
SilverStream eXtend Workbench

Tutorial: Developing a Web Application

Version 4.0

June 2002

Copyright ©2002 SilverStream Software, Inc. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.

SilverStream and jBroker are registered trademarks and SilverStream eXtend is a trademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such notices on all copies or extracts of the Software
or its documentation. You do not acquire any rights of ownership in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant, Xalan and Xerces software is licensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", “Xalan”, "Ant" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS PROVIDED “AS IS” AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going,
SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM JikesTM and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/developerworks/opensource/license10.html. Source code for
JikesTM is available at <http://oss.software.ibm.com/developerworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/developerworks/projects/bsf.

SilverStream eXtend Workbench software contains Sun NetBeans software that has been modified by SilverStream. The source code for
such software may be found at http://www.silverstream.com/workbenchdownload together with the Sun Public License that governs the
use of such modified software. The Original Code is NetBeans. The Initial Developer of the Original Code is Sun Microsystems, Inc.
Portions Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved. The Contributor to Covered Code is SilverStream Software,
Inc.

Graph Layout Toolkit and Graph Editor Toolkit (C) 1992 - 2001 Tom Sawyer Software, Oakland, California, All Rights Reserved.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents
About This Book ix
Purpose ix
Audience ix
Prerequisites ix
Lessons x

PART I CREATING A WEB APPLICATION PROJECT

Lesson 1 Architecture of an MVC Application 3
What you will learn 3

What you will do 3
How the Proverbs application implements MVC and Struts 4

What is MVC? 4
What is Struts? 4
MVC structure of the tutorial application 6
Examining the tutorial application 6

EXERCISE 1-1: Start Workbench and open the ProverbFinal project 7
Implementing the view 8

EXERCISE 1-2: Look at source code for the navigation bar 11
How Struts enables internationalization and localization 13

EXERCISE 1-3: Look at the text resources file 14
How to create a form using Struts tags 15

EXERCISE 1-4: Look at the Struts version of an HTML form 15
Implementing the controller 16

EXERCISE 1-5: Look at the ActionServlet javadoc and the
ProverbActionServlet class 16

How Struts handles actions 16
EXERCISE 1-6: Look at the Struts configuration file 18

Implementing the model 19
EXERCISE 1-7: Look at the source code for the TodayAction class 19

Data for the application 19
EXERCISE 1-8: Look at source code for accessing proverb data 20

Summary of what you’ve done 21
iii

iv

Contents
Lesson 2 Setting Up Your Data Source 23
What you will learn 23

What you will do 23
Choices for setting up a data source 24

Building your own database 24
EXERCISE 2-1: Build a database and import proverb data 24

Using the Cloudscape database 25
Adding the Cloudscape database to SilverStream 25

EXERCISE 2-2: Add the Cloudscape database to the SilverStream
server 26

Using the Cloudscape database with BEA WebLogic 28
EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape

28
EXERCISE 2-4: Configure a WebLogic connection pool 29
EXERCISE 2-5: Configure a WebLogic data source 30
EXERCISE 2-6: Configure the connections for the WebLogic pool 30

Summary of what you’ve done 31

Lesson 3 Working with Projects and Archives 33
What you will learn 33

What you will do 33
The relationship between projects and archives 33

Where source files reside 34
Typical directory structure of an archive 35

Creating a project 36
EXERCISE 3-1: Set up directories for your project 36
EXERCISE 3-2: Create a new project 37

Adding content to the project 39
EXERCISE 3-3: Add directories to the project 39
EXERCISE 3-4: Add content from elsewhere in the file system 41

Setting up the project’s classpath 44
EXERCISE 3-5: Set up a classpath for building the project 44

Summary of what you’ve done 45

Lesson 4 Deploying and Testing the Welcome Page 47
What you will learn 47

What you will do 47
Adding new files to the project 48

EXERCISE 4-1: Add files to the project 48
Working with JSP pages 50

EXERCISE 4-2: Create a new JSP page 50
EXERCISE 4-3: Edit the JSP page 53

Tutorial: Developing a Web Application
Building and archiving 55
EXERCISE 4-4: Compile the Java code and generate the archive file

55
Working with the deployment descriptor 57

EXERCISE 4-5: Begin editing the deployment descriptor 57
EXERCISE 4-6: Add initialization parameters for the servlet 60
EXERCISE 4-7: Add a servlet mapping 62
EXERCISE 4-8: Specify the project’s default page 63
EXERCISE 4-9: Add tag libraries 63
EXERCISE 4-10: Rebuild the archive 64

Deploying the project 64
EXERCISE 4-11: Deploy the project 65

Testing the application 69
EXERCISE 4-12: Test the application in the browser 69

Summary of what you’ve done 70

PART II FORMS AND DATA IN A WEB APPLICATION

Lesson 5 Setting Up Database Access 77
What you will learn 77

What you will do 77
Making the data source available to the application 77

Resource references in the deployment descriptor 78
EXERCISE 5-1: Add a resource reference to the deployment descriptor

78
Identifying the database in the server deployment information 82

EXERCISE 5-2: Identify the database in the server deployment
information 82

Getting the data source when the application starts 84
EXERCISE 5-3: Extend the Struts ActionServlet to get the data source

during initialization 84
EXERCISE 5-4: Change the class for the application’s startup servlet

85
Summary of what you’ve done 86

Lesson 6 Defining an Action That Displays Data 87
What you will learn 87

What you will do 87
Querying the database 88

EXERCISE 6-1: Retrieve data from the database 88
v

vi

Contents
Struts support for an action 89
Telling the controller about a Struts action 90

EXERCISE 6-2: Define the action in the Struts configuration file 91
Retrieving data in the Action class 92

EXERCISE 6-3: Use an Action class to set up the data for a JSP page
92

Struts tags for displaying data 93
EXERCISE 6-4: Display the retrieved data in a JSP page 93

Deploying and testing data access 94
EXERCISE 6-5: Deploy the application 94
EXERCISE 6-6: Test today.jsp 95

Summary of what you’ve done 96

Lesson 7 Defining a Form and Results Page 97
What you will learn 97

What you will do 97
Two actions for one form 98

EXERCISE 7-1: Define two actions in the Struts configuration file 98
Setting up the form 99

Using Struts tags to define a form 99
EXERCISE 7-2: Examine the form elements in the JSP page 100

Supporting the form with an ActionForm class 100
EXERCISE 7-3: Examine the SelectForm class 101

Processing for the actions 102
EXERCISE 7-4: Examine the SelectAction class 102

Displaying the retrieved data 102
EXERCISE 7-5: Examine the JSP pages that show the results of the

search 103
Deploying and testing the form 104

EXERCISE 7-6: Deploy the application 104
EXERCISE 7-7: Test the Find Proverbs activity 104

Summary of what you’ve done 105

Lesson 8 Defining a Form for Database Update 107
What you will learn 107

What you will do 107
Configuring actions for contributing a proverb 107

EXERCISE 8-1: Define the contribute actions in the Struts
configuration file 108

The classes that support the contribute actions 109
EXERCISE 8-2: Examine the code for the contribute actions 109

Deploying and testing the finished application 110

Tutorial: Developing a Web Application
EXERCISE 8-3: Deploy the application 110
EXERCISE 8-4: Test the contribute action and the rest of the

application’s activities 110
Summary of what you’ve done 112
vii

viii

Contents

About This Book
Purpose

This tutorial shows you how to use SilverStream eXtend Workbench to develop a Web
application. You will learn about:

• Workbench projects

• J2EE WARs (Web applications packaged in Web archives)

• J2EE application servers

• Struts open source framework for the Model-View-Controller application architecture

• J2EE techniques for database access

Audience

This tutorial is for developers who want an introduction to Workbench projects or want to learn
more about Web applications.

Prerequisites

Experience This tutorial assumes you are a Java programmer who wants to use Workbench
to develop J2EE applications. It assumes you have the following background:

• Experience with the Java programming language

• Understanding of the general structure of XML

• Understanding of a graphical development environment

• General understanding of J2EE concepts such as servlets, JavaServer Pages (JSP), and tag
libraries

• Understanding of how browsers, application servers, and databases interact in Web
applications

• Relational database knowledge

Software In addition to the Workbench software, you need:

• A J2EE application server for deploying the application

• A DBMS for data storage
ix

About This Book
If you already have this software, you can deploy the standards-based J2EE WAR to your
application server using the Workbench deployment commands when available or your server’s
deployment tools.

If you don’t have the required software, you can download the trial version of the SilverStream
eXtend Application Server, which includes the Cloudscape DBMS, from
www.silverstream.com/downloads. For the tutorial, all you need is the Lite Edition (J2EE
server and Cloudscape).

In the supporting tutorial files, you’ll find a Cloudscape database with the application data as
well as SQL files for building your own database.

Lessons

This tutorial is divided into two parts: “Creating a Web Application Project” and “Forms and
Data in a Web Application”.

The lessons in Part I teach you the basics of Workbench projects and the architecture of a Struts
MVC application.

Lesson Description

1 Architecture of an
MVC Application

Examines the architecture of the Proverbs application and
how it uses Struts to implement an MVC (Model-View-
Controller) design pattern

2 Setting Up Your Data
Source

Describes database choices for the Proverbs application
and teaches you how to set up the provided Cloudscape
database

3 Working with Projects
and Archives

Teaches you how to set up projects for Workbench and
build a J2EE archive

4 Deploying and Testing
the Welcome Page

Introduces the JSP Wizard and server profiles, then
teaches you how to deploy an application
x

new http://www.silverstream.com/downloads

Tutorial: Developing a Web Application
The lessons in Part II teach you how to access a database in a J2EE application and how to
define forms that display and update that data.

Lesson Description

5 Setting Up Database
Access

Illustrates the code for accessing the data source and
teaches you how to add database connection information
to the application’s configuration files

6 Defining an Action
That Displays Data

Teaches you about Struts custom tags for displaying data,
Java code for handling a Struts action, and configuration
settings for the action; examines the method calls that
retrieve the data

7 Defining a Form and
Results Page

Teaches you about Struts forms

8 Defining a Form for
Database Update

Teaches you about coding and configuring actions that
update the database
xi

xii

Part I Creating a Web Application Project
This part teaches you how to use SilverStream eXtend Workbench to develop
the sample Web application and how the MVC architecture is used in a Struts
application.

The lessons are:

• Lesson 1, “Architecture of an MVC Application”
• Lesson 2, “Setting Up Your Data Source”
• Lesson 3, “Working with Projects and Archives”
• Lesson 4, “Deploying and Testing the Welcome Page”

Lesson 1, “Architecture of an MVC Application” provides a walkthrough of the
Proverbs Web application, which uses Struts to implement the Model-View-
Controller architecture. In this lesson you see how different parts of the
application partition the work. You use Workbench to examine the files in a
completed project.

In Lesson 2, “Setting Up Your Data Source” you set up a data source of proverbs
using the DBMS of your choice.

In Lesson 3, “Working with Projects and Archives” and Lesson 4, “Deploying and
Testing the Welcome Page”, you use Workbench to define the Proverb project,
edit files, build the archive, and deploy to the server. After you’ve done these
lessons, you should feel ready to begin work on your own projects.

1
 Architecture of an MVC Application Lesson 1
What you will learn
This lesson describes the architecture of the Proverbs application and how it uses Struts to
implement an MVC (Model-View-Controller) design pattern. In the lesson you will use
SilverStream eXtend Workbench to examine some files from the completed project to
understand how the application fits together. In later lessons you will use Workbench to develop
parts of the Proverbs application.

You will learn about:

• How the Proverbs application implements MVC and Struts

• Implementing the view

• Implementing the controller

• Implementing the model

• Data for the application

NOTE If you understand J2EE design and Struts or just want to dive right in, you can skip this
guided tour of the application and begin using Workbench in Lesson 2, “Setting Up
Your Data Source”.

What you will do
1. Start Workbench and open the ProverbFinal project

2. Look at source code for the navigation bar

3. Look at the text resources file

4. Look at the Struts version of an HTML form

5. Look at the ActionServlet javadoc and the ProverbActionServlet class

6. Look at the Struts configuration file

7. Look at the source code for the TodayAction class

8. Look at source code for accessing proverb data

How long will it take? About 25 minutes

NOTE You don’t need to be running your J2EE application server for this lesson.
3

1 Architecture of an MVC Application
How the Proverbs application implements MVC and Struts
The Proverbs tutorial is a Web application—an application that is packaged as a WAR (Web
archive) and deployed to a J2EE application server. Standard features of a WAR include:

• A deployment descriptor in XML format

• JSP pages that are accessible to a browser

• Java classes that are hidden from URL access

• Other files—such as JAR files used by the Java classes, image files used by JSP pages,
custom tag libraries, and other XML configuration files

What is MVC?

The Model-View-Controller design pattern prescribes a way of partitioning the application’s
code to keep the user interface (the view) isolated from the business logic (the model). A
controller determines how user requests are routed to pages and what business logic is invoked
to process each request.

The combination of JSP pages for the view and servlets for the controller is called Model 2 and
is the currently accepted way to implement an MVC architecture in a Web application.

The Proverbs application implements the MVC architecture by separating user interface from
business logic and managing the application flow with a controller servlet.

Much has been written about MVC architecture, and there isn’t space here to describe the
subtleties. For more information, see J2EE Blueprints on the Sun Microsystems Web site
(http://java.sun.com/blueprints).

What is Struts?

Struts is part of the Jakarta Project at the Apache Software Foundation. It is a framework that
implements MVC for Web applications. It provides a servlet controller, tag libraries, and form
classes that handle information display in JSP pages, and a configuration file that tells the
controller what classes to instantiate to process application data.

A typical Struts application includes:

• JSP pages with Struts custom tags that display text, create forms for data input, and
process collections of data for presentation on the page

• ActionForm bean classes that populate forms with data and retain data for future requests

• Action classes that set up data for JSP pages and process user input
4 How the Proverbs application implements MVC and Struts

new http://java.sun.com/blueprints
new http://java.sun.com/blueprints
new http://www.apache.org

Tutorial: Developing a Web Application
• An action servlet that acts as the controller, routing requests to action classes and
selecting JSP pages to display

• A configuration file that defines the associations between URLs, action classes, form
classes, and JSP pages

• Resource files that contain the text strings for the application and can be provided in
several languages

Here’s a quick summary of how Struts implements MVC:

Part Description

Model Action classes use the request or the session to store application state
information. They can instantiate business logic classes to handle application
data.

You write an action class for each URL that the controller processes.

View JSP pages and ActionForm beans display data and forms. ActionForm beans
populate form fields with data and retain and validate that data. The data can
remain available between requests, and the form can display the previously
entered data again.

You write an ActionForm class for each form on your JSP pages.

Controller The ActionServlet class (or your extension of it) runs as a server process and
processes URLs it recognizes. It reads the struts-config.xml file to find out
what action classes to instantiate and what JSP pages to display for each
URL.

You can use the ActionServlet class as is or extend it to provide custom
behavior.
How the Proverbs application implements MVC and Struts 5

1 Architecture of an MVC Application
MVC structure of the tutorial application

The following diagram illustrates how the application implements the MVC pattern.

Examining the tutorial application

To get an overview of the Proverbs application, you’ll start Workbench and take a look at the
code for the finished version. In later lessons you’ll set up a data source and learn how to deploy
and run the application.
6 How the Proverbs application implements MVC and Struts

Tutorial: Developing a Web Application
EXERCISE 1-1: Start Workbench and open the ProverbFinal project

1. Start Workbench. You can use the SilverStream Workbench shortcut on the Windows Start
menu.

2. Select File>Open Project.

3. Find the ProverbFinal.spf file in the Workbench-install-dir/docs/tutorial/ProverbFinal
directory and click Open.

NOTE The default installation directory is Program
Files/SilverStream/eXtendWorkbench.

4. In the View using list box, select Archive layout if it isn’t already selected.

In the upper left, the Navigation Pane displays the Archive layout of the project.

5. Expand the archive folders and look at the files in each folder. The files are displayed in
the lower part of the Navigation Pane.
How the Proverbs application implements MVC and Struts 7

1 Architecture of an MVC Application
In the rest of this lesson’s exercises you will look at MVC and Struts implementation details in
these files.

Implementing the view
The Proverbs application has three main activities:

• Displaying the proverb of the day (today.jsp)
8 Implementing the view

Tutorial: Developing a Web Application
• Letting the user search for proverbs by specifying a country that proverbs come from or
keywords that the text or translation contains (select.jsp, selectResults.jsp,
selectFailed.jsp)
Implementing the view 9

1 Architecture of an MVC Application
• Letting the user contribute a proverb (contribute.jsp, contributeResult.jsp,
contributeFailed.jsp)

The welcome or starting page is index.jsp. Navigation is handled by including the JSP fragment
menu.jsp in all the other pages. Menu.jsp has links to the three main activities.
10 Implementing the view

Tutorial: Developing a Web Application
In the diagram you see the three main activities in the second row. If the activity involves
submitting a form, the third row shows the pages that display the result.

EXERCISE 1-2: Look at source code for the navigation bar

1. In the Navigation Pane, highlight the project file name ProverbFinal.spf.

The JSP pages are at the root of the archive and you see them listed in the lower part of the
pane.

2. Double-click menu.jsp to open it in the Edit Pane.
Implementing the view 11

1 Architecture of an MVC Application
3. Notice the link and message custom tags. The link tag specifies the URLs for the items in
the navigation menu; the message tag gets displayed text from a resources file.

<strutshtml:link href="today.do">
<strutsbean:message key="nav.todaysproverb" />

</strutshtml:link>

Menu.jsp is an incomplete JSP page; there are no introductory tags identifying tag
libraries or providing HTML wrapper elements. It is meant to be included in another file.
12 Implementing the view

Tutorial: Developing a Web Application
4. Double-click index.jsp. It opens in the Edit Pane.

5. Notice the taglib directives near the beginning of the file.
<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

These tell the JSP page where to find the definitions of the custom tags.

6. Notice the JSP include directive after the body tag that inserts the menu code.
<%@ include file="menu.jsp"%>

The menu code is embedded and then compiled with the rest of index.jsp. There are taglib
directives in index.jsp for all libraries used in both index.jsp and menu.jsp.

7. Close each file by clicking its Close button at the upper right in the Edit Pane.

How Struts enables internationalization and localization

Struts uses Java resource bundles and the message custom tag to make text management and
localization easier. Although the message tags make it harder to judge the appearance of the JSP
pages as you edit, it’s easier to edit and translate the application text when it is collected in a
single file.

A resource bundle is a group of related property files. The main file contains text in the default
language for the application. In the file, each property has the following format, where key is the
value you refer to in the code and value is the text the application displays:

key=value
Implementing the view 13

1 Architecture of an MVC Application
In the deployment descriptor (web.xml), a servlet initialization parameter identifies the
properties file that contains the application text.

<init-param>
<param-name>application</param-name>
<param-value>com.proverb.ApplicationResources</param-value>

</init-param>

To provide text in other languages, you create additional files with the same message keys and
translated text. Each file includes its two-letter ISO language code in the name, like this:
ApplicationResource_xx.properties.

For more information, see the ResourceBundle class in your JDK documentation
(java.sun.com/j2se/1.3/docs/api).

EXERCISE 1-3: Look at the text resources file

1. In the Workbench Navigation Pane, expand the WEB-INF directory tree and select the
WEB-INF/classes/com/proverb directory.

2. Find ApplicationResources.properties at the end of the list and double-click it to open it
in the Edit Pane.

3. Look at the message keys and values. These message keys are used on the welcome page:
site.title=Words of Wisdom
site.greeting=Welcome to Words of Wisdom
site.info=Return each day to read a proverb
from somewhere around the
world...

4. In the Navigation Pane, highlight ProverbFinal.spf; then double-click index.jsp in the
file list.

5. Look for the Struts message tags that refer to the message keys above. Select
Search>Find and Find Next (F3) to help find them all.

6. (Optional) Look for the message tags in the other JSP files too.

7. Close the files.
14 Implementing the view

new http://java.sun.com/j2se/1.3/docs/api

Tutorial: Developing a Web Application
How to create a form using Struts tags

Custom tags in the Struts HTML tag library implement standard HTML elements and provide
hooks to Struts processing. The form tag specifies the target URL for the submitted form and an
ActionForm class that has properties for the form’s fields. Within each form tag, other Struts
tags for the various HTML input fields provide setup and processing.

The action for this form tag is recognized by the controller servlet:

<strutshtml:form action="results.do" name="selectForm"
type="com.proverb.SelectForm">

For each form, you define an ActionForm class with properties that match the input fields. This
class can validate user input and store the data between requests. If the application needs to
redisplay the form, the user’s data can be restored from this class.

EXERCISE 1-4: Look at the Struts version of an HTML form

1. In the Navigation Pane, highlight ProverbFinal.spf so that you see the list of JSP files.

2. Double-click select.jsp to open it in the Edit Pane.

3. Find the form tag. It begins strutshtml:form.

4. Look at the fields in the form. They are organized in table rows.

• The country row has a label (strutsbean:message) and a dropdown list
(strutshtml:select). An options tag provides the list choices from the countryList
property, a Java Collection that is retrieved from the database.

• The keyword row has a label (strutsbean:message) and an input field (strutshtml:text).

5. (Optional) Open the ApplicationResources.properties file again to look up the text that
is displayed by each message tag.

6. In the Navigation Pane, expand the WEB-INF directory down to the proverb directory
and highlight the proverb folder.

7. Double-click SelectForm.java to open it in the Edit Pane.

8. Notice that it extends ActionForm.

The class is a JavaBean, and the instance variables are properties with get and set
methods. The properties correspond with fields on the form. The bean also sets up the
countryList Collection as a property. The getList() method looks up the list data in the
database.

9. Close the files.
Implementing the view 15

1 Architecture of an MVC Application
Implementing the controller
The controller is a servlet that listens for URLs and routes the application to the appropriate next
step. In the deployment descriptor of the WAR, the servlet mappings specify the custom URLs
the servlet will process:

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

In the Proverbs application, the forms use URLs like contribute.do and select.do to identify the
preprocessing and data setup for an associated JSP page. The Struts configuration file
(described later) sets up the association for the controller.

EXERCISE 1-5: Look at the ActionServlet javadoc and the ProverbActionServlet
class

1. Open another browser window and visit the Struts Web site at jakarta.apache.org/struts.

2. Click a Javadoc link and look at the ActionServlet class. The description discusses
Struts’s MVC implementation.

3. In the Workbench Navigation Pane, expand the WEB-INF directory down to the proverb
directory and highlight the proverb folder.

4. Double-click ProverbActionServlet.java to open it in the Edit Pane. Notice that it
extends the Struts ActionServlet class.

5. Take a look at the init() method.

The Proverbs application overrides the init() method to do some initialization tasks. It gets
a DataSource object for the Proverbs database from the server and stores it in the servlet
context.

6. Close the file.

7. (Optional) Close the extra browser window.

How Struts handles actions

The struts-config.xml file identifies the URLs for the application and describes how the
controller processes them.
16 Implementing the controller

new http://jakarta.apache.org/struts

Tutorial: Developing a Web Application
In the first section of the file, form-bean elements identify the classes for the forms in your
application:

<form-beans>
<form-bean name="selectForm"

type="com.proverb.SelectForm"/>

In the second section, action elements identify the URLs and how they are processed. There is
an action element for each of the URLs in your application. Here’s the XML for one:

<action path="/select"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
validate="false">

<forward name="success" path="/select.jsp"/>
<forward name="failure" path="/select.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</action>

A table like this is helpful in planning the application flow and the classes needed at each step:

NOTE * The input JSP page is used when the URL is processing a submitted form. For actions
that set up the form, the input attribute is omitted.

Request
URI

Action class
(called type)

Form
name

Input
JSP *

Other
attributes

Forward mappings:
name & path

select.do com.proverb.
SelectAction

selectForm — scope=
session

validate=
false

success; /select.jsp

failure; /select.jsp

cancel; /index.jsp

results.do com.proverb.
SelectAction

selectForm select.jsp scope=
session

success;
/selectResults.jsp

failure;
/selectFailed.jsp

cancel; /index.jsp
Implementing the controller 17

1 Architecture of an MVC Application
EXERCISE 1-6: Look at the Struts configuration file

1. Highlight WEB-INF in the Archive layout of the Navigation Pane.

2. In the file list, double-click struts-config.xml to open it in the Edit Pane.

3. Look at the two form-bean elements in the form-beans section. They identify the classes
that support the forms in the application.

4. Look at the action elements in the action-mappings section.
18 Implementing the controller

Tutorial: Developing a Web Application
5. (Optional) Study each action element and fill out a table like the one above for the rest of
the actions. Although a rote activity, it will help you recognize the parts of the application
as you encounter them in the rest of the tutorial.

6. When you’re done, close the file.

Implementing the model
In a Struts application, the model is implemented by Action classes, which the controller
invokes. The Action class changes the application state based on submitted data and other
relevant conditions. Action classes can handle all the processing, or they can call other classes
for application-specific business logic. In the Proverbs application, the Action classes
instantiate other classes to access the database.

EXERCISE 1-7: Look at the source code for the TodayAction class

1. In the Navigation Pane, expand the WEB-INF directory, if necessary, and highlight the
proverb folder.

2. Double-click TodayAction.java to open it in the Edit Pane.

3. Look at the code that gets the DataSource that was saved in the servlet context. The code
instantiates the ProverbDataAccess class with the DataSource and calls its
getTodaysProverb() method.

4. Close the file.

There’s more about data access in the next section.

Data for the application
The data for the application is a database of proverbs. The application uses SQL to retrieve the
data and update the database when the user contributes a proverb.

• There are only two tables: proverbs and todaysproverb.

• The columns of the proverbs table are proverbid, proverbtext, pvbtranslation, and
source.

• The columns of the todaysproverb table are proverbid and dayofyear.
Implementing the model 19

1 Architecture of an MVC Application
In a later lesson you will set up a database using the DBMS of your choice. When the data is set
up, you can deploy and run the application.

EXERCISE 1-8: Look at source code for accessing proverb data

In this exercise you will look at three files: Constants.java, Proverb.java, and
ProverbDataAcess.java.

1. Expand the WEB-INF folder and highlight the proverb folder.

2. In the file list, double-click Constants.java to open it in the Edit Pane.

3. Notice the SQL strings for selecting data and building WHERE clauses. For example, in
the data access code, these two strings are joined with where to build a query.

public static final String SQL_SELECT_PROVERB =
"SELECT proverbtext, pvbtranslation, source from proverbs ";

public static final String SQL_WHERE_TODAYSPROVERB =
"proverbid = (select proverbid from todaysproverb where dayofyear=%p)

";

These constants can be tweaked if necessary for a different DBMS.

4. In the file list, double-click Proverb.java.

5. Look at the instance variables that match columns in the Proverb table in the database.

A Proverb bean encapsulates a row of data from the database. Each Proverb bean is added
to a collection that a JSP page accesses when it displays proverb information.

6. In the file list, double-click ProverbDataAccess.java.

7. Notice that the constructor has saved a DataSource object in an instance variable.

The caller gets it from the servlet context before instantiating ProverbDataAccess. Do you
remember that ProverbActionServlet stored it there during initialization?

8. Select Search>Find to look for the method getProverbList() or getTodaysProverb().

The first half of each of these methods builds a SQL statement. In the second half, the
code uses the data source to get a connection. Then it submits the SQL and processes the
result set.

9. Close the ProverbFinal project by selecting File>Close Project from the menu.
20 Data for the application

Tutorial: Developing a Web Application
Summary of what you’ve done

Developing the application In this lesson you learned about the Model-View-Controller
design pattern and how the Proverbs application uses Struts to implement MVC.

Using Workbench tools You used these tools in Workbench:

• File>Open Project

• Navigation Pane, Project tab, and Archive layout

• Edit Pane

Next lesson In the next lesson you will learn about the database for the tutorial application.
Summary of what you’ve done 21

1 Architecture of an MVC Application
22 Summary of what you’ve done

2
 Setting Up Your Data Source Lesson 2
What you will learn
This lesson describes the choices you have for setting up a database for the Proverbs application
and shows you how to use the Cloudscape database that is provided with Workbench.

You will learn about:

• Choices for setting up a data source

• Adding the Cloudscape database to SilverStream

• Using the Cloudscape database with BEA WebLogic

What you will do

There are several exercises in this lesson, but you only need to do what applies to your situation:

1. Build a database and import proverb data

You don’t need to do this exercise if you can use the provided Cloudscape database with
your server.

2. Add the Cloudscape database to the SilverStream server

3. Edit the startup file for WebLogic to use Cloudscape

4. Configure a WebLogic connection pool

5. Configure a WebLogic data source

6. Configure the connections for the WebLogic pool

For other servers, make the database available using your own server tools and procedures.

How long will it take? About 10-25 minutes

NOTE You will need to start your J2EE application server if it needs to be running when you
add the database.
23

2 Setting Up Your Data Source
Choices for setting up a data source
Since the Proverbs application looks up and stores proverb data, the application needs a data
source. Here are two suggestions.

Use the provided Cloudscape database Use the Cloudscape DBMS from IBM and the
ProverbsCloud database provided with the tutorial files.

All you need to do is make the database available to your application server. There are
instructions for some servers in “Using the Cloudscape database” on page 25. There is also
information on where to get Cloudscape.

Build your own database Use another DBMS that is already installed and available for
your use. You will need access rights for creating a database with two tables.

If you are building your own database, you can use the provided SQL script for creating the
tables and importing the data, described in EXERCISE 2-1: “Build a database and import
proverb data” on page 24. The SQL script is correct syntax for the Cloudscape DBMS. You may
need to tweak the SQL for your DBMS.

Building your own database

If you are not using the provided ProverbsCloud Cloudscape database, you can use or adapt the
SQL script to construct a Proverbs database.

EXERCISE 2-1: Build a database and import proverb data

1. Using your DBMS tools, create an empty database.

2. Locate the Proverbs.sql SQL script in the Workbench-install-
dir/docs/tutorial/TutorialFiles/proverbs/sql directory and open it in a text editor so that
you can check the SQL syntax.

The script includes statements for creating two tables and inserting rows into those tables.

3. Edit the SQL for correct syntax, if needed.

4. Use your DBMS tools to import the script. If errors occur, correct the SQL syntax in the
editor.

5. Using your application server tools, make the database available to your application
server.
24 Choices for setting up a data source

Tutorial: Developing a Web Application
Using the Cloudscape database

The ProverbsCloud database provided with Workbench is already loaded with proverbs from
several countries. It also has a table mapping a proverb ID to each day of the year. You’ll find
the database with the tutorial files in Workbench-install-
dir/docs/tutorial/TutorialFiles/proverbs/dbs. The following section describes how to make
the database available on the SilverStream eXtend Application Server. If you want to use
Cloudscape with another application server, get the Cloudscape DBMS and use your server
tools to make the database available.

About the Cloudscape DBMS Cloudscape is a small-footprint embedded DBMS with a
free developer’s edition. If you already have an application server and want to use the
Cloudscape DBMS, you can download it from www.cloudscape.com.

The Developer Edition of the SilverStream eXtend Application Server includes the Cloudscape
DBMS. If you need either an application server or a DBMS for this tutorial, you can download
an evaluation copy of the SilverStream eXtend Application Server from
www.silverstream.com/downloads. For the tutorial, all you need is the Lite Edition (J2EE
server and Cloudscape).

NOTE The ProverbsCloud database was built with Cloudscape Version 3.6. If you have an
older version of Cloudscape, you can either download a newer version or use the SQL
script to build a database compatible with your version.

Adding the Cloudscape database to SilverStream
SilverStream 3.7.2 and later has support for the Cloudscape DBMS built in. You can use the
provided Cloudscape database with SilverStream Version 3.7.2 and later, including with Version
4.

Using SilverStream Version 4 The original ProverbsCloud database was built with
Cloudscape Version 3.6, which was included with SilverStream 3.7.x. SilverStream Version 4
includes Cloudscape Version 4. When you add the ProverbsCloud database to the SilverStream
Version 4 server using the provided batch file, it is automatically upgraded to Cloudscape
Version 4 (there is an upgrade statement at the end of the JDBC URL in the SilverCmd input
file you will use to add the database to a Version 4 server).

This means that after adding the database to a Version 4 server, you cannot use the database with
a Version 3.7.x server (which doesn’t support Cloudscape Version 4). If you want to use a
ProverbsCloud database against both SilverStream versions, you should make copies of the
databases—one for each SilverStream version—before adding them to the server.
Adding the Cloudscape database to SilverStream 25

new http://www.cloudscape.com
new http://www.silverstream.com/downloads

2 Setting Up Your Data Source
Checking your environment The batch file that adds the database to the SilverStream
server relies on the SILVERSTREAM_HOME environment variable, which is created by the
server’s installation program. Before proceeding, make sure you have a
SILVERSTREAM_HOME environment variable and that it points to the correct version of the
SilverStream server.

EXERCISE 2-2: Add the Cloudscape database to the SilverStream server

In this exercise you will use the SilverStream SilverCmd tool to add the ProverbsCloud database
to your SilverStream server.

1. Start the SilverStream eXtend Application Server.

2. Open the SilverCmd input file for editing. The file is in the directory Workbench-
install-dir/docs/tutorial/TutorialFiles/proverbs/dbs.

If you didn’t install the SilverStream server in the default directory, you need to change the
path for the SilverStream DTD.

3. Near the beginning of the file, find the DTD name in the DOCTYPE element. It looks like
this:

4. Specify the correct path for the DTD by specifying the path for your SilverStream server
installation directory.

If you didn’t install Workbench in the default directory, you need to change the path for
the ProverbsCloud database.

Server version File to edit

3.7.x addProverbsCloud37.xml

4 addProverbsCloud4.xml

Server version DTD name

3.7.x c:/SilverStream37/Resources/DTDCatalog/add_database.dtd

4 C:/Program
Files/SilverStream/eXtendAppServer/Resources/DTDCatalog
/add_database.dtd
26 Adding the Cloudscape database to SilverStream

Tutorial: Developing a Web Application
5. Find the JDBC_URL element. It looks like this:

6. Change the default installation directory after cloudscape: (c:\Program
Files\SilverStream\eXtendWorkbench) to specify your Workbench installation directory.

7. Save addProverbsCloud37.xml or addProverbsCloud4.xml and close it.

8. Open a command prompt in the Workbench-install-
dir/docs/tutorial/TutorialFiles/proverbs/dbs directory.

9. For an unsecured server, execute this command:

NOTE If your server is running locally, you can specify localhost for the server name.

For a secured server, specify your user ID and password too. For example, if the user ID is
admin and the password is pwd, type the following command:

The database is now available to the SilverStream eXtend Application Server.

Server version JDBC_URL definition

3.7.x <JDBC_URL>jdbc:cloudscape:c:/Program
Files/SilverStream/eXtendWorkbench/docs/tutorial/TutorialFi
les/proverbs/dbs/ProverbsCloud</JDBC_URL>

4 <JDBC_URL>jdbc:cloudscape:c:/Program
Files/SilverStream/eXtendWorkbench/docs/tutorial/TutorialFi
les/proverbs/dbs/ProverbsCloud;upgrade=true</JDBC_URL>

Server version Command to execute

3.7.x addProverbsCloud37 your-server-name

4 addProverbsCloud4 your-server-name

Server version Command to execute

3.7.x addProverbsCloud37 your-server-name admin pwd

4 addProverbsCloud4 your-server-name admin pwd
Adding the Cloudscape database to SilverStream 27

2 Setting Up Your Data Source
Using the Cloudscape database with BEA WebLogic
These exercises describe how to:

• Configure the WebLogic server to use the Cloudscape DBMS in its embedded form

• Configure a connection pool and data source

NOTE These instructions apply to WebLogic 6.0 SP1 and describe how to configure the
default server. Although WebLogic 6.0 SP1 includes Cloudscape 3.5 and an
ExamplesServer already configured to run it, you will need to get Cloudscape 3.6 to use
the prebuilt ProverbsCloud database.

EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape

In this exercise you’ll change the classpath and the startup command for WebLogic to use the
Cloudscape DBMS in embedded mode.

1. Get Cloudscape 3.6 and run its setup program. You can download it with the SilverStream
eXtend Application Server from www.silverstream.com/downloads. For the tutorial all
you need is the Lite Edition (J2EE server and Cloudscape). You can also get it from
cloudscape.com.

2. Open the startup file for the server in Workbench (or any text editor). It’s called
startWebLogic.cmd.

You’ll find it in the configuration directory for the default server. For example, if you
installed in the default directory and you called the server mydomain, you’ll find it in
C:\bea\wlserver6.0sp1\config\mydomain.

3. Change the classpath command to include cloudscape.jar. It should look like this, with an
appropriate path for cloudscape.jar:

set
CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;c:\Cloudscape\lib\c
loudscape.jar

4. Add the Cloudscape home directory to the server startup command. The home directory is
the default location for Cloudscape database directories. The startup command might look
like this:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath %CLASSPATH%
-Dweblogic.Domain=mydomain -Dweblogic.Name=myserver "-Dbea.home=C:\bea"
-Dcloudscape.system.home=c:\Cloudscape\demo\databases
"-Djava.security.policy==C:\bea\wlserver6.0sp1/lib/weblogic.policy"
-Dweblogic.management.password=%WLS_PW% weblogic.Server

NOTE There is a space but no carriage return at the end of each line except the last.

5. Save and close the file.
28 Using the Cloudscape database with BEA WebLogic

new http://www.silverstream.com/downloads
new http://www.cloudscape.com/

Tutorial: Developing a Web Application
6. Start the server by running startWebLogic.cmd at a command prompt.

EXERCISE 2-4: Configure a WebLogic connection pool

These instructions describe how to use the WebLogic 6.0 SP1 administration console to
configure the database. The steps for other versions of the server may vary.

1. With the WebLogic server running, start the administration console in a Web browser. The
default URL on a local server is:

http://localhost:7001/console

In the left panel, the top node is the parent name for your server. Below that you’ll see a
node called Services.

2. Expand the Services>JDBC node and highlight Connection Pools.

3. In the right panel, click Create a new JDBC Connection Pool.

4. Fill in the form with data like this:

5. Click Create.

6. Select the Targets tab.

Item Value Comments

Name ProverbsCloudPool An arbitrary name that you’ll use
again in the DataSource definition

URL jdbc:cloudscape:c:\Program
Files\SilverStream\eXtendWork
bench\
docs\tutorial\TutorialFiles\prove
rbs\dbs\ProverbsCloud

The format is
jdbc:cloudscape:databasepath

The URL ends with the directory
that hold the database files. The
value shown points to the
database in the default installation
directory for Workbench

Driver
Classname

COM.cloudscape.core.JDBCDri
ver

A class in cloudscape.jar

Properties user=APP
password=password

The user ID and password for the
ProverbsCloud database
Using the Cloudscape database with BEA WebLogic 29

2 Setting Up Your Data Source
7. In the Available list, select myserver (or the name of your server) and click the right
arrow so that it appears in the Chosen list. Then click Apply.

EXERCISE 2-5: Configure a WebLogic data source

1. With the administration console still running in the browser, highlight Data Sources in the
left panel under the Services>JDBC node.

2. In the right panel, click Create a new JDBC Data Source.

3. Fill in the form with data like this:

4. Click Create.

5. Select the Targets tab.

6. In the Available list, select myserver (or the name of your server) and click the right
arrow so that it appears in the Chosen list. Then click Apply.

EXERCISE 2-6: Configure the connections for the WebLogic pool

1. With the administration console still running in the browser, highlight
ProverbsCloudPool in the left panel under the Services>JDBC>Connection Pools node.

2. Select the Configuration tab in the top row, then select Connections tab in the second
row.

3. Change Initial Capacity to 1. Leave the other values as is, including Maximum Capacity
of 1. The developer edition of Cloudscape supports only one connection.

4. Restart the server.

The database is ready for use.

Item Value Comments

Name ProverbsCloud An arbitrary name for this definition; for
simplicity use the JNDI name

JNDI Name ProverbsCloud The JNDI name associated with the resource
reference in the weblogic.xml configuration
file

Pool Name ProverbsCloudPool The name of the connection pool for the
database you want to access
30 Using the Cloudscape database with BEA WebLogic

Tutorial: Developing a Web Application
Summary of what you’ve done

Developing the application In this lesson you built or learned about these parts of the
Proverbs tutorial application:

• Database built from the provided SQL script

OR

Cloudscape database provided as part of the tutorial

• Application server procedures for using the database

Next lesson In the next lesson you will learn how to set up a WAR project in Workbench.
Summary of what you’ve done 31

2 Setting Up Your Data Source
32 Summary of what you’ve done

3
 Working with Projects and Archives Lesson 3
What you will learn
In this lesson you will learn about projects for Workbench and how Workbench helps you build
a J2EE archive from the files in your project. You will create a project for a Web application that
displays proverbs.

You will learn about:

• The relationship between projects and archives

• Creating a project

• Adding content to the project

• Setting up the project’s classpath

What you will do
1. Set up directories for your project

2. Create a new project

3. Add directories to the project

4. Add content from elsewhere in the file system

5. Set up a classpath for building the project

How long will it take? About 10 minutes

NOTE You don’t need to be running your J2EE application server at this stage in the project’s
development.

The relationship between projects and archives
In your previous work (before using Workbench), if you used the JAR command to build an
archive, you had to arrange the directory structure on your hard disk to mirror the required
archive structure. This forced file arrangement isn’t necessarily the most convenient way to
work.

In Workbench you can group files for different parts of the project in the directories you want.
Your project settings specify where those files belong in the archive. Files in different source
directories can be assigned to a single directory in the archive.
33

3 Working with Projects and Archives
In general, the content of your project will be directories, not individual files. As you work, you
can add files to the project directories and they will be automatically included in the resulting
archive. When you specify project content at the directory level, all the files in a source
directory will be together in the archive directory you specify. To put files in different archive
directories, you should put them in different project source directories.

You can also specify individual files as content for your project. You can give each file a
particular location in the archive. To avoid adding content to a project twice, you wouldn’t want
to add a directory to the project and also add a file in that directory.

Where source files reside

You can organize your source files in many different ways. Code, HTML, and other files for the
application you are working on will typically be under the project’s root directory. Other files,
such as JARs and tag libraries, might be stored in a directory that is used by many projects.

In the Proverbs tutorial application, the project root contains these directories:

Directory Contents

src Java source code for the Proverbs application

jsps JSP pages

resources Resource bundle file of text strings, which can be translated for
internationalization

WEB-INF Deployment descriptor and Struts configuration file, plus deployment files
for specific application servers
34 The relationship between projects and archives

Tutorial: Developing a Web Application
Typical directory structure of an archive

The internal directory structure of a J2EE archive is largely up to you. An archive for a Web
application (WAR) has only a few requirements. You put files that are not accessible via an URL
in the WEB-INF directory and its subdirectories. The deployment descriptor must be in WEB-
INF.

In the WEB-INF directory, you can expect to find:

The locations of other files are up to you. In the Proverbs application, the Struts tag libraries
(TLD files) and configuration file (struts-config.xml) are also in the WEB-INF directory. The
JSP pages, which are accessible via URL, are in the root directory of the archive. Files under the
WEB-INF directory are not accessible via URL by default, although you can configure them for
URL access.

The resulting archive directory structure is:

archive root
jsps
/WEB-INF

web.xml
struts-config.xml
struts-html.tld, struts-logic.tld, struts-bean.tld
/classes

compiled classes in the com.proverb package
/lib

struts.jar

File or directory Contents

web.xml The required deployment descriptor that tells the application server
how to interact with the Web application

WEB-INF/classes The compiled Java class files for the application

WEB-INF/lib JAR files used by the application
The relationship between projects and archives 35

3 Working with Projects and Archives
Creating a project
To create a project for a Web application, first you’ll do a little directory setup. Then you’ll start
Workbench to create the project file.

EXERCISE 3-1: Set up directories for your project

In this exercise you will create directories for your source files.

1. Using your operating system tools, create a root directory for your project called
ProverbStart. You can put it at the root level of your disk drive or in a subdirectory of
your choosing. The sample paths in the tutorial assume you created ProverbStart in a
WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\ProverbStart

2. In the ProverbStart directory, create four subdirectories:
jsps
resources
src
WEB-INF

NOTE WEB-INF must be all uppercase. Windows Explorer might display the uppercase
name as Web-inf, but if you type it correctly it will be correct in the project.

3. To speed up the tutorial, most of the Java and JSP code is provided. To include this code,
copy these items to the specified directories:

From this directory in Workbench-
install-
dir/docs/tutorial/TutorialFiles/proverbs/ Copy this

To this project
directory

jsps JSP files ProverbStart/jsps

src com folder and its
contents

ProverbStart/src

config struts-config.xml ProverbStart/WEB-
INF
36 Creating a project

Tutorial: Developing a Web Application
EXERCISE 3-2: Create a new project

In this exercise you will start Workbench and use the New Project Wizard to create a project for
the Proverbs Web application.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.

If Workbench is already open, select File>Close Project to close the open project, if any.

2. Select File>New Project from the menu.

3. In the New Project Wizard, select WAR and then click OK.

4. In the Project Name field, type ProverbStart.

5. Click the ellipses beside the Project Location field and select the ProverbStart directory
you created in EXERCISE 3-1: “Set up directories for your project”. When you click OK,
other fields in the dialog are filled in automatically.

The archive location is the project root directory, and the deployment descriptor is in the
WEB-INF directory.
Creating a project 37

3 Working with Projects and Archives
6. In the Project J2EE Version field, specify j2ee 1.2 (war 2.2) so your application will run
on any server that supports J2EE 1.2.

7. Click Next.

The wizard summarizes the project information.

NOTE If you hadn’t closed open projects before you selected New Project, the wizard
might ask if you wanted to make the new project a subproject of the open project.
This is useful for making a new WAR or EJB part of an EAR.

8. Click Finish.

In the Navigation Pane, the Project tab displays the new project. You can use either a
Source view or an Archive view.

As you’ll see, the contents of the project root directory are not automatically part of the project.
You can have other files and directories in the root directory too. In the next exercise you will
add the other directories to the project and change the descriptor’s entry from a file to a
directory.
38 Creating a project

Tutorial: Developing a Web Application
Adding content to the project
You can add directories and files to a project in two ways: in the Project Settings dialog and from
the Navigation Pane. Only the descriptor file, which you specify in the New Project Wizard, is
automatically included. The directories and files you select can be in the project root directory
or somewhere else in your file system. The next two exercises show you how to add content.

EXERCISE 3-3: Add directories to the project

In this exercise you’ll select directories for the project and specify their location in the resulting
archive.

1. Select Project>Project Settings from the menu.

2. Select the Contents tab.

The ProverbStart project is selected in the Project field. If your project included other
subprojects, you could choose among the available projects.

3. On the Contents tab, highlight WEB-INF/web.xml and click Delete.

The goal of this step is to create a project entry for the WEB-INF directory instead of the
individual file.

4. Click Add Directory.

An Open dialog displays the drives and directories on your file system.

5. Navigate the directory structure to find the WEB-INF directory in your project root
directory and click OK.
Adding content to the project 39

3 Working with Projects and Archives
6. In the Add to Project dialog, select the last item (Add the files to the archive at this
location) and specify WEB-INF for the location.

7. Click OK to return to the Project Settings dialog.

Instead of the file web.xml, you see the WEB-INF directory as both the source location
and the archive location. Later when you add other files to WEB-INF, they will
automatically become part of the project.

8. Using the Add Directory button, add three more source directories to the project. They
are all under the project root directory.

• Add the jsps directory with the option Add the files to the root of the archive.

• Add the src directory with the option Add the files to the archive at this location and
WEB-INF/classes as the location.

• Add the resources directory with the option Add the files to the archive at this
location and WEB-INF/classes/com/proverb as the location.
40 Adding content to the project

Tutorial: Developing a Web Application
When you’re done, the Project Settings should look like this:

9. Click OK to close the Project Settings dialog.

10. In the Navigation Pane, switch between Source Layout view and Archive Layout view and
expand the directories you see. Notice how Workbench rearranges the source directories
to show you the Archive layout.

EXERCISE 3-4: Add content from elsewhere in the file system

There are other ways to add directories and files to the project besides the Project Settings
dialog. In this exercise you will use the Directory tab in the Navigation Pane to add content.

The new files (the Struts JAR and tag libraries) are required in every Struts project. You won’t
be changing them, so you don’t want separate copies in every Struts project you work on. You’ll
add them directly from the provided TutorialFiles directory.

1. In the Navigation Pane, click the Directory tab.

TIP For better viewing, you can resize the Navigation Pane. Move the bottom or right
edge to make the whole pane larger or move the bar between the directory and file
lists.

2. In the directory list, find the Workbench install directory and expand it to show
Workbench-install-dir/docs/tutorial/TutorialFiles/jars directory.

NOTE The default installation directory is Program
Files/SilverStream/eXtendWorkbench.
Adding content to the project 41

3 Working with Projects and Archives
3. In the lower part of the pane, right-click the file struts.jar and select Add to Project.

4. In the Add to Project dialog, select the option Add the file to the archive at this location
with a location of WEB-INF/lib/struts.jar.

NOTE When you add a file, the location includes the file name.

5. Click OK.
42 Adding content to the project

Tutorial: Developing a Web Application
6. Add the tlds directory, which is also in TutorialFiles, by right-clicking the tlds directory
(not the files this time) and selecting Add to Project.

7. In the Add to Project dialog, select the option Add the file to the archive at this location
with a location of WEB-INF.

8. Click OK.

9. After closing the Add to Project dialog, select the Project tab in the Navigation Pane and
select Archive layout.

When you click the WEB-INF directory, its file list includes web.xml, struts-config.xml,
and the tag libraries (with extension tld). When you expand WEB-INF and click lib, the
file list displays struts.jar.

NOTE In this exercise you used the Directory tab to select directories and files for your
project. The Directory tab displays directories and files and allows you to delete and
rename files, but it is not a full-fledged tool for working with your hard disk. To
reorganize directories and files, use your operating system’s tools.
Adding content to the project 43

3 Working with Projects and Archives
Setting up the project’s classpath
When you build your project, Workbench needs to know where to find JARs and other Java files
that your source code refers to. You specify a classpath for building the project in the Project
Settings dialog. Workbench automatically includes a JAR of the J2EE classes.

EXERCISE 3-5: Set up a classpath for building the project

In this exercise you will use the Project Settings dialog to add to the compile-time classpath. For
the Proverbs application, the classpath needs to also include struts.jar.

1. With your project open, choose Project>Project Settings from the menu.

2. Select the Classpath/Dependencies tab.

An archive of J2EE classes is already on the WAR’s classpath. Its path uses an
environment variable for the Workbench install directory. The variable was defined when
you installed Workbench.

3. Click the Add Entry button.

4. Select struts.jar in the Workbench-install-dir/docs/tutorial/TutorialFiles/jars directory.

The list for your classpath should look like this:
44 Setting up the project’s classpath

Tutorial: Developing a Web Application
5. Click OK to close the Project Settings dialog.

Summary of what you’ve done

Developing the application In this lesson you built these parts of the Proverbs tutorial
application:

• A source directory structure that included some application files

• A project for the Proverbs Web application

• Archive locations for the directories that are part of the project

• A classpath for building the project

Using Workbench tools You used these tools in Workbench:

• New Project Wizard (File>New Project)

• Source layout and Archive layout on the Project tab of the Navigation Pane

• Project Settings dialog (Project>Project Settings)

• Directory tab in the Navigation Pane and the Add to Project menu item

You can return to the Project Settings dialog whenever you need to make changes in the source
directories or archive locations for your project.

Next lesson In the next lesson you will learn about the JSP Wizard and building and
deploying projects.
Summary of what you’ve done 45

3 Working with Projects and Archives
46 Summary of what you’ve done

4
 Deploying and Testing the Welcome Page Lesson 4
What you will learn
In this lesson you will learn about the JSP Wizard. You will also learn about server profiles and
how to use Workbench deployment capabilities.

You will learn about:

• Adding new files to the project

• Working with JSP pages

• Building and archiving

• Working with the deployment descriptor

• Testing the application

What you will do
1. Add files to the project

2. Create a new JSP page

3. Edit the JSP page

4. Compile the Java code and generate the archive file

5. Begin editing the deployment descriptor

6. Add initialization parameters for the servlet

7. Add a servlet mapping

8. Specify the project’s default page

9. Add tag libraries

10. Rebuild the archive

11. Deploy the project

12. Test the application in the browser
47

4 Deploying and Testing the Welcome Page
How long will it take? About 30 minutes

NOTE Your J2EE application server needs to be running for the deployment and testing
exercises.

Adding new files to the project
In addition to adding directories that contain files to your project, there are several other ways
to add files. You can:

• Move a file into a project source directory

• Save a new file into a project source directory

• Get files from source control, including new files added to project directories by
coworkers

• Use the Add to Project menu item to add individual files that are not in project directories

EXERCISE 4-1: Add files to the project

In this exercise you will add a file to the project by copying it from somewhere else and putting
it in a directory that is already part of the project.

1. Using your operating system tools, find the file ApplicationResources.properties in the
Workbench-install-dir/docs/tutorial/TutorialFiles/proverbs/resources directory.

2. Copy the file to the resources directory under the project root.

You created the resources directory in Lesson 3, “Working with Projects and Archives”. If
the project root is c:/WorkbenchProjects/ProverbStart, copy the file to
c:/WorkbenchProjects/ProverbStart/resources.

3. In Workbench on the Project tab of the Navigation Pane, set the view to Source layout.

4. Select the resources directory.

In the file list in the lower half of the pane, you should see the file you just added.
48 Adding new files to the project

Tutorial: Developing a Web Application
5. Switch to Archive layout.

6. Expand the WEB-INF/classes/com/proverb directory and highlight proverb.

In the file list you should see the ApplicationResources.properties file.

In the previous lesson you designated that files in the resources directory belonged with
the Java class files in the archive. The Navigation Pane shows you
ApplicationResources.properties in that location.
Adding new files to the project 49

4 Deploying and Testing the Welcome Page
Working with JSP pages
To create new JSP pages, you can use the JSP Wizard, which constructs the skeleton of a JSP
file and opens it in the Edit Pane. For existing JSP pages, you can double-click them in the
Navigation Pane to open them in the Edit Pane.

EXERCISE 4-2: Create a new JSP page

In this exercise you will use the JSP Wizard to create a new page.

1. In Workbench, select File>New.

2. In the New File dialog, select JSP and click OK.

Workbench displays the JSP Wizard.

3. Fill out the first panel of the wizard with this information:

Option Value

JSP name index (don’t specify the jsp extension)

Page title Words of Wisdom

Content type HTML (the default)

Template Standard JSP template (the default)
50 Working with JSP pages

Tutorial: Developing a Web Application
4. Select only Use session and Thread safe.

The first panel of the wizard looks like this:

5. Click Next.

6. On the second panel, leave Add to open WAR project selected.

7. Specify where to put the file in the project and the archive:

• For Base directory, select the project-root\jsps directory from the dropdown list—for
example, c:\WorkbenchProjects\ProverbStart\jsps.

• For Package, leave it blank. In this project the JSP pages are at the root of the archive.

• Leave Add the files to the root of the archive selected.
Working with JSP pages 51

4 Deploying and Testing the Welcome Page
8. Click Finish.

9. When the JSP Wizard dialog reports that it is done creating the JSP page, click OK.

The new file is open in the Edit Pane. In the Navigation Pane, index.jsp is in the jsps
directory in the Source layout and at the archive root in the Archive layout.
52 Working with JSP pages

Tutorial: Developing a Web Application
More about the wizard When you check Specify import values on the first panel of the
wizard, it displays a third panel for specifying those values.

EXERCISE 4-3: Edit the JSP page

In this exercise you will change the generated code for index.jsp to use Struts tags, get text from
the ApplicationResources file, and include a navigation menu.

NOTE You can copy the JSP code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/proverbs directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
index-sample.jsp in the same directory. Use your operating system tools to copy it to
your project directory and rename it index.jsp.

1. Insert a blank line after the closing bracket (>) of the @page directive and add these lines:
<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

2. Insert a blank line below the body tag and add this line, which inserts code for the
navigation menu:

<%@ include file="menu.jsp"%>

3. In the Navigation Pane, find the ApplicationResources.properties file in the resources
directory and double-click it to open it in the Edit Pane.

4. Look for the resource text strings that begin with site:
site.title=Words of Wisdom
site.greeting=Welcome to Words of Wisdom
site.info=Return each day to read a proverb
from somewhere around the
world...

You can use these property keys in index.jsp to refer to these text strings instead of putting
the text directly in the file. This makes it easy to translate the site if you want to.

5. Switch back to index.jsp in the Edit Pane.

There are several ways to switch among open files. You can use the:

• Tabs in the Edit Pane

• Documents menu

• Project tab of the Navigation Pane—double-click the file again in the jsps directory

6. Replace the text between the title element’s start and end tags with this Struts message tag:
<strutsbean:message key="site.title"/>
Working with JSP pages 53

4 Deploying and Testing the Welcome Page
7. Replace the content between the line that includes menu.jsp and </body> with a heading
and two paragraph elements. This code contains Struts message tags that display the
site.info text and error messages. The font tags are optional:

<h1>

<strutsbean:message key="site.greeting"/>

</h1>

<p>

<strutsbean:message key="site.info"/>

</p>

<p>
<strutshtml:errors />
</p>

8. For fun, add a color to the body tag. Replace <body> with:
<body bgcolor="#FF6633">

If you don’t like this warm orange, specify whatever color value you like.

The resulting file should look like this:
<!--

index.jsp

Generated by SilverStream XSLT Code Generator, version 1.0.
This generated source file may be freely modified.

-->
<%@ page language="Java"

session="true"
isThreadSafe="true"
contentType="text/html; charset=ISO-8859-1" %>

<%@ taglib uri="struts-html.tld" prefix="strutshtml" %>
<%@ taglib uri="struts-bean.tld" prefix="strutsbean" %>

<html>
<head>

<title>
<strutsbean:message key="site.title"/>

</title>
</head>

<body bgcolor="#FF6633">

<%@ include file="menu.jsp"%>
54 Working with JSP pages

Tutorial: Developing a Web Application
<h1>

<strutsbean:message key="site.greeting"/>

</h1>

<p>

<strutsbean:message key="site.info"/>

</p>

<p>
<strutshtml:errors />
</p>

</body>
</html>

9. Save the file.

10. Close the file. You can select File>Close or click the Close button in the Edit Pane.

Building and archiving
On the Project menu, Workbench has commands for building (compiling) individual files and
for rebuilding all the files in the project before you generate the archive.

EXERCISE 4-4: Compile the Java code and generate the archive file

In this exercise you will compile all the code in the project. If there are no errors, you can
generate the archive.

1. Select Project>Rebuild All from the menu.

NOTE If a file open in the Edit Pane has been changed, Workbench saves it. You can
change this behavior in Workbench Preferences.

On the Build tab of the Output Pane at the bottom of the Workbench window, you see
messages reporting progress as well as any warnings and errors that occur.

If your classpath includes all the required JARs, there should be no errors. If there are
errors, you can double-click the error line in the Output Pane to go to the file and line that
caused the problem.
Building and archiving 55

4 Deploying and Testing the Welcome Page
2. Select Project>Build and Archive to generate the archive file.
56 Building and archiving

Tutorial: Developing a Web Application
About compiling There are several Build menu items on the Project menu. You might want
to compile a file open in the Edit Pane, build only files that have changed, or rebuild all files. To
learn more about the building and archiving commands, see the chapter on projects and archives
in the Tools Guide.

Working with the deployment descriptor
When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For a WAR, the file is called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows all the elements
it can include, in an expandable tree structure. You can also look at the raw XML. The editor
uses the project’s compiled code to determine what to show, which is why you built the archive
in EXERCISE 4-4: “Compile the Java code and generate the archive file”. If it isn’t already
built, Workbench can build it for you.

For the Proverbs application, you need to add parameters for the Struts controller servlet, servlet
mappings for Struts URLs, a default welcome page, and the Struts tag libraries.

EXERCISE 4-5: Begin editing the deployment descriptor

In this exercise you will open web.xml and add a reference to the Struts action controller servlet.

1. In the Navigation Pane, right-click the project file ProverbStart.spf and select Open
Deployment Descriptor from the popup menu.

NOTE You can also find web.xml in the Source or Archive layout and double-click it to
open it.

2. If Workbench displays the Select Build Option dialog, accept the defaults and click OK.

Workbench opens web.xml in the Edit Pane.

3. Click the Descriptor tab.

The editor shows the types of information the descriptor can include.
Working with the deployment descriptor 57

toolsProjects.html

4 Deploying and Testing the Welcome Page
4. Click the XML tab to see the raw content of the descriptor. So far, there isn’t much.

5. Switch back to the Descriptor tab.

6. Right-click Web Archive and select Properties.

7. Specify 5 (minutes) as the session timeout.

8. Right-click Servlets and select Add from the popup menu.

A new Untitled entry appears indented under Servlets.

9. Right-click Untitled and select Properties.
58 Working with the deployment descriptor

Tutorial: Developing a Web Application
10. In the Servlet property sheet, make these settings:

The property sheet looks like this:

11. Save the file.

Option Value

Servlet name action

Type Servlet

Servlet class org.apache.struts.action.ActionServlet

Load on startup 2

Description Struts action controller
Working with the deployment descriptor 59

4 Deploying and Testing the Welcome Page
EXERCISE 4-6: Add initialization parameters for the servlet

In this exercise you will add several parameters for the Struts controller servlet. The parameters
you need depend on the requirements of the individual servlet. web.xml is still open in the Edit
Pane.

1. In the Servlets section under the newly added action servlet, right-click Initialization
Parameters and select Add from the popup menu.

If the elements under action aren’t visible, click the plus sign beside action to expand the
list.

2. Click the newly added Untitled to highlight it. (If the Property Inspector isn’t open, right-
click Untitled and select Properties.)

Its properties display in the Initialization Parameters property sheet.

3. In the property sheet, specify these settings:

Option Value

Name config

Value /WEB-INF/struts-config.xml

Description Configuration file for Struts actions
60 Working with the deployment descriptor

Tutorial: Developing a Web Application
4. Add four more parameters by right-clicking Initialization Parameters, selecting Add,
then highlighting Untitled to set the properties.

For the first parameter, specify these values in the property sheet:

For the second, specify these values:

Option Value

Name mapping

Value com.proverb.ProverbActionMapping

Option Value

Name application

Value com.proverb.ApplicationResources
Working with the deployment descriptor 61

4 Deploying and Testing the Welcome Page
For the next, specify these values:

For the last, specify these values:

The servlet section of the editor looks like this when you’ve added all the parameters:

5. Save the file.

EXERCISE 4-7: Add a servlet mapping

In this exercise you will add a servlet mapping that tells the Struts action servlet how to handle
specific URLs.

1. With web.xml open in the Edit Pane, right-click Servlet Mapping and select Add from
the popup menu.

Option Value

Name locale

Value true

Option Value

Name debug

Value 3
62 Working with the deployment descriptor

Tutorial: Developing a Web Application
2. Select the new Untitled mapping and make these settings in the property sheet (if the
Property Inspector isn’t open, you know how to open it):

EXERCISE 4-8: Specify the project’s default page

In this exercise you will specify that index.jsp is the page to be displayed if the user doesn’t
specify a specific page.

1. With web.xml open in the Edit Pane, right-click Welcome Files and select Add from the
popup menu.

2. Select the new Untitled item and in the property sheet specify index.jsp as the Welcome
File.

3. Save the file.

EXERCISE 4-9: Add tag libraries

In this exercise you will identify the tag libraries that the Struts application uses and where they
are in the archive.

1. With web.xml still open in the Edit Pane, add three new items under Tag Libraries.

The technique is the same as for the initialization parameters: for each one, right-click Tag
Libraries and select Add from the popup menu. Then select the new Untitled item and
set the values in the Tag Library property sheet.

For the first tag library, specify these values:

Option Value

Servlet name action

URL pattern *.do

Option Value

Tag library URI struts-html.tld

Tag library location /WEB-INF/struts-html.tld
Working with the deployment descriptor 63

4 Deploying and Testing the Welcome Page
For the next, specify these values:

For the last, specify these values:

2. Save and close web.xml.

EXERCISE 4-10: Rebuild the archive

In this exercise you will rebuild the archive so that it includes the newly edited version of
web.xml.

1. Select Project>Build and Archive to regenerate the archive file.

2. Check the Output Pane for messages.

Deploying the project

Using Workbench, you can create J2EE applications for any J2EE application server. For some
application servers, Workbench supports deployment directly with a Deploy Archive menu
item. For other application servers, you can build your archive in Workbench and use your
server’s deployment tools to deploy. As long as you stick to J2EE standards and avoid server-
specific code, archives built by Workbench are completely J2EE-compatible and can be
deployed to any J2EE server.

To deploy you’ll need to do these tasks:

1. Define a server profile

2. Prepare server deployment information expected by your server, if any

3. Specify deployment settings

Option Value

Tag library URI struts-logic.tld

Tag library location /WEB-INF/struts-logic.tld

Option Value

Tag library URI struts-bean.tld

Tag library location /WEB-INF/struts-bean.tld
64 Working with the deployment descriptor

Tutorial: Developing a Web Application
4. Deploy the archive

If you’ve done another Workbench tutorial most of your deployment setup has already been
done. The next exercise gives you the main steps and provides project-specific information for
deploying this project. To read detailed deployment instructions for directly supported servers,
see Workbench Deployment Instructions.

EXERCISE 4-11: Deploy the project

1. If you haven’t created a profile for your server, select Edit>Profiles and create one now.

For information, see the server profile procedure in the deployment instructions.

2. Use the following information to create the server-specific part of the deployment process.
Working with the deployment descriptor 65

tutallDeploy.html#Definingaserverprofile
tutallDeploy.html

4 Deploying and Testing the Welcome Page
For most J2EE servers, the server-specific deployment information is in a separate file,
usually in XML format. For some servers, you need to add it to your project so that it is
built into the archive.

Server Where Option and value or file contents

SilverStream Create a SilverStream
deployment plan. In
the Deployment Plan
Editor, set values on
the property sheet for
the Web Archive
item.

Enabled — True

Deployed object name — ProverbStart

Server Profile — Select the profile you
defined in the previous step from the
dropdown list box

Session timeout — 5 minutes (set in the
deployment descriptor; not overridden
here)

URLs — ProverbStart

You can specify one or more relative
URLs for the Web application;
Workbench automatically provides the
archive name as the first URL

Excluded JSPs — menu.jsp

Menu.jsp is an incomplete fragment
included in the other JSP pages. It doesn’t
have the appropriate headers to compile
correctly. You can either ignore the errors
it causes (a Deployment Settings option)
or use the Excluded JSPs property to
prevent the server from trying to compile
it.

Uses JARs — Leave blank
66 Working with the deployment descriptor

new tutallDeploy.html#CreateadeploymentplanfortheSilverStreamserver
new tutallDeploy.html#CreateadeploymentplanfortheSilverStreamserver

Tutorial: Developing a Web Application
For more information and exercises with detailed steps, select the section for your
server in Workbench Deployment Instructions.

3. Specify deployment settings for your server by selecting Project>Deployment Settings.

On the Server Profiles tab, select the server profile you defined above. If you have a
secure server, specify values for User name and Password.

Sun Reference
Implementation

Create a runtime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
in a directory called
META-INF and add
the file to the project.

<?xml version="1.0"
encoding="Cp1252"?>

<j2ee-ri-specific-information>
<server-name></server-name>
<rolemapping />
<web>

<display-
name>ProverbStart</display-name>

<context-
root>ProverbStart</context-root>
</web>
</j2ee-ri-specific-information>

Jakarta Tomcat — Tomcat is a servlet container and does not
support the database access required of
the Proverbs application

BEA WebLogic Create a WebLogic
descriptor called
weblogic.xml with
the content at right.
Add it to the project
in the WEB-INF
directory.

<!DOCTYPE weblogic-web-app
PUBLIC "-//BEA
Systems, Inc.//DTD Web
Application 6.0//EN"

"http://www.bea.com/servers/wl
s610/dtd/ weblogic-web-jar.dtd">

<weblogic-web-app>
<description>

Proverbs Web application
</description>
<weblogic-version>
</weblogic-version>

</weblogic-web-app>

IBM WebSphere — —

Oracle9iAS — —

Server Where Option and value or file contents
Working with the deployment descriptor 67

new tutallDeploy.html#Createaruntimedeploymentdescriptor
new tutallDeploy.html#Createaruntimedeploymentdescriptor
new tutallDeploy.html#CreateaWebLogicdeploymentdescriptor
new tutallDeploy.html#CreateaWebLogicdeploymentdescriptor

4 Deploying and Testing the Welcome Page
On the Deployment Info tab, specify additional application-specific information, as
follows.

NOTE For these tutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the
Tools Guide.

For more detailed instructions, select the section for your server in the deployment
instructions.

4. Click Deploy in the Deployment Settings dialog.

OR

Click OK in Deployment Settings and select Project>Deploy Archive from the menu.

Server Option and value

SilverStream SilverStream Deployment Plan — Select the plan you
defined in Step 2

Overwrite existing deployment — Selected

Verbosity — 3

Ignore compile errors — Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the
archive)

Sun Reference
Implementation

—

Tomcat —

BEA WebLogic WebLogic Application Name — ProverbStart; used in the
URL for accessing the Web application

IBM WebSphere Node Name — Leave blank or specify a node you’ve set up on
your server

Oracle9iAS Deployment Name — ProverbStart; used in the URL for
accessing the Web application

Target Path — Leave blank or specify a path you’ve set up on
your server

Website Name — Accept the default value or specify a name
you’ve set up on your server
68 Working with the deployment descriptor

tutallDeploy.html#Settingupyourdeploymentenvironment
toolsDeployment.html

Tutorial: Developing a Web Application
Workbench displays progress messages, errors, and warnings in the Output Pane.

TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.

Testing the application
A WAR is a Web application, so you test it in your Web browser.

EXERCISE 4-12: Test the application in the browser

1. If you’re already reading this tutorial in the browser, open a new browser window. If not,
start the browser of your choice.

2. Go to the URL for your Web application. It will generally include these parts:

Part Description Example

Server URL for the server, including the port
number (if not the default port 80) and any
server-specific data

TIP For a SilverStream server, include the
database to which you deployed the
WAR

http://localhost/Pr
overbsCloud/

http://www.mydo
main.com:8080/

Web application URL for the WAR

TIP For a SilverStream server, this is a
relative URL that you specify in the
deployment plan. For some servers, it
is the name of the J2EE archive—in
this case, the same value

ProverbStart/

Web page (Optional) Name of the JSP page you want
to view; the Welcome page displays if you
omit this part of the URL

index.jsp
Testing the application 69

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

4 Deploying and Testing the Welcome Page
For example, it the application is deployed to a local SilverStream server in a database
called ProverbsCloud and the URL in the deployment plan is ProverbStart, the case-
sensitive URL would be:

http://localhost/ProverbsCloud/ProverbStart/index.jsp

You see the index.jsp page with the text from the ApplicationResources.properties file.
The links in the navigation menu don’t work yet; you’ll add those pages in later lessons.

Summary of what you’ve done
70 Summary of what you’ve done

Tutorial: Developing a Web Application
Developing the application In this lesson you built these parts of the Proverbs tutorial
application:

• Initial page of the application, implemented as a JSP page

• Resource file for displayed text

• Deployment descriptor

• Server profile for deployment

• Server-specific deployment information; for SilverStream servers, a deployment plan
Summary of what you’ve done 71

4 Deploying and Testing the Welcome Page
Using Workbench tools You used these tools in Workbench:

• JSP Wizard (File>New)

• Deployment Descriptor Editor

• Menu items on the Project menu for building and archiving

• Server profiles (Edit>Profiles)

• Deployment Plan Editor (File>New or right-click on project and select Open Deployment
Plan), XML Editor, or Text Editor

• Deployment (Project>Deploy Archive)
72 Summary of what you’ve done

Tutorial: Developing a Web Application
Next lesson At this point you’ve completed the basics for developing a Web application
(WAR) using Workbench. Feel free to stop here and try out what you’ve learned. You can try
creating your own project or experiment with changing parts of the Proverb project.

The lessons in Part II, “Forms and Data in a Web Application” show how to use the database of
proverb data with your application.
Summary of what you’ve done 73

4 Deploying and Testing the Welcome Page
74 Summary of what you’ve done

Part II Forms and Data in a Web Application
This part teaches you how to write code in a Struts Web application that
accesses data via the J2EE application server’s connection pool and how to
define forms that display that data.

The lessons are:

• Lesson 5, “Setting Up Database Access”
• Lesson 6, “Defining an Action That Displays Data”
• Lesson 7, “Defining a Form and Results Page”
• Lesson 8, “Defining a Form for Database Update”

In this part you will learn more about Struts and how it makes handling forms
easier in the HTTP environment. Lesson 5, “Setting Up Database Access” sets
up the data access classes and configures the Web application to access the
server’s connection pool.

After the data access is set up, you can choose to do one or all of the remaining
lessons. Each of these lessons implements one of the items on the Proverbs
navigation menu using Struts techniques. Most of the Java code is already
written, and you will use Workbench to look at that code and to edit XML
configuration files.

5
 Setting Up Database Access Lesson 5
What you will learn
This lesson illustrates the code for accessing the data source and shows how to add database
connection information to the application’s configuration files.

You will learn about:

• Making the data source available to the application

What you will do
1. Add a resource reference to the deployment descriptor

2. Identify the database in the server deployment information

3. Extend the Struts ActionServlet to get the data source during initialization

4. Change the class for the application’s startup servlet

How long will it take? About 10 minutes

NOTE If you use the SilverStream eXtend Application Server, it must be running when you
edit the deployment plan. If you use another application server, its tools for specifying
server deployment information may require the server to be running.

Making the data source available to the application
To make the database available to the application, you need to:

• In the deployment descriptor, identify a resource name for the database

• In the server’s deployment information, associate the resource name with an actual
database

• In the application code, get a DataSource object from the server’s connection pool when
the application servlet is initialized and save it in the servlet context

You will do this in the next exercises.
77

5 Setting Up Database Access
Resource references in the deployment descriptor

In the deployment descriptor you can identify names that your application uses to connect with
external services.

Resource reference The name for a database connection is in the Resources section of the
deployment descriptor. In the Proverbs application, you’ll call it:

jdbc/ProverbsDB

When you deploy, this JNDI name is stored in the application server’s naming service.

NOTE JNDI is the Java Naming and Directory Interface. Application servers include a naming
service for finding objects in a distributed computing environment.

Environment variable The application doesn’t refer to the resource reference directly;
instead, an environment variable stores the name of the resource reference:

jndi-datasource-name

This indirection avoids hardcoding the application-specific database identifier in the Java code.
The code only needs to know the environment variable.

Getting the environment variable Constants in the Java code identify the naming
service context and the environment variable:

// Context in naming service for environment entries
final static String JAVA_COMPONENT_ENV = "java:comp/env";
// Environment entry for data source name
final static String JNDI_DATASOURCE_NAME = "jndi-datasource-name";

The code concatenates the strings to look up the environment variable; it uses the variable to get
the resource name; then it looks up the resource in the naming service.

EXERCISE 5-1: Add a resource reference to the deployment descriptor

In this exercise you will define a resource reference for the database and an environment entry
that identifies the name of that resource.

1. Start Workbench if it isn’t already running, then open the ProverbStart project.

TIP If you have worked on the tutorial recently, open ProverbStart by selecting
File>Recent Files and choosing it from the list.

2. In the Navigation Pane, right-click the project file ProverbStart.spf and select Open
Deployment Descriptor from the popup menu.
78 Making the data source available to the application

Tutorial: Developing a Web Application
3. If Workbench displays the Select Build Option dialog, accept the defaults and click OK.

Workbench builds the project, if requested, then opens the descriptor.

4. In the Edit Pane, select the Descriptor tab if it isn’t selected already.

5. Right-click Environment and select Add.

6. Right-click UntitledEnvironmentProperty and select Properties.

7. In the Environment Property property sheet, specify this information:

Option Value

Name jndi-datasource-name

Value jdbc/ProverbsDB

Entry type String

Description Name of resource reference for database
Making the data source available to the application 79

5 Setting Up Database Access
The property sheet looks like this:

8. In the Edit Pane, right-click Resource References and select Add.

9. Select UntitledResourceReference.
80 Making the data source available to the application

Tutorial: Developing a Web Application
If the Property Inspector is still open, it displays properties for the new resource reference.
If you closed the Property Inspector, open it by right-clicking the new entry and selecting
Properties.

10. In the Resource Reference property sheet, specify this information:

The property sheet looks like this:

11. Close the Property Inspector.

12. Save the descriptor file and close it.

Option Value

Name jdbc/ProverbsDB

Resource type javax.sql.DataSource

Authorization type Container

Description Database reference for Proverbs application
Making the data source available to the application 81

5 Setting Up Database Access
Identifying the database in the server deployment information

In the server deployment information, you associate a database from the server’s connection
pool with the resource reference in the deployment descriptor. The deployment information
connects the virtual resource with a real data source.

The way the server handles deployment information and resource references for databases
depends on the application server. Workbench provides an editor for creating a Workbench
deployment plan for the SilverStream eXtend Application Server. For other servers, use your
server tools and documentation to find out how to associate the descriptor’s resource reference
with the database of proverbs (which you set up in Lesson 2, “Setting Up Your Data Source”).

EXERCISE 5-2: Identify the database in the server deployment information

In this exercise you’ll add XML elements or other formatted data to the file that holds your
server’s deployment information.
82 Making the data source available to the application

Tutorial: Developing a Web Application
1. Use the following information to edit the server-specific part of the deployment process.

For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server Where Option and value or file contents

SilverStream Edit the SilverStream
deployment plan.
When opening the
deployment plan,
make sure you have
Workbench build the
project so it picks up
the changes you just
made to the
deployment
descriptor. Also,
make sure the
SilverStream server is
running in order to
get a list of
connection pools.

Open the property
sheet for the Resource
Reference called
jdbc/ProverbsDB

Connection pool — Specify the database
of proverbs that you’ve already added to
the server. If you are using the provided
Cloudscape database, specify
ProverbsCloud. (If you defined your
project as a J2EE 1.3 project and are
deploying to a SilverStream 4.x server,
specify /JDBC/ProverbsCloud.)

Sun Reference
Implementation

Edit sun-j2ee-ri.xml,
which is included in
the archive in the
META-INF directory.

Add this XML inside
the web element after
the context-root
element

<resource-ref>
<res-ref-name>

jdbc/ProverbsDB
</res-ref-name>
<jndi-name>

ProverbsCloud
</jndi-name>

</resource-ref>

For ProverbsCloud, substitute the JNDI
name you used when you installed the
database of proverbs on the server.
Making the data source available to the application 83

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

5 Setting Up Database Access
Getting the data source when the application starts

After the resource for the data source is set up, you need to write code that uses the server’s
naming service and connection pool to get a DataSource object. In the Proverbs application this
code is in the ProverbActionServlet, which extends the standard ActionServlet provided by
Struts. It overrides the servlet’s init() method to get the DataSource.

You also need to tell the server to use this new servlet class. You do that in the deployment
descriptor.

EXERCISE 5-3: Extend the Struts ActionServlet to get the data source during
initialization

In this exercise you will look at the ProverbActionServlet class, which extends ActionServlet.

1. In the Archive layout view of the Workbench Navigation Pane, expand the WEB-INF
directory down to the proverb directory and highlight proverb.

2. Double-click ProverbActionServlet.java to open it in the Edit Pane.

Jakarta Tomcat — Tomcat is a servlet container and does not
support the database access required of
the Proverbs application

BEA WebLogic Edit weblogic.xml,
which is included in
the archive in the
WEB-INF directory.

Add this XML after
the weblogic-version
element.

<reference-descriptor>
<resource-description>
<res-ref-name>

jdbc/ProverbsDB
</res-ref-name>
<jndi-name>

ProverbsCloud
</jndi-name>

</resource-description>
</reference-descriptor>

For ProverbsCloud, substitute the JNDI
name you used when you installed the
database of proverbs on the server.

IBM WebSphere — —

Oracle 9iAS — —

Server Where Option and value or file contents
84 Making the data source available to the application

Tutorial: Developing a Web Application
3. Notice that the class declaration extends ActionServlet.

4. Notice that the init() method calls the parent’s init() method to perform the standard
initialization tasks.

super.init();

5. Look at the code that accesses the server’s naming service to get a DataSource object. It
stores the DataSource object in the servlet context.

Here’s the code (with comments removed):
Context ic = new InitialContext();
Context env = (Context) ic.lookup(Constants.JAVA_COMPONENT_ENV);
String dsName = (String) env.lookup(Constants.JNDI_DATASOURCE_NAME);
DataSource ds = (DataSource) env.lookup(dsName);
getServletContext().setAttribute(Constants.DB_KEY, ds);

6. (Optional) Open Constants.java to see the values of the constants used in this code.

7. Close the files.

EXERCISE 5-4: Change the class for the application’s startup servlet

In this exercise you will edit the deployment descriptor to change the application’s startup
servlet.

1. In the Navigation Pane, right-click the project file ProverbStart.spf and select Open
Deployment Descriptor from the popup menu.

2. If Workbench displays the Select Build Option dialog, accept the defaults and click OK.

Workbench builds the project, if requested, then opens the descriptor.

3. In the Servlets section, right-click action and select Properties.

4. In the Servlet property sheet, change the servlet class to
com.proverb.ProverbActionServlet. You can click the ellipses button and select the
class from a list.

5. Change the description to Customized version of Struts action controller.
Making the data source available to the application 85

5 Setting Up Database Access
The property sheet looks like this:

6. Close the Property Inspector.

7. Save and close the descriptor.

Summary of what you’ve done

Developing the application In this lesson you built or learned about these parts of the
Proverbs tutorial application:

• Resource reference in the deployment descriptor for naming an identifier for the data
source

• Resource reference in the server deployment information that identifies the data source

• Customized controller servlet

Using Workbench tools You used these tools in Workbench:

• Deployment Descriptor Editor

• Deployment Plan Editor, XML Editor, or Text Editor

Next lesson In the next lesson you will learn how to code and configure a Struts action.
86 Summary of what you’ve done

6
 Defining an Action That Displays Data Lesson 6
What you will learn
In this lesson you will learn about Struts custom tags for displaying data and Java code for
handling a Struts action. You will also specify what the controller needs to know about the
action in the configuration file.

You will learn about:

• Querying the database

• Struts support for an action

• Telling the controller about a Struts action

• Retrieving data in the Action class

• Struts tags for displaying data

• Deploying and testing data access

What you will do
1. Retrieve data from the database

2. Define the action in the Struts configuration file

3. Use an Action class to set up the data for a JSP page

4. Display the retrieved data in a JSP page

5. Deploy the application

6. Test today.jsp

How long will it take? About 10 minutes

NOTE In this lesson you will need to run your J2EE application server for the deployment and
testing exercises.
87

6 Defining an Action That Displays Data
Querying the database
One of the activities of the Proverbs application is to display today’s proverb. When the user
chooses the Today’s Proverb link, the URL today.do is sent to the server. The controller
recognizes this URL and invokes Struts processing. The controller calls a method in the
TodayAction class that sets up a data object with the appropriate proverb. Based on the return
value, the controller selects a JSP page to display this data to the user.

To handle the proverb data, the application has:

• A Proverb bean class that holds the data for one proverb. Its properties correspond to the
columns in the proverbs database table.

• A ProverbDataAccess class whose methods query the database and return a Collection of
one or more Proverb beans

• A TodayAction class that makes the data available by calling the getTodaysProverb()
method in ProverbDataAccess

• A JSP page that uses the Collection object to display the Proverb bean’s property values

• An action element in the Struts configuration file tying the TodayAction class and
today.jsp to a request URL

To keep the business logic separate from the application flow, the data access methods are
isolated in the ProverbDataAccess class; you’ll see that none of the application’s Action classes
query the database directly.

EXERCISE 6-1: Retrieve data from the database

In this exercise you will look at how the ProverbDataAccess class queries the database and uses
the Proverb class to build a Java Collection of the retrieved data.

1. In the Workbench Navigation Pane, find the file Proverb.java and open it.

In Archive layout it is in the proverb folder under the WEB-INF/classes directory. In
Source layout it is under the src directory.

2. In the Edit Pane, notice these pieces of code, which make the Proverb object a bean:

• The class implements the java.io.Serializable interface

• The properties are defined as three instance variables; they correspond to columns in
the proverbs database table

• Each instance variable has a get and set method

3. Open the file ProverbDataAccess.java and find the getTodaysProverb() method.
88 Querying the database

Tutorial: Developing a Web Application
4. Notice how the code:

• Uses constants to build the SQL query string; the column names don’t need to be
specified here

• Instantiates a Proverb object and sets its properties from the retrieved data

• Adds the Proverb object to the proverbs ArrayList and returns the ArrayList as a
Collection

5. Close the files.

Struts support for an action

Review Lesson 1, “Architecture of an MVC Application” described how Struts uses a
controller to handle URLs. The configuration file struts-config.xml configures the controller
and tells it what processing to use for each action. Java classes do the processing, and JSP pages
display the results to the user.

You configure and support an action in a Struts application in these places:

Place Description

web.xml (deployment
descriptor)

The servlet mapping specifies the URLs the controller handles. In
Proverbs, the controller handles all URLS in the form *.do (in
EXERCISE 4-7: “Add a servlet mapping” you already specified
the servlet mapping for the URL)

struts-config.xml An action element identifies the action class that responds to the
URL and the JSP page to display

Action class A Java class extending the Struts Action class performs setup for
the JSP page

ActionForm class If the JSP page contains forms, a Java class extending the Struts
ActionForm class is instantiated to hold the data for each form
field
Struts support for an action 89

6 Defining an Action That Displays Data
In Lesson 3, “Working with Projects and Archives” you added the Struts JAR and tag libraries
to the project and assigned them to a location in the archive. They are required for handling the
Struts code.

In this lesson You’ll configure the today action and look at the associated Action class and
JSP page. There are no form classes for this action. In this lesson you will:

• Add the today action to struts-config.xml

• Look at the TodayAction class that extends Action and see how it accesses data

• Look at today.jsp to see how the Struts tags access the data set up by TodayAction

Telling the controller about a Struts action
The Struts configuration file contains action elements, which specify what happens when the
controller receives a URL with a particular action path. The action element specifies what
processing occurs and what page to display next. The controller reads this file to find out what
it is supposed to do.

An action element looks like this:

<action path="/actionname"
type="actionclass" >

<forward name="keyword" path="/target.jsp"/>
<forward name="keyword" path="/target.jsp"/>

</action>

ActionMappings class A Java class extending the Struts ActionMappings class defines
properties for the forwarding keywords used by all the actions

JSP pages The data to display to the user may depend on what happens in the
Action class’s code; the Action class returns a value to the
controller indicating which JSP page to display

Place Description
90 Telling the controller about a Struts action

Tutorial: Developing a Web Application
The table describes how the attributes and elements for an action are used in the today action:

A table laying out the attribute values for each action is a good planning tool for creating the
specifications for an application, as shown in “How Struts handles actions” on page 16. You can
fill out a table in that format for the today action if you want.

EXERCISE 6-2: Define the action in the Struts configuration file

In this exercise you will add an action to the configuration file that tells the controller what to do
when it gets the URL today.do.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/proverbs directory. Select
File>Open to open the file.

1. In the Workbench Navigation Pane, find and open struts-config.xml. It’s in the WEB-
INF directory.

Attribute
or element Purpose Values in the today action

path Keyword in the URL that invokes
this processing. The path always
begins with /. The servlet mapping
in web.xml specifies how the path
keyword is combined to form a
URL.

The complete path is actionname.do,
which is set up in web.xml.

The path /today tells the controller
what should happen when it receives
the URL today.do.

type Action class that sets up the
application environment for
displaying a Web page

The type com.proverb.TodayAction
tells the controller to call the
perform() method of the
TodayAction class.

forward JSP pages to be displayed as a
result of this action. The Action
class chooses which forward name
to return to the controller.

The name and path attributes
associate a forward name with a
JSP page.

The Proverbs application uses
forward values of success and
failure. When perform() returns a
forward value, the controller
displays the JSP page specified by
the named forward element’s path
attribute.
Telling the controller about a Struts action 91

6 Defining an Action That Displays Data
2. Inside the action-mappings element, enter this XML:
<action path="/today"

type="com.proverb.TodayAction" >
<forward name="success" path="/today.jsp"/>
<forward name="failure" path="/index.jsp"/>

</action>

3. Save and close struts-config.xml.

4. (Optional) Open web.xml and look at the servlet mapping. It specifies that the action
servlet handles any URL in the form *.do. Then close the file.

Retrieving data in the Action class
The processing for TodayAction is simple: it gets the application’s DataSource object, which
was stored in the servlet context when the controller servlet was initialized; then it calls a
method in ProverbDataAccess to get the proverb of the day.

EXERCISE 6-3: Use an Action class to set up the data for a JSP page

In this exercise you will look at the TodayAction class, which gets the Collection from
ProverbDataAccess and makes it available to the JSP page.

1. In the Workbench Navigation Pane, find the file TodayAction.java and open it.

NOTE Do you remember where to find the Java files? In Archive layout they’re under
the WEB-INF/classes directory. In Source layout they’re under the src directory.

2. Find the code in the perform() method that gets the DataSource object from the servlet
context:

ServletContext ctxt = servlet.getServletContext();
DataSource ds = (DataSource) ctxt.getAttribute(Constants.DB_KEY);

3. Look at the code that instantiates the ProverbDataAccess class and calls the
getTodaysProverb() method. The constructor expects the DataSource object as an
argument.

ProverbDataAccess pda = new ProverbDataAccess(ds);
if (pda != null)

pvbs = pda.getTodaysProverb();

4. Find the code that saves the pvbs Collection in the request:
request.setAttribute(Constants.PVB_KEY, pvbs);

5. Open Constants.java to find out the value of PVB_KEY. The JSP page uses that value to
refer to the collection.
92 Retrieving data in the Action class

Tutorial: Developing a Web Application
6. Notice that when the data retrieval is successful, the perform() method returns an
ActionForward value of success:

fwd = "success";
...
return (mapping.findForward(fwd));

This tells the controller which JSP page to display.

7. Close the files.

Struts tags for displaying data
Struts provides custom tags that can apply HTML formatting to a collection of data. You don’t
have to know ahead of time how many items you’ll get.

In today.jsp you’ll find these tags:

EXERCISE 6-4: Display the retrieved data in a JSP page

In this exercise you will see how today.jsp accesses the collection and displays the daily
proverb.

1. Double-click today.jsp to open it.

Tag Description

iterate Iterate repeats the enclosed statements for each object in the specified collection.
The name attribute specifies the collection that TodayAction puts in the request
context. Tags inside iterate refer to the collection using the value of id.

The JSP page today.jsp uses iterate to identify the collection being processed; it
doesn’t matter that there is only one item in the collection.

write The property attribute for the write tag specifies a property of the Proverb object
whose value is written as text in the JSP page.

present Struts checks whether the property you specify has a value. If so, Struts processes
the enclosed tags and text. In today.jsp, present checks whether the translation
property has a value; and if not, it omits the text label too.
Struts tags for displaying data 93

6 Defining an Action That Displays Data
2. In the Edit Pane, find the strutslogic:iterate tag:
<strutslogic:iterate name="ProverbCollection" id="pvb">

It uses the ProverbCollection attribute that TodayAction set in the request.

Do you recognize the value of the name attribute? It’s the value of PVB_KEY in
Constants.java.

3. Inside the iterate tag, find a write tag. There are several.
<strutsbean:write name="pvb" property="text" />

In each write tag, the property attribute refers to a property in the Proverb class.

4. Close the file.

Converting plain text to message tags The h2 text and the text labels for the data are
just English text in this file. If you wanted to internationalize this application, do you know how
you would fix this with Struts message tags?

The text for the heading is already part of the ApplicationResources.properties file. You can
replace the text in the heading with this message tag:

<strutsbean:message key="page.today.title"/>

For the data labels, you need to add keys and their text to the resources file, then refer to those
keys in the JSP page.

For more information about using the Struts message tag, see “How Struts enables
internationalization and localization” on page 13.

Deploying and testing data access
You’ve reached the point where you can test the data access and see today.jsp display the
proverb data. You did the deployment setup the first time you deployed when you defined a
server profile and specified deployment settings in Lesson 4, “Deploying and Testing the
Welcome Page”. Now all you need to do is build and deploy.

EXERCISE 6-5: Deploy the application

1. In Workbench, select Project>Build and Archive.

There should be no errors in the Build tab of the Output Pane.

2. Select Project>Deploy Archive from the menu.
94 Deploying and testing data access

Tutorial: Developing a Web Application
The Output Pane displays brief build output, then switches to the Deploy tab and shows
progress messages. There should be no errors.

EXERCISE 6-6: Test today.jsp

1. If your browser is running, open a new browser window. If not, start your browser now.

2. Enter the URL for the application. A typical URL for a SilverStream server might be:
http://localhost/ProverbsCloud/ProverbStart/index.jsp

3. Click Today’s Proverb in the application menu.

If the page displays a proverb, congratulations. You’ve successfully set up the today
action.

If it doesn’t work If you see no proverb but errors instead, you’ll need to reexamine the
server deployment information, deployment descriptor, and Struts configuration file to make
sure they are correct. You can also check the code that:

• Accesses the server’s naming service in ProverbActionServlet

• Does the database query in ProverbDataAccess
Deploying and testing data access 95

6 Defining an Action That Displays Data
• Defines constants for the SQL statement in Constants.java

TIP Check the server console for error messages. If there are server-specific errors, the code
may need editing.

Summary of what you’ve done

Developing the application In this lesson you built or learned about these parts of the
Proverbs tutorial application:

• ProverbDataAccess class with methods that access the database

• Action element for the today action in struts-config.xml

• TodayAction class for handling the today.do URL

• JSP page called today.jsp with custom tags for displaying proverb data

Using Workbench tools You used these tools in Workbench:

• Edit Pane

• Building and archiving (Project>Build and Archive)

• Deployment (Project>Deploy Archive)

Next lesson In the next lesson you will learn how to get search criteria from the user in a
form and how to use Struts support for form processing.
96 Summary of what you’ve done

7
 Defining a Form and Results Page Lesson 7
What you will learn
In this lesson you will learn about Struts custom tags for displaying data in JSP pages and about
Java code for handling a form. You will also learn what the Struts controller needs to know about
forms in the configuration file.

You will learn about:

• Two actions for one form

• Setting up the form

• Processing for the actions

• Displaying the retrieved data

• Deploying and testing the form

What you will do
1. Define two actions in the Struts configuration file

2. Examine the form elements in the JSP page

3. Examine the SelectForm class

4. Examine the SelectAction class

5. Examine the JSP pages that show the results of the search

6. Deploy the application

7. Test the Find Proverbs activity

How long will it take? About 10 minutes

NOTE In this lesson you will need to run your J2EE application server for the deployment
exercise.
97

7 Defining a Form and Results Page
Two actions for one form
In struts-config.xml there are two action elements for finding proverbs: the select action
displays the form and the results action processes the submitted form.

The SelectAction class provides processing for both actions. When the controller calls its
perform() method, it passes an ActionMapping object that identifies which action is being
performed.

In addition to the Action class, you also need an ActionForm class for the new form. Its name
and class are defined in the form-beans section of the configuration file.

In Lesson 6, “Defining an Action That Displays Data” you learned about some basic attributes
for actions. To review them, see “Telling the controller about a Struts action” on page 90.

Because the actions for selecting a proverb use a form, the action elements in the next exercise
include some new attributes:

• name: the name of the form object, assigned in the form-bean element

• scope: how long the form object is kept; typical values are request and session

• validate: whether to call the form’s validate() method when the form is submitted

• input: for an action that processes a submitted form, the JSP page that displays the form

EXERCISE 7-1: Define two actions in the Struts configuration file

In this exercise you will add two actions to the configuration file.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/proverbs directory.

1. In the Workbench Navigation Pane, find and open struts-config.xml.

Do you remember where the configuration files are in your project?

2. Before the closing tag </action-mappings> and after the </action> closing tag of the
today action, enter this XML for the action that displays the form:

<action path="/select"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
validate="false">

<forward name="success" path="/select.jsp"/>
<forward name="failure" path="/select.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</action>
98 Two actions for one form

Tutorial: Developing a Web Application
3. Still inside the action-mappings element and after </action> for the select action, enter
this XML for the action that displays the retrieved data:

<action path="/results"
type="com.proverb.SelectAction"
name="selectForm"
scope="session"
input="select.jsp">

<forward name="success" path="/selectResults.jsp"/>
<forward name="failure" path="/selectFailed.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</action>

4. In the form-beans section at the beginning of the file, look at the form-bean element that
defines selectForm and identifies its Java class.

<form-bean name="selectForm"
type="com.proverb.SelectForm"/>

5. Save and close the file.

Setting up the form
The Find Proverbs activity displays a form so users can select proverbs.

Using Struts tags to define a form

Struts provides custom tags that provide functionality parallel to the HTML form tags. In
addition to displaying the various input fields and buttons, the tags have attributes that associate
those fields with Struts form processing.

In select.jsp, the custom form tags are laid out using standard HTML table tags.
Setting up the form 99

7 Defining a Form and Results Page
EXERCISE 7-2: Examine the form elements in the JSP page

In this exercise you will look at how the form implements properties and initializes data.

1. In the Workbench Navigation Pane, find select.jsp and open it in the Edit Pane.

2. Find the form custom tag. Its action attribute specifies the URL that is submitted to the
controller, and its name attribute identifies the form class that will store the submitted data
(described below).

<strutshtml:form action="results.do" name="selectForm"
type="com.proverb.SelectForm">

3. Find the tags for the keywords field. You’ll see a text field and its label. The label text
comes from the resources file. Here’s the code without the table tags:

<strutsbean:message key="page.select.keywordslabel"/>
<strutshtml:text property="keywords" size="40" maxlength="40"/>

4. Find the tags for the country field.
<strutsbean:message key="page.select.countrylabel"/>
<strutshtml:select property="country" >

<option value=""> </option>
<strutshtml:options property="countryList" />

</strutshtml:select>

The option tag provides a blank line in the selection list. The options tag refers to the
countryList collection, which contains data retrieved by the SelectForm class.

5. Find the tags for the submit button.
<strutshtml:submit>

<strutsbean:message key="button.submitall"/>
</strutshtml:submit>

The button has no attributes. The message tag supplies a custom label.

6. Close the file.

In the next exercise you’ll see how an ActionForm class defines properties that match the fields
in the form.

Supporting the form with an ActionForm class

When you use Struts, each form has a class that extends ActionForm. The class has properties
that match the fields in the form. Your Action class has code that instantiates the form and
accesses submitted data by getting property values.
100 Setting up the form

Tutorial: Developing a Web Application
The SelectForm class in the Proverbs application has properties for the country and keywords
input fields. It also has a countryList property for the countries displayed in the dropdown list.
The reset() method, which initializes and resets the form, calls the private getList() method,
which queries the database for the list of countries.

EXERCISE 7-3: Examine the SelectForm class

In this exercise you will look at how the form implements properties and initializes data.

1. In the Workbench Navigation Pane, find the file SelectForm.java and open it.

2. In the Edit Pane, notice that the SelectForm class extends the Struts ActionForm class.

3. Find the properties that match the Struts form elements in the JSP page. The properties
have:

• Instance variable declarations

• Get and set methods

4. Find the reset() method, which clears the input fields and retrieves the country list.

5. (Optional) Examine the getList() method.

The getList() method uses the same data access techniques that the today action uses. If
you want, review these techniques in EXERCISE 6-1: “Retrieve data from the database”
and EXERCISE 6-3: “Use an Action class to set up the data for a JSP page”.

6. Close the file.
Setting up the form 101

7 Defining a Form and Results Page
Processing for the actions
As you know, each Struts action uses a class that extends Action. In the Find Proverbs activity,
both of its actions use the same Action class.

In the code you can identify the current action by checking the path property of the
ActionMapping object passed to perform(). In the Proverbs application the SelectAction class
doesn’t check the path property; instead it checks whether the fields in the form have values:

• If the form fields are empty, perform() returns the failure keyword; for the select action,
the empty form is displayed, and for the results action, the no-results page is displayed.

• If the form has values, it must be the results action; so perform() retrieves the proverb data
and returns the forward keyword success. The results page displays the data.

EXERCISE 7-4: Examine the SelectAction class

In this exercise you will look at code that instantiates a SelectForm object and retrieves a
collection of data.

1. In the Workbench Navigation Pane, find the file SelectAction.java and open it.

2. In the Edit Pane, notice that the SelectAction class extends the Struts Action class.

3. Look at the code for:

• Instantiating a SelectForm object if it doesn’t exist—in the code if (form == null)

• Getting country and keyword data the user entered by calling the form’s get methods

• Retrieving proverb data based on the user’s criteria

• Saving the retrieved proverb collection in the request

• Returning a forward keyword to the controller

4. Close the file.

Displaying the retrieved data
The results action uses the same Action class as select, but the configuration specifies different
JSP pages for the forward keywords. There are two pages:

• The success page displays all the proverbs that match the search criteria. As described for
the Today’s Proverb activity in “Retrieving data in the Action class” on page 92,
SelectAction saves a collection of Proverb objects in the request, which the JSP page can
access.
102 Processing for the actions

Tutorial: Developing a Web Application
• The failure page reports that no proverbs matched the criteria. The text of the message is
stored in the ApplicationResources file.

EXERCISE 7-5: Examine the JSP pages that show the results of the search

In this exercise you will see code for displaying the retrieved proverbs as well as the page for
reporting no results.

1. Open selectResults.jsp.

2. Find the Struts iterate tag and look at the tags that display the properties of the Proverb
object.

Do you remember how the data tags work? If not, review “Struts tags for displaying data”
on page 93.

3. Open selectFailed.jsp.
Displaying the retrieved data 103

7 Defining a Form and Results Page
4. Find the message key page.selectfailed.info, which specifies the text reporting that no
proverbs were found.

5. (Optional) Open ApplicationResources.properties and read the actual text for that
message key.

6. Close the files.

Deploying and testing the form
Now you are ready to test the Find Proverbs activity.

EXERCISE 7-6: Deploy the application

1. In Workbench, select Project>Build and Archive.

There should be no build errors in the Output Pane.

2. Select Project>Deploy Archive from the menu.

There should be no deploy errors in the Output Pane.

EXERCISE 7-7: Test the Find Proverbs activity

1. If your browser is running, open a new browser window. If not, start your browser.

2. Enter the URL for the application. A typical URL might be:
http://localhost/ProverbsCloud/ProverbStart/index.jsp

3. Click Find Proverbs in the application’s navigation menu.

You see the Find Proverbs form.

4. Fill in the form. You can select a country from the dropdown list, specify keywords, or
both.

TIP Try the country China and the keyword man. Try the keyword light with Country
left blank.
104 Deploying and testing the form

Tutorial: Developing a Web Application
If the application finds proverbs that meet your criteria, it displays selectResults.jsp, titled
Your Proverbs.

If no proverb meets the criteria, it displays selectFailed.jsp.

Summary of what you’ve done

Developing the application In this lesson you built or learned about these parts of the
Proverbs tutorial application:

• Action elements specifying how the controller handles displaying the form and the results

• JSP page with a form for the user’s search criteria

• ActionForm class for the HTML form

• Action class that sets up and processes either action

• JSP pages for displaying results or reporting failure

Using Workbench tools You used these tools in Workbench:

• Edit Pane

• Building and archiving (Project>Build and Archive)

• Deployment (Project>Deploy Archive)

Next lesson In the next lesson you will learn about processing a form that updates the
database.
Summary of what you’ve done 105

7 Defining a Form and Results Page
106 Summary of what you’ve done

8
 Defining a Form for Database Update Lesson 8
What you will learn
In this lesson you will reinforce what you’ve already learned about Struts forms and actions.
You’ll also look at code and configure the actions that let the user update the database.

You will learn about:

• Configuring actions for contributing a proverb

• The classes that support the contribute actions

• Deploying and testing the finished application

What you will do
1. Define the contribute actions in the Struts configuration file

2. Examine the code for the contribute actions

3. Deploy the application

4. Test the contribute action and the rest of the application’s activities

How long will it take? About 10 minutes

NOTE In this lesson you will need to run your J2EE application server for the deployment
exercise.

Configuring actions for contributing a proverb
The Contribute a Proverb activity is similar to Find Proverbs. The contribute action handles
displaying the form, and the saveResults action handles the submitted data.

The new wrinkle in this activity is that each action has its own Action class. The
ContributeAction class instantiates the form if necessary. The SaveResultsAction class gets the
submitted data and constructs the SQL for updating the database.
107

8 Defining a Form for Database Update
EXERCISE 8-1: Define the contribute actions in the Struts configuration file

In this exercise you will add two actions to the configuration file.

NOTE You can copy the XML for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-dir/docs/tutorial/TutorialFiles/proverbs directory.

1. In the Workbench Navigation Pane, find and open struts-config.xml.

2. Inside the action-mappings element after the closing tag </action> of the results action,
enter this XML for the action that displays the contribute form:

<action path="/contribute"
type="com.proverb.ContributeAction"
name="contributeForm"
validate="false">

<forward name="success" path="/contribute.jsp"/>
<forward name="failure" path="/contribute.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</action>

3. Still inside the action-mappings element after </action>, enter this XML for the action
that updates the database:

<action path="/saveProverb"
type="com.proverb.SaveProverbAction"
name="contributeForm"
scope="session"
input="/contribute.jsp"
validate="true">

<forward name="success" path="/contributeResult.jsp"/>
<forward name="failure" path="/contributeFailed.jsp"/>
<forward name="cancel" path="/index.jsp"/>

</action>

4. In the form-beans section at the beginning of the file, look at the form-bean element that
defines contributeForm and identifies its Java class.

<form-bean name="contributeForm"
type="com.proverb.ContributeForm"/>

5. Save and close the file.
108 Configuring actions for contributing a proverb

Tutorial: Developing a Web Application
The classes that support the contribute actions
You’ve seen that there are two actions for the Contribute a Proverb activity. Both actions have
their support classes:

The Contribute a Proverb activity is implemented a little differently from Find Proverbs:

• Each action has its own Action class, which makes the code in each one simpler

• The ContributeForm uses validation; the class has a validate() method, and validation is
turned on in the configuration file. If validation fails, the controller displays contribute.jsp
again with error messages. The application requires the user to specify the proverb text
and a country; it does not require a translation.

EXERCISE 8-2: Examine the code for the contribute actions

In this exercise you will look at how the contribute action differs from the Find Proverbs code
described in Lesson 7, “Defining a Form and Results Page”.

1. In Workbench, open ContributeForm.java and find the validate() method.

The method builds an ActionErrors object. Like the rest of the application, the text for the
error messages is in ApplicationResources.properties and the code refers to the message
keys.

2. Open contribute.jsp and find the errors custom tag.

When validation fails, the tag includes the error text in the page.

3. Open ContributeAction.java and note the reduced amount of code.

All this class needs to do is instantiate the form.

Action Supporting classes and JSP pages

contribute ContributeAction.java

ContributeForm.java

contribute.jsp

saveProverb SaveProverbAction.java

ContributeForm.java

contributeResult.jsp, contributeFailed.jsp
The classes that support the contribute actions 109

8 Defining a Form for Database Update
4. Open SaveProverbAction.java and look at the code that processes the submitted proverb
data.

The code constructs a Proverb object of the submitted data and calls a method in
ProverbDataAccess that updates the database.

Proverb pvb = new Proverb(
contribform.getProverb(),
contribform.getTranslation(),
contribform.getCountry());

int result = pda.insertIntoProverbTable(pvb);

The code that gets a DataSource and instantiates the ProverbDataAccess object should
look familiar.

When the update succeeds, the form is removed from the session so the data won’t be
processed again.

session.removeAttribute(mapping.getAttribute());

5. Close the files.

Deploying and testing the finished application
You’ve reached the end of this application, and it’s time to test all the activities.

EXERCISE 8-3: Deploy the application

These are the same deployment instructions you’ve used before.

1. In Workbench, select Project>Build and Archive.

There should be no build errors in the Output Pane.

2. Select Project>Deploy Archive from the menu.

There should be no deploy errors in the Output Pane.

EXERCISE 8-4: Test the contribute action and the rest of the application’s activities

1. Open a new browser window.

2. Enter the URL for the application. A typical URL might be:
http://localhost/ProverbsCloud/proverbs/index.jsp
110 Deploying and testing the finished application

Tutorial: Developing a Web Application
3. Click Contribute in the application’s navigation menu.

You see the contribute form.

4. Fill in the form. You can leave translation blank, but the proverb text and source are
required.

5. Click Submit.

If the application successfully updates the database with your proverb, it displays
contributeResult.jsp. If updating the database fails, it displays contributeFailed.jsp.
Deploying and testing the finished application 111

8 Defining a Form for Database Update
6. Submit another proverb. Test the validation by leaving some of the fields blank.

You’ll see a message reminding you what fields you left out. You can tell by looking at the
URL that the application is in the second action of the Contribute Proverbs activity.

7. Test the other activities in the application.

8. When you’re finished testing, close the browser.

You’re done!

Summary of what you’ve done

Developing the application In this lesson you built or learned about these parts of the
Proverbs tutorial application:

• Action elements specifying how the controller handles displaying the form and processing
the submitted data

• JSP page with a form for the user’s proverb data

• ActionForm class for the HTML form

• Action class for displaying the form
112 Summary of what you’ve done

Tutorial: Developing a Web Application
• Action class for processing the submitted form and updating the database

• JSP pages for displaying success or failure

Using Workbench tools You used these tools in Workbench:

• Edit Pane

• Building and archiving (Project>Build and Archive)

• Deployment (Project>Deploy Archive)

What’s next Congratulations. You’ve finished building the Proverbs Web application based
on the MVC architecture and Struts.

To learn more about J2EE and Workbench, try the Web Services tutorial.
Summary of what you’ve done 113

8 Defining a Form for Database Update
114 Summary of what you’ve done

Index
A
archives

about (tutorial) 33
building (tutorial) 55
structure of (tutorial) 35

C
classpaths

for project (tutorial) 44
Cloudscape

DBMS, obtaining 25
tutorial database 24
tutorial database with SilverStream 25
tutorial database with WebLogic 28

compiling code (tutorial) 55

D
databases

accessing from Web application (tutorial) 77
choices (tutorial) 24
identifying on server (tutorial) 82
querying from application (tutorial) 88
resource references (tutorial) 78
retrieving data, classes (tutorial) 92
updating (tutorial) 107

DataSource
getting from naming service (tutorial) 84

deployment descriptors
editing (tutorial) 57
environment variables (tutorial) 78
resource reference for database (tutorial) 78
servlet mapping (tutorial) 62
welcome page (tutorial) 63

deployment plans
databases (tutorial) 82

E
environment variables

in deployment descriptor (tutorial) 78

I
internationalization, Struts (tutorial) 13

J
J2EE application servers

connection pool (tutorial) 82
J2EE development (tutorial) 3
JavaServer Pages

JSP Wizard (tutorial) 50
JNDI

getting DataSource (tutorial) 84

L
localization, Struts (tutorial) 13

P
projects

about (tutorial) 33
adding content (tutorial) 39, 48
building and archiving (tutorial) 55
classpath (tutorial) 44
creating (tutorial) 36

ProverbFinal project (tutorial) 6
Proverbs application (tutorial)

about 6
classes for contribute actions 109
classes for form 100
classes for retrieving data 92
Contribute a Proverb activity 107
contribute action 107
data source 24
115

Index
database setup 23
database tables 19
deploying 64
deployment descriptor 57
displaying data 93
Find Proverbs activity 98
form for selecting data 98
form tags for selecting data 99
JNDI and DataSource 84
querying database 88
results action 98
saveResults action 107
select action 98
testing Contribute a Proverb activity 110
testing Find Proverbs activity 104
testing Today’s Proverb activity 94
testing welcome page 69
Today’s Proverb action 88
updating database 107

S
servlets

configuring (tutorial) 57
initialization parameters (tutorial) 60

SilverStream eXtend Application Server
trial version, obtaining 25

Struts (tutorial)
action implementation 89
actions and URL patterns 16
classes for form 100
configuring action 98
controller implementation 16
controller, configuring actions 90
displaying data 93
form tags 99
forms 15
framework 4
internationalization 13
model implementation 19
MVC architecture 4
planning tool for configuring actions 16
view implementation 8

T
tutorials

developing a Web application (WAR) 3

U
URLs

testing Proverbs application (tutorial) 69

W
Web applications

Struts (tutorial) 4
web.xml

editing (tutorial) 57
116

	Tutorial: Developing a Web Application
	Part I�Creating a Web Application Project
	Lesson 1 Architecture of an MVC Application 3
	What you will learn 3
	How the Proverbs application implements MVC and Struts 4
	Implementing the view 8
	Implementing the controller 16
	Implementing the model 19
	Data for the application 19
	Summary of what you’ve done 21

	Lesson 2 Setting Up Your Data Source 23
	What you will learn 23
	Choices for setting up a data source 24
	Adding the Cloudscape database to SilverStream 25
	Using the Cloudscape database with BEA WebLogic 28
	Summary of what you’ve done 31

	Lesson 3 Working with Projects and Archives 33
	What you will learn 33
	The relationship between projects and archives 33
	Creating a project 36
	Adding content to the project 39
	Setting up the project’s classpath 44
	Summary of what you’ve done 45

	Lesson 4 Deploying and Testing the Welcome Page 47
	What you will learn 47
	Adding new files to the project 48
	Working with JSP pages 50
	Building and archiving 55
	Working with the deployment descriptor 57
	Testing the application 69
	Summary of what you’ve done 70

	Part II�Forms and Data in a Web Application
	Lesson 5 Setting Up Database Access 77
	What you will learn 77
	Making the data source available to the application 77
	Summary of what you’ve done 86

	Lesson 6 Defining an Action That Displays Data 87
	What you will learn 87
	Querying the database 88
	Struts support for an action 89
	Telling the controller about a Struts action 90
	Retrieving data in the Action class 92
	Struts tags for displaying data 93
	Deploying and testing data access 94
	Summary of what you’ve done 96

	Lesson 7 Defining a Form and Results Page 97
	What you will learn 97
	Two actions for one form 98
	Setting up the form 99
	Processing for the actions 102
	Displaying the retrieved data 102
	Deploying and testing the form 104
	Summary of what you’ve done 105

	Lesson 8 Defining a Form for Database Update 107
	What you will learn 107
	Configuring actions for contributing a proverb 107
	The classes that support the contribute actions 109
	Deploying and testing the finished application 110
	Summary of what you’ve done 112

	About This Book
	Purpose
	Audience
	Prerequisites
	Lessons

	Part I Creating a Web Application Project
	Architecture of an MVC Application
	What you will learn
	What you will do

	How the Proverbs application implements MVC and Struts
	What is MVC?
	What is Struts?
	MVC structure of the tutorial application
	Examining the tutorial application
	EXERCISE 1-1: Start Workbench and open the ProverbFinal project

	Implementing the view
	EXERCISE 1-2: Look at source code for the navigation bar
	How Struts enables internationalization and localization
	EXERCISE 1-3: Look at the text resources file

	How to create a form using Struts tags
	EXERCISE 1-4: Look at the Struts version of an HTML form

	Implementing the controller
	EXERCISE 1-5: Look at the ActionServlet javadoc and the ProverbActionServlet class
	How Struts handles actions
	EXERCISE 1-6: Look at the Struts configuration file

	Implementing the model
	EXERCISE 1-7: Look at the source code for the TodayAction class

	Data for the application
	EXERCISE 1-8: Look at source code for accessing proverb data

	Summary of what you’ve done

	Setting Up Your Data Source
	What you will learn
	What you will do

	Choices for setting up a data source
	Building your own database
	EXERCISE 2-1: Build a database and import proverb data

	Using the Cloudscape database

	Adding the Cloudscape database to SilverStream
	EXERCISE 2-2: Add the Cloudscape database to the SilverStream server

	Using the Cloudscape database with BEA WebLogic
	EXERCISE 2-3: Edit the startup file for WebLogic to use Cloudscape
	EXERCISE 2-4: Configure a WebLogic connection pool
	EXERCISE 2-5: Configure a WebLogic data source
	EXERCISE 2-6: Configure the connections for the WebLogic pool

	Summary of what you’ve done

	Working with Projects and Archives
	What you will learn
	What you will do

	The relationship between projects and archives
	Where source files reside
	Typical directory structure of an archive

	Creating a project
	EXERCISE 3-1: Set up directories for your project
	EXERCISE 3-2: Create a new project

	Adding content to the project
	EXERCISE 3-3: Add directories to the project
	EXERCISE 3-4: Add content from elsewhere in the file system

	Setting up the project’s classpath
	EXERCISE 3-5: Set up a classpath for building the project

	Summary of what you’ve done

	Deploying and Testing the Welcome Page
	What you will learn
	What you will do

	Adding new files to the project
	EXERCISE 4-1: Add files to the project

	Working with JSP pages
	EXERCISE 4-2: Create a new JSP page
	EXERCISE 4-3: Edit the JSP page

	Building and archiving
	EXERCISE 4-4: Compile the Java code and generate the archive file

	Working with the deployment descriptor
	EXERCISE 4-5: Begin editing the deployment descriptor
	EXERCISE 4-6: Add initialization parameters for the servlet
	EXERCISE 4-7: Add a servlet mapping
	EXERCISE 4-8: Specify the project’s default page
	EXERCISE 4-9: Add tag libraries
	EXERCISE 4-10: Rebuild the archive
	Deploying the project
	EXERCISE 4-11: Deploy the project

	Testing the application
	EXERCISE 4-12: Test the application in the browser

	Summary of what you’ve done

	Part II Forms and Data in a Web Application
	Setting Up Database Access
	What you will learn
	What you will do

	Making the data source available to the application
	Resource references in the deployment descriptor
	EXERCISE 5-1: Add a resource reference to the deployment descriptor

	Identifying the database in the server deployment information
	EXERCISE 5-2: Identify the database in the server deployment information

	Getting the data source when the application starts
	EXERCISE 5-3: Extend the Struts ActionServlet to get the data source during initialization
	EXERCISE 5-4: Change the class for the application’s startup servlet

	Summary of what you’ve done

	Defining an Action That Displays Data
	What you will learn
	What you will do

	Querying the database
	EXERCISE 6-1: Retrieve data from the database

	Struts support for an action
	Telling the controller about a Struts action
	EXERCISE 6-2: Define the action in the Struts configuration file

	Retrieving data in the Action class
	EXERCISE 6-3: Use an Action class to set up the data for a JSP page

	Struts tags for displaying data
	EXERCISE 6-4: Display the retrieved data in a JSP page

	Deploying and testing data access
	EXERCISE 6-5: Deploy the application
	EXERCISE 6-6: Test today.jsp

	Summary of what you’ve done

	Defining a Form and Results Page
	What you will learn
	What you will do

	Two actions for one form
	EXERCISE 7-1: Define two actions in the Struts configuration file

	Setting up the form
	Using Struts tags to define a form
	EXERCISE 7-2: Examine the form elements in the JSP page

	Supporting the form with an ActionForm class
	EXERCISE 7-3: Examine the SelectForm class

	Processing for the actions
	EXERCISE 7-4: Examine the SelectAction class

	Displaying the retrieved data
	EXERCISE 7-5: Examine the JSP pages that show the results of the search

	Deploying and testing the form
	EXERCISE 7-6: Deploy the application
	EXERCISE 7-7: Test the Find Proverbs activity

	Summary of what you’ve done

	Defining a Form for Database Update
	What you will learn
	What you will do

	Configuring actions for contributing a proverb
	EXERCISE 8-1: Define the contribute actions in the Struts configuration file

	The classes that support the contribute actions
	EXERCISE 8-2: Examine the code for the contribute actions

	Deploying and testing the finished application
	EXERCISE 8-3: Deploy the application
	EXERCISE 8-4: Test the contribute action and the rest of the application’s activities

	Summary of what you’ve done

	Index

