer Pages (JSP), and tag
libraries

Understanding of how browsers, application servers, and databases interact in Web
applications

Relational database knowledge

Software In addition to the Workbench software, you need:

A J2EE application server for deploying the application
A DBMS for data storage

About This Book

If you already have this software, you can deploy the standards-based J2EE WAR to your
application server using the Workbench deployment commandswhen available or your server’s
deployment toals.

If you don't have the required software, you can download thetrial version of the SilverStream
eXtend Application Server, which includes the Cloudscape DBMS, from

www.si lverstream.com/downloads. For the tutorial, al you need isthe Lite Edition (J2EE
server and Cloudscape).

In the supporting tutoria files, you'll find a Cloudscape database with the application data as
well as SQL filesfor building your own database.

Lessons

Thistutorial isdivided into two parts: “ Creating a Web Application Project” and “Forms and
Datain aWeb Application”.

Thelessonsin Part | teach you the basics of Workbench projects and the architecture of a Struts

MV C application.
Lesson Description
1 Architecture of an Examines the architecture of the Proverbs application and
MV C Application how it uses Struts to implement an MV C (Model-View-

Controller) design pattern

2 Setting Up Your Data Describes database choices for the Proverbs application
Source and teaches you how to set up the provided Cloudscape
database

3 Working with Projects | Teaches you how to set up projects for Workbench and
and Archives build a J2EE archive

4 Deploying and Testing | Introduces the JSP Wizard and server profiles, then
the Welcome Page teaches you how to deploy an application

new http://www.silverstream.com/downloads

Tutorial: Developing a Web Application

Thelessonsin Part 11 teach you how to access a database in a J2EE application and how to
define formsthat display and update that data.

Lesson

Description

5

Setting Up Database
Access

Illustrates the code for accessing the data source and
teaches you how to add database connection information
to the application’s configuration files

Database Update

6 Defining an Action Teaches you about Struts custom tags for displaying data,
That Displays Data Java code for handling a Struts action, and configuration
settings for the action; examines the method calls that
retrieve the data
7 Defining a Form and Teaches you about Struts forms
Results Page
8 Defining a Form for Teaches you about coding and configuring actions that

update the database

Xi

Xii

Part | Creating a Web Application Project

This part teaches you how to use SilverStream eXtend Workbench to develop
the sample Web application and how the MVC architecture is used in a Struts
application.

The lessons are:

e Lesson 1, “Architecture of an MVC Application”

e Lesson 2, “Setting Up Your Data Source”

e Lesson 3, “Working with Projects and Archives”

e Lesson 4, “Deploying and Testing the Welcome Page”

Lesson 1, “Architecture of an MVC Application” provides a walkthrough of the
Proverbs Web application, which uses Struts to implement the Model-View-
Controller architecture. In this lesson you see how different parts of the
application partition the work. You use Workbench to examine the files in a
completed project.

In Lesson 2, “Setting Up Your Data Source” you set up a data source of proverbs
using the DBMS of your choice.

In Lesson 3, “Working with Projects and Archives” and Lesson 4, “Deploying and
Testing the Welcome Page”, you use Workbench to define the Proverb project,
edit files, build the archive, and deploy to the server. After you've done these
lessons, you should feel ready to begin work on your own projects.

1 Architecture of an MVC Application

What you will learn

This lesson describes the architecture of the Proverbs application and how it uses Struts to
implement an MV C (Model-View-Controller) design pattern. In the lesson you will use
SilverStream eXtend Workbench to examine some files from the completed project to
understand how the application fitstogether. In later |essonsyou will use Workbench to devel op
parts of the Proverbs application.

You will learn about:

How the Proverbs application implements MV C and Struts
Implementing the view

Implementing the controller

Implementing the model

Datafor the application

NOTE If you understand J2EE design and Struts or just want to diveright in, you can skip this

guided tour of the application and begin using Workbench in Lesson 2, “ Setting Up
Your Data Source”.

What you will do

© N o 0 > w0 NP

Start Workbench and open the ProverbFinal project

L ook at source code for the navigation bar

Look at the text resourcesfile

Look at the Struts version of an HTML form

Look at the ActionServlet javadoc and the ProverbActionServlet class
Look at the Struts configuration file

Look at the source code for the TodayAction class

L ook at source code for accessing proverb data

How long will it take? About 25 minutes

NOTE You don't need to be running your J2EE application server for this lesson.

1 Architecture of an MVC Application

How the Proverbs application implements MVC and Struts

The Proverbstutorial isaWeb application—an application that is packaged asa WAR (Web
archive) and deployed to a J2EE application server. Standard features of aWAR include:

* A deployment descriptor in XML format

e JSPpagesthat are accessible to a browser

» Javaclassesthat are hidden from URL access

e Other files—such as JAR files used by the Java classes, image files used by JSP pages,
custom tag libraries, and other XML configuration files

What is MVC?

The Model-View-Controller design pattern prescribes away of partitioning the application’s
code to keep the user interface (the view) isolated from the businesslogic (the model). A
controller determines how user requests are routed to pages and what businesslogic isinvoked
to process each request.

The combination of JSP pages for the view and servlets for the controller is called Model 2 and
isthe currently accepted way to implement an MV C architecture in a Web application.

The Proverbs application implements the MV C architecture by separating user interface from
business logic and managing the application flow with a controller servlet.

Much has been written about MV C architecture, and thereisn’t space hereto describe the
subtleties. For more information, see J2EE Blueprints on the Sun Microsystems Web site
(http://java.sun.com/blueprints).

What is Struts?

Strutsis part of the Jakarta Project at the Apache Software Foundation. It is aframework that
implements MV C for Web applications. It provides a servlet controller, tag libraries, and form
classes that handleinformation display in JSP pages, and a configuration file that tells the
controller what classes to instantiate to process application data.

A typical Struts application includes:

» JSP pages with Struts custom tags that display text, create forms for datainput, and
process collections of datafor presentation on the page
» ActionForm bean classesthat populate formswith data and retain datafor future requests

» Action classesthat set up data for JSP pages and process user input

4 How the Proverbs application implements MVC and Struts

new http://java.sun.com/blueprints
new http://java.sun.com/blueprints
new http://www.apache.org

Tutorial: Developing a Web Application

* An action servlet that acts as the controller, routing requests to action classes and
selecting JSP pages to display

» A configuration file that defines the associations between URLS, action classes, form
classes, and JSP pages

* Resourcefilesthat contain the text strings for the application and can be provided in
several languages

Here's a quick summary of how Strutsimplements MV C:

Part Description

Model Action classes use the request or the session to store application state
information. They can instantiate business|ogic classesto handle application
data

You write an action class for each URL that the controller processes.

View JSP pages and ActionForm beans display data and forms. A ctionForm beans
popul ate form fields with data and retain and validate that data. The data can
remain available between requests, and the form can display the previously
entered data again.

You write an ActionForm class for each form on your JSP pages.

Controller The ActionServlet class (or your extension of it) runs as a server process and
processes URLs it recognizes. It reads the struts-config.xml file to find out
what action classes to instantiate and what JSP pagesto display for each
URL.

You can use the ActionServlet class asis or extend it to provide custom
behavior.

How the Proverbs application implements MVC and Struts 5

1 Architecture of an MVC Application

MVC structure of the tutorial application

Thefollowing diagram illustrates how the application implements the MV C pattern.

J=SP pages
Wiew _ &
ActionFaorm classes

i

ProverbActionSerylet
Caontroller B
struts-config.xml

<>

Action classes
(application state)

MModel

h J

Data Access classes
(business logic)

<Y

Data
Source

Examining the tutorial application

To get an overview of the Proverbs application, you'll start Workbench and take alook at the
codefor thefinished version. Inlater lessonsyou’ll set up adatasource and learn how to deploy
and run the application.

6 How the Proverbs application implements MVC and Struts

Tutorial: Developing a Web Application

EXERCISE 1-1: Start Workbench and open the ProverbFinal project

1. Start Workbench. You can use the SilverStream Workbench shortcut on the Windows Start
menu.

2. Select File>Open Project.

3. Findthe ProverbFinal.spf file in the Workbench-install-dir/docs/tutorial/Prover bFinal
directory and click Open.

NOTE The default installation directory is Program
Files/SilverStream/eX tendWorkbench.

4. IntheView using list box, select Archive layout if it isn't already selected.
In the upper left, the Navigation Pane displays the Archive layout of the project.

2Z SilverStream [ProverbFinal) [_ (O] %]

File Edit ‘“iew Search Project Documentz Help

UEEE +00 BF 0B X SitverStreany
“iewy using: 2 ive ey

E-& ProverbFinal s
20 wep-InF
#-C0 META-INF

|:| contribute. jsp

|:| contributeFailed. jsp
|:| contributeResult, jsp
|:| index. jsp

|:| meny. jsp

|:| select.jsp

|:| selectFailed. jsp

|:| selectResults. jsp
|:| today.jsp

Q Directory ﬁ Project | EE, Regis{riesl

| -

T

4
. Buid | £ validate | 1% Deploy | [E2, Fing | Todo|

5. Expand the archive folders and look at the files in each folder. The files are displayed in
the lower part of the Navigation Pane.

How the Proverbs application implements MVC and Struts 7

1 Architecture of an MVC Application

In the rest of thislesson’s exercises you will look at MV C and Strutsimplementation detailsin
thesefiles.

Implementing the view
The Proverbs application has three main activities:
» Displaying the proverb of the day (today.jsp)

3 Today's Proverb - Microszoft Internet Explorer

[@ http: #flocalhost/ProverbsCloud/ProverbFinaltoday. do |— i

T Qa4 a 4 By &

8 Implementing the view

Tutorial: Developing a Web Application

» Letting the user search for proverbs by specifying a country that proverbs come from or
keywords that the text or translation contains (select.jsp, selectResults.jsp,
selectFailed.jsp)

"3 Find Proverbs - Microzoft Internet Explorer

Implementing the view 9

1 Architecture of an MVC Application

» Letting the user contribute a proverb (contribute.jsp, contributeResult.jsp,
contributeFailed.jsp)

3 Contribute a Proverb - Microzoft Internet Explorer

Red sky at morning, sailors take
warning; red sky at night, sailor's
delight.

unknown

A red dawn weans a storm is coming: =
pretty sunset means good weather.

Thewelcome or starting page isindex.jsp. Navigation is handled by including the JSP fragment
menu.jsp in al the other pages. Menu.jsp has links to the three main activities.

10 Implementing the view

Tutorial: Developing a Web Application

In the diagram you see the three main activitiesin the second row. If the activity involves
submitting aform, the third row shows the pages that display the result.

index.jsp

today.jsp select.jsp contribute jsp

[1

select select contribute contribute
Results.jsp Failed jsp Resultjsp Failed.jsp

EXERCISE 1-2: Look at source code for the navigation bar
1. Inthe Navigation Pane, highlight the project file name Prover bFinal .spf.

The JSP pages are at the root of the archive and you see them listed in the lower part of the
pane.

2. Double-click menu.jsp to open it in the Edit Pane.

Implementing the view 11

1 Architecture of an MVC Application

2Z SilverStream [ProverbFinal) - JSP Editor [_ (O]]
File Edit ‘“iew Search Project Documents Help

ODEEE Y00 BF gem® | SitverStreany
Wies uzing: Im ERLED |

E-& ProverbFinal, spf Crlooweb21 e ktendiorkbenchidocstutarialProverbFinaljspsimenu jsp ®
- weB-InF <tablex -
-0 META-INF <rrx

<td=

<strutshtml:link href="index.jsp">
<hx<strutshean:nessage key="site.title™ /> </ b=

|:| contribute. jsp

[contributeFaied.jsp </strutshtml: link>

|:| contributeResult. jsp < /fEonts

|:| index.jsp </

.l meny. jsp

D S <tdrenbsp;snbap i</ ods

|:| selectFailed. jsp crds

|:| selectResults. jsp <font face="Verdana, Arial, Helvetica, sans-serif"™ size=":
|:| today.jsp <strutshtml: link href="today.do">

<atrutshean:message key="nav.todaysproverh™ /=

_ </strutshtul: links _l_'|
g Directory ﬁ Project | EE; Regis{riesl ‘l | 4

| -

=
: P
% Eluildl 5} Validatel D Depl0y| [Find | » Todol

I Line: 1 Column: 1 Ry

3. Noticethe link and message custom tags. The link tag specifies the URLsfor theitemsin
the navigation menu; the message tag gets displayed text from aresourcesfile.
<strutshtml:link href="today.do">
<strutsbean:message key="nav.todaysproverb" />
</strutshtml:link>
Menu.jsp is an incomplete JSP page; there are no introductory tags identifying tag
libraries or providing HTML wrapper elements. It is meant to be included in another file.

12 Implementing the view

Tutorial: Developing a Web Application

4. Double-click index.jsp. It opensin the Edit Pane.
iy Lsing: IArchive learpout vl menujsp indexsp |

E-% Fr o Crloeweb21 e rtendiiorkbenchidocstutarialProverbFinaljspsiindes jsp ®
(0 weB-InF -
-0 META-INF <=

index. jsp

Generated by SilverStrean XSLT Code Generator, version

[] contribute.jsp This generated source file may be freely modified.

|:| contributeFailed. jsp .
|:| contributeResult. jsp <%@ page langquage="java”

.l index.jsp segsion="true"

isThreadiafe="trues"

contentType="text/htunl; charset=I30-8555-1" %>

|:| meny. jsp
|:| select.jsp
|:| selectFailed. jsp

<%@ taglib uri="struts-html.tld” prefix="strutshtml™ %>

|:| selectResults. jsp <%@ taglib uri="struts-bean.tld” prefix="strutshean” %=
|:| today.jsp

<html>

<head> _l_'l
Q Directory ﬁ Project | EE, Regis{riesl ‘l | 4

5. Noticethetaglib directives near the beginning of the file.

<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

These tell the JSP page where to find the definitions of the custom tags.
6. Notice the JSPinclude directive after the body tag that inserts the menu code.
<%@ include file="menu.jsp"%>

The menu code is embedded and then compiled with the rest of index.jsp. There aretaglib
directivesin index.jsp for all libraries used in both index.jsp and menu.jsp.

7. Close each file by clicking its Close button at the upper right in the Edit Pane.

How Struts enables internationalization and localization

Struts uses Java resource bundles and the message custom tag to make text management and
localization easier. Although the message tags makeit harder to judge the appearance of the JSP
pages asyou edit, it's easier to edit and translate the application text when it is collected in a
singlefile.

A resourcebundleisagroup of related property files. The main file containstext in the default
language for the application. In thefile, each property hasthe following format, where key isthe
vaue you refer to in the code and valueis the text the application displays:

key=value

Implementing the view 13

Architecture of an MVC Application

In the deployment descriptor (web.xml), aservlet initialization parameter identifies the
properties file that contains the application text.
<init-param>
<param-name>application</param-name>

<param-values>com.proverb.ApplicationResources</param-value>
</init-param>

To provide text in other languages, you create additional files with the same message keys and
translated text. Each file includes its two-letter 1SO language code in the name, like this:
ApplicationResource xx.properties.

L For more information, see the ResourceBundle classin your JDK documentation
(java.sun.com/j2se/1.3/docd/api).

EXERCISE 1-3: Look at the text resources file

1. Inthe Workbench Navigation Pane, expand the WEB-INF directory tree and select the
WEB-INF/classes/com/prover b directory.

2. Find ApplicationResour ces.properties at the end of the list and double-click it to open it
in the Edit Pane.
3. Look at the message keys and values. These message keys are used on the welcome page:

site.title=Words of Wisdom
site.greeting=Welcome to Words of Wisdom
site.info=Return each day to read a proverb
from somewhere around the
world. ..
4. Inthe Navigation Pane, highlight Prover bFinal.spf; then double-click index.jsp in the
filelist.

5. Look for the Struts message tags that refer to the message keys above. Select
Search>Find and Find Next (F3) to help find them all.

[E3 Find [x]

ot [g
[Match Caze [Highlight Search
[Smart Case [Incremental Search

[Match¥whole \Words Cnly [Backward Search

Wirap Si h
[Wrap Searcl i |

6. (Optional) Look for the message tags in the other JSP files too.
7. Closethefiles.

14

Implementing the view

new http://java.sun.com/j2se/1.3/docs/api

Tutorial: Developing a Web Application

How to create a form using Struts tags

Custom tagsin the Struts HTML tag library implement standard HTML elements and provide
hooksto Struts processing. Theform tag specifiesthetarget URL for the submitted form and an
ActionForm class that has properties for the form’s fields. Within each form tag, other Struts
tags for the various HTML input fields provide setup and processing.

The action for thisform tag is recognized by the controller servlet:

<strutshtml:form action="results.do" name="selectForm"
type="com.proverb.SelectForm">

For each form, you define an ActionForm class with properties that match theinput fields. This
class can validate user input and store the data between requests. If the application needs to
redisplay the form, the user’s data can be restored from this class.

EXERCISE 1-4: Look at the Struts version of an HTML form

1
2
3.
4

In the Navigation Pane, highlight Prover bFinal.spf so that you see the list of JSP files.
Double-click select.jsp to open it in the Edit Pane.

Find the form tag. It begins strutshtml:form.

Look at the fieldsin the form. They are organized in table rows.

* Thecountry row has alabel (strutsbean:message) and a dropdown list
(strutshtml:select). An options tag provides the list choices from the countryL ist
property, a Java Collection that is retrieved from the database.

» Thekeyword row has alabel (strutsbean:message) and an input field (strutshtml:text).
(Optional) Open the ApplicationResour ces.propertiesfile again to look up the text that
is displayed by each message tag.

In the Navigation Pane, expand the WEB-INF directory down to the proverb directory
and highlight the proverb folder.

Double-click SelectForm.javato openit in the Edit Pane.
Notice that it extends ActionForm.

The classis a JavaBean, and the instance variables are properties with get and set
methods. The properties correspond with fields on the form. The bean also sets up the
countryList Collection as a property. The getList() method looks up the list datain the
database.

Closethefiles.

Implementing the view 15

1 Architecture of an MVC Application

Implementing the controller

Thecontroller isaservlet that listensfor URL s and routes the application to the appropriate next
step. In the deployment descriptor of the WAR, the servlet mappings specify the custom URLs
the servlet will process:

<servlet-mapping>
<servlet-names>action</servlet-name>
<url-patterns*.do</url-patterns>
</servlet-mappings>

Inthe Proverbsapplication, theformsuse URLslike contribute.do and select.do to identify the
preprocessing and data setup for an associated JSP page. The Struts configuration file
(described later) sets up the association for the controller.

+

-~

EXERCISE 1-5: Look at the ActionServlet javadoc and the ProverbActionServlet

class

1
2

Open another browser window and visit the Struts Web site at jakarta.apache.org/struts.

Click aJavadoc link and look at the ActionServlet class. The description discusses
Struts's MV C implementation.

In the Workbench Navigation Pane, expand the WEB-INF directory down to the proverb
directory and highlight the proverb folder.

Double-click ProverbActionServlet.javato open it in the Edit Pane. Noticethat it
extends the Struts ActionServlet class.

Take alook at the init() method.

The Proverbs application overridesthe init() method to do someinitialization tasks. It gets
a DataSource object for the Proverbs database from the server and stores it in the servlet
context.

Closethefile.
(Optional) Close the extra browser window.

How Struts handles actions

The struts-config.xml file identifies the URLs for the application and describes how the
controller processes them.

16

Implementing the controller

new http://jakarta.apache.org/struts

Tutorial: Developing a Web Application

In the first section of the file, form-bean elementsidentify the classes for the formsin your
application:

<form-beans>
<form-bean name="selectForm"
type="com.proverb.SelectForm"/>

In the second section, action elementsidentify the URLs and how they are processed. Thereis
an action element for each of the URLs in your application. Here'sthe XML for one:

<action path="/select"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
validate="false">

<forward name="success" path="/select.jsp"/>

<forward name="failure" path="/select.jsp"/>

<forward name="cancel" path="/index.jsp"/>
</action>

A tablelike thisis helpful in planning the application flow and the classes needed at each step:

Request | Actionclass | Form Input Other Forward mappings:
URI (called type) | name JSP * attributes | name & path
select.do | com.proverb. | selectForm | — scope= success; /select.jsp
SelectAction session failure; /select jsp
validate= e .
false cancel; /index.jsp
results.do | com.proverb. | selectForm | select.jsp | scope= SUCCESS;
SelectAction session /selectResultsjsp
failure;
/selectFailed.jsp
cancel; /index.jsp

NOTE * Theinput JSP pageisused whenthe URL is processing asubmitted form. For actions
that set up the form, the input attribute is omitted.

Implementing the controller 17

1 Architecture of an MVC Application

+

[

EXERCISE 1-6: Look at the Struts configuration file
1. Highlight WEB-INF in the Archive layout of the Navigation Pane.
2. Inthefilelist, double-click struts-config.xml to open it in the Edit Pane.

ey using: IArchive layout vl il g |

Croewh21ietenditorkbenchidocstutorialProverbFinalWWEB-INFistruts-confi. <. %)

=
J k1pocTYRE struts-config -

E}B classes Bl
= com

D proverb ;I

PUBLIC "-//ipache Zoftware Foundation//DTD Struts Conficn
"http://jakarta.apache.org/struts/deds/struts-config 1_0.

<1-- Action Mappings for the STRUTS Exanple Application -

|:| wieb,xml

<struts-confioge

|:| weblogic, xml
[struts-bean.tid £lo- ========== Form Bean Definitions =======s=========
[struts-himl.tid <form-heans>
|:| Fruts-logic. td <!-- Helect form bean --x
struts-lagic,

<form-bean name="selectForn”
type="cown.proverh. 3electForn” />

«<!-- Contribute form bean -->

=
sfnrm-hean hame="~ontributeForm™” _I—I
| »

ML Source View |7 XML Tre View |

-

9 Directory ﬁ Project | EE, Regis{riesl

3. Look at the two form-bean elements in the form-beans section. They identify the classes
that support the formsin the application.

4. Look at the action elementsin the action-mappings section.

Croewh21iertendiorkbenchidocstutorialProverbFinalWWEB-INFistruts-config. ... %)

<action-mappingss
<action path="/today”
type="con.proverb. Todayiction™

>

<forvard name="success” path="/today.jsp" />

<forvard name="failure” path="/index.jsp" />
<faction=

<action path="/select” e
type="con.proverb. Selectiction”
name="selectForn”
scope="session”

validate="false">

<forvard name="success" path="/select.jasp" /»
<forvard name="failure” path="/select.jasp" /»
<forvard name="cancel” path="/index.jsp" />

<faction=

=
4 | »

3= HML Source View |&n XML Tree Yiew |

Implementing the controller

Tutorial: Developing a Web Application

(Optional) Study each action element and fill out atable like the one above for the rest of
the actions. Although arote activity, it will help you recognize the parts of the application
as you encounter them in the rest of the tutorial.

When you’ re done, close thefile.

Implementing the model

In a Struts application, the model isimplemented by Action classes, which the controller
invokes. The Action class changes the application state based on submitted data and other
relevant conditions. Action classes can handle all the processing, or they can call other classes
for application-specific businesslogic. In the Proverbs application, the Action classes
instantiate other classes to access the database.

+

i~

EXERCISE 1-7: Look at the source code for the TodayAction class

1.

4.

In the Navigation Pane, expand the WEB-INF directory, if necessary, and highlight the
proverb folder.

Double-click TodayAction.javato open it in the Edit Pane.

Look at the code that gets the DataSource that was saved in the servlet context. The code
instantiates the ProverbDataA ccess class with the DataSource and calls its
getTodaysProverb() method.

Closethefile.

There's more about data access in the next section.

Data for the application

The datafor the application is a database of proverbs. The application uses SQL to retrieve the
data and update the database when the user contributes a proverb.

There are only two tables. prover bs and todaysproverb.

The columns of the proverbs table are proverbid, proverbtext, pvbtrandation, and
source.

The columns of the todaysproverb table are proverbid and dayofyear.

Implementing the model 19

1 Architecture of an MVC Application

Inalater lesson you will set up adatabase using the DBM S of your choice. When the dataiis set
up, you can deploy and run the application.

+

B

EXERCISE 1-8: Look at source code for accessing proverb data

In this exercise you will look at three files: Constants.java, Proverb.java, and
ProverbDataA cess,java.

1
2
3

Expand the WEB-INF folder and highlight the proverb folder.
Inthefilelist, double-click Constants.java to open it in the Edit Pane.

Notice the SQL strings for selecting data and building WHERE clauses. For example, in
the data access code, these two strings are joined with whereto build a query.

public static final String SQL_SELECT PROVERB =
"SELECT proverbtext, pvbtranslation, source from proverbs ";
public static final String SQL WHERE_TODAYSPROVERB =

"proverbid = (select proverbid from todaysproverb where dayofyear=%p)
n.

These constants can be tweaked if necessary for a different DBMS.
Inthefilelist, double-click Proverb.java.
Look at the instance variables that match columns in the Proverb table in the database.

A Proverb bean encapsulates arow of data from the database. Each Proverb bean is added
to a collection that a JSP page accesses when it displays proverb information.

In thefilelist, double-click ProverbDataAccessjava.
Notice that the constructor has saved a DataSource object in an instance variable.

The caller getsit from the servlet context before instantiating ProverbDataA ccess. Do you
remember that ProverbActionServlet stored it there during initialization?

Select Search>Find to look for the method getProverbList() or getTodaysProverb().

Thefirst half of each of these methods builds a SQL statement. In the second half, the
code uses the data source to get a connection. Then it submits the SQL and processes the
result set.

Close the ProverbFinal project by selecting File>Close Project from the menu.

20

Data for the application

Tutorial: Developing a Web Application

Summary of what you’'ve done

Developing the application Inthislesson you learned about the Model-View-Controller
design pattern and how the Proverbs application uses Struts to implement MV C.
Using Workbench tools You used these toolsin Workbench:

» File>Open Project
* Navigation Pane, Project tab, and Archive layout
* Edit Pane

Next lesson Inthe next lesson you will learn about the database for the tutorial application.

Summary of what you’ve done 21

1 Architecture of an MVC Application

22

Summary of what you've done

2 Setting Up Your Data Source

What you will learn

Thislesson describes the choicesyou have for setting up adatabase for the Proverbs application
and shows you how to use the Cloudscape database that is provided with Workbench.

You will learn about:

Choicesfor setting up a data source
Adding the Cloudscape database to SilverStream
Using the Cloudscape database with BEA WebL ogic

What you will do

Thereare several exercisesin thislesson, but you only need to do what appliesto your situation:

1.

o a0 M w DN

Build a database and import proverb data

You don’'t need to do this exercise if you can use the provided Cloudscape database with
your server.

Add the Cloudscape database to the SilverStream server
Edit the startup file for WebL ogic to use Cloudscape
Configure a WebL ogic connection pool

Configure a WebL ogic data source

Configure the connections for the WebL ogic pool

For other servers, make the database available using your own server tools and procedures.

How long will it take? About 10-25 minutes

NOTE You will need to start your J2EE application server if it needsto be running when you

add the database.

23

2 Setting Up Your Data Source

Choices for setting up a data source

Since the Proverbs application looks up and stores proverb data, the application needs adata
source. Here are two suggestions.

Use the provided Cloudscape database UsetheCloudscape DBMSfromIBM and the
ProverbsCloud database provided with the tutorial files.

All you need to do is make the database available to your application server. There are
instructions for some serversin “Using the Cloudscape database” on page 25. Thereisalso
information on where to get Cloudscape.

Build your own database Useanother DBMSthat isalready installed and available for
your use. You will need access rights for creating a database with two tables.

If you are building your own database, you can use the provided SQL script for creating the
tables and importing the data, described in EXERCISE 2-1: “Build a database and import
proverb data’ on page 24. The SQL script iscorrect syntax for the Cloudscape DBMS. You may
need to tweak the SQL for your DBMS.

Building your own database

If you are not using the provided ProverbsCloud Cloudscape database, you can use or adapt the
SQL script to construct a Proverbs database.

EXERCISE 2-1: Build a database and import proverb data

1. Using your DBMStoals, create an empty database.

2. Locate the Proverbs.sql SQL script in the Workbench-install-
dir/docs/tutorial/TutorialFiles/prover bs/sql directory and open it in atext editor so that
you can check the SQL syntax.

The script includes statements for creating two tables and inserting rows into those tables.
3. Edit the SQL for correct syntax, if needed.

4. Useyour DBMStoolsto import the script. If errors occur, correct the SQL syntax in the
editor.

5. Using your application server tools, make the database available to your application
server.

24

Choices for setting up a data source

Tutorial: Developing a Web Application

Using the Cloudscape database

Adding

The ProverbsCloud database provided with Workbench is already loaded with proverbs from
several countries. It also has atable mapping aproverb ID to each day of the year. You'll find
the database with the tutorial filesin Workbench-install-
dir/docs/tutorial/TutorialFiles/prover bs/dbs. The following section describes how to make
the database available on the SilverStream eXtend Application Server. If you want to use
Cloudscape with another application server, get the Cloudscape DBMS and use your server
tools to make the database available.

About the Cloudscape DBMS Cloudscapeis a small-footprint embedded DBM S with a
free developer’s edition. If you already have an application server and want to use the
Cloudscape DBMS, you can download it from www.cloudscape.com.

The Devel oper Edition of the SilverStream eXtend Application Server includesthe Cloudscape
DBMS. If you need either an application server or aDBMSfor thistutorial, you can download
an evaluation copy of the SilverStream eXtend Application Server from
www.silverstream.com/downloads. For the tutorial, all you need isthe Lite Edition (J2EE
server and Cloudscape).

NOTE The ProverbsCloud database was built with Cloudscape Version 3.6. If you have an
older version of Cloudscape, you can either download anewer version or use the SQL
script to build a database compatible with your version.

the Cloudscape database to SilverStream

SilverStream 3.7.2 and later has support for the Cloudscape DBMS built in. You can use the
provided Cloudscape database with SilverStream Version 3.7.2 and | ater, including with Version
4.

Using SilverStream Version 4 Theoriginal ProverbsCloud database was built with
Cloudscape Version 3.6, which wasincluded with SilverStream 3.7.x. SilverStream Version 4
includes Cloudscape Version 4. When you add the ProverbsCloud database to the SilverStream
Version 4 server using the provided batch file, it is automatically upgraded to Cloudscape
Version 4 (thereis an upgr ade statement at the end of the JIDBC URL in the SilverCmd input
file you will use to add the database to a Version 4 server).

Thismeansthat after adding the database to a Version 4 server, you cannot use the database with
aVersion 3.7.x server (which doesn’t support Cloudscape Version 4). If you want to use a
ProverbsCloud database against both SilverStream versions, you should make copies of the
databases—one for each SilverStream version—before adding them to the server.

Adding the Cloudscape database to SilverStream 25

new http://www.cloudscape.com
new http://www.silverstream.com/downloads

2 Setting Up Your Data Source

Checking your environment The batch file that adds the database to the SilverStream
server relies on the SILVERSTREAM_HOME environment variable, which is created by the
server’sinstallation program. Before proceeding, make sure you have a
SILVERSTREAM_HOME environment variable and that it pointsto the correct version of the
SilverStream server.

EXERCISE 2-2: Add the Cloudscape database to the SilverStream server

Inthisexerciseyouwill usethe SilverStream SilverCmd tool to add the ProverbsCloud database
to your SilverStream server.

1.
2.

Start the SilverStream eXtend Application Server.

Open the SilverCmd input file for editing. The fileisin the directory Workbench-
install-dir/docs/tutorial/Tutorial Files/prover bs/dbs.

Server version File to edit
3.7x addProverbsCloud37.xml
4 addProverbsCloud4.xml

If youdidn'tinstall the SilverStream server in the default directory, you need to change the
path for the SilverStream DTD.

Near the beginning of thefile, find the DTD namein the DOCTY PE element. It looks like
this:

Server version DTD name
3.7.x c:/SilverStream37/Resources/DTDCatalog/add _database.dtd
4 C:/Program

Files/SilverStream/eXtendA ppServer/Resources/ DTDCatal og
/add_database.dtd

Specify the correct path for the DTD by specifying the path for your SilverStream server
installation directory.

If you didn’t install Workbench in the default directory, you need to change the path for
the ProverbsCloud database.

26

Adding the Cloudscape database to SilverStream

Tutorial: Developing a Web Application

5. Findthe JDBC_URL element. It looks like this:

Server version

JDBC_URL definition

3.7.X

<JDBC_URL>jdbc:cloudscape:c:/Program
Files/SilverStream/eX tendWorkbench/docs/tutorial/Tutorial Fi
les/proverbs/dbs/ProverbsCloud</JDBC_URL >

<JDBC_URL >jdbc:cloudscape:c:/Program
Files/SilverStream/eX tendWorkbench/docs/tutorial /Tutorial Fi
|es/proverbs/dbs/ProverbsCloud;upgrade=true</JDBC_URL>

6. Change the default installation directory after cloudscape: (c:\Program
Files\SilverStream\eX tendWorkbench) to specify your Workbench installation directory.

7. Save addProver bsCloud37.xml or addProver bsCloud4.xml and close it.

8. Open acommand prompt in the Workbench-install-
dir/docg/tutorial/TutorialFiles/prover bs/dbs directory.

9. For an unsecured server, execute this command:

Server version

Command to execute

3.7

addProverbsCloud37 your-server-name

4

addProverbsCloud4 your-server-name

NOTE If your server isrunning locally, you can specify localhost for the server name.

For a secured server, specify your user ID and password too. For example, if theuser ID is
admin and the password is pwd, type the following command:

Server version

Command to execute

3.7.X

addProverbsCloud37 your-server-name admin pwd

4

addProverbsCloud4 your-server-name admin pwd

The database is now available to the SilverStream eXtend Application Server.

Adding the Cloudscape database to SilverStream 27

2 Setting Up Your Data Source

Using the Cloudscape database with BEA WebLogic

These exercises describe how to:

Configure the WebL ogic server to use the Cloudscape DBMS in its embedded form
Configure a connection pool and data source

NOTE Theseinstructions apply to WebL ogic 6.0 SP1 and describe how to configure the

+

I

default server. Although WebL ogic 6.0 SP1 includes Cloudscape 3.5 and an
ExamplesServer already configured torunit, youwill need to get Cloudscape 3.6 to use
the prebuilt ProverbsCloud database.

EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape

In this exercise you'll change the classpath and the startup command for WebL ogic to use the
Cloudscape DBM S in embedded mode.

1

Get Cloudscape 3.6 and run its setup program. You can download it with the SilverStream
eXtend Application Server from www.silverstream.com/downloads. For the tutorial all
you need isthe Lite Edition (J2EE server and Cloudscape). You can also get it from
cloudscape.com.

Open the startup file for the server in Workbench (or any text editor). It's called
startWebL ogic.cmd.

You'll find it in the configuration directory for the default server. For example, if you
installed in the default directory and you called the server mydomain, you'll find it in
C:\bea\wlserver6.0spl\config\mydomain.

Change the classpath command to include cloudscape.jar. It should look like this, with an
appropriate path for cloudscape.jar:
set
CLASSPATH=.; .\lib\weblogic_ sp.jar;.\lib\weblogic.jar;c:\Cloudscape\lib\c
loudscape.jar
Add the Cloudscape home directory to the server startup command. The home directory is
the default location for Cloudscape database directories. The startup command might look
like this:
"$JAVA HOME%\bin\java" -hotspot -ms64m -mx64m -classpath $CLASSPATHS%
-Dweblogic.Domain=mydomain -Dweblogic.Name=myserver "-Dbea.home=C:\bea"
-Dcloudscape.system.home=c:\Cloudscape\demo\databases
"-Djava.security.policy==C:\bea\wlserver6.0spl/lib/weblogic.policy™"
-Dweblogic.management .password=%WLS_PW% weblogic.Server

NOTE Thereisaspace but no carriage return at the end of each line except the last.
Save and close thefile.

28

Using the Cloudscape database with BEA WebLogic

new http://www.silverstream.com/downloads
new http://www.cloudscape.com/

Tutorial: Developing a Web Application

6. Start the server by running startWebL ogic.cmd at a command prompt.

+

-~

EXERCISE 2-4: Configure a WebLogic connection pool

These instructions describe how to use the WebL ogic 6.0 SP1 administration consol e to
configure the database. The steps for other versions of the server may vary.

1. With the WebL ogic server running, start the administration console in a Web browser. The
default URL on alocal server is:

http://localhost:7001/console

In the left panel, the top node is the parent name for your server. Below that you'll seea
node called Services.

2. Expand the Services>JDBC node and highlight Connection Pools.
3. Intheright panel, click Create a new JDBC Connection Pool.
4. Fill in the form with datalike this:

Item Value Comments
Name ProverbsCloudPool An arbitrary name that you'll use
again in the DataSource definition
URL jdbc:cloudscape:c:\Program Theformat is
Files\SilverStream\eXtendWork | jdbc:cloudscape:databasepath
bench\ . .

. - The URL ends with the directory
docsitutorial\Tutoria Files\prove that hold the database files. The
rbs\dbs\ProverbsCloud :

value shown points to the
database in the default installation
directory for Workbench
Driver COM .cloudscape.core JDBCDri | A classin cloudscape.jar
Classname ver
Properties user=APP The user 1D and password for the
password=password ProverbsCloud database

5. Click Create.

6. Select the Targetstab.

Using the Cloudscape database with BEA WebLogic

29

2 Setting Up Your Data Source

7. Inthe Availablelist, select myserver (or the name of your server) and click the right
arrow so that it appearsin the Chosen list. Then click Apply.

+

B

EXERCISE 2-5: Configure a WebLogic data source

1. With the administration console still running in the browser, highlight Data Sour cesin the
left panel under the Services>JDBC node.

2. Intheright panel, click Create a new JDBC Data Source.
3. Fill inthe form with datalike this:

Iltem Value Comments

Name ProverbsCloud An arbitrary name for this definition; for
simplicity use the INDI name

JINDI Name | ProverbsCloud The INDI name associated with the resource
reference in the weblogic.xml configuration
file

Pool Name ProverbsCloudPool | The name of the connection pool for the
database you want to access

4. Click Create.
5. Select the Tar getstab.

6. IntheAvailablelist, select myserver (or the name of your server) and click the right
arrow so that it appearsin the Chosen list. Then click Apply.

EXERCISE 2-6: Configure the connections for the WebLogic pool

1. With the administration console still running in the browser, highlight
ProverbsCloudPooal in the left panel under the Services>JDBC>Connection Pools node.

2. Select the Configuration tab in the top row, then select Connectionstab in the second
row.

3. Changelnitial Capacity to 1. Leave the other values as s, including Maximum Capacity
of 1. The developer edition of Cloudscape supports only one connection.

4. Restart the server.
The database is ready for use.

30 Using the Cloudscape database with BEA WebLogic

Tutorial: Developing a Web Applicatio

n

Summary of what you’'ve done

Developing the application Inthislessonyou built or learned about these parts of the
Proverbs tutorial application:
e Database built from the provided SQL script
OR
Cloudscape database provided as part of the tutorial
» Application server procedures for using the database

Next lesson Inthe next lesson you will learn how to set up a WAR project in Workbench.

Summary of what you’ve done

31

2 Setting Up Your Data Source

32

Summary of what you've done

3 Working with Projects and Archives

What you will learn

In thislesson you will learn about projects for Workbench and how Workbench helpsyou build
aJ2EE archive fromthefilesinyour project. Youwill create aproject for aWeb application that
displays proverbs.

You will learn about:

» Therelationship between projects and archives
» Creating aproject

e Adding content to the project

» Setting up the project’s classpath

What you will do

Set up directories for your project

Create a new project

Add directories to the project

Add content from elsewhere in the file system
Set up aclasspath for building the project

a M N R

How long will it take? About 10 minutes

NOTE You don't need to be running your J2EE application server at thisstagein the project’s
development.

The relationship between projects and archives

In your previous work (before using Workbench), if you used the JAR command to build an
archive, you had to arrange the directory structure on your hard disk to mirror the required
archive structure. This forced file arrangement isn’t necessarily the most convenient way to
work.

In Workbench you can group files for different parts of the project in the directories you want.
Your project settings specify where those files belong in the archive. Filesin different source
directories can be assigned to asingle directory in the archive.

33

3 Working with Projects and Archives

In general, the content of your project will be directories, not individual files. Asyou work, you
can add files to the project directories and they will be automatically included in the resulting
archive. When you specify project content at the directory level, al the filesin a source
directory will be together in the archive directory you specify. To put filesin different archive
directories, you should put them in different project source directories.

You can also specify individual files as content for your project. You can give each filea
particular location in the archive. To avoid adding content to a project twice, you wouldn’t want
to add a directory to the project and also add afilein that directory.

Where source files reside

You can organize your source filesin many different ways. Code, HTML, and other filesfor the
application you are working on will typically be under the project’sroot directory. Other files,
such as JARs and tag libraries, might be stored in adirectory that is used by many projects.

In the Proverbstutorial application, the project root contains these directories:

Directory Contents

src Java source code for the Proverbs application

jsps JSP pages

resources Resource bundlefile of text strings, which can be translated for

internationalization

WEB-INF Deployment descriptor and Struts configuration file, plus deployment files
for specific application servers

34 The relationship between projects and archives

Tutorial: Developing a Web Application

Typical directory structure of an archive

Theinternal directory structure of a J2EE archiveislargely up to you. An archive for a Web
application (WAR) hasonly afew requirements. You put filesthat are not accessibleviaan URL
in the WEB-INF directory and its subdirectories. The deployment descriptor must be in WEB-
INF.

In the WEB-INF directory, you can expect to find:

File or directory Contents

web.xml The required deployment descriptor that tellsthe application server
how to interact with the Web application

WEB-INF/classes The compiled Java classfiles for the application

WEB-INF/lib JAR files used by the application

The locations of other files are up to you. In the Proverbs application, the Strutstag libraries
(TLD files) and configuration file (struts-config.xml) are also in the WEB-INF directory. The
JSP pages, which are accessibleviaURL, areintheroot directory of thearchive. Filesunder the
WEB-INF directory are not accessibleviaURL by default, although you can configurethem for
URL access.

The resulting archive directory structureis:

archive root
jsps
/WEB-INF
web . xml
struts-config.xml
struts-html.tld, struts-logic.tld, struts-bean.tld
/classes
compiled classes in the com.proverb package
/1ib
struts.jar

The relationship between projects and archives 35

3 Working with Projects and Archives

Creating a project

To create aproject for aWeb application, first you'll do alittle directory setup. Then you'll start
Workbench to create the project file.

+

I

EXERCISE 3-1: Set up directories for your project
In this exercise you will create directoriesfor your sourcefiles.

1. Using your operating system tools, create aroot directory for your project called
ProverbSart. You can put it at the root level of your disk drive or in a subdirectory of
your choosing. The sample pathsin the tutorial assume you created ProverbStart in a
WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\ProverbStart

2. Inthe ProverbStart directory, create four subdirectories:

jsps
resources
srcC
WEB-INF
NOTE WEB-INF must beall uppercase. Windows Explorer might display the uppercase
name as Web-inf, but if you type it correctly it will be correct in the project.

3. To speed up the tutorial, most of the Java and JSP code is provided. To include this code,
copy these items to the specified directories:

From this directory in Workbench-

install- To this project

dir/docs/tutorial/TutorialFiles/proverbs/ | Copy this directory

jsps JSPfiles ProverbStart/jsps

src com folder andits | ProverbStart/src
contents

config struts-config.xml ProverbStart/\WWEB-

INF

36 Creating a project

Tutorial: Developing a Web Application

EXERCISE 3-2: Create a new project

Inthisexerciseyou will start Workbench and use the New Project Wizard to create a project for

the Proverbs Web application.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the

Windows Start menu.

If Workbench is already open, select File>Close Project to close the open project, if any.

2. Select File>New Project from the menu.

2Z New Project E

Choose the project type, or select Deploy-only if you
you want to create a project for deployment of an
existing archive file that you don't want to build.

Mon-buildakle Archive

o EAR § WAR
Erterprize Archive Weh Archive
& EIR CAR
Erterprize JavaBean Archive U Application Client Archive
RAR g JAR
Resource Adapter Archive Java Srchive
ﬁ Deploy-only

3. Inthe New Project Wizard, select WAR and then click OK.

4. Inthe Project Namefield, type ProverbStart.

5. Click the ellipses beside the Project Location field and select the ProverbStart directory
you created in EXERCISE 3-1: “ Set up directories for your project”. When you click OK,
other fieldsin the dialog are filled in automatically.

The archive location is the project root directory, and the deployment descriptor isin the

WEB-INF directory.

Creating a project

37

3 Working with Projects and Archives

6.

In the Project J2EE Version field, specify j2ee 1.2 (war 2.2) so your application will run

on any server that supports J2EE 1.2.

Enter the name and location (directory path) for
the project, the archive file, and the deployment
descriptor and select the desired J2EE version.
{To use an existing archive as-is, create a
deploy-only project instead.)

Project Mame:

FroverbStart

Project Location:
l::WorkbenchProjeds\ProverbStart J

Archive Name (e.g. office war):

FroverbStart

Archive Location (directory):
l::WorkbenchProjeds\ProverbStart J

Deployment Descriptar Mame:

Ivveb.xml
Deployment Descriptor Location:
l::WorkbenchProjeds\ProverbStartW\lEEl-INF J
Project J2EE Wersion: IJQEE 1.2 (VAR 2.2) ;I
zancel| Help
Click Next.

The wizard summarizes the project information.

NOTE If you hadn’'t closed open projects before you selected New Project, the wizard
might ask if you wanted to make the new project a subproject of the open project.
Thisisuseful for making anew WAR or EJB part of an EAR.

Click Finish.

In the Navigation Pane, the Project tab displays the new project. You can use either a

Source view or an Archive view.

Asyou'll see, the contents of the project root directory are not automatically part of the project.
You can have other files and directories in the root directory too. In the next exercise you will
add the other directories to the project and change the descriptor’s entry from afileto a
directory.

38

Creating a project

Tutorial: Developing a Web Application

Adding content to the project

You can add directoriesand filesto aproject in two ways: inthe Project Settingsdialog and from
the Navigation Pane. Only the descriptor file, which you specify in the New Project Wizard, is
automatically included. The directories and files you select can bein the project root directory

or somewhere else in your file system. The next two exercises show you how to add content.

+

-~

EXERCISE 3-3: Add directories to the project

Inthisexerciseyou' Il select directoriesfor the project and specify their location in the resulting

archive.

1. Select Project>Project Settings from the menu.

2% Project Settings [%]

Project: [Egau=liaseT

General | Contentsl Classpath.fDependenciesl
Project type: VAR
Project directory: C:WiorkbenchProjects\ProverbStart

Project file: CivorkhenchProjects\ProverbStart\ProverhStart spf

Project version: JZEE 1 2WAR 22

["] Use source directary for classes

Clazzes directary: 'uuild\ProverbStart-classes\

Archive file path: FroverbStart.war

Browse. .. |

g,gﬁ Cancel

2. Select the Contentstab.

The ProverbStart project is selected in the Project field. If your project included other
subprojects, you could choose among the available projects.

3. Onthe Contentstab, highlight WEB-INF/web.xml and click Delete.

Help

The goal of this step isto create a project entry for the WEB-INF directory instead of the

individual file.
4. Click Add Directory.

An Open dialog displays the drives and directories on your file system.
5. Navigate the directory structureto find the WEB-INF directory in your project root

directory and click OK.

Adding content to the project

39

3 Working with Projects and Archives

6. Inthe Add to Project dialog, select the last item (Add thefilesto the archive at this
location) and specify WEB-INF for the location.

Y Add to Project [%]

File: F::\Workbenc:hProjeds\ProverbStartW\lEEl-lNF

[¥ Include subdirectories

' Add the files ta the roct of the archive.

& Add the files to the archive &t this location: }NEEI-INF

Advanced == |

DR Gancelf Hie

7. Click OK to return to the Project Settings dialog.

2% Project Settings [%]
Project: |Pr0verb8tar1 ;I

General Contents | Classpath.fDependenciesl

| Source location | Archive location |

IWEB-INFY IWEB-INFS |

Al Entry... Edit... Delete |

Cancel| Help

Instead of the file web.xml, you see the WEB-INF directory as both the source location
and the archive location. Later when you add other files to WEB-INF, they will
automatically become part of the project.

8. Using the Add Directory button, add three more source directories to the project. They
are al under the project root directory.

e Addthejspsdirectory with the option Add thefilesto theroot of the archive.

* Addthesrcdirectory with the option Add thefilesto thearchiveat thislocation and
WEB-INF/classes as the location.

e Addtheresourcesdirectory with the option Add thefilesto the archive at this
location and WEB-INF/classes/com/prover b as the location.

40 Adding content to the project

Tutorial: Developing a Web Application

When you're done, the Project Settings should look like this:

2% Project Settings [%]
Project: |Pr0verb8tar1 ;I

General Contents | Classpath.fDependenciesl

Source location Archive location
WAEE-INFY WAEB-INF
j=pst =Roat of Archives
srch WWEE-INF fclasses!
resources) WEB-IMF iclaszesicomipraverh

Al Entry... Edit... Delete |

Cancel| Help

9. Click OK to close the Project Settings dialog.

10. Inthe Navigation Pane, switch between Source Layout view and Archive Layout view and
expand the directories you see. Notice how Workbench rearranges the source directories
to show you the Archive layout.

*

[
EXERCISE 3-4. Add content from elsewhere in the file system

There are other ways to add directories and files to the project besides the Project Settings
dialog. In this exercise you will usethe Directory tab in the Navigation Pane to add content.

The new files (the Struts JAR and tag libraries) are required in every Struts project. You won't
be changing them, so you don’t want separate copiesin every Struts project you work on. You'll
add them directly from the provided Tutorial Files directory.

1. Inthe Navigation Pane, click the Directory tab.

TIP For better viewing, you can resize the Navigation Pane. Move the bottom or right
edge to make the whol e pane larger or move the bar between the directory and file
lists.

2. Inthedirectory list, find the Workbench install directory and expand it to show
Workbench-install-dir/docs/tutorial/TutorialFiles/jars directory.

NOTE Thedefault installation directory is Program
Files/SilverStream/eX tendWorkbench.

Adding content to the project 41

3 Working with Projects and Archives

[EH_4 etendwarkbench ;I
] bin
| compilelib

1 ibroker-web
B quickstart
= A tutorial
-J ProverbFinal J
B4 TutorialFiles

30|

proverbs

Add to Project ..

Rename...

L Q ety Eﬁ Projec:tl ﬂl_, Registriesl

3. Inthelower part of the pane, right-click the file struts.jar and select Add to Project.

4. Inthe Addto Project dialog, select the option Add the fileto the archive at thislocation
with alocation of WEB-INF/lib/struts,jar.

NOTE When you add afile, the location includes the file name.

Y Add to Project [%]

File: |:ugram Filez\SilverStreamieXtendWiorkbenchidocstutariahTutorialFilesjars\struts jar

Add to project: |Pr0verb8tar1 B2

" Add the file to the root of the archive.

{* Add the file to the archive =t this location: INEEI-INF.I'Iib.I’strutS.jar

RS Gancel

5. Click OK.

42 Adding content to the project

Tutorial: Developing a Web Application

6. Addthetldsdirectory, whichisalso in Tutoria Files, by right-clicking the tlds directory
(not the files this time) and selecting Add to Project.

[EH_4 etendwarkbench ;I
) bin
-J compilelib
= A docs
-J help
-J jbroker-web
-J quickstart
= A kutorial
-J ProverbFinal J
= A TutorialFiles
-J jars
-J proverbs
=] I

.....

|:| struts-bean, tld
|:| struts-html tld
|:| struts-logic, tid

7. Inthe Addto Project dialog, select the option Add thefileto the archive at thislocation
with alocation of WEB-INF.

Y Add to Project [%]

File: F::\Program Filez\Silver StreamieXtendWorkbenchidocstutariahTutorialFilestds

Add to project: |Pr0verb8tar1 B
[¥ Include subdirectories

€ Add the files ta the roct of the archive.

& Add the files ta the archive at this location: }NEEI-INF

Advanced == |

8. Click OK.

9. After closing the Add to Project dialog, select the Project tab in the Navigation Pane and
select Archive layout.
When you click the WEB-INF directory, itsfile list includes web.xml, struts-config.xml,
and the tag libraries (with extension tld). When you expand WEB-INF and click lib, the
filelist displays struts.jar.

NOTE Inthisexercise you used the Directory tab to select directories and files for your
project. The Directory tab displays directories and files and allows you to delete and
renamefiles, but it is not afull-fledged tool for working with your hard disk. To
reorganize directories and files, use your operating system’stools.

Adding content to the project 43

3 Working with Projects and Archives

Setting up the project’s classpath

When you build your project, Workbench needsto know whereto find JARs and other Javafiles
that your source code refers to. You specify a classpath for building the project in the Project
Settings dialog. Workbench automatically includes a JAR of the J2EE classes.

+

[
EXERCISE 3-5: Set up a classpath for building the project

Inthisexerciseyou will usethe Project Settingsdial og to add to the compil e-time classpath. For
the Proverbs application, the classpath needs to also include struts,jar.

1. With your project open, choose Project>Project Settings from the menu.

2. Select the Classpath/Dependencies tab.

An archive of J2EE classesis aready on the WAR's classpath. Its path uses an
environment variable for the Workbench install directory. The variable was defined when
you installed Workbench.

2Z Project Settings [%]

Project: [Rgae=liatsel

Generall Cortents Classpath/Dependencies |

Clazsspath entries:
SILYERSTREAM_¥WH_HOME%\zompilelibyZee_api_1_2 jar

il | i
In addition to directories and JAR files, you can add other project files (SPF files) to this

project's classpath. Before this project is built, any SPF files listed here will automstically
be built, and their generasted archives will be used in the classpath.

Add Ertry.. Add Directary .. | Edit.... | Delete |

f'.

Cancel. Help

3. Click the Add Entry button.
4. Select struts;jar inthe Workbench-install-dir/docs/tutorial/TutorialFiles/jar s directory.
The list for your classpath should look like this:

44 Setting up the project’s classpath

Tutorial: Developing a Web Application

5.

2Z Project Settings [%]
Project: |Pr0verb8tar1 ;I

Generall Cortents Classpath/Dependencies |

Clazsspath entries:

In addition to directories and JAR files, you can add other project files (SPF files) to this
project's classpath. Before this project is built, any SPF files listed here will automstically
be built, and their generasted archives will be used in the classpath.

Add Ertry.. Add Directary .. | Edit.... | Delete |

Click OK to close the Project Settings dialog.

Summary of what you’'ve done

Developing the application

application:

Using Workbench tools You used these tools in Workbench:

A source directory structure that included some application files
A project for the Proverbs Web application
Archive locations for the directories that are part of the project
A classpath for building the project

New Project Wizard (File>New Project)
Source layout and Archive layout on the Project tab of the Navigation Pane
Project Settings dialog (Project>Project Settings)
Directory tab in the Navigation Pane and the Add to Project menu item

In thislesson you built these parts of the Proverbs tutorial

You can return to the Project Settings dialog whenever you need to make changesin the source
directories or archive locations for your project.

Next lesson

deploying projects.

In the next lesson you will learn about the JSP Wizard and building and

Summary of what you’ve done

45

3 Working with Projects and Archives

46

Summary of what you've done

4 Deploying and Testing the Welcome Page

What you will learn

In thislesson you will learn about the ISP Wizard. You will aso learn about server profilesand
how to use Workbench deployment capabilities.

You will learn about:

Adding new files to the project

Working with JSP pages

Building and archiving

Working with the deployment descriptor
Testing the application

What you will do

© ® N o 0 M w NP

=
e

Add files to the project

Create a new JSP page

Edit the JSP page

Compile the Java code and generate the archive file
Begin editing the deployment descriptor

Add initialization parameters for the servlet

Add a servlet mapping

Specify the project’s default page

Add tag libraries

Rebuild the archive

. Deploy the project

Test the application in the browser

47

4 Deploying and Testing the Welcome Page

How long will it take? About 30 minutes

NOTE Your J2EE application server needs to be running for the deployment and testing

EXErcises.

Adding new files to the project

In addition to adding directories that contain files to your project, there are several other ways
to add files. You can:

Move afileinto a project source directory
Save anew file into a project source directory

Get files from source control, including new files added to project directories by
coworkers

Use the Add to Project menu item to add individual filesthat are not in project directories

EXERCISE 4-1: Add files to the project

Inthisexerciseyou will add afileto the project by copying it from somewhere else and putting
itin adirectory that is already part of the project.

1.

Using your operating system tools, find the file ApplicationResour ces.propertiesin the
Workbench-install-dir/docs/tutorial/Tutorial Files/prover bs/r esour ces directory.

Copy thefile to the resour ces directory under the project root.

You created the resources directory in Lesson 3, “Working with Projects and Archives’. If
the project root is c:/WorkbenchProjects/ProverbStart, copy the fileto
c¢:/WorkbenchProjects/ProverbStart/resources.

In Workbench on the Project tab of the Navigation Pane, set the view to Source layout.
Select the resour ces directory.
Inthefilelist in the lower half of the pane, you should see the file you just added.

48

Adding new files to the project

Tutorial: Developing a Web Application

ey using: ISource layout - I

E-% ProverbStart,spf =
- weB-vF
0 jsps
=0 src e
D FESOUNCES i

|:| ApplicationResources, properties

Q Directory ﬁ Project | ﬂl_, Regis{riesl

5. Switch to Archivelayout.
6. Expand the WEB-INF/classes’com/proverb directory and highlight proverb.
In the filelist you should see the ApplicationResources.properties file.

In the previous lesson you designated that files in the resources directory belonged with
the Java class files in the archive. The Navigation Pane shows you
ApplicationResources.properties in that location.

ey using: IArchive layout vl
E-% ProverbStart.spf
=HZ> wEB-INF
EB classes

= .—.—
N

|:| ProverbactionServlet. java —I

|:| ProverbDatafccess.java

|:| SaveProverbaction.java
|:| SelectAction. java

|:| SelectForm.java

|:| Todayaction.java

.l ApplicationResources. properties

Q Directory ﬁ Project | EE, Registries

Adding new files to the project 49

4 Deploying and Testing the Welcome Page

Working with JSP pages

To create new JSP pages, you can use the JSP Wizard, which constructs the skeleton of a JSP
file and opensit in the Edit Pane. For existing JSP pages, you can double-click them in the
Navigation Pane to open them in the Edit Pane.

[B

+

EXERCISE 4-2: Create a new JSP page

In this exercise you will use the JSP Wizard to create a new page.

1.

In Workbench, select File>New.
Choose file type:
J2EE |Web Servicesl }{MLI
=l EIB Ed] Servlet
' Create a new Erterprize JavaBean Create a new Serviet
kpl JSE i Java file
Create a new JavaServer Page Create a new Java class file
gavaBean . Tag handler
reate a new JavaBean class file Create a new JSP tag handler
@ Generic text file @ SilverStream Deployment Plan
Create a generic empty file Create a new SilverStream deployment plan
Deployment Descriptor
Create a new deployment descriptor
¥ Use wizard
~ OK® Cancell Help
Inthe New File dialog, select JSP and click OK.
Workbench displays the JSP Wizard.
Fill out the first panel of the wizard with this information:

Option Value

JSP name index (don’t specify the jsp extension)
Pagetitle Words of Wisdom

Content type HTML (the default)

Template Standard JSP templ ate (the default)

50

Working with JSP pages

Tutorial: Developing a Web Application

4. Select only Use session and Thread safe.
Thefirst panel of the wizard looks like this:

Specify the JSP name and other options.

JEP name: index

Page title: }Nords of Wisdom

Content type: IHTML E I

Template: |Standard JEP template ;l

[+ Use session
[+ Thread safe
[Form-based page
[Create errar page

[Specify impart values

5. Click Next.
6. Onthe second panel, leave Add to open WAR project selected.
7. Specify where to put the file in the project and the archive:

» For Basedirectory, select the project-root\j sps directory from the dropdown list—for
example, c:\WorkbenchProjects\ProverbStart\jsps.

» For Package, leave it blank. In this project the JSP pages are at the root of the archive.
* Leave Addthefilestotheroot of the archive selected.

Working with JSP pages 51

4 Deploying and Testing the Welcome Page

¥ JSP Wizard [x]

Specify the project, directory and package for the new JSP.

{* Add to open WAR project: |Pr0verb8tar1

' Mo project -- just write files to the disk.

;I Create project... |

Base directory: p\WorkbenchProjeds\ProverbStamjsps

;I Browse... |

Package: |

File directory: C:WNorkbenchProjects'ProverhStartizps)

& Add the files ta the roct of the archive.

0 Add the files to the archive with this prefix:

The files will be added to this location in the archive:
!
|

roat

MOTE: The entire contents of this directory will be included in the archive.

o)

Larcell

8. Click Finish.

9. When the JSP Wizard dialog reports that it is done creating the JSP page, click OK.

The new fileis open in the Edit Pane. In the Navigation Pane, index.jsp isin the jsps
directory in the Source layout and at the archive root in the Archive layout.

52

Working with JSP pages

Tutorial: Developing a Web Application

More about the wizard When you check Specify import values on thefirst panel of the
wizard, it displays athird panel for specifying those values.

+

(B
EXERCISE 4-3: Edit the JSP page

Inthisexercise you will changethe generated code for index.jsp to use Strutstags, get text from
the ApplicationResources file, and include a navigation menu.

NOTE You can copy the JSP codefor this exercise from thefile CutAndPasteCode.txt inthe
Workbench-install-dir/docs/tutorial/Tutorial Files/prover bs directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
index-sample.,jsp in the same directory. Use your operating system toolsto copy it to
your project directory and rename it index.j sp.

1. Insert ablank line after the closing bracket (>) of the @page directive and add these lines:

<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

2. Insert ablank line below the body tag and add this line, which inserts code for the
navigation menu:

<%@ include file="menu.jsp"%>

3. Inthe Navigation Pane, find the ApplicationResour ces.properties file in the resour ces
directory and double-click it to open it in the Edit Pane.

4. Look for the resource text strings that begin with site:

site.title=Words of Wisdom

site.greeting=Welcome to Words of Wisdom

site.info=Return each day to read a proverb
from somewhere around the
world. ..

You can use these property keysin index.jsp to refer to these text strings instead of putting
the text directly in the file. This makesit easy to trandate the site if you want to.

5. Switch back to index.jsp in the Edit Pane.
There are several waysto switch among open files. You can use the:
e Tabsinthe Edit Pane
* Documents menu
* Project tab of the Navigation Pane—double-click the file again in the jsps directory
6. Replacethe text between thetitle element’s start and end tags with this Struts message tag:

<strutsbean:message key="site.title"/>

Working with JSP pages 53

4 Deploying and Testing the Welcome Page

7. Replace the content between the line that includes menu.jsp and </body> with a heading
and two paragraph elements. This code contains Struts message tags that display the

8.

site.info text and error messages. The font tags are optional:
<hl>

<strutsbean:message key="site.greeting"/>

</hl>

<p>

<strutsbean:message key="site.info"/>

</p>

<p>
<strutshtml:errors />
</p>
For fun, add a color to the body tag. Replace <body> with:

<body bgcolor="#FF6633">

If you don't like this warm orange, specify whatever color value you like.

The resulting file should look like this:

<!--

index.jsp

Generated by SilverStream XSLT Code Generator, version 1.0.

This generated source file may be freely modified.

-=>
<%@ page language="Java"

session="true"

isThreadSafe="true"

contentType="text/html; charset=IS0O-8859-1" %>
<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

<html>
<head>
<title>
<strutsbean:message key="site.title"/>
</title>
</heads>

<body bgcolor="#FF6633">

<%@ include file="menu.jsp"%>

54

Working with JSP pages

Tutorial: Developing a Web Application

<hls>

<strutsbean:message key="site.greeting"/>

</hl>

<p>

<strutsbean:message key="site.info"/>

</p>

<p>
<strutshtml:errors />
</p>

</body>
</html>
9. Savethefile.

10. Closethefile. You can select File>Close or click the Close button in the Edit Pane.

Building and archiving

On the Project menu, Workbench has commands for building (compiling) individual files and
for rebuilding all the filesin the project before you generate the archive.

*

B

EXERCISE 4-4: Compile the Java code and generate the archive file

In this exercise you will compile all the code in the project. If there are no errors, you can
generate the archive.

1. Select Project>Rebuild All from the menu.

NOTE If afile openin the Edit Pane has been changed, Workbench savesit. You can
change this behavior in Workbench Preferences.

On the Build tab of the Output Pane at the bottom of the Workbench window, you see
messages reporting progress as well as any warnings and errors that occur.

If your classpath includes al the required JARSs, there should be no errors. If there are
errors, you can double-click the error line in the Output Pane to go to the file and line that
caused the problem.

Building and archiving 55

4 Deploying and Testing the Welcome Page

2.

Buildfile: C:\WorkbenchProjects'\Proverbitartibuildibuild-Proverbitart.xml

Building project "Proverbitart” - April 23, 2002 11:03 AM

Could not find file C:‘\WorkbenchProjects'\ProverbStart\Proverb3tart.war to delete.

Created dir: C:\WorkbenchProjects‘\Prowerb3tartibuild\Proverbitart-classes

Created dir: C:\WorkbenchProjects'\Prowverb3tartibuildiProverbitart-classes\WEE-INF\classes

Compiling 11 source files to C:yWorkbenchProjects'ProverbfStarti\build)Proverbitart-classes\WEE-INF\classes

BUILD SUCCESSFUL

Total time: 9 seconds)

n

| v

4
| % Biuild E‘ Validatel !‘E Deployl E} Findl \f Todol

Select Project>Build and Archive to generate the archivefile.

56

Building and archiving

Tutorial: Developing a Web Application

About compiling Thereare several Build menu itemson the Project menu. You might want
to compile afile open in the Edit Pane, build only filesthat have changed, or rebuild all files. To
learn more about the building and archiving commands, see the chapter on projectsand archives
in the Tools Guide.

Working with the deployment descriptor

When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For aWAR, thefileis called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows all the elements
it caninclude, in an expandable tree structure. You can also look at the raw XML. The editor
usesthe project’s compiled code to determine what to show, which iswhy you built the archive
in EXERCISE 4-4: “Compile the Java code and generate the archive file”. If it isn't already
built, Workbench can build it for you.

For the Proverbs application, you need to add parametersfor the Struts controller servlet, serviet
mappings for Struts URL s, adefault welcome page, and the Strutstag libraries.

+

[
EXERCISE 4-5: Begin editing the deployment descriptor
Inthisexerciseyou will open web.xml and add areference to the Struts action controller servlet.
1. Inthe Navigation Pane, right-click the project file ProverbStart.spf and select Open

Deployment Descriptor from the popup menu.
NOTE You can aso find web.xml in the Source or Archive layout and double-click it to
open it.
2. If Workbench displays the Select Build Option dialog, accept the defaults and click OK.
Workbench opens web.xml in the Edit Pane.
3. Click the Descriptor tab.
The editor shows the types of information the descriptor can include.

Working with the deployment descriptor 57

toolsProjects.html

4 Deploying and Testing the Welcome Page

CivorkbenchProjectsProverbStartWEB-IMF ek xml

= § Weh Archive

@] Context Parameters
a Serviets

g Servlet Mapping
¥ Mime Mapping

@) Welcome Files

3:3 Error Pages

a Tag Libraries

ﬁ Resource References
@ Security Constraints
% Login Configuration
M Roles

* Environment

Qﬂ EJB References

Descriptor I @ }(MLI

© N o g &

Click the XML tab to see the raw content of the descriptor. So far, thereisn’t much.
Switch back to the Descriptor tab.

Right-click Web Archive and select Properties.

Specify 5 (minutes) as the session timeout.

Right-click Servletsand select Add from the popup menu.

A new Untitled entry appears indented under Servlets.

CivorkbenchProjectsProverbStart WEB-INF ek xml*

= [E wehb Archive
ﬁ:’ Context Parameters
= -2 Serviets

»

= ® untitled

% |ritiiization Parameters
Role References

’ Ser'ulét Mapping

W nime Mapping

(@) Welcome Files

=Q Error Pages
‘ Tag Libraries
ﬁ Resource References

@j Security Constraints

% Login Configuration

M Roles

1

n

Descriptor |

9. Right-click Untitled and select Properties.

58

Working with the deployment descriptor

Tutorial: Developing a Web Application

10. Inthe Servlet property sheet, make these settings:

Option Value

Servlet name action

Type Servlet

Servlet class org.apache.struts.action.ActionServlet
Load on startup 2

Description Struts action controller

The property sheet looks like this:

WAR Serviet |

Servlet name:

Iaction

Servlet class:

Type: @ Serviet

[@=

Description:

ljrg.apache.strLﬂs.adion.AdionServlet J

Load on startup: E

ruts action cortroller

11. Savethefile.

Working with the deployment descriptor

59

4 Deploying and Testing the Welcome Page

+

[
EXERCISE 4-6: Add initialization parameters for the servlet

Inthisexerciseyouwill add several parametersfor the Struts controller servlet. The parameters
you need depend on the requirements of theindividual servlet. web.xml is still open in the Edit
Pane.

1. Inthe Servlets section under the newly added action servlet, right-click I nitialization
Parameter s and select Add from the popup menu.
If the elements under action aren’t visible, click the plus sign beside action to expand the
list.

2. Click the newly added Untitled to highlight it. (If the Property Inspector isn't open, right-
click Untitled and select Properties.)
Its properties display in the Initialization Parameters property sheet.

3. Inthe property sheet, specify these settings:

Option Value
Name config
Value /WEB-INF/struts-config.xml

Description | Configuration file for Struts actions

60 Working with the deployment descriptor

Tutorial: Developing a Web Application

WARI Servlet Intialization Parameters |

Mame:

l:onfig
Walue:

Description:

JEB-INF sstruts-canfig.xml

onfiguration file for Struts actions

4. Add four more parameters by right-clicking I nitialization Parameter s, selecting Add,

then highlighting Untitled to set the properties.

For the first parameter, specify these values in the property sheet:

Option Value
Name mapping
Value com.proverb.ProverbActionMapping

For the second, specify these values:

Option Value
Name application
Value com.proverb.ApplicationResources

Working with the deployment descriptor

61

4 Deploying and Testing the Welcome Page

For the next, specify these values:

Option Value
Name locdle
Vaue true

For the last, specify these values:

Option Value
Name debug
Value 3

The servlet section of the editor looks like this when you' ve added all the parameters:

CivorkbenchProjects ProverbStart WEB-INF ek xml*

= [E) web Archive
E.J Context Parameters
=] -} Serviets
= @ action
= " |ritialization Parameters
W config
W mapping
W application
W locale
W debug
Role References
Q Servlet Mapping

W Mime Mapping

5. Savethefile.

*

[

EXERCISE 4-7: Add a servlet mapping

In this exercise you will add a servlet mapping that tells the Struts action servlet how to handle
specific URLSs.

1. With web.xml open in the Edit Pane, right-click Servlet Mapping and select Add from
the popup menu.

62 Working with the deployment descriptor

Tutorial: Developing a Web Application

2. Select the new Untitled mapping and make these settings in the property sheet (if the
Property Inspector isn’t open, you know how to open it):

Option Value

Servlet name action

URL pattern *.do

+

[
EXERCISE 4-8: Specify the project’s default page
In this exercise you will specify that index.jsp is the page to be displayed if the user doesn’t

specify a specific page.

1. With web.xml open in the Edit Pane, right-click Welcome Files and select Add from the
popup menu.

2. Select the new Untitled item and in the property sheet specify index.jsp asthe Welcome
File.

3. Savethefile.

[
EXERCISE 4-9: Add tag libraries

Inthisexercise you will identify thetag libraries that the Struts application uses and where they
areinthearchive.
1. With web.xml still open in the Edit Pane, add three new items under Tag Libraries.

The techniqueisthe same asfor theinitialization parameters: for each one, right-click Tag
Librariesand select Add from the popup menu. Then select the new Untitled item and
set the valuesin the Tag Library property sheet.

For the first tag library, specify these values:

Option Value
Tag library URI struts-html.tld
Tag library location /WEB-INF/struts-html .tld

Working with the deployment descriptor 63

4 Deploying and Testing the Welcome Page

For the next, specify these values:

Option Value
Tag library URI struts-logic.tld
Tag library location /WEB-INF/struts-logic.tld

For the last, specify these values:

Option Value
Tag library URI struts-bean.tld
Tag library location /WEB-INF/struts-bean.tld

2. Save and close web.xml.

+

[
EXERCISE 4-10: Rebuild the archive

In this exercise you will rebuild the archive so that it includes the newly edited version of
web.xml.

1. Select Project>Build and Archive to regenerate the archivefile.

2. Check the Output Pane for messages.

Deploying the project

Using Workbench, you can create J2EE applications for any J2EE application server. For some
application servers, Workbench supports deployment directly with a Deploy Archive menu
item. For other application servers, you can build your archive in Workbench and use your
server’s deployment tools to deploy. Aslong as you stick to J2EE standards and avoid server-
specific code, archives built by Workbench are compl etely J2EE-compatible and can be
deployed to any J2EE server.

To deploy you'll need to do these tasks:

1. Defineaserver profile
2. Prepare server deployment information expected by your server, if any
3. Specify deployment settings

64 Working with the deployment descriptor

Tutorial: Developing a Web Application

4. Deploy the archive

If you' ve done another Workbench tutorial most of your deployment setup has already been
done. The next exercise gives you the main steps and provides project-specific information for
deploying this project. To read detailed deployment instructions for directly supported servers,
see Workbench Deployment Instructions.

+

-~

EXERCISE 4-11: Deploy the project
1. If you haven't created a profile for your server, select Edit>Profiles and create one now.
L For information, see the server profile procedure in the deployment instructions.
2. Usethefollowing information to create the server-specific part of the deployment process.

Working with the deployment descriptor 65

tutallDeploy.html#Definingaserverprofile
tutallDeploy.html

4 Deploying and Testing the Welcome Page

For most J2EE servers, the server-specific deployment information isin a separate file,
usually in XML format. For some servers, you need to add it to your project so that it is
built into the archive.

Server Where Option and value or file contents
SilverStream CreateaSilverStream | Enabled — True

deployment plan. In .

the Deployment Plan Deployed object name — ProverbStart

Editor, set valueson Server Profile — Select the profile you
the property sheet for | defined in the previous step from the
the Web Archive dropdown list box

Item. Session timeout — 5 minutes (set in the

deployment descriptor; not overridden
here)

URL s— ProverbStart

You can specify one or more relative
URLSsfor the Web application;
Workbench automatically provides the
archive name asthe first URL

Excluded JSPs— menu.jsp

Menu.jsp is an incomplete fragment
included in the other JSP pages. It doesn’t
have the appropriate headers to compile
correctly. You can either ignore the errors
it causes (a Deployment Settings option)
or use the Excluded JSPs property to
prevent the server from trying to compile
it.

Uses JARs — Leave blank

66 Working with the deployment descriptor

new tutallDeploy.html#CreateadeploymentplanfortheSilverStreamserver
new tutallDeploy.html#CreateadeploymentplanfortheSilverStreamserver

Tutorial: Developing a Web Application

Server

Where

Option and value or file contents

Sun Reference
I mplementation

Create aruntime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
inadirectory caled
META-INF and add
the file to the project.

<?xml version="1.0"
encoding="Cpl252"?>

<j2ee-ri-specific-information>
<server-names></server-name>
<rolemapping />
<web>
<display-
name>ProverbStart</display-name>
<context-
root>ProverbStart</context-roots>
</web>
</j2ee-ri-specific-informations>

Jakarta Tomcat — Tomcat isaservlet container and does not
support the database access reguired of
the Proverbs application

BEA WebLogic | Create aWebLogic <!DOCTYPE weblogic-web-app

deSCﬂpUM'Cd|ed zUB:IC "_é/BE?/DTD eb
. . ystems, Inc. e
Web'OgIC.XI'T]' V_wth Application 6.0//EN"
the content at I’Ight. "http://www.bea.com/servers/wl
Add it to the project s610/dtd/ weblogic-web-jar.dtd">
in the WEB-INF
dHECKNy <weblogic-web-app>
) <descriptions>
Proverbs Web application
</description>
<weblogic-versions>
</weblogic-versions>
</weblogic-web-app>

IBM WebSphere | — —

Oracle9iAS — —

L For more information and exercises with detailed steps, select the section for your

server in Workbench Deployment Instructions.

3. Specify deployment settings for your server by selecting Project>Deployment Settings.
On the Server Profilestab, select the server profile you defined above. If you have a
secure server, specify values for User name and Password.

Working with the deployment descriptor

67

new tutallDeploy.html#Createaruntimedeploymentdescriptor
new tutallDeploy.html#Createaruntimedeploymentdescriptor
new tutallDeploy.html#CreateaWebLogicdeploymentdescriptor
new tutallDeploy.html#CreateaWebLogicdeploymentdescriptor

4 Deploying and Testing the Welcome Page

On the Deployment I nfo tab, specify additional application-specific information, as
follows.

NOTE For thesetutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the

Tools Guide.
Server Option and value
SilverStream Silver Stream Deployment Plan — Select the plan you

defined in Step 2
Overwrite existing deployment — Selected
Verbosity — 3

Ignore compile errors— Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the

archive)

Sun Reference —

I mplementation

Tomcat —

BEA WebL ogic WebL ogic Application Name — ProverbStart; used in the
URL for accessing the Web application

IBM WebSphere Node Name — L eave blank or specify anode you' ve set up on
your server

Oracle9iAS Deployment Name — ProverbStart; used in the URL for

accessing the Web application

Target Path — Leave blank or specify a path you' ve set up on
your server

Website Name — Accept the default value or specify a name
you've set up on your server

L) For more detailed instructions, select the section for your server in the deployment
instructions.

4. Click Deploy in the Deployment Settings dial og.
OR
Click OK in Deployment Settings and select Project>Deploy Archive from the menu.

68 Working with the deployment descriptor

tutallDeploy.html#Settingupyourdeploymentenvironment
toolsDeployment.html

Tutorial: Developing a Web Application

Workbench displays progress messages, errors, and warnings in the Output Pane.

TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.

Testing the application
A WAR isaWeb application, so you test it in your Web browser.

|£ +
EXERCISE 4-12: Test the application in the browser

1. If you're already reading thistutorial in the browser, open a new browser window. If not,
start the browser of your choice.

2. Gotothe URL for your Web application. It will generally include these parts:

Part Description Example

Server URL for the server, including the port http://local host/Pr
number (if not the default port 80) and any | overbsCloud/

server-specific data http://www.mydo

TIP For aSilverStream server, includethe | main.com:8080/
database to which you deployed the
WAR

Web application URL for the WAR ProverbStart/

TIP For aSilverStream server, thisisa
relative URL that you specify in the
deployment plan. For some servers, it
isthe name of the J2EE archive—in
this case, the same value

Web page (Optional) Name of the JSP pageyou want | index.jsp
to view; the Welcome page displaysif you
omit this part of the URL

Testing the application 69

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

4 Deploying and Testing the Welcome Page

For example, it the application is deployed to alocal SilverStream server in a database

called ProverbsCloud and the URL in the deployment plan is ProverbStart, the case-

sensitive URL would be:
http://localhost/ProverbsCloud/ProverbStart/index.jsp

You see the index.jsp page with the text from the ApplicationResources.propertiesfile.

The links in the navigation menu don’'t work yet; you' [l add those pagesin later lessons.

“J Words of Wizdom - Microzoft Internet Explorer

Summary of what you’'ve done

70 Summary of what you've done

Tutorial: Developing a Web Application

Developing the application Inthislesson you built these parts of the Proverbs tutorial
application:

» Initial page of the application, implemented as a JSP page

» Resourcefilefor displayed text

* Deployment descriptor

e Server profile for deployment

* Server-specific deployment information; for SilverStream servers, a deployment plan

Summary of what you’ve done

71

4 Deploying and Testing the Welcome Page

Using Workbench tools You used these toolsin Workbench:

JSP Wizard (File>New)
Deployment Descriptor Editor

Menu items on the Project menu for building and archiving

Server profiles (Edit>Profiles)

Deployment Plan Editor (File>New or right-click on project and select Open Deployment

Plan), XML Editor, or Text Editor
Deployment (Project>Deploy Archive)

72

Summary of what you've done

Tutorial: Developing a Web Application

Next lesson At this point you've completed the basics for devel oping a Web application
(WAR) using Workbench. Feel freeto stop here and try out what you' ve learned. You can try
creating your own project or experiment with changing parts of the Proverb project.

Thelessonsin Part 11, “Formsand Datain aWeb Application” show how to use the database of
proverb data with your application.

Summary of what you’ve done 73

4 Deploying and Testing the Welcome Page

74

Summary of what you've done

Part Il

Forms and Data in a Web Application

This part teaches you how to write code in a Struts Web application that
accesses data via the J2EE application server’s connection pool and how to
define forms that display that data.

The lessons are:

e Lesson 5, “Setting Up Database Access”

e Lesson 6, “Defining an Action That Displays Data”
e Lesson 7, “Defining a Form and Results Page”

e Lesson 8, “Defining a Form for Database Update”

In this part you will learn more about Struts and how it makes handling forms
easier in the HTTP environment. Lesson 5, “Setting Up Database Access” sets
up the data access classes and configures the Web application to access the
server’s connection pool.

After the data access is set up, you can choose to do one or all of the remaining
lessons. Each of these lessons implements one of the items on the Proverbs
navigation menu using Struts techniques. Most of the Java code is already
written, and you will use Workbench to look at that code and to edit XML
configuration files.

5 Setting Up Database Access

What you will learn

Thislesson illustrates the code for accessing the data source and shows how to add database
connection information to the application’s configuration files.

You will learn about:

e Making the data source available to the application

What you will do

1. Add aresource reference to the deployment descriptor

2. ldentify the database in the server deployment information

3. Extend the Struts ActionServlet to get the data source during initialization
4. Changethe class for the application’s startup servlet

How long will it take? About 10 minutes

NOTE If you usethe SilverStream eXtend Application Server, it must be running when you
edit the deployment plan. If you use another application server, itstools for specifying
server deployment information may require the server to be running.

Making the data source available to the application
To make the database available to the application, you need to:

* Inthe deployment descriptor, identify a resource name for the database

* Inthe server’s deployment information, associate the resource name with an actual
database

* Inthe application code, get a DataSource object from the server’s connection pool when
the application servlet isinitialized and save it in the servlet context

You will do thisin the next exercises.

77

5 Setting Up Database Access

Resource references in the deployment descriptor

+

In the deployment descriptor you can identify names that your application usesto connect with
external services.

Resource reference Thenamefor adatabase connection isin the Resources section of the
deployment descriptor. In the Proverbs application, you'll call it:

jdbc/ProverbsDB
When you deploy, this INDI name is stored in the application server’s naming service.

NOTE JNDI isthe JavaNaming and Directory Interface. Application serversinclude anaming
service for finding objects in a distributed computing environment.

Environment variable The application doesn’t refer to the resource reference directly;
instead, an environment variabl e stores the name of the resource reference:

jndi-datasource-name

Thisindirection avoids hardcoding the application-specific database identifier in the Java code.
The code only needs to know the environment variable.

Getting the environment variable Constantsin the Java code identify the naming
service context and the environment variable:

// Context in naming service for environment entries

final static String JAVA COMPONENT ENV = "java:comp/env";
// Environment entry for data source name
final static String JNDI_DATASOURCE_NAME = "jndi-datasource-name";

The code concatenates the stringsto look up the environment variable; it usesthe variableto get
the resource name; then it looks up the resource in the naming service.

[
EXERCISE 5-1: Add aresource reference to the deployment descriptor

In this exercise you will define aresource reference for the database and an environment entry

that identifies the name of that resource.

1. Start Workbench if it isn't already running, then open the ProverbSart project.
TIP If you have worked on the tutorial recently, open ProverbStart by selecting

File>Recent Files and choosing it from the list.

2. Inthe Navigation Pane, right-click the project file ProverbStart.spf and select Open

Deployment Descriptor from the popup menu.
78 Making the data source available to the application

Tutorial: Developing a Web Application

6.
7.

If Workbench displays the Select Build Option dialog, accept the defaults and click OK .
Workbench builds the project, if requested, then opens the descriptor.
In the Edit Pane, select the Descriptor tab if it isn’t selected already.

Right-click Environment and select Add.

CivorkbenchProjectsProverbStat WWEB-INF ek xml*

Q action
¥ mime Mapping
= &% wWelcome Files
@ index.jsp
Q Error Pages
= '-' Tag Libraries
4 struts-html.tid
48l struts-logic.tid
4l struts-bean.tld
ﬁ Resource References
@ Security Constraints
%—j Login Configuration

M Roles

®
=

& Environment
% EJB References

Properties

1

Descriptor I E HML I

-

o

Right-click UntitledEnvironmentProperty and select Properties.
In the Environment Property property sheet, specify this information:

Option Value

Name jndi-datasource-name

Value jdbc/ProverbsDB

Entry type String

Description Name of resource reference for database

Making the data source available to the application

79

5 Setting Up Database Access

8. Inthe Edit Pane, right-click Resour ce References and select Add.

9.

The property sheet looks like this:

waR Environmernt Property |

Mame:

indi-datasource-name

Walue:

idbc.fProverbsDEl

Ertry type: IString vl
Description:

ame of resource reference for database

CrivorkbenchProjects ProverbStart WWEB-INF ek xml*

W nime Mapping
= & welcome Files
@ index.jsp
Q Error Pages
= '-] Tag Libraries
4l struts-html.tid
4l struts-logic.tid
4l struts-bean.tld

3
=]

ﬁ Resource References
@} Security Constraints
% Login Configuration
M Roles

= * Environment
$ jndi-datasource-name
* EJB References

Properties

4

mt

Descriptar I E RM'—':;I

Select UntitledResour ceRefer ence.

80

Making the data source available to the application

Tutorial: Developing a Web Application

If the Property Inspector is still open, it displays properties for the new resource reference.
If you closed the Property Inspector, open it by right-clicking the new entry and selecting
Properties.

10. Inthe Resource Reference property sheet, specify thisinformation:

Option Value
Name jdbc/ProverbsDB
Resource type javax.sgl.DataSource

Authorization type Container

Description Database reference for Proverbs application

The property sheet looks like this:

WaR Resource Reference |

Mame:

idbc.fProverbsDEl

Resource type: iavax.sql.DataSource ;I
Authorization type: IContainer ;I
Description:

stabase reference for Proverbs application

11. Close the Property Inspector.
12. Save the descriptor file and close it.

Making the data source available to the application 81

5 Setting Up Database Access

Identifying the database in the server deployment information

In the server deployment information, you associate a database from the server’s connection
pool with the resource reference in the deployment descriptor. The deployment information
connects the virtual resource with areal data source.

The way the server handles deployment information and resource references for databases
depends on the application server. Workbench provides an editor for creating a Workbench
deployment plan for the SilverStream eXtend Application Server. For other servers, use your
server tools and documentation to find out how to associate the descriptor’s resource reference
with the database of proverbs (which you set up in Lesson 2, “ Setting Up Your Data Source”).

+

[
EXERCISE 5-2: Identify the database in the server deployment information

In thisexercise you'll add XML elements or other formatted data to the file that holds your
server’s deployment information.

82 Making the data source available to the application

Tutorial: Developing a Web Application

1. Usethe following information to edit the server-specific part of the deployment process.

L) For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server

Where

Option and value or file contents

SilverStream

Edit the SilverStream
deployment plan.
When opening the
deployment plan,
make sure you have
Workbench build the
project so it picks up
the changes you just
made to the
deployment
descriptor. Also,
make sure the
SilverStream server is
running in order to
get alist of
connection pools.

Open the property
sheet for the Resource
Reference called
jdbc/ProverbsDB

Connection pool — Specify the database
of proverbsthat you' ve already added to
the server. If you are using the provided
Cloudscape database, specify
ProverbsCloud. (If you defined your
project as a J2EE 1.3 project and are
deploying to a SilverStream 4.x server,
specify /JIDBC/ProverbsCloud.)

Sun Reference
I mplementation

Edit sun-j2ee-ri.xml,
whichisincluded in
the archivein the
META-INF directory.

Add this XML inside
the web element after
the context-root
element

<resource-ref>
<res-ref-names>
jdbc/ProverbsDB
</res-ref-name>
<jndi-name>
ProverbsCloud
</jndi-names>
</resource-ref>

For ProverbsCloud, substitute the INDI
name you used when you installed the
database of proverbs on the server.

Making the data source available to the application

83

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

5 Setting Up Database Access

Server Where Option and value or file contents
Jakarta Tomcat — Tomcat isaservlet container and does not
support the database access required of
the Proverbs application
BEA WebLogic | Edit weblogic.xml, <reference-descriptor>
whichisincluded in <resource-description>
. . <res-ref-name>
the archive I.n the jdbc/ProverbsDB
WEB-INF directory. </res-ref-names
. <jndi-name>
Add this XM L aﬁer ProverbsCloud
the weblogic-version </jndi-name>
element. </resource-description>
</reference-descriptors>
For ProverbsCloud, substitute the INDI
name you used when you installed the
database of proverbs on the server.
IBM WebSphere | — —
Oracle 9IAS — —

Getting the data source when the application starts

After the resource for the data source is set up, you need to write code that uses the server’s
naming service and connection pool to get a DataSource object. In the Proverbs application this
codeisin the ProverbActionServlet, which extends the standard ActionServlet provided by
Struts. It overrides the servlet’sinit() method to get the DataSource.

You also need to tell the server to use this new servlet class. You do that in the deployment

descriptor.

+

-~

EXERCISE 5-3: Extend the Struts ActionServlet to get the data source during

initialization

In this exercise you will ook at the ProverbActionServlet class, which extends ActionServiet.

1. Inthe Archive layout view of the Workbench Navigation Pane, expand the WEB-INF
directory down to the proverb directory and highlight proverb.

2. Double-click ProverbActionServlet.javato open it in the Edit Pane.

84

Making the data source available to the application

Tutorial: Developing a Web Application

Notice that the class declaration extends ActionSer viet.
Notice that the init() method calls the parent’s init() method to perform the standard
initialization tasks.

super.init () ;

L ook at the code that accesses the server’s naming service to get a DataSource object. It
stores the DataSource object in the servlet context.

Here's the code (with comments removed):

Context ic = new InitialContext () ;

Context env = (Context) ic.lookup (Constants.JAVA COMPONENT_ ENV) ;
String dsName = (String) env.lookup (Constants.JNDI DATASOURCE NAME) ;
DataSource ds = (DataSource) env.lookup (dsName) ;

getServletContext () .setAttribute (Constants.DB_KEY, ds);
(Optional) Open Constants.java to see the values of the constants used in this code.
Closethefiles.

EXERCISE 5-4: Change the class for the application’s startup servlet

In this exercise you will edit the deployment descriptor to change the application’s startup
servlet.

1.

In the Navigation Pane, right-click the project file Prover bStart.spf and select Open
Deployment Descriptor from the popup menu.

If Workbench displays the Select Build Option dialog, accept the defaults and click OK .
Workbench builds the project, if requested, then opens the descriptor.
In the Servlets section, right-click action and select Properties.

In the Servlet property sheet, change the servlet class to
com.proverb.ProverbActionServlet. You can click the ellipses button and select the
classfromalist.

Change the description to Customized version of Sruts action controller.

Making the data source available to the application 85

5 Setting Up Database Access

6.
7.

The property sheet looks like this:

Servlet name:

Iaction

Type: % Serviet 0 Jsp

Servlet class:

l:om.proverb.ProverbAdionServlet J

Load on startup: E

Description:

ustomized version of Struts action cortroller

Close the Property Inspector.
Save and close the descriptor.

Summary of what you've done

Developing the application

Proverbs tutorial application:

In thislesson you built or learned about these parts of the

Resource reference in the deployment descriptor for naming an identifier for the data
source

Resource reference in the server deployment information that identifies the data source
Customized controller serviet

Using Workbench tools You used these toolsin Workbench:

Next lesson

Deployment Descriptor Editor
Deployment Plan Editor, XML Editor, or Text Editor

In the next lesson you will learn how to code and configure a Struts action.

86

Summary of what you've done

6 Defining an Action That Displays Data

What you will learn

In thislesson you will learn about Struts custom tags for displaying data and Java code for
handling a Struts action. You will also specify what the controller needs to know about the
action in the configuration file.

You will learn about:

Querying the database

Struts support for an action

Telling the controller about a Struts action
Retrieving datain the Action class

Struts tags for displaying data

Deploying and testing data access

What you will do

o g w D RE

Retrieve data from the database

Define the action in the Struts configuration file
Use an Action class to set up the data for a JSP page
Display the retrieved datain a JSP page

Deploy the application

Test today.jsp

How long will it take? About 10 minutes

NOTE

testing exercises.

Inthislesson you will need to run your J2EE application server for the deployment and

87

6 Defining an Action That Displays Data

Querying the database

One of the activities of the Proverbs application isto display today’s proverb. When the user
chooses the Today’s Proverb link, the URL today.do is sent to the server. The controller
recognizes this URL and invokes Struts processing. The controller callsamethod in the
TodayAction class that sets up a data object with the appropriate proverb. Based on the return
value, the controller selects a JSP page to display this data to the user.

-~

To handle the proverb data, the application has:

A Proverb bean classthat holds the data for one proverb. Its properties correspond to the
columns in the proverbs database table.

A Prover bDataA ccess class whose methods query the database and return a Collection of
one or more Proverb beans

A TodayAction class that makes the data available by calling the getTodaysProverb()
method in ProverbDataA ccess

A JSP page that uses the Collection object to display the Proverb bean's property values

An action element in the Struts configuration file tying the TodayAction class and
today.jsp to arequest URL

To keep the business | ogic separate from the application flow, the data access methods are
isolated in the ProverbDataA ccess class; you' || seethat none of the application’s Action classes
guery the database directly.

+

EXERCISE 6-1: Retrieve data from the database

Inthisexerciseyouwill look at how the ProverbDataA ccess class queries the database and uses
the Proverb class to build a Java Collection of the retrieved data.

1.

In the Workbench Navigation Pane, find the file Proverb.java and openit.

In Archive layout it isin the proverb folder under the WEB-I NF/classes directory. In
Source layout it is under the src directory.

In the Edit Pane, notice these pieces of code, which make the Proverb object a bean:
* Theclassimplementsthejava.io.Serializable interface

» Theproperties are defined asthree instance variables; they correspond to columnsin
the proverbs database table

» Eachinstance variable has aget and set method
Open the file Prover bDataAccess.java and find the get TodaysPr over b() method.

88

Querying the database

Tutorial: Developing a Web Application

4. Notice how the code:

e Usesconstantsto build the SQL query string; the column names don’t need to be

specified here

* Instantiates a Proverb object and sets its properties from the retrieved data
» Addsthe Proverb object to the proverbs ArrayL ist and returnsthe ArrayList asa

Collection
5. Closethefiles.

Struts support for an action

Review Lesson 1, “Architecture of an MV C Application” described how Struts uses a
controller to handle URLSs. The configuration file struts-config.xml configures the controller
and tellsit what processing to use for each action. Java classes do the processing, and JSP pages
display the results to the user.

You configure and support an action in a Struts application in these places:

Place

Description

web.xml (deployment
descriptor)

The servlet mapping specifies the URL s the controller handles. In
Proverbs, the controller handles all URLS in the form *.do (in
EXERCISE 4-7: “Add aservlet mapping” you already specified
the servlet mapping for the URL)

struts-config.xml

An action element identifies the action class that respondsto the
URL and the JSP page to display

Action class

A Java class extending the Struts Action class performs setup for
the JSP page

ActionForm class

If the JSP page contains forms, a Java class extending the Struts
ActionForm classisinstantiated to hold the datafor each form
field

Struts support for an action

89

6 Defining an Action That Displays Data

Place

Description

ActionMappings class

A Javaclass

properties for the forwarding keywords used by all the actions

extending the Struts ActionM appings class defines

JSP pages

The datato display to the user may depend on what happensin the

Action class

controller indicating which JSP page to display

s code; the Action class returns avalue to the

In Lesson 3, “Working with Projects and Archives’ you added the Struts JAR and tag libraries
to the project and assigned them to alocation in the archive. They are required for handling the

Struts code.

In this lesson You'll configure the today action and look at the associated Action class and
JSP page. There are no form classes for this action. In thislesson you will:

» Add thetoday action to struts-config.xml
* Look at the TodayAction class that extends Action and see how it accesses data
» Look at today.jsp to see how the Struts tags access the data set up by TodayAction

Telling the controller about a Struts action

The Struts configuration file contains action elements, which specify what happens when the
controller receives a URL with a particular action path. The action element specifies what
processing occurs and what page to display next. The controller reads thisfile to find out what

it is supposed to do.

An action element looks like this:

<action path="/actionname"
type="actionclass"

<forward name="keyword"

<forward name="keyword"

</action>

>
path="/target.jsp"/>
path="/target.jsp"/>

90

Telling the controller about a Struts action

Tutorial: Developing a Web Application

The table describes how the attributes and elements for an action are used in the today action:

Attribute
or element | Purpose Values in the today action
path Keyword in the URL that invokes | The complete path isactionname.do,
this processing. The path always which is set up in web.xml.
_begl nswith /. The. servlet mapping The path /today tells the controller
in web.xml specifies how the path . .
. : what should happen when it receives
keyword is combined to form a
the URL today.do.
URL.
type Action class that sets up the Thetype com.proverb.TodayAction
application environment for tells the controller to call the
displaying a Web page perform() method of the
TodayAction class.
forward JSP pagesto be displayed as a The Proverbs application uses
result of this action. The Action forward values of success and
class chooses which forward name | failure. When perform() returns a
to return to the controller. forward value, the controller
. displays the JSP page specified by
The name and path attri but_es the named forward element’s path
associate a forward name with a :
attribute.
JSP page.

A tablelaying out the attribute values for each action isagood planning tool for creating the
specificationsfor an application, as shown in “How Strutshandles actions’ on page 16. You can
fill out atablein that format for the today action if you want.

+

[
EXERCISE 6-2: Define the action in the Struts configuration file

Inthisexerciseyouwill add an action to the configuration file that tellsthe controller what to do
when it getsthe URL today.do.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/prover bs directory. Select
File>Open to open thefile.

1. Inthe Workbench Navigation Pane, find and open struts-config.xml. It'sin the WEB-
INF directory.

Telling the controller about a Struts action 91

6 Defining an Action That Displays Data

2. Inside the action-mappings element, enter this XML:

<action path="/today"
type="com.proverb.TodayAction" >

<forward name="success" path="/today.jsp"/>
<forward name="failure" path="/index.jsp"/>
</action>

3. Saveand close struts-config.xml.

4. (Optiona) Open web.xml and look at the servlet mapping. It specifies that the action
servlet handles any URL in the form *.do. Then close thefile.

Retrieving data in the Action class

The processing for TodayAction is ssimple: it gets the application’s DataSource object, which
was stored in the servlet context when the controller servliet was initialized; then it callsa
method in ProverbDataA ccess to get the proverb of the day.

+

[
EXERCISE 6-3: Use an Action class to set up the data for a JSP page

In this exercise you will ook at the TodayAction class, which gets the Collection from
ProverbDataA ccess and makes it available to the JSP page.
1. Inthe Workbench Navigation Pane, find the file TodayA ction.java and open it.

NOTE Do you remember where to find the Javafiles? In Archive layout they’ re under
the WEB-INF/classes directory. In Source layout they’ re under the src directory.

2. Find the code in the perfor m() method that gets the DataSource object from the servlet

context:
ServletContext ctxt = servlet.getServletContext () ;
DataSource ds = (DataSource) ctxt.getAttribute (Constants.DB_KEY) ;

3. Look at the code that instantiates the Prover bDataAccess class and calls the
getTodaysProver b() method. The constructor expects the DataSource object as an
argument.

ProverbDataAccess pda = new ProverbDataAccess (ds) ;
if (pda != null)
pvbs = pda.getTodaysProverb () ;

4. Find the code that saves the pvbs Collection in the request:

request.setAttribute (Constants.PVB_KEY, pvbs);

5. Open Constants.javato find out the value of PVB_KEY. The JSP page uses that value to
refer to the collection.

92 Retrieving data in the Action class

Tutorial: Developing a Web Application

6. Notice that when the dataretrieval is successful, the perform() method returns an
ActionForward value of success:

fwd = "success";

;ééurn (mapping.findForward (fwd)) ;
Thistells the controller which JSP page to display.
7. Closethefiles.

Struts tags for displaying data

Struts provides custom tags that can apply HTML formatting to a collection of data. You don’'t
have to know ahead of time how many itemsyou'll get.

In today.jsp you'll find these tags:

Tag Description

iterate | Iterate repeats the enclosed statements for each object in the specified collection.
The name attribute specifies the collection that TodayAction putsin the request
context. Tags inside iterate refer to the collection using the value of id.

The JSP page today.jsp usesiterate to identify the collection being processed; it
doesn’t matter that there is only oneitem in the collection.

write The property attribute for the write tag specifies a property of the Proverb object
whose value is written as text in the JSP page.

present | Strutscheckswhether the property you specify hasavalue. If so, Struts processes
the enclosed tags and text. In today.jsp, present checks whether the trandation
property has avalue; and if not, it omits the text label too.

*

[
EXERCISE 6-4: Display the retrieved data in a JSP page

In this exercise you will see how today.jsp accesses the collection and displays the daily
proverb.

1. Double-click today.jsp to open it.

Struts tags for displaying data 93

6 Defining an Action That Displays Data

2. Inthe Edit Pane, find the strutslogic:iterate tag:
<strutslogic:iterate name="ProverbCollection" id="pvb">
It uses the ProverbCollection attribute that TodayAction set in the request.

Do you recognize the value of the name attribute? It’s the value of PVB_KEY in
Constants.java.

3. Insidetheiterate tag, find awritetag. There are several.
<strutsbean:write name="pvb" property="text" />
In each write tag, the property attribute refers to a property in the Proverb class.
4. Closethefile.

Converting plain text to message tags Theh2 text and the text |abels for the data are
just Englishtextinthisfile. If you wanted to internationalize this application, do you know how
you would fix thiswith Struts message tags?

Thetext for the heading is already part of the ApplicationResources.propertiesfile. You can
replace the text in the heading with this message tag:

<strutsbean:message key="page.today.title"/>

For the data labels, you need to add keys and their text to the resources file, then refer to those
keysin the JSP page.

L) For more information about using the Struts message tag, see “How Struts enables
internationalization and localization” on page 13.

Deploying and testing data access

You’ ve reached the point where you can test the data access and see today.jsp display the
proverb data. You did the deployment setup the first time you deployed when you defined a
server profile and specified deployment settingsin Lesson 4, “ Deploying and Testing the
Welcome Page”. Now all you need to do is build and deploy.

+

-~

EXERCISE 6-5: Deploy the application
1. InWorkbench, select Project>Build and Archive.
There should be no errorsin the Build tab of the Output Pane.
2. Select Project>Deploy Archive from the menu.

94 Deploying and testing data access

Tutorial: Developing a Web Application

The Output Pane displays brief build output, then switches to the Deploy tab and shows
progress messages. There should be no errors.

[

EXERCISE 6-6: Test today.jsp
1. If your browser isrunning, open anew browser window. If not, start your browser now.
2. Enter the URL for the application. A typical URL for a SilverStream server might be:
http://localhost/ProverbsCloud/ProverbStart/index.jsp
3. Click Today’s Proverb in the application menu.

If the page displays a proverb, congratulations. You' ve successfully set up the today
action.

If it doesn’t work If you see no proverb but errorsinstead, you'll need to reexamine the
server deployment information, deployment descriptor, and Struts configuration file to make
surethey are correct. You can aso check the code that:

» Accessesthe server’s naming service in ProverbActionServlet

» Doesthe database query in ProverbDataAccess

Deploying and testing data access 95

6 Defining an Action That Displays Data

» Defines constants for the SQL statement in Constants.java

TIP Check the server console for error messages. If there are server-specific errors, the code

may nheed editing.

Summary of what you've done

Developing the application Inthislesson you built or learned about these parts of the
Proverbs tutorial application:

* ProverbDataA ccess class with methods that access the database

* Action element for the today action in struts-config.xml

* TodayAction class for handling the today.do URL

» JSPpage called today.jsp with custom tags for displaying proverb data

Using Workbench tools You used these toolsin Workbench:
* Edit Pane

* Building and archiving (Project>Build and Archive)

* Deployment (Project>Deploy Archive)

Next lesson Inthe next lesson you will learn how to get search criteriafrom the user in a
form and how to use Struts support for form processing.

96

Summary of what you've done

7 Defining a Form and Results Page

What you will learn

Inthislesson you will learn about Struts custom tags for displaying datain JSP pages and about
Javacodefor handling aform. Youwill alsolearn what the Struts controller needs to know about
formsin the configuration file.

You will learn about:

* Two actions for one form

e Setting up the form

» Processing for the actions

» Displaying the retrieved data

» Deploying and testing the form

What you will do

Define two actions in the Struts configuration file
Examine the form elementsin the JSP page

Examine the SelectForm class

Examine the SelectAction class

Examine the JSP pages that show the results of the search
Deploy the application

Test the Find Proverbs activity

N o o a M w d PR

How long will it take? About 10 minutes

NOTE Inthislesson you will need to run your J2EE application server for the deployment
exercise.

97

7 Defining a Form and Results Page

Two actions for one form

In struts-config.xml there are two action elements for finding proverbs: the select action
displays the form and the r esults action processes the submitted form.

The SelectAction class provides processing for both actions. When the controller callsits
perform() method, it passes an ActionMapping object that identifies which action is being
performed.

In addition to the Action class, you also need an ActionForm class for the new form. Its name
and class are defined in the form-beans section of the configuration file.

In Lesson 6, “Defining an Action That Displays Data” you learned about some basic attributes
for actions. To review them, see “Telling the controller about a Struts action” on page 90.

Because the actions for selecting a proverb use aform, the action elementsin the next exercise
include some new attributes:

* name: the name of the form object, assigned in the form-bean element

» scope: how long the form object is kept; typical values are request and session

» validate: whether to call the form’s validate() method when the form is submitted

» input: for an action that processes a submitted form, the JSP page that displays the form

EXERCISE 7-1. Define two actions in the Struts configuration file

In this exercise you will add two actions to the configuration file.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/Tutorial Files/prover bs directory.

1. Inthe Workbench Navigation Pane, find and open struts-config.xml.
Do you remember where the configuration files are in your project?

2. Beforethe closing tag </action-mappings> and after the </action> closing tag of the
today action, enter this XML for the action that displays the form:

<action path="/select"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
validate="false">

<forward name="success" path="/select.jsp"/>

<forward name="failure" path="/select.jsp"/>

<forward name="cancel" path="/index.jsp"/>
</actions>

98

Two actions for one form

Tutorial: Developing a Web Application

3. Still inside the action-mappings element and after </action> for the select action, enter
this XML for the action that displaysthe retrieved data:

<action path="/results"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
input="select.jsp">

<forward name="success" path="/selectResults.jsp"/>

<forward name="failure" path="/selectFailed.jsp"/>

<forward name="cancel" path="/index.jsp"/>
</action>

4. Intheform-beans section at the beginning of thefile, look at the for m-bean element that
defines selectForm and identifiesits Java class.

<form-bean name="selectForm"
type="com.proverb.SelectForm"/>

5. Saveand closethefile.

Setting up the form
The Find Proverbs activity displays aform so users can select proverbs.

Submit All Criteria

Using Struts tags to define a form

Struts provides custom tags that provide functionality parallel to the HTML form tags. In

addition to displaying the variousinput fields and buttons, the tags have attributes that associate
those fields with Struts form processing.

In select.jsp, the custom form tags are laid out using standard HTML table tags.

Setting up the form 99

7 Defining a Form and Results Page

+

-~

EXERCISE 7-2: Examine the form elements in the JSP page

In this exercise you will look at how the form implements properties and initializes data.

1
2

6

In the Workbench Navigation Pane, find select.jsp and open it in the Edit Pane.

Find the form custom tag. Its action attribute specifies the URL that is submitted to the
controller, and its name attribute identifies the form class that will store the submitted data
(described below).

<strutshtml:form action="results.do" name="selectForm"
type="com.proverb.SelectForm">

Find the tags for the keywordsfield. You'll see atext field and its label. The label text
comes from the resources file. Here's the code without the table tags:

<strutsbean:message key="page.select.keywordslabel"/>
<strutshtml:text property="keywords" size="40" maxlength="40"/>

Find the tags for the country field.

<strutsbean:message key="page.select.countrylabel"/>
<strutshtml:select property="country" >
<option value=""> </options>
<strutshtml:options property="countryList" />
</strutshtml:select>
The option tag provides ablank line in the selection list. The options tag refers to the
countryL.ist collection, which contains data retrieved by the SelectForm class.

Find the tags for the submit button.

<strutshtml:submits>
<strutsbean:message key="button.submitall"/>
</strutshtml:submit>

The button has no attributes. The message tag supplies a custom label.
Closethefile.

In the next exercise you' Il see how an ActionForm class defines propertiesthat match the fields
in the form.

Supporting the form with an ActionForm class

When you use Struts, each form has a class that extends ActionForm. The class has properties
that match the fields in the form. Your Action class has code that instantiates the form and
accesses submitted data by getting property values.

100

Setting up the form

Tutorial: Developing a Web Application

The SelectForm class in the Proverbs application has properties for the country and keywords
input fields. It also has a countryL.ist property for the countries displayed in the dropdown list.
The reset() method, which initializes and resets the form, calls the private getList() method,
which queries the database for the list of countries.

Fields in Properties in SelectForm.java
Find Proverbs form
Instance variables Access methods
property =countr Wi« W country get / setCountry()
praperty=
countryList * - -
| countryList get / setCountryList()
[properfy=Keywords+ » keywords get / setkeywords()

EXERCISE 7-3: Examine the SelectForm class
In this exercise you will look at how the form implements properties and initializes data.

1. Inthe Workbench Navigation Pane, find the file SelectForm.java and open it.
2. Inthe Edit Pane, notice that the SelectForm class extends the Struts ActionFor m class.

3. Find the properties that match the Struts form elementsin the JSP page. The properties
have:

* Instance variable declarations

* Get and set methods
4. Find the reset() method, which clears the input fields and retrieves the country list.
5. (Optional) Examine the getL ist() method.

The getList() method uses the same data access techniques that the today action uses. If
you want, review these techniques in EXERCISE 6-1: “ Retrieve data from the database”
and EXERCISE 6-3: “Use an Action class to set up the data for a JSP page”.

6. Closethefile.

Setting up the form 101

7 Defining a Form and Results Page

Processing for the actions

Asyou know, each Struts action uses a class that extends Action. In the Find Proverbs activity,
both of its actions use the same Action class.

B

In the code you can identify the current action by checking the path property of the
ActionM apping object passed to perform(). In the Proverbs application the SelectAction class
doesn’t check the path property; instead it checks whether the fields in the form have values:

+

If the form fields are empty, perform() returns the failure keyword; for the select action,
the empty form is displayed, and for the results action, the no-results page is displayed.

If the form has values, it must be the results action; so perform() retrievesthe proverb data
and returns the forward keyword success. The results page displays the data.

EXERCISE 7-4; Examine the SelectAction class

In this exercise you will look at code that instantiates a Sel ectForm object and retrieves a
collection of data.

1.
2.
3.

In the Workbench Navigation Pane, find the file SelectAction.java and open it.

In the Edit Pane, notice that the SelectAction class extends the Struts Action class.

Look at the code for:

* Instantiating a SelectForm object if it doesn’t exist—in the code if (form == null)

e Getting country and keyword datathe user entered by calling the form’s get methods
* Retrieving proverb data based on the user’s criteria

* Saving the retrieved proverb collection in the request

e Returning aforward keyword to the controller

Closethefile.

Displaying the retrieved data

Theresultsaction uses the same Action class as select, but the configuration specifies different
JSP pages for the forward keywords. There are two pages:

The success page displays all the proverbs that match the search criteria. As described for
the Today’s Proverb activity in “Retrieving datain the Action class’ on page 92,
SelectAction saves a collection of Proverb objects in the request, which the JSP page can
access.

102

Processing for the actions

Tutorial: Developing a Web Application

» Thefailure page reports that no proverbs matched the criteria. The text of the message is
stored in the A pplicationResources file.

EXERCISE 7-5: Examine the JSP pages that show the results of the search

In this exercise you will see code for displaying the retrieved proverbs as well asthe page for
reporting no results.

1. Open selectResultsjsp.

2. Find the Strutsiter ate tag and look at the tags that display the properties of the Proverb
object.
Do you remember how the data tags work? If not, review “ Struts tags for displaying data”
on page 93.

3. Open selectFailed.jsp.

Displaying the retrieved data 103

7 Defining a Form and Results Page

4. Find the message key page.selectfailed.info, which specifies the text reporting that no
proverbs were found.

5. (Optional) Open ApplicationResour ces.properties and read the actual text for that
message key.
6. Closethefiles.

Deploying and testing the form
Now you are ready to test the Find Proverbs activity.

+

I

EXERCISE 7-6: Deploy the application
1. InWorkbench, select Project>Build and Archive.
There should be no build errorsin the Output Pane.
2. Select Project>Deploy Archive from the menu.
There should be no deploy errorsin the Output Pane.

e
EXERCISE 7-7: Test the Find Proverbs activity
1. If your browser is running, open anew browser window. If not, start your browser.
2. Enter the URL for the application. A typical URL might be:
http://localhost/ProverbsCloud/ProverbStart/index.jsp
3. Click Find Proverbsin the application’s navigation menu.
You see the Find Proverbs form.

4. Fill inthe form. You can select a country from the dropdown list, specify keywords, or
both.

TIP Try the country China and the keyword man. Try the keyword light with Country
left blank.

104 Deploying and testing the form

Tutorial: Developing a Web Application

If the application finds proverbs that meet your criteria, it displays selectResults.jsp, titled
Your Proverbs.

If no proverb meetsthe criteria, it displays selectFailed.jsp.

Summary of what you’'ve done

Developing the application Inthislessonyou built or learned about these parts of the
Proverbs tutorial application:

» Action elements specifying how the controller handles displaying the form and the results
» JSPpage with aform for the user’s search criteria

* ActionForm class for the HTML form

» Action classthat sets up and processes either action

» JSPpagesfor displaying results or reporting failure

Using Workbench tools You used these toolsin Workbench:
* Edit Pane

* Building and archiving (Project>Build and Archive)

» Deployment (Project>Deploy Archive)

Next lesson Inthe next lesson you will learn about processing aform that updates the
database.

Summary of what you’ve done 105

7 Defining a Form and Results Page

106 Summary of what you've done

8 Defining a Form for Database Update

What you will learn

In thislesson you will reinforce what you' ve already learned about Struts forms and actions.
You'll also look at code and configure the actions that let the user update the database.

You will learn about:
» Configuring actions for contributing a proverb

* Theclassesthat support the contribute actions
» Deploying and testing the finished application

What you will do
1. Definethe contribute actionsin the Struts configuration file
2. Examine the code for the contribute actions
3. Deploy the application
4. Test the contribute action and the rest of the application’s activities

How long will it take? About 10 minutes

NOTE Inthislesson you will need to run your J2EE application server for the deployment
exercise.

Configuring actions for contributing a proverb

The Contribute a Proverb activity is similar to Find Proverbs. The contribute action handles
displaying the form, and the saveResults action handles the submitted data.

The new wrinkle in this activity is that each action hasits own Action class. The
ContributeAction classinstantiates the form if necessary. The SaveResultsAction class getsthe
submitted data and constructs the SQL for updating the database.

107

8 Defining a Form for Database Update

+

-~

EXERCISE 8-1: Define the contribute actions in the Struts configuration file

In this exercise you will add two actionsto the configuration file.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/prover bs directory.

1. Inthe Workbench Navigation Pane, find and open struts-config.xml.

2. Inside the action-mappings element after the closing tag </action> of the results action,
enter this XML for the action that displays the contribute form:

<action path="/contribute"
type="com.proverb.ContributeAction"
name="contributeForm"
validate="false">

<forward name="success" path="/contribute.jsp"/>
<forward name="failure" path="/contribute.jsp"/>
<forward name="cancel" path="/index.jsp"/>
</actions>
3. Stll inside the action-mappings element after </action>, enter this XML for the action
that updates the database:

<action path="/saveProverb"
type="com.proverb.SaveProverbAction"
name="contributeForm"
scope="session"
input="/contribute.jsp"
validate="true">

<forward name="success" path="/contributeResult.jsp"/>
<forward name="failure" path="/contributeFailed.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</actions>

4. Intheform-beans section at the beginning of thefile, look at the form-bean element that
defines contributeForm and identifiesits Java class.

<form-bean name="contributeForm"
type="com.proverb.ContributeForm" />

5. Saveand closethefile.

108 Configuring actions for contributing a proverb

Tutorial: Developing a Web Application

The classes that support the contribute actions

You' ve seen that there are two actions for the Contribute a Proverb activity. Both actions have
their support classes:

Action Supporting classes and JSP pages

contribute ContributeAction.java

ContributeForm.java

contribute.jsp

saveProverb SaveProverbAction.java

ContributeForm.java

contributeResult.jsp, contributeFailed.jsp

The Contribute a Proverb activity isimplemented alittle differently from Find Proverbs:

*

B

Each action has its own Action class, which makes the code in each one simpler

The ContributeForm uses validation; the class has a validate() method, and validation is
turned on in the configuration file. If validation fails, the controller displays contribute.jsp
again with error messages. The application requires the user to specify the proverb text
and a country; it does not require atranslation.

EXERCISE 8-2: Examine the code for the contribute actions

In this exercise you will look at how the contribute action differs from the Find Proverbs code
described in Lesson 7, “Defining a Form and Results Page”.

1.

In Workbench, open ContributeFor m.java and find the validate() method.

The method builds an ActionErrors object. Like the rest of the application, the text for the
error messages isin ApplicationResources.properties and the code refers to the message

keys.

Open contribute.jsp and find the errors custom tag.

When validation fails, the tag includes the error text in the page.
Open ContributeAction.java and note the reduced amount of code.
All this class needs to do is instantiate the form.

The classes that support the contribute actions 109

8 Defining a Form for Database Update

4. Open SaveProverbAction.java and look at the code that processes the submitted proverb
data

The code constructs a Proverb object of the submitted data and calls a method in
ProverbDataA ccess that updates the database.

Proverb pvb = new Proverb (
contribform.getProverb (),
contribform.getTranslation(),
contribform.getCountry ());

int result = pda.insertIntoProverbTable(pvb);

The code that gets a DataSource and instantiates the ProverbDataA ccess object should
look familiar.

When the update succeeds, the form is removed from the session so the datawon’t be
processed again.
session.removeAttribute (mapping.getAttribute()) ;

5. Closethefiles.

Deploying and testing the finished application
You' ve reached the end of this application, and it'stime to test all the activities.

+

[
EXERCISE 8-3: Deploy the application
These are the same deployment instructions you’ ve used before.
1. InWorkbench, select Project>Build and Archive.
There should be no build errors in the Output Pane.

2. Select Project>Deploy Archive from the menu.
There should be no deploy errorsin the Output Pane.

~ .
EXERCISE 8-4: Test the contribute action and the rest of the application’s activities
1. Open anew browser window.
2. Enter the URL for the application. A typical URL might be:
http://localhost/ProverbsCloud/proverbs/index.jsp

110 Deploying and testing the finished application

Tutorial: Developing a Web Application

3. Click Contributein the application’s navigation menu.
You see the contribute form.

4. Fill inthe form. You can leave trand ation blank, but the proverb text and source are
required.

|_@ http: #flocalhost/ProverbsCloud/ProverbFinal/contribute. do :_

Red sky at morning, sailors take
warning; red sky at night, sailor's
delight.

unknown

A red dawn weans a storm is coming: =
pretty sunset means good weather.

5. Click Submit.

If the application successfully updates the database with your proverb, it displays
contributeResult.jsp. If updating the database fails, it displays contributeFailed.jsp.

Deploying and testing the finished application 111

8 Defining a Form for Database Update

6.

7.
8.

Submit another proverb. Test the validation by leaving some of the fields blank.

You' |l see amessage reminding you what fields you left out. You can tell by looking at the

URL that the application isin the second action of the Contribute Proverbs activity.

http: #flocalhost/ProverbsCloud/ProverbStart/contribute. do

This is a test.

Test the other activitiesin the application.
When you’ re finished testing, close the browser.
You're done!

Summary of what you’'ve done

Developing the application Inthislessonyou built or learned about these parts of the
Proverbs tutorial application:

Action elements specifying how the controller handles displaying the form and processing
the submitted data

JSP page with aform for the user’s proverb data
ActionForm class for the HTML form
Action class for displaying the form

112

Summary of what you’ve done

Tutorial: Developing a Web Application

» Action classfor processing the submitted form and updating the database
e JSPpagesfor displaying success or failure

Using Workbench tools You used these toolsin Workbench:
* Edit Pane

* Building and archiving (Project>Build and Archive)

» Deployment (Project>Deploy Archive)

What's next Congratulations. You’ vefinished building the Proverbs Web application based
on the MV C architecture and Struts.

To learn more about J2EE and Workbench, try the Web Services tutorial.

Summary of what you’ve done 113

8 Defining a Form for Database Update

114 Summary of what you've done

Index

A

archives
about (tutorial) 33
building (tutorial) 55
structure of (tutorial) 35

C

classpaths
for project (tutorial) 44
Cloudscape
DBMS, obtaining 25
tutorial database 24
tutorial database with SilverStream 25
tutorial database with WebLogic 28
compiling code (tutorial) 55

D

databases
accessing from Web application (tutorial) 77
choices (tutorial) 24
identifying on server (tutorial) 82
querying from application (tutorial) 88
resource references (tutorial) 78
retrieving data, classes (tutoria) 92
updating (tutorial) 107
DataSource
getting from naming service (tutorial) 84
deployment descriptors
editing (tutoria) 57
environment variables (tutorial) 78
resource reference for database (tutorial) 78
servlet mapping (tutorial) 62
welcome page (tutorial) 63
deployment plans
databases (tutorial) 82

E

environment variables
in deployment descriptor (tutorial) 78

internationalization, Struts (tutorial) 13

J

J2EE application servers

connection pool (tutorial) 82
J2EE development (tutorial) 3
JavaServer Pages

JSP Wizard (tutorial) 50
JINDI

getting DataSource (tutorial) 84

L

localization, Struts (tutoria) 13

P
projects
about (tutorial) 33
adding content (tutorial) 39, 48
building and archiving (tutorial) 55
classpath (tutorial) 44
creating (tutorial) 36
ProverbFinal project (tutorial) 6
Proverbs application (tutorial)
about 6
classes for contribute actions 109
classesfor form 100
classesfor retrieving data 92
Contribute a Proverb activity 107
contribute action 107
datasource 24

115

Index

database setup 23 T
database tables 19 .
deploying 64 tutorials

deployment descriptor 57 developing a Web application (WAR) 3

displaying data 93
Find Proverbs activity 98

formfor selecting data 98 U
form tagsfor selecting data 99 URLs
INDI and DataSource 84 testing Proverbs application (tutorial) 69

querying database 88
resultsaction 98

saveResultsaction 107 W

select action 98 o

testing Contribute a Proverb activity 110 Web applications

testing Find Proverbs activity 104 Struts (tutorial) 4
testing Today's Proverb activity 94 web.xml _

testing welcome page 69 editing (tutorial) 57

Today’s Proverb action 88
updating database 107

S

servlets
configuring (tutorial) 57
initialization parameters (tutorial) 60
SilverStream eXtend Application Server
trial version, obtaining 25
Struts (tutorial)
action implementation 89
actionsand URL patterns 16
classesfor form 100
configuring action 98
controller implementation 16
controller, configuring actions 90
displaying data 93
formtags 99
forms 15
framework 4
internationalization 13
model implementation 19
MV C architecture 4
planning tool for configuring actions 16
view implementation 8

116

	Tutorial: Developing a Web Application
	Part I�Creating a Web Application Project
	Lesson 1 Architecture of an MVC Application 3
	What you will learn 3
	How the Proverbs application implements MVC and Struts 4
	Implementing the view 8
	Implementing the controller 16
	Implementing the model 19
	Data for the application 19
	Summary of what you’ve done 21

	Lesson 2 Setting Up Your Data Source 23
	What you will learn 23
	Choices for setting up a data source 24
	Adding the Cloudscape database to SilverStream 25
	Using the Cloudscape database with BEA WebLogic 28
	Summary of what you’ve done 31

	Lesson 3 Working with Projects and Archives 33
	What you will learn 33
	The relationship between projects and archives 33
	Creating a project 36
	Adding content to the project 39
	Setting up the project’s classpath 44
	Summary of what you’ve done 45

	Lesson 4 Deploying and Testing the Welcome Page 47
	What you will learn 47
	Adding new files to the project 48
	Working with JSP pages 50
	Building and archiving 55
	Working with the deployment descriptor 57
	Testing the application 69
	Summary of what you’ve done 70

	Part II�Forms and Data in a Web Application
	Lesson 5 Setting Up Database Access 77
	What you will learn 77
	Making the data source available to the application 77
	Summary of what you’ve done 86

	Lesson 6 Defining an Action That Displays Data 87
	What you will learn 87
	Querying the database 88
	Struts support for an action 89
	Telling the controller about a Struts action 90
	Retrieving data in the Action class 92
	Struts tags for displaying data 93
	Deploying and testing data access 94
	Summary of what you’ve done 96

	Lesson 7 Defining a Form and Results Page 97
	What you will learn 97
	Two actions for one form 98
	Setting up the form 99
	Processing for the actions 102
	Displaying the retrieved data 102
	Deploying and testing the form 104
	Summary of what you’ve done 105

	Lesson 8 Defining a Form for Database Update 107
	What you will learn 107
	Configuring actions for contributing a proverb 107
	The classes that support the contribute actions 109
	Deploying and testing the finished application 110
	Summary of what you’ve done 112

	About This Book
	Purpose
	Audience
	Prerequisites
	Lessons

	Part I Creating a Web Application Project
	Architecture of an MVC Application
	What you will learn
	What you will do

	How the Proverbs application implements MVC and Struts
	What is MVC?
	What is Struts?
	MVC structure of the tutorial application
	Examining the tutorial application
	EXERCISE 1-1: Start Workbench and open the ProverbFinal project

	Implementing the view
	EXERCISE 1-2: Look at source code for the navigation bar
	How Struts enables internationalization and localization
	EXERCISE 1-3: Look at the text resources file

	How to create a form using Struts tags
	EXERCISE 1-4: Look at the Struts version of an HTML form

	Implementing the controller
	EXERCISE 1-5: Look at the ActionServlet javadoc and the ProverbActionServlet class
	How Struts handles actions
	EXERCISE 1-6: Look at the Struts configuration file

	Implementing the model
	EXERCISE 1-7: Look at the source code for the TodayAction class

	Data for the application
	EXERCISE 1-8: Look at source code for accessing proverb data

	Summary of what you’ve done

	Setting Up Your Data Source
	What you will learn
	What you will do

	Choices for setting up a data source
	Building your own database
	EXERCISE 2-1: Build a database and import proverb data

	Using the Cloudscape database

	Adding the Cloudscape database to SilverStream
	EXERCISE 2-2: Add the Cloudscape database to the SilverStream server

	Using the Cloudscape database with BEA WebLogic
	EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape
	EXERCISE 2-4: Configure a WebLogic connection pool
	EXERCISE 2-5: Configure a WebLogic data source
	EXERCISE 2-6: Configure the connections for the WebLogic pool

	Summary of what you’ve done

	Working with Projects and Archives
	What you will learn
	What you will do

	The relationship between projects and archives
	Where source files reside
	Typical directory structure of an archive

	Creating a project
	EXERCISE 3-1: Set up directories for your project
	EXERCISE 3-2: Create a new project

	Adding content to the project
	EXERCISE 3-3: Add directories to the project
	EXERCISE 3-4: Add content from elsewhere in the file system

	Setting up the project’s classpath
	EXERCISE 3-5: Set up a classpath for building the project

	Summary of what you’ve done

	Deploying and Testing the Welcome Page
	What you will learn
	What you will do

	Adding new files to the project
	EXERCISE 4-1: Add files to the project

	Working with JSP pages
	EXERCISE 4-2: Create a new JSP page
	EXERCISE 4-3: Edit the JSP page

	Building and archiving
	EXERCISE 4-4: Compile the Java code and generate the archive file

	Working with the deployment descriptor
	EXERCISE 4-5: Begin editing the deployment descriptor
	EXERCISE 4-6: Add initialization parameters for the servlet
	EXERCISE 4-7: Add a servlet mapping
	EXERCISE 4-8: Specify the project’s default page
	EXERCISE 4-9: Add tag libraries
	EXERCISE 4-10: Rebuild the archive
	Deploying the project
	EXERCISE 4-11: Deploy the project

	Testing the application
	EXERCISE 4-12: Test the application in the browser

	Summary of what you’ve done

	Part II Forms and Data in a Web Application
	Setting Up Database Access
	What you will learn
	What you will do

	Making the data source available to the application
	Resource references in the deployment descriptor
	EXERCISE 5-1: Add a resource reference to the deployment descriptor

	Identifying the database in the server deployment information
	EXERCISE 5-2: Identify the database in the server deployment information

	Getting the data source when the application starts
	EXERCISE 5-3: Extend the Struts ActionServlet to get the data source during initialization
	EXERCISE 5-4: Change the class for the application’s startup servlet

	Summary of what you’ve done

	Defining an Action That Displays Data
	What you will learn
	What you will do

	Querying the database
	EXERCISE 6-1: Retrieve data from the database

	Struts support for an action
	Telling the controller about a Struts action
	EXERCISE 6-2: Define the action in the Struts configuration file

	Retrieving data in the Action class
	EXERCISE 6-3: Use an Action class to set up the data for a JSP page

	Struts tags for displaying data
	EXERCISE 6-4: Display the retrieved data in a JSP page

	Deploying and testing data access
	EXERCISE 6-5: Deploy the application
	EXERCISE 6-6: Test today.jsp

	Summary of what you’ve done

	Defining a Form and Results Page
	What you will learn
	What you will do

	Two actions for one form
	EXERCISE 7-1: Define two actions in the Struts configuration file

	Setting up the form
	Using Struts tags to define a form
	EXERCISE 7-2: Examine the form elements in the JSP page

	Supporting the form with an ActionForm class
	EXERCISE 7-3: Examine the SelectForm class

	Processing for the actions
	EXERCISE 7-4: Examine the SelectAction class

	Displaying the retrieved data
	EXERCISE 7-5: Examine the JSP pages that show the results of the search

	Deploying and testing the form
	EXERCISE 7-6: Deploy the application
	EXERCISE 7-7: Test the Find Proverbs activity

	Summary of what you’ve done

	Defining a Form for Database Update
	What you will learn
	What you will do

	Configuring actions for contributing a proverb
	EXERCISE 8-1: Define the contribute actions in the Struts configuration file

	The classes that support the contribute actions
	EXERCISE 8-2: Examine the code for the contribute actions

	Deploying and testing the finished application
	EXERCISE 8-3: Deploy the application
	EXERCISE 8-4: Test the contribute action and the rest of the application’s activities

	Summary of what you’ve done

	Index

