
SilverStream eXtend Workbench

Tools Guide

Version 4.0

June 2002

Copyright ©2002 SilverStream Software, Inc. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.

SilverStream and jBroker are registered trademarks and SilverStream eXtend is a trademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such notices on all copies or extracts of the Software
or its documentation. You do not acquire any rights of ownership in the Software.

Third Party Software:

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant, Xalan and Xerces software is licensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", “Xalan”, "Ant" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS PROVIDED “AS IS” AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going,
SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM JikesTM and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/developerworks/opensource/license10.html. Source code for
JikesTM is available at <http://oss.software.ibm.com/developerworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/developerworks/projects/bsf.

This software contains code in executable form obtained pursuant to the Mozilla Public License, a copy of which may be obtained at
<http://www.mozilla.org/MPL/>. Source code is available at http://www.mozilla.org/rhino/download.html.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents
About This Book xi
Purpose xi
Audience xi
Prerequisites xi
Organization xi

Chapter 1 Workbench Basics 1
What Workbench provides 2
Workbench panes 3
Basic Workbench operations 5

Starting and stopping Workbench 5
Using proxy servers 5
Opening, saving, and closing projects and files 6

Workbench wizards 9
Standard Workbench editors 10

About the Workbench source editors 10
Debugger 12

Workbench viewers 12
Image Viewer 12
Class Viewer 12

Web Service tools 13
Setting preferences 13

General preferences 14
Build preferences 15
Display preferences 15
Text editing preferences 16
Printing preferences 17
Deployment preferences 18
Abbreviations preferences 19
File type preferences 20
Backup preferences 21
Version control preferences 23
Editor setup preferences 23
NetBeans directories preferences 24
XML Editor color preferences 24
iii

iv

Contents
Setting Workbench profiles 24
Server profile 24
Database profile 27
Registry profile 29

Using version control 29
Setting up access to version control 30
Accessing version control 36

Maintaining Todo lists 37
Working in the Todo tab 38
Working with generated items 42

Specifying a debugger 43
Specifying the command 43

Using Ant 44
What is Ant? 44
Using the Workbench Ant tools 45
Examples 48

Internationalization support 49
Specifying fonts 49

Extending the Workbench toolset and services 50

Chapter 2 Projects and Archives 51
About projects and archives 51
Organizing projects 53

Project design considerations 53
Project directory structure considerations 53

Creating projects and subprojects 56
Creating a deploy-only project 62
Working with existing source files 64

Populating projects 65
Creating source files 65
Adding to projects 68

Viewing projects 74
Maintaining projects 76

Opening a project 77
Managing general project settings 78
Managing project content settings 80
Removing files, directories, and subprojects from projects 85
Renaming a project 87

Compiling, building, and archiving 87
Setting up your Workbench environment 87
Using the commands 91

Validating archives 94

eXtend Workbench Tools Guide
Chapter 3 Archive Deployment 95
Workbench-supported J2EE servers 95
Workbench deployment types 96
Using Workbench to deploy J2EE archives 98

Archive contents 99
Creating deployment settings 102

What Workbench does when you deploy a project 108
Deploying Web Services 114
Undeploying archives 115

Chapter 4 Component Wizards 117
EJB Wizard 117

About the EJB Wizard 117
Starting the EJB Wizard 118
Panel sequence 118
Panel reference 122

JSP Wizard 156
About the JSP Wizard 156
Starting the JSP Wizard 156
Specifying the JSP page name and other options 156
Specifying the project, directory, and package 158
Specifying imports 160
What happens 160

Servlet Wizard 161
About the Servlet Wizard 161
Starting the Servlet Wizard 162
Specifying the class name and other servlet options 162
Specifying the project, directory, and package 163
Specifying which HttpServlet methods to override 165
Specifying which interfaces to implement 166
Specifying which classes and packages to import 166

Java Class Wizard 167
About the Java Class Wizard 167
Starting the Java Class Wizard 167
Specifying the class name and other options 168
Specifying which interfaces to implement 169
Specifying which classes and packages to import 169
Specifying the project, directory, and package 169

JavaBean Wizard 172
About the JavaBean Wizard 172
Starting the JavaBean Wizard 172
v

vi

Contents
Specifying the class name and other options 172
Specifying the data fields 173
Specifying which interfaces to implement 173
Specifying which classes and packages to import 174
Specifying the project, directory, and package 174

Tag Handler Wizard 176
About the Tag Handler Wizard 177
Starting the Tag Handler Wizard 177
Specifying the class name and other options 178
Specifying the project, directory, and package 179
Specifying the tag library descriptor file 181
Specifying the body type 183
Specifying tag handler attributes 183
Specifying tag handler scripting variables 184
Specifying TagExtraInfo class 185
What happens 185

Chapter 5 Web Service Wizard 187
About the wizard 187
Using the wizard 189
Panel sequence 189
Panel details 191

Project location 191
WAR project selection 195
Class selection 196
WSDL file selection 197
Multiple namespace mapping 199
EJB home interface selection 200
EJB lookup information 201
Method selection 203
Class-generation and SOAP options 204

Chapter 6 Source Editors 211
Common features 212

Standard editing features 212
Editor preferences 213
Searching across multiple files 213
Using text abbreviations 214
Changing case 215
Changing spaces, tabs, and indentation 215

The NetBeans-based editors 216
Color coding 217

eXtend Workbench Tools Guide
Code completion 218
Adding files types edited by NetBeans-based editors 221
Other editing support 222

The native editors 224
Changing line ending characters 224
Multiple clipboard support 225
Viewing and changing read-only and read-write attributes 225
Using the native Java, JSP, or HTML editor 225
Inserting custom tags in a JSP page 226

Chapter 7 XML Editors 229
About XML 229
XML support in Workbench 230
Using the XML Editor 230

Using the Source View 231
Using the Tree View 231

Creating and opening XML documents 233
Associating Schemas and DTDs with XML documents 235

Attaching a Schema or DTD to a document 235
Specifying a Schema or DTD in the XML document 237
Detaching a Schema or DTD 237

Converting a DTD to a Schema 238
Editing an XML document 239

About context support 239
Adding elements 242
Adding attributes 243
Adding namespace declarations 243
Editing objects 244

Using the Schema Guide 244
The Schema Guide window 245
Adding elements and attributes 248
Looking at different elements 248

Validating an XML document 249
Searching an XML document 251
Maintaining the XML catalog 252

Adding to the catalog 253
Using the XML Catalog Editor 254

Using the XSL Editor 256
Keyboard shortcuts 258

In Tree View 258
In Source View 261
vii

viii

Contents
In Catalog View, XML Catalog Editor 266

Chapter 8 WSDL Editor 267
About WSDL 267
About the WSDL Editor 267
Creating a new WSDL document 268
Adding elements to a WSDL document 269

Adding a message element 269
Adding a port type element 271
Adding a binding element 272
Adding a service element 274

Validating a WSDL document 276
Displaying a stylized view 277
Publishing to a registry 278
Generating Web Service files from WSDL 279

Chapter 9 Registry Manager 281
About UDDI 281
About the Registry Manager 281
Defining registry profiles 282
Browsing registries 284

Information displayed 284
Popup menus 286
Action buttons 287
Searching by business 287
Searching by service 290

Retrieving WSDL from the registry 292
Publishing to a registry 293

Chapter 10 Deployment Descriptor Editor 295
About deployment descriptors 295
About the Deployment Descriptor Editor 296
Using the Deployment Descriptor Editor 297

Chapter 11 Deployment Plan Editor 301
About Deployment Plans 301
Using the Deployment Plan Editor 301

Chapter 12 Debugger 307
Concepts you need to know 307
About the Debugger 309
Debugging server applications 312

Starting the server 312
Launching the Debugger 314

eXtend Workbench Tools Guide
A sample debugging session 315
Debugging J2EE applications 320

Debugging client applications 321
Invoking the Debugger to start the application 322
Attaching to a running application 324

Managing program execution 326
Using breakpoints 327
Continuing execution 330
Stepping through the code 332
When the Debugger cannot locate source code 332

Analyzing the behavior of the application 332
Viewing the call stack 333
Viewing threads 333
Viewing variables 335

Debugger keyboard shortcuts 336
ix

x

Contents

About This Book
Purpose

This book explains how to use SilverStream eXtend Workbench tools and facilities.

Audience

Use this guide if you are developing, assembling, or deploying J2EE and Web Service
applications using Workbench.

Prerequisites

This book assumes that you are familiar with the Java programming language, the Internet, and
Web applications. You can find learning materials on these topics readily available from a
variety of public and commercial sources.

Organization

Here’s a summary of what you’ll find in this book:

Topic Explains how to

Workbench Basics Perform basic operations such as opening files, setting
preferences, creating Workbench profiles, and using version
control

Projects and Archives Work with projects to create and maintain J2EE components
and archives

Archive Deployment Deploy J2EE archives using Workbench

Component Wizards Use Workbench wizards to create EJBs, JSP pages, servlets,
Java classes, JavaBeans, and tag handler classes (all wizards
have built-in J2EE logic that facilitates the creation and
deployment of well-structured J2EE components)

Web Service Wizard Use the Web Service Wizard to generate the Java classes you
need to create and access Web Services
1

About This Book
Source Editors Use the core functionality of Workbench source editors

XML Editors Use the XML facilities provided by Workbench to create and
edit XML files

WSDL Editor Use the WSDL Editor to create and edit WSDL documents

Registry Manager Use the Registry Manager to browse and publish to Web
Service registries

Deployment Descriptor
Editor

Construct and populate J2EE-compatible deployment
descriptors that are used to assemble and deploy applications

Deployment Plan Editor Create a deployment plan that performs all the tasks
associated with deploying J2EE modules and applications to a
SilverStream server

Debugger Find runtime errors in Java applications (server-side objects
such as J2EE applications as well as client-side objects) by
controlling and monitoring the execution of Java code

Topic Explains how to
2

1
 Workbench Basics Chapter 1
SilverStream eXtend Workbench is an extensible IDE for developing and deploying J2EE
and Web Service applications. Workbench automates and simplifies many tasks associated
with J2EE and Web Service development, including creating and maintaining J2EE archives,
populating and editing XML deployment descriptors, and deploying archives to a J2EE server.

This chapter introduces the Workbench tools and facilities. It describes how to perform basic
operations such as opening files, setting preferences, setting profiles, and using version control.
It includes the following sections:

• What Workbench provides

• Workbench panes

• Basic Workbench operations

• Workbench wizards

• Standard Workbench editors

• Workbench viewers

• Web Service tools

• Setting preferences

• Setting Workbench profiles

• Using version control

• Maintaining Todo lists

• Specifying a debugger

• Using Ant

• Internationalization support

• Extending the Workbench toolset and services

	 For more information about performing project-level operations, such as creating a
project, adding files to a project, building a project, and creating an archive, see Chapter 2,
“Projects and Archives”.
1

1 Workbench Basics
What Workbench provides
Workbench is a file-system based development environment that provides:

• Component wizards to help you create J2EE components such as JSP pages, EJBs,
servlets, Java classes, JavaBeans, and tag libraries

• Web Service facilities including a wizard for creating Java-based Web Service
components, a SOAP runtime environment, and a Registry Manager for searching and
publishing to Web Service registries

• Graphical and text-based editors for working on Java files, JSP files, XML files, WSDL
documents, deployment descriptors, and plain text files

• Project views that show the structure of a project’s source files and the structure of a
project’s generated archives

• Project tools for building projects, creating and validating J2EE archives, and deploying
archives to J2EE application servers

• Version control integration that provides access from Workbench to your version control
system

Server independence Workbench is server-independent. When working on projects, you
can create source files, build your project, and create archives all within Workbench, without
any application server support. You do not need to run an application server until you are ready
to deploy your project archives.

You can deploy archives built in Workbench to any J2EE-compatible application server.
Workbench provides automated deployment to leading application servers, including
SilverStream eXtend Application Server, BEA WebLogic, IBM WebSphere, Jakarta Tomcat,
and Oracle9i. See the Release Notes for information about supported versions.
2 What Workbench provides

eXtend Workbench Tools Guide
Workbench panes
Workbench consists of three resizable panes: Navigation, Output, and Edit. This section
describes how to use these panes when creating projects.

The Navigation Pane The Navigation Pane lets you access various aspects of projects and
registries. For example, the Project tab lets you view and select files from the source and archive
directory structures.

At the base of the Navigation Pane are three tabs: Directory, Project, and Registries. When
either the Project or Directory tab is selected, the Navigation Pane consists of two subpanes: the
top one shows the directories and the bottom one lists the files in any directory that you select.

• The Directory tab lets you access files from the file system

• The Project tab shows the directory structure of source and archive layouts
Workbench panes 3

1 Workbench Basics
• The Registries tab lets you browse and publish to Web Service registries

Here’s how it works:

TIP You can see a file’s complete name and path by positioning the mouse pointer over it in
the lower subpane of the Directory or Project tab. Workbench tool tips are particularly
useful in the Archive Layout or Archive Contents view of the Project tab for comparing
a file as it conceptually exists in the archive (such as WEB-INF/web.xml) to its file
system name (such as C:\dev\proj4\web.xml).

Edit Pane The Edit Pane is the file editor work area. It displays the contents of any file you
have opened. You can use View menu items to hide the Output and Navigation Panes to give you
additional work area.

Output Pane The Output Pane contains tabs that display information from any of the
following processes: build, validate, deploy, find, and version control.

Status bar The status bar displays messages, such as when a file is saved.

To do this Use this Details

Open files Double-click After you select a directory in the upper
subpane, the lower subpane lists the files in
the Directory and Project tabs

Manipulate
projects, files, and
directories in the
Navigation Pane

Right-click For example, depending on what you have
selected, you can open files, compile files,
add files to a project, remove files from a
project, and so on

Switch between
open files

Tabs in Edit Pane Click the tab for the file you want to make
active

Navigate to the
next and previous
open document

Documents menu Use the Documents menu to navigate
between the Next (Ctrl+F6) and Previous
(Ctrl+Shift+F6) open document

Switch between
source and archive
views

Project tab You can compare how directories and files
are structured in the sources and in the
generated archive

	 For details, see “Viewing projects” on
page 74.
4 Workbench panes

eXtend Workbench Tools Guide
About dialog Use the About dialog (Help>About Workbench) to check version
information for Workbench and its components (editors, wizards, viewers, and so on). This
dialog shows you what is installed in the product version you are running and which
components have been individually revised.

Basic Workbench operations
This section tells you about:

• Starting and stopping Workbench

• Using proxy servers

• Opening, saving, and closing projects and files

Starting and stopping Workbench

Start Workbench using the appropriate command on your operating system, such as the
Windows Start menu (Programs>SilverStream eXtend>Workbench).

Select File>Exit to exit Workbench.

Using proxy servers

If you are using a proxy server, you need to specify the proxy host and its port in xwb.conf,
which is in the Workbench bin directory. Uncomment the following lines and specify your site’s
values.

vmarg -DsocksProxyHost=proxy-host
vmarg -DsocksProxyPort=proxy-port-number
vmarg -Dhttp.proxyHost=proxy-host
vmarg -Dhttp.proxyPort=proxy-port-number

If there are hosts that don’t require a proxy, you can specify them (separated by |) with this
property:

vmarg -Dhttp.nonProxyHosts=host1|host2...
Basic Workbench operations 5

1 Workbench Basics
Opening, saving, and closing projects and files

This section describes how to work with project files and source files in Workbench:

• Working with project files

• Working with source files

• Performing file system operations

	 For details about working with projects, see Chapter 2, “Projects and Archives”.

Working with project files

To work on an existing project, open its project file. Workbench project files have the extension
.SPF (for SilverStream project file).

¾ To open a project file:

1. Choose File>Open Project. A file selection dialog appears.

2. Navigate to the project’s SPF file.

3. Select the SPF file and click open (or double-click the SPF file). Workbench displays the
project in the Project tab of the Navigation Pane.

You cannot have multiple projects open (though you can work with multiple subprojects
of an open project). If you have a project open and then open another unrelated project,
Workbench closes the original project and any associated files before opening the second
project.

Alternatively, you can:

1. Navigate to the project file in the Directory tab in the Navigation Pane of Workbench.

2. Either double-click the file or right-click it and then choose Open File in the popup menu
that appears.

If you have opened the project file recently, you can also select it from the list under
File>Recent Files.

¾ To save a project file:

No action is needed on your part to save a project. Whenever you modify the project contents
or settings (for example, by adding a directory to the project), the project file is saved
automatically.

The project file must be writable before you can make changes to the project in Workbench.
Typically, this means that you must check out the project file from your version control system.
6 Basic Workbench operations

eXtend Workbench Tools Guide
¾ To close a project file:

• Choose File>Close Project.

Working with source files

This section describes how to open, save, and close source files, such as Java, JSP, XML, and
plain text files.

¾ To open a source file:

1. Choose File>Open.

A file selection dialog appears.

2. Navigate to the source file.

3. Select the file and click Open (or double-click the file). Workbench displays the file in the
appropriate source file editor (Java, JSP, XML, or Text) in the Edit Pane.

Alternatively, you can:

1. Navigate to the file in the Directory tab in the Navigation Pane. If you have a project open
and the file is included in that project, you can find it in the Project tab as well.

2. Either double-click the file or right-click it and choose Open in the popup menu that
appears.

If you have opened the file recently, you can also select it from the list under File>Recent Files.

Working with open files One file is active at a time. By default, there is a tab for each open
file in the Edit Pane. Simply click a tab to make that file active. (You can customize and turn off
the display of tabs. See “Display preferences” on page 15.)

You can also make an open file the active file by selecting Documents>More Documents and
selecting the file from the list of open documents

¾ To save a source file:

• Choose File>Save.

File>Save As enables you to save the contents of the currently open file to another file.

TIP You can also save a file by right-clicking its tab in the Edit Pane.
Basic Workbench operations 7

1 Workbench Basics
¾ To close a source file:

• To close the currently selected source file, select File>Close or click the Close button in
the upper-right corner of the source editor.

TIP You can also close a file by right-clicking its tab in the Edit Pane.

• To close all open source files, select File>Close All.

If you have made changes to a source file, Workbench prompts you to save that file before
closing it, closing its parent project, or exiting Workbench.

Performing file system operations

You can delete and rename files from within Workbench.

¾ To delete one or more files:

1. Go to either the Project or Directory tab in the Navigation Pane and select the directory
containing the files to be deleted.

2. Select the files you want to delete. You can select multiple files using Shift+Click and
Control+Click.

3. Right-click and select Delete.

4. Confirm the deletion.

The files are deleted from the file system.

If the files had been individually added to the current project (as opposed to being in the
project because they are in a directory included in the project), you are asked whether you
want to delete the entries from the project.

5. Click Yes to have the deleted files removed from the project.

¾ To rename a file:

1. Go to either the Project or Directory tab in the Navigation Pane and select the directory
containing the file.

2. Select the file you want to rename.

3. Right-click and select Rename.

4. Specify the new name.

The file is renamed in the file system.

NOTE If you had multiple files selected, only the first one is renamed.
8 Basic Workbench operations

eXtend Workbench Tools Guide
If the file had been individually added to the current project (as opposed to being in the
project because it is in a directory included in the project), you are asked whether you
want the project to use the new file name.

5. Click Yes to have the project use the new file name.

Workbench wizards
To speed project development, you can use Workbench wizards when creating J2EE projects or
components. Workbench has several types of wizards:

Wizard type Description

Project wizards Create Workbench projects associated with J2EE archives, including:

• Enterprise archives (EAR)

• Web archives (WAR)

• EJB archives (JAR)

• Application client archives (JAR)

• Resource adapter archives (RAR)

• Simple Java archives (JAR)

• Deploy-only (nonbuildable) archives

	 For more information, see “Creating projects and subprojects”
on page 56.
Workbench wizards 9

1 Workbench Basics
Standard Workbench editors
As you create J2EE applications and components, Workbench source editors and the Debugger
help you create well-structured archives that are easy to build, deploy, debug, and maintain.

About the Workbench source editors

When you open a source file, the appropriate editor starts automatically.

NOTE Opening an EAR, JAR, WAR, or ZIP file in Workbench lists the contents of the
archive, along with some information about each entry. The listing is read-only.

Component
wizards

Create J2EE components, including:

• Enterprise JavaBeans

• Servlets

• JavaServer Pages

• Java classes

• JavaBeans

• Tag handlers

	 For more information, see “Creating source files” on page 65
and Chapter 4, “Component Wizards”.

Web Service
Wizard

Generate the Java classes you need to create and access Web
Services.

	 For more information, see Chapter 5, “Web Service Wizard”.

WSDL Wizard Create Web Services Description Language (WSDL) documents.

	 For more information, see Chapter 8, “WSDL Editor”.

Deployment
wizards

Create deployment descriptors and SilverStream deployment plans.

	 For more information, see Chapter 10, “Deployment
Descriptor Editor” and Chapter 11, “Deployment Plan Editor”.

Wizard type Description
10 Standard Workbench editors

toolsComponentWizards.html#JavaBeanWizard
toolsComponentWizards.html#TagHandlerWizard
toolsComponentWizards.html#EJBWizard
toolsComponentWizards.html#JSPWizard
toolsComponentWizards.html#ServletWizard
toolsComponentWizards.html#JavaClassWizard

eXtend Workbench Tools Guide
	 For a summary of the core functionality provided in all the source editors, see Chapter 6,
“Source Editors”.

In addition, Workbench provides specialized functionality in the following editors.

Deployment Descriptor Editor

The Deployment Descriptor Editor lets you construct and populate J2EE deployment
descriptors. A deployment descriptor is an XML document that provides information required
for J2EE application assembly.

NOTE To open an existing deployment descriptor, right-click the project or archive (in the
Project tab) and select Open Deployment Descriptor.

	 For more information, see Chapter 10, “Deployment Descriptor Editor”.

Deployment Plan Editor

The Deployment Plan Editor lets you construct and populate deployment plans for deploying
J2EE modules and applications to a SilverStream eXtend Application Server. A deployment
plan is an XML document that describes how a J2EE module should run in the application
server environment.

NOTE To open an existing deployment plan, right-click the project or archive (in the Project
tab) and select Open Deployment Plan.

	 For more information, see Chapter 11, “Deployment Plan Editor”.

XML Editor

The XML Editor lets you create, edit, and view XML files. It provides intelligent editing of
XML files (by reading the XML DTD or Schema, it knows which elements and attributes are
valid where) and a graphical tree view.

	 For more information, see Chapter 7, “XML Editors”.

WSDL Editor

The WSDL Editor lets you create, edit, and view WSDL documents. WSDL (Web Services
Description Language) is an XML vocabulary for describing Web Services.

	 For more information, see Chapter 8, “WSDL Editor”.
Standard Workbench editors 11

1 Workbench Basics
Debugger

As part of application development, you can use the SilverStream Debugger to debug server-
based applications (such as J2EE applications) and client applications. You can invoke the
Debugger from within Workbench.

	 For more information, see Chapter 12, “Debugger”.

Workbench viewers
In addition to providing a set of source editors, Workbench provides the following viewers so
you can view other files within Workbench:

• Image Viewer

• Class Viewer

Image Viewer

If you open a .gif, .jpg, .jpeg, or .png file, the file is opened in the Workbench’s Image Viewer.
You can zoom the image:

• Left-click or press + to zoom in

• Ctrl+left-click or press - to zoom out

• Shift+left-click or press = to restore the image to its actual size

TIP If you want these files to open in an external program, specify the file extensions and the
program in your preferences. For more information, see “File type preferences” on
page 20.

Class Viewer

If you open a .class file, information about the .class file is displayed in the Class Viewer
(exception: double-clicking a .class file in the Project tab’s Archive Contents view opens the
corresponding .java file in the Java Editor).

The Class Viewer displays the following information:

• Name of the file, its corresponding source file, and the version of the compiler

• The class’s package statement

• The class’s declaration
12 Workbench viewers

eXtend Workbench Tools Guide
• List of all fields, sorted by visibility

• List of all methods, sorted by visibility

• The same information for all inner classes

Web Service tools
Workbench supports Web Service development by providing:

• A Web Service Wizard to help you create Java-based Web Services and Web Service
consumers from Java classes or WSDL files

• A WSDL Editor for creating, editing, or viewing WSDL files

• A Registry Manager for publishing and discovering Web Services

	 For more information, see Chapter 5, “Web Service Wizard”, Chapter 8, “WSDL Editor”,
and Chapter 9, “Registry Manager”.

Setting preferences
You can configure your Workbench development environment by setting:

• General preferences

• Build preferences

• Display preferences

• Text editing preferences

• Printing preferences

• Deployment preferences

• Abbreviations preferences

• File type preferences

• Backup preferences

• Version control preferences

• Editor setup preferences

• NetBeans directories preferences

• XML Editor color preferences
Web Service tools 13

1 Workbench Basics
¾ To specify preferences:

1. Select Edit>Preferences.

The Preferences dialog appears.

2. Select the tab you want.

3. Set your preferences. See the following sections for information about specific
preferences.

4. Click OK.

General preferences

Specify general preferences as follows:

Setting Description

Number of recent files Specifies how many recently open files appear in the
Workbench File menu. Default is 10.

Number of recent
projects

Specifies how many recently open projects appear in the
Workbench File menu. Default is 5.

Reload open projects When starting, automatically reloads the projects that were
open when you last exited Workbench. Default is No.

Reload open files When starting, automatically reloads the files that were open
when you last exited Workbench. Default is No.

Web browser Specifies the browser to use when running the Workbench help
system. Choose a browser by typing the path or clicking the
button.

Enable Todo Specifies whether the Todo feature is enabled.When selected,
Workbench displays a Todo tab in the Output Pane where you
can maintain a Todo list of tasks.

	 For more information, see “Maintaining Todo lists” on
page 37.
14 Setting preferences

eXtend Workbench Tools Guide
Build preferences

Specify build preferences as follows:

Display preferences

Specify display preferences as follows:

Debugger command If empty, Workbench launches the SilverStream Debugger
when you select Edit>Launch Debugger. See Chapter 12,
“Debugger”.

If not empty, specifies the command that Workbench invokes
when you launch a debugger. See “Specifying a debugger” on
page 43.

Setting Description

Always save modified
files before compiling

When set (the default), automatically saves all modified files
before compiling, building, or rebuilding. When this property is
not set, Workbench prompts for unsaved files.

	 For more save option preferences, see “Backup
preferences” on page 21.

Compiler Specifies the compiler. Default is Javac 1.3.

Compiler options Specifies the command-line options to be sent to the Java
compiler.

Setting Description

Directory tab Specifies how directories and files appear in the Directory tab.
Compact mode shows only the selected directory path and its
related source files. Traditional mode (the default) shows all
directories.

Setting Description
Setting preferences 15

1 Workbench Basics
Text editing preferences

Specify editor preferences as follows:

Project tab Specifies how directories and files appear in the Project tab.
Compact mode shows only the selected directory path and its
related source files for the project. Traditional mode (the
default) shows all directories.

Icons in the Navigation
Pane

Specifies whether you want to show large or small icons, with
or without text, in the Navigation Pane.

Edit Pane Specifies the following:

• Whether the Edit Pane displays tabs for each open file

• Where the tabs are displayed relative to the editor

• Whether, in stacked tabs, the tab for the open file is always in
front. If you select this option, the row of tabs containing the
active file moves if necessary to be in front (at the bottom
when the tabs are above the editor and at the top if the tabs
are below the editor)

Setting Description

Font size Sets the screen font size in the Edit Pane. Default is 12. You can
also set a print font size from the Print tab; see “Printing
preferences” on page 17.

Spaces per tab
character

Sets the number of spaces entered for each tab. Default is 4.

Show line numbers Sets whether to hide (the default) or show line numbers in the
Edit Pane. You can also use Ctrl+L in a source editor to toggle
between hiding and showing line numbers for individual files.

Show vertical margin Displays the margin wrap guide (set at 80 characters) at the
right of the pane. Default is on.

Setting Description
16 Setting preferences

eXtend Workbench Tools Guide
	 For additional text options, see Chapter 6, “Source Editors”.

Printing preferences

Specify printing preferences as follows:

Highlight matching
parentheses and braces

As you type, highlights text within a matching set of
parentheses and braces. Default is on.

Use smart indenting When you create a new line, sets the indentation level of the
new line based on that of the current line. Default is on. (Not
supported in the NetBeans-based JSP and HTML editors.)

Use spaces instead of
tab characters

Uses spaces when the tab key is pressed. Default is off.

Use chromacoding Color-codes the text. When deselected, all text is black. Default
is on.

Show horizontal
scrollbar always/only
as needed

Default is only as needed.

Setting Description

Printing mode Sets mode to monochrome (the default) or color. For color
printers, use color mode.

Font size Sets print font size (default is 10). You can also set a screen font
size in the Text Editing tab; see “Text editing preferences” on
page 16.

Print line numbers Sets whether or not to print line numbers. Default is to not print
numbers.

Setting Description
Setting preferences 17

1 Workbench Basics
Deployment preferences

Deployment preferences are used by the Deployment Descriptor Editor and the Deployment
Plan Editor. When you open either of these editors, Workbench loads all of the project’s classes
(including subproject classes). The editor then uses information from the classes to populate the
dialogs that display lists of classes, methods, member variables, and so on. If the classes are not
up to date, the information the editors display can be incorrect or missing.

You can control whether Workbench automatically builds a project when you access the
Deployment Descriptor Editor or Deployment Plan Editor. You can specify one of the following
build settings:

NOTE You do not need to create the archives in order for the deployment editors to load class
information, because the editors load the classes directly from the file system, not from
the archives.

Setting Description

Always automatically
build my project

Builds the project automatically when the Deployment
Descriptor Editor or Deployment Plan Editor is opened.

This setting ensures that the editors always have access to all of
the latest classes.

Never automatically
build my project

None of the project’s files are built when the Deployment
Descriptor Editor or Deployment Plan Editor is opened. You
must build the projects and subprojects manually.

Use this setting when you don’t need anything to be built (such
as when you are editing in XML mode). In this case you can
edit the XML files, but the list of project classes in the editor
may be blank or out of date.

Prompt me to build my
project

Prompts you to build the project each time you open one of the
deployment editors.

Use this setting when you want to specify when a project build
should occur.
18 Setting preferences

eXtend Workbench Tools Guide
You can also specify the following deployment preference:

Abbreviations preferences

You can define abbreviations that can be expanded to one or more lines of text—such as a word
that expands to a predefined language construct. Once you have defined an abbreviation, you
can type its name in an editor and select Edit>Text Tools>Complete Abbreviation (or press
Ctrl+U) to replace the abbreviation with the expanded text.

Use %c in an abbreviation’s definition to signify where the insertion point will be positioned
when the abbreviation has been expanded.

For example, the abbreviation main is predefined as follows and is meant to be used in Java
files:

public static void main(String args[])
{

%c
}

¾ To define an abbreviation:

1. Select Edit>Preferences and click the Abbreviations tab.

2. Click Add.

3. Type the abbreviation (shortcut) in the Abbreviation text box and click OK.

Abbreviations must be single words and are case-sensitive.

4. Click inside the Definition text box and type the text you want the abbreviation to expand
to.

5. Click OK.

Setting Description

Default server versions Specifies the server version initially selected when you create a
new SilverStream deployment plan. You can specify a server
version for J2EE 1.2 projects and a server version for J2EE 1.3
projects.

	 For more information, see Chapter 11, “Deployment Plan
Editor”.
Setting preferences 19

1 Workbench Basics
¾ To delete an abbreviation:

1. Select Edit>Preferences and click the Abbreviations tab.

2. Select the abbreviation in the Abbreviations text box.

3. Click Delete.

4. Click OK.

¾ To edit an abbreviation:

1. Select Edit>Preferences and click the Abbreviations tab.

2. Select the abbreviation in the Abbreviations text box.

3. Click inside the Definition text box and change the abbreviation.

4. Click OK.

¾ To use an abbreviation in your source code:

1. Type the abbreviation shortcut in the editor.

2. Position the cursor within the shortcut text or highlight it.

3. Click Edit>Text Tools>Complete Abbreviation or press Ctrl+U. The shortcut text is
replaced with the expanded text defined for that abbreviation.

NOTE If the abbreviation text is not defined, the Complete Abbreviation command is
ignored.

File type preferences

Workbench lets you use third-party tools to edit specific file types. You can set preferences that
let you launch files in an external editor rather than opening them in Workbench. Use the File
Types tab to associate file extensions with external editors. For each file type you can choose
whether to open the file in:

• Workbench

• The Windows default editor for that file type

• The Windows program you specify

¾ To define how a file type is launched:

1. Select Edit>Preferences and click the File Types tab.

2. Click Add.

3. Type the file extension in the dialog and click OK.
20 Setting preferences

eXtend Workbench Tools Guide
4. Specify one of the following preferences for the file type:

5. Click OK.

CAUTION Consider the following when associating an external editor with the XML file
extension: if you use an external editor to edit SilverStream deployment plans, you
will not be able to take advantage of the default setup that the SilverStream editor
provides and your project will not be associated with a deployment plan.

Backup preferences

You can set Workbench preferences that control:

• Autosave files—successive copies of a modified file (each successive save replaces the
preceding one). Autosave files are copies of any file in the Edit Pane that has been
modified.

• Backup files—the original file before it was modified and saved.

By default, autosave and backup operations are not enabled.

Setting Description

Open in Workbench (The default) Opens files using the Workbench
source editor.

Open using the default
Windows program

Opens files using the Windows default editor for
that file type (same as double-clicking a file in
Windows Explorer—for example, using Notepad to
open files with the .TXT extension).

Open using this application Opens files with the application you specify. You
can type the path to the application, or click Browse
and navigate to the application.

NOTE Because some editors launch a new program
instance each time you open a file, this
setting is not always recommended.
Setting preferences 21

1 Workbench Basics
You can set global backup preferences that control how all projects are backed up. However,
because your projects may contain files with identical names, you may want to store separate
backup and autosave files for each project. To do so, specify a subdirectory relative to the file’s
source directory for both backup and autosave files. Files that are backed up in parallel backup
directories won’t be overwritten.

NOTE When you specify a relative name for a backup or autosave directory, it will be relative
to the source file.

Specify autosave and/or backup preferences as follows:

Setting Description and parameters

Auto save enabled While you make changes to a source file in Workbench,
periodically save a copy of the file.

Auto save to same directory
as source file (default)

—

Auto save directory Specifies another directory to
contain saved files

You can enter an absolute path
or specify a path that is
relative to the source directory.

Use Browse to search for a
directory on the file system.

Auto save extension Specifies the extension of
autosave files (default is .SAV)

Auto save interval (minutes) Specifies how often you want
Workbench to save files
(default is every five minutes)
22 Setting preferences

eXtend Workbench Tools Guide
¾ To define how files are autosaved and/or backed up:

1. Select Edit>Preferences and click the Backup tab.

2. Choose Auto save enabled and/or Backup enabled.

3. Specify autosave and/or backup file parameters as described above.

4. Click OK.

Version control preferences

	 See “Using version control” on page 29.

Editor setup preferences

These preferences specify which types of files will be edited using the Workbench NetBeans-
based editors.

	 See “Adding files types edited by NetBeans-based editors” on page 221 and “Using the
native Java, JSP, or HTML editor” on page 225.

Backup enabled When you save a source file in Workbench, make a backup copy
of the previous version of the file.

Backup to same directory as
source file (default)

—

Backup directory Specifies another directory to
contain backup files

You can enter an absolute path
or specify a path that is
relative to the source directory.

Use Browse to search for a
directory on the file system.

Backup extension Specifies the extension of
backup files (default is .BAK)

Setting Description and parameters
Setting preferences 23

1 Workbench Basics
NetBeans directories preferences

	 See “Creating parser database files” on page 220.

XML Editor color preferences

You can specify the colors used in the XML Editor’s Source View to display different types of
information in XML documents, such as tags, arguments, values, text, errors, and white space
(listed in the dialog as ws).

For each type of information, you can specify a foreground and a background color. You can
pick from a list of colors or define your own by clicking the ellipsis button. You can also specify
whether to use a bold font.

¾ To specify colors used in the XML Editor:

1. Select Edit>Preferences and click the tab for XML Editor colors.

2. Select the type of information whose color you want to specify, then specify a foreground
and/or a background color and specify whether you want to use a bold font.

Setting Workbench profiles
You can define the following types of Workbench profiles:

• Server profile

• Database profile

• Registry profile

Server profile

A server profile stores information about an application server, including the server’s host
name and port. When selected at deployment time, the server profile tells Workbench what
server to deploy to and provides the information required for deployment to that server. A server
profile applies to a specific server. If you are deploying to multiple servers, you need to set up a
separate profile for each.

Your server’s configuration determines how to specify the server profile information. For
example, if your server uses security certificates you will specify the https protocol. The server
configuration may also affect how you specify the server name, server port number, database
name, and so on.
24 Setting Workbench profiles

eXtend Workbench Tools Guide
	 For information about configuring a particular application server, see the product
documentation for that server.

¾ To create a server profile:

1. Select Edit>Profiles.

2. On the Servers tab of the Profiles dialog, click New.

3. Specify settings in the Create a New Server Profile dialog as follows:

Setting Description

Profile name Enter a name to identify the profile.

NOTE The server profile name cannot contain the period (.)
character.

Server type Select a server type from the list.

Server types are organized by brand and version number. The
version number indicates the lowest version supported by a given
server type. A server type is often valid for multiple subsequent
versions as well.

As a rule, you should select the server type for your brand that is
closest to the target server’s version, without being higher. For
example, if your target is Version 3.7.5 of the SilverStream
eXtend Application Server, the server type to select is
SilverStream 3.7.4 or higher.

Deployment tools
directory

Specify the directory containing the executables used to deploy to
the server.

Rapid
deployment
directory

For rapid deployment only.

Enter the directory where you want Workbench to write the files
for rapid deployment. Some servers require that files be written to
a specific directory for rapid deploys. Make sure that you specify
the appropriate location for your server’s configuration. See
“Setting rapid deployment directories” on page 26 for the
directory listings.

	 For more information on rapid deployment, see
“Workbench rapid deployment” on page 96.
Setting Workbench profiles 25

1 Workbench Basics
4. Click OK to close the Create a New Server Profile dialog

5. Click OK to close the Profiles dialog.

Setting rapid deployment directories This table shows the rapid deployment directory
you should specify in the Server Profile dialog.

Server name Set the server name using the following formats.

For servers running http:

servername
http://servername[:port]

For servers running https:

https://servername[:port]

Specify the port number if the server is not listening on the default
port.

Database name For SilverStream eXtend Application Servers only.

Enter the name of the database to deploy to.

Target servers For BEA WebLogic servers only.

Enter the names of the target servers.

Server Rapid deployment directory

SilverStream eXtend
Application Server
3.7.2

Does not require that you specify a rapid deployment directory.

SilverStream eXtend
Application Server
3.7.3 or higher

%INSTALL_DIR%\webapps

BEA WebLogic %INSTALL_DIR%\config\targetname\applications

IBM WebSphere %INSTALL_DIR%\appserver\installedapps

Jakarta Tomcat %INSTALL_DIR%\webapps

Setting Description
26 Setting Workbench profiles

eXtend Workbench Tools Guide
Using Workbench with secure servers Workbench connects to the target J2EE server
at deployment time using the server profile. If the server profile indicates a secure server, then
Workbench will make the SSL connection automatically. Workbench uses the set of commercial
Certificate Authority certificates listed in agrootca.jar (located in Workbench’s lib directory). If
the server you are trying to deploy to uses a certificate that was issued by a CA certificate that
is not listed in agrootca.jar, Workbench will not successfully connect to the server. You can add
the CA certificate to agroootca.jar using any tool that allows you to modify the contents of a
JAR file (for example, Sun’s JAR utility or WinZip).

Database profile

You’ll need to set up a database profile if you use any of the following Workbench components:

The database profile provides JDBC information that enables Workbench to connect to the
datasource and retrieve table and field information. You can create multiple profiles to support
different databases and JDBC drivers.

¾ To create a database profile:

1. Select Edit>Profiles.

2. On the Databases tab of the Profiles dialog, click New.

Oracle9i AS %INSTALL_DIR%\j2ee\home\applications

Optionally, you can rapid deploy WARs to:

%INSTALL_DIR%\j2ee\home\default-web-app

SUN RI %INSTALL_DIR%\public_html

Workbench
component When use database profiles

EJB Wizard When creating entity beans based on a database table

Deployment Plan Editor When mapping the persistent fields of a container-managed
entity bean to fields in a datasource

Server Rapid deployment directory
Setting Workbench profiles 27

1 Workbench Basics
3. Specify settings in the Create a New Database Profile dialog as follows:

4. Click Test to check the connection to the database specified by the JDBC URL.

This test makes a JDBC connection to the database. The test will fail when a connection is
not available or a setting is not correctly specified.

Setting Description

Profile name Enter any name to identify the profile.

JDBC Driver Enter the class name of the JDBC driver. You can specify
any JDBC 2.0-compliant driver.

To use the Sun JDBC-ODBC bridge driver (which is
included in the JRE), specify
sun.jdbc.odbc.JdbcOdbcDriver. If you specify a JDBC
driver other than Sun’s bridge driver, make sure that the
driver class can be loaded by Workbench (see “To make the
driver class available:” below).

JDBC URL Enter an URL that specifies the database you want—for
example, jdbc:odbc:TestDB

NOTE The text you enter after the first colon is driver
specific.

Connection Catalog (Optional) Specify which SQL catalog (subset) of the
database to connect to—for example, PayrollDb. If your
database driver does not support catalogs, it will ignore this
request.

If supported, the connection catalog lets you set up which
database tables are retrieved. Connection catalogs are
useful when you are connecting to a very large database or
only want to connect to a subset of database tables (for
example, to exclude production database access).

Datasource Name Specify the name of the data source to associate with this
database profile.

You can specify either the datasource name, like
SilverBooks, or the full JNDI specification, like
java:pm/JDBC/SilverBooks.
28 Setting Workbench profiles

eXtend Workbench Tools Guide
5. On the test popup, enter your database user name and password and click OK to verify
access.

6. Click OK to close the Create a New Database Profile dialog.

7. Click OK to close the Profiles dialog.

¾ To make the driver class available:

1. Obtain the JAR or other archive file that contains the JDBC driver.

2. Do one of the following:

• Put the JAR in the Workbench lib\ext directory.

• Edit the Workbench configuration file (bin\xwb.conf) to point to the driver archive by
including the line addcp path/mydriver.jar. For example:

addcp c:/sybase/SybJConnect.jar

3. Start Workbench.

Registry profile

Workbench provides a facility for defining profiles for Web Service registries. These profiles
supply the information that allows you to search registries and deploy Web Services.

	 For more information on registry profiles, see “Defining registry profiles” on page 282.

Using version control
If you use a version control system, you can set up Workbench to access it. This enables you to
perform version control operations on the files in your projects while working in the IDE.

• Setting up access to version control

• Accessing version control
Using version control 29

1 Workbench Basics
Setting up access to version control

Before you can perform version control operations in Workbench, you need to adjust preference
settings to enable version control and configure support for your version control system.

¾ To adjust version control settings:

1. Select Edit>Preferences to display the Preferences dialog, then go to the Version
Control tab.

2. Check the Enable Version Control property.

This turns on the version control features of Workbench.

3. Select one of the available Version Control Systems.

In this property, you’re actually choosing a version control system definition that tells
Workbench the version control commands to support. Workbench comes with definitions
for several popular version control systems (ClearCase, CS-RCS, CVS, PVCS, Visual
SourceSafe). If you choose one of these, you can use it as is or edit the commands it
defines to suit your needs and system configuration.

You also have the option of creating version control system definitions yourself. This lets
you set up Workbench support for just about any version control system you might have.

Working with definitions The following topics provide more detail about working with
version control system definitions:

• Editing a version control system definition

• Creating a version control system definition

• Distributing a version control system definition

• Deleting a version control system definition

Editing a version control system definition

A version control system definition specifies a list of version control menu items that
Workbench is to display. Each menu item is mapped to a command-line operation of the
chosen version control system and also specifies details about how that operation is to be
executed. You can edit the list to modify, create, or delete menu items.

¾ To edit a definition:

1. From the Version Control tab of the Preferences dialog, select a definition from the
Version Control Systems dropdown list.

2. Click the Setup button.
30 Using version control

eXtend Workbench Tools Guide
3. In the Setup dialog, make your changes to the list of version control menu items:

Command properties The following table describes the command-related properties you
can specify in the Setup dialog for version control menu items:

If you want to Do this

Change the behavior of a
menu item

Select that item from the Version Control Command
listbox, then edit its Command properties.

Change the name of a
selected menu item

Click the Edit button. The name can include letters,
numbers, spaces, and special characters.

You can also edit the mnemonic character to be used for
keyboard access to the menu item (when pressed in
combination with the Alt key).

Create a new menu item Click the Add button, then specify the item’s name and
mnemonic character. Your new item will be added to the
end of the list.

Delete a selected menu
item

Click the Remove button.

Switch the order of menu
items

Select an item you want to reposition, then use the
arrow buttons to move it up or down in the list.

Property Description

Command A command-line operation of your version control system that
the menu item is to execute.

You can include environment variables in the command by
using the syntax %varname% or ${varname}. Workbench
substitutes the values of these variables when the command
executes. If the value of a variable can’t be determined, an
empty string is substituted.

Predefined environment variables are available via the expand
button next to the Command property. You can select a variable
to insert it at the current cursor position.
Using version control 31

1 Workbench Basics
Predefined environment variables The following table describes the predefined
environment variables you can include in the command you specify for a version control menu
item:

Reload when done Tells Workbench to try reloading the target file after the
command executes. This is useful for commands that might
modify the file (such as check in, check out, or get).

Wait for execution Tells Workbench to wait until the command finishes executing
before returning control to the user. Not waiting for execution
can be appropriate for commands such as diff or history where
there’s no effect on the target file.

Execute command in
directory of source file

Tells Workbench to execute the command relative to the
directory of the target file. If you don’t check this property, the
command executes in the current directory.

Variable Description

%_PATH% Full path and name of the target file. For example:

x:/com/myco/myfile.java

%_DIR% Directory of the target file. For example:

x:/com/myco

%_NAME% Name of the target file (without directory). For example:

myfile.java

%_BNAME% Base name of the target file (without directory and
extension). For example:

myfile

Property Description
32 Using version control

eXtend Workbench Tools Guide
Creating a version control system definition

If Workbench doesn’t provide a definition for your version control system, you can create one
yourself.

¾ To create a definition:

1. From the Version Control tab of the Preferences dialog, click the Add button.

2. When prompted, type a name for your version control system definition.

The definition name can include letters, numbers, spaces, and certain special characters.
The name you specify is added to the Version Control Systems dropdown list.

Workbench also creates an XML file to store your definition. The name of this file
matches the definition name you specify (except that spaces are replaced by underscores).
Workbench saves your definition XML file in its Resources\version_control_config
directory (along with the definition XML files it provides).

3. When the Setup dialog displays, specify the details of your version control system
definition.

	 See Editing a version control system definition.

Distributing a version control system definition

Once you edit or create a version control system definition, you might want to copy it to other
computers where Workbench is installed.

%_EXT% Extension of the target file. For example:

java

%_PROMPT prompt-text% Prompts the user for a value by displaying a dialog. The
dialog includes any prompt-text you specify.

The value of this variable is whatever the user types in the
dialog input field. If the user clicks the dialog’s Cancel
button, the entire command is canceled.

%_COMMENT% Prompts the user for a comment.

The comment is saved to a temporary file. The value of this
variable is the name of that temporary file.

Variable Description
Using version control 33

1 Workbench Basics
¾ To distribute a definition:

1. Find the XML file for your version control system definition in the Workbench
Resources\version_control_config directory.

2. Copy that file to the corresponding directory on each target computer.

When Workbench is run on those computers, the Version Control Systems dropdown list
(on the Version Control tab of the Preferences dialog) will automatically include your
copied definition.

Deleting a version control system definition

If you don’t need a particular version control system definition, you can remove it.

¾ To delete a definition:

1. From the Version Control tab of the Preferences dialog, select a definition from the
Version Control Systems dropdown list.

2. Click the Remove button.

Workbench prompts you to confirm, then deletes that definition from the list. The
definition’s XML file is deleted from the Workbench Resources\version_control_config
directory.
34 Using version control

eXtend Workbench Tools Guide
Accessing version control

When you use Workbench with version control access enabled, the commands specified by the
active version control system definition are available via a popup menu. You just need to right-
click one of the following:

• Any file name on the Project tab of the Navigation Pane

• An open file in the Edit Pane

When you execute a version control command, resulting text messages display on the Version
Control tab of the Output Pane.
Using version control 35

1 Workbench Basics
Maintaining Todo lists
Developing J2EE and Web Service applications can be quite a complex undertaking. It is
sometimes hard to manage the work. With that in mind, Workbench provides the ability for you
to maintain a Todo list that organizes and tracks your tasks.

You maintain your Todo list in the Todo tab of the Output Pane.

You can:

• Create Todo items

• Associate items with Workbench projects or mark them as independent of particular
projects

• Mark the completion status of items

• Create a hierarchy of items

• Reorganize the items in the hierarchy

• Delete items

In addition, various Workbench wizards and tools generate items in your Todo list to point you
to areas where work needs to be done and to describe the nature of that work.
36 Maintaining Todo lists

eXtend Workbench Tools Guide
Working in the Todo tab

When you first click the Todo tab, the Todo list is empty (unless you have run a tool or wizard
that populates the list; see “Working with generated items” on page 42).

Creating items The first thing you’ll do is add one or more items, which can be tasks or
folders.

¾ To add an item:

1. Select the item following which you want to add an item and either press Ins or right-click
and select Add Item.

TIP You can also use Edit>Add Todo Item to insert an item at the end of the list, or press
Shift+Ins to add the item as a child of the selected item.

The Add Todo Item dialog displays.

2. Enter the following information:

3. Click OK.

The item is created.

If you associated the item with a project, it is created as the last item in that project’s list.

Item Description

Description Text to display for the item in the Todo list

Note (Optional) Additional information about the item. This text displays
as part of the item’s tool tip when the mouse pointer is over the item

Add to open
project

If you want to associate this item with an open project, select the
project from the list.

If you select a project, the Todo item is added to the end of the list in
the project’s folder (the folder is created if necessary). A project’s
Todo folder is a top-level folder named:

projectFile in pathToProject

For example, if a project file is in
c:\WorkbenchProjects\myEAR\MyEAR.spf, the project folder will
be named:

MyEAR.spf in c:/WorkbenchProjects/myEAR
Maintaining Todo lists 37

1 Workbench Basics
If you did not associate the item with a project, it is created as a sibling following the
selected item (unless no item was selected when you added the item, in which case the
item is added as the first item in the list, or unless you added the item with Shift+Ins, in
which case the new item is a child of the selected item).

New items appear with the description you entered, along with a checkbox. The checkbox
indicates the completion status of the item (see the next section).

Editing items You indicate an item’s completion status, as well as revise its description and
note, by editing the item.

¾ To edit an item:

1. Select the item.

2. Right-click and select Edit Item.

The Edit Todo Item dialog displays.

3. Update the information as appropriate. To indicate completion status, select a value from
the Percent done listbox or type a value.

4. Click OK.

A faded checkbox indicates that the task has not begun. A half-filled checkbox indicates partial
completion. A filled checkbox indicates completion.

TIP You can also toggle an item’s completion status between 0 and 100 percent by selecting
the item, right-clicking, and selecting Toggle Item(s) Done. If the completion status was
zero, it is set to 100; if it was non-zero, it is set to zero.

Tool tips When you position the mouse pointer over an item, the item’s tool tip displays as:

percent done; Notes: noteText

Creating a hierarchy Todo lists can be hierarchical—items can contain other items. For
example, you can create a folder of related tasks.

¾ To create a hierarchy:

• Move one or more items under another one by selecting the item(s) and either pressing >
or by right-clicking and selecting Indent.

The item becomes a child of its previous sibling, which is now a folder.
38 Maintaining Todo lists

eXtend Workbench Tools Guide
Similarly, to outdent one or more items, select them and press < or right-click and select
Outdent. If an item no longer has children, it is no longer displayed as a folder.

Moving items You can move an item around with drag and drop: Press and hold the mouse
button on an item and move the item within the list. A horizontal line indicates where the item
will be moved to. Release the mouse button to move the item. Moving a folder moves all of its
contents as well.

You can move an item anywhere in the list.

TIP You can drag more than one item at a time as long as you drag as soon as you have
selected the last of the multiple entries. (If you click after selecting the last entry, it
reverts to a single selection. This behavior is a limitation of the JDK 1.3 version of the
control used in the Todo tab and has been addressed in JDK 1.4.)

Deleting items You can delete one or more items at a time.

¾ To delete items:

1. Select the items you want to delete. You can select a folder to delete it and all its contents.
You can select multiple items anywhere in the list using Shift+Click and Ctrl+Click.

2. Press Del or right-click and select Delete item(s).

You are asked to confirm your deletion.

3. Click Yes to delete the items.

Using keyboard shortcuts The following keyboard shortcuts are supported in the Todo
tab:

Keys Description

Up Arrow Move up one item

Down Arrow Move down one item

Home Move to first item in list

End Move to last displayed item in list

Right Arrow Expand item if on a collapsed folder, otherwise move to next
item
Maintaining Todo lists 39

1 Workbench Basics
Left Arrow Collapse item if on an expanded folder, otherwise move to
parent

Enter Toggle the expand/collapse state for item

+ Expand all items

- Collapse all items

Ctrl+A Select all items

Ctrl+/ Select all items

Ctrl+\ Deselect all items

Shift+Up Arrow Extend selection up

Shift+Down Arrow Extend selection down

Shift+Home Extend selection to start of list

Shift+End Extend selection to end of list

Ctrl+Up Arrow Move focus up one item without changing selection status of
items

Ctrl+Down Arrow Move focus down one item without changing selection status
of items

Ctrl+Space Toggle selection status of item

Shift+Space Select range of items from currently selected item(s) to item
having focus

> Indent selected items

< Outdent selected items

Ins Add item as sibling

Shift+Ins Add item as child

Del Delete selected items

Keys Description
40 Maintaining Todo lists

eXtend Workbench Tools Guide
Disabling the Todo feature If you don’t want to use the Todo feature, you can disable it
by deselecting Enable Todo in General Preferences (Edit>Preferences). With Todo disabled,
the Todo tab does not display and the Edit>Add Todo Item menu item is disabled.

NOTE Even after disabling the Todo feature, your Todo list remains intact and will be
displayed when you later reenable Todo.

Working with generated items

Various Workbench wizards and tools generate Todo items and add them to the corresponding
project folder in your Todo list (remember that the Todo folder for a project is a top-level folder
named projectFile in pathToProject). For example, the Servlet Wizard adds items about
processing the servlet’s GET and POST requests and implementing any interface stub methods.

@todo comments In addition to populating the Todo list with items, the wizards include
@todo javadoc-style comments in the generated source files. These comments are of a finer
granularity than the items generated in the Todo list. The Todo list would be too cluttered if all
the @todo comments appeared in the list, but the @todo comments can be helpful to you in your
detailed work.

Actions in generated items Generated items are just like the items you create in the Todo
tab, with one exception:

A generated item might have an action associated with it. If a generated item has an action
associated with it, you can invoke the action by doing either of the following:

• Double-clicking the item

• Right-clicking the item and selecting the first menu item, which describes the action

NOTE If an item has no associated action, the first menu item is Launch Action and it is
disabled.

Typically, the action is to open an associated file. For example, if you double-click the Todo item
generated by the Servlet Wizard about specifying the servlet’s GET request, Workbench opens
the servlet’s source file and positions the insertion point appropriately.
Maintaining Todo lists 41

1 Workbench Basics
Specifying a debugger
By default, when you select Edit>Launch Debugger or click the Launch Debugger toolbar
button, Workbench opens a dialog asking you for information, then launches the SilverStream
Debugger provided with Workbench. (For more information about using the SilverStream
Debugger, see Chapter 12, “Debugger”.)

Instead of using the SilverStream Debugger, you can also specify your own debugger so that
when you select Edit>Launch Debugger, your debugger is launched with the proper
command-line arguments.

¾ To specify your own debugger to launch from Workbench:

1. Select Edit>Preferences.

2. In the Debugger command field in the General tab, specify the command line to launch
your debugger, as described next.

If this field is not empty, Workbench executes the specified command when you launch a
debugger. If this field is empty, Workbench launches the SilverStream Debugger.

3. Click OK.

Specifying the command

Specify the operating system command that Workbench should issue when you select
Edit>Launch Debugger or click the Launch Debugger button. See your debugger’s
documentation for information about how to invoke your debugger from the command line.

You can include environment variables in the command by using the syntax %varname% or
${varname}. Workbench substitutes the values of these variables when invoking the command.

In addition to environment variables set at the operating system, you can also use environment
variables that are predefined by Workbench:

• You can use the same variables that the Workbench version control interface uses (see
“Predefined environment variables” on page 33).

The file-related environment variables (such as %_PATH%) refer to the file that is open
and currently active in Workbench.
42 Specifying a debugger

eXtend Workbench Tools Guide
• Plus you can use the following two predefined variables:

Using Ant
Internally, Workbench uses Apache Ant when you build a project by selecting one of the Build
commands on the Project menu (for more information about building Workbench projects, see
“Compiling, building, and archiving” on page 87). You don’t need to know anything about Ant
if you only want to do builds from the Workbench IDE. But Workbench also provides direct
access to Ant so that you can accomplish the following:

• Do project builds from the command line

• Do your own customized Ant processing

If you want to do either of these tasks, read this section to learn about Ant and how to use it.

What is Ant?

Apache Ant is a Java-based build tool, much like make but without make’s foibles. A couple of
key differences between Ant and make are:

• Instead of using makefiles, Ant uses XML-based buildfiles, which specify targets that
define the processing that you want.

• Instead of using shell-based commands, Ant is extended using Java classes. It comes with
a built-in set of tasks, each implemented through a Java class. To define a new task, you
define a new Java class that extends the Ant Task class.

Ant is an open-source Jakarta subproject. To learn more about Ant, including details on defining
your own tasks and creating buildfiles, see http://jakarta.apache.org/ant.

Variable Description

%_CLASSPATH% The semicolon-delimited list of the classpath entries for the
project and its subprojects

%_SOURCEPATH% The directory containing the project file
Using Ant 43

new http://jakarta.apache.org/ant/index.html

1 Workbench Basics
Using the Workbench Ant tools

You can use Workbench tools to invoke Ant from the command line. There are two Ant-based
executables in the Workbench bin directory:

• xwbbuild, which allows you to build a Workbench project

• xwbant, which allows you to perform customized processing based on buildfiles (and
possibly task classes) that you have created

The difference between the two executables is that xwbbuild takes a Workbench project file as
input, and xwbant takes an Ant buildfile.

You invoke the tools from the command line.

xwbbuild syntax Here is the command syntax for xwbbuild:

xwbbuild projectFile WorkbenchTarget options

where:

xwbant syntax Here is the command syntax for xwbant:

xwbant CustomizedTargets options

Argument Description

projectFile Path to the SilverStream project (.spf) file. This file specifies,
among other things, the name of the Ant buildfile that builds and
creates the archive(s) for your project.

WorkbenchTarget Specify one of these project buildfile targets:

• build—Builds and creates the archive(s) for the specified
project (equivalent to selecting Project>Build and Archive)

• rebuild—Rebuilds and creates the archive(s) for the specified
project (equivalent to selecting Project>Rebuild All and
Archive)

• clean—Removes all files from the project’s build directory and
deletes the archive(s) (no equivalent in the Workbench IDE)

options See below for information on the options.
44 Using Ant

eXtend Workbench Tools Guide
where:

Options Here are the options you can provide with xwbbuild and xwbant:

Argument Description

CustomizedTargets Specify one or more of the targets you have defined in your
buildfile

options See below for information on the options.

Option Description

-help Prints usage information

-projecthelp Prints the description of the project (if one exists), followed by
the targets defined in the buildfile

-version Prints the version of Ant

-quiet Be extra quiet

-verbose Prints detailed information about the processing

-debug Prints debugging information, including a mapping of tasks to
Java classes and a listing of properties and their values

-emacs (xwbant only) Prints logging information without adornments

-logfile file Sends output to file, instead of to the screen. This option creates
file if it doesn’t exist or overwrites file if it does exist.

-logger class Specifies the class to do the logging. The default logger is
org.apache.tools.ant.DefaultLogger. You can also specify another
built-in logging class (look in ant.jar in the Workbench lib
directory for provided classes) or specify a logging class you
wrote yourself.

	 See the Ant documentation at http://jakarta.apache.org/ant
for details.
Using Ant 45

new http://jakarta.apache.org/ant/index.html

1 Workbench Basics
Workbench modification to Ant The version of Ant shipped with Workbench is exactly
the same as the version from Apache (use the -version command-line option to see the version
number), with one exception: the Workbench Ant javac task supports a sourcepath attribute,
which allows you to specify the -sourcepath argument to the compiler. Workbench generates
buildfiles with this attribute, so Workbench buildfiles will not work with an unmodified Ant.

-listener class Adds class as a listener. A listener is notified when one of the
following events occur:

• A build is started

• A build is finished

• A target is started

• A target is finished

• A task is started

• A task is finished

• A message is logged

There is no default listener. You can specify a built-in listener
class (look in ant.jar in the Workbench lib directory for provided
classes) or specify a listener class you wrote yourself.

	 See the Ant documentation at http://jakarta.apache.org/ant
for details.

-Dproperty=value Overrides property value set in the buildfile. Properties are
defined as <property> elements in the buildfile.

-buildfile file (xwbant only) Specifies the buildfile to use. If this option is not
specified, Ant uses build.xml in the current directory.

(This option applies only to xwbant, because xwbbuild always
uses the project buildfile that Workbench creates for you
automatically.)

-find file (xwbant only) Searches for buildfile file starting at the current
directory. If it doesn’t find it in the current directory, it searches
the parent directory, up to the root directory, until it finds file.

If file is not specified, it searches for build.xml.

Option Description
46 Using Ant

new http://jakarta.apache.org/ant/index.html

eXtend Workbench Tools Guide
Examples

xwbbuild examples The following command builds and creates the archive(s) for the
myApp Workbench project (if changes have been made since the last time the project was built
and archived).

xwbbuild myApp.spf build

The following command rebuilds all the files and creates the archive(s) for the myApp project.

xwbbuild myApp.spf rebuild

The following command removes all files from the build directory and deletes the archive(s).

xwbbuild myApp.spf clean

xwbant examples The following command performs the tasks defined for the default target
in build.xml in the current directory.

xwbant

The following command performs the tasks defined for the purge target in build.xml in the
current directory.

xwbant purge

The following command performs the tasks defined for the purge target in test.xml. If test.xml
isn’t found in the current directory, Ant searches for it in parent directories until it hits the root
directory.

xwbant purge -find test.xml
Using Ant 47

1 Workbench Basics
Internationalization support
This section describes Workbench’s support for internationalization.

Specifying fonts

If some international characters are not displaying correctly in Workbench (for example, they
are displaying as boxes) or if the font mapping on your system is poor, you can specify different
fonts for Workbench to use for its menus, labels, dialogs, and so on (note that the editors
themselves are not affected by changes you make as described next).

¾ To change the fonts used by Workbench:

1. Exit Workbench.

2. Specify alternate font names (and optionally sizes and colors) in the following lines in
ide.props, which is in the Workbench Resources\Preferences directory:

font-name-standard = font-name
font-size-standard = font-size
font-name-big = font-name
font-size-big = font-size
output-font-name = font-name
output-font-size = font-size
output-background-color = font-color
output-font-color = font-color

Font sizes are specified in points. Colors are specified as R,G,B integer values; for example,
255,255,255 is white and 0,0,0 is black.

• The standard font is used to display all standard-sized text, menus, labels, and so on. The
default is 11-point Arial.

• The big font is used to display title text in wizards as well as buttons in wizards and
dialogs. The default is 18-point Arial.

• The output font is used to display text in the Output Pane. The default is 12-point
Monospaced, black on a white background.

Sun recommends that you use Serif as the font name to provide the best font mapping on most
systems.
48 Internationalization support

eXtend Workbench Tools Guide
Extending the Workbench toolset and services
SilverStream eXtend Workbench is an extensible IDE for developing J2EE applications and
Web Services. The standard toolset described in this documentation can be extended using the
Workbench framework API. Contact your SilverStream representative for more information
about extensibility.
Extending the Workbench toolset and services 49

1 Workbench Basics
50 Extending the Workbench toolset and services

2
 Projects and Archives Chapter 2
SilverStream eXtend Workbench helps you create J2EE components (including EJB JARs, JSP
pages, servlets, and Java class files) to produce well-structured J2EE archives. Your work in
Workbench is organized into projects.

Working in a project involves editing sources (such as Java and data files), building classes,
generating the archive, and deploying the archive. This chapter describes how to work with
projects to create and manage J2EE components and archives. It includes the following
sections:

• About projects and archives

• Organizing projects

• Creating projects and subprojects

• Populating projects

• Viewing projects

• Maintaining projects

• Compiling, building, and archiving

• Validating archives

About projects and archives
A project is a collection of source files that you work with in Workbench to create J2EE
modules. A project can also be thought of as a series of rules that define how parts come together
to create an archive.

An archive is what gets generated from a completed project. A Workbench project can
represent any of the following types of archive:

• Enterprise archive (EAR)

• Web archive (WAR)

• Application client archive (JAR)

• EJB archive (JAR)

• Java class archive (JAR)

• Resource adapter archive (RAR)

• Deploy-only (non-buildable) archives
1

2 Projects and Archives
Workbench does not limit you to creating J2EE projects and archives. You can also develop and
build nonarchive projects (projects that simply build other files) and utility projects (such as
class files stored in a ZIP or JAR file) using Workbench.

What a project includes A project can include:

• Source code that will be compiled (the resulting files will be put into an archive)

• Content files that you put directly into the archive (JSP pages, HTML pages, images, and
so on)

• A deployment descriptor for the project archive

• Server-specific deployment information

• Other project files, called subprojects

Project file Each project and subproject has a SilverStream project file (SPF file) that
defines it. Workbench automatically creates this project file to store settings that you specify in
Workbench. The project file defines how the project references subprojects, where files are
stored on disk, and how files will be structured in the generated archive—and stores classpath
entries and deployment settings. Changes you make to a project are automatically reflected and
saved in the project file. When you add or move a component in a subproject, the change is
updated in the subproject’s project file.

CAUTION There is no reason to directly edit the project file. All settings can be defined within
Workbench. If you manually change the file incorrectly, you could compromise
your ability to open the project associated with that file in Workbench.
2 About projects and archives

eXtend Workbench Tools Guide
Organizing projects
When you create a project, you must specify what directories (or files) in your file system are to
be included in the project and where to save the Java archive that is to be built by the project.

You must also decide how to structure subprojects within a project. For example, a top-level
EAR project might contain various subproject modules such as WARs and EJB JARs that define
an application’s user interface, business logic, database access, and so on.

Project design considerations

J2EE and Web Service applications can be extremely complex, with many project design issues
to consider. Your design decisions affect how to create the projects, subprojects, and
components in Workbench that make up your application.

	 For more information about design considerations for J2EE and Web Service
applications, see the chapter on developing applications in the Development Guide.

Workbench supports almost any method for creating projects and components, including
bottom-up (creating components first and then Workbench projects and subprojects) and top-
down (creating projects and subprojects first and then components). In most cases, you should
follow a top-down approach—first create the project and subproject structure and then create
new components and add them (and any existing components) to your project.

	 For information about creating an entirely new project, see “Creating projects and
subprojects” on page 6. For information about creating a project that contains existing source
files and components, see “Working with existing source files” on page 14.

Project directory structure considerations

Workbench provides a lot of flexibility in defining the directory structures for your project’s
source files and the archive built from those source files.

Directory structure of your source files The directory structure of the source files on
your file system does not need to match the directory structure of the generated files in the
archive. For example, files in different source directories can be assigned to the same directory
in the archive. To simplify development, however, you may want to set up your project
directories to mimic the directory tree structure that will group J2EE components into archives.
Organizing projects 3

devProcess.html

2 Projects and Archives
You could create your project source file directory structure so that the project (SPF) file is
located at the root of that directory structure and then create a project src directory (at the same
level as the project file) in which you can place all of the project source code. For example:

myWebProject\
myProject.spf
src\

dbAccess\
addItem.java
changeItem.java
deleteItem.java
queryDB.java

loginProcessing\
login.java
user.java

userInterface\
intro.jsp
login.jsp
loginError.jsp
welcome.jsp

When creating an enterprise archive (EAR) project with multiple subprojects (JARs, WARs,
EJB JARs, and so on), it may be easiest to have all the project files at the same level, and have
the sources of each subproject in separate src subdirectories. For example:

myWebProject\
myProject.spf
myProjectDB.spf
myProjectLogin.spf
myProjectUI.spf
src\

dbAccess\
addItem.java
changeItem.java
deleteItem.java
queryDB.java

loginProcessing\
login.java
user.java

userInterface\
intro.jsp
login.jsp
loginError.jsp
welcome.jsp

If your project package structure becomes too cumbersome, you can always move the
subproject components into separate subdirectories. You can structure Workbench projects
using a single or a combined source tree.
4 Organizing projects

eXtend Workbench Tools Guide
	 For more information on project settings, see “Managing project content settings” on
page 30.

Directory structure of an archive The internal directory structure of your J2EE archive
depends on the archive type. Each type of archive has an XML descriptor that conforms to a
particular DTD.

For example, when creating a Web archive (WAR), you must specify which files are accessible
directly through an URL (such as JSP pages and servlets) and which files are not (such as
supporting class and archive files). J2EE specifies that you locate files that are not to be made
accessible through an URL in a WEB-INF directory in the archive directory structure. This
WEB-INF directory should be located beneath the archive root directory and typically includes:

The JSP pages that are URL-accessible typically are located in the root directory of the archive.
You may want to hide some JSP pages (such as those used by Struts) from URL access. Files
under the WEB-INF directory are by default not accessible via URL, although you can
configure them for URL access. The locations of other files are up to you.

CAUTION When you create the WEB-INF directory, you must ensure that the directory name
is in all uppercase text.

For more information This section has provided only a glimpse into some of the issues
you may encounter when designing your source file and archive directory structures.

	 For more information about specifying archive directory structure and packaging
archives, see the Sun J2EE Blueprints document.

	 For information about how you can specify source and archive directory structures in
Workbench, see “Managing project content settings” on page 30.

File or directory Contents

web.xml A required deployment descriptor file that tells the application
server how to interact with the Web application

WEB-INF/classes/ A directory containing the compiled Java class files for the
application

WEB-INF/lib/ A directory containing the JAR files used by the application
Organizing projects 5

new http://java.sun.com/j2ee/blueprints

2 Projects and Archives
Creating projects and subprojects
A project (or subproject) can be an EAR, EJB JAR, WAR, RAR, JAR, deploy-only archive, or
application client. As you create a project, you define a project name and a location for your
source files. Workbench maps all of these source files to names and locations that you define for
the archive.

The following steps (using the New Project Wizard) apply to each type of project, with
exceptions noted.

	 For information on organizing the development workspace before beginning a project,
see “Project directory structure considerations” on page 3.

¾ To create a project:

NOTE If you are creating a subproject, you must open the parent project in Workbench before
starting this procedure.

1. Select File>New Project.

The New Project dialog appears:

2. Choose a project type and click OK.

• If you want to create a nonbuildable archive, select Deploy-only. For detailed
instructions, see “Creating a deploy-only project” on page 12.
6 Creating projects and subprojects

eXtend Workbench Tools Guide
• If you are creating an EJB JAR and EJB client JAR pair, you should first create the
parent WAR or EAR for both so that both projects can be open at once. For detailed
information on the relationship between the EJB JAR and the client JAR, see
“Specifying the EJB JAR configuration” on page 125.

• If you want to create a project that includes a completed archive (along with its source
code) from a third-party source, choose a project type and follow the instructions in
“Working with existing source files” on page 14.

NOTE The following New Project Wizard panels (to create a WAR) apply to each type
of project.
Creating projects and subprojects 7

2 Projects and Archives
3. Specify project information as follows:

New project setting What you do

Project Name Specify the name you want to use for the project (the .SPF
extension is automatically appended). This name appears in
the Source Layout.

As you enter a project name, the archive name is filled in
automatically. You can keep the same name for your archive
or enter another one.

Project Location Specify the directory where you want the project (and other
source files) to be located. Workbench creates a
SilverStream project file (with an .SPF extension) in the
project location.

As you enter a project location, the rest of the new project
settings are filled in automatically. You can change these
settings.

You can click the ellipses beside the Project Location field
to select a location, or type the project directory.

If you specify a project location directory that does not
exist, the wizard prompts you to create it.

If you do not specify an absolute path, the wizard locates the
project under the Workbench bin directory.

Archive Name Specify the name of the archive file that will be generated.
The resulting name will appear in the Archive Layout. An
extension based on the archive type will automatically be
appended to the name. You can keep the default archive
name (that matches the project name) or enter a new one.

To create a project based on an existing archive or to create
a deploy-only project, enter the name of the existing archive
that you want to include.

	 For information about creating projects based on
existing archives, see “Working with existing source files”
on page 14. For details about deploy-only archives, see
“Creating a deploy-only project” on page 12.
8 Creating projects and subprojects

eXtend Workbench Tools Guide
Archive Location Enter the location of the project archive or accept the
default (the project root directory).

The archive location appears in the Archive Layout of the
Navigation Pane after the project has been created.

Deployment Descriptor
Name

The wizard fills in a deployment name (based on the project
type) after you enter a project location. Each archive stores
its own set of deployment information in this XML
deployment descriptor file source file. Workbench creates
the default deployment descriptor name and location (based
on archive type) when you build and archive the project.

In most cases you should accept the default name and
location.

If you are converting an existing archive project (by
creating a Workbench project file), enter the name of the
deployment descriptor file on disk.

If you want to have multiple J2EE subprojects of the same
type sharing the same deployment descriptor directory
location, see Deployment Descriptor Location (just below).

The deployment descriptor name you enter here affects only
the source file name—not the file name that is used in the
JAR. When Workbench builds the archive, it includes this
deployment descriptor file in the archive using the standard
location defined by the J2EE specification for the archive
type.

	 For more information on deployment descriptor
names, see Chapter 3, “Archive Deployment” and Chapter
10, “Deployment Descriptor Editor”.

New project setting What you do
Creating projects and subprojects 9

2 Projects and Archives
NOTE All settings on this wizard panel are required—except the two deployment
descriptor fields and the J2EE version, which are not required (or displayed) for
the Java or deploy-only archive.

4. Click Next.

5. If you have a project currently open in Workbench, the wizard asks if you want to add the
new project as a subproject to that project or one of its subprojects.

Deployment Descriptor
Location

Enter the location of the deployment descriptor or accept
the default. Each archive type uses a required J2EE default
directory location.

If you are converting an archive project, enter the location
of its deployment descriptor.

In most cases you should accept the default name and
location. However, if you want to have multiple J2EE
subprojects of the same type sharing the same deployment
descriptor directory location, you should either enter a
different source file name for each deployment descriptor or
create a separate directory structure beneath the root
directory for each descriptor.

If you specify (or if Workbench finds) a deployment
descriptor in the project source location matching the one
you specify, it prompts whether or not you want to use the
existing deployment descriptor. If you answer no, you will
need to change the deployment descriptor name or location
before continuing.

	 For more information on deployment descriptor
default names and locations, see Chapter 3, “Archive
Deployment” and Chapter 10, “Deployment Descriptor
Editor”.

Project J2EE Version Specify the version of J2EE for this project.

	 For information on targeting your application at an
appropriate version of J2EE, see the chapter on handling
J2EE versions in Getting Started.

New project setting What you do
10 Creating projects and subprojects

gsJ2EEVersions.html
gsJ2EEVersions.html

eXtend Workbench Tools Guide
If no project is currently open in Workbench, this panel does not appear.

If you do not want to create this project as a subproject, deselect Add this project to the
current project and click Next. (You can proceed to Step 6.)

To create the project as a subproject of another project:

• Select Add this project to the current project.

• Select the parent project under Add to Project. This list contains the currently open
project and all subprojects associated with it.

• Select Include in parent archive.

• If you want to add the generated archive of this project to the parent archive (as
opposed to adding all of the generated files), select Add the generated archive of the
subproject to the parent archive.

If you want to add the generated files (instead of the generated archive) of this project
to the parent archive, select Add the contents (individual files) of the subproject to
the parent archive.
Creating projects and subprojects 11

2 Projects and Archives
• The wording of the next two options vary, depending on whether you choose to add the
archive or the individual files to the parent archive.

In either case, you are asked whether to add the archive or files to the root of the
parent archive or to specify some other location in the parent archive.

• Click Next.

6. The wizard summarizes the project details. Click Finish to create the project.

You can see the new project in the Project tab in the Navigation Pane. If necessary, you can view
or change project names and locations using the Project Settings dialog.

Once you have defined how your Workbench projects and subprojects will be structured, you
can start adding source directories and files to a project, as described in “Adding to projects” on
page 18.

Creating a deploy-only project

Workbench allows you to validate and deploy an archive for which you have no source code by
first creating a deploy-only project for the archive.

For example, if you received a completed EJB JAR archive from a third party without any
source code, you could create a deploy-only project for it. You cannot add to a deploy-only
project.

NOTE If you receive a completed archive along with its source code, you should create a
regular Workbench project, not a deploy-only project.

An EAR can contain both deploy-only and regular projects. For example, you can create an
EAR containing an EJB JAR that you don’t have the source for and a regular WAR that calls that
EJB JAR.

	 For more information, see “Working with existing source files” on page 14.

How you tell that a project is deploy-only When you open a deploy-only project:

• The build commands on the Project menu are disabled. This prevents you from
accidentally overwriting the archive—which you would be unable to recreate.

• The Contents tab of the Project Settings dialog is replaced by the following message:
The archive is deploy only. Its contents cannot be modified or examined.

¾ To create a deploy-only project:

1. Select File>New Project.
12 Creating projects and subprojects

eXtend Workbench Tools Guide
The New Project dialog appears:

2. Select Deploy-only and click OK.
Creating projects and subprojects 13

2 Projects and Archives
3. In the New Project Wizard, specify project information as follows:

4. Click Next.

5. If you have a project open, the wizard asks if you want to add the new project as a
subproject of that project or one of its subprojects. For more information, see Step 5 under
the preceding procedure for creating a project.

Otherwise, the wizard summarizes the project details.

6. Click Finish to create the project.

You can see the new project in the Project tab in the Navigation Pane, but you cannot edit its
contents. If necessary, you can view or change project names and locations using the Project
Settings dialog.

Working with existing source files

There are several ways you can use J2EE components and modules created with third-party
tools in Workbench:

• If you want to create a nonbuildable archive that you validate and deploy in Workbench,
you must create a deploy-only archive (a completed archive without any source code). For
detailed instructions, see “Creating a deploy-only project” on page 12.

Deploy-only project
settings What you do

Archive File Enter or browse to the deploy-only archive file on which
you wish to base the project. By default, the Project
Location is set to the directory of the specified file when
you select the archive.

Project Type Make sure the archive type and J2EE version are correct.

Project Name Enter a name to identify the deploy-only project.
Workbench creates a SilverStream project file (with an .SPF
extension) in the project location.

Project location Specify where you want the project to be located. The
location identifies the project root directory.

The Project Location is set to the directory of the specified
file when you select the archive, but you can change it.
14 Creating projects and subprojects

eXtend Workbench Tools Guide
• If you have source code files and want to build an editable archive, you should create a
regular Workbench project file as described below.

The following procedure describes one (directory-centric) approach where the resulting archive
structure mirrors the directory structure of the source files. You can create a new project in a
deploy-only archive using this same approach. The only difference is that you will not be able
to later add source files to this type of archive.

¾ To create a project that includes existing source files:

1. Create a source directory structure and locate all your source files there.

When including existing archives, you may want to add the entire directory structure,
since it is easier to maintain your project source files if you add directories rather than
individual files. Once you have set up a project directory, files you add to it later will be
automatically included in the resulting archive.

2. Create a Workbench project, as described under “Creating projects and subprojects” on
page 6.

3. Add the source directory you created in Step 1 to the project, as described under “Adding
to projects” on page 18.

Once you have added the source directory to the project, any changes you make later are
automatically included in the archive and you avoid possible duplication of files.

Populating projects
Once you have a project, you can add components and subprojects to it. How you begin a project
depends on whether you are creating a completely new project (no files, directories, or modules
exist yet) or bringing existing J2EE components (created using an external IDE) into
Workbench so you can add them to the project and deploy the archive.

	 For more information, see “Project design considerations” on page 3 and “Working with
existing source files” on page 14.

Creating source files

As you create source files in Workbench, you can group them under whatever project directories
you want. You can create the source file and then add it to a project or open a project and then
add the source file. Your project settings specify where files are located in the archive.
Populating projects 15

2 Projects and Archives
Source files include:

• Source code, such as Java files that will be compiled into an archive

• Content files that will be put directly into the archive, such as JSP pages, XML files,
HTML pages, images, and so on

Typically, you want to create a directory and add that to the project before creating source files.
When you add a directory to the project, any source files you create in that directory and in its
subdirectories are automatically added to the project.

	 For details about adding directories to a project, see “Adding an entire directory” on
page 21.

When creating source files using the component wizards, any directories you specify are
automatically added to the project.

¾ To create a source file:

1. (Optional) Open the project you want to add the file to.

2. Select File>New.

The New File dialog appears.

3. On the J2EE tab, choose a file type and click OK. The wizard for that file type starts.

The wizards have built-in J2EE logic that facilitates the creation and deployment of well-
structured J2EE components.

When the wizard finishes, a source editor containing the wizard-generated file opens in
the Edit Pane.
16 Populating projects

eXtend Workbench Tools Guide
	 For more information see:

• “EJB Wizard” on page 117

• “Servlet Wizard” on page 161

• “JSP Wizard” on page 156

• “Java Class Wizard” on page 167

• “JavaBean Wizard” on page 172

• “Tag Handler Wizard” on page 176

	 For information about source editors in Workbench, see Chapter 6, “Source
Editors”.

	 For information about the deployment-related wizards, see Chapter 10,
“Deployment Descriptor Editor” and Chapter 11, “Deployment Plan Editor”.

	 For information about the Web Service-related wizards, see Chapter 5, “Web
Service Wizard” and Chapter 8, “WSDL Editor”.

	 For information about the XML-related wizards, see Chapter 7, “XML Editors”.

¾ To create a source file without using a wizard:

1. (Optional) Open the project you want to add the file to.

2. Select File>New.

The New File dialog appears.

3. On the J2EE tab, choose Generic text file or Java file.

4. Deselect Use wizard and click OK.

A text editor containing a blank file opens in the Edit Pane.

	 For information about source editors in Workbench, see Chapter 6, “Source
Editors”.
Populating projects 17

2 Projects and Archives
Adding to projects

You can add source files, directories, and subprojects to an existing project.

Adding source files to a project

The following procedure describes how to add files and directories to a project.

¾ To add files and directories to a project:

1. Open the project you want to add to.

2. Select Project>Add to Project.

	 For other methods, see “Other ways to add files and directories to a project” on
page 20.

3. Choose whether you want to add a file or directory.

Typically, you add directories to your project rather than individual files.

4. Navigate to and choose the file or directory you want to add.

5. Click Open or OK.
18 Populating projects

eXtend Workbench Tools Guide
6. Set the following options to specify how the file or directory will be added to the project
and where you want it to be located in the archive:

7. If you are adding a directory to your project, click Advanced.

File and directory
setting Description or action

File Shows the (editable) path of the directory or file that you are
adding to the project.

Add to project Select the project that the specified item will be added to.
Only the top-level open project and associated subprojects
appear on the menu.

Include subdirectories When adding directories, select to add the contents of the
subdirectories as well as those of the specified directory.

Add the file(s) to the
root of the archive

Select to add the specified files to the root of the archive.
Clicking this option means you cannot remove the contents
from the project without manually deleting the contents
from the file system.

Add the file(s) to the
archive at this location:

Select to add the specified item to a specified location other
than the archive root.

You can also use relative paths or environment variables
when locating shared project files or referring to files
located outside the project’s directory structure.

	 For more information, see “Using environment
variables” on page 30 and “Using relative paths” on
page 31.
Populating projects 19

2 Projects and Archives
The following project entry settings let you specify how to include Java sources (of the
files or directories) in the generated archive.

NOTE You can also edit these project entries in the Edit archive entry dialog (by
clicking Edit in the Contents tab of the Project Settings dialog).

8. Click OK to add the file or directory to the project.

To see (or edit) how contents have been added to your project, click the Contents tab of
the Project Settings dialog.

	 For information about editing project contents, see “Managing project content settings”
on page 30.

Other ways to add files and directories to a project Using Project>Add to Project
is only one way to add files and directories to a project. Other ways include:

• Clicking Add Entry or Add Directory on the Contents tab of the Project Settings dialog

• Using the popup (right-mouse) menu on the file or directory you want to add in the
Directory tab of the Navigation Pane and choosing Add to Project.

Using this technique you can add multiple files at the same time: press Ctrl+Click to add
multiple noncontiguous files; press Shift+Click to add multiple contiguous files.

Notes about adding individual files You typically add entire directories to your project.
However, you can also add:

• The entire contents of a directory

• Individual file(s) in a directory

Advanced setting Description or action

Include Java source
files in archive

Select if you want to include sources files in the generated
archive. For most production environments, you will not
want to include Java source code.

Add the files to the root
of the archive

Select to store source files in the archive root directory.
Clicking this option means you cannot remove the contents
from the project without manually deleting the contents
from the file system.

Add the files to the
archive at this location

Select and then specify a directory in which to store source
files.
20 Populating projects

eXtend Workbench Tools Guide
If you add a subproject as contents rather than as an entire project to a top-level project, the
name will appear grayed out and within parentheses in the Archive Layout view of the
Navigation Pane.

Refreshing the Navigation Pane Workbench automatically updates the contents of the
Directory and Project tabs in the Navigation Pane when you make changes in Workbench. If you
make changes outside Workbench, select View>Refresh or press F5 to see the changes.

Adding an entire directory

When you add a directory or directory tree to a project (as described in “Adding source files to
a project” on page 18), the structure of the files and directories in the archive matches the layout
of the files and directories of your (on-disk) source directories.

When you specify an entire directory, anything you later change, add, or remove within that on-
disk directory is automatically reflected in the project. To relocate archive files, you can simply
move them from the existing source directory structure on your file system. Any such changes
will be automatically reflected in your project, provided that you keep them within the source
directory structure used by the project.

What gets excluded When you add the entire directory to a project, Workbench excludes
the following types of files from the generated archive:

• Any file ending in ~

• Any file starting and/or ending with #

• Any file starting and/or ending with %

• Any file named cvsignore

• Any files in a directory named CVS

• Any files ending in JAVA (by default, though you can choose to include Java files when
adding the directory)

• Any autosave and backup files ending in SAV and BAK

These are generally backup or version control information files and don't belong in the
generated archive.

Adding subprojects to a project

The following procedure describes how to add a subproject to a project.

	 For details about creating subprojects, see “Creating projects and subprojects” on page 6.
Populating projects 21

2 Projects and Archives
¾ To add a subproject to a project:

1. Open the project you want to add to.

2. Select Project>Add to Project>Subproject.

	 For other methods, see “Other ways to add files and directories to a project” on
page 20.

A file selection dialog appears.

3. Navigate to and choose the subproject file you want to add.

4. Click Open. The Add to Project dialog appears.

5. In the Add to project field, select the project that the specified archive will be added to.

NOTE Only the top-level project and any associated subprojects appear as choices.

6. Select Include in parent archive to add the contents of the subproject to the parent
archive.

If Include in parent archive is not selected, the subproject will still be built before the
parent project, but none of its contents will be included in the parent archive.

7. If you want to add the generated archive of this project to the parent archive (as opposed to
adding all of the generated files), select Add the generated archive of the subproject to
the parent archive.

If you want to add the generated files (instead of the generated archive) of this project to
the parent archive, select Add the contents (individual files) of the subproject to the
parent archive.
22 Populating projects

eXtend Workbench Tools Guide
8. The wording of the last two options vary, depending on whether you choose to add the
archive or the individual files to the parent archive.

If you selected Add the generated archive of the subproject to the parent archive, set
one of the following options to determine how the specified archive will be added to the
parent archive:

If you selected Add the contents (individual files) of the subproject to the parent
archive, set one of the following options to specify how the subproject contents (rather
than the subproject’s generated archive) will be added:

Subproject setting Action

Add the child archive to the root of the
parent archive

Select to add the specified archive to the
root directory of the parent archive.

Add the child archive at this location Select (and enter a location) to add the
specified archive to a location other than
the root directory of the parent archive.

You can also use relative paths or
environment variables when locating
shared project files or referring to files
located outside the project’s directory
structure.

	 For more information, see “Using
environment variables” on page 30 and
“Using relative paths” on page 31.

Subproject setting Action

Add the files to the root of the parent
archive

Select to add the archive contents to the
root directory of the parent archive.
Populating projects 23

2 Projects and Archives
9. Click OK to add the child archive (or files) to the parent archive.

TIP To see how contents have been added to your project, click the Contents tab of the
Project Settings dialog.

	 For more information about adding project contents, see “Modifying project entries” on
page 31.

Viewing projects
You use the Project tab in the Navigation Pane to view projects. You can view projects in three
ways to see how directories and files are organized on the file system and in the archive:

• Source Layout view

• Archive Layout view

• Archive Contents view

Source Layout view The Source Layout view reflects the organization of the project’s
files and directories on your hard disk. Subprojects are listed at the top level as folders.

• Subprojects added as archives and as contents are both shown using the project name

• Subprojects excluded from the parent archive are shown grayed out using the project
name

Add the files to the archive with this
prefix:

Select and then enter a prefix to add the
archive contents to a directory with the
specified prefix.

You can also use relative paths or
environment variables when locating
shared project files or referring to files
located outside the project’s directory
structure.

	 For more information, see “Using
environment variables” on page 30 and
“Using relative paths” on page 31.

Subproject setting Action
24 Viewing projects

eXtend Workbench Tools Guide
The Archive views The Archive Layout view and Archive Contents view both reflect the
organization of the archive that will result from building the project. The Archive Layout view
presents a development-oriented picture of how the project files and directories will be
organized in the resulting archive, while the Archive Contents view is the closest representation
of what will be in the generated archive. The differences between the two views are:

• Archive Layout shows the project’s source files (.java files), even though the archive
actually contains compiled files (.class files). Archive Contents shows compiled files
since they are what is in the archive (double-clicking a .class file opens the corresponding
source file in the Java Editor for editing, unless the .java file can’t be found, in which case
the .class file is opened in the Class Viewer).

• Archive Layout lists all subprojects, even those subprojects that have been added as
contents (as opposed to being added as archives) and those subprojects excluded from the
parent archive, to give you an idea of how the projects are organized.

• Subprojects added as archives are listed as the archive that they generate

• Subprojects added as contents are displayed grayed out using the name of the project

• Subprojects excluded from the parent archive are shown grayed out, using the name of
the archive or the project name, depending on which state would result from
reincluding the subproject in the parent archive

In the following screen, the ResourceSet subproject has been added as an archive, so
displays with its archive name. The Custom subproject has been added to the project as
contents, so is grayed out. The Sandbox subproject has been excluded from the parent
archive, so it too is grayed out.

Archive Contents lists subprojects as follows:

• Subprojects added as archives are displayed using archive names

• Subprojects added as contents are represented by the content itself, since that is how
they will appear in the parent project’s archive

• Subprojects that are excluded from the parent archive are not represented at all
Viewing projects 25

toolsBasics.html#ClassViewer

2 Projects and Archives
The following screen shows the Archive Contents view of the same project shown above.

• Archive Contents shows each inner class in a .java file, in addition to the file’s primary
class.

TIP You can see a file’s complete name and path by positioning the mouse over it in the lower
subpane of the Directory or Project tab. Workbench tool tips are particularly useful in an
Archive view for comparing a file as it exists in the archive (such as WEB-INF/web.xml)
to its location on disk (such as C:\dev\Aries\web.xml).

Maintaining projects
Your open project may be your top-level project or it may be a subproject. Workbench allows
you to manage the settings of any open project by adding or modifying files, directories,
subprojects, paths, classpaths, and so on. You can modify a project by:

• Opening a project

• Managing general project settings

• Managing project content settings

• Removing files, directories, and subprojects from projects

• Renaming a project

	 For more information on team development and design considerations, see the
Development Guide.
26 Maintaining projects

eXtend Workbench Tools Guide
Opening a project

To open a project, open the project file (with the .SPF extension). Changes you make to a top-
level project file are automatically saved in that file along with any other subprojects that are
part of the same top-level project.

You can open multiple projects at a time, as long as they are all part of the same top-level
project. For example, you can simultaneously open an EAR, a WAR, an EJB JAR, and a
application client provided they are all part of the same top-level EAR.

NOTE Whenever you add a component or subproject, the project file is automatically saved.
The only time you need to explicitly do a save is when you make changes to a source
file using one of the editors.

¾ To open a project:

1. Select File>Open Project.

2. Navigate to the project directory.

3. Select the project file (.SPF) and click Open.

In the upper left, the Navigation Pane displays the Archive Layout of the project. The files
are displayed in the lower subpane of the Navigation Pane.

TIP You can also navigate to the project file in the Directory tab and double-click the file to
open it.
Maintaining projects 27

2 Projects and Archives
Managing general project settings

The General tab on the Project Settings dialog lets you view information about the open project
and change the location of the source directory that stores the project class files.

¾ To view or modify project settings:

1. Open the project.

2. Choose Project>Project Settings.

3. Select the General tab and view or modify any of the options as follows:

Setting Description or action

Project Lists the project currently open.

Project type Lists the type of project you created.

Project directory Lists the open project’s root directory.

Project file Lists the file name and location of the open project.

Project version Lists the J2EE version
28 Maintaining projects

eXtend Workbench Tools Guide
Use source directory for
classes

Specifies whether you want to compile Java files into the
same directory as their corresponding source files.

By default, the check box is not selected and classes are
compiled into the build directory beneath the project’s
root directory. You can change the build directory by
changing the Classes directory setting (below).

If you select the check box, all project classes are
generated into the source directory along with with their
source files.

Classes directory Lists the root of the build directory where the project’s
compiled class files will be located. Workbench writes the
generated classes to this directory when it builds the
archive.

The default is build/project_name-classes beneath the
project’s root directory. You can change the directory by
typing or browsing to a different directory.

Archive file path Lists the name and location of the archive. Workbench
writes the generated archive to this location, which is
relative to the project root.

You defined this location when you created the project.

Setting Description or action
Maintaining projects 29

2 Projects and Archives
Managing project content settings

You specify how files and directories are organized in the project’s Source and Archive Layouts
using the Contents tab of the Project Settings dialog.

This dialog lets you define files and directories in terms of project entries in a table. Each entry
defines the location of a source file or directory in the file system and how it is added to the
project archive.

When specifying file and directory locations, you can use environment variables and absolute
and relative pathnames.

Using environment variables

Windows environment variables are useful when a development team shares files (such as a
single project file or JARs) that are located outside the project’s directory structure. A shared
project file must be able to refer to files or directories that exist in different locations on different
team members’ machines. You typically use environment variables in Workbench for locating
files that are not under the project’s root directory.

You set the environment variables by using the Environment tab in the Windows System control
panel. You reference the variables in Workbench using the following syntax: %varname% or
${varname}. You can use Workbench variables:

• When editing or adding to a project using the Add to Project dialog

For example, change d:\utilproj\util.spf to %UTIL_PROJECT_DIR%\util.spf or
${UTIL_PROJECT_DIR}\util.spf
30 Maintaining projects

eXtend Workbench Tools Guide
• When editing your project's classpath using the Classpath/Dependencies tab of Project
Settings dialog

For example, add %UTIL_PROJECT_DIR%\util.jar or ${3RDPARTYJARS}\helpers.jar
to the classpath to include a subproject.

NOTE You need to restart Workbench before the value of an environment variable (set in the
Windows Control Panel) takes effect.

It may often be easier to use a relative path (instead of an environment variable) to locate any
shared project files that are in the project's directory tree. For example, you could specify a src
directory to refer to the directory named src under your project's directory.

Using relative paths

The project root is the directory on your hard disk that contains the project file—for example:
C:\MyProj\Proverbs. You can use relative paths when referring to files within the project’s
directory—for example, to specify up two directory levels: .\..\mydir\file.jar.

By default, any paths you specify for files or directories are set relative to the project’s root
directory, provided the source directories are nested beneath the root directory. Otherwise, you
must specify a hardcoded path. Locations you set in Workbench are stored in the project file.

Because location settings will be shared among subprojects and possibly other developers, you
should try to avoid absolute paths. If you need to share a project file and other source files that
are not under your project’s directory, set environment variables in Workbench.

	 For more information on team design considerations, see the Development Guide.

Modifying project entries

¾ To modify project entries:

1. Choose Project>Project Settings.

2. Open the project to modify.

You can choose between the current project and any associated subprojects.

3. On the General tab, view (and if necessary modify) the classes directory and the archive
directory.

NOTE You cannot entirely modify the project type, directory, and file name within
Workbench. See “Renaming a project” on page 37.
Maintaining projects 31

2 Projects and Archives
4. Select the Contents tab.

A project entry can be a file or a directory. As shown below, each project entry is defined
by its source location and associated archive location.

Setting Description or action

Project The project to modify.

Source location The source location of the selected entry. A full
path is listed whenever the source of the entry is
not relative to the project root directory.

Any files you later add to the source directory will
also get included in the project archive.

You can also use relative paths or environment
variables when locating shared project files or
referring to files located outside the project’s
directory structure.

	 For more information, see “Using
environment variables” on page 30 and “Using
relative paths” on page 31.
32 Maintaining projects

eXtend Workbench Tools Guide
	 For information on adding an entry or directory, see “Adding source files to a
project” on page 18. For information on removing entries, see “Removing files,
directories, and subprojects from projects” on page 35.

Archive location The archive location of the contents of the selected
entry. The archive location can be the same as or
different from the source location.

All archive locations are relative to the archive
root directory.

Any path you specify identifies the directory
structure in the archive. For example, specifying
src\com\proverb would include those files and
directories in the archive with src\com\proverb as
the directory structure in the archive.

An asterisk (*) indicates that you want to include
all files in the specified directory, but not any
nested subdirectories.

Add Entry Lets you add a file to the project.

Add Directory Lets you add a directory (and optionally
subdirectories) to the project.

Edit Lets you edit the selected entry name or location.

Delete Lets you remove the selected project entry.

Setting Description or action
Maintaining projects 33

2 Projects and Archives
5. Select the project entry you want to modify by either double-clicking the entry or selecting
the entry and clicking Edit.

The Edit archive entry dialog that appears depends on whether you are modifying a file,
directory, or subproject entry.

• The following dialog appears if you selected a file. The settings on this dialog are the
same as on the Add to Project dialog. For more information, see “Adding to projects”
on page 18.

• The following dialog appears if you selected a directory. The settings on this dialog
are the same as on the Add to Project dialog. For more information, see “Adding to
projects” on page 18.
34 Maintaining projects

eXtend Workbench Tools Guide
• The following dialog appears if you selected a subproject. The settings on this dialog
are the same as on the Add to Project dialog. For more information, see “Adding
subprojects to a project” on page 21.

6. Click OK after you have modified the entry.

Removing files, directories, and subprojects from projects

There are two ways to remove items from a project: using the Project Settings dialog or using
the Remove From Project popup menu in the Project tab. Removing a project’s source files or
directories from within Workbench does not delete them from your hard disk. Workbench just
removes the entry (or rule) that refers to the files or directories.

¾ To remove a file using the Project Settings dialog:

1. Choose Project>Project Settings.

2. Select the Contents tab.
Maintaining projects 35

2 Projects and Archives
3. Select the entry or entries you want to remove from your project. Press Shift+Click to
select contiguous entries. Press Ctrl+Click to select noncontiguous entries.

4. Click Delete.

5. Click OK to perform the deletion. Click Cancel to close the dialog without performing the
deletion.

If you clicked OK, Workbench removes the entry or entries so they are no longer referred
to in the project.

Using the Remove From Project popup menu

You can also right-click the file or directory you want to remove in the Project tab of the
Navigation Pane. Choosing Remove From Project removes the project entry from the Project
Settings definition (shown above and also reflected in the SPF file) as follows:

• When you remove an explicit file (one that does not refer to any other files contained in
any nested directories), Workbench simply removes the entry so that it is no longer
referred to in the project.

• When you remove an individual file or a directory that was added to a project as part of
nested subdirectories, Workbench prompts you to confirm that you want to remove the
whole tree from the project. To exclude a file from a nested project directory, for example,
you should either remove the directory from the project (and add it again later without the
file) or delete the file from your hard drive.

• You can remove a subproject by selecting it in the top part of the Navigation Pane (one
subproject at a time)
36 Maintaining projects

eXtend Workbench Tools Guide
What Workbench lists for you is the directory trees that will be removed. For example, if you
select to remove src\a\b\c.java, Workbench will advise that this will cause the src directory tree
entry to be removed. If you confirm that this is OK, Workbench removes the entire tree from the
project.

Renaming a project

In rare cases, you may need to rename a project (the name preceding .SPF). Although you
typically never directly edit a project file, you must do so in this situation.

¾ To rename a project:

1. Using your operating system tool, rename the project file.

2. (Optional) On the Contents tab of the Project Settings dialog, change the classes directory
to match the revised project name. This ensures that the new project name will appear as a
subdirectory of the build directory.

3. (Optional) Update the project name in the deployed object and the URL element in the
deployment plan.

Steps 2 and 3 are necessary only if you want to keep all project names consistent. The project
will build without them.

Compiling, building, and archiving
Workbench provides the tools you need to compile individual Java source files, build a
complete project, and package the components in a J2EE-compatible archive for deployment to
a J2EE server. This section describes the procedures for:

• Setting up your Workbench environment

• Using the commands

Setting up your Workbench environment

Setting up your Workbench environment for compiling and building includes:

• Defining the Java compiler

• Defining the project classpath
Compiling, building, and archiving 37

2 Projects and Archives
Defining the Java compiler

By default, Workbench uses the Javac 1.3 compiler. You can use the Build tab of the Preferences
dialog to specify a different compiler. You can also specify options that you want sent to the
compiler each time a Java file is compiled.

	 For more information, see “Build preferences” on page 15.

Defining the project classpath

The project classpath defines where Workbench can find the components that your source code
references.

You can use environment variables when editing a project classpath.

	 For more information, see “Using environment variables” on page 30.

Workbench constructs the project classpath using these values:

Item Description

Workbench
defaults

By default, Workbench uses:

• The standard JDK default classpath (for all projects)

• The SilverStream eXtend Workbench JAR file that provides the
J2EE API packages that are needed for compiling J2EE projects.
For J2EE 1.2 projects, the file is j2ee_api_1_2.jar; for J2EE 1.3
projects, the file is j2ee_api_1_3.jar.

If the J2EE API JAR file is accidentally removed from the
classpath, you can find it in the compilelib directory of the
Workbench install directory.
38 Compiling, building, and archiving

eXtend Workbench Tools Guide
Parent project classpaths If you have a project that contains subprojects, Workbench
builds the components and constructs the parent project’s classpath as follows:

1. Builds any referenced projects before it builds the parent project.

The referenced projects are specified in the Contents tab or Classpath/Dependencies tab of
the Project Settings dialog.

2. If the referenced projects build successfully, Workbench builds the parent project using the
following:

1. The parent project’s contents

2. The parent project’s classpath

3. The referenced project’s classpaths (which are constructed following the same
rules—the contents, the classpath, and any referenced projects)

Suppose you have an EAR project, and the EAR contains a WAR (a subproject), and the
WAR contains a utility JAR. Workbench constructs the JAR’s classpath first, then the
WAR’s classpath.

Project contents The Contents tab of the Project Settings dialog lists the components
that you’ve added to a project. Workbench adds these items to the
project’s classpath in the order in which you added them to the
project.

Classpath If your project has build dependencies on classes (for example, a
WAR that contains a servlet that references an EJB), JARs (such as a
Struts JAR), or related project files (like an EJB JAR and an EJB-
client JAR), you can list these build dependencies using the
Classpath/Dependencies tab of the Project Settings dialog.

You can resolve the build dependency by adding either the related
project’s SPF file or its archive to the classpath. It is recommended
that you put the project’s SPF file on the classpath because:

• If you put the project file on the classpath, Workbench can
determine when the related project has changed and if the related
project needs to be rebuilt. This ensures that you always have the
most recent archive.

• If you put the archive on the classpath, Workbench cannot
determine if the project has changed (which might result in the use
of outdated files).

Item Description
Compiling, building, and archiving 39

2 Projects and Archives
¾ To add to a project classpath:

1. With the project open, choose Project>Project Settings.

2. Select the Classpath/Dependencies tab and select a classpath entry.

3. Click Add Entry or Add Directory.

A selection dialog displays.

4. If adding files, click Browse and navigate to the appropriate directory and select one or
more files (archives or project files) and click Open. You can press Ctrl+Click to add
multiple noncontiguous files and Shift+Click to add multiple contiguous files.

Instead of browsing to files in the dialog, you can also directly type one or more files to
add to the project’s classpath. Enclose each entry in quotes and separate the entries with
spaces. When typing, you can specify environment variables (see “Using environment
variables” on page 30).

If adding a directory, type the directory (specifying environment variables if desired) or
click Browse and select the directory.

5. Click OK.

6. Repeat Steps 3 and 4 for any other required items.

7. (Optional) To edit a single classpath entry:

1. Select the entry.

2. Click Edit and modify the entry in the dialog.

3. Click OK.
40 Compiling, building, and archiving

eXtend Workbench Tools Guide
8. When you have added, positioned, and edited all required classpath entries, click OK to
close the Project Settings dialog.

You can now build the open project.

Using the commands

You can use the items on the Workbench Project menu to compile individual Java files, build
an entire project, or create a project archive—or you can right-click a file, project, or archive,
in the Navigation Pane to run the popup menu items. The menu items are:

Project menu item What it does

Compile Compiles the currently open Java file.

(Does not perform checking for interdependencies
between the currently open file and other files in the
project and its subprojects.)

NOTE Compile is not available in the popup menu
that appears when you right-click a project file
in the Navigation Pane.

Build 1. Compiles all files in the currently open top-level
project and any subprojects. Performs dependency
checking on modified files to avoid unnecessary
recompilations.

2. Saves the project’s modified files if the Always
save modified files before compiling preference
setting is enabled. For more information, see
“Setting preferences” on page 13.

3. Writes the generated class files to the locations
specified in the Project Settings dialog.
Compiling, building, and archiving 41

2 Projects and Archives
¾ To compile a Java file:

• With a Java file open, select Projects>Compile.

Workbench compiles the Java file and writes the compile messages to the Build tab of the
Output Pane.

¾ To build a project:

• With a Workbench project open, select Projects>Build.

Workbench writes any build messages to the Build tab of the Output Pane.

¾ To create an archive:

• With a Workbench project open, select Projects>Build and Archive.

Workbench writes any build or archive messages to the Build tab of the Output Pane.

Rebuild All 1. Compiles all files in the currently open top-level
project and any subprojects regardless of what has
been modified.

2. Saves the project’s modified files if the Always
save modified files before compiling preference
setting is enabled. For more information, see
“Setting preferences” on page 13.

3. Writes the generated class files to the locations
specified in the Project Settings dialog.

Build and Archive 1. Executes the functionality described under the
Build command (recompiles files subject to
dependency checking).

2. Creates the archives defined by the top-level project
and its subprojects.

Rebuild All and Archive 1. Executes the functionality described under the
Rebuild All command (recompiles all files in the
project).

2. Creates the archives defined by the top-level project
and its subprojects.

Project menu item What it does
42 Compiling, building, and archiving

eXtend Workbench Tools Guide
Building from the command line

Workbench provides a command-line tool (xwbbuild) that allows you to build projects outside
of the Workbench IDE.

¾ To build a project from the command line:

1. Open a command window.

2. Make current the Workbench bin directory (it contains xwbbuild).

3. Issue the following command:

xwbbuild projectFile operation

where:

NOTE xwbbuild displays messages while it processes the project.

For example, the following command builds and creates the archive for the myApp Workbench
project (if changes had been made since the last time the project was built and archived):

xwbbuild c:\WorkbenchProjects\myApp\myApp.spf build

NOTE The Workbench IDE and xwbbuild use Apache Ant to do the build processing. For
more information on using Ant, including additional command-line options you can
provide with xwbbuild and how to use Ant to do your own customized processing, see
“Using Ant” on page 44.

Argument Description

projectFile Path to the SilverStream project (.SPF) file for the project you
want to build

operation One of the following:

• build—Builds and creates the archive(s) for the specified
project (equivalent to selecting Project>Build and Archive)

• rebuild—Rebuilds and creates the archive(s) for the
specified project (equivalent to selecting Project>Rebuild
All and Archive)

• clean—Removes all files from the project’s build directory
and deletes the archive(s) (no equivalent in the Workbench
IDE)
Compiling, building, and archiving 43

2 Projects and Archives
Validating archives
You should validate your archive’s deployment descriptor before attempting to deploy the
archive. Selecting Project>Validate Archive runs Sun’s Verifier class.

Validation process When validating, Workbench:

1. Builds and archives the project.

2. Validates the deployment descriptor of the project archive against both the deployment
descriptor DTD specified by the J2EE specification and the contents of the archive.

3. Validates the deployment descriptors of any subproject or prebuilt archives specified in
the top-level deployment descriptor.

NOTE Any subproject that is not listed in the parent project’s deployment descriptor
will not be verified.

4. Writes any messages to the Validate tab of the Output Pane.

Validation output Validate Archive writes information to:

• The Validate tab of the Output Pane

• The results.txt file (located in your system TEMP directory)

In the Validate tab of the Output Pane, you can double-click the line containing the string
result.txt to open the file in the Text Editor. The result.txt file displays:

• The archive that was tested

• The type of errors or warnings (if any) that were found

¾ To validate a project archive:

1. With the project open, select Project>Validate Archive.

Selecting this menu item builds the archive and (if successful) validates it.

2. After the process runs, check the Validation tab of the Output Pane.

3. If there are validation errors, double-click the following text in the Validate Pane:

Look in file "C:\TEMP\Results.txt" for detailed results on test
assertions.

The results.txt file opens.

When you are through noting and fixing the errors, you can try validating the archive again.
44 Validating archives

3
 Archive Deployment Chapter 3
To make your J2EE application available to users, you deploy the archive on a J2EE server. This
chapter describes how to deploy J2EE archives using Workbench and includes the following
topics:

• Workbench-supported J2EE servers

• Workbench deployment types

• Using Workbench to deploy J2EE archives

• What Workbench does when you deploy a project

• Deploying Web Services

• Undeploying archives

Workbench-supported J2EE servers
Workbench provides built-in support for deploying archives to the following J2EE servers:

Server Server archive support

SilverStream
eXtend
Application Server

Allows you to directly deploy application clients, EARs, EJB JARs,
RARs, and WARs.

BEA WebLogic Allows you to directly deploy application clients, EARs, EJB JARs,
RARs, and WARs.

IBM WebSphere Allows you to directly deploy EARs.

Workbench allows you to develop any archive type. At deployment,
Workbench repackages your archive as an EAR.

Workbench supports local deployment to a Standard server only.

Oracle9iAS Allows you to directly deploy EARs.

Workbench allows you to develop any archive type. At deployment,
Workbench repackages your archive as an EAR.

You must wrap application clients in an EAR manually.
1

3 Archive Deployment
	 See the Release Notes for the latest information on the supported server versions.

Workbench deployment types
You can deploy the Workbench-produced archives using:

• Workbench rapid deployment

• Workbench production deployment

• Non-Workbench tools

Workbench rapid deployment

When developing, testing, and refining your application, you want fast turnaround—you want
to make a change to your application and immediately see the result without having to redeploy
the application. Workbench lets you do this using rapid deployment. You specify rapid
deployment by simply checking a checkbox in Workbench’s Deployment Settings dialog
(described in “Creating deployment settings” on page 8). When you deploy the application,
Workbench uses the target server’s native file system deployment facilities.

Rapid deployment is most useful for changes to Web applications that involve JSP pages,
HTML pages, images, JARs in the WEB-INF\lib, or classes in the WEB-INF\classes
directories. If you make changes to other application components (like a WAR tag library or a
deployment descriptor) Workbench automatically performs a full deployment.

	 For more information about setting up a rapid deployment environment, see “Creating
deployment settings” on page 8. For more information about the target server’s native file
system deployment, see “What Workbench does when you deploy a project” on page 14.

SUN Reference
Implementation
(RI)

Allows you to directly deploy EARs.

You must repackage other archive types in an EAR before deploying
them.

Jakarta Tomcat Allows you to directly deploy WARs.

Server Server archive support
2 Workbench deployment types

eXtend Workbench Tools Guide
The following table lists the J2EE servers that allow you to use the Workbench rapid deploy
feature and the kind of archives that you can rapid deploy with each:

Workbench production deployment

When you’ve completely tested your application and are ready to put it into production, you can
deploy the application to the server by unchecking the rapid deploy checkbox in the deployment
settings for the target server. Workbench uses the target server’s native deployment tools to
deploy the application in the appropriate deployment directory.

Non-Workbench tools

Alternatively, you can take your Workbench-generated archives and deploy them outside
Workbench with the deployment facilities provided by your J2EE server. Because the archives
Workbench generates are standard, you can deploy them to any standard J2EE server.

Server EAR WAR EJB CAR RAR

SilverStream eXtend Application Server
(3.7.2)

No No Yes No No

SilverStream eXtend Application Server
(3.7.x, starting with 3.7.3)

Yes Yes Yes No No

SilverStream eXtend Application Server
(4.0 and higher)

Yes Yes No No No

BEA WebLogic Yes Yes Yes No No

IBM WebSphere Yes Yes Yes No No

Jakarta Tomcat No Yes No No No

Oracle9iAS Yes Yes Yes No No

Sun Reference Implementation No Yes No No No
Workbench deployment types 3

3 Archive Deployment
Using Workbench to deploy J2EE archives
To deploy a J2EE archive using Workbench, the archive must:

• Be properly structured according to the J2EE specification (see “Archive contents” on
page 5)

• Reside in a SilverStream eXtend Workbench project (see Chapter 2, “Projects and
Archives”)

Before Workbench can perform the deployment, you must supply:

• A server profile (see “Server profile” on page 24)

• Server-specific deployment information (see “Server deployment information” on page 7)

• Deployment settings (see “Creating deployment settings” on page 8)

Before Workbench can perform the deployment, Workbench must have:

• Access to the target server

• Permission to write to the server’s deployment area

• Permission to write temporary files when deploying to a SilverStream server: When
deploying to a SilverStream server, Workbench invokes SilverCmd, which generates
temporary files on disk. These files are created in the server’s installation directory, unless
you have defined a HOME environment variable. If you have a HOME variable, the
temporary files are created in %HOME%\.silverstream. So if you have a HOME
environment variable defined, it must point to a reachable and writeable location.
4 Using Workbench to deploy J2EE archives

eXtend Workbench Tools Guide
Archive contents

Sun’s J2EE specifications define how different J2EE archives must be packaged for
deployment. Before you try to deploy, make sure that your archive meets these requirements.
The following table briefly lists the requirements. For more detailed information, see the J2EE
Blueprints at: http://java.sun.com/j2ee/docs.html.

J2EE
module Standard archive requirements

Application
client

A JAR file containing:

• The Java classes that implement the application client

• A deployment descriptor called application-client.xml located in the
JAR’s /META-INF directory

• A manifest file with a Main-Class entry

	 For more information, see J2EE Deployment Descriptors DTDs in
the online Reference.

EAR An EAR file containing:

• The component archive files (such as EJB JAR files, WAR files, and
application client JAR files); each of these components must include its
own deployment descriptor

• A deployment descriptor for the EAR called application.xml located in
the EAR’s /META-INF directory

	 For more information, see J2EE Deployment Descriptor DTDs in the
online Reference.

EJB JAR A JAR file containing:

• The bean implementation class, the remote and home interfaces, the
primary key classes (if necessary), and any other utility classes

• A deployment descriptor called ejb-jar.xml located in the JAR’s /META-
INF directory

	 For more information, see J2EE Deployment Descriptor DTDs in the
online Reference.
Using Workbench to deploy J2EE archives 5

new http://java.sun.com/j2ee/docs.html
refJ2EEDeployDesc.html
refJ2EEDeployDesc.html
refJ2EEDeployDesc.html

3 Archive Deployment
RAR A RAR file containing:

• The classes needed to implement the resource adapter

• A deployment descriptor called ra.xml located in the JAR’s /META-INF
directory

WAR A WAR file containing:

• JSP source files, Web Services, servlet classes, other supporting Java
components, HTML documents, images, and other files required by the
application

• A deployment descriptor called web.xml located in the WAR’s /WEB-
INF directory

• Helper classes in the WAR’s /WEB-INF/classes directory

• Helper libraries in the WAR’s /WEB-INF/lib directory

	 For more information, see J2EE Deployment Descriptor DTDs in the
online Reference.

J2EE
module Standard archive requirements
6 Using Workbench to deploy J2EE archives

refJ2EEDeployDesc.html

eXtend Workbench Tools Guide
Server deployment information

Each J2EE server needs runtime information, and each has its own format for this information.
The following table lists the deployment documents needed by each Workbench-supported
server:

J2EE server Archive Server deployment information

SilverStream
eXtend
Application
Server

Application
client
(CAR)

Each type of archive uses an XML-based document
called a deployment plan. The deployment plan can have
any file name and can reside in any location outside the
archive file. SilverStream defines a DTD for each archive
type.

	 For more information, see SilverStream
Deployment Plan DTDs in the online Reference.

You use Workbench’s Deployment Plan Editor to create
and populate the deployment plan.

	 For more information, see “Deployment Plan
Editor” on page 301.

EAR

EJB

RAR

WAR

BEA WebLogic Application
client

Each type of archive (except EAR) requires a special
XML-based document. The EAR does not require a
specific deployment document, but each individual
module included in the EAR must have the appropriate
WebLogic deployment document.

	 For more information, see your WebLogic
documentation.

EAR

EJB

RAR

WAR

IBM
WebSphere

Application
client

Each type of archive uses one or more deployment
documents.

	 For more information, see your WebSphere
documentation.

EAR

EJB JAR

WAR
Using Workbench to deploy J2EE archives 7

refSilverDeployPlan.html
refSilverDeployPlan.html
refSilverDeployPlan.html
refSilverDeployPlan.html

3 Archive Deployment
Creating deployment settings

Before you can deploy a Workbench project, you need to define the project’s deployment
settings. They provide information about the server on which you plan to deploy the project.

¾ To create deployment settings:

1. Choose Project>Deployment Settings.

NOTE If you are deploying to a SilverStream server and the project’s current
deployment plan is not associated with a server profile, you will be told that you
need to specify a server profile before the Deployment Settings dialog can be
displayed. Do so in the Edit Server Profiles dialog, then continue specifying the
deployment settings.

Oracle9iAS Application
client

Each type of archive requires a special XML-based
document.

	 For more information, see your Oracle9iAS
documentation.

EAR

EJB JAR

WAR

SUN Reference
Implementation

EAR META-INF/sun-j2ee-ri.xml

	 For more information, see J2EE RI Runtime
Deployment Descriptor DTD in the online Reference.

Jakarta Tomcat WAR No specific file is needed.

J2EE server Archive Server deployment information
8 Using Workbench to deploy J2EE archives

refJ2EERIRuntimeDD.html
refJ2EERIRuntimeDD.html

eXtend Workbench Tools Guide
2. In the Server Profiles tab, specify the following information:

3. Select the Deployment Info tab.

Option What to do

Profile name Select a server profile from the list or click Add to create a new
profile.

	 For more information on server profiles, see “Server profile”
on page 24.

Save this
profile as
default

Select this option to make the current server profile the default profile
in new projects.

User name
and Password

If you have a secure server, fill in the User name and Password text
boxes with an authorized user name and password for the server.
Using Workbench to deploy J2EE archives 9

3 Archive Deployment
4. Specify the following options for servers that support rapid deployment:

Option What to do

Enable Rapid
Deployment

Check this box when you want to deploy the archive using the rapid
deployment feature. Uncheck it when you want to do a production
deploy.

What happens When this checkbox is checked, Workbench writes
files to the rapid deployment directory specified in the server profile.

NOTE If you have not set a rapid deployment directory in the server
profile, you are prompted for one. This directory is not the
same as the location for the server’s deployment tools. It is a
location on disk where you want the server to write the
deployment files. Many servers require a specific directory;
see “Server profile” on page 24 for the list.

Further action Workbench manages updates to the deployment
area on subsequent rapid deploys. You do not have to do any manual
procedure that you have to when directly using the server’s rapid
deployment.

When to use Use rapid deployment during the
development/test/refinement stage of your application development
cycle. Do not use it when you deploy your application to a
production environment.

	 For more information on rapid deployment and how each
server supports this feature and any special requirements, see “What
Workbench does when you deploy a project” on page 14.
10 Using Workbench to deploy J2EE archives

eXtend Workbench Tools Guide
5. Specify server-specific information:

For SilverStream eXtend Application Servers, specify the following:

Option What to do

SilverStream
Deployment
Plan

Specify the file name and disk location of the SilverStream
deployment plan

Overwrite
existing
deployment

Check this box when you want the current deployment to overwrite
any previously deployed objects of the same type and name

If you deselect this box and objects of the same name and type
already exist on the server, the deployment will fail

Verbosity Specify the level of informational messages to display

Values range from 0 (for no messages) to 5 (for the most messages)

Ignore
compile
errors

Applies only to WARs and to EARs containing WARs

Check this box when you want the deployment to ignore any errors
when compiling and to deploy only those items that build
successfully

If this box is not checked and a compile error occurs, deployment
fails

SilverCmd
Flags

(Optional) Specify command-line arguments for the deployment
command

	 For more information on the deployment commands that are
executed, see the “What Workbench does when you deploy a project”
on page 14

If you specify multiple arguments, use spaces as the delimiters. If you
want to pass VM arguments, then you must precede them with +. For
example:

+Xmx256

All of the values entered here are appended to the end of the
deployment command that Workbench constructs
Using Workbench to deploy J2EE archives 11

3 Archive Deployment
For BEA WebLogic servers, specify:

Option What to do

WebLogic Application Name Specify the deployment name for your application.
If this is a rapid deploy, this is the directory name
under the deployment directory.

Workbench defaults to the project name.

Generate Targets Choose this button to automatically create a list of
components to deploy to the target servers specified
in the server profile. The list is displayed in the
Components and Targets text box.

Components and Targets Do one of the following:

• Accept the values created when the Generate
Targets button is selected.

• Edit the values created when the Generate Targets
button is chosen.

• Manually type the name of the components and
their target servers. Use a colon after the
component name, a comma between targets, and
a semicolon between component:target pairs—
for example:

componenta:target,target;componentx:tar
get,target
12 Using Workbench to deploy J2EE archives

eXtend Workbench Tools Guide
For IBM WebSphere servers, specify:

For Oracle9iAS servers, specify:

Deployment options Choose one of these options:

• deploy—deploys the application. Use this option
when deploying the application for the first time.
If rapid deploy is checked, this option performs a
rapid deploy; otherwise, it performs a production
deploy.

• update—updates a deployed application. Use
this option for all redeployments, updates to an
already deployed archive, or to enable a disabled
application.

• undeploy—disables the application.

• list—provides a list of all deployed applications
on the server specified by the current project’s
server profile.

debug Check this option when you want to see the debug
information produced by the WebLogic deploy tool.

Option What to do

Node Name Specify the name of the Standard server node to install to

Precompile
JSP

Click the checkbox (true) if you want to precompile any JSP pages
before deploying to the server

Option What to do

Deployment
Name

Specify the application deployment name

Option What to do
Using Workbench to deploy J2EE archives 13

3 Archive Deployment
6. Select OK to store the deployment settings with the project file.

OR

Select Deploy to save the deployment settings with the project file and deploy the archive.

If you select Deploy and you specified a user name, you are prompted for the password
before deployment can continue.

¾ To deploy a Workbench project:

1. Open the Workbench project.

Any archive that you want to deploy must be defined in a Workbench project. If you
created the archive using another IDE, you must create a Workbench project for it before
you can deploy it.

2. Make sure you have the server-specific deployment information in the appropriate format
and location for your target server.

	 For more information, see “Server deployment information” on page 7.

3. Define the deployment settings for the project.

	 For more information, see “Creating deployment settings” on page 8.

4. Select Project>Deploy Archive.

The first time you select Project>Deploy Archive, you must choose from a list of server
profiles. Use New on the Server Profile dialog to create a server profile if you don’t
already have one.

What Workbench does when you deploy a project
When you deploy a project, Workbench uses the deployment settings to determine the J2EE
server. Then:

1. Workbench compiles the Java files and creates an archive. (JSP files are compiled during
deployment or when their URLs are invoked from a browser.)

Target Path Specify the path on the server to deploy to

Website
Name

Specify the name of the OC4J web-site.xml file containing the name
of the Web site to bind this application to
14 What Workbench does when you deploy a project

eXtend Workbench Tools Guide
2. When the compilation is successful, Workbench calls the appropriate deploy command for
the target server.

The following table lists the deploy command that is called for each server:

Server Archive Deploy command description

SilverStream
eXtend
Application
Server

CAR Standard/Production deploy: SilverCmd DeployCAR

Rapid deploy: Not supported for CARs

EAR Standard/Production deploy: SilverCmd DeployEAR

Rapid deploy: Rapid deployment is supported for
EARs for SilverStream eXtend Application Server
Version 3.7.3 and later. It supports the rapid deployment
of WARs in the EAR. It works like this:

• When a JSP page, an HTML page, a CLASS file, or a
JAR file in a WAR within the EAR changes,
Workbench invokes the server’s JSP/FS deployment.

• When other files in the EAR are changed (such as the
EAR deployment plan, EAR deployment descriptor,
EJB archive, client archive, WAR deployment plan,
or WAR tag library), Workbench invokes the
standard/production deployment.

• Workbench manages updates to the deployment area
on subsequent rapid deploys (so you do not need to
do any manual procedure that you might have to
when directly using the server’s rapid deployment).

EJB JAR Standard/Production deploy: SilverCmd DeployEJB

Rapid deploy: SilverCmd QuickDeployEJB (3.7.x
only)

• You must use the standard deploy process the first
time you deploy. You can use the rapid deploy feature
on subsequent deployments.
What Workbench does when you deploy a project 15

3 Archive Deployment
WAR Standard/Production deploy: SilverCmd DeployWAR

Rapid deploy for Version 3.7.3 (and later): JSP/FS

During the JSP/FS process:

• Workbench expands the WAR file in the directory
SilverStreamInstallDir/webapps/DBname/URL

where SilverStreamInstallDir is the directory
containing the SilverStream eXtend Application
Server installation, DBname is the name of the
database containing the application deployed to the
file system, and URL is the URL specified in the
deployment plan for the application (if you have
specified more than one, the first one is used).

• Workbench manages updates to the deployment area
on subsequent rapid deploys (so you do not need to
do anything manually that you might have to when
directly using the server’s rapid deployment such as
creating the RELOAD file).

• Workbench updates the <deployToFileSystem>
attribute automatically when you specify a rapid
deploy.

Server Archive Deploy command description
16 What Workbench does when you deploy a project

eXtend Workbench Tools Guide
BEA
WebLogic

All
supported
archives

Standard/Production deploy: weblogic.deploy

Rapid deploy: Workbench uses WebLogic’s Dynamic
Deployment feature to provide rapid deployment of
EARs, EJBs, and WARs. You’ll need to enable
WebLogic Auto-Deployment through the WebLogic
Management console before Workbench will be able to
perform a rapid deploy. For more information on setting
Auto-Deployment, see your WebLogic documentation.

• During a rapid deploy, Workbench copies the
modified files to the user-specified deployment
directory and touches the REDEPLOY file.

• If you want to do a standard deployment after a rapid
deployment, delete the rapid deployment directory
and then do the standard deployment. If you do not
delete the rapid deployment directory, your changes
will not be reflected.

Server Archive Deploy command description
What Workbench does when you deploy a project 17

3 Archive Deployment
IBM
WebSphere

All
supported
archives

Standard/Production deploy: seappinstall

Rapid deploy: Workbench copies the modified files to
the user-specified deployment directory.

• You must use the standard deploy process the first
time you deploy. You can use the rapid deploy feature
on subsequent deployments.

• If the changes to an EAR include changes to the WAR
deployment descriptor, TLD files, or files located in
WEB-INF\lib or WEB-INF\classes in the WAR,
you’ll need to restart the server to see the changes.

• If you remove a file from any of the archives within
the EAR, you’ll need to:

1. Stop the server

2. Remove the class from the following:

3. WebSphereinstalldir\AppServer\temp\machine_name
\Default_Server\applicationname

4. Restart the server

Oracle9iAS All
supported
archives

Standard/Production deploy: admin.jar

Rapid deploy: Workbench copies the modified files to
the user-specified deployment directory.

• You must use the standard deploy process the first
time you deploy. You can use the rapid deploy feature
on subsequent deployments.

• For rapid deployment of EARs, the deployment
directory specified must be the server’s \applications
directory.

• If you are updating an EAR and the updates include
changes to the WAR deployment descriptor, TLD
files, or files located in WEB-INF\lib or WEB-
INF\classes in the WAR, you’ll need to restart the
server to see the changes.

Server Archive Deploy command description
18 What Workbench does when you deploy a project

eXtend Workbench Tools Guide
3. The target server’s deployment command creates the appropriate deployment objects on
the target server.

4. Workbench displays a message stating the status (success or failure) or any warning or
error messages in the Deploy tab of the Output Pane.

SUN RI EAR Standard/Production deploy: deploytool

• You must restart the server after a standard deploy

Rapid deploy: copy

• Explodes the archive then copies the contents to a
deployment directory specified by the user

• If the rapid deploy directory does not exist,
Workbench creates it

• On subsequent rapid deploys, only the changed files
are copied to the deployment directory

• You must restart the server after a rapid deploy

Jakarta
Tomcat

WAR Standard/Production deploy: copy

• Copies the archive to the server’s \webapps directory

• You must restart the server after a standard deploy

Rapid deploy: copy

• Explodes the archive then copies the contents to a
deployment directory specified by the user

• On subsequent rapid deploys, only the changed files
are copied to the deployment directory

• You do not need to restart the server after a rapid
deploy

Server Archive Deploy command description
What Workbench does when you deploy a project 19

3 Archive Deployment
Deploying Web Services
When you create a Web Service in Workbench by using the Web Service Wizard or by using
jBroker Web directly, a servlet is generated to handle access to that Web Service (from HTTP
SOAP requests). As a result, a WAR is required to package your Web Services (one or more per
WAR) for deployment to a J2EE server where they will run.

You deploy that WAR in the usual way (as described earlier in this chapter). In addition, you
must make sure it has runtime access to the following archives required by jBroker Web:

• jbroker-web.jar, which contains the jBroker Web API classes

• jaxrpc-api.jar and saaj-api.jar, which contain the Java API classes for XML-based RPC
and SOAP processing

• xerces.jar or another XML parser

• If the WAR uses SOAP message handlers (an advanced JAX-RPC feature), it will also
require the following archives: activation.jar, commons-logging.jar, dom4j.jar, jaxp-
api.jar, and saaj-ri.jar

How you set up this access depends on the type of J2EE server you use:

If you deploy to one of the following servers, you must add the required JARs to the server’s
classpath. (Consult your server documentation to learn about adding to the classpath.)

• BEA WebLogic

• IBM WebSphere

• Jakarta Tomcat

• Oracle9i

If you deploy to the SilverStream eXtend Application Server, there’s no need to add the
required JARs to the server’s classpath as long as you include them in the WEB-INF/lib
directory of your WAR. If you don’t include the required JARs in the WAR, you must add them
to the server’s AGCLASSPATH environment variable or specify them with the classpathJars
deployment plan element. (For more information about AGCLASSPATH and classpathJars, see
the SilverStream eXtend Application Server Core Help.)

You can obtain the required JARs by copying them from the Workbench compilelib directory.
20 Deploying Web Services

eXtend Workbench Tools Guide
Undeploying archives
Depending on the deployment server, you can disable or delete deployed archives from the
server from within Workbench.

Workbench doesn’t directly perform the undeployment; it calls server facilities to do the work.
So, for example, if a server supports deletion but not disabling of archives, then you can delete
but not disable archives from Workbench.

Typically, disabling leaves the files on the server but makes them unavailable, and deleting
physically removes the files from the server. However, since Workbench simply executes the
server’s undeployment facility, exactly what happens depends on the server. For example,
undeploying an application that had been deployed with Rapid deployment does not necessarily
delete or rename the deployment directory; the server might just delete the references to that
application from its metadata. See your server documentation for information about exactly
what happens when you undeploy an archive.

Here is the undeployment support for the servers supported by Workbench:

Server Disable? Delete? Notes

SilverStream 3.x No Yes

SilverStream 4.x No Yes

BEA WebLogic Yes Yes

IBM WebSphere Yes Yes

Oracle9iAS No No Oracle9iAS Version 1 does not have
an undeploy feature. To remove an
application, you must manually
delete the directories and archives
and remove the references from the
configuration files.

Jakarta Tomcat No No Tomcat does not have an undeploy
feature.

Sun Reference
Implementation

No Yes
Undeploying archives 21

3 Archive Deployment
¾ To undeploy an archive:

1. With the project open, select Project>Undeploy Archive.

NOTE The menu item is disabled if the deployment server does not provide an undeploy
feature.

The dialog that displays depends on the type of server specified in your project’s
Deployment settings.

• If your deployment server supports both disabling and deleting archives, you are asked
which action you want to perform

• If your deployment server supports only disabling archives, you are asked to confirm
the disabling action

• If your deployment server supports only deleting archives, you are asked to confirm
the deletion

2. Respond to the dialog.

The archive is either disabled or deleted. You can see the commands that Workbench
issues in the Deploy tab of the Output Pane.
22 Undeploying archives

4
 Component Wizards Chapter 4
To speed project development, use Workbench wizards when creating Java components:

• EJB Wizard

• JSP Wizard

• Servlet Wizard

• Java Class Wizard

• JavaBean Wizard

• Tag Handler Wizard

You access the wizards by choosing File>New from the menu.

EJB Wizard
Use the EJB Wizard to create EJB1.1 entity and session beans or EJB2.0 entity, session, and
message beans. The following sections describe:

• About the EJB Wizard

• Starting the EJB Wizard

• Panel sequence

• Panel reference

About the EJB Wizard

The EJB Wizard can speed your EJB development effort by providing:

• A skeleton of the bean implementation class

• The home, remote, local, and localhome interfaces (as needed)

• A primary key class (as needed)

Once you have created the EJB using the EJB Wizard, you can modify it in the Java Editor by
opening its Java source files in the Project tab of Workbench.
1

4 Component Wizards
Starting the EJB Wizard

¾ To start the EJB Wizard:

1. Click File>New.

2. On the J2EE tab, choose EJB and click OK. (Alternatively, you can double-click EJB.)

3. The steps that you follow depend on the type of bean you want to generate, see “Panel
sequence” on page 2 for more information.

Panel sequence

This section lists the panels you need to complete in the EJB Wizard, depending on the type of
bean you want to create You can click the link to get more information about how to complete
the panel.

If you want to create You step through these panels

A stateful or stateless session bean 1. Specifying the EJB type

2. Specifying the EJB JAR configuration

3. Specifying the project, package, and
directory

4. Specifying the EJB source

• Specifying the source class or interface

5. Specifying the EJB class and interface
names

6. Specifying methods

7. Specifying additional classes or packages
to import

8. Completing the EJB
2 EJB Wizard

eXtend Workbench Tools Guide
A message-driven bean 1. Specifying the EJB type

2. Specifying the EJB JAR configuration

3. Specifying the project, package, and
directory

4. Specifying the EJB source

• Specifying the source class or interface

5. Specifying the EJB class and interface
names

6. Specifying methods

7. Specifying additional classes or packages
to import

8. Completing the EJB

If you want to create You step through these panels
EJB Wizard 3

4 Component Wizards
A BMP entity bean 1. Specifying the EJB type

2. Specifying the EJB JAR configuration

3. Specifying the project, package, and
directory

4. Specifying the EJB source

• Specifying the source class or interface

or

• Specifying the source database and
Selecting a database table

5. Specifying the EJB class and interface
names

6. Specifying persistent (data) fields

7. Specifying primary key fields

8. Specifying fields that require get/set
methods

9. Specifying create() methods

10. Specifying find() methods

11. Specifying additional classes or
packages to import

12. Specifying resource references

13. Completing the EJB

If you want to create You step through these panels
4 EJB Wizard

eXtend Workbench Tools Guide
A 1.x CMP entity bean 1. Specifying the EJB type

2. Specifying the EJB JAR configuration

3. Specifying the project, package, and
directory

4. Specifying the EJB source

• Specifying the source class or interface

or

• Specifying the source database and
Selecting a database table

5. Specifying the EJB class and interface
names

6. Specifying persistent (data) fields

7. Specifying primary key fields

8. Specifying fields that require get/set
methods

9. Specifying create() methods

10. Specifying find() methods

11. Specifying additional classes or
packages to import

12. Completing the EJB

If you want to create You step through these panels
EJB Wizard 5

4 Component Wizards
Panel reference

This section describes the options on each panel of the EJB Wizard. The panels are:

• Specifying the EJB type

• Specifying the EJB JAR configuration

• Specifying the project, package, and directory

• Specifying the EJB source

• Specifying the source database

A 2.x CMP entity bean 1. Specifying the EJB type

2. Specifying the EJB JAR configuration

3. Specifying the project, package, and
directory

4. Specifying the EJB source

• Specifying the source class or interface

or

• Specifying the source database and
Selecting a database table

5. Specifying the EJB class and interface
names

6. Specifying persistent (data) fields

7. Specifying primary key fields

8. Specifying fields that require get/set
methods

9. Specifying relationships

10. Specifying create() methods

11. Specifying find() methods

12. Specifying additional classes or
packages to import

13. Completing the EJB

If you want to create You step through these panels
6 EJB Wizard

eXtend Workbench Tools Guide
• Selecting a database table

• Specifying the source class or interface

• Specifying the EJB class and interface names

• Specifying methods

• Specifying persistent (data) fields

• Specifying primary key fields

• Specifying fields that require get/set methods

• Specifying create() methods

• Specifying relationships

• Specifying find() methods

• Specifying additional classes or packages to import

• Specifying resource references

• Completing the EJB

Specifying the EJB type

This panel lets you specify the type of EJB you want to create.
EJB Wizard 7

4 Component Wizards
¾ To complete this panel:

1. Specify the EJB type:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Option What to do

Entity EJB, container-
managed persistence
version 1.x

Select this option when you want the EJB Wizard to
create an entity bean that uses container-managed
persistence (CMP) defined by the EJB1.1 specification

Entity EJB, container-
managed persistence
version 2.x

Select this option when you want the EJB Wizard to
create an entity bean that uses container-managed
persistence (CMP) defined by the EJB2.0 specification

Entity EJB, bean-managed
persistence

Select this option when you want the EJB Wizard to
create an entity bean that uses bean-managed persistence
(BMP)

Session EJB, stateless Select this option when you want the EJB Wizard to
create a stateless session bean

A stateless session bean is released to the instance pool
after each method call completes, so it is not guaranteed
that a client will have the same instance on subsequent
method calls

Session EJB, stateful Select this option when you want the EJB Wizard to
create a stateful session bean

A stateful session bean is bound to the client session that
creates it, so it can be used to maintain values associated
with that client session

Message-driven EJB Select this option when you want the EJB Wizard to
create a message-driven bean
8 EJB Wizard

eXtend Workbench Tools Guide
Specifying the EJB JAR configuration

This panel lets you specify whether the wizard should create one EJB JAR or an EJB JAR and
an EJB-client JAR.
EJB Wizard 9

4 Component Wizards
¾ To complete this panel:

1. Specify the EJB JAR configuration:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

How EJB JARs and EJB-client JARs are related in a project An EJB-client JAR
project is a peer to its EJB JAR project—it is not a subproject of the EJB JAR project. The EJB
JAR and EJB-client JAR are linked in the following ways:

• EJB JAR project classpath includes EJB-client JAR project

• EJB JAR has a manifest file that includes a Class-Path entry for the EJB-client JAR
archive

• The EJB JAR’s deployment descriptor contains an <ejb-client-jar> element containing the
name of the EJB-client JAR archive

If you create an EJB JAR as a subproject, its EJB-client JAR will also be made a subproject of
the same parent project. The EJB-client JAR will have the same project location, same archive
location, same subproject status, and same inclusion in its parent archive as the EJB JAR.

Option What to do

Create separate EJB-
client & EJB JARs

Select this option if you want the wizard to use these two
JARs:

• EJB JAR—Contains the bean implementation classes,
any utility classes that are private to the implementation,
and a deployment descriptor in the META-INF
directory.

• EJB-client JAR—Contains the EJB home and remote
interfaces, a primary key class, and any utility classes
that a client might require to use the EJB. The EJB-
client JAR is a plain archive file; it does not contain a
deployment descriptor. If you have EJBs that are used
by other EJBs in the EJB JAR (like helper EJBs) but are
not used by clients, then do not put the home and remote
interfaces of the helper EJBs in the EJB-client JAR.

Create a single JAR for
all EJB classes

Select this option if you want the wizard to use a single
EJB JAR that will contain all of the EJB classes and
interfaces.
10 EJB Wizard

eXtend Workbench Tools Guide
Specifying the project, package, and directory

This panel is used to specify details about the project location (project, directory, package)
where the wizard is to store the EJB files it generates.

If you chose to use both an EJB JAR and an EJB-client JAR, you are prompted to provide
the project/package/directory information for the EJB-client JAR on a panel similar to this one.
EJB Wizard 11

4 Component Wizards
¾ To complete this panel:

1. On the top portion of this panel of the EJB Wizard, specify one of the following three
project association options:

Option What to do

Add to open EJB JAR project If you currently have one or more EJB projects open
in Workbench, you can add the EJB to one of those
projects by selecting it from the dropdown list. If the
project that you want to associate the EJB with is not
currently open, you must open the target project
before starting up the EJB wizard.

If the EJB project is defined as an EJB1.1 project,
then you cannot add EJBs that use EJB2.0 features—
and the wizard prevents you from doing so.

Create project Click Create project to start the New Project
Wizard.

When you create a new EJB project, you are
prompted to specify whether it is an EJB1.1 or
EJB2.0 project. You can add EJB1.1 beans to an
EJB2.0 project, but not vice versa.

	 For details, see “Creating projects and
subprojects” on page 56.

No project -- just write files to
the disk

If you do not want to associate the EJB with any
Workbench project, you can still use the wizard to
create the class in a nonproject directory on the file
system.
12 EJB Wizard

eXtend Workbench Tools Guide
2. On the bottom portion of this panel of the EJB Wizard, specify the following:

3. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying the EJB source

This panel is used to identify whether the EJB source that the wizard generates should be
completely new, based on an existing source file, or (for entity beans) a database table.

Option What to do

Base directory If you specified an EJB project, the default base directory is the
project directory. Otherwise, this field is empty. (Click Browse to
specify a file system location.)

Package Specify the EJB’s package name. This is required in the
Workbench environment.

File directory The contents of Base directory and Package are combined to
specify the location of the EJB source file, which is displayed
under the File directory.

This is the file system location where the wizard creates the bean
source file and home and remote interfaces.
EJB Wizard 13

4 Component Wizards
¾ To complete this panel:

1. Choose one of the following options:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying the source database

This panel is used to specify the information that the wizard needs to connect to a database.
Once connected to the database, it is able to get the list of database tables so that you can pick
the database table on which the entity bean should be based.

Option What to do

Create EJB from scratch Select this option if you want to create a new EJB

Create EJB from database Select this option to create an entity bean whose fields
are based on the fields in a specific database table

Create EJB from an existing
Java class or interface

Select this option to use the properties of an existing
EJB class or interface as the starting point for your EJB
14 EJB Wizard

eXtend Workbench Tools Guide
EJB Wizard 15

4 Component Wizards
¾ To complete this panel:

1. Specify:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Selecting a database table

This panel presents a list of database tables. You can select the database table that you want to
use as the basis for your entity bean.

Option What to do

Database Select a database profile from the dropdown list box. If the
dropdown is not populated or if the existing profiles are
unsuitable, you must create a database profile by clicking New
or leaving the wizard and choosing Edit>Profiles and selecting
the Databases tab.

When you complete this panel (by clicking Next), Workbench
creates a client connection to the database. This means that the
database driver (specified in the database profile) must be
available to Workbench.

You can make the driver available in one of two ways:

• Putting the database driver in the Workbench lib/ext
directory, where it will be picked up automatically by
Workbench.

OR

• Putting the location of the driver on Workbench’s classpath
(not the project classpath—but the classpath used when you
start Workbench.)

	 For more information on database profiles, see “Database
profile” on page 27.

Database username
and Database
password

Type a user name and password that you can use to connect
directly to the specified database. This user name and password
combination must allow access to the database’s system tables
so that Workbench can access the database’s metadata.
16 EJB Wizard

eXtend Workbench Tools Guide
¾ To complete this panel:

1. Specify the following two options:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying the source class or interface

This panel lets you choose an existing Java class or interface that the wizard should use as the
basis for your EJB.

Option What to do

Catalog/Creator/
Schema

Select the Catalog/Creator/Schema containing the database table
you want to use for the entity bean

Table Select the database table that contains the fields you want to
include in the entity bean
EJB Wizard 17

4 Component Wizards
¾ To complete this panel:

1. Specify:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying the EJB class and interface names

This panel lets you specify a name for the EJB classes and interfaces that the wizard generates.

Option What to do

Existing file Click Browse to locate the remote interface or EJB class that you
want to use as the starting point for your EJB

The file you specify can only be a class file for a bean
implementation or remote interface
18 EJB Wizard

eXtend Workbench Tools Guide
How the wizard names EJBs The EJB Wizard generates names for the EJB’s
implementation classes and interfaces based on a Base name that you supply in this wizard
panel. It follows these rules when naming the EJB components:

EJB component Naming conventions

Bean class Prepends EB, SB, or MB and appends Bean to the base name

For example, SBCalculatorBean

Remote interface Prepends EB or SB to the base name

For example, SBCalculator

Home interface Prepends EB or SB and appends Home to the base name

For example, SBCalculatorHome

Local interface

(EJB2.x only)

Prepends EB or SB and appends Local to the base name

For example, SBCalculatorLocal

Local home
interface

(EJB2.x only)

Prepends EB or SB and appends LocalHome to the base name

For example, SBCalculatorLocalHome

Primary key classes

(entity beans only)

Prepends EB and appends PK to the base name

For example, EBCustomerPK
EJB Wizard 19

4 Component Wizards
¾ To complete this panel:

1. On the top portion of this panel of the EJB Wizard, specify values for the following
components:

Option What to do

Base name Specify a legal name for the EJB class and interfaces. This
name is used to construct the names for the other EJB
components

If you are creating an entity bean based on a database table,
the wizard defaults these names to the database table name
as the Base name and then uses the rules defined in “How
the wizard names EJBs” on page 19 just above

Logical EJB name Accept the default or provide a legal name

This name is used:

• For comments in the wizard-generated code

• As the <ejb-name> element in the deployment descriptor
(when used within the scope of an open project)
20 EJB Wizard

eXtend Workbench Tools Guide
2. If you are creating an entity or session bean that uses CMP 2.x, you are prompted to select
the radio button (on the bottom portion of this panel) that represents the set of interfaces
that you want the wizard to generate.

3. Accept the default names for the set of interfaces, or specify legal Java names.

4. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying methods

This panel lets you specify the methods that the wizard will add to the bean implementation
class and the remote and/or local interface. Methods on the remote and/or local interface can be
called by the EJB’s client.

Implementation class Accept the default or specify a legal Java class name

Create primary key
class

Check this when you want the EJB Wizard to create a
separate primary key class

Primary key class Accept the default or specify a legal Java class name

Option What to do
EJB Wizard 21

4 Component Wizards
¾ To complete this panel:

1. On this panel of the EJB Wizard, click Add and specify the details of one method at a
time:

2. Click OK to create the methods.

3. Repeat these steps to create other methods or click Next to continue.

Return to “Panel sequence” on page 2.

Option What to do

Method name Specify a legal method name

Scope This value must be public so that the method is available to external
clients; use the Java Editor to specify any nonpublic methods

Return type Select the method’s return type

Parameters Click Add to specify the following values for the parameter:

• Type—Specify the parameter’s data type

• Name—Specify a legal name for the parameter

Exceptions Click Add to specify the Exceptions that are thrown by this method

You do not need to add the java.rmi.RemoteException; it is added
to the remote interface by default
22 EJB Wizard

eXtend Workbench Tools Guide
Specifying persistent (data) fields

This panel lets you specify the CMP entity bean’s persistent fields or the BMP entity bean’s data
fields. This panel is already populated if you base the bean on a database table. Otherwise, you’ll
have to use the Add button to add the fields you want.
EJB Wizard 23

4 Component Wizards
¾ To complete this panel:

1. Specify:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying primary key fields

This panel lets you specify the fields that make up the entity bean’s primary key.

Option What to do

Persistent field If the fields that should be managed by the container are listed,
make sure the check box in the container-managed column is
checked

Use the Check All/ Uncheck All and Add/Delete buttons to
manage the list of container-managed data fields

Use the Up/Down buttons to move the fields to the appropriate
position if the entity bean should have a composite key

Container-managed fields are listed in the deployment
descriptor and can be mapped to a database field at
deployment time

Type When adding a new field, provide the Java data type. The data
type must be the Java type that corresponds to the field’s
JDBC type. For a list of the data types,see the javadoc for
java.sql.Types.

Container managed Check or uncheck the fields as needed
24 EJB Wizard

eXtend Workbench Tools Guide
EJB Wizard 25

4 Component Wizards
¾ To complete this panel:

1. Specify the following information for each field that is part of a primary key field:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Option What to do

Field Move the cursor to the field

Primary Key Depends on how you responded to the Create primary key
checkbox on the wizard panel described in “Specifying the EJB
class and interface names” on page 18. If you:

• Checked the Create primary key class checkbox, you can
check one or more fields to be included in the primary key class
that the wizard will generate.

• If you select a single field for the primary key, you must also
select the Use this single field... checkbox at the bottom of
the wizard panel described below.

• Did not check the Create primary key class checkbox, you can
do either of the following:

• Select a single field for the primary key. You must also select
the Use this single field... checkbox at the bottom of the
wizard panel described below.

• Unselect any primary key fields. The wizard will generate
code that uses a primary key class of type java.lang.Object.
You will have to specify the primary key class type at
deployment.

Use this single
field directly as
the primary key

Check this if you’ve selected a single field that the wizard should
use as the primary key.

The field must be a String or a wrapper class for a primitive type
(such as java.lang.Integer). The wizard generates the code so that
the wrapper-class type is in the deployment descriptor’s <prim-
key-class> element and the primary key field name is in the
<primkey-field> element.
26 EJB Wizard

eXtend Workbench Tools Guide
Specifying fields that require get/set methods

This panel lets you specify the fields for which the wizard should generate accessor (get/set)
methods.

¾ To complete this panel:

1. Specify the following information for each field that requires a get or set method:

Option What to do

Field Move the cursor to the field
EJB Wizard 27

4 Component Wizards
2. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying create() methods

This panel lets you specify the create() methods that the wizard should generate.

Get method Specify whether the wizard should generate (checked) a get method
for this data field

If your entity bean will be doing any kind of read-only or read-write
data access on this data field, you should have the wizard generate a
get method

Set method Specify whether the wizard should generate (checked) a set method
for this data field

If your entity bean will be doing updates on this data field, you
should have the wizard generate a set method

Option What to do
28 EJB Wizard

eXtend Workbench Tools Guide
¾ To complete this panel:

1. Click Add to define a new create() method.

OR

Highlight an existing create() method and click Edit.

The Create Method Detail panel appears.

2. On the Create Method Detail panel, specify:

3. Click OK to return to the create() methods panel.

4. Click Next to continue.

Return to “Panel sequence” on page 2.

Option What to do

Field Move the cursor to the field and check or uncheck the
fields that should be included in the create() method
generated by the EJB Wizard

Do not delegate—generate
code for this create method

For bean-managed entity beans only

Click this radio button if you want the EJB Wizard to
generate skeleton code for this create() method using
the checked fields

Delegate to another create
method

For bean-managed entity beans only

Click this radio button if you do not want the EJB
wizard to generate skeleton code for this create()
method, then select the method to call instead from the
dropdown
EJB Wizard 29

4 Component Wizards
Specifying relationships

This panel lets you specify values for the <relationships> node in the EJB deployment
descriptor. Relationships exist between two entity beans with container-managed persistence.
However, when you use the EJB Wizard, you are creating a single bean at a time so you can only
define the <relationship> node entries for the bean you are currently creating. You can define a
relationship from the current bean to a preexisting bean or a not-yet-defined bean. For the
related bean, you can use the name you know you will be giving it later, or you can use the
default name EBUnspecified. When you use EBUnspecified, the wizard generates an
incomplete relationship node in the deployment descriptor.

Relationships can be defined as bidirectional or unidirectional.

How to define bidirectional and unidirectional relationships In a bidirectional
relationship, each bean knows about the other bean in the relationship. Each bean has methods
for accessing the relationship field of the other bean. The wizard can generate these accessor
methods when you define a relationship field for boths sides of the relationship. The relationship
field is represented in the wizard as the CMR field name.

In a unidirectional relationship, only one bean in the relationship knows about the other bean.
An example of a unidirectional relationship is between lineitem and a product. The lineitem
needs to know about the product, but the product does not know about the lineitem. In a
unidirectional relationship, you would define a relationship field (a CMR field name) for the
lineitem bean, but not for the product.

Editing bean relationships The wizard allows you to edit only the relationships listed in
the deployment descriptor that are considered incomplete and that:

• Have the same bean name as the bean you are creating

OR

• Use a bean name that does not already exist
30 EJB Wizard

eXtend Workbench Tools Guide
¾ To complete this panel:

1. To add a relationship, choose Add.

2. To edit or delete a relationship, highlight the relationship and choose the button
appropriate to the action you want.

The Relationship Detail panel The wizard requires the following elements to generate
accessor methods if this is part of a bidirectional relationship, or if it is unidirectional and is the
bean that knows about the other bean:

• The CMR field name for the bean you are creating

• Whether you require a get and/or a set method

• The get/set methods return/param type
EJB Wizard 31

4 Component Wizards
You can fill all of the other information in later using the Deployment Descriptor Editor.
32 EJB Wizard

eXtend Workbench Tools Guide
¾ To complete this panel:

1. Specify:

Option What to do

Relationship name Enter a unique name that identifies the relationship you
are constructing.

This corresponds to the <ejb-relation-name> element
in the Deployment Descriptor. This element is not
required by the Deployment Descriptor or the wizard.

For each relationship, you must specify two beans.

Relationship role 1

Multiplicity Enter the cardinality of the relationship from the
current bean (the one you are creating) to the related
bean; it can be One or Many.

This corresponds to the <multiplicity> element in the
deployment descriptor.

EJB name Enter the bean name. The bean name entered here must
always match an <ejb-name> element in the
enterprise-beans section of the deployment descriptor.

The wizard adds this entry to the to the <ejb-name>
element of the <relationship-role-source> element in
the deployment descriptor.

Cascade delete Check this if you want the current bean to be deleted
when the related bean is deleted.

This is only available when the related bean’s
multiplicity is One.

This corresponds to the <cascade-delete> element of
the deployment descriptor.
EJB Wizard 33

4 Component Wizards
CMR field name If this bean is in a bidirectional relationship or is in a
unidirectional relationship and knows about the related
bean, then enter a name that begins with a lowercase
letter.

The wizard uses the name to generate methods for
accessing the related bean. This corresponds to the
<cmr-field-name> element of the cmr-field node in the
deployment descriptor.

Access methods If a cmr-field is specified, you must create set and/or
get methods. Otherwise, no accessor methods are
needed.

Return/param type The return type must be the local interface of the
related bean or a java.util.Collection type (depending
on the related bean’s multiplicity.

Relationship role 2

Multiplicity Enter the cardinality of the relationship of the related
bean to the bean you are creating. It can be One or
Many.

EJB name Enter the bean name.

This should match an <ejb-name> element in the
enterprise-beans section of the deployment descriptor
(although it might not exist yet).

Cascade delete Check this check box if you want this bean removed
when the current bean is removed.

CMR field name If this bean is in a bidirectional relationship or is in a
unidirectional relationship and knows about the current
bean, then enter a name that begins with a lowercase
letter.

The wizard uses the name to generate methods for
accessing the related bean. This corresponds to the
<cmr-field-name> element of the cmr-field node in the
deployment descriptor.

Option What to do
34 EJB Wizard

eXtend Workbench Tools Guide
2. Click OK to return the relationship panel.

3. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying find() methods

This panel lets you define the bean’s finder methods.

¾ To complete this panel:

1. On this panel of the EJB Wizard, click Add to define a new find() method.

OR

Highlight an existing find() method and click Edit.

The Find Method Detail panel appears.
EJB Wizard 35

4 Component Wizards
2. On the Find Method Detail panel, specify:

3. Click OK to return to the find() methods panel.

4. Click Next to continue.

Return to “Panel sequence” on page 2.

Specifying additional classes or packages to import

This panel is used to specify any other classes or packages you want the wizard to generate
import statements for. The wizard does not import any packages by default.

Option What to do

Method name Specify a legal Java method name

Returns Click the radio button associated with the Java type that is returned

Method
parameters type

Click Add to enable the parameter type and name text box, then
specify the Java data type of the parameter

Method
parameter name

Specify a legal Java parameter name
36 EJB Wizard

eXtend Workbench Tools Guide
¾ To complete this panel:

1. Click Add to specify classes or packages to import.

2. Type the fully qualified path name of the Java class or the full package name in the text
field.

3. When you are done adding or removing additional classes or packages, click Next to
continue.

Return to “Panel sequence” on page 2.

Specifying resource references

This panel lets you specify the resource reference that you’ll use as a substitute for the database
table name in the bean’s source code, the connection factory class, and the type of
authentication.
EJB Wizard 37

4 Component Wizards
¾ To complete this panel:

1. Specify:

2. Click Next to continue.

Return to “Panel sequence” on page 2.

Option What to do

Database
resource
reference name

Specify the name that will be put in the JNDI environment and
looked up by anyone trying to get the named resource

The EJB specification recommends that this be prefaced with
jdbc/—for example:

jdbc/MyDataSource

The deployer will later map this reference to the appropriate
database

Connection
factory class

Specify the Java type of the factory (not of the resource)

Database
authentication

Specify who performs the login to the resource:

• Specifying container means the container signs on to the
resource manager in order to obtain the resource factory

• Specifying application means the code in the EJB signs on to
the resource manager programmatically
38 EJB Wizard

eXtend Workbench Tools Guide
Completing the EJB

This panel shows you all of the classes and interfaces that the wizard will generate. Review it
carefully to make sure that you have specified everything that you wanted to. If you find a
mistake, you can click the Back button to return to a panel and make the appropriate change.

¾ To complete the EJB:

1. Check the values in the Summary panel to make sure you have specified everything
correctly and then click Finish.

2. When the Summary panel reports the wizard is done creating the EJB, click OK.

Now the EJB implementation class and the interfaces are open for editing in the Java
Editor.

Return to “Panel sequence” on page 2.
EJB Wizard 39

4 Component Wizards
JSP Wizard
Use the JSP Wizard to create JSP pages. The following sections describe:

• About the JSP Wizard

• Starting the JSP Wizard

• Specifying the JSP page name and other options

• Specifying the project, directory, and package

• Specifying imports

• What happens

About the JSP Wizard

Use the JSP Wizard to quickly specify a variety of attributes for your JSP page and add your JSP
page to an open project.

Starting the JSP Wizard

¾ To start the JSP Wizard:

1. Choose File>New.

2. On the J2EE tab, choose JSP and click OK. (Alternatively, you can double-click JSP.)

The first panel of the JSP Wizard displays.

3. Continue as described in “Specifying the JSP page name and other options” on page 40.

Specifying the JSP page name and other options

¾ To specify the JSP page name and other options:

1. On the first panel of the JSP Wizard, specify the following options:

Option What to do

JSP name Specify the name for the JSP page. You don’t need to
specify the .JSP extension.
40 JSP Wizard

eXtend Workbench Tools Guide
Page title Specify the text for the JSP page’s title.

Generated as <title>text</title>.

Content type Specify the MIME-type of the response generated by the
JSP page. Choose from the list provided.

The default is HTML.

Generated as the contentType attribute of the page
directive.

Template Specify a code-generation template, if any.

Your implementation of Workbench may or may not contain
additional extension templates of classes that are commonly
used as starting points for applications in your environment.

	 For more information on extensibility, see “Extending
the Workbench toolset and services” on page 50.

Use session Specify whether the JSP page participates in session
management (in other words, is part of a session).

Generated as the session attribute of the page directive.

Thread safe Specify whether the JSP page, once compiled into a servlet,
can respond to multiple simultaneous requests. If not,
deselect the check box.

Generated as the isThreadSafe attribute of the page
directive.

Form-based page Specify whether a simple HTML form is generated on the
JSP page (enabled only if you are generating an HTML or
XHTML page).

Create error page Specify whether an error page is generated for this JSP page
(enabled only if you are generating an HTML or XHTML
page). The error page is displayed if an uncaught error
occurs when the server is processing the JSP page.

Generated as the errorPage attribute of the page directive.

Option What to do
JSP Wizard 41

4 Component Wizards
2. Click Next to proceed to the next wizard panel. See “Specifying the project, directory, and
package” on page 42 for details.

Specifying the project, directory, and package

¾ To specify the project, directory, and package:

1. On this panel of the JSP Wizard, specify the following options:

Specify import values Specify whether you want to specify Java classes and
packages to import so that you can reference classes in the
JSP page without having to explicitly specify package
names. If you select this option, you will see an additional
panel in the wizard where you can specify the classes and
packages.

Option What to do

Add to open WAR project If you currently have one or more Web archive
(WAR) projects open in Workbench, you can add
the JSP page to one of those projects by selecting it
from the list.

Create project If you do not have a WAR project open in
Workbench but want to associate the JSP page with
a WAR project, click Create project to start the
New Project Wizard.

	 See “Creating projects and subprojects” on
page 56 for details.

No project—just write files to
the disk.

Choose this option if you do not want to associate
the JSP page with a project; the wizard will create
the JSP page in a nonproject directory on the file
system.

Option What to do
42 JSP Wizard

eXtend Workbench Tools Guide
Base directory If you specified a WAR project, the default base
directory is the src subdirectory of the project
directory. Otherwise, this field is empty.

Click Browse to specify a file system location.

You can add one or more subdirectories to the
default base directory.

Package Specify a package hierarchy (with levels separated
by periods) to place the JSP page in a subdirectory
of the base directory.

This affects only the directory where the JSP page
is saved and the default URL for accessing the JSP
page. The JSP page itself is unaffected.

For example, if the base directory is
ProjectDir/jsps and you specified com.myco as the
package, the JSP page will be created in
ProjectDir/jsps/com/myco.

File directory The contents of Base directory and Package are
combined to specify the location of the JSP page,
which is displayed under File directory.

This is the file system location where the wizard
creates the JSP page.

You cannot change the contents of this field
directly; you must change Base directory and/or
Package.

Add the files to the root of the
archive

When generating the project archive, place the JSP
page at the root of the archive (taking into account
any package structure you specified).

Add the files to the archive with
this prefix

When generating the project archive, place the JSP
pages in a directory tree as specified in the prefix
(taking into account any package structure you
specified).

Option What to do
JSP Wizard 43

4 Component Wizards
2. If on the first panel you specified that you want to specify import values, click Next to
proceed to the next panel. See “Specifying imports” on page 44.

Otherwise, you are done. Click Finish. When the final wizard panel reports that it has
finished creating the JSP page, click OK. See “What happens” on page 44.

Specifying imports

¾ To specify classes and packages to import:

1. On this panel of the JSP Wizard, specify which classes you want to reference in the JSP
page without having to specify their package names.

Classes or packages you specify here are generated as the import attribute of the page
directive. This directive corresponds to import statements in a Java source file.

NOTE As a convenience, every JSP page automatically imports all the classes from
these packages: java.lang, javax.servlet, javax.servlet.http, and javax.servlet.jsp.

To add a class or package, click Add and specify the class or package. You can add as
many classes or packages as you want.

2. Click Finish. When the final wizard panel reports it has finished creating the JSP page,
click OK. See “What happens” on page 44.

What happens
The JSP page is generated and appears in the JSP Editor. If you specified that you wanted
an error page associated with the JSP page, the error page is generated in the same
directory with the name JSPPageNameErrorPage.jsp and is specified in the JSP page’s
errorPage attribute of the page directive.

The wizard adds the JSP page (and error page if present) to the open project if you
selected that option.

The files will be added to this
location in the archive

The location in the archive of the JSP page, as
specified by the two preceding selections, are
reflected in this field.

You cannot change the contents of this field
directly; you must change the preceding two
selections.

Option What to do
44 JSP Wizard

eXtend Workbench Tools Guide
Servlet Wizard
Use the Servlet Wizard to create servlet Java class files. Topics discussed in this section include:

• About the Servlet Wizard

• Starting the Servlet Wizard

• Specifying the class name and other servlet options

• Specifying the project, directory, and package

• Specifying which HttpServlet methods to override

• Specifying which interfaces to implement

• Specifying which classes and packages to import

About the Servlet Wizard

The Servlet Wizard provides an automated mechanism for creating Java servlet source files. The
wizard provides options to specify these attributes of a Java servlet class:

• The content type of the HTTP response document, such as HTML, XML, and so on

• Whether to implement the single- or multi-threaded model interface

• Whether to include the servlet in an existing Workbench project, in a new project, or not in
any project

• Whether the servlet is to be a member of a package (that is, whether to specify a package
definition)

• The directory structure for the Java source files and for the generated classes in the archive

• Whether to override specified HttpServlet methods

• Whether to implement any interfaces

• Whether to import any classes or packages

Once you have created a servlet using the Servlet Wizard, you can modify that servlet in the Java
Editor.

	 For details about editing servlets in Workbench, see Chapter 6, “Source Editors” in this
book and the chapter on writing servlets in the Development Guide.
Servlet Wizard 45

devServlets.html

4 Component Wizards
Starting the Servlet Wizard

¾ To start the Servlet Wizard:

1. Choose File>New.

2. On the J2EE tab, choose Servlet and click OK. (Alternatively, you can double-click
Servlet.)

3. To continue, see “Specifying the class name and other servlet options” on page 46.

Specifying the class name and other servlet options

¾ To specify the class name and other servlet options:

1. On the first panel of the Servlet Wizard, specify the following options:

Option What to do

Class name Specify an appropriate name for the servlet class.

Content type Specify the type of the document content of the
HTTP response the servlet is to generate.

The default is HTML.

Template Specify a code-generation template, if any.

Your implementation of Workbench may or may
not contain additional extension templates of
classes that are commonly used as starting points
for applications in your environment.

	 For more information on extensibility, see
“Extending the Workbench toolset and services”
on page 50.
46 Servlet Wizard

eXtend Workbench Tools Guide
2. Click Next to go to the next wizard panel. See “Specifying the project, directory, and
package” on page 47.

Specifying the project, directory, and package

¾ To specify the project, directory, and package:

1. On the second panel of the Servlet Wizard, specify the following options:

Implement SingleThreadModel Specify whether the servlet class is to implement
the SingleThreadModel interface.

Implementing this interface guarantees that no
more than one request thread accesses a single
instance of your servlet. While this can guarantee
that servlet fields are accessed by only one thread
at a time, there can be significant performance
costs if your servlet is accessed frequently.

The default is to allow multithreaded access to the
servlet.

Option What to do

Add to open WAR project If you currently have one or more Web Archive
(WAR) projects open in Workbench, you can add
the servlet to one of those projects by selecting it
from the list.

Create project If you do not have a WAR project open in
Workbench but want to associate the servlet with a
WAR project, you can click Create project to start
the New Project Wizard.

	 For details, see “Creating projects and
subprojects” on page 56.

Option What to do
Servlet Wizard 47

4 Component Wizards
No project—just write files to
the disk.

If you do not want to associate the servlet with any
Workbench project, you can still use the wizard to
create a servlet class anywhere on the file system.

Base directory If you specified a WAR project, the default base
directory is a src subdirectory located directly
under the project directory. Otherwise, this field is
empty.

Click Browse to specify a file system location.

You can add one or more subdirectories to the
default base directory.

Package If your servlet is to be a member of a package (for
example, com.mwbi.welcome), specify the
package name in this field.

File directory The contents of Base directory and Package are
combined to specify the location of the servlet
source file, which is displayed under File
directory.

This is the file system location where the wizard
creates the servlet source file.

You cannot change the contents of this field
directly; you must change Base directory and/or
Package.

Add the files to the root of the
archive

When generating the project archive, place the
generated class files for the servlet at the root of
the archive.

Option What to do
48 Servlet Wizard

eXtend Workbench Tools Guide
2. Click Next to go to the next wizard panel. See “Specifying which HttpServlet methods to
override” on page 49.

Specifying which HttpServlet methods to override

¾ To specify which HttpServlet methods you want to override:

1. On this panel of the Servlet Wizard, specify which methods in the HttpServlet class to
override in the servlet.

Typically, you want to override the doGet and doPost methods. This panel enables you to
override these HttpServlet methods:

• doGet

• doPost

• doPut

• doDelete

• init

• destroy

Add the files to the archive with
this prefix

When generating the project archive, place the
generated class files for the servlet in a directory
tree as specified in the prefix.

The default is to place the servlet classes in a
WEB-INF/classes directory under the root of the
archive.

If you specified a package name, the directory
structure associated with that package is added to
the prefix to determine the final archive path for
the generated classes.

The files will be added to this
location in the archive

The location in the archive of the generated servlet
class files, as specified by the two preceding
selections, are reflected in this field.

You cannot change the contents of this field
directly; you must change the preceding two
selections.

Option What to do
Servlet Wizard 49

4 Component Wizards
• getServletInfo

Choosing any of these methods causes the wizard to insert the basic structure for that
method into the servlet code it generates so that you can easily add the appropriate
processing logic later using the Java Editor.

2. Click Next to go to the next wizard panel. See “Specifying which interfaces to implement”
on page 50.

Specifying which interfaces to implement

¾ To specify which interfaces to implement:

1. On this panel, specify any interfaces that the servlet will implement. Click Add to specify
an interface. You must specify the fully qualified name of the interface. For each interface,
you can specify whether you want the wizard to generate stub methods.

2. You can rearrange the list of interfaces by clicking Up or Down. You can specify that you
want stub methods for all or none of the interfaces by clicking Check All or Uncheck All.

The wizard will generate the following for each interface you specify:

• An entry in the servlet’s implements statement

• All necessary imports

• Stub code for all interfaces where you checked Generate Stub Code

3. Click Next to go to the next wizard panel. See “Specifying which classes and packages to
import” on page 50.

Specifying which classes and packages to import

¾ To specify which classes and packages to import:

1. On this panel, specify any additional classes or packages that the servlet should import.

The wizard will generate an import statement for each entry you make here.

2. Once you have specified the imports, click Finish.

The Servlet Wizard creates a Java servlet class based on what you specified.

3. When the wizard reports that it is done creating the servlet, click OK.

The servlet code appears in the Java Editor.

If you specified that the servlet is to be associated with a WAR project, the wizard adds the
servlet to that project.
50 Servlet Wizard

eXtend Workbench Tools Guide
Java Class Wizard
Use the Java Class Wizard to create general-purpose Java class files. The following sections
describe:

• About the Java Class Wizard

• Starting the Java Class Wizard

• Specifying the class name and other options

• Specifying which interfaces to implement

• Specifying which classes and packages to import

• Specifying the project, directory, and package

About the Java Class Wizard

With the Java Class Wizard you specify a variety of class attributes such as scope and whether
to create a class or an interface. The wizard lets you add the new source file to an existing
project, create a new project to add the new source file to, or simply write the new class file to
disk.

Starting the Java Class Wizard

¾ To start the Java Class Wizard:

1. Choose File>New.

2. On the J2EE tab, choose Java file and click OK. (Alternatively, you can double-click
Java file.)

3. Continue as described in “Specifying the class name and other options” on page 52.
Java Class Wizard 51

4 Component Wizards
Specifying the class name and other options

¾ To specify the class name and other options:

1. On the first panel of the Java Class Wizard, specify the following options:

2. Click Next to go to the next wizard panel. See “Specifying which interfaces to implement”
on page 53.

Option What to do

Class name Specify an appropriate name for the Java class.

Base class Specify the base class, if any. You can enter a simple or a fully
qualified name.

Create class or
interface?

Specify whether to create a class or an interface.

Template Specify a code-generation template, if any.

Your implementation of Workbench may or may not contain
additional extension templates of classes that are commonly used
as starting points for applications in your environment.

	 For more information on extensibility, see “Extending the
Workbench toolset and services” on page 50.

Bottom group
(check boxes)

Use any of the following check boxes to further specify class
attributes:

• Public scope

• Create a default constructor

• Create main() method

• Serializable
52 Java Class Wizard

eXtend Workbench Tools Guide
Specifying which interfaces to implement

¾ To specify which interfaces to implement:

1. On this panel, specify any interfaces that the class will implement. Click Add to specify
an interface. You must specify the fully qualified name of the interface. For each interface,
you can specify whether you want the wizard to generate stub methods.

2. You can rearrange the list of interfaces by clicking Up or Down. You can specify that you
want stub methods for all or none of the interfaces by clicking Check All or Uncheck All.

The wizard will generate the following for each interface you specify:

• An entry in the class’s implements statement

• All necessary imports

• Stub code for all interfaces where you checked Generate Stub Code

3. Click Next to go to the next wizard panel. See “Specifying which classes and packages to
import” on page 53.

Specifying which classes and packages to import

¾ To specify which classes and packages to import:

1. On this panel, specify any additional classes or packages that the class should import.

The wizard will generate an import statement for each entry you make here.

2. Click Next to go to the next wizard panel. See “Specifying the project, directory, and
package” on page 53.

Specifying the project, directory, and package

¾ To specify the project, directory, and package:

1. On the top portion of this panel of the Java Class Wizard, specify one of the following
three project association options:

Option What to do

Add to open project If you currently have one or more projects open in
Workbench, you can add the class file to one of those
projects by selecting it from the list.
Java Class Wizard 53

4 Component Wizards
2. On the lower portion of this Java Class Wizard panel, specify the following options:

Create project If you do not have a project open in Workbench but want to
associate the class file with a project, click Create project
to start the New Project Wizard.

When you are through, the new project is selected as the
project to add the new class file to.

	 For more information, see “Project design
considerations” on page 53.

No project—just write
the files to the disk

Choose this option if you do not want to associate the class
file with a project; the wizard will create the class file in a
nonproject directory on the file system.

Option What to do

Base directory If you specified a WAR project, the default base directory is
a src subdirectory located directly under the project
directory. Otherwise, this field is empty.

Click Browse to specify a file system location.

The Base directory is the project root combined with
whatever other directories are in the project directory
structure above the package path.

Package Specify the fully-qualified Java package name for the new
class. You can specify a package hierarchy with levels
separated by periods.

The Java class you are creating is saved in the Base
directory combined with the Package directory.

For example, if the base directory is ProjectDir/classes and
you specified com.myco as the package, the class will be
created in ProjectDir/classes/com/myco.

Option What to do
54 Java Class Wizard

eXtend Workbench Tools Guide
3. Click Finish.

4. When the final wizard panel reports it’s done creating the Java class, click OK.

The code appears in the Java Editor. (The Java class is added to the open project only if
you selected that option.)

The wizard creates the Java class source file. After you write the methods that implement the
specific functionality for this new class (as well as any import statements), you can add the new
class file to a project.

	 For more information, see “Adding to projects” on page 68.

File directory The contents of Base directory and Package are combined
to specify the location of the Java class source file, which is
displayed under File directory.

This is the file system location where the wizard creates the
Java class source file.

You cannot change the contents of this field directly; you
must change Base directory and/or Package.

Add the files to the root
of the archive

Adds the compiled Java class file to the archive root
combined with the package path when generating the
project archive.

Add the files to the
archive with this prefix

Adds the compiled Java class file to the specified archive
directory combined with the package path when generating
the project archive.

If you specified a package name, the directory structure
associated with that package is added to the prefix to
determine the final archive path for the generated class.

The files will be added
to this location in the
archive

The location in the archive of the generated Java class file,
as specified by the two preceding selections, are reflected in
this field.

You cannot change the contents of this field directly; you
must change the preceding two selections.

Option What to do
Java Class Wizard 55

4 Component Wizards
JavaBean Wizard
Use the JavaBean Wizard to create JavaBeans. The following sections describe:

• About the JavaBean Wizard

• Starting the JavaBean Wizard

• Specifying the class name and other options

• Specifying the data fields

• Specifying which interfaces to implement

• Specifying which classes and packages to import

• Specifying the project, directory, and package

About the JavaBean Wizard

Use the JavaBean Wizard to quickly create a skeleton for a JavaBean and add it to an open
project.

Starting the JavaBean Wizard

¾ To start the JavaBean Wizard:

1. Choose File>New.

2. On the J2EE tab, choose JavaBean and click OK. (Alternatively, you can double-click
JavaBean.)

The first panel of the JavaBean Wizard displays.

3. Continue as described in “Specifying the class name and other options” on page 56.

Specifying the class name and other options

¾ To specify the class name and other options:

1. On the first panel of the JavaBean Wizard, specify the following options:

Option What to do

Class name Specify the name for the JavaBean. You don’t need to
specify the .Java extension.
56 JavaBean Wizard

eXtend Workbench Tools Guide
2. Click Next to proceed to the next wizard panel. See “Specifying the data fields” on
page 57 for details.

Specifying the data fields

¾ To specify the data fields for the JavaBean:

1. Define each data field by clicking Add and specifying the name and data type.

The generated Java file will define the fields in the order in which they are listed here. You
can reorder the list by selecting a field and clicking Up or Down.

2. Click Next to proceed to the next wizard panel. See “Specifying which interfaces to
implement” on page 57 for details.

Specifying which interfaces to implement

¾ To specify which interfaces to implement:

1. On this panel, specify any interfaces that the bean will implement. Click Add to specify an
interface. You must specify the fully qualified name of the interface. For each interface,
you can specify whether you want the wizard to generate stub methods.

2. You can rearrange the list of interfaces by clicking Up or Down. You can specify that you
want stub methods for all or none of the interfaces by clicking Check All or Uncheck All.

Base class If the JavaBean is inherited from a base class, specify the
name of the base class. You can specify a simple or fully
qualified name.

Generated as extends class.

Template Specify a code-generation template, if any.

Your implementation of Workbench may or may not contain
additional extension templates of classes that are commonly
used as starting points for applications in your environment.

	 For more information on extensibility, see “Extending
the Workbench toolset and services” on page 50.

Option What to do
JavaBean Wizard 57

4 Component Wizards
The wizard will generate the following for each interface you specify:

• An entry in the bean’s implements statement

• All necessary imports

• Stub code for all interfaces where you checked Generate Stub Code

3. Click Next to go to the next wizard panel. See “Specifying which classes and packages to
import” on page 58.

Specifying which classes and packages to import

¾ To specify which classes and packages to import:

1. On this panel, specify any additional classes or packages that the bean should import.

The wizard will generate an import statement for each entry you make here.

2. Click Next to go to the next wizard panel. See “Specifying the project, directory, and
package” on page 58.

Specifying the project, directory, and package

¾ To specify the project, directory, and package:

1. On the top portion of this panel of the JavaBean Wizard, specify one of the following three
project association options:

Option What to do

Add to open project If you currently have one or more projects open in
Workbench, you can add the bean to one of those projects
by selecting it from the list.

Create project If you do not have a project open in Workbench but want to
associate the bean with a project, click Create project to
start the New Project Wizard.

When you are through, the new project is selected as the
project to add the new bean to.

	 For more information, see “Project design
considerations” on page 53.
58 JavaBean Wizard

eXtend Workbench Tools Guide
2. On the lower portion of this JavaBean Wizard panel, specify the following options:

No project—just write
the files to the disk

Choose this option if you do not want to associate the bean
with a project; the wizard will create the bean in a
nonproject directory on the file system.

Option What to do

Base directory If you specified a project, the default base directory is a src
subdirectory located directly under the project directory.
Otherwise, this field is empty.

Click Browse to specify a file system location.

The Base directory is the project root combined with
whatever other directories are in the project directory
structure above the package path.

Package Specify the fully-qualified Java package name for the new
bean class. You can specify a package hierarchy with levels
separated by periods.

The bean you are creating is saved in the Base directory
combined with the Package directory.

For example, if the base directory is ProjectDir/classes and
you specified com.myco as the package, the bean will be
created in ProjectDir/classes/com/myco.

File directory The contents of Base directory and Package are combined
to specify the location of the bean, which is displayed under
File directory.

This is the file system location where the wizard creates the
bean source file.

You cannot change the contents of this field directly; you
must change Base directory and/or Package.

Add the files to the root
of the archive

Adds the compiled JavaBean to the archive root combined
with the package path when generating the project archive.

Option What to do
JavaBean Wizard 59

4 Component Wizards
3. Click Finish.

4. When the final wizard panel reports it’s done creating the JavaBean, click OK.

The code appears in the Java Editor. (The JavaBean is added to the open project only if
you selected that option.)

The wizard creates the skeleton of the JavaBean source file. The skeleton includes an empty
constructor, declarations for all the data fields (as m_name), and get and set methods for all the
fields.

Tag Handler Wizard
Use the Tag Handler Wizard to create tag handler classes for custom JSP tags. The following
sections describe:

• About the Tag Handler Wizard

• Starting the EJB Wizard

• Specifying the class name and other options

• Specifying the project, directory, and package

• Specifying the tag library descriptor file

• Specifying the body type

• Specifying tag handler attributes

• Specifying tag handler scripting variables

Add the files to the
archive with this prefix

Adds the compiled JavaBean to the specified archive
directory combined with the package path when generating
the project archive.

If you specified a package name, the directory structure
associated with that package is added to the prefix to
determine the final archive path for the generated bean.

The files will be added
to this location in the
archive

The location in the archive of the generated JavaBean, as
specified by the two preceding selections, are reflected in
this field.

You cannot change the contents of this field directly; you
must change the preceding two selections.

Option What to do
60 Tag Handler Wizard

eXtend Workbench Tools Guide
• Specifying TagExtraInfo class

• What happens

About the Tag Handler Wizard

The Tag Handler Wizard can speed your JSP development effort by:

• Creating a skeleton of the tag handler class

• Creating or modifying the associated tag library descriptor file (TLD)

• Updating the web.xml file to include the required information

You can edit the tag handler class using the Java Editor. You can modify the TLD or the web.xml
files using the XML Editor. Both files are in the Project tab of Workbench.

Starting the Tag Handler Wizard

¾ To start the Tag Handler Wizard:

1. Click File>New.

2. On the J2EE tab, choose Tag handler and click OK. (Alternatively, you can double-click
Tag handler.)

3. Continue as described in “Specifying the class name and other options” on page 62.
Tag Handler Wizard 61

4 Component Wizards
Specifying the class name and other options

¾ To specify the class name and other options:

1. On the first panel of the Tag Handler Wizard, specify the following options:

Option What to do

Class name Specify the name for the tag handler. The name must be a valid
Java name. You do not need to specify the .java extension.

This value is added to the TLD file in the <tagclass> element.

Tag name Specify the name of the custom tag.

This will appear in the <name> element of the tag definition in the
tag library descriptor file (TLD).

Template Specify a code-generation template, or accept the default.

Your implementation of Workbench may or may not contain
additional extension templates of classes that are commonly used
as starting points for applications in your environment.

	 For more information on extensibility, see “Extending the
Workbench toolset and services” on page 50.

Attributes Select this check box if the custom tag should support tag element
attributes.

If you select this option, you will see an additional wizard panel
where you can specify the details of the attribute(s).

Scripting
Variables

Select this check box if the custom tag should support scripting
variables.

If you select this option, you will see an additional wizard panel
where you can specify the details of the scripting variable(s).

Body Tag Select this check box if the custom tag will use the content of the
tag element’s body in a JSP page.

If you select this option, you will see an additional wizard panel
where you can specify the details of the body tag(s).
62 Tag Handler Wizard

eXtend Workbench Tools Guide
2. Click Next to go to the next wizard panel. See “Specifying the project, directory, and
package” on page 63.

Specifying the project, directory, and package

¾ To specify the project, directory, and package:

1. On the top portion of this panel of the Tag Handler Wizard, specify one of the following
three project association options:

2. On the lower portion of this panel, specify the following options:

Option What to do

Add to open project If you currently have one or more projects open in Workbench,
you can add the class file to one of those projects by selecting it
from the list.

Create project If you want to associate the class file with a new project, click
Create project to start the New Project Wizard.

When you are through, the new project is selected as the project
to add the new class file to.

	 For more information, see “Project design
considerations” on page 53.

No project—just
write the files to the
disk

Disabled—you must associate the tag handler class with a
project.

Option What to do

Base directory The default base directory is the project’s src subdirectory
located directly under the project directory.

Click Browse to specify a file system location.

The Base directory is the project root combined with
whatever other directories are in the project directory
structure above the package path.
Tag Handler Wizard 63

4 Component Wizards
3. Click Next to proceed to the next wizard panel. See “Specifying the tag library descriptor
file” on page 65.

Package Specify the fully qualified Java package name for the new
tag handler class. You can specify a package hierarchy (with
levels separated by periods).

File directory This is the file system location where the wizard creates the
tag handler source file and the TagExtraInfo class source
file, if any.

The tag handler class you are creating is saved in the Base
directory combined with the Package directory.

For example, if the base directory is ProjectDir/classes and
you specified com.myco as the package, the class will be
created in ProjectDir/classes/com/myco.

You cannot change the contents of this field directly; you
must change Base directory and/or Package.

Add the files to the root
of the archive

Adds the compiled tag handler class file to the archive root
combined with the package path when generating the
project archive.

Add the files to the
archive with this prefix

Adds the compiled tag handler class file to the specified
archive directory combined with the package path when
generating the project archive.

If you specified a package name, the directory structure
associated with that package is added to the prefix to
determine the final archive path for the generated class.

The files will be added
to this location in the
archive

The location in the archive of the generated tag handler
class file, as specified by the two preceding selections, are
reflected in this field.

You cannot change the contents of this field directly; you
must change the preceding two selections.

Option What to do
64 Tag Handler Wizard

eXtend Workbench Tools Guide
Specifying the tag library descriptor file

¾ To specify the tag library descriptor file:

1. On the top portion of this panel of the Tag Handler Wizard, choose one of the following
options:

2. If you chose Create New TLD, complete the following fields:

Option What to do

Use Existing TLD Choose this option when you are adding new custom tags to an
existing TLD, then specify the TLD name and disk location

Create New TLD Choose this option when you are creating a new TLD and
specify the remaining fields

Option What to do

Taglib Short Name Specify the value to be used in the Tab Library Descriptor
<short-name> element.

Taglib URI Specify a URI that is used in the WAR's deployment
descriptor. This is not the URI for the TLD file.

This URI can be used in the JSP taglib directives to refer to
this taglib. For example, /mytags.

TLD file name Specify the name of the TLD to create.

TLD directory Specify the directory location where the wizard should create
the TLD file.
Tag Handler Wizard 65

4 Component Wizards
3. Click Next to go to the next wizard panel. What panel displays next depends on whether
you checked the attributes, scripting variables, or body tag check boxes on the first wizard
panel. Follow the first option that fits:

• If the custom tag uses the tag element’s body content, see “Specifying the body type”
on page 67.

• If the custom tag uses tag element attributes, see “Specifying tag handler attributes” on
page 67.

• If the custom tag uses or creates scripting variables, see “Specifying tag handler
scripting variables” on page 68.

• Otherwise, see “Specifying TagExtraInfo class” on page 69.

Archive location Specify the directory location for the TLD within the archive:

• When deployed inside a JAR file, the TLD must be in the
META-INF directory

• When deployed directly in a WAR file, TLDs are usually
placed in the \WEB-INF directory or a separate \WEB-
INF\tlds directory

JSP Version to
support

Choose the radio button that represents the version of the JSP
specification that the TLD will support.

If you are using a WAR project for J2EE 1.2 (servlet2.2 and
JSP1.1) you cannot change the wizard’s choice of JSP1.1.

Option What to do
66 Tag Handler Wizard

eXtend Workbench Tools Guide
Specifying the body type

¾ To specify the body type:

1. Specify values for the following options:

2. Click Next to go to the next wizard panel. What panel displays next depends on whether
you checked the attributes or scripting variables check boxes on the first wizard panel.

• If the custom tag uses tag element attributes, see “Specifying tag handler attributes” on
page 67.

• If the custom tag uses or creates scripting variables, see “Specifying tag handler
scripting variables” on page 68.

• Otherwise, see “Specifying TagExtraInfo class” on page 69.

Specifying tag handler attributes

¾ To specify the tag handler attributes:

1. Specify values for the following options:

Option What to do

JSP Specify this option when you want to use JSP code, HTML tags,
plain text, other custom tags, and any other valid Web page content
in the body of the custom tag.

Tag dependent Specify this option when you want to use non-JSP code (like SQL)
in the body of the custom tag. The tag’s body content will be
passed directly to the tag handler class without any runtime
evaluation.

Option What to do

Attribute Specify the name of the attribute.

This value corresponds to the <attribute> element’s <name>
element within the TLD entry for this custom tag.

Type Specify the data type of the attribute. Corresponds to the TLD
file’s element. The value must be a nonprimitive type.
Tag Handler Wizard 67

4 Component Wizards
2. Click Next to go to the next wizard panel. What panel displays next depends on whether
you checked the scripting variables check box on the first wizard panel.

• If the custom tag uses or creates scripting variables, see “Specifying tag handler
scripting variables” on page 68.

• Otherwise, see “Specifying TagExtraInfo class” on page 69.

Specifying tag handler scripting variables

¾ To specify tag handler scripting variables:

1. Specify the values for the following options:

2. Click Next to go to the next wizard panel. See “Specifying TagExtraInfo class” on
page 69.

Required Specify whether the attribute is required when the custom tag is
used. When checked the attribute is required. Corresponds to the
TLD file’s <required> element.

Runtime
expression

Specify whether you can use a JSP scriptlet expression in the
JSP page to set the value of the attribute. This corresponds to the
TLD file’s <rtexprvalue> element.

Option What to do

Variable Enter the variable’s name.

Type Enter the variable’s data type.

New Object Specify whether the variable refers to a new or existing object instance.

Scope Specify the availability of the variable. Values can be:

• NESTED—The variable is available between the start and end tags

• AT_BEGIN—The variable is available from the start tag until the end of
the page

• AT_END—The variable is available after the end tag until the end of the
page

Option What to do
68 Tag Handler Wizard

eXtend Workbench Tools Guide
Specifying TagExtraInfo class

¾ To specify whether or not to create a TagExtraInfo class:

1. Specify values for the following options:

2. Click Finish. When the final wizard panel reports it has finished creating the TagExtraInfo
class, click OK.

See “What happens” on page 44.

What happens

When you click Finish, the wizard:

• Generates the tag handler class and displays it in the Java Editor.

• Generates the TagExtraInfo class associated with the tag handler (if specified). The class
is generated in the same directory with the name TagHandlerClassNameExtraInfo.java.

• Adds the tag handler class (and theTagExtraInfoClass if present) to the specified project.

• Creates a new TLD file (and the WAR’s deployment descriptor is modified) or updates an
existing TLD file, depending on what you chose.

Option What to do

Do not create
TagExtraInfo class

Choose this option if you do not want the wizard to create a
TagExtraInfo class.

Create TagExtraInfo
class

Choose this option if you want the wizard to create a
TagExtraInfo class. This option might be disabled if your tag’s
configuration requires a TagExtraInfo class.

(Optional) Choose the appropriate checkbox if you want the
wizard to implement either of the following methods:

• getVariableInfo()

• isValid()
Tag Handler Wizard 69

4 Component Wizards
70 Tag Handler Wizard

5
 Web Service Wizard Chapter 5
This chapter describes the Web Service Wizard of SilverStream eXtend Workbench, which you
can use to generate files for implementing and invoking Web Services. Topics include:

• About the wizard

• Using the wizard

• Panel sequence

• Panel details

	 For an introduction to Web Service concepts, standards, and technologies, see the chapter
on understanding Web Services in the Development Guide.

About the wizard
The Web Service Wizard can perform either of these tasks for you:

• Generate a standard (SOAP-based) Web Service that’s implemented as a Java remote
object. The wizard creates a servlet to handle access to your Web Service and its methods
from HTTP SOAP requests.

• Generate the code needed for a Java-based consumer program to access any standard
(SOAP-based) Web Service. The generated code handles all HTTP SOAP processing
under the covers, enabling your consumer program to call the Web Service as a Java
remote object and invoke its methods.

In both cases, the wizard produces Java source files based on JAX-RPC (Java API for XML-
based RPC) and jBroker Web (the JAX-RPC implementation included with SilverStream
eXtend). JAX-RPC is the J2EE specification that provides Web Service support.

You can use the generated files as is or modify them when necessary. The advantage of this Java-
oriented approach is that you can deal with Web Services using the familiar technologies of RMI
and J2EE instead of coding lower-level SOAP APIs.
1

new http://java.sun.com/xml/jaxrpc
new ../../jbroker-web/README.html
devUnderstandingServices.html

5 Web Service Wizard
How it works Behind the scenes, the Web Service Wizard uses several different compilers
to generate the output you request:

The wizard determines which compilers to run and in what order depending on the type of input
you provide and options you select when filling in its panels.

Alternatives to the wizard You can also run the individual wsdl2java, xsd2java,
rmi2soap, and rmi2wsdl compilers manually from a command line. For more information, see
the jBroker Web help.

The wizard uses this
compiler To generate

Remote interface generator A Java remote interface from a JavaBean, Java class, or
EJB session bean

wsdl2java (from jBroker Web) A Java remote interface from a WSDL file

xsd2java (from jBroker Web) Type classes (JavaBeans, marshalers) and mapping files
from complex types defined in a WSDL file’s XML
Schema

rmi2soap (from jBroker Web) Skeleton and tie classes, stub and service classes, as well
as marshalers (for complex types) from a Java remote
interface

rmi2wsdl (from jBroker Web) A WSDL file from a Java remote interface
2 About the wizard

new ../../jbroker-web/README.html

eXtend Workbench Tools Guide
Using the wizard
Here’s where you’ll learn about preparing to use the Web Service Wizard, running it, and
working with its output:

Panel sequence
This section lists the panels you need to complete in the Web Service Wizard, depending on your
scenario:

For instructions on See

Using the wizard to create a new Web Service
based on one of these:

• A JavaBean or other Java class

• An EJB session bean

• A Java remote interface

• A WSDL file

The chapter on generating Web Services
in the Development Guide

Using the wizard to create code for accessing
an existing Web Service based on its WSDL
file

The chapter on generating Web Service
consumers in the Development Guide

If you start with You step through these panels

A JavaBean or other Java class 1. Project location (and possibly WAR project
selection)

2. Class selection

3. Method selection

4. Class-generation and SOAP options
Using the wizard 3

devGenWS.html
devGenWSCon.html
devGenWSCon.html

5 Web Service Wizard
The home interface of an EJB
session bean

1. Project location (and possibly WAR project
selection)

2. Class selection

3. EJB lookup information

4. Class-generation and SOAP options

The remote interface of an EJB
session bean or the SessionBean
class itself

1. Project location (and possibly WAR project
selection)

2. Class selection

3. EJB home interface selection

4. EJB lookup information

5. Class-generation and SOAP options

A Java remote interface 1. Project location (and possibly WAR project
selection)

2. Class selection

3. Class-generation and SOAP options

A WSDL file 1. Project location

2. WSDL file selection (and possibly Multiple
namespace mapping)

3. Class-generation and SOAP options

If you start with You step through these panels
4 Panel sequence

eXtend Workbench Tools Guide
Panel details
This section describes the options on each panel of the Web Service Wizard. The panels are:

• Project location

• WAR project selection

• Class selection

• WSDL file selection

• Multiple namespace mapping

• EJB home interface selection

• EJB lookup information

• Method selection

• Class-generation and SOAP options

Project location

This panel is used to specify details about the project location (project, directory, package)
where the wizard is to store Web Service files it generates. There are two variations of this panel:

• If you start with a WSDL file, you’ll see:
Panel details 5

5 Web Service Wizard
• If you start with anything else (JavaBean, Java class, EJB session bean, or Java remote
interface), you’ll see:

In this variation, you don’t specify a package (because the wizard will get this information
from your class or interface, which you supply on an upcoming panel).
6 Panel details

eXtend Workbench Tools Guide
¾ To complete this panel:

1. Specify the project:

2. Specify the directory and package:

Option What to do

Add to open
project

Select a project where the wizard is to store generated files. This
option lets you choose from a list of the projects currently open in
Workbench.

If you’re generating a Web Service, you’ll typically select a
WAR project.

When appropriate, you can select a JAR project instead, but then
the wizard will prompt for a WAR project to map the Web
Service’s servlet. See “WAR project selection” on page 9.

(When you generate a Web Service from a WSDL file, the wizard
does not currently support selecting a JAR project. It requires you
to select a WAR project.)

If you’re generating a Web Service consumer, you can select
any type of project.

Create project Click this button if you want to create a new project to use. It
displays the New Project dialog.

	 See “Creating projects and subprojects” on page 56.

No project --
just write files to
the disk

(This option is disabled. In the Web Service Wizard, generated
files must be added to an open project.)

Option What to do

Base directory The default base directory is a src subdirectory located right under
the project directory on your file system. If you want to select a
different file system location, click Browse.

Package (If enabled) Specify the fully-qualified Java package name to be
used for generated classes (for example, com.myco.mypkg).
Panel details 7

5 Web Service Wizard
3. Click Next.

File directory This informational field shows the file system location where
generated files will be stored. It is the result of combining Base
directory and Package.

Add the files to
the root of the
archive

(If enabled) Choose this option to place the generated files (and
their package path, if any) at the root of the project archive.

Add the files to
the archive with
this prefix

Choose this option to place the generated files (and their package
path, if any) under a specified directory structure (prefix) in the
project archive.

For a WAR project, the prefix is automatically set to WEB-
INF/classes.

The files will be
added to this
location in the
archive

(If displayed) This informational field shows the project archive
location where generated files will be stored. It is the result of
combining Prefix and Package.

Option What to do
8 Panel details

eXtend Workbench Tools Guide
WAR project selection

This panel is used to specify the required WAR project for a Web Service stored in a JAR
project. The wizard will update this WAR’s deployment descriptor (web.xml) with the servlet
mapping for the Web Service.

¾ To complete this panel:

1. Specify the following:

2. Click Next.

Option What to do

WAR project Select the WAR project for the Web Service’s servlet mapping.
This option lets you choose a WAR project currently open in
Workbench.

Create project Click this button if you want to create a new WAR project to use. It
displays the New Project dialog.

	 See “Creating projects and subprojects” on page 56.
Panel details 9

5 Web Service Wizard
Class selection

This panel is used to select a compiled class from which the wizard is to generate Web Service
files. Supported choices include:

• A JavaBean or other Java class

• An EJB session bean interface or class

• A Java remote interface

By default, this panel finds the compiled classes in the selected project’s build directory and lists
them in the Available Classes box. For a WAR project, this list comes specifically from WEB-
INF/classes in the build directory.

¾ To select from the current list:

1. Click an item in the Available Classes list.

2. Click Next.

¾ To refine the current list:

• Click one of the Class Filter radio buttons to narrow the Available Classes list to classes
of a particular kind.
10 Panel details

eXtend Workbench Tools Guide
¾ To list classes from another location:

• Click the browse (...) button for Class location (directory or JAR) to select a different
directory or JAR file.

This refreshes the Available Classes list to show just the compiled classes from that new
location.

WSDL file selection

This panel is used to select a WSDL file from which the wizard is to generate Web Service files.
You can select it from your project, from your file system, or from the Web (by specifying an
URL).

NOTE If you’re planning to generate a new Web Service from a WSDL file, you may need to
edit that WSDL file beforehand to make sure the SOAP address in the service
definition specifies the correct binding URL. The Web Service Wizard will use this
URL in the files it generates for your Web Service.

By default, this panel finds the .wsdl files in the selected project and lists them in the WSDL
Files In Project box.
Panel details 11

5 Web Service Wizard
¾ To select from the current list:

1. Click an item in the WSDL Files In Project list to make it the WSDL file to use.

2. Click Next.

¾ To select from the file system:

1. Click the browse (...) button for WSDL file or URL to use to select a WSDL file from
your file system.

2. Click Next.

¾ To specify a file by URL:

1. Type the URL for the target WSDL file in WSDL file or URL to use. For example:
http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

2. Click Next.
12 Panel details

eXtend Workbench Tools Guide
Multiple namespace mapping

This panel is used when you’re generating from a WSDL file that uses multiple namespaces for
the complex types in its XML schema. It lets you map each namespace to a separate Java
package.

NOTE The mappings on this panel are used only if the option Map complex XML types to
Java types is checked on the next panel (Class-generation and SOAP options).

This panel lists the appropriate namespaces and fills in a default package name for each one.
You can edit any or all of these package names. Just make sure you specify a unique package
name for each namespace.

¾ To edit the namespace-to-package mappings:

1. Double-click any name in the Package column to edit it, then type the text you want.

(You can’t edit the names in the Namespace column.)

2. When you’re done editing package names, click Next.
Panel details 13

5 Web Service Wizard
EJB home interface selection

This panel is used to select the home interface that corresponds to an EJB session bean class or
remote interface you’ve specified on the class selection panel.

By default, this panel looks in the location of the EJB session bean class or remote interface to
find home interfaces (compiled classes that extend javax.ejb.EJBHome). If there are any, it lists
them in the Available Classes box.

¾ To select from the current list:

1. Click an item in the Available Classes list to make it the Selected Class.

2. Click Next.

¾ To list classes from another location:

• Click the browse (...) button for Class location (directory or JAR) to select a different
directory or JAR file.

This refreshes the Available Classes list to show just the compiled classes from that new
location.
14 Panel details

eXtend Workbench Tools Guide
EJB lookup information

This panel is used to specify information that the Web Service will need to do a JNDI lookup for
a selected EJB session bean. (JNDI is the Java Naming and Directory Interface.)

This panel displays default initial context values appropriate for looking up a session bean
deployed to the SilverStream eXtend Application Server. For information on what other J2EE
servers require, consult their documentation.
Panel details 15

5 Web Service Wizard
¾ To complete this panel:

1. Specify the Deployed JNDI Name:

The wizard includes this information in the ejb-ref declaration it generates within the
deployment descriptor web.xml. To learn how it is used at runtime to do a JNDI lookup,
see the getSessionBean() method of xxxDelegate.java (the delegate class generated for
the tie servlet).

2. Specify Initial Context Information:

The wizard includes this information in the servlet declaration it generates within the
deployment descriptor web.xml. To learn how these values are used at runtime, see the
getInitialContext() method of xxxDelegate.java.

3. Click Next.

Option What to do

Lookup String Specify the subcontext and JNDI name under which the session
bean is registered on the target J2EE server. For example, to look
up the session bean whose JNDI name is SBMyEJB in the ejb
subcontext:

ejb/SBMyEJB

Option What to do

Factory Class Specify the package prefix and name of an InitialContext factory
class that’s appropriate for the target J2EE server.

Provider URL Specify the URL for the JNDI namespace of the target J2EE server.

User ID Specify a valid user name that has authority to log on to the target
J2EE server and access the session bean.

Password Specify the password for User ID.
16 Panel details

eXtend Workbench Tools Guide
Method selection

This panel is used to select the methods you want to expose when generating a Web Service
from a JavaBean or other Java class.

This panel examines the selected class and lists its eligible methods in the Available Methods
box.

¾ To select methods to expose:

1. Use the Add and Add All buttons to move one or more items from Available Methods to
Selected Methods.

If necessary, you can use Remove and Remove All to move one or more items back.

2. Click Next.
Panel details 17

5 Web Service Wizard
Class-generation and SOAP options

This panel is used to select the Web Service files to generate (including skeleton, tie, and stub
classes) and to specify SOAP implementation details to encode in those files. There are two
variations of this panel:

• If you start with a WSDL file, you’ll see:
18 Panel details

eXtend Workbench Tools Guide
• If you start with anything else (JavaBean, Java class, EJB session bean, or Java remote
interface), you’ll see:

Note that only this variation provides the SOAP options and the ability to generate a
WSDL file.
Panel details 19

5 Web Service Wizard
¾ To complete this panel:

1. Specify Generation Options:

Option What to do

Generate stubs Check this option to generate classes for consuming the Web
Service, including service classes, a stub class, and a simple client
application. You’ll get the following source files:

• xxxService.java

• xxxServiceImpl.java

• xxx_Stub.java

• xxxClient.java

Generate
skeletons

Check this option to generate classes for implementing the Web
Service. Then choose one of these implementation models:

• Tie-based Generates skeleton and tie servlet classes used to
handle requests for your Web Service and delegate method calls
to a separate implementation class. You’ll get the following
source files:

• xxx_ServiceSkeleton.java

• xxx_ServiceTieSkeleton.java

• xxxTie.java

If you start with a JavaBean, Java class, or EJB session bean,
you’ll also get this source file (used to delegate to your class):

• xxxDelegate.java

• Not tie-based Generates just a skeleton servlet class used to
handle requests for your Web Service. You’ll get the following
source file:

• xxx_ServiceSkeleton.java
20 Panel details

eXtend Workbench Tools Guide
GenerateWSDL
file

(If displayed) Check this option to generate the following file:

• xxx.wsdl

It describes your Web Service in standard WSDL format, which is
useful when publishing to a registry. The wizard stores this file in
the base directory of your source tree (commonly named src).

Generate
jBroker Web 1.x
compatible
classes

Check this option to generate the specified files according to the
original jBroker Web (Version 1.x) conventions for:

• File names

• Stub access in client code

Except for these conventions, the generated files will conform to
the latest version of jBroker Web.

This option is appropriate only if you’re maintaining an application
that originated in jBroker Web 1.x and aren’t yet ready to switch to
the current conventions (which are based on JAX-RPC and may
require some changes to existing code).

	 For details on what this option generates, see the chapter on
generating Web Services in the Development Guide.

Directory with
local XSD files

(If displayed) When the selected WSDL file relies on imported
XSD files for its type definitions, you can optionally specify a local
directory that contains copies of them. If the wizard can’t access a
particular XSD file based on the location specified in the WSDL
file, it will look for that XSD file in your local directory.

	 For more information about XSD files, see the WSDL
specification.

Map complex
XML types to
Java types

(If displayed) Check this option if the wizard should try to map
complex types defined in the selected WSDL file (via XML
Schema) to specific Java types.

Uncheck this option if the wizard should map all complex XML
types to the org.w3c.dom.Element Java type.

Option What to do
Panel details 21

new http://www.w3.org/TR/wsdl
new http://www.w3.org/TR/wsdl
devGenWS.html#IfyouchoosejBrokerWeb1.xcompatibility

5 Web Service Wizard
2. Specify SOAP Options (if displayed):

Option What to do

Target
namespace

Specify the target namespace for SOAP messages produced by the
generated stub and skeleton classes. Method and parameter names
are scoped to this namespace when SOAP messages go over the
wire.

You can accept the default value or specify any string for the
namespace. It doesn’t have any special semantics beyond
providing a scope for SOAP messages.

When generating a WSDL file, the wizard uses this value for the
targetNamespace definition.

Service address Specify the URL to be used as the binding for accessing your Web
Service. The wizard includes this binding information in the
following generated files:

• The stub class (xxx_Stub.java) and service implementation
class (xxxServiceImpl.java) use it as the default URL for
binding to the Web Service.

• The WSDL file (xxx.wsdl) uses it as the SOAP address in the
service definition.

The default value for this option includes the name of the selected
WAR project and the servlet mapping for the Web Service. For
example:

http://localhost/WebServiceSample/MyObject

If you plan to deploy the Web Service to the SilverStream eXtend
Application Server, you need to insert the name of the target
database in the URL:

http://localhost/WebServiceSampleDB/WebServiceSample/
MyObject
22 Panel details

eXtend Workbench Tools Guide
3. Click Finish.

Binding style Choose one of the following:

• Document style & literal encoding In this format, the SOAP
message body contains just the XML document being
exchanged and message parts map to elements literally defined
in the WSDL file's XML schema

• RPC style & SOAP encoding In this format, the SOAP
message body contains argument and return values, individually
wrapped in ad hoc elements that the recipient must interpret by
applying specified encoding rules to each message part's type

When making this choice, consider the requirements of any other
Web Service environments your Web Service must interoperate
with. In most cases either style should work, but some
environments may favor a particular style.

Option What to do
Panel details 23

5 Web Service Wizard
24 Panel details

6
 Source Editors Chapter 6
Workbench provides two sets of editors, one set based on open-source NetBeans editors and the
other set native to Workbench:

• NetBeans-based editors

• Java Editor

• JSP Editor

• HTML Editor

• XML-related editors

• Native editors

• Text Editor

• Text views of the Deployment Descriptor Editor, Deployment Plan Editor, and WSDL
Editor

• Non-default versions of the Java, JSP, and HTML editors

This chapter describes the basic functionality of these editors:

• Common features

• The NetBeans-based editors

• The native editors

Specialized features Other chapters in this guide cover the specialized features of the
following editors:

• Chapter 7, “XML Editors”

• Chapter 8, “WSDL Editor”

• Chapter 10, “Deployment Descriptor Editor”

• Chapter 11, “Deployment Plan Editor”
1

6 Source Editors
Common features
This section describes features common to all Workbench editors.

• Standard editing features

• Editor preferences

• Searching across multiple files

• Using text abbreviations

• Changing case

• Changing spaces, tabs, and indentation

Standard editing features

All Workbench editors provide these text-editing features:

To perform this function Use this menu item

Cut, copy, and paste Under Edit:

• Cut (or Ctrl+X)

• Copy (or Ctrl+C)

• Paste (or Ctrl+V)

Undo and redo Under Edit:

• Undo (or Ctrl+Z)

• Redo (or Ctrl+Y)

Select all text Under Edit:

• Select All (or Ctrl+A)

Toggle the display of line
numbers

Under View:

• Line Numbers (or Ctrl+L)
2 Common features

eXtend Workbench Tools Guide
Editor preferences

Much of the editor display and behavior can be configured in the Text Editing tab on the
Preferences dialog, which you can access using Edit>Preferences. This tab contains settings
such as font size displayed in the editors, spaces per tab character, whether to show line
numbers, and so on.

	 For details, see “Text editing preferences” on page 16.

Searching across multiple files

You can search across multiple files at once. You can search through:

• All files that are open in Workbench

• Files that are in all open projects

• Files in a specified open project

• Specified files on the file system

Find and replace Under Search:

• Find (or Ctrl+F)

• Find Next (or F3)

• Replace (or Ctrl+R)

NOTE You can also search across multiple files. See
“Searching across multiple files” on page 3.

NOTE The native editors provide support for regular
expression search. See Regular Expressions for
Text Searches in the Reference.

Moving cursor to a line Under Edit:

• Go To Line (or Ctrl+G)

To perform this function Use this menu item
Common features 3

refRegExp.html
refRegExp.html

6 Source Editors
¾ To search across multiple files:

1. Select Search>Find in Files or press Ctrl+Shift+F.

The multiple-search Find dialog displays.

NOTE You can also access the multiple-search feature from the standard Find dialog in
the native editors by clicking the Find in Files button.

2. Specify the following:

3. Click OK.

Workbench searches through the specified files. All lines of text containing matching text
are listed in the Find tab of the Output Pane.

4. To display the found text, double-click the line of text in the Output Pane. You can view
each instance of found text in its corresponding source file:

• Select Search>Next Occurrence (or press F4)

• Select Search>Previous Occurrence (or press Shift+F4)

Using text abbreviations

You can define abbreviations that can be expanded to one or more lines of text. For example,
you can specify that a word can expand to a predefined language construct. For example, the
abbreviation main might be defined to expand to this code in a Java file:

public static void main(String args[])
{

}

Field Description

Search for The text to search for. You can select previously searched text.

Search in The set of files you want to search through

Direction Whether to search forward or backward

Match case Whether the found text must match the case of the search text

Match whole word Whether the found text must be complete words

Regular expression Regular expression to search for. For details, see Regular
Expressions for Text Searches in the Reference.
4 Common features

refRegExp.html
refRegExp.html

eXtend Workbench Tools Guide
The abbreviations defined in Workbench appear on the Abbreviations tab of the Preferences
dialog (Edit>Preferences). From this dialog you can define new abbreviations and change or
delete existing abbreviations. For details, see “Abbreviations preferences” on page 19.

Once you have defined an abbreviation, you can replace its name with the associated expanded
text using Edit>Text Tools>Complete Abbreviation (or by pressing Ctrl+U).

Changing case

You can easily change the case of text.

Changing spaces, tabs, and indentation

You can change how the native editors use spaces, tabs, and indentation using the menu items
under Edit>Text Tools.

To perform this function Use this menu item

Changing case of word
containing insertion point

Under Edit>Text Tools:

• To Uppercase

• To Lowercase

To make this change in your text file Do this

To change spaces to tabs or tabs to spaces Under Edit>Text Tools:

• Spaces to Tabs

• Tabs to Spaces

If you select text before choosing these
menu items, only that text is affected; if
nothing is selected, the entire file is affected
Common features 5

6 Source Editors
The NetBeans-based editors
The core Workbench editors are based on NetBeans, an open-source Java-based framework and
set of editors. The core Workbench editors are:

• Java Editor

• JSP Editor

• HTML Editor

• XML-related editors (the XML-related editors have different features than the other
NetBeans-based editors and are described in Chapter 7, “XML Editors”)

NOTE Previous releases of Workbench used native versions of the Java, JSP, and HTML
editors. The native versions are still provided with Workbench, and you can configure
Workbench to use them instead of the NetBeans versions. See “Using the native Java,
JSP, or HTML editor” on page 15.

The following sections describe the NetBeans-based editors.

• Color coding

• Code completion

• Adding files types edited by NetBeans-based editors

• Other editing support

To remove trailing whitespace Under Edit>Text Tools:

• Remove Trailing Whitespace

If nothing is selected, this action works on
the current line; otherwise it acts on all
selected lines

To change the indentation level Under Edit>Text Tools:

• Shift Right

• Shift Left

You must select text on at least one line
before you can select either of these menu
items

To make this change in your text file Do this
6 The NetBeans-based editors

eXtend Workbench Tools Guide
Color coding

The NetBeans-based Java, JSP, and HTML editors color-code syntactic elements to make it easy
for you to read your code.

The Java Editor uses special colors for these elements:

The HTML Editor uses colors for these elements:

Syntactic element Color

Java keyword Blue

Method call Bold black

String literal Red

Numeric literal Gray

Matching brace Magenta

Comment Green italics

Syntactic element Color

Tag Blue

Tag attribute Green

Attribute value Red

Character reference Red

SGML declaration Orange

Matching brace Magenta

Comment Gray italics
The NetBeans-based editors 7

6 Source Editors
The JSP Editor uses the same colors for Java components as the Java Editor and the same colors
for HTML components as the HTML Editor, plus:

Code completion

As you are coding your Java in the Java Editor (or coding Java in a JSP page using the JSP
Editor), you can use the Workbench’s code completion feature. As you type, you can display a
list of possible classes, methods, variables, and so on that can be used to complete the Java
expression.

The elements displayed in the Java code completion box are defined by Workbench parser
database files. Workbench ships with predefined parser files that include the following classes:

• J2EE 1.2

• JDK 1.3

• Servlet 2.3

• xalan and xerces (the versions that ship with Workbench)

• Ant (the version that ships with Workbench)

• jBroker Web (the version that ships with Workbench)

You can create your own parser database files to make your own classes available for code
completion. For details, see “Creating parser database files” on page 10.

Syntactic element Color

Block of Java Orange background

JSP tag/directive Bold blue with gray background

JSP tag attribute Green

JSP tag attribute value Magenta

JSP comment Bold gray
8 The NetBeans-based editors

eXtend Workbench Tools Guide
¾ To complete a Java expression:

1. In the Java Editor or in a block of Java code in the JSP Editor, type the first few characters
of the expression, such as:

String srcname;
srcname.

2. Press Ctrl+Space or Ctrl+\, or pause after typing a period, a comma, or the keyword new
or import (followed by a space).

The code completion box is displayed, providing a scrolling list of possible classes,
methods, variables, and so on that can complete your expression.

In the preceding screen shot, the box lists methods and fields available for strings.

For methods and fields, the code completion box displays only static or only nonstatic
options, depending on the context of your code. The options are color-coded:

• Classes, methods, and exceptions are red

• Arguments are magenta

• Interfaces are gray

• Fields are blue
The NetBeans-based editors 9

6 Source Editors
3. While the code completion box is displayed, you can do the following:

Inserting methods If you select a method with arguments, the method is inserted with
replacement text for the first argument. If you specify that argument and type a comma, the
completion box opens again so you can insert in the next argument, and so on.

Workbench displays the data type of the entered arguments in the title of the code completion
box; it displays a question mark if it can’t recognize the type. If you enter an argument that does
not match any of the recognized argument lists for the method name, all the recognized methods
are displayed (along with their argument list), and an asterisk (*) appears for the unrecognized
argument(s) in the title of the code completion box.

Creating parser database files

The items displayed in the code completion box are defined by the Workbench parser database
files. You can have Workbench create database files of your own classes so that they are listed
in the code completion box when appropriate.

¾ To create the parser database files:

1. Open a project.

2. Build the project.

3. Select Edit>Preferences.

4. Select the NetBeans Directories tab.

Do this In order to

Continue to type Dynamically update the list of items in the code
completion box based on your current entry

Select an item and press Enter Insert an item into your code and close the code
completion box

Select an item and press
Shift+Enter

Insert an item into your code and keep the code
completion box open

Press Tab Insert into your code the letters that are common to
all the items in the list and keep the box open

Press Escape Close the box without inserting anything
10 The NetBeans-based editors

eXtend Workbench Tools Guide
5. To add your parser files to the same database (directory) as the predefined files, select the
directory in the Java Completion Directories box. To put the files in a different database
(directory), click Add, specify the directory, and select it.

6. Click Create.

The Update Parser Databases dialog displays.

7. Specify the following information:

8. Click OK to add the files to the parser database.

If you later make changes to your project and want the changes to be reflected in the code
completion lists, you must recreate the parser database files.

Adding files types edited by NetBeans-based editors

By default, Workbench is configured to edit .java, .jsp, and .html files with the NetBeans-based
editors. You can specify additional file types to edit with these editors. For example, you might
have .htm files that you want to edit with the NetBeans-based HTML Editor. You would add
.htm as a file type for the HTML Editor.

¾ To edit additional file types with NetBeans-based editors:

1. Select Edit>Preferences.

2. Select the Editor Setup tab.

This tab lists the NetBeans kits that are installed and allows you to specify which you want
to use.

The list at the bottom of the tab maps file extensions to a NetBeans kit.

3. To add a file type, click Add.

Setting Description

Parser database file prefix The names of the parser files that will be created.
Workbench will create two files: prefix.jcb and
prefix.jcs.

Java source file directory The root of the directory containing your project’s
source files, such as c:\myProject\src

Classes, Methods, and Fields The visibility of the objects you want to include in
the database
The NetBeans-based editors 11

6 Source Editors
4. Specify the file extension (wild cards are not supported) and the appropriate NetBeans
editor kit.

5. Click OK.

The additional file type is listed in the Extension mappings table. When you open a file
with the specified extension, it will open in the associated NetBeans-based editor.

NOTE You can also specify that you do not want to use a NetBeans-based editor to edit .java,
.jsp, or .html files, in which case Workbench will use the corresponding native editor.
For details, see “Using the native Java, JSP, or HTML editor” on page 15.

Other editing support

The NetBeans-based editors also provide the following special editing features.

Navigating and selecting text

Keys Description

Alt+Shift+T Moves the insertion point to the top of the window

Alt+Shift+M Moves the insertion point to the middle of the window

Alt+Shift+B Moves the insertion point to the bottom of the window

Alt+J Selects the word the insertion point is on, or deselects any
selected text

Ctrl+Up Arrow Scrolls the window up without moving the insertion point

Ctrl+Down Arrow Scrolls the window down without moving the insertion
point
12 The NetBeans-based editors

eXtend Workbench Tools Guide
Deleting text

Searching for text

Changing indentation

Keys Description

Ctrl+E Deletes the current line

Ctrl+H Deletes the character preceding the insertion point

Ctrl+W Deletes the current word or the word preceding the insertion
point

Keys Description

Ctrl+F3 Searches for the word the insertion point is in and highlights all
occurrences of that word

F3 Moves the insertion point to the next occurrence of the found
word

Shift+F3 Moves the insertion point to the previous occurrence of the
found word

Alt+Shift+H Toggles highlighting of words

Keys Description

Ctrl+T Shifts text in line containing the insertion point to the right

Ctrl+D Shifts text in line containing the insertion point to the left
The NetBeans-based editors 13

6 Source Editors
Bookmarks

The native editors
The core Workbench editors are based on NetBeans and have the features described above. The
following editors are native to Workbench and have a different feature set:

• Text Editor

• Text views of the Deployment Descriptor Editor, Deployment Plan Editor, and WSDL
Editor

• Non-default versions of the Java, JSP, and HTML editors

The following sections describe the native editors.

• Changing line ending characters

• Multiple clipboard support

• Viewing and changing read-only and read-write attributes

• Using the native Java, JSP, or HTML editor

• Inserting custom tags in a JSP page

Changing line ending characters

You can convert all DOS-style line ending characters to UNIX-style line ending characters by
selecting Edit>Text Tools>Convert to UNIX Line Endings. To convert all UNIX-style line
endings to DOS-style endings, select Convert to DOS Line Endings.

NOTE Changing line endings causes no visual change in the editor.

Keys Description

Ctrl+F2 Sets or unsets a bookmark at current line

F2 Goes to next bookmark
14 The native editors

eXtend Workbench Tools Guide
Multiple clipboard support

You can copy or move multiple instances of text. The editor keeps track of your most recently
used clipboards. Copying and cutting multiple times creates a clipboard with multiple listings.
When you press Control+Shift+V, the editor lets you select which text to paste.

Viewing and changing read-only and read-write attributes

When you open a file in a native editor, Workbench displays in the bottom-right corner whether
the file has read-only (RO) or read-write (RW) permission. If a file is in RO mode, you cannot
make changes to it in the editor. You can switch between RO and RW mode by clicking on this
indicator.

Switching from RO to RW mode enables you to make changes in the editor. However, the
ability to write to the file (for example, using File>Save) is still controlled by the file system
permissions for that file. You cannot save changes to a file unless the file is marked writable by
the file system.

Using the native Java, JSP, or HTML editor

By default, Workbench uses NetBeans-based Java, JSP, and HTML editors (see “The NetBeans-
based editors” on page 6). If you want, you can use the native versions of these editors in order
to get the functionality described above for the native editors (plus, with the native JSP Editor,
you can use the Custom Tag Wizard; see “Inserting custom tags in a JSP page” on page 16).

¾ To use the native Java, JSP, or HTML editors:

1. Select Edit>Preferences.

2. Select the Editor Setup tab.

This tab lists the NetBeans kits that are installed and allows you to specify which you want
to use.

The list at the bottom of the tab maps file extensions to a NetBeans kit.

3. If you do not want to use the NetBeans-based editor for a file type (and instead use the
native editor), select the file type in the Extension mapping table and click Remove.

4. Click OK to confirm.

File types no longer in the list will use the corresponding native editor, providing the features
described for the native editors.
The native editors 15

6 Source Editors
Inserting custom tags in a JSP page

In JSP pages, custom tags enable you to extend the functionality provided by standard JSP tags,
either by writing your own tag library or by using a tag library provided by a third party, such as
the Jakarta project. Tag libraries consist of the Java classes that provide functionality for the tags
and a tag library descriptor file, an XML document that describes the tag library.

You import a tag library into a JSP page using a taglib directive that specifies the location of the
tag library descriptor file and declares an identifier that you can use as a prefix to reference the
various tags in that library. For example:

<%@ taglib uri="/WEB-INF/tlds/app.tld" prefix="apptags" %>

references a tag library called app.tld, located in the /WEB-INF/tlds directory in the archive.
You can refer to tags in the library using the apptags prefix. For example, if the tag library
contains a tag called AskUserName, you could create an instance of that tag in the JSP page
using this line:

<apptags:AskUserName></apptags:AskUserName>

The Custom Tag Wizard

The native Workbench JSP Editor provides a Custom Tag Wizard that enables you to easily
insert custom tags into a JSP page.

¾ To insert JSP custom tags using the Custom Tag Wizard:

1. Create the classes and descriptor files for your tag library.

2. Add the classes and descriptor files to your Workbench project. A typical location for
class files is a WEB-INF/classes directory; for descriptor files, it is typically WEB-
INF/tlds.

3. Edit the JSP file in which you want to use the custom tags, adding a taglib directive to
import the tag library.

4. Position the cursor at the point in the JSP file where you want to insert a custom tag.
16 The native editors

new http://jakarta.apache.org

eXtend Workbench Tools Guide
5. Select Edit>Insert Custom Tag>Custom Tag Wizard.

NOTE You must be using the native JSP Editor to access this wizard. See “Using the
native Java, JSP, or HTML editor” on page 15).

If the page has more than one taglib directive, a list of all tag libraries specified on the
page displays. For example:

Select the tag library you want to use and click Next.

6. If Workbench cannot find the tag library specified, it prompts you to locate it on your file
system.

7. Once you have specified the tag library, a list of all tags contained in that library displays.
For example:
The native editors 17

6 Source Editors
8. Select the tag you want to insert and click Finish. The custom tag code appears in the JSP
file. For example:

In this example, the following lines were added manually in Step 3:
<%@ taglib uri="SampleTags" prefix="Sample" %>
<%@ taglib uri="CustomTags" prefix="Custom" %>

The wizard added this line to instantiate the custom tag:
<Sample:AttributeTag message=""></Sample:AttributeTag>

9. If necessary, modify the code inserted by the wizard to complete the tag specification. For
example, in the tag in the preceding example you would specify a value for the message
attribute.
18 The native editors

7
 XML Editors Chapter 7
This chapter describes the facilities that Workbench provides to work with XML and XML-
related files. It contains the following topics:

• About XML

• XML support in Workbench

• Using the XML Editor

• Creating and opening XML documents

• Associating Schemas and DTDs with XML documents

• Converting a DTD to a Schema

• Editing an XML document

• Using the Schema Guide

• Validating an XML document

• Searching an XML document

• Maintaining the XML catalog

• Using the XSL Editor

• Keyboard shortcuts

About XML
XML (Extensible Markup Language) is a language designed to facilitate the exchange of data
between computer systems (which can be of different types) and applications on the Web. XML
is a project of the World Wide Web Consortium (W3C). It is a standard, public format.

Unlike HTML, XML is extensible. It is a metalanguage, a language that describes other
languages. With XML, you can define customized markup languages to describe any type of
document structure. XML can be used to specify the structure of anything from a recipe (which
might consist of descriptions, ingredients, preparation steps, and so on) to a Web application
(WAR deployment descriptors are XML documents).

The definition of an XML document is specified by either a Document Type Definition (DTD)
or a Schema. DTDs, which are older, specify the structure of an XML document. They specify
the names of elements, attributes, and entities that can exist in a conforming XML document.
DTDs also specify where the elements can be used, whether they are required, and so on.
1

7 XML Editors
Schemas are more recent and more powerful. They can specify the structure as well as the
content (data types) allowed in XML documents. Unlike DTDs, Schemas are themselves XML
documents.

	 The complete XML standard can be found at http://www.w3.org/XML.

TIP If you are new to XML, you might want to read the XML FAQ at http://www.ucc.ie/xml.
Among other topics, it describes the differences between Schemas and DTDs.

XML support in Workbench
Workbench provides comprehensive support for working with XML files, including:

• XML-related wizards:

• XML Wizard to create an XML file

• XML Catalog Wizard to create a catalog entry file

• DTD to Schema Wizard to convert a DTD to an XML Schema

• XML-related editors:

• XML Editor

• XML Catalog Editor

• XSL Editor

This chapter describes these XML facilities.

Using the XML Editor
The XML Editor lets you:

• View and edit XML documents in a syntax-colored Source View or a Tree View

• Easily create and modify document elements through the editor’s context-based code
completion and the Schema Guide window

• Attach a Schema or DTD to an XML document

• Detach a Schema or DTD

• Validate an XML document against a Schema or DTD

• Convert a DTD to a Schema
2 XML support in Workbench

new http://www.w3.org/XML
new http://www.ucc.ie/xml

eXtend Workbench Tools Guide
Using the Source View

The Source View provides you with a powerful XML source editor. In addition to standard text
editing features—including cut-and-paste editing, undo and redo, and searching and replacing
text—it supports these specialized features for editing XML files:

• Context-sensitive code completion (see “Editing an XML document” on page 11)

• Formatting of XML elements (see “Modifying text” on page 35 and “Changing
indentation” on page 37)

• Navigating by XML elements (see “Moving the insertion point” on page 33)

• Finding matching tags (see “Moving the insertion point” on page 33)

• Bookmarks (see “Bookmarks” on page 37)

• Specifying colors to display different types of information (see “XML Editor color
preferences” on page 24)

The XML Editor displays the current XML document in the Source View if you click the XML
Source View tab.

Using the Tree View

The Tree View has special features designed to help you create valid XML documents quickly
and easily based on XML Schemas or DTDs. The Tree View supports:

• Context-sensitive editing (see “Editing an XML document” on page 11)

• Cut-and-paste editing (see “Editing objects” on page 16)

• Drag and drop (see “Editing objects” on page 16)
Using the XML Editor 3

7 XML Editors
• Searching by name, value, or XPath (see “Searching an XML document” on page 23)

• Finding matching elements (see “Navigation and display” on page 30)

The XML Editor displays the current XML document in the Tree View if you click the XML
Tree View tab.

NOTE The Tree View does not show or manipulate XML comments.

Tree View display buttons

Icon Description

Expand element list (show subelements as well as the text value and
CDATA for the element)

Collapse element list

Display menu allowing you to toggle the display of all elements’
attributes and namespace declarations

Display menu allowing you to show or hide an element’s attributes and
namespace declarations
4 Using the XML Editor

eXtend Workbench Tools Guide
Tree View icons

Creating and opening XML documents
You can create new XML documents or work with existing ones.

¾ To create a new XML document:

1. Select File>New.

2. On the XML tab, select XML file.

Icon Description

Document

Element

Text value of an element (for example, the text value of <myTag>the
text</myTag> is the text)

CDATA

Attribute

Required attribute

Namespace declaration

Search result

Indicates that the XML cannot be parsed
Creating and opening XML documents 5

7 XML Editors
3. To create a blank XML document, deselect Use Wizard and click OK. An empty XML
document is created and displayed in the XML Editor.

To use the XML Wizard, select Use Wizard and click OK. The XML Wizard displays. Go
through the wizard as follows.

4. Specify the name and location of the XML file and click Next.

5. Specify a Schema or DTD to associate with the XML file. You can:

• Select a Schema URI from the list of Schemas in the Workbench catalog; the
corresponding file name is displayed in the File Name field

• Select a public or system identifier from the list of DTDs in the Workbench catalog; the
corresponding file name is displayed in the File Name field

• Select a Schema or DTD directly from the file system by clicking Browse and
selecting the file

	 For more information about the Workbench catalog, see “Maintaining the XML
catalog” on page 24.

6. Click Finish.

The XML Editor displays the Schema Guide.

7. You can use the Schema Guide, or click Close to edit the file manually.

	 For information about the Schema Guide, see “Using the Schema Guide” on page 16.

¾ To open an XML document:

1. Select File>Open.

2. In the Open dialog, select the XML file and click Open.

The file extension must be .XML, .XSD (for a Schema file), or .TLD (for a tag library
descriptor file).

The file opens in the XML Editor. If you opened an .XML or .TLD file, there is a new
XML Editor item on the menu bar.

NOTE An XML file might instead be opened by a specialized XML editor, such as the
XML Catalog Editor or Deployment Descriptor Editor.

Finding Schemas and DTDs If the XML document specifies a Schema or DTD,
Workbench searches for it when opening the document. If Workbench finds the Schema or
DTD, it attaches it to the XML document. If the reference is unqualified, Workbench first looks
in its XML catalog; if Workbench doesn’t find the Schema or DTD there, it looks in the
directory containing the XML document.

If the XML Editor cannot find the referenced Schema or DTD, you receive an error message in
the Output Pane and the document is opened without being attached to the Schema or a DTD.
6 Creating and opening XML documents

eXtend Workbench Tools Guide
	 For more information, see “Associating Schemas and DTDs with XML documents” on
page 7.

The window title for an XML document specifies whether the document is attached to a Schema
or DTD.

Associating Schemas and DTDs with XML documents
In order to use context-sensitive code completion and to validate your document, an XML
Schema (.XSD file) or a DTD (.DTD file) must be attached to the document.

If Workbench didn’t attach a Schema or DTD when opening an XML document, you can
manually attach a Schema or DTD or modify your XML document to specify a Schema or DTD
and refresh Workbench.

Attaching a Schema or DTD to a document

You can attach a Schema or DTD that is in the Workbench XML catalog or elsewhere on the file
system to an open XML document.

	 For more information about the Workbench XML catalog, see “Maintaining the XML
catalog” on page 24.
Associating Schemas and DTDs with XML documents 7

7 XML Editors
¾ To attach a Schema or DTD to an XML document:

1. Select XML Editor>Attach Schema or DTD.

2. Specify a Schema or DTD to associate with the XML document. You can:

• Select a Schema URI from the list of Schemas in the Workbench catalog; the
corresponding file name is displayed in the File Name field

• Select a public or system identifier from the list of DTDs in the Workbench catalog; the
corresponding file name is displayed in the File Name field

• Select a Schema or DTD directly from the file system by clicking Browse and
selecting the file

3. Click OK.

The Schema or DTD is now attached to your XML document. You can use the XML
Editor’s context support for editing, and you can validate your document.

NOTE Attaching a Schema or DTD to an XML document is only for the purpose of context
editing and validation in the XML Editor; it doesn’t modify the XML document itself.
See the next section for permanently associating a Schema or DTD with the document.

Errors Any errors that occur when attaching a Schema or DTD are reported in the Messages
tab of the Output Pane.
8 Associating Schemas and DTDs with XML documents

eXtend Workbench Tools Guide
Specifying a Schema or DTD in the XML document

After opening an XML document, you might want to permanently associate the document with
a Schema or DTD and make Workbench aware of the association.

¾ To associate the document with a Schema or DTD and update
Workbench:

1. Edit the open XML document to specify the associated Schema or DTD. For example, to
associate the document with a DTD, edit its DOCTYPE statement.

2. Update Workbench to use the association by selecting XML Editor>Refresh Schema
Handler.

Workbench parses the XML document and updates the DTD or Schema information
associated with the document.

Errors Any errors that occur when updating the Schema or DTD information are reported in
the Messages tab of the Output Pane.

Detaching a Schema or DTD

You can detach a Schema or DTD from an open XML document.

¾ To detach a Schema or DTD:

• Select XML Editor>Detach Schema or DTD.

The Schema or DTD definition is no longer used by the XML Editor. Context editing and
validation are no longer provided for the open document.

The Schema or DTD is not permanently detached. The next time you open the XML document,
if the document specifies a Schema or DTD that Workbench can find, the Schema or DTD will
be attached again.
Associating Schemas and DTDs with XML documents 9

7 XML Editors
Converting a DTD to a Schema
Schemas are more powerful than DTDs and are becoming the standard for defining the structure
and allowable content type for XML documents. Also, unlike DTDs, Schemas are themselves
XML documents and can be edited and validated in the XML Editor.

If you have been using DTDs, you can use Workbench to convert a DTD to a Schema. You can:

• Convert a DTD on the file system to a Schema

• Convert the DTD attached to an open XML document to a Schema

¾ To convert a DTD on the file system to a Schema:

1. Select File>New.

2. On the XML tab, select DTD to Schema and click OK.

3. Specify the DTD to convert. You can click the ellipses button to browse the file system for
the DTD file. The file must have the extension .DTD.

4. Specify the name of the Schema file to generate. Don’t provide a file extension; the file
will be given the extension .XSD.

5. Specify the location to save the Schema file. You can click the ellipses button to browse
the file system.

6. Specify whether you want the Schema opened in the XML Editor after it is created.

7. Click Finish.

Workbench converts the DTD to a Schema, stores the Schema in the specified location,
and displays the Schema in the XML Editor if you specified to open it.

¾ To convert a DTD attached to an open document to a Schema:

1. Attach a DTD to an open XML document.

2. Select XML Editor>Convert DTD to Schema.

A file save dialog displays.

3. Specify the name and location of the Schema. Don’t provide a file extension; the file will
be given the extension .XSD.

4. Click Save.

The Schema is saved.

What to do next You can edit the generated Schema file in the XML Editor and attach it to
an XML document for context editing and validation. If you want to permanently associate the
Schema with an XML document, edit the XML document to specify the Schema.
10 Converting a DTD to a Schema

eXtend Workbench Tools Guide
Editing an XML document
You can edit an XML document using either Tree View or Source View. If you have attached a
Schema or DTD, you can use the XML Editor’s context support.

About context support

Workbench provides context editing in both the Tree View and the Source View.

Context support in Tree View

In Tree View, right-click at the appropriate location in the document. In the following
illustration, a new person is being added to the document, and the XML Editor detects from the
Schema that the next valid element is name.
Editing an XML document 11

7 XML Editors
Once the name has been added, the XML Editor presents the new list of valid elements,
according to the Schema.

Similarly, the editor presents valid attributes when you have an element selected.
12 Editing an XML document

eXtend Workbench Tools Guide
Notice that the editor also provides the choice Other, allowing you to define an entry that does
not conform to the Schema. If you choose Other, you see a dialog similar to the following:

Using the Schema Guide In addition to using the context menu to edit your XML
document, you can use the Schema Guide for more comprehensive context support. See “Using
the Schema Guide” on page 16.

Context support in Source View

In Source View, after you type < (to start an element tag) or a single space within an element (to
define an attribute), the editor displays the valid entries (if there are any). For example:
Editing an XML document 13

7 XML Editors
Here a space has been typed in the url element, which results in a display of the valid attribute,
href:

Adding elements

¾ To add an element in Tree View:

1. Select where you want to insert the element.

2. Right-click and select Insert New Element to insert an element inside the current
element, or select Insert New Element Before to insert an element before the current
element at the same level.

If valid elements can be inferred from the definition of the document, they will be listed.

If no element can be inferred, you can add an element by choosing Other. You are warned
that the new element might not be valid.

¾ To add an element in Source View:

1. Position the insertion point where you want to insert the element.

2. Type <.

If valid elements can be inferred from the definition of the document, they will be listed.

If no element can be inferred, you can add an element by typing it.
14 Editing an XML document

eXtend Workbench Tools Guide
Adding attributes

¾ To add an attribute in Tree View:

1. Select the element to contain the new attribute.

2. Right-click and select Insert New Attribute.

If valid attributes can be inferred from the definition of the document, they will be listed.

If no attribute can be inferred, you can add an attribute by choosing Other. You are
warned that the new attribute might not be valid.

¾ To add an attribute in Source View:

1. Position the insertion point inside an element where you want to insert the attribute.

2. Type a space.

If valid attributes can be inferred from the definition of the document, they will be listed.

If no attribute can be inferred, you can add an attribute definition by typing it.

Adding namespace declarations

¾ To add a namespace declaration in Tree View:

1. Select the element for the namespace declaration.

2. Right-click and select Insert New Namespace Declaration.

The Insert Namespace Declaration dialog displays.

3. Specify the prefix, URL, and Schema location for the namespace.

4. Click OK.

¾ To add a namespace declaration in Source View:

• Add the namespace declaration to the element definition.
Editing an XML document 15

7 XML Editors
Editing objects

¾ To copy, move, or delete objects in Tree View:

• You can use drag-and-drop to move objects, or use the right-mouse-button menu to
perform the following actions:

• Cut or Copy to place an object on the clipboard, then Paste to insert it before a selected
object or Paste As Child to insert it as the last child of a selected object

TIP Cut and Copy also place contents on the system clipboard, so you can paste a
textual representation of the tree contents into other applications. Similarly, you
can paste textual XML contents from other applications into Tree View.

• Delete Node to delete an element and all its subelements

• Delete Attribute to delete an attribute

• Delete Namespace Declaration to delete a namespace declaration

In all cases, you will be informed if the edit would result in an invalid document. You can
choose whether to continue.

¾ To copy, move, or delete objects in Source View:

• Use the standard editing features, including cut and paste, in the editor.

Reversing changes All editing actions can be undone by selecting Edit>Undo or pressing
Ctrl+Z, or redone by selecting Edit>Redo or pressing Ctrl+Y.

Using the Schema Guide
The context editing functionality described above is very useful when editing XML documents,
but doesn’t always provide all the information you might want. For example:

• It doesn’t show exactly how a Schema (or DTD) is put together and what elements and
attributes are allowable at different locations.

• It doesn’t indicate whether an element must include a sequence of child elements before it
is legal. For example, say element A must have elements B, C, and D as children to be
valid. When you insert an instance of A, the standard context support described above
suggests element B as a valid subelement. If B is inserted alone the document becomes
invalid until you have inserted C and D. With the standard context support, you wouldn’t
know this unless you perform a full validation of the document.
16 Using the Schema Guide

eXtend Workbench Tools Guide
• If you are looking for a specific element to insert, for instance D in the example above,
with the standard context support you wouldn’t be informed about D unless you have
inserted B and C first.

• If an element contains illegal children, the standard context support doesn’t suggest new
elements to insert, so you must perform a full validation to find out where the problem is
and then correct it.

The Schema Guide addresses these situations.

¾ To invoke the Schema Guide:

1. Select Tree View in the XML Editor or XML Catalog Editor.

2. Do one of the following:

• Right-click an element whose contents you want to edit and select Schema Guide.

• Select an element and press Ctrl+Shift+G.

The Schema Guide opens in a new window.

The Schema Guide window
Using the Schema Guide 17

7 XML Editors
The Schema Guide window consists of four parts:

• The top of the window displays the XPath for the selected element, its namespace,
documentation for the element’s type (if any, taken from comments in the DTD or
annotation elements in the Schema), and a textual DTD-like description of the element’s
allowed contents

	 For more information about XPaths, see “XPaths” on page 22.

• The left side contains a graphical representation of the definition of the selected element

• The right side contains a tree representation of the actual instance of the selected element,
including its attributes and children (but not its children’s children)

• The bottom of the window contains wizard-style buttons

In the screen shown above, the second person element (/personnel/person[2]) was selected
when the Schema Guide was invoked.

About the left pane

The left pane shows the element’s subelements as well as the Schema model groups they belong
to (Choice, Sequence, or All) or the model group declarations (for example, schemaTop).

• Choice groups are shown with two elements on each row, with a horizontal bracket above
and below

• Sequence groups are shown with one element in each row and a vertical bracket on the left
and right hand side of the contained elements

• Attributes and All groups are displayed in boxes

Positioning the mouse pointer over an element displays a tool tip describing the element if there
is documentation for the element in the Schema or DTD.

The Schema Guide also displays how many instances of each subelement and attribute are
allowed. If exactly one of the subelement or attribute is required, no enumeration is shown.
Otherwise, the Schema Guide displays the requirement (such as “0 or more”, “0 or 1”, or “1 or
more”).

The Schema Guide is invoked automatically when you use the XML Wizard to create an XML
document. You can also invoke it when the document is empty and has a Schema attached. In
this situation, the Schema Guide lists in the left pane possible root elements. If using a DTD, the
description in the header will show the suggested root elements (that is, those elements that are
not in the content model of other elements).
18 Using the Schema Guide

eXtend Workbench Tools Guide
About the right pane

The right pane displays the standard Tree View of the XML Editor to show the element that was
selected when the Schema Guide was invoked, its attributes, and its immediate children.

Subelements that are not legal are shown with a red background. If the selected element contains
an illegal attribute, the element itself is marked with red. Clicking on a colored element displays
a similarly colored region of text along the bottom of the tree. The text describes the issue in
more detail.

In many cases, the Schema Guide can fix validation errors, either by removing illegal elements
or attributes, or by moving an element from a wrong namespace into a correct one. In the
following example, the Schema Guide is indicating that the age element is invalid in the person
element. You can delete the invalid element by clicking Delete.

Namespace errors are treated separately. These errors are common when dealing with Schemas,
because Schemas can contain elements from several namespaces and have different rules for
whether specific elements or attributes are required to be in a namespace. An element that has
the correct local name for the document to validate correctly but whose namespace is incorrect
is shown with a yellow background. You can use the Change button to move the element to the
correct namespace.
Using the Schema Guide 19

7 XML Editors
Adding elements and attributes

Elements When selecting an element in the left pane, the tree view shows where the element
can be legally inserted by displaying one or more green nodes in the tree. The following screen
shows that an email element can be legally inserted above or below the existing email element.

To insert an element, select one of the green elements in the tree and click Insert. If you don’t
want to insert the element, simply select another object in the left pane to consider.

If you click an element in the left pane that cannot be legally inserted, you will not see any green
entries in the right pane.

Attributes To add an attribute, select it in the left pane. If it is legal to add, you will see a
green attribute in the right pane. Specify the attribute’s value and click Insert.

Looking at different elements

You can navigate the element hierarchy by selecting a subelement in the right pane and clicking
Go to. The subelement becomes the selected element and its definition is now shown in the left
pane and the tree structure for the selected instance is shown in the right pane. You can work
with it the same way you worked with the parent element.
20 Using the Schema Guide

eXtend Workbench Tools Guide
The following screen shows the Schema Guide after the person element’s name subelement was
selected and Go to was clicked.

Click Back to return to working with the parent element.

Validating an XML document
As you type in Source View, the editor automatically highlights in red any areas of the document
that are not well formed. The Tree View creates well-formed documents by design.

You can also manually validate the document for conformance to the Schema or DTD.

¾ To validate an XML document:

• Select XML Editor>Validate to validate an XML document.

NOTE The menu item is enabled only if the XML document is attached to a Schema or
DTD.
Validating an XML document 21

7 XML Editors
The editor validates the XML document against the attached Schema or DTD.

The results The report identifying any malformed statements displays in the Validate tab of
the Output Pane.

XPaths References to errors are reported as XPaths. XPath (XML Path Language) is the
W3C-endorsed language for addressing parts of an XML document. It uses a path notation
similar to an URL for navigating through the structure of the document. (For more information,
see http://www.w3c.org/TR/xpath.)

For example, the XPath /personnel/person[1] indicates the first instance of person in the XML
document, the XPath /personnel/person[2] indicates the second instance of person, and so on.

In the preceding example, the id attribute is reported as missing from the first two person
elements.

TIP You can search for specific XPaths in Tree View. See “Searching an XML document” on
page 23.
22 Validating an XML document

new http://www.w3c.org/TR/xpath

eXtend Workbench Tools Guide
Searching an XML document
You can search your document in either Source View or Tree View.

¾ To search an XML document:

1. In either Source View or Tree View, select Search>Find or press Ctrl+F.

The Find dialog displays.

2. In Source View, you can perform standard text searches. In Tree View, you can specify the
following:

• Element names

• Attribute names and/or values (see “Searching for attributes in Tree View” on page 23)

• XPaths (see “XPaths” on page 22)

3. Click OK to search.

If there is a match, the first match is selected and all matching occurrences are indicated:

• In Source View, matches are highlighted

• In Tree View, elements containing the found text are indicated with the Search Result

icon ()

4. To go to the next occurrence, press F3.

Searching for attributes in Tree View When searching for attributes, you can specify:

• Attribute name only—This will find all attributes of that name, in any element

• Attribute value only—This will find all attributes having the specified value, regardless of
the attribute name

• Attribute name and value—This will find all attributes with the given name and value
Searching an XML document 23

7 XML Editors
You can click Add attribute name and value search to search for elements containing more
than one attribute with a given name and/or value. To be matched, an element must match all of
the specified entries. For example, you could search for all elements having an id attribute and
a salary attribute.

Maintaining the XML catalog
Workbench provides a built-in catalog of widely used Schemas and DTDs. For example, the
catalog includes the Schemas for XSL, WSDL, and XML Schemas; the Sun J2EE DTDs; and
the SilverStream deployment plan DTDs.

When you open an XML document that references a Schema or DTD, if the Schema or DTD is
in the catalog, Workbench associates it with the XML document and enables context editing and
validation.

The Workbench catalog is based on the OASIS XML catalog standard. The OASIS XML
catalog standard specifies a format for mapping external identifiers (public and system
identifiers) and URI references to other URI references. This makes it possible to map, for
example, a URI of a namespace to a local Schema file. The standard specifies that catalogs
consist of one or more catalog entry files, each file specifying a set of catalog entries.

	 For information on the OASIS standard, see http://www.oasis-
open.org/committees/entity/spec.html.

The built-in Workbench catalog consists of three directories in the Workbench Resources
directory:

• SchemaCatalog, which contains a set of Schemas

• DTDCatalog, which contains a set of DTD files

• CatalogFiles, which contains catalog entry files

About the catalog entry files There are four built-in catalog entry files:

• dtdcatalog.xml, which lists all the preinstalled DTDs in the DTDCatalog directory

• schemacatalog.xml, which lists all the preinstalled Schemas in the SchemaCatalog
directory

• user-dtdcatalog.xml and user-schemacatalog.xml, which are initially empty; you can use
them to add entries to the catalog
24 Maintaining the XML catalog

new http://www.oasis-open.org/committees/entity/spec.html
new http://www.oasis-open.org/committees/entity/spec.html

eXtend Workbench Tools Guide
The two DTD-related catalog entry files both point to DTD files in the DTDCatalog directory,
that is, their base directory is specified as ../DTDCatalog. Similarly, the two Schema-related
catalog entry files both point to Schemas in the SchemaCatalog directory, that is, their base
directory is ../SchemaCatalog.

An example For example, say you are working with the personal.xsd document that
contains this declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Because the built-in Workbench catalog entry file schemacatalog.xml lists this URI and maps it
to XMLSchema.xsd in the SchemaCatalog directory, when you open personal.xsd, Workbench
locates its Schema in the local catalog without having to go out to the Internet for it.

Adding to the catalog

You might have Schemas and/or DTDs that you want to add to the Workbench catalog so they
can be located when you open XML documents that use them. You can add Schemas and DTDs
using the existing catalog structure or by extending the structure.

Maintaining the existing structure The easiest way to add entries to the Workbench
catalog is by using the existing catalog directory structure.

¾ To add to the Workbench catalog using the existing structure:

1. Add the .DTD or .XSD file to the DTDCatalog directory or SchemaCatalog directory.

2. Open the corresponding user-editable catalog entry file in the Workbench
Resources\CatalogFiles directory.

• user-dtdcatalog.xml, whose base directory is the Workbench DTDCatalog directory

• user-schemacatalog.xml, whose base directory is the Workbench SchemaCatalog
directory

3. Add the catalog entries to the file.

You edit catalog entry files with the XML Catalog Editor, as described in “Using the XML
Catalog Editor” on page 26.

Extending the catalog structure You can also add entries to the XML catalog by
extending the directory structure, that is, by creating additional directories of Schemas and
DTDs and additional catalog entry files.
Maintaining the XML catalog 25

7 XML Editors
¾ To add to the catalog by extending the directory structure:

1. Add the .DTD and/or .XSD files you want in the catalog to directories on your file system.
You can organize the DTDs and Schemas any way you want, but you will need to create a
catalog entry file for each directory containing DTDs or Schemas.

2. Create catalog entry files for each of the directories using the XML Catalog Wizard:

1. Select File>New.

2. On the XML tab, select XML Catalog file and click OK.

The XML Catalog Wizard displays.

3. Specify the name of the catalog entry file.

4. Specify its location. In order to have Workbench read the catalog entry file, place the
file in the Workbench Resources\CatalogFiles directory.

5. Specify the base URI, that is, the path to the directory containing the DTD or Schema
files. It is through this base URI that Workbench is able to find the DTDs or Schemas
listed in the catalog entry file.

6. Click Finish.

The catalog entry file is opened in the XML Catalog Editor.

7. Add entries as described in “Using the XML Catalog Editor” on page 26.

Using the XML Catalog Editor

When you open a catalog entry file, Workbench displays it in the XML Catalog Editor.

The XML Catalog Editor has three views:

• A Tree View and Source View, which are the same as the corresponding views in the core
XML Editor

• A Catalog View, which presents an interface to the catalog entries
26 Maintaining the XML catalog

eXtend Workbench Tools Guide
The Catalog View has one or more tabs:

• A catalog entry file whose base directory is Resources/DTDCatalog has two tabs: Public
Identifier and System Identifier

• A catalog entry file whose base directory is Resources/SchemaCatalog has one tab:
Schema URI

• A catalog entry file whose base directory is any other directory has three tabs: Schema
URI, Public Identifier, and System Identifier

¾ To add a catalog entry:

• Depending on whether the entry is for a Schema or DTD, select the appropriate tab and
click Insert.

• For a Schema, specify the Schema URI and the resolved URI

• For a DTD, specify either the public or system identifier and the resolved URI

You can also edit and remove entries from the catalog entry file.

CAUTION Don’t delete preexisting DTDs or Schemas from the catalog, because Workbench
might require them.
Maintaining the XML catalog 27

7 XML Editors
¾ To edit an entry:

• Double-click the entry and make whatever edits you want. If you double-click a resolved
URI value, the Browse button is enabled, allowing you to pick another file.

¾ To delete an entry:

• Select the entry and click Delete.

The entry is removed from the catalog entry file (the Schema or DTD itself is unaffected).

Using the XSL Editor
Workbench provides an XSL Editor for you to create and maintain XSL style sheets.

	 For complete information about XSL, see http://www.w3.org/Style/XSL.

¾ To create an XSL file:

1. Select File>New.

2. On the XML tab, select XSL file and click OK.

Workbench generates a skeleton XSL document and displays it in the XSL Editor.

Using the XSL Editor The XSL Editor provides an environment for editing, validating,
and testing XSL files.

Task Description

Editing Use the XSL tab. You can use the keyboard shortcuts
listed under “In Source View” on page 33.

Validating the style sheet Select XSL Editor>Validate.

Workbench displays the results in the Validate tab in
the Output Pane.

	 For more information, see “Validating an XML
document” on page 21.
28 Using the XSL Editor

new http://www.w3.org/Style/XSL/

eXtend Workbench Tools Guide
Attaching or detaching
Schemas/DTDs

Select XSL Editor>Attach Schema or DTD or XSL
Editor>Detach Schema or DTD.

	 For more information, see “Associating Schemas
and DTDs with XML documents” on page 7.

Testing transformations The Result tab allows you to see the result of the
transformation specified by the XSL file:

1. Select XSL Editor>Transform or press
Ctrl+Shift+T and specify a file you want to apply
the XSL style sheet to.

2. Click the Result tab to see the result.

Workbench displays the result of the transformation
in the Edit Pane. If the transformation failed, errors
are listed in the Messages tab in the Output Pane.

3. View the result of the transformation rendered in the
default browser by selecting XSL Editor>View in
browser. (You can also select this menu item from
the XSL tab to specify an XML file to transform and
render in a browser.)

	 For information about the default browser, see
“General preferences” on page 14.

Task Description
Using the XSL Editor 29

7 XML Editors
Keyboard shortcuts
Here are the keyboard shortcuts provided in the XML Editor, XML Catalog Editor, and XSL
Editor.

In Tree View

Navigation and display

Keys Description

Ctrl+A Expands all

Ctrl+Shift+A Collapses all

Ctrl+E Expands element group

Ctrl+Shift+E Collapses element group

Up Arrow Navigates to previous visible node

Down Arrow Navigates to next visible node

Left Arrow Collapses element group

Right Arrow Expands element group

Alt+Up Arrow Navigates to previous sibling (element within an element
group)

Alt+Down Arrow Navigates to next sibling

Alt+Left Arrow Navigates to parent

Alt+Right Arrow Navigates to first child

Alt+Page Up Navigates to previous cousin (element with the same element
path to the root)

Alt+Page Down Navigates to next cousin

Ctrl+Up Arrow Hides the selected element’s attributes
30 Keyboard shortcuts

eXtend Workbench Tools Guide
Searching for text

Ctrl+Down Arrow Displays the selected element’s attributes

Ctrl+Left Arrow Hides the selected element’s namespace declarations

Ctrl+Right Arrow Displays the selected element’s namespace declarations

Ctrl+Shift+Up Arrow Hides the selected element’s attributes and namespace
declarations

Ctrl+Shift+Down Arrow Displays the selected element’s attributes and namespace
declarations

Ctrl+Q Toggles the display of attributes for all displayed elements

Ctrl+Shift+Q Toggles the display of namespace declarations for all
displayed elements

Ctrl+Alt+Shift+Q Toggles the display of attributes and namespace declarations
for all displayed elements

Ctrl+Shift+G Displays the Schema Guide for the selected element

Keys Description

Ctrl+F Shows Find dialog

F3 Navigates to next search result

Shift+F8 Finds matching elements (displays Search Result icon,)

Alt+Shift+H Toggles display of Search Result icon

Ctrl+Alt+Shift+H Clears the search

F9 Finds next matching element

Shift+F9 Finds previous matching element

Keys Description
Keyboard shortcuts 31

7 XML Editors
Editing text

Keys Description

Ctrl+X (Cut) Cuts the current selection to the clipboard

Ctrl+C (Copy) Copies the current selection to the clipboard

Ctrl+V (Paste) Pastes the contents of the clipboard at the insertion
point

Ctrl+Shift+V Pastes the contents of the clipboard as the last child of the
selected element

Del (Delete) Deletes the current selection

F5 Refreshes and collapses the tree

Ctrl+Z Reverses editor actions (except save)

Ctrl+Y Reverses Undo actions

Ctrl+L Inserts new element as last child

Ctrl+T Inserts new text as last child

Ctrl+D Inserts new CDATA as last child

Ctrl+Shift+L Inserts new element before selected node

Ctrl+Shift+T Inserts new text before selected node

Ctrl+Shift+D Inserts new CDATA before selected node

Ctrl+K Inserts new attribute

Ctrl+Shift+K Deletes selected attribute

Ctrl+M Inserts new namespace declaration

Ctrl+Shift+M Deletes selected namespace declaration
32 Keyboard shortcuts

eXtend Workbench Tools Guide
In Source View

Moving the insertion point

Keys Description

Left Arrow, Right Arrow Moves the insertion point one character to the left or right

Ctrl+Right Arrow Moves the insertion point one word to the right

Ctrl+Left Arrow Moves the insertion point one word to the left

Home Moves the insertion point to the beginning of the line

End Moves the insertion point to the end of the line

Up Arrow Moves the insertion point one line up

Down Arrow Moves the insertion point one line down

Alt+Shift+T Moves the insertion point to the top of the window

Alt+Shift+M Moves the insertion point to the middle of the window

Alt+Shift+B Moves the insertion point to the bottom of the window

Ctrl+Home Moves the insertion point to the beginning of the document

Ctrl+End Moves the insertion point to the end of the document

PgUp Moves the insertion point one page up

PgDn Moves the insertion point one page down

Alt+Shift+F8 Moves the insertion point to matching begin/end tag

Alt+Up Arrow Moves the insertion point to previous sibling (element
within an element group)

Alt+Down Arrow Moves the insertion point to next sibling

Alt+Right Arrow Moves the insertion point to first child
Keyboard shortcuts 33

7 XML Editors
Selecting text

Alt+Left Arrow Moves the insertion point to parent

Ctrl+G Displays Go to Line dialog

Ctrl+L Toggles display of line numbers

Keys Description

Ctrl+A Selects all text in the document

Shift+Right Arrow Selects the character to the right of the insertion point

Shift+Left Arrow Selects the character to the left of the insertion point

Alt+J Selects the word the insertion point is on, or deselects any
selected text

Ctrl+Shift+Right Arrow Selects the word to the right

Ctrl+Shift+Left Arrow Selects the word to the left

Shift+Home Selects text to the beginning of the line

Shift+End Selects text to the end of the line

Shift+Up Arrow Selects text to the previous line

Shift+Down Arrow Selects text to the next line

Ctrl+Shift+Home Selects text to the beginning of the document

Ctrl+Shift+End Selects text to the end of the document

Shift+PgUp Selects text one page up

Shift+PgDn Selects text one page down

Keys Description
34 Keyboard shortcuts

eXtend Workbench Tools Guide
Scrolling text

Modifying text

Keys Description

Alt+U T Scrolls line containing insertion point to top of window

TIP Press and release Alt+U, then press T

Alt+U M Scrolls line containing insertion point to middle of window

TIP Press and release Alt+U, then press M

Alt+U B Scrolls line containing insertion point to bottom of window

TIP Press and release Alt+U, then press B

Ctrl+Up Arrow Scrolls the window up without moving the insertion point

Ctrl+Down Arrow Scrolls the window down without moving the insertion point

Keys Description

INSERT Switches between insert text and overwrite text modes

Alt+U U Makes the selected characters or the character to the right
of the insertion point uppercase

TIP Press and release Alt+U, then press U

Alt+U L Makes the selected characters or the character to the right
of the insertion point lowercase

TIP Press and release Alt+U, then press L

Alt+U R Reverses the case of the selected characters or the character
to the right of the insertion point

TIP Press and release Alt+U, then press R

F11 Reformats the tag the insertion point is on
Keyboard shortcuts 35

7 XML Editors
Cutting, copying, pasting, and deleting text

Shift+F11 Reformats the entire document

Ctrl+Alt+O Opens the tag (for example, converts <a/> to <a>)

Ctrl+Alt+C Closes the tag (for example, converts <a> to <a/>)

Keys Description

Ctrl+Z (Undo) Reverses (one at a time) a series of editor actions, except
Save

Ctrl+Y (Redo) Reverses (one at a time) a series of Undo commands

Ctrl+X (Cut) Cuts the current selection and places it on the clipboard

Ctrl+C (Copy) Copies the current selection to the clipboard

Ctrl+V (Paste) Pastes the contents of the clipboard at the insertion point

Delete (Delete) Deletes the current selection

Ctrl+E Deletes the current line

Ctrl+H Deletes the character preceding the insertion point

Ctrl+Shift+Backspace Deletes text in the following sequence:

1. Text preceding insertion point on same line

2. Indentation on same line

3. Line break

4. Text on previous line

Ctrl+W Deletes the current word or the word preceding the insertion
point

Keys Description
36 Keyboard shortcuts

eXtend Workbench Tools Guide
Searching for text

Changing indentation

Bookmarks

Keys Description

Ctrl+F3 Searches for the word the insertion point is in and highlights all
occurrences of that word

F3 Moves the insertion point to the next occurrence of the found
word

Shift+F3 Moves the insertion point to the previous occurrence of the
found word

Alt+Shift+H Toggles highlighting of words

Ctrl+F Displays Find dialog

Ctrl+R Displays Replace dialog

Keys Description

Tab Shifts all text to right of insertion point to the right

Ctrl+T Shifts text in line containing the insertion point to the right

Ctrl+D Shifts text in line containing the insertion point to the left

Keys Description

Ctrl+F2 Sets or unsets a bookmark at current line

F2 Goes to next bookmark
Keyboard shortcuts 37

7 XML Editors
Specifying transformation (XSL Editor)

In Catalog View, XML Catalog Editor

Modifying text

Keys Description

Ctrl+Shift+T Displays dialog for specifying file to transform

Keys Description

Ctrl+B Displays dialog for changing the base URI, that is, the path to
the directory containing the DTD or Schema files for the catalog
entry file
38 Keyboard shortcuts

8
 WSDL Editor Chapter 8
The WSDL Editor provides a quick and easy way to create, edit, and view WSDL documents.
This chapter contains the following topics:

• About WSDL

• About the WSDL Editor

• Creating a new WSDL document

• Adding elements to a WSDL document

• Validating a WSDL document

• Displaying a stylized view

• Publishing to a registry

• Generating Web Service files from WSDL

About WSDL
WSDL (Web Services Description Language) is a general-purpose XML vocabulary for
describing Web Services. Using WSDL, it is possible to describe (concisely and in a
standardized manner) the interface, protocol bindings, and deployment details of Web-based
services, at a level of detail sufficient for businesses to begin to interact online.

	 The complete WSDL standard can be found at http://www.w3.org/TR/wsdl.

About the WSDL Editor
The WSDL Editor lets you:

• Create and edit WSDL documents (files with the .WSDL extension)

• Easily create any of the four canonical WSDL document elements (message, port type,
binding, or service)

• Validate WSDL documents

• View WSDL documents in stylized view and color-coded text view

• Publish WSDL documents to Web Service registries

The WSDL Editor also supports the editing features described in Chapter 6, “Source Editors”.
1

new http://www.w3.org/TR/wsdl

8 WSDL Editor
Creating a new WSDL document

¾ To create a new WSDL document:

1. Select File>New.

2. On the Web Services tab, select WSDL and click OK.

The WSDL Wizard displays.

3. (Optional) Enter a Definition Name.

4. (Optional) Enter a Target Namespace. This can be the Uniform Resource Name
associated with this WSDL document. You cannot specify a relative URN.

5. (Optional) In the Documentation text box, enter any human-readable comment or
descriptive language you would like to associate with the definition element.

6. Select the Include WSDL template check box if you want a skeleton document to be
created for you using values provided in this wizard. Leave the check box unselected to
start with a blank document.
2 Creating a new WSDL document

eXtend Workbench Tools Guide
7. Click Finish.

A new WSDL document opens in the WSDL Editor.

Adding elements to a WSDL document
WSDL documents can contain four standard element types: message, port type, binding, and
service. These element types build on one another with cascading references; so when you
create a WSDL file, you should create the message section first, followed by the port type
section, then the binding section, and finally the service section.

The WSDL Editor offers dialog-based assistance in creating each of the four types.

Adding a message element

In WSDL, a message is an abstract definition of the data being exchanged.

¾ To add a message element to a WSDL document:

1. Position the insertion point where you want to insert the definition and right-click.

A popup menu displays.
Adding elements to a WSDL document 3

8 WSDL Editor
2. Select Insert WSDL Element>Message.

3. Specify the following information in the Message dialog:

4. Click OK.

A new message section is added to your document.

<message name="GetLastTradePriceOutput">
<part name="body" element="xsd1:TradePriceResult"/>

</message>

Option What to do

Name Specify the value of the name attribute of the <message>
element.

Documentation (Optional) Specify any human-readable comment or descriptive
language you would like to associate with this message.

Parts Specify this information for each <part> element of your
message:

• The name attribute

• The typing value (Element or Type)

• Under Value, the element attribute

To add another part entry to the message, click Add. To remove
an entry, select the entry and click Delete.
4 Adding elements to a WSDL document

eXtend Workbench Tools Guide
Adding a port type element

A WSDL port type is an abstract definition of the operations supported by a service and the
communications mode (one-way, request-response, and so on) that will be used in the service.

¾ To add a port type to a WSDL document:

1. Position the insertion point where you want to insert the definition and right-click.

A popup menu displays.

2. Select Insert WSDL Element>Port Type.

3. Specify the following information on the Port Type dialog:

Option What to do

Name Specify the value of the name attribute of the <portType>
element.

Documentation (Optional) Specify any human-readable comment or descriptive
language you would like to associate with this port type.
Adding elements to a WSDL document 5

8 WSDL Editor
4. Click OK.

A new port type section is added to your document.
<portType name="StockQuotePortType">

<operation name="GetTradePrice">
<input name="input" message="tns:GetLastTradePriceInput"/>
<output name="output" message="tns:GetLastTradePriceOutput"/>

</operation>
</portType>

Adding a binding element

A WSDL binding specifies concrete protocol and data format specifications for the operations
and messages defined by a particular port type.

¾ To add a binding to a WSDL document:

1. Position the insertion point where you want to insert the definition and right-click.

A popup menu displays.

Operations Specify this information for each <operation> element of your
port type:

• The name attribute

• The type (One-way, Request-response, Solicit-response, or
Notification)

• Under Formats, click the Define button to specify the
operation’s messages using the Define dialog

The dialog has several control groups. Only those that are
appropriate to the type of operation are enabled. For example,
if you chose Notification as the type, only the Output control
group is enabled. For each enabled group, you must specify a
Name and Message appropriate to the operation for Input
and Output. Specifying values for the Fault group is
optional.

To add another operation entry to the port type, click Add.
To remove an entry, select the entry and click Delete.

Option What to do
6 Adding elements to a WSDL document

eXtend Workbench Tools Guide
2. Select Insert WSDL Element>Binding.

3. Specify the following information on the Binding dialog:

Option What to do

Name Specify the value of the name attribute of the <binding>
element.

Documentation (Optional) Specify any human-readable comment or descriptive
language you would like to associate with this binding element.

Port Type Specify the port type for this binding. The dropdown list
displays the names of the port types that you have created for
this document (see “Adding a port type element” on page 5).

SOAP Binding If your WSDL document will specify a SOAP binding, select
SOAP Binding, then select a Style (RPC or Document) and
specify a Transport value.

HTTP Binding If an HTTP binding will be used, select HTTP Binding and
enter the appropriate Verb (GET or POST).
Adding elements to a WSDL document 7

8 WSDL Editor
4. Click OK.

A new binding section is added to your document.
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetLastTradePrice">
<soap:operation

soapAction="http://example.com/GetLastTradePrice"/>
<input>

<soap:body use="literal"
namespace="http://example.com/stockquote.xsd

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>

<soap:body use="literal"
namespace="http://example.com/stockquote.xsd"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
</binding>

Adding a service element

A WSDL service names the entry-point address (or addresses) for the Web Service in question.
These addresses are in the form of URIs and constitute ports.

¾ To add a service to a WSDL document:

1. Position the insertion point where you want to insert the definition and right-click.

A popup menu displays.

User Defined Select if you want to specify a custom binding protocol
manually.

Option What to do
8 Adding elements to a WSDL document

eXtend Workbench Tools Guide
2. Select Insert WSDL Element>Service.

3. Specify the following information on the Service dialog:

Option What to do

Name Specify the value of the name attribute of the <service>
element

Documentation (Optional) Specify any human-readable comment or descriptive
language you would like to associate with this service.

Ports Specify this information for each <port> element of your
service:

• The name attribute

• The binding value; the dropdown list displays the names of
the bindings you have created for this document (see
“Adding a binding element” on page 6)

• The address type (None, SOAP, or HTTP)

• The location (the URI by which your service will be
available)

To add another port entry to the service, click Add.
To remove an entry, select the entry and click Delete.
Adding elements to a WSDL document 9

8 WSDL Editor
4. Click OK.

A new service entry is added to your document.
<service name="StockQuoteService">

<port name="StockQuotePort" binding="tns:StockQuoteBinding">
<soap:address location="http://example.com/stockquote"/>

</port>
</service>

Validating a WSDL document
When a WSDL document is displayed in the Edit Pane, you can validate the document by
clicking the Validate button (which looks like a check mark) in the toolbar. If the document is
validated, you see this dialog:

Otherwise, you see a dialog giving information identifying the malformed statement(s) in the
document.

CAUTION You should carefully review your WSDL even if the document validation is
successful. The W3C WSDL specification allows for extensibility elements
throughout all levels of a WSDL document. So if you build the document without
using the dialogs or do a lot of cut-and-paste from other sources, it is possible that
the document will test as valid but not be what you want.
10 Validating a WSDL document

eXtend Workbench Tools Guide
Displaying a stylized view
By default, WSDL documents are displayed in a color-coded text-edit view—the normal view
for working on WSDL documents. You can also display a stylized view of WSDL documents,
created by applying an XSL style sheet to your document. The WSDL Editor comes with two
built-in style sheets: Summary and Detail.

¾ To display a stylized view of a WSDL document:

1. Open the WSDL document.

2. Click the Stylized tab at the bottom of the WSDL Edit Pane.

The view changes to stylized.

In this example, the Summary style sheet has been applied to the document.

¾ To choose a different style for the stylized view:

1. With the Stylized tab selected, right-click in the WSDL Edit Pane.

A popup menu displays.
Displaying a stylized view 11

8 WSDL Editor
2. Select an item from the Stylesheets submenu:

• Details provides a detail-oriented plain-text view of the WSDL document (with no
XML tags)

• Summary provides a more concise view of WSDL contents

• Custom opens a dialog that allows you to choose your own XSL style sheet for
rendering a custom view, and/or setting a default style sheet

Choose one of the following:

TIP You can optionally select the Set as default check box to apply the style sheet
you’ve chosen as the default in stylized views. Your preference will persist
across Workbench sessions.

Publishing to a registry
When you have created a WSDL document, you can publish it to a registry.

	 For more information, see “Publishing to a registry” on page 293.

Option What to do

System Select to use one of the built-in style sheets (Summary or
Details) as the basis for the stylized view

Custom Select to use the style sheet of your choice, then enter the path to
the style sheet (or use the Browse button to open a standard file
navigation dialog)
12 Publishing to a registry

eXtend Workbench Tools Guide
Generating Web Service files from WSDL
A WSDL document describes a Web Service. You can invoke the Web Service Wizard from the
WSDL Editor to generate the Java classes needed to implement or consume that Web Service.

¾ To generate Java classes:

1. Make sure a Workbench project is open.

2. Open the WSDL document in text view.

3. Click the Generate Java Class button.

The Web Service Wizard is invoked.

	 For more information, see Chapter 5, “Web Service Wizard”.
Generating Web Service files from WSDL 13

8 WSDL Editor
14 Generating Web Service files from WSDL

9
 Registry Manager Chapter 9
This chapter describes the registry browsing and publishing functionality provided in
SilverStream eXtend Workbench. It contains the following topics:

• About UDDI

• About the Registry Manager

• Defining registry profiles

• Browsing registries

• Retrieving WSDL from the registry

• Publishing to a registry

About UDDI
The business registry standard covering Web Services is UDDI (Universal Description,
Discovery, and Integration). UDDI is designed to give businesses a uniform way to describe
their services, discover other companies’ services, and understand the methods needed to
conduct e-business in an automated or semiautomated way with remote partners. UDDI forms
the basis for the registry management functionality.

	 To learn more about UDDI, see the complete standard at http://www.uddi.org.

About the Registry Manager
Workbench provides a Registry Manager, accessible through the Registries tab in the
Navigation Pane, and a facility for defining registry profiles.

Workbench registry capabilities include:

• Defining registry profiles

• Selecting registries to include in the search process

• Viewing business information on selected businesses in a given registry

• Viewing information on Web Services offered by a given business

• Searching for businesses or services within a registry or group of registries, optionally
using extended query parameters

• Publishing new services to a registry
1

new http://www.uddi.org

9 Registry Manager
Defining registry profiles
Registries are specified by URL and can be local or Web-based. Before accessing a registry in
Workbench, you define a profile for that registry. Workbench comes with some predefined
registry profiles.

¾ To define a registry profile:

1. Select Edit>Profiles from the menu.

The Profiles dialog opens.

2. Select the Registries tab.
2 Defining registry profiles

eXtend Workbench Tools Guide
3. If you are editing or deleting an existing profile, select it from the Profile name list box
and click Edit or Delete. If you are creating a new profile, click New.

4. Specify the following information:

5. Click OK.

Once you have defined a registry profile, you can use the Registry Manager to browse the
registry and you can publish services to the registry.

Option Description

Profile name Name of the profile

Registry type Type of registry (default is UDDI)

Inquiry URL The URL through which the registry can be queried

Publish URL The URL through which new services can be published
to the registry

User name and Credential The information (if any) that the registry provider
assigned to you for publishing access

Include in Registry Search Specifies whether you want to include this registry in
the default search set
Defining registry profiles 3

9 Registry Manager
Browsing registries
The Registry Manager allows you to browse registries through the Registries tab in the
Navigation Pane. There are two subpanes within the Registries tab: the Business Pane and the
Service Pane.

Information displayed

The Registry Manager displays the following types of information.

Business Pane The business section of a registry might include these types of information:

Information Icon Description

Business name Business name used in this registry

Description Short phrase describing the business

Categories Categories to which the business belongs

Classification schemes come from at least three sources:
NAICS codes for industry segments, UNSPSC for product
and service classifications, and geographic information
4 Browsing registries

eXtend Workbench Tools Guide
Service Pane A service entry in a registry might include these types of information:

Identifiers Information about the business, such as a DUNS number

Services A list of services offered by the business, such as Web
Services callable via HTTP and other services such as sales
and technical support contact information

You can select a service name to display its details in the
Service Pane

Information Icon Description

Service name The name of the service

Business name The business offering the service

Description A short phrase describing the service

Binding The URL for invoking the service

tModel Data describing the service

A UDDI registry stores the data as a tModel, which is a set of
name/value pairs; the tModel node may be followed by a
description

Overview URL The URL of a document describing how to use the tModel
data

For a Web Service, this is usually a WSDL document

Categories Categories for the service

The categorization has two parts: a name (for example, uddi-
org:types) and a value (for example, wsdlSpec). The value
wsdlSpec specifies that a WSDL document is available for the
service. Other types of services can use other classification
schemes.

Information Icon Description
Browsing registries 5

9 Registry Manager
Popup menus

Each pane in the Registry Manager has a popup menu.

Business Pane To view the popup menu for Business, place the cursor in an entry in the
Business Pane and right-click. The following menu displays.

Service Pane To view the popup menu for Service, place the cursor in an entry in the
Service pane and right-click. The following menu displays.

Menu item Description

Copy Text Allows you to copy text from the currently selected business tree node
to another area or file

Clear Tree Clears the pane of business information that you retrieved from your
search

Advanced Search Allows you to perform a sophisticated search by business

	 For more information, see “Searching by business” on page 7

Menu item Description

Copy Text Allows you to copy text from the currently selected service tree node
to another area or file

Clear Tree Clears the pane of service information that you retrieved from your
search

Retrieve WSDL Retrieves the WSDL for the selected service from the registry. You
can also do this using the Retrieve WSDL button.

Delete Service Deletes the selected service (if you have permission). Asks you to
confirm before deleting the service.

Advanced Search Allows you to perform a sophisticated search by service

	 For more information, see “Searching by service” on page 10
6 Browsing registries

eXtend Workbench Tools Guide
Action buttons

The following illustration shows the location of the various action buttons on the Business and
Service panes.

Searching by business

You search by business in the Business Pane.

¾ To search businesses by name or keyword:

1. Enter a complete or partial business name or keyword in the text box below Business.

TIP You can also enter a group of business names separated by a vertical bar, which
allows you to search for multiple groups of businesses. For example:
XMethods|IBM|Sun.

2. Click the Search button (shaped like a downturned arrow).

While the search is underway, the Stop button (normally grayed out) is red. The search can
take several minutes. To interrupt the search, click the Stop button; partial search results
will display in the Business Pane.
Browsing registries 7

9 Registry Manager
A list of matching businesses appears in tree-view form. Each top-level node in the tree is
a registry, each child of a registry is a business name, and below each business is detail
information consisting of descriptions, categories, and services.

Clicking a service entry in the (upper) Business tree causes that service’s detail
information to appear in tree form in the (lower) Service Pane.

¾ To set advanced business search criteria:

1. Leave the keyword text box blank.

2. Click the Advanced Search button (shaped like binoculars).
8 Browsing registries

eXtend Workbench Tools Guide
The Business Discovery Criteria dialog displays.

3. Select one of the search-criteria options:

• Business Name—Enter a complete or partial business name or list of names separated
by a vertical bar (|) in the Starting with text box.

• Identifier—Select one of the following: D-U-N-S or Thomas Register (catalog
names) from the dropdown list. Enter a key from the catalog (partial or complete) in
the Starting with text box; this entry can contain numeric values and dashes.

• Locator—Select one of the following from the dropdown list: NAICS (North
American Industry Classification System), UNSPSC (United Nations Standard
Products and Services Classification), or GEO (geographical).

Enter a key from the catalog (partial or complete) in the Starting with text box if you
selected NAICS or UNSPSC; this entry can contain numeric values. Enter a country
(region) abbreviation for GEO. If you selected NAICS or UNSPSC, you can click the
ellipses and pick an item from a list of choices.

• Service Type Name—Select to search businesses associated with a particular tModel.

• Discovery URL—Enter an IP address or portion of an IP address for the URL in the
Starting with text box.
Browsing registries 9

9 Registry Manager
4. Select search and sort options:

• In Sort By, specify whether to sort by name or date, in ascending or descending order.
The most common technique is to sort by name (alphabetically) in ascending order or
by date (numerically) in descending order. Sorting by date works within groups of
businesses with identical names.

• In Options, select Ignore Case and/or Exact Match.

5. Under Profiles, select the registry or registries to search from the dropdown list. Those
you specified in the Profiles dialog for automatic searching are already selected. To
override the search list, select one or all of the registries in the list. To return to the original
(default) registries, click Reset.

6. Click OK.

The search begins.

Searching by service

You search by service in the Service Pane.

¾ To search services by name or keyword:

1. Enter a complete or partial service name or keyword in the text box below Service.

TIP You can also enter a group of service names separated by a vertical bar, which allows
you to search for multiple groups of services.

2. Click the Search button (shaped like a downturned arrow).

While the search is underway, the Stop button (normally grayed out) is red. The search can
take several minutes. To interrupt the search, click the Stop button; partial search results
display in the Service Pane.

A list of matching services appears in tree-view form. Each top-level node in the tree is the
registry that was searched; each immediate child of a registry is a service name; and
children of the service node(s) contain detail information consisting of the business name
associated with the service, a description of the service, and bindings for the service.

Clicking a service node in the (lower) Service tree causes that business’s detail
information to appear in tree form in the (upper) Business Pane.
10 Browsing registries

eXtend Workbench Tools Guide
¾ To set advanced service search criteria:

1. Leave the keyword text box blank.

2. Click the Advanced Search button (shaped like binoculars).

The Service Discovery Criteria dialog box displays.

3. Select one of the search-criteria options:

• Service Name—Enter a complete or partial service name in the Starting with text
box.

• Locator—Select one of the following: NAICS (North American Industry
Classification System), UNSPSC (United Nations Standard Products and Services
Classification), UDDITYPE, or GEO (geographical) from the dropdown list.

Enter a key from the catalog (partial or complete) in the Starting with text box if you
selected NAICS, UNSPSC, or UDDITYPE; this entry can contain numeric values.
Enter a country (region) abbreviation for GEO. If you selected NAICS, UNSPSC, or
UDDITYPE, you can click the ellipses and pick an item from a list of choices.

• Service Type Name—Allows the search of services associated with a particular
tModel.
Browsing registries 11

9 Registry Manager
4. Select search and sort options:

• In Sort By, specify to sort by name or date, in ascending or descending order. The most
common technique is to sort by name (alphabetically) in ascending order or by date
(numerically) in descending order. Sorting by date works within groups of services
with identical names.

• In Options, select Ignore Case and/or Exact Match.

5. Under Profiles, select the registry or registries to search from the dropdown list. Those
you specified in the Profiles dialog for automatic searching are already selected. To
override the search list, select one or all of the registries in the list. To return to the original
(default) registries, click Reset.

6. Click OK.

The search begins.

A tree of matching services is built in the Service Pane. Clicking a service node in the
(lower) Service tree causes that business’s detail information to appear in tree form in the
(upper) Business Pane.

Retrieving WSDL from the registry
After you have found the service you searched for, you can retrieve the WSDL definition for this
service from the registry. For this you use the Service Pane.

¾ To retrieve a WSDL definition from the registry:

1. Highlight the service node.

2. Click the Retrieve WSDL button in the Service Pane.
12 Retrieving WSDL from the registry

eXtend Workbench Tools Guide
If a definition for the service exists, the WSDL Editor displays the WSDL information.

	 For information about the WSDL Editor, including different ways to view the WSDL, see
Chapter 8, “WSDL Editor”.

Publishing to a registry
When you have created a WSDL document in the WSDL Editor, you can publish it to a registry.

	 For information about the WSDL Editor, see Chapter 8, “WSDL Editor”.

¾ To publish to a registry:

1. Open the WSDL document in the WSDL Editor.

2. Click the Publish to Registry button on the toolbar.
Publishing to a registry 13

9 Registry Manager
The WSDL Publishing Options dialog displays.

3. Specify these options:

• Registry Profile—Select the registry you want to publish to.

• Business Name—Specify the business to associate the service with. Click the Lookup
button to look up businesses in the registry.

• WSDL Publish URL—Specify the URL to which the service will be published.

4. Click OK.

If your service was successfully published, you see a confirmation dialog.

If the service was not published, you see a dialog describing the error.
14 Publishing to a registry

10
 Deployment Descriptor Editor Chapter 10
The Deployment Descriptor Editor provides a quick and easy way to construct and populate
J2EE-compatible deployment descriptors. This chapter describes the Deployment Descriptor
Editor and includes these topics:

• About deployment descriptors

• About the Deployment Descriptor Editor

• Using the Deployment Descriptor Editor

About deployment descriptors
A deployment descriptor is an XML document that provides information about the
components of a J2EE module (such as a WAR or an EJB JAR) or application (such as an EAR).
The deployment descriptor provides data that is required for both of the following:

• Application assembly—to describe how a component is or should be used

• Deployment—to define deployment needs such as roles and resource references

Sun has defined the contents and structure for a deployment descriptor for each J2EE
component. For more information, see J2EE Deployment Descriptor DTDs in the online
Reference.

How deployment descriptors are created Workbench automatically constructs and
adds a J2EE-compatible deployment descriptor file to your project in the appropriate location,
as follows:

J2EE
component

Deployment
descriptor file Directory location

Application client application-client.xml /META-INF

EAR application.xml

EJB JAR ejb-jar.xml

RAR ra.xml

WAR web.xml /WEB-INF
1

refJ2EEDeployDesc.html

10 Deployment Descriptor Editor
As you add J2EE components to a project, Workbench adds the corresponding elements to the
deployment descriptor when it has enough information to do so.

About the Deployment Descriptor Editor
The Deployment Descriptor Editor allows you to fine-tune the deployment descriptor by
modifying or completing entries that Workbench is unable to complete automatically.

The Deployment Descriptor Editor displays the deployment descriptor elements as expandable
nodes. The nodes correspond to elements of the deployment descriptor DTD. All possible
deployment descriptor entries are represented graphically, so you can use the interface to help
you add the appropriate entries without having to memorize the DTD.

Here is a sample Deployment Descriptor Editor for an EJB project:

TIP You can view or edit the deployment descriptor in raw XML by choosing the XML tab.
The Deployment Descriptor Editor opens in the mode (raw XML or tree view) in use
when it was last saved.

Nodes displayed in bold (like Environment and Persistent Fields) allow child nodes to be added
or removed. You can add or remove these nodes by right-clicking and selecting from the popup
menu.
2 About the Deployment Descriptor Editor

eXtend Workbench Tools Guide
Many of the nodes require additional information, and you can provide this information by
completing a property sheet. To display the Property Inspector for a node, highlight the node,
right-click, and select Properties.

To save the changes to the deployment descriptor file in the archive, select File>Save (or click
the Save icon).

Using the Deployment Descriptor Editor
You can use the Deployment Descriptor Editor either to fine-tune the default deployment
descriptor created by Workbench or to create a new deployment descriptor.

¾ To create a deployment descriptor:

1. Open the project for which you want to create the new deployment descriptor.

2. Select File>New.

3. Select the J2EE tab.

4. Select Deployment Descriptor and click OK.

Workbench constructs the deployment descriptor shell based on the contents of the project
and displays the shell in the Edit Pane.

¾ To associate a deployment descriptor with a project:

NOTE If you created a deployment descriptor outside the Workbench environment, you can
still use it with a Workbench project by following these steps.

1. Open the Workbench project that you want to associate the deployment descriptor with.

2. Choose the Directory Pane.

3. Double-click the deployment descriptor you want.

You are prompted to associate the descriptor with the current project, a different project
(which you can choose), or to edit the deployment descriptor in XML mode.

4. Choose the option to associate the descriptor with the current project, then choose OK.

Workbench opens the deployment descriptor in the Deployment Plan Editor.

5. Save the deployment descriptor to complete the association.
Using the Deployment Descriptor Editor 3

10 Deployment Descriptor Editor
¾ To modify a deployment descriptor:

1. Open the project whose deployment descriptor you want to modify.

2. Highlight the project file (the SPF), right-click, and select Open Deployment Descriptor
from the popup menu.

You are prompted for your Build preferences.

Once you specify the Build preferences, the Deployment Descriptor Editor opens the file
ready for editing.

¾ To add a deployment descriptor element:

1. Open the deployment descriptor for editing.

2. Highlight the descriptor element, right-click, and choose Add from the popup menu.

The editor adds a new element with the title UntitledXXX.

3. Highlight the new element, right-click, and choose Properties from the popup menu to
launch the Property Inspector so you can define any necessary values.

¾ To remove a deployment descriptor element:

1. Open the deployment descriptor for editing.

2. Make sure the Descriptor tab (not XML tab) is selected.

3. Highlight the descriptor element you want to remove, right-click, and select Delete from
the popup menu.

NOTE If Delete is not available as a menu option, the element is not removable.

Validating a deployment descriptor

The Deployment Descriptor Editor automatically checks your work as follows:

But you can force validation anytime.

When you The Deployment Descriptor Editor

Switch mode (GUI to XML and vice versa) Checks the syntax of the deployment
descriptor

Save the deployment descriptor Validates the current deployment descriptor
against the DTD
4 Using the Deployment Descriptor Editor

eXtend Workbench Tools Guide
¾ To force validation of a deployment descriptor:

• Choose Validate Archive from the Project menu.

This validates both the deployment descriptor and the archive.
Using the Deployment Descriptor Editor 5

10 Deployment Descriptor Editor
6 Using the Deployment Descriptor Editor

11
 Deployment Plan Editor Chapter 11
The Deployment Plan Editor provides a quick and easy way to construct and populate
deployment plans needed for deploying J2EE modules and applications to a SilverStream
eXtend Application Server. This chapter describes how to use the Deployment Plan Editor and
includes these topics:

• About Deployment Plans

• Using the Deployment Plan Editor

About Deployment Plans
A SilverStream deployment plan is an XML document that describes how a J2EE module
(such as a WAR or an EJB JAR) or application (such as an EAR) should run in theSilverStream
eXtend Application Server environment.

A SilverStream deployment plan allows you to map declarative data from the deployment
descriptor to the appropriate resource in the target server environment. For example, you can
map resource references to actual data sources or map roles to actual users or groups.

SilverStream has defined the contents and structure for a deployment plan for each J2EE
component. For more information, see SilverStream Deployment Plan DTDs in the online
Reference.

NOTE Other application servers will require different types of information (possibly in
different formats) for deployment. To deploy J2EE components on another J2EE
application server, see the application server vendor’s documentation.

Using the Deployment Plan Editor
This section describes how to use the deployment plan editor to perform these tasks:

• Create a deployment plan

• Modify a plan

• Associate a deployment plan with a project

• Validate a deployment plan
1

refSilverDeployPlan.html

11 Deployment Plan Editor
¾ To create a deployment plan:

1. Make sure you have built the archive and added appropriate items to the deployment
descriptor.

2. Open the project for which you want to create the deployment plan.

3. Choose File>New.

4. Choose the J2EE tab.

5. Choose SilverStream Deployment Plan and click OK.

The Select Project For Deployment Plan dialog displays.

6. Choose a project from the Select project dropdown.

NOTE When the project is an EAR, you see multiple files in the dropdown.

7. Choose the destination server type from the server type dropdown and click OK.

NOTE The server type listed when the dialog opens is the one specified as the default in
Deployment preferences (Edit>Preferences). For more information, see
“Deployment preferences” on page 18.

The Deployment Plan Editor constructs a deployment plan based on the project type. The
editor uses the project’s compiled code and the deployment descriptor to determine the
deployment plan entries for a specified project. The deployment plan elements are
displayed in a tree structure.
2 Using the Deployment Plan Editor

eXtend Workbench Tools Guide
Whenever you change the deployment descriptor, Workbench updates the deployment
plan to match the changes when you next edit the deployment plan.

Here is a sample deployment plan for an EAR. It contains three EJB modules and a WAR:

TIP You can view or edit the deployment plan in raw XML by choosing the XML tab.
The Deployment Plan Editor opens in the mode (raw XML or tree view) in use when
it was last saved.

8. Choose File>Save (or click the Save icon).

If there are other SilverStream deployment plans associated with this project, you will be
asked whether you want to make the new deployment plan the current one.

9. Click Yes to make it the current deployment plan.

¾ To modify an existing deployment plan:

1. Open the project whose deployment plan you want to modify.

2. Highlight the project file (the SPF), right-click, and select Open Deployment Plan from
the popup menu.
Using the Deployment Plan Editor 3

11 Deployment Plan Editor
3. If your project has more than one deployment plan, choose the deployment plan from the
dropdown and click OK.

Workbench displays the deployment plan in the Edit Pane.

4. Highlight a deployment plan element, then right-click and select Properties from the
popup menu.

Use the Property Inspector to modify values for different elements. In some cases, you can
double-click an element to open a dialog that lets you enter data more quickly than
through the Property Inspector.

¾ To associate a deployment plan with a project:

NOTE If you created a deployment plan outside the Workbench environment, you can still use
it with a Workbench project by following these steps.

1. Open the Workbench project you want to associate the deployment plan with.

2. Choose the Directory Pane.

3. Double-click the deployment plan you want.

You are prompted to associate the plan with the current project, a different project (which
you can choose), or to edit the deployment plan in XML mode.

4. Choose the option to associate the plan with the current project, then choose OK.

Workbench opens the deployment plan in the Deployment Plan Editor.

5. Save the deployment plan to complete the association.

6. Choose Yes when prompted to mark the deployment plan as current.

Validating a deployment plan

The Deployment Plan Editor automatically checks your work as follows:

But you can force validation anytime.

When you The Deployment Plan Editor

Switch mode (choose the Descriptor or the
XML tab)

Checks the syntax of the deployment plan

Save the deployment plan Validates the deployment plan against the
DTD
4 Using the Deployment Plan Editor

eXtend Workbench Tools Guide
¾ To force validation of a deployment plan:

• Choose Validate Archive from the Project menu.

This validates both the deployment plan and the archive.
Using the Deployment Plan Editor 5

11 Deployment Plan Editor
6 Using the Deployment Plan Editor

12
 Debugger Chapter 12
The SilverStream Debugger lets you find runtime errors in your Java applications by controlling
and monitoring the execution of Java code. You can debug server-side objects (such as J2EE
applications) and client-side objects, either on a local host machine or remotely on distributed
machines.

NOTE By default, when you launch a debugger from within Workbench, the SilverStream
Debugger is launched. If you want to use a different debugger, you can specify that
debugger so it is launched from within Workbench. For more information, see
“Specifying a debugger” on page 43.

This chapter describes the following:

• Concepts you need to know

• About the Debugger

• Debugging server applications

• Debugging client applications

• Managing program execution

• Analyzing the behavior of the application

• Debugger keyboard shortcuts

Concepts you need to know
You should review the following concepts before you use the Debugger.

Concept Description

Breakpoint You can set a breakpoint on an executable line in your code where
you want execution to stop temporarily. When you set a breakpoint
in code, the program stops running before executing the line
containing the breakpoint, then turns control over to the Debugger.

Deadlock A deadlock is a condition that occurs when two processes are each
waiting for the other to complete before proceeding. Both
processes hang.
1

12 Debugger
Instance variable An instance variable is a field declared within a class declaration
without using the keyword static.

Local variable A local variable is declared inside a particular method. Only code
that is contained in the method can access a local variable.

Monitor In Java, a monitor is an exclusive lock on an object. Locks are
used in thread synchronization.When a method is programmed to
be synchronized, it cannot be run in multiple threads concurrently.
When a synchronized method is entered, it acquires a monitor on
the current object (the object whose method was called). The
monitor prevents other synchronized methods in the object from
executing. When the synchronized method returns, its monitor is
released, allowing other synchronized methods in the same object
to run.

Thread A thread is a single execution stream in a program. Java is a
multithreaded language, which means that you can have many
execution streams operating at one time. In Java, threads are
represented by the Thread object.

Concept Description
2 Concepts you need to know

eXtend Workbench Tools Guide
About the Debugger
The SilverStream Debugger provides several capabilities for diagnosing problems with your
Java applications.

Here is a sample Debugger window, showing many of its features:
About the Debugger 3

12 Debugger
Debugging server objects and client objects You can debug the following objects:

Local and remote debugging With the SilverStream Debugger you can troubleshoot
Java applications running on a local host or remotely in a distributed network. You can
configure a process to be debugged either on the local machine or on a remote machine, but not
for both in the same session.

There are many situations that require remote debugging. For example:

• The Java application runs error-free on some machines but not others in a network,
requiring you to debug the application while it runs on the problematic remote system.

• The application runs in a network where the server is in a remote location.

• The application must be tested on a remote machine that does not have the resources to
run the Debugger locally.

Controlling program execution The Debugger provides methods for exercising your
code by:

• Setting and managing breakpoints in Java application source code

• Stepping in, out, and over source code

• Running applications to a location in source code marked by the cursor

• Running applications to the next breakpoint

• Suspending and resuming threads

Monitoring program status To help you isolate problems in source code, the Debugger
provides viewers for examining variables, the call stack, and thread status at any point in
program execution.

Server objects Objects in deployed J2EE applications:

• Servlets (including compiled JavaServer Pages)

• Enterprise JavaBeans

• Other Java code in deployed J2EE archives

Other Java applications executing on a server

Client objects Client Java applications, including J2EE application clients
4 About the Debugger

toolsDebugger.html#Usingbreakpoints
toolsDebugger.html#Steppingthroughthecode
toolsDebugger.html#Continuingexecution
toolsDebugger.html#Continuingexecution
toolsDebugger.html#Suspendingandresumingthreads
toolsDebugger.html#Viewingvariables
toolsDebugger.html#Viewingthecallstack
toolsDebugger.html#Viewingthreads

eXtend Workbench Tools Guide
Typical workflow for debugging Although each debugging session poses its own unique
challenges, you typically follow this workflow when troubleshooting applications:

Debugging server and client applications The techniques you use to debug
applications running on a server as opposed to client applications are different. The next two
sections describe the techniques:

• Debugging server applications

• Debugging client applications
About the Debugger 5

12 Debugger
Debugging server applications
If you are debugging objects running on a server (such as J2EE applications), you should start
the application on your server and then attach the Debugger to that application, rather than
trying to start the application from the Debugger. You can debug applications running on any
J2EE application server supported by Workbench.

Starting the server

In some cases, you must start your application server in debug mode before you can debug
server objects. This section provides instructions for starting the SilverStream eXtend
Application Server and BEA WebLogic for debugging.

	 For further details about starting these and other application servers in debug mode,
consult the documentation for the server.

Starting the SilverStream server for debugging

¾ To start the SilverStream eXtend Application Server for debugging:

• Start the server with one of the following options:

• +debug starts the server for local debugging, using the default debug address agsrv.
You can specify these variations for local debugging:

• +debugremote starts the server for remote debugging, using the default debug port
9901.

Variation Description

+debug:suspend=y Suspends the JVM at startup. Use the
Continue command in the Debugger to
resume execution. This option is helpful for
debugging initialization code that would
normally get executed before the Debugger
is attached.

+debug:suspend=n Does not suspend the JVM at startup. This
is the default.

+debug:address=debug_address Lets you specify the debug address to use.
6 Debugging server applications

eXtend Workbench Tools Guide
• +debug:port=port_num starts the server for remote debugging, using port_num
instead of the default debug port 9901. Use this option if port 9901 is not available.

Examples This command line launches the SilverStream server for local debugging:

ServerInstallDir\bin\SilverServer +debug

This command line launches the SilverStream server for remote debugging:

ServerInstallDir\bin\SilverServer +debugremote

Starting the WebLogic server for debugging

¾ To start WebLogic for debugging:

1. Modify your startWebLogic.cmd file by adding the options in bold to the command line
for starting the server:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=n -Djava.compiler=NONE
-classpath ...

2. Start the server.

When starting, the server will display the debug address:

Listening for transport dt_socket at address: address

You will use this value when launching the Debugger, as described next.
Debugging server applications 7

12 Debugger
Launching the Debugger

You can launch the Debugger from within Workbench or from the command line.

¾ To launch the Debugger from Workbench:

1. Select Edit>Launch Debugger.

2. Select Attach to running process.

3. If debugging an application on a local server, select Shared Memory Debugging and
provide the debug address.

If debugging an application on a remote server, select Remote Socket Debugging and
specify the machine name and debug port.

NOTE If debugging an application running on WebLogic, even on a local WebLogic
server, select Remote Socket Debugging and specify the machine name
(localhost if local) and the address (port) the server reported when starting.

4. Open files you want to debug in the Debugger, set breakpoints, then run your application.

¾ To launch the Debugger from the command line:

1. Make current the WorkbenchInstallDir\bin directory.

2. If debugging an application on a local server, enter:
SilverDebugger -attach localhost debug_address

If debugging an application on a remote server (or a local WebLogic server), enter:

SilverDebugger -attach machine_name:debug_port

3. Open files you want to debug in the Debugger, set breakpoints, then run your application.

Now you are ready to manage program execution and analyze the behavior of your application.
8 Debugging server applications

toolsDebugger.html#Managingprogramexecution
toolsDebugger.html#Analyzingthebehavioroftheapplication

eXtend Workbench Tools Guide
A sample debugging session

In the following scenario, you’ll see how to debug ProverbFinal, the J2EE application that is
built in the Workbench’s Web application tutorial. The scenario shows debugging the
application on a local SilverStream server. (This application is provided as a Workbench project.
For details, see Tutorials in the Workbench help.)

1. Start the local server in debug mode.

ServerInstallDir\bin\SilverServer +debug

2. Open the ProverbFinal project in Workbench.

The project is in WorkbenchInstallDir\docs\tutorial\ProverbFinal. It is a completed
application.

3. Deploy the application to the server.

In this scenario, the application was deployed to ProverbsCloud, the Cloudscape database
provided with the tutorial.
Debugging server applications 9

12 Debugger
4. Open the file to be debugged.

If you have a file open when you launch the Debugger from Workbench, that file opens in
the Debugger automatically. You can also open other files in the Debugger to debug them.

Here, TodayAction.java was opened. This code is executed when someone asks to see
today’s proverb.

5. Select Edit>Launch Debugger to start the Debugger.

6. Specify the following:
10 Debugging server applications

eXtend Workbench Tools Guide
Because the SilverStream server was started using the default debug address, agsrv was
specified as the debug address.

The Debugger opens and displays the file.

7. Set a breakpoint on a line of code by placing the cursor on the line and clicking the Toggle
Breakpoint icon in the Debugger toolbar:
Debugging server applications 11

12 Debugger
8. Run the application. To do that, open a browser and specify this URL:
http://localhost/ProverbsCloud/ProverbFinal/index.jsp
12 Debugging server applications

eXtend Workbench Tools Guide
9. Click Today’s Proverb. This action invokes code in TodayAction.java. Execution stops
(you will see that the browser has not completed processing the page) and the Debugger
window is updated.

You can see that the execution arrow is at the breakpoint.

10. At this point, step through the code, looking at variable values, the call stack, and so on, as
described in the rest of this chapter.

11. When finished debugging, continue execution by clicking the Continue icon:

The page completes execution.
Debugging server applications 13

12 Debugger
Debugging J2EE applications

Using the techniques shown in the preceding sample debugging session, you can debug your
J2EE applications. You debug EJBs and servlets exactly as shown above: open the source code
for the EJB or servlet in the Debugger, set one or more breakpoints, then run your application.

Debugging JSP pages

To debug a JSP page, which is translated and compiled into a servlet for execution, you need to
locate the Java source file that the server created from the JSP page, open the source file in the
Debugger, and set your breakpoints. Different J2EE servers will locate their source files
differently. Here is information about the SilverStream eXtend Application Server and
WebLogic:

	 For information about other servers, consult their documentation.

To debug a JSP page, open its corresponding .java file in the Debugger, set a breakpoint, and run
the JSP page. Execution will stop, and you can examine your JSP page.

Server Description

SilverStream eXtend
Application Server

The SilverStream server locates its generated source files in its
compile cache.

To find the Java source files the SilverStream server generated
from deployed JSP pages, look in this directory:

ServerInstallDir/compilecache/server/database/temp/
sources/application/com/sssw/gen/jsp

For example, to find the source file corresponding to today.jsp,
shown above, look in:

ServerInstallDir/compilecache/localhost/ProverbsClou
d/temp/sources/ProverbFinal/com/sssw/gen/jsp

You will see a set of .java files corresponding to the JSP pages that
the server translated into servlets. Files will be named
name_jsp_nnnnnnnnnn.java.

WebLogic By default, WebLogic does not save the Java source files generated
from JSP pages. To instruct WebLogic to keep the generated Java
source code for your JSP pages, specify the value true for the
keepgenerated parameter in the jsp-descriptor element in
weblogic.xml.
14 Debugging server applications

eXtend Workbench Tools Guide
Here, execution has stopped in the Java source file generated from today.jsp:

Debugging client applications
In addition to debugging J2EE applications and other applications running on application
servers, you can also use the Debugger to debug client Java applications.

When debugging client applications, you can either invoke the Debugger to start the application
or attach the Debugger to a running application.
Debugging client applications 15

12 Debugger
Invoking the Debugger to start the application

You can start an application from within Workbench or from the command line.

¾ To start a client application from Workbench:

1. In Workbench, open the project that defines the application.

Make sure the project’s classpath is set up correctly.

2. Open the Java source file you want to debug.

3. Select Edit>Launch Debugger.

4. Select Launch new process.

5. Specify the class to execute and specify any needed arguments.

6. Click OK.

¾ To start a client application from the command line:

1. Make current the WorkbenchInstallDir\bin directory.

2. Enter the following at the command line:

SilverDebugger [options] class class_arguments
16 Debugging client applications

eXtend Workbench Tools Guide
These are the SilverDebugger arguments for launching an application:

Argument Description

options –sourcepath directory_list

The list of the directories (separated by semicolons) the Debugger
searches for source files

NOTE These directories must be source tree roots

–sourcefile filename

The fully qualified name of the Java source file to display in the
Debugger

–?

Display usage information for the SilverDebugger command

–classpath directory_list

The list of the directories (separated by semicolons) the Debugger
searches for Java classes used in the application

–Dname=value

A system property setting for the application environment

–Xoption

A JVM option for the application environment

class The name of the class to debug

class_arguments Arguments to pass to the main() method of class

NOTE If your source and class files reside on remote network machines, specify paths
and file names using Universal Naming Convention (UNC) format:

\\server-name\shared-resource-pathname
Debugging client applications 17

12 Debugger
For example, to debug the demo Notepad application that comes with the JDK, enter this
command (where InstallDir is the installation directory for the demo application, such as
c:\jdk1.3\demo\jfc\Notepad):

SilverDebugger -sourcepath InstallDir\src
-sourcefile InstallDir\src\Notepad.java
-classpath InstallDir\Notepad.jar
Notepad

The Debugger opens on your desktop displaying the Java source file specified.

3. Set one or more breakpoints in your code or in exceptions.

4. Select Tools>Continue from the menu or click the Continue icon in the toolbar of the
Debugger window:

The application opens on your desktop and execution stops at the first breakpoint
encountered.

Now you are ready to manage program execution and analyze the behavior of your application.

Attaching to a running application

You can also start the application, then attach the Debugger to it. To do this, you must start the
application specifically for debugging.

¾ To attach the Debugger to a running Java application:

1. Launch the Java application either on the local host or on a remote machine:

To launch the application on the local host:

• Type this command on the command line:
java -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_shmem,server=y,suspend=n
-classpath classpath classname

The JVM returns a debug address. For example:
18 Debugging client applications

toolsDebugger.html#Settingandremovingbreakpointsincode
toolsDebugger.html#Settingandremovingbreakpointsinexceptions
toolsDebugger.html#Managingprogramexecution
toolsDebugger.html#Analyzingthebehavioroftheapplication

eXtend Workbench Tools Guide
In this example, the JVM returns javadebug as the debug address. The option
transport=dt_shmem specifies shared-memory transport, which is required for local
debugging.

• Note the debug address; you must pass it to the Debugger in Step 2.

To launch the application on a remote network machine:

• Type this command in a command line:
java -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=n
-classpath classpath classname

The JVM returns a debug port number. For example:

In this example, the JVM returns 3340 as the debug port. The option
transport=dt_socket specifies socket-based transport, which is required for remote
debugging.

• Note the debug port number; you must pass it to the Debugger in Step 2.

2. Invoke the Debugger either from within Workbench or from the command line.

To invoke the Debugger from within Workbench:

1. Select Edit>Launch Debugger.

2. Select Attach to running process.

3. If debugging locally, select Shared Memory Debugging and specify the debug
address returned by the JVM. If debugging remotely, select Remote Socket
Debugging and specify the debug port returned by the JVM.
Debugging client applications 19

12 Debugger
To invoke the Debugger from the command line:

• Use the appropriate SilverDebugger command:

The Debugger opens on your desktop.

3. Open a source file for debugging using File>Open.

Now you are ready to manage program execution and analyze the behavior of your application.

Debugging against SilverJRunner or SilverJ2EEClient This is just like debugging
against a SilverStream server. You launch SilverJRunner or SilverJ2EEClient with an
appropriate debug startup option (described in “Starting the server” on page 6), then attach the
Debugger to the resulting debug address (default is agjrn) or debug port (default is 9901).

Managing program execution
Once you have started the Debugger, there are several ways to manage program execution to
allow you to isolate and diagnose problems in the source code:

• Using breakpoints

• Continuing execution

• Stepping through the code

For Type this command

Local
debugging

SilverDebugger -attach localhost debug_address

NOTE debug_address is the address returned by the JVM when you
launched your Java application for local debugging.

For example:

SilverDebugger -attach localhost javadebug

Remote
debugging

SilverDebugger -attach machine_name:debug_port

NOTE debug_port is the port number returned by the JVM when
you launched your application for remote debugging.

For example:

SilverDebugger -attach mymachine:3340
20 Managing program execution

toolsDebugger.html#Managingprogramexecution
toolsDebugger.html#Analyzingthebehavioroftheapplication

eXtend Workbench Tools Guide
Using breakpoints

You use breakpoints to specify lines in your code where you want to stop execution and give
control to the Debugger. When the code stops executing and the Debugger takes control, you
can execute Debugger commands and view the call stack, thread status, and variable values.

You can set breakpoints only on individual lines in your code. If a line contains multiple
statements, you can set a breakpoint only on the first statement in the line. To set breakpoints on
the subsequent statements, you need to break up the line so that each statement appears on its
own line.

NOTE Breakpoints are stored by server name and class name. As a result, like named objects
on the same server share breakpoints.

Setting and removing breakpoints in code

There are several ways to set and remove breakpoints in code, either for local classes or classes
loaded from external sources. If the Debugger cannot find the source code, it prompts you for a
path, as described in “When the Debugger cannot locate source code” on page 26.

This section describes the procedures for setting and removing breakpoints in source code.

¾ To set breakpoints in code using Toggle Breakpoint:

1. Put the cursor at the line in the source code where you want to set a breakpoint.

2. Either choose Tools>Toggle Breakpoint from the menu or select the Toggle Breakpoint
icon in the Debugger toolbar:

The breakpoint indicator appears in the left margin beside the line you specified.

¾ To set breakpoints in code using the Edit menu:

1. Select Edit>Show Line Numbers from the menu.

This makes it easier to specify locations for breakpoints.

2. Choose Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

3. Select the Code tab.

The dialog lists all breakpoints that have been set.

4. Click Add.
Managing program execution 21

12 Debugger
5. Do one of the following:

The new breakpoint appears in the Manage Breakpoints dialog.

6. Click OK.

7. Click Done to add the breakpoint to the source code.

¾ To remove individual breakpoints using Toggle Breakpoints:

1. Click in a line that has a breakpoint.

2. Select the Toggle Breakpoint icon in the Debugger toolbar.

¾ To remove breakpoints using the Edit menu:

1. Choose Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

2. Select the Code tab and click to select the breakpoints you want to remove.

3. Click Delete.

The breakpoints disappear from the list in the Manage Breakpoints dialog.

4. Click Done.

The breakpoints disappear from the source code.

To insert a breakpoint in Do this

Your local Java class 1. In the Specify Breakpoint field, enter the location
where you want to add a breakpoint, in this form:

<fully qualified class name>:<line number>

Example:

com.myapp.gui.CheckBoxes:99

2. Click OK.

Loaded classes 1. Click Browse.

2. Navigate to the method where you want to insert a
breakpoint and click OK.

The breakpoint specification appears in the Specify
Breakpoint field.
22 Managing program execution

eXtend Workbench Tools Guide
¾ To remove all breakpoints:

• Select Tools>Clear All Breakpoints from the menu or click the Clear All Breakpoints
icon in the Debugger toolbar:

Setting and removing breakpoints in exceptions

In addition to setting breakpoints in the main body of source code in your Java applications, you
can set breakpoints in standard Java exceptions or in exceptions that you write to handle specific
behaviors.

This capability can help you pinpoint the source of exceptions that are thrown unexpectedly
when you run your application. When you set a breakpoint in an exception and then run your
application, the Debugger will stop where the exception gets thrown and display the offending
source code if it is available for the class you are debugging. If the Debugger cannot find the
source code, it prompts you for a path, as described in “When the Debugger cannot locate source
code” on page 26.

¾ To set breakpoints in exceptions:

1. Choose Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

2. Select the Exception tab and click Add.

The Add Exception Breakpoint dialog opens.

3. Type the fully qualified name of the exception class on which you want to break, or click
Browse to select an exception from the list of loaded exceptions.

4. Click OK to return to the Manage Breakpoints dialog.

The new breakpoint is listed.

5. Click Done.

NOTE Exception breakpoints do not appear in the source code.

¾ To remove breakpoints from exceptions:

1. Choose Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

2. Select the Exception tab and click the breakpoints you want to remove.
Managing program execution 23

12 Debugger
3. Click Delete.

The breakpoints are removed from the list.

4. Click Done.

Enabling and disabling breakpoints

The Debugger allows you to enable and disable breakpoints in code and exceptions. Disabled
breakpoints appear with a grayed icon:

¾ To enable breakpoints:

1. Select Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

2. Select the Code or Exception tab to locate the breakpoints you want to enable.

3. Click the breakpoints you want to activate and click Enable.

4. Click Done.

The breakpoints you selected will be enabled when you continue program execution.

¾ To disable breakpoints:

1. Select Edit>Breakpoints from the menu.

The Manage Breakpoints dialog opens.

2. Select the Code or Exception tab to locate the breakpoints you want to disable.

3. Click the breakpoints you want to activate and click Disable.

To select multiple breakpoints: hold down the Ctrl or Shift key when you click each
choice.

4. Click Done.

The breakpoints you selected will be disabled when you continue program execution.

Continuing execution

When the program stops at a breakpoint you can continue execution using the Continue or Run
to Cursor commands in the Debugger:

• Use the Continue command to resume running the program to the next breakpoint it
encounters.
24 Managing program execution

eXtend Workbench Tools Guide
• Use the Run to Cursor command to continue running the program to a specified location
in the code, marked by the cursor.

When the program reaches a breakpoint, the Debugger window is activated and an arrow (called
the execution pointer) appears in the margin to the left of the code indicating which line is
about to be executed.

Along with the execution pointer, the Debugger displays a list of local and instance variables
and enables the commands for stepping through your code.

¾ To continue execution:

• Select Tools>Continue from the menu or click the Continue icon in the toolbar of the
Debugger window:

The Debugger executes your source code until it reaches the next breakpoint.

¾ To run to a specified location in the source code:

1. Click in the line of code where you want execution to stop.

The cursor must be located on a line that contains executable statements.

2. Select Tools>Run to Cursor from the menu or click the Run to Cursor icon in the
toolbar of the Debugger window:

Run to Cursor executes your code from the current execution location until it reaches the
place where the cursor is located. If you have breakpoints set and a line containing a
breakpoint is executed before the line that has the cursor, Run to Cursor stops execution at
that breakpoint line.

NOTE If you put the cursor on a line that doesn’t get executed—for example, if your
cursor is on the first line of code inside an if statement when the if condition
evaluates to false—the effect of executing Run to Cursor will be the same as if
you select the Continue command.
Managing program execution 25

toolsDebugger.html#Viewingvariables
toolsDebugger.html#Steppingthroughthecode

12 Debugger
Stepping through the code

There are three Step commands included in the SilverStream Debugger:

When the Debugger cannot locate source code

When the Debugger cannot locate source code for a particular operation, it prompts you to
provide the path to the source file. Either provide the path or dismiss the prompt and follow
directions to either continue execution or step out of the current method.

Analyzing the behavior of the application
You can examine the current execution state at three points:

• When the Debugger stops at a breakpoint

• Following a Step command

• When you suspend and resume threads

At each of these points you can view the following information:

• Call stack

Command Executes Details

Step Over The current line If the current line contains a method call, that method
is executed. The Debugger stops at the line
immediately following the line that was executed.

Step In The current line If the current line contains a method call, the
Debugger stops at the first line in the called method.
Otherwise, the Debugger stops at the line immediately
following the line that was executed.

If the Debugger cannot find the source code for the
method it has entered, it prompts you for a path, as
described in “When the Debugger cannot locate
source code”, next.

Step Out The remainder of
the current
method

The Debugger stops at the statement immediately
following the statement that called the current
method.
26 Analyzing the behavior of the application

toolsDebugger.html#Continuingexecution
toolsDebugger.html#Steppingthroughthecode
toolsDebugger.html#Steppingthroughthecode
toolsDebugger.html#Suspendingandresumingthreads
toolsDebugger.html#Viewingthecallstack

eXtend Workbench Tools Guide
• Thread status

• Local and instance variables

Viewing the call stack

The Debugger provides a viewer that lets you examine the call stack during program execution.
The call stack viewer shows the name of each method in the stack, along with its source file and
line number.

When you double-click a method in the call stack viewer, the source file opens in the Debugger,
highlighting the line where the method is called. If the Debugger cannot find the source file, it
prompts you for a path, as described in “When the Debugger cannot locate source code” on
page 26.

The call stack viewer updates the call stack when:

• The Debugger stops at a breakpoint

• You execute a Step command

• You continue execution to the next breakpoint

• You continue execution to a specific location in the code, marked by the cursor

• You select a different thread

¾ To open the call stack viewer:

• In the Debugger, choose View>Call Stack from the menu.

A pane for viewing the call stack appears in the Debugger window.

Viewing threads

The Debugger provides a viewer that lets you examine the status of threads during program
execution. The thread viewer displays threads organized by groups, showing the name of each
thread, along with its identifier and state.

You can suspend and resume threads to isolate problems that occur in thread synchronization,
such as deadlocks and infinite loops.

The thread viewer updates thread status when:

• The Debugger stops at a breakpoint

• You execute a Step command

• You continue execution to the next breakpoint
Analyzing the behavior of the application 27

toolsDebugger.html#Viewingthreads
toolsDebugger.html#Viewingvariables
toolsDebugger.html#Suspendingandresumingthreads

12 Debugger
• You continue execution to a specific location in your code, marked by your cursor

• You suspend and resume threads

¾ To open the thread viewer:

• In the Debugger, choose View>Threads from the menu.

A pane for viewing threads appears in the Debugger window.

Interpreting thread states

Threads can exhibit a variety of states during program execution:

Suspending and resuming threads

If you encounter an infinite loop or deadlock in a thread, you can isolate the problem by
suspending the thread and viewing its call stack. You cannot view the call stack of a thread
unless it is suspended.

¾ To suspend a thread and view its call stack:

1. Open the thread and call stack viewers.

Thread state Description

At breakpoint Thread was running when execution stopped at the breakpoint

Running Thread is running

Sleeping Thread is sleeping for a specified period of time

Suspended Thread is suspended

Waiting Thread is waiting for notification to resume running

Waiting on monitor Thread is waiting for a monitor to be released by another thread

NOTE In a deadlock situation, you will see two or more threads in
this state. However, threads that appear in this state do not
necessarily indicate a deadlock.
28 Analyzing the behavior of the application

eXtend Workbench Tools Guide
2. Do one of the following:

The call stack for the selected thread appears in the call stack viewer.

3. Double-click methods in the call stack to view their code in the Debugger.

If you double-click a waiting thread, the method that put the thread in a wait state appears
in the call stack viewer.

If the Debugger cannot locate the source code for a method you selected, it prompts you to
supply a path, as described in “When the Debugger cannot locate source code” on
page 26.

¾ To resume a thread:

• Do one of the following:

Viewing variables

The Debugger provides a viewer that lets you examine local and instance variables when
program execution stops at a breakpoint. The variable viewer displays the variable name, type,
and value.

To suspend Do this

All threads 1. Stop execution of the code at a breakpoint.

2. Click the suspended thread.

An individual thread Double-click a running or waiting thread in the thread viewer

To resume Do this

All threads suspended at a
breakpoint

Resume execution of your application by:

• Stepping in, out, and over source code

• Running the application to a particular location in the
source code, marked by the cursor

• Running the application to the next breakpoint

• Continuing execution

An individual thread Double-click the suspended thread in the thread viewer
Analyzing the behavior of the application 29

toolsDebugger.html#Steppingthroughthecode
toolsDebugger.html#Continuingexecution
toolsDebugger.html#Continuingexecution
toolsDebugger.html#Continuingexecution

12 Debugger
The variable viewer updates variable values when:

• The Debugger stops at a breakpoint

• You execute a Step command

• You continue execution to the next breakpoint

• You continue execution to a specific location in your code, marked by your cursor

¾ To open the variable viewer:

1. In the Debugger, choose View>Variables from the menu.

A pane for viewing variables appears in the Debugger window.

2. Click locals to view local variables and click this to view instance variables for the current
object.

Debugger keyboard shortcuts
Use these keyboard shortcuts.

Keystroke Description

Ctrl+C Copy to Clipboard

Ctrl+G Go to line number

Ctrl+F Find/Replace

F5 Continue

F10 Step over

F11 Step in

Shift+F11 Step out

Ctrl+F10 Run to cursor
30 Debugger keyboard shortcuts

Index
A
abbreviations

see source files
actions in Todo lists 42
Apache Ant, using 44
application client archives (CARs)

see archives 9
Archive Contents view 74
Archive Layout view 74
archives

about 51
creating 91
creating projects for 9
defining deployment settings 102
deleting 115
deploying 98, 101, 108
deployment descriptors 295
deployment documents 101
deployment plans 301
directory structure considerations 53, 55
disabling 115
managing content 80, 99
rapid deployment 102
undeploying 115
validating 94
Workbench projects 9, 51

autosave files
setting preferences 21

B
backup files

setting preferences 21
BEA WebLogic server

deploying archives to 108
deployment documents 101
deployment settings 102

bookmarks in NetBeans-based editors 224
breakpoints

see debugger
browser preference 14

Build command 91
building projects 87

C
call stacks

see debugger
CARs (application client archives)

see archives
catalog entry files 252
catalog, XML 252
class files, opening in Workbench 12
Class Viewer 12
classpaths

specifying the project classpath 88
code completion for Java expressions 218
colors, setting in XML Editor 24
Compile command 91
compiler preferences 15
compilers

specifying the Java compiler 88
compiling projects 87
components

see J2EE, source files
Custom Tag Wizard 226
custom tags

see JavaServer Pages

D
databases

creating profiles 27
making a driver class available 27

deadlock
see debugger

debugger
about 307
attaching to a Java application 324
breakpoints 307, 326, 327, 330
call stacks 333, 334
controlling program execution 309
337

Index
deadlock 307
debugging client objects 309
debugging concepts 307
debugging server objects 309, 312
instance variables 308, 335
keyboard shortcuts 336
local and remote debugging 309
local variables 308, 335
locating source code 332
managing program execution 326, 330
monitor 308
monitoring program status 309, 332
options for launching applications 322
specifying your own 43
stepping through code 332
threads 308, 333, 334
using to start an application 322
workflow 311

Debugger command preference 43
default browser, used in XSL Editor 257
deployment

production/full 97
rapid 96
types 96
using non-Workbench tools 97

Deployment Descriptor Editor
about 295, 296
setting preferences 18

deployment descriptors
about 295
associating with projects 297
creating 297
validating against archives 94

deployment documents
about 101
listing for different application servers 101

Deployment Plan Editor
about 301
setting preferences 18

deployment plans
about 301
associating with projects 304
creating 302
modifying 303

SilverStream eXtend Application Server 101
validating 304

deployment settings
creating 102

deploy-only projects
see projects

directories
adding to projects 68, 71

display preferences 15
driver classes

see databases
DTD catalog 252
DTDs (Document Type Definitions)

attaching to XML documents 235
converting to Schemas 238

E
EJB archives (EJB JARs)

see archives 9
Enable Todo preference 42
enterprise archives (EARs)

see archives 9
environment variables

using for project settings 80

F
files

see source files
files, specifying editor to use on 20
fonts

used by Workbench, specifying 49
used in native editors 16

full deployment 97

G
graphics, opening in Workbench 12
338

eXtend Workbench Tools Guide
I
IBM WebSphere server

deploying archives to 108
deployment documents 101
deployment settings 102

Image Viewer 12
inner classes, listing 76
instance variables

see debugger
internationalization support 49

J
J2EE

archives 9
components 9
creating components 117
deployment descriptors 9, 295
META-INF directories 295
Web Services 9
WEB-INF directories 55, 295

Jakarta Tomcat
deploying archives to 108
deployment documents 101

Java archives (JARs)
see archives 9

Java class files
opening in Workbench 12

Java Editor 211
Java expressions, code completion in editors 218
JavaServer Pages

editing 211, 226
inserting custom tags 226
JSP Editor 211

jBroker Web
compilers used by Web Service Wizard 188

JSP Editor 211

L
Launch Action command 42
line numbers

displaying in editors 16
printing 17

local variables
see debugger

M
META-INF directories

see J2EE
monitor

see debugger

N
native editors, editing files with 224
Navigation Pane

refreshing 71
NetBeans-based editors

adding file types edited with 221
using 216

O
OASIS XML catalog standard 252
Oracle9iAS server

deploying archives to 108
deployment documents 101
deployment settings 102

P
permissions

changing 4
preferences

abbreviations 19
autosave 21
backup 21
build 15
deployment 18
display 15
file type 20
general 14
printing 17
setting 13
text editing 16
339

Index
version control 23
XML Editor colors 24

printing
specifying preferences 17

production deployment 97
profiles

creating 24
creating database profiles 27
creating registry profiles 282
creating server profiles 24

project files
about 52
closing 7
opening 6, 77
saving 6
working with 6

projects
about 51
adding multiple files at the same time 70
adding source files and directories 68, 71, 81
adding subprojects 71
adding to the project classpath 90
compiling, building, and archiving 87, 91
creating 9, 56
creating a project that includes existing source

files 64
creating source files 65
defining deployment settings 102
deploying 98, 108
deployment plans 301
deploy-only projects 62
designing 53
displaying in the Navigation Pane 3, 74
maintaining 76
managing content 80, 81, 85
modifying project entries 81
opening 77
organizing 53
populating 65
Project menu 91
refreshing contents of 71
removing files 85
renaming 87
setting preferences 14
settings 78, 80, 81

specifying the classpath 88
subprojects 53, 56
tracking tasks 37
using relative directory paths 81
using the project popup menu 86
viewing 74
working with existing source files 64
working with project files 6, 53

proxy servers, using with Workbench 5

Q
quick deployment 96

R
rapid deployment 96

see archives
Rebuild command 91
Refresh command 71
Refresh Schema Handler 237
registries

see Web Services
rmi2soap compiler

in Web Service Wizard 188
rmi2wsdl compiler

in Web Service Wizard 188

S
Schema catalog 252
Schema Guide 244
Schemas

attaching to XML documents 235
creating from DTDs 238

servers
creating deployment settings 102
creating profiles 24
using secure servers, SSL, and HTTPS protocol 27

SilverDebugger.exe
see debugger
340

eXtend Workbench Tools Guide
SilverStream eXtend Application Server
deploying archives to 108
deployment plans 101
deployment settings 102

source control
see version control

source files 9
abbreviations in 19, 214
adding to projects 68, 71
bookmarks (NetBeans-based editors) 224
catalog entry files 252
changing case (native editors) 215
changing DOS and UNIX line endings (native

editors) 224
changing read-only and write-only attributes (native

editors) 225
changing spaces, tabs, and indentation (native

editors) 215
clipboard support (native editors) 225
closing 8
code completion for Java expressions (NetBeans-

based editors) 218
color coding (NetBeans-based editors) 217
compiling a Java file 91
creating 65
creating components 9, 117
debugging 307
defining how a file type is launched 20
deleting 8
directory structure considerations 53
displaying in the Edit Pane 3
editing 10, 211
graphics, opening in Workbench 12
inserting JSP tags (native editor) 226
opening 7
renaming 8
saving 7
searching 213
searching (NetBeans-based editors) 223
searching across multiple files 213
setting preferences 14, 20
setting text editing preferences 16
src directories 53
using NetBeans-based editors 216
using the native editors 224

using the native editors for Java, JSP, and HTML
files 225

working with 7
Source Layout view 74
SPF files

see project files
src directories 53
status bar 4
subprojects

adding to projects 71
creating 56
displayed in Navigation Pane 74
parent project classpaths 89

Sun J2EE Reference Implementation server
deploying archives to 108
deployment documents 101

T
tabs

using in source editor 16
Text Editor 211
threads

see debugger
Todo lists 37

U
UDDI

see Web Services
undeploying archives 115

V
validation of archives 94
validation of XML documents 249
version control

accessing 36
setting up access 29
using 29

version information about Workbench 5
341

Index
W
Web archives (WARs)

see archives 9
Web Service Wizard

about 187
compilers 188
panel details 191
panel sequence 189

Web Services
browsing registries 284
creating registry profiles 282
publishing to registries 293
registries 281
retrieving WSDL files from registries 292
tools provided in Workbench 13
UDDI 281
WSDL Editor 13, 267

WEB-INF directories
see J2EE

Workbench
about 1
basic operations 5
creating profiles 24
displaying version information about Workbench

components 5
exiting 5
extending tools and services 50
panes 3
printing 17
setting preferences 13, 21
specifying the Java compiler 88
specifying the project classpath 88
starting 5

WSDL (Web Services Description Language)
see Web Services

wsdl2java compiler
in Web Service Wizard 188

X
XML catalog 252
XML Catalog Editor 254
XML Catalog Wizard 253

XML Editor 229
catalog, used by 252
code completion 239
context editing support 239
keyboard shortcuts 258
Schema Guide 244
setting colors 24
validating documents 249

XML Wizard 233
xsd2java compiler

in Web Service Wizard 188
XSL Editor 256
342

	Tools Guide
	Contents
	Chapter 1 Workbench Basics 1
	Chapter 2 Projects and Archives 51
	Chapter 3 Archive Deployment 95
	Chapter 4 Component Wizards 117
	Chapter 5 Web Service Wizard 187
	Chapter 6 Source Editors 211
	Chapter 7 XML Editors 229
	Chapter 8 WSDL Editor 267
	Chapter 9 Registry Manager 281
	Chapter 10 Deployment Descriptor Editor 295
	Chapter 11 Deployment Plan Editor 301
	Chapter 12 Debugger 307

	About This Book
	Purpose
	Audience
	Prerequisites
	Organization

	Workbench Basics
	What Workbench provides
	Workbench panes
	Basic Workbench operations
	Starting and stopping Workbench
	Using proxy servers
	Opening, saving, and closing projects and files

	Workbench wizards
	Standard Workbench editors
	About the Workbench source editors
	Debugger

	Workbench viewers
	Image Viewer
	Class Viewer

	Web Service tools
	Setting preferences
	General preferences
	Build preferences
	Display preferences
	Text editing preferences
	Printing preferences
	Deployment preferences
	Abbreviations preferences
	File type preferences
	Backup preferences
	Version control preferences
	Editor setup preferences
	NetBeans directories preferences
	XML Editor color preferences

	Setting Workbench profiles
	Server profile
	Database profile
	Registry profile

	Using version control
	Setting up access to version control
	Accessing version control

	Maintaining Todo lists
	Working in the Todo tab
	Working with generated items

	Specifying a debugger
	Specifying the command

	Using Ant
	What is Ant?
	Using the Workbench Ant tools
	Examples

	Internationalization support
	Specifying fonts

	Extending the Workbench toolset and services

	Projects and Archives
	About projects and archives
	Organizing projects
	Project design considerations
	Project directory structure considerations

	Creating projects and subprojects
	Creating a deploy-only project
	Working with existing source files

	Populating projects
	Creating source files
	Adding to projects

	Viewing projects
	Maintaining projects
	Opening a project
	Managing general project settings
	Managing project content settings
	Removing files, directories, and subprojects from projects
	Renaming a project

	Compiling, building, and archiving
	Setting up your Workbench environment
	Using the commands

	Validating archives

	Archive Deployment
	Workbench-supported J2EE servers
	Workbench deployment types
	Using Workbench to deploy J2EE archives
	Archive contents
	Creating deployment settings

	What Workbench does when you deploy a project
	Deploying Web Services
	Undeploying archives

	Component Wizards
	EJB Wizard
	About the EJB Wizard
	Starting the EJB Wizard
	Panel sequence
	Panel reference

	JSP Wizard
	About the JSP Wizard
	Starting the JSP Wizard
	Specifying the JSP page name and other options
	Specifying the project, directory, and package
	Specifying imports
	What happens

	Servlet Wizard
	About the Servlet Wizard
	Starting the Servlet Wizard
	Specifying the class name and other servlet options
	Specifying the project, directory, and package
	Specifying which HttpServlet methods to override
	Specifying which interfaces to implement
	Specifying which classes and packages to import

	Java Class Wizard
	About the Java Class Wizard
	Starting the Java Class Wizard
	Specifying the class name and other options
	Specifying which interfaces to implement
	Specifying which classes and packages to import
	Specifying the project, directory, and package

	JavaBean Wizard
	About the JavaBean Wizard
	Starting the JavaBean Wizard
	Specifying the class name and other options
	Specifying the data fields
	Specifying which interfaces to implement
	Specifying which classes and packages to import
	Specifying the project, directory, and package

	Tag Handler Wizard
	About the Tag Handler Wizard
	Starting the Tag Handler Wizard
	Specifying the class name and other options
	Specifying the project, directory, and package
	Specifying the tag library descriptor file
	Specifying the body type
	Specifying tag handler attributes
	Specifying tag handler scripting variables
	Specifying TagExtraInfo class
	What happens

	Web Service Wizard
	About the wizard
	Using the wizard
	Panel sequence
	Panel details
	Project location
	WAR project selection
	Class selection
	WSDL file selection
	Multiple namespace mapping
	EJB home interface selection
	EJB lookup information
	Method selection
	Class-generation and SOAP options

	Source Editors
	Common features
	Standard editing features
	Editor preferences
	Searching across multiple files
	Using text abbreviations
	Changing case
	Changing spaces, tabs, and indentation

	The NetBeans-based editors
	Color coding
	Code completion
	Adding files types edited by NetBeans-based editors
	Other editing support

	The native editors
	Changing line ending characters
	Multiple clipboard support
	Viewing and changing read-only and read-write attributes
	Using the native Java, JSP, or HTML editor
	Inserting custom tags in a JSP page

	XML Editors
	About XML
	XML support in Workbench
	Using the XML Editor
	Using the Source View
	Using the Tree View

	Creating and opening XML documents
	Associating Schemas and DTDs with XML documents
	Attaching a Schema or DTD to a document
	Specifying a Schema or DTD in the XML document
	Detaching a Schema or DTD

	Converting a DTD to a Schema
	Editing an XML document
	About context support
	Adding elements
	Adding attributes
	Adding namespace declarations
	Editing objects

	Using the Schema Guide
	The Schema Guide window
	Adding elements and attributes
	Looking at different elements

	Validating an XML document
	Searching an XML document
	Maintaining the XML catalog
	Adding to the catalog
	Using the XML Catalog Editor

	Using the XSL Editor
	Keyboard shortcuts
	In Tree View
	In Source View
	In Catalog View, XML Catalog Editor

	WSDL Editor
	About WSDL
	About the WSDL Editor
	Creating a new WSDL document
	Adding elements to a WSDL document
	Adding a message element
	Adding a port type element
	Adding a binding element
	Adding a service element

	Validating a WSDL document
	Displaying a stylized view
	Publishing to a registry
	Generating Web Service files from WSDL

	Registry Manager
	About UDDI
	About the Registry Manager
	Defining registry profiles
	Browsing registries
	Information displayed
	Popup menus
	Action buttons
	Searching by business
	Searching by service

	Retrieving WSDL from the registry
	Publishing to a registry

	Deployment Descriptor Editor
	About deployment descriptors
	About the Deployment Descriptor Editor
	Using the Deployment Descriptor Editor

	Deployment Plan Editor
	About Deployment Plans
	Using the Deployment Plan Editor

	Debugger
	Concepts you need to know
	About the Debugger
	Debugging server applications
	Starting the server
	Launching the Debugger
	A sample debugging session
	Debugging J2EE applications

	Debugging client applications
	Invoking the Debugger to start the application
	Attaching to a running application

	Managing program execution
	Using breakpoints
	Continuing execution
	Stepping through the code
	When the Debugger cannot locate source code

	Analyzing the behavior of the application
	Viewing the call stack
	Viewing threads
	Viewing variables

	Debugger keyboard shortcuts

	Index

