
SilverStream eXtend eXtend Workbench

Development Guide

Version 4.0

June 2002



Copyright ©2002 SilverStream Software, Inc. All rights reserved. 

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc. 

SilverStream and jBroker are registered trademarks and SilverStream eXtend is a trademark of SilverStream Software, Inc. 

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times 
remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The 
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other 
proprietary notices from the Software or its documentation, and you must reproduce such notices on all copies or extracts of the Software 
or its documentation. You do not acquire any rights of ownership in the Software.

Third Party Software:

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software 
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright 
©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant, Xalan and Xerces software is licensed by The 
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xerces in source and binary forms, with or 
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the 
above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above 
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the 
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:  "This 
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment 
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta 
Project", "Jakarta-Regexp", "Xerces", “Xalan”, "Ant" and "Apache Software Foundation" must not be used to endorse or promote 
products derived from this software without prior written permission. For written permission, please contact apache@apache.org 
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their 
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS PROVIDED “AS IS” AND ANY 
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE 
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or 
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the 
above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above 
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials 
provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this software without 
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>.  4. Products derived 
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM 
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED 
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE 
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 
OR   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, 
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, 
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, 
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, 
SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of 
Sun Microsystems, Inc. in the United States and other countries.

IBM JikesTM and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All 
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public 
License, a copy of which may be obtained at http://oss.software.ibm.com/developerworks/opensource/license10.html. Source code for 
JikesTM is available at <http://oss.software.ibm.com/developerworks/opensource/jikes/>. Source code for BSF is available at 
http://oss.software.ibm.com/developerworks/projects/bsf.

This software contains code in executable form obtained pursuant to the Mozilla Public License, a copy of which may be obtained at 
<http://www.mozilla.org/MPL/>.  Source code is available at http://www.mozilla.org/rhino/download.html.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All 
Rights Reserved.



Contents
About This Book     ix
Purpose     ix
Audience     ix
Prerequisites     ix
Organization     ix

Chapter 1     Developing Applications with Workbench     1
Designing an application     1

Designing J2EE applications     1
Designing Web Services     2

Developing an application     3
Setting up your project     3
Working on components     5
Updating deployment descriptors     7
Supporting team development     7

Building the project     8
Deploying project archives     9

Deploying from Workbench     9
Deploying outside Workbench     10

Testing and debugging an application     10
Deploying your application to a test server     10
Running your application     11
Debugging your application     11

PART I WRITING J2EE COMPONENTS

Chapter 2     Understanding J2EE     15
What is J2EE?     15

What J2EE gives you     16
Two kinds of applications     17
J2EE technologies     17

How are J2EE applications put together?     21
Three tiers     21
J2EE applications are delivered in archive files     24
Roles in J2EE development     25
Model-View-Controller application model     26
iii



iv

Contents
Learning more about J2EE     26
The J2EE Blueprints     27
J2EE Web sites     27

J2EE and Workbench     28
Support for J2EE versions     28
Support for J2EE roles     28
J2EE-oriented IDE and projects     28
Wizards and editors for J2EE components     29
Build and archive facilities for J2EE modules     29
J2EE deployment services     29

Chapter 3     Writing JSP Pages     31
About JSP pages     32

SilverStream eXtend Workbench support for JSP pages     34
Looking at a sample JSP page     34

Developing JSP pages     38
Packaging the application     40
Deploying the application     42
Running the application     46

Chapter 4     Writing Servlets     49
About servlets     49

Servlet life cycle     49
Servlets and JSP pages     51
Servlets and J2EE archive structure     51

Developing a servlet     52
Creating a servlet class in Workbench     52
Processing the HTTP request     55
Generating the HTTP response     56
Specifying initialization and cleanup methods     61
Other servlet coding issues     62

Packaging the application     62
Deploying the application     63
Running a servlet     63

Chapter 5     Writing J2EE Application Clients     65
About J2EE application clients     65

Client features     65
Client container     67
Client life cycle     67

Developing a client     68
Coding client classes     68
Compiling client classes     74



eXtend Workbench Development Guide
Packaging a client     75
Writing the manifest file     75
Writing the deployment descriptor file     77
Creating the client JAR file     79

Deploying a client     80
Writing server-specific deployment information     80
Deploying the client JAR file     83

Running a client     86

Chapter 6     Writing Enterprise JavaBeans     87
About EJBs     87
Developing EJBs     92

What Workbench does     94
Packaging EJBs     95

Writing the deployment descriptor     95
What Workbench does     96
Creating an EJB JAR file     96
What Workbench does     96

Deploying EJBs     97
Calling EJBs     97

Finding the EJB     97
Tips for designing EJB applications     100

Chapter 7     Using Resource Adapters     101
About resource adapters     101
Deploying resource adapters     103
Using resource adapters     104

PART II PRODUCING AND CONSUMING WEB SERVICES

Chapter 8     Understanding Web Services     109
About Web Services     109
Web Service providers, consumers, and registries     110
Providing Web Services     111

Creating Web Service components     111
Creating a WSDL file     112
Publishing Web Service information     112

Using Web Services     113
Using Web Service registries     114

About registries     114
Registry data formats     115
v



vi

Contents
Public and local registries     115
Learning more about Web Services     115
Popular Web Service implementations     116
Web Services and Workbench     116

jBroker Web     117
Web Service Wizard     117
Registry Manager     118
WSDL Wizard and Editor     118

Chapter 9     Generating Web Services     119
Basics     119
Steps     120

Preparing to generate     120
Generating Web Service files     122
Examining the generated files     125
Editing the generated files     131
Using the generated files     133

Choosing an implementation model     135
Tie model     135
Skeleton model     136

Scenario: starting with a Java class     137
Project setup     138
Input to the wizard     138
Generated files for the Web Service     142
Generated files for testing     154
Deployment descriptor     166
Runtime test result     166

Chapter 10     Generating Web Service Consumers     167
Basics     167
Steps     168
Preparing to generate     168
Providing a WSDL file     169

Example: WSDL file for Autoloan .NET Web Service     170
Understanding the WSDL     173

Generating the consumer files     174
Examining the generated files     177

About generated file names     178
Additional details of generation     178
Example: generated consumer files for Autoloan .NET Web Service     

178



eXtend Workbench Development Guide
Editing the generated files     195
Editing the xxxClient.java file     195

Using the generated files     197
Running the consumer program     198

From Workbench     198
From a command line     199
vii



viii

Contents



About This Book 
Purpose

This guide tells you how to develop J2EE and Web Service applications using SilverStream 
eXtend Workbench.

Audience

This guide is for J2EE application programmers who need to create, assemble, and deploy J2EE 
and Web Service components.

Prerequisites

This guide assumes that you are familiar with the Java programming language, the Internet, and 
Web applications. You can find learning materials on these topics readily available from a 
variety of public and commercial sources.

Organization

Here’s a summary of the topics you’ll find in this guide:

Topic Description

Developing Applications with 
Workbench

Examines the process of developing applications in 
Workbench and discusses Workbench support for J2EE 
and Web Services

Writing J2EE Components Provides an overview of J2EE technologies and 
explores how Workbench helps you develop J2EE 
components (JSP pages, servlets, application clients, 
Enterprise JavaBeans) and use supporting services 
(resource adapters)

Producing and Consuming Web 
Services

Provides an overview of Web Service technologies and 
explores how Workbench helps you create, publish, 
find, and consume Web Service components
ix



    
x



1
 Developing Applications with Workbench Chapter 1
This chapter explores the life cycle of a J2EE or Web Service application. It looks at each 
phase of the development process and explains how SilverStream eXtend Workbench can help 
you along the way. The process consists of:

1. Designing an application

2. Developing an application

3. Building the project

4. Deploying project archives

5. Testing and debugging an application

Designing an application
A comprehensive design phase is strongly recommended to help you make appropriate choices 
in architecture and technologies, ensuring success for your project. This includes:

• Designing J2EE applications

• Designing Web Services

You can design your application manually or with automated design and modeling tools, then 
implement that design using Workbench.

Designing J2EE applications

When you design an application for a J2EE (Java 2 Platform, Enterprise Edition) server, give 
careful consideration to the programming model it should follow. Good models, such as the 
Model-View-Controller (MVC) architecture, are available for handling the potential 
complexity of J2EE applications. The Jakarta Struts project is a popular MVC implementation.

Your application design should also specify which J2EE technologies you need. These may 
include:

• Component technologies such as application clients, servlets, JavaServer Pages (JSP 
pages), and Enterprise JavaBeans (EJBs)

• Service technologies such as Java Naming and Directory Interface (JNDI), Java Database 
Connectivity (JDBC), Connector architecture (resource adapters), Java Transaction API 
(JTA), Java Authentication and Authorization Service (JAAS), JavaMail, Java Messaging 
Service (JMS), Java API for XML Parsing (JAXP), and others
1



1    Developing Applications with Workbench
For more on J2EE technologies, see Chapter 2, “Understanding J2EE”.

For details on J2EE application design, consult the following table:

Designing Web Services

The design of a Web Service involves several standard technologies, including:

• Simple Object Access Protocol (SOAP), an XML-based messaging protocol that enables 
software components to communicate regardless of development platform and source 
language differences

• Web Services Description Language (WSDL), an XML-based language that represents 
characteristics of a Web Service

• Universal Description, Discovery, and Integration (UDDI) registries, which enable you 
to publish to and make inquiries of a central, network-accessible repository of information 
about businesses and Web Services

Web Service providers must ensure that their services are highly available, reliable, and 
scalable, typically through careful hardware and software design choices. Web Services created 
in Workbench are implemented using J2EE technologies, so J2EE best practices apply to their 
design as well.

For more on Web Service technologies, see Chapter 8, “Understanding Web Services”.

To learn about See

Designing J2EE applications Designing Enterprise Applications with the Java 
2 Platform, Enterprise Edition, from the Sun 
Blueprints at java.sun.com/blueprints

Using the Struts implementation of the 
MVC architecture

jakarta.apache.org/struts

Best practices in J2EE development 
recommended by SilverStream

devcenter.silverstream.com
2 Designing an application

new http://java.sun.com/blueprints
new http://jakarta.apache.org/struts/
new http://devcenter.silverstream.com


eXtend Workbench Development Guide
For details on Web Service design, consult the following table:

Developing an application
Using Workbench to develop a J2EE application or Web Service involves:

1. Setting up your project

2. Working on components

3. Updating deployment descriptors

4. Supporting team development

Setting up your project

In Workbench, a project typically represents a J2EE module that you want to build. You can 
create Workbench projects that build the following J2EE archives:

• Enterprise archive (EAR)

• Web archive (WAR)

• Resource adapter archive (RAR)

• Enterprise JavaBean archive (EJB JAR)

• Application client archive (client JAR)

• Java class archive (JAR)

These Workbench projects support the J2EE component model of development. This enables 
you to create, change, and build small parts of your enterprise application or the entire 
application.

To learn about See

Designing applications that implement 
Web Services

Chapter 9, “Generating Web Services”

Designing applications that access Web 
Services

Chapter 10, “Generating Web Service 
Consumers”
Developing an application  3



1    Developing Applications with Workbench
Basic steps The typical process of setting up a J2EE development project in Workbench 
involves:

1. Organizing your source directories and files on the file system

2. Creating projects and subprojects in Workbench for the J2EE archives you need

3. Adding existing source directories and files to your projects in Workbench

For example, you might create a single, top-level project that represents an enterprise 
application. You might then create subprojects for the various modules that make up the 
application, including Web modules for the user interface, EJB modules for the business logic 
and database access, and so on.

For details on projects and subprojects in Workbench, see Projects and Archives in the 
Tools Guide.

Setting up a Web Service project In Workbench, Web Services are deployed as Web 
archives (WARs). To set up a Web Service project, you follow the same steps as when creating 
a WAR project.

Organizing your source directories and files

Your initial setup steps depend on whether you’re creating a project from scratch or importing 
existing J2EE source into Workbench:

If you’re starting 
with Do this

No source 
directories or files

Create a directory tree on the file system for your project. Often this 
consists of a single top-level directory for the application and 
subdirectories to group components (JSP pages, servlets, EJBs, Java 
class files, and so on.). Another possible approach is to store 
component directories independently (in case they’re used in 
multiple applications).

Existing source 
directories and files

Make sure the directory structure on your file system maps well to 
the J2EE modules for your project. This helps you import source 
into Workbench (because you can simply import entire directories). 
If your file system is not organized properly, you may have to 
import files individually (which makes project maintenance harder).
4 Developing an application

toolsProjects.html


eXtend Workbench Development Guide
Creating projects and subprojects

Workbench provides a New Project Wizard that helps you create a project for each type of 
archive you want to build. For example, if you’re creating an enterprise archive, you can select 
EAR as the project type then specify the project name, file system location, and J2EE version. 
Workbench creates a SilverStream project file (with SPF extension) in the project location.

Once you create projects for your application’s J2EE modules (WARs, RARs, EJB JARs, client 
JARs), you can add them to the EAR project as subprojects.

For more information on organizing projects and subprojects, see Organizing projects in 
the Tools Guide.

To learn about choosing the J2EE version for a project, see the chapter on how to handle 
J2EE versions in Getting Started.

Adding existing source directories and files to your projects

Once your application architecture is represented in Workbench projects and subprojects, you 
can add any existing source directories and files to them. For example, you may already have 
the Java classes for some application components. You might have some standard resources 
(such as graphics) that you’re reusing from other applications.

Wherever possible, add the directory that contains the files rather than the individual files. If 
you add a directory to a project, any files in that directory are automatically included in the 
project. If you specify individual files, you must add any new files created in that directory to 
the project manually.

For more information on adding directories and files to a project, see Populating projects 
in the Tools Guide.

Working on components

Workbench provides component wizards and source editors to help you create and maintain 
J2EE components for your projects. Because Workbench adheres to J2EE standards, you also 
have the option of using any third-party tool to develop components for a Workbench project.
Developing an application  5

toolsProjects.html#Organizingprojects
toolsProjects.html#Populatingprojects
gsJ2EEVersions.html
gsJ2EEVersions.html


1    Developing Applications with Workbench
Using component wizards

Whenever you request a new file in Workbench, a wizard helps you create the kind of J2EE 
component or other item you want. Workbench provides wizards for JSP pages and tag libraries, 
servlets, EJBs, JavaBeans and Java classes, XML files, WSDL files, text files, Web Services, 
and more. The Web Service Wizard lets you create Web Services (SOAP-enabled servlets and 
supporting classes for a WAR project) or Web Service consumers (classes for accessing Web 
Services).

Each wizard collects information about the requested item, creates files and directories for it 
(including Java source where possible), and adds it to the appropriate project.

For more information, see Creating source files and Component Wizards in the Tools 
Guide.

Using source editors

Workbench provides a variety of editors you can use to further develop the source files in your 
projects:

• Java Editor

• JSP Editor

• HTML Editor

• Text Editor

• XML Editor

• WSDL Editor

• Deployment Descriptor Editor

• Deployment Plan Editor

When you open a file, Workbench automatically invokes the appropriate editor for that file type. 
Editor features include archive-awareness, various coding conveniences, and version control 
access.

For more information on using these editors, see Source Editors in the Tools Guide.

To learn about version control access, see the chapter on Workbench basics in the Tools 
Guide.
6 Developing an application

toolsProjects.html#Creatingsourcefiles
toolsTextEditor.html
toolsBasics.html#Usingversioncontrol
toolsWebServiceWizard.html
toolsComponentWizards.html


eXtend Workbench Development Guide
Using other tools

Workbench supports any J2EE module or component, regardless of how it was created. This 
means you can develop modules and components using your favorite third-party tools (such as 
another IDE or editor) then import them intoWorkbench (as described in “Adding existing 
source directories and files to your projects” on page 5).

Updating deployment descriptors

Workbench generates an appropriate deployment descriptor for any J2EE project or subproject 
you create. When you modify the contents of a project, Workbench automatically updates the 
corresponding deployment descriptor.

Workbench provides a Deployment Descriptor Editor that enables you to manually edit a 
deployment descriptor file. This editor offers both graphical and text-based views of the 
deployment descriptor information.

See Deployment Descriptor Editor in the Tools Guide.

Supporting team development

Because Workbench maintains projects on your file system, it’s easy to share work among 
multiple developers. This section provides some tips on making the process flow smoothly:

• Keeping project files current

• Using relative paths

Keeping project files current

When you make changes to a project (such as adding files, directories, components, or 
modules), Workbench updates the project’s SPF and deployment descriptor files as needed. 
When multiple developers work on the same set of project files, there are several ramifications 
of such changes. Following good source control processes usually ensures that changes in the 
project structure and content are handled appropriately.

You must have write access to the appropriate project files when making project-level changes. 
Typically, this means checking out SPF, deployment descriptor, and component files from a 
version control system. To share project-level changes with others on your team, you must 
check in your project files. Other members of the team must update their work areas to reflect 
the changed project structure and content.
Developing an application  7

toolsDeployDescEditor.html


1    Developing Applications with Workbench
Using relative paths

When creating components or modules in Workbench, you specify paths for archives and 
directories. When multiple developers work on a project, you may want to specify these paths 
relative to the project directory.

The advantage of using relative paths is that project files don’t rely on drive letters or other 
absolute path structures (which can be problematic across file systems). For example, a Z: drive 
mapped on your computer might not exist on another developer’s computer. Unless you can 
guarantee that all developers accessing your project have some known set of drives, you should 
use relative paths.

The disadvantage is that in deep directory structures, relative paths are sometimes difficult to 
decipher (for example, a file might be specified as ..\..\..\..\beans\classes\checker.class).

Building the project
Workbench gives you flexibility in building project files and creating J2EE archives. You can:

• Compile just the currently open Java file without affecting the rest of your project

• Build an entire project (and its subprojects) with the option of compiling all classes or 
only those that need it

• Generate the archive for a project (and its subprojects)

You can perform build operations from the Workbench IDE or from the command line. In either 
case, your project settings are used to specify build details (such as where to generate class files 
and archives).

For more information, see Compiling, building, and archiving in the Tools Guide.

Validating project archives Workbench also enables you to validate the generated 
archive for a project (and its subprojects). Validation is a good check to perform before 
deployment. It makes sure the archive’s deployment descriptor agrees with the appropriate 
J2EE deployment descriptor DTD and with the archive’s content.

For more information, see Validating archives in the Tools Guide.
8 Building the project

toolsProjects.html#Compiling,building,andarchiving
toolsProjects.html#Validatingarchives


eXtend Workbench Development Guide
Deploying project archives
Once you generate the archive for a Workbench project, you can deploy it to a J2EE server. You 
have a choice of deployment approaches:

• Deploying from Workbench

• Deploying outside Workbench

Deploying from Workbench

Workbench provides built-in support for deployment to a variety of J2EE servers:

• BEA WebLogic Server

• IBM WebSphere Application Server

• Jakarta Tomcat

• Oracle9i Application Server

• SilverStream eXtend Application Server

• Sun J2EE Reference Implementation Server

Basic steps To deploy a project archive from Workbench to one of these servers, you:

1. Define a server profile that specifies configuration details about your target J2EE server.

2. Prepare server-specific deployment information that describes how the archive should 
run on your target J2EE server.

This information is typically expressed in XML, similar to the standard J2EE deployment 
descriptors. For example, when deploying to a SilverStream server, you provide an XML 
file called a deployment plan (which you can edit in the Deployment Plan Editor 
included in Workbench).

3. Specify deployment settings that tell Workbench how and where to deploy.

These settings include a rapid deployment option that’s helpful during the development 
phase to quickly deploy and test changes you make.

4. Use the Project>Deploy Archive command to start the deployment.

To learn more about deploying from Workbench, see Archive Deployment in the Tools 
Guide.
Deploying project archives  9

toolsDeployment.html


1    Developing Applications with Workbench
Deploying outside Workbench

Alternatively, you can take archives generated in Workbench and deploy them via other J2EE-
compatible tools (such as the deployment facilities provided by your J2EE server). This 
approach should enable you to deploy to any standard J2EE server.

Testing and debugging an application
Before you can release a J2EE or Web Service application for production use, you must make 
sure it operates properly and with acceptable performance. Your quality control process should 
include:

• Deploying your application to a test server

• Running your application

• Debugging your application

Deploying your application to a test server

By deploying to a test server, you can discover application problems without exposing end users 
or other groups to them. Here are some common test server scenarios:

Wherever possible, test environments should approximate the production environment in which 
your application will run. You can facilitate deployment to a set of test servers by defining server 
profiles for them in Workbench.

See the Server profile discussion in the Tools Guide.

In this scenario You might

You are unit testing your own 
development work

Deploy to a J2EE server on your local machine

You are integrating your development 
work with the work of your team

Set up an integration test machine for the team 
and deploy to a J2EE server on it

Your team is preparing to move its 
development work into production

Set up a preproduction staging machine for 
quality assurance and deploy to a J2EE server on 
it
10 Testing and debugging an application

toolsBasics.html#Serverprofile


eXtend Workbench Development Guide
Running your application

In many cases, you can test how a deployed J2EE application runs by using a Web browser to 
request a particular URL from your J2EE server. This approach applies when you’re testing JSP 
pages and servlets, as well as other components or services that they then access (such as Web 
Services, EJBs, resource adapters, tag libraries, filters, JavaBeans, and supporting classes).

Testing a deployed J2EE application client requires a different approach. This essentially 
involves invoking the client container and asking it to start the client (although the exact process 
depends on your J2EE server’s implementation of the client container).

For more information on running a specific type of J2EE component, see the appropriate 
chapter in Part I, “Writing J2EE Components”. 

For details on testing Web Services or Web Service consumers, see the appropriate 
chapter in Part II, “Producing and Consuming Web Services”.

Debugging your application

Once you’re running an application, you can use debugging tools to control program execution 
and monitor program status. This enables you to find and fix runtime errors. Workbench 
provides a Debugger that you can launch to debug J2EE and other Java applications (including 
client-side or server-side objects, on a local or remote machine).

For more information, see the Debugger chapter in the Tools Guide.
Testing and debugging an application  11

toolsDebugger.html


1    Developing Applications with Workbench
12 Testing and debugging an application



Part I Writing J2EE Components
A primer on J2EE components and supporting services that prepares you for 
creating and using them in Workbench

• Chapter 2, “Understanding J2EE”
• Chapter 3, “Writing JSP Pages”
• Chapter 4, “Writing Servlets”
• Chapter 5, “Writing J2EE Application Clients”
• Chapter 6, “Writing Enterprise JavaBeans”
• Chapter 7, “Using Resource Adapters”





2
 Understanding J2EE Chapter 2
The move of enterprise computing to the Internet and World Wide Web poses challenges to 
application providers. More than ever, enterprise applications must be responsive, easily 
updatable, distributed, scalable, cross-platform, and integrated with a variety of existing back-
end information systems. Sun’s Java 2, Enterprise Edition (J2EE) addresses these challenges.

This chapter provides a concise overview of J2EE and introduces the J2EE features of 
SilverStream eXtend Workbench. Topics include:

• What is J2EE?

• How are J2EE applications put together?

• Learning more about J2EE

• J2EE and Workbench

What is J2EE?
J2EE is a standard that provides a component-based approach to designing, implementing, and 
deploying multitier enterprise-level applications. With J2EE, you get reusability of components, 
portability, transaction support, a unified security model, and more.

This section explores the basics of J2EE, including:

• What J2EE gives you

• Two kinds of applications

• J2EE technologies
15



2    Understanding J2EE
What J2EE gives you

The J2EE platform provides the following benefits:

• J2EE applications have a standardized, component-based architecture

J2EE applications consist of components (including servlets, JavaServer Pages, and 
Enterprise JavaBeans) that are bundled into modules. Because J2EE applications are 
component-based, you can easily reuse components in multiple applications, saving time 
and effort and enabling you to quickly deliver applications.

This modular development model also supports clear division of labor across 
development, assembly, and deployment of applications so you can best leverage the skills 
of individuals at your site.

• J2EE applications are distributed and multitier

J2EE provides server-side and client-side support for enterprise applications. J2EE 
applications present the user interface on the client (typically a Web browser), perform 
their business logic and other services on the application server in the middle tier, and are 
connected to enterprise information systems on the back end (these three tiers are 
described in a little more detail later). With this architecture, functionality exists on the 
most appropriate platform.

• J2EE applications are standards-based and portable

J2EE defines standard APIs, which all J2EE-compatible vendors must support. This 
ensures that your J2EE development is not tied to a particular vendor’s tools or server.

This means that you have your choice of tools, components, and servers. Because J2EE 
components use standard APIs, you can develop them in any J2EE development tool 
(including Workbench), develop components or purchase them from a component 
provider, and deploy them on any J2EE-compatible server. You pick the tools, 
components, and server that make the most sense for you.

• J2EE applications are scalable

J2EE applications run in containers, which are part of a J2EE server. These containers can 
themselves be designed to be scalable, so scalability can be handled by the J2EE server 
provider without any effort from the application developer.

• J2EE applications can be easily integrated with back-end information systems

The J2EE platform provides standard APIs for accessing a variety of enterprise 
information systems (EISs), including relational database management systems, e-mail 
systems, and CORBA systems. For broader connectivity, J2EE includes the Connector 
architecture, which defines a standard means for accessing heterogeneous EISs.
16 What is J2EE?



eXtend Workbench Development Guide
Two kinds of applications

There are two kinds of J2EE applications:

• Web applications use Web browsers as clients and download static HTML, dynamic 
HTML, or XML generated by JavaServer Pages or servlets on the server.

• Non-Web applications use a standalone client (usually written in Java) or an applet 
embedded in a nonbrowser appliance, such as a cell phone.

The J2EE Blueprints document from Sun recommends using Web applications as much as 
possible. Web browsers are standard and you don’t have to deploy client software onto user 
desktops. When used with supporting technologies (such as JavaScript, DHTML, and 
XML/XLS), Web applications can be made highly interactive. And browser technology 
continues to advance, making browsers ever more attractive as the client environment.

J2EE technologies

J2EE technologies can be divided into these categories:

• J2EE components

• J2EE services

J2EE components

J2EE includes the following kinds of components:

• Web components

• Enterprise JavaBean components

• Client components

It also supports JavaBean components, which are part of J2SE (Java 2, Standard Edition).
What is J2EE?  17



2    Understanding J2EE
Web components

Web applications consist of Web components and other resources bundled together. There are 
two major kinds of Web components:

Web applications can also contain some other supporting components:

• Filters can be used to modify the data or headers of an incoming request, or of an 
outgoing response.

• Event listeners can be used to monitor the servlet context or HTTP session for state 
changes and then perform any appropriate processing.

For more on Web components, see Chapter 3, “Writing JSP Pages” and Chapter 4, 
“Writing Servlets”.

Web component Description

Servlets Servlets extend the functionality of a Web server, much like Common 
Gateway Interface (CGI) programs. Servlets are a better choice 
because, unlike CGI programs, they are portable (written in Java), 
scale well, and are easy to maintain.

Servlets describe how to process an HTTP request and generate a 
response. You can use them to deliver dynamic content.

JavaServer Pages 
(JSP pages)

Like servlets, JSP pages describe how to process and respond to 
HTTP requests. Unlike servlets, JSP pages are text-based documents 
that include a combination of HTML and JSP tags, Java code, and 
other information.

JSP pages and servlets both solve the same problem, but JSP pages 
have the advantage of separating presentation (expressed in HTML) 
from application logic (coded in Java). With servlets, the presentation 
and application logic are mixed together in the same Java file. By 
using JSP pages, you can have your UI developers working on 
presentation of information, while your Java programmers are 
separately developing the application’s logic.

You should use JSP pages in most of your Web applications.
18 What is J2EE?



eXtend Workbench Development Guide
Enterprise JavaBean components

The business logic of a J2EE application resides in Enterprise JavaBeans (EJBs). EJBs are the 
layer between your application’s presentation (viewed in a Web browser) and the data in your 
back-end enterprise information systems. There are three kinds of EJB components:

For more on EJB components, see Chapter 6, “Writing Enterprise JavaBeans”.

Client components

While most J2EE applications use a standard Web browser as the primary or sole client, J2EE 
also supports a couple of clients that execute a Java Virtual Machine:

• Applets

• Standalone Java application clients

For more on client components, see Chapter 5, “Writing J2EE Application Clients”.

EJB component Description

Session beans Session beans implement logic that is specific to one client session. 
In a shopping cart application, for example, you would maintain a 
client’s state (such as the items in a client’s shopping cart) in a 
session bean. Session beans are not shared across clients.

Entity beans Entity beans represent persistent business data, such as a row in a 
relational database. Entity beans are object models—they 
encapsulate the data along with the methods that act upon the data. 
Entity beans can be shared across clients and persist as long as the 
data they represent persists.

Message-driven 
beans

Message-driven beans are stateless EJBs invoked asynchronously by 
the arrival of a JMS (Java Messaging Service) message. After 
receiving a message, a message-driven bean performs business logic 
to process it and then waits for the next message. A client accesses a 
message-driven bean by sending messages to an appropriate JMS 
queue or topic.
What is J2EE?  19



2    Understanding J2EE
J2EE services

J2EE provides a wide range of standard services, including the following:

Service Description

Deployment J2EE applications are deployed as a set of modules. Each module 
contains a deployment descriptor that specifies how to assemble and 
deploy the module in a runtime environment. Customized information 
can be provided at both assembly time and deployment time without 
the need to recompile the application objects.

To learn who performs deployment tasks, see “Roles in J2EE 
development” on page 25.

Naming Because J2EE applications are distributed, they need a way to look up 
and access remote objects and resources, such as EJBs and data 
sources. This is supported via the Java Naming and Directory 
Interface (JNDI).

Data access J2EE supports both declarative and programmatic data access. It 
provides the Java Database Connectivity API (JDBC) for 
connectivity with relational database systems. It provides the 
Connector architecture (resource adapters) to give applications 
uniform access to various kinds of enterprise information systems.

For more on the Connector architecture, see Chapter 7, “Using 
Resource Adapters”.

Transaction J2EE supports both declarative and programmatic transactions. It 
provides the Java Transaction API (JTA) to handle transaction 
processing.

Security J2EE supports both declarative and programmatic security. It provides 
the Java Authentication and Authorization Service (JAAS) to 
authenticate and enforce access controls upon users.

Messaging J2EE provides JavaMail and the Java Messaging Service (JMS) to 
asynchronously send and receive messages. JavaMail is for e-mail 
messages. JMS is for program-to-program messages.
20 What is J2EE?



eXtend Workbench Development Guide
How are J2EE applications put together?
This section takes a closer look at the implementation of J2EE applications:

• Three tiers

• J2EE applications are delivered in archive files

• Roles in J2EE development

• Model-View-Controller application model

Three tiers

J2EE applications run on three tiers:

Communication J2EE supports the following protocols:

• Internet protocols—These include TCP/IP, HTTP 1.0, and SSL 
3.0 (for secure communication)

• RMI protocols—Remote Method Invocation is a set of APIs used 
by Java distributed applications, including EJBs

• OMG protocols—Object Management Group protocols allow 
J2EE applications to communicate with remote CORBA objects

File support J2EE implementations must support the following file types: HTML 
3.2 files, GIF and JPEG files, JAR files, Java CLASS files, and XML 
files. XML manipulation is supported via the Java API for XML 
Parsing (JAXP).

Tier Description

Client tier Web browsers or standalone application clients. The J2EE 
Blueprints document recommends using Web browsers as clients 
whenever possible.

Service Description
How are J2EE applications put together?  21



2    Understanding J2EE
Middle tier Consists of two subtiers:

• Web tier. The J2EE Blueprints document recommends using 
JSP pages (with supporting servlets) to provide the core of the 
user interface for your application.

• EJB tier (or business tier). This is where the business logic, 
including data access, resides.

Enterprise Information 
System tier

Back-end databases and other information sources.

Tier Description
22 How are J2EE applications put together?



eXtend Workbench Development Guide
Here’s a simplified illustration of these tiers:

Containers At the heart of the J2EE component model are containers. Containers are the 
runtime environments implemented by J2EE platform providers. Containers provide life-cycle 
management and other services so that application developers can concentrate on the 
presentation and business logic of their applications.

For example, Web containers (which primarily contain JSP pages and servlets) provide support 
for receiving and responding to client requests. EJB containers provide built-in support for 
transaction management (among other things). Containers also provide built-in support for 
accessing enterprise information systems, such as supporting JDBC to access relational 
databases.

The Web and EJB containers run within the J2EE-compatible application server.
How are J2EE applications put together?  23



2    Understanding J2EE
J2EE applications are delivered in archive files

A J2EE application consists of one or more J2EE modules and one deployment descriptor, 
packaged in an enterprise archive (EAR) file, which is a JAR file with the .EAR extension:

Deployment descriptors A deployment descriptor is an XML document that describes 
how to assemble and deploy a J2EE application or module in the runtime environment.

J2EE modules J2EE modules consist of one or more J2EE components of the same type 
and one component deployment descriptor. There are four kinds of J2EE modules:

Module Description

Web modules Consist of JSP files, classes for servlets, HTML or XML files, a 
deployment descriptor, and graphics files. Stored in a Web archive 
(WAR) file.

EJB modules Consist of EJB classes and interfaces, plus a deployment descriptor. 
Stored in an EJB archive (JAR) file.

Application client 
modules

Consist of class files and a deployment descriptor. Stored in a client 
archive (JAR) file.

Resource adapter 
modules

Consist of class files and a deployment descriptor. Stored in a 
resource adapter archive (RAR) file.
24 How are J2EE applications put together?



eXtend Workbench Development Guide
Roles in J2EE development

One strength of the J2EE platform is that the implementation process is divided naturally into 
roles, which can be performed by different individuals with different skills.

Because of this role-based development, you can use your staff efficiently. You can have your 
developers do what they do best: code high-performing applications, without worrying about 
the details of the UI. And you can have your designers do what they do best: design attractive, 
easy-to-use interfaces, without having to be involved in the application’s coding.

Here are the J2EE roles:

Role Function

J2EE Product Provider Provides the J2EE platform, including the J2EE-compatible 
server that supports your applications.

Application Component 
Provider

Creates Web components (JSP pages and servlets) and EJBs 
for use in J2EE applications. You can develop your own 
components or purchase components from others.

Application Assembler Takes application components from component providers and 
assembles them into an enterprise archive (EAR) file.

During this process, the assembler verifies that the 
components are defined properly to work together. The 
assembler also creates or modifies the application’s 
deployment descriptor.

Deployer Deploys the application in the runtime environment (the J2EE 
server). Defines final security, transaction, and other 
mappings as needed.

System Administrator Configures and administers the runtime environment.

Tool Provider Provides J2EE development, assembly, and deployment tools. 
Workbench is an example of a J2EE tool set.
How are J2EE applications put together?  25



2    Understanding J2EE
Model-View-Controller application model

J2EE applications are best developed using the Model-View-Controller (MVC) application 
model, which consists of the following three elements:

Using the MVC architecture, you can separate the data, display, and flow of an application, 
allowing for greater flexibility and ease of reuse. MVC is also a very good way to develop 
applications that support multiple presentations of the same data.

Sample MVC applications The sample application provided with the J2EE Blueprints 
uses the MVC model. The Workbench Web application tutorial also uses MVC, implemented 
via the Struts framework from the Jakarta project.

Learning more about J2EE
This section lists other J2EE learning resources:

• The J2EE Blueprints

• J2EE Web sites

Element Description

Model Represents the application data and the business rules that manage the 
data. In J2EE applications, the model is typically represented by EJBs.

View Renders the content of the model to the user of the application. In J2EE 
applications, the view is typically provided by JSP pages.

Controller Defines how the application works. It maps user actions (such as button 
clicks) to operations performed by the model (such as updating 
information in a database). The controller mediates between the view and 
the model.

In J2EE applications, the controller is typically a servlet, JavaBean, or 
session bean.
26 Learning more about J2EE

tutallAbout.html
new http://java.sun.com/blueprints


eXtend Workbench Development Guide
The J2EE Blueprints

The J2EE Blueprints from Sun include the following learning materials to help you gain J2EE 
expertise:

• The book Designing Enterprise Applications for the Java 2 Platform, Enterprise Edition

This is one of the best resources for learning about how to build J2EE applications and use 
J2EE technologies. It also illustrates best practices via the accompanying sample 
application.

• The sample application Java Pet Store

This is an e-commerce J2EE application presented through a standard Web browser. It’s 
an excellent demonstration of how to build J2EE applications using the MVC architecture, 
a shopping cart metaphor, and many J2EE features (including JSP pages and EJBs).

These materials are available from the Sun Blueprints Web site (listed below). The book is also 
purchasable in hardcopy from major bookstores.

J2EE Web sites

Here are some J2EE Web sites that you may find helpful:

Site URL

J2EE home page java.sun.com/j2ee

J2EE downloads java.sun.com/j2ee/download.html

J2EE documentation java.sun.com/j2ee/docs.html

J2EE Blueprints java.sun.com/blueprints
Learning more about J2EE  27

new http://java.sun.com/j2ee
new http://java.sun.com/blueprints
new http://java.sun.com/j2ee/docs.html
new http://java.sun.com/j2ee/download.html


2    Understanding J2EE
J2EE and Workbench
SilverStream eXtend Workbench provides all the capabilities you need to create, organize, 
maintain, and deploy J2EE applications:

• Support for J2EE versions

• Support for J2EE roles

• J2EE-oriented IDE and projects

• Wizards and editors for J2EE components

• Build and archive facilities for J2EE modules

• J2EE deployment services

Support for J2EE versions

Workbench provides built-in support for multiple versions of J2EE, including 1.2 and 1.3. It 
helps you handle version-related tasks throughout the life cycle of a project, including 
development, migration, and deployment.

See the chapter on how to handle J2EE versions in Getting Started.

Support for J2EE roles

Workbench maintains a separation of development, assembly, and deployment operations to 
support the roles and responsibilities described in the J2EE specification.

J2EE-oriented IDE and projects

Workbench provides a graphical IDE that helps you create, organize, and maintain J2EE 
applications at the project, archive, and source (file system) levels. You can easily see how the 
source directories and files for a J2EE project are mapped into the resulting archive.

Workbench gives you a natural, consistent approach to developing J2EE components and 
assembling them into J2EE modules and applications.

See the chapter on projects and archives in the Tools Guide.
28 J2EE and Workbench

gsJ2EEVersions.html
toolsProjects.html


eXtend Workbench Development Guide
Wizards and editors for J2EE components

Workbench provides automated wizards that help you create well-structured J2EE components, 
including:

• JSP pages and tag libraries

• Servlets

• EJBs

• JavaBeans and Java classes

Workbench also provides source editors and debugging tools that simplify maintaining these 
components.

See the chapter on Workbench basics in the Tools Guide.

Build and archive facilities for J2EE modules

Workbench provides automated compiling, building, and archiving functions that enable you to 
produce J2EE modules such as:

• Enterprise archives (EARs)

• Web archives (WARs)

• EJB archives (EJB JARs)

• Application client archives (client JARs or CARs)

• Resource adapter archives (RARs)

• Java class archives (JARs)

See the chapter on projects and archives in the Tools Guide.

J2EE deployment services

Workbench provides automated wizards that create and update deployment descriptors for your 
J2EE modules and applications. There are also editors for any manual changes you need to 
make.

Workbench provides built-in support for deployment to a variety of J2EE servers. Alternatively, 
you can take archives generated in Workbench and deploy them via other J2EE-compatible 
tools (such as the deployment facilities provided by your J2EE server).

See the chapter on archive deployment in the Tools Guide.
J2EE and Workbench  29

toolsBasics.html
toolsProjects.html
toolsDeployment.html


2    Understanding J2EE
30 J2EE and Workbench



3
 Writing JSP Pages Chapter 3
JavaServer Pages (JSP) technology provides a standard way to generate dynamic content and 
incorporate that content in Web-based applications. This chapter introduces you to JSP. It 
covers the following topics:

• About JSP pages

• Developing JSP pages

• Packaging the application

• Deploying the application

• Running the application
31



3    Writing JSP Pages
About JSP pages
JSP pages are an important part of Sun’s J2EE platform, which recommends using JSP pages to 
provide the core of the user interface of your application. JSP pages are typically used in Web-
based J2EE applications (Web applications). A Web application includes JSP pages, servlets, 
JavaBeans, utility classes, images, and so on that are packaged in an archive called a Web 
archive (WAR) file. These applications are accessed by browser clients. 

The following diagram shows how JSP pages and servlets are part of J2EE’s middle tier, 
sometimes called the Web tier.

JSP pages simplify the process of creating dynamic Web content, because they combine the 
power of Java with the ease of use of a Web markup language. JSP pages: 

• Describe how to process and respond to HTTP requests

• Are text-based documents that include a combination of HTML and JSP tags, Java code, 
and other information

• Separate presentation (expressed in HTML) from application logic, coded in Java

• Allow you to extend the capabilities of a JSP page by including calls to JavaBeans 
components as well as embedded Java code fragments
32 About JSP pages



eXtend Workbench Development Guide
• Can also contain custom tags defined in tag libraries

If none of the standard JSP tags provides the functionality you need for your application, 
you can write your own application-specific tag library and use custom tags defined by 
this library in your pages. Alternatively, you can use a tag library provided by a third party, 
such as the Jakarta project. 

• Can act as a front end to Enterprise JavaBeans

About JSP pages and servlets JSP pages use the underlying servlet technology of the 
application server. When a JSP page is deployed to an application server, it is translated into a 
servlet, which is then compiled for execution. So how do servlets and JSP pages differ?

Servlets extend the functionality of a Web server, much like Common Gateway Interface (CGI) 
programs. Servlets are a better choice than CGI programs—because, unlike CGI programs, they 
are portable (because they are written in Java), scale well, and are easy to maintain. Servlets 
describe how to process an HTTP request and generate a response. You can use them to deliver 
dynamic content.

Like servlets, JSP pages describe how to process and respond to HTTP requests. Unlike servlets, 
which are written in Java, JSP pages are text-based documents that include a combination of 
HTML and JSP tags, Java code, and other information.

JSP pages and servlets both solve the same problem, but JSP pages have the advantage of 
separating presentation (expressed in HTML) from application logic, coded in Java. With 
servlets, the presentation and application logic are mixed together in the same Java file. So by 
using JSP pages, you can have your UI developers working on presentation of information, 
while your Java programmers are separately developing the application’s logic. 
About JSP pages  33

new http://jakarta.apache.org


3    Writing JSP Pages
SilverStream eXtend Workbench support for JSP pages

SilverStream eXtend Workbench provides tools that help you develop and deploy JSP pages. It 
specifically provides:  

Workbench supports developing both 2.2 and 2.3 WARs. For making decisions about what 
WAR version you write to, see the chapter on J2EE versions.

For more information and to access the specifications, see the Sun Java Web site at 
http://java.sun.com/j2ee/docs.html.

Looking at a sample JSP page

Here is a sample JSP page:

<html>
<jsp:useBean id=”clock” scope=”page” class=”util.JspCalendar”/>
<jsp:useBean id=”sql” scope=”request” class=”util.JspSQL”/>

<%@ taglib uri=”SampleTags” prefix=”SampleTags” %>

Workbench tool Description

JSP Wizard Lets you quickly specify a variety of attributes for a new 
JSP page and adds your JSP page to an open project

For information on the JSP Wizard, see the chapter on 
component wizards in the Tools Guide

Tag Handler Wizard Lets you quickly create a tag handler classes and TLDs for 
custom JSP tags

For information on the Tag Handler Wizard, see the 
chapter on component wizards in the Tools Guide

Deployment Descriptor Editor Lets you create and populate J2EE-compatible 
deployment descriptors

Deployment Plan Editor Lets you create and populate a deployment plan for 
deploying J2EE-compatible components to a SilverStream 
eXtend Application Server

Deployment tool Allows you to deploy J2EE-compatible archive files (such 
as WARs) to a variety of J2EE servers. You can deploy the 
archives to servers that support J2EE 1.2 and 1.3.
34 About JSP pages

toolsComponentWizards.html
new http://java.sun.com/j2ee/docs.html
toolsComponentWizards.html
gsJ2EEVersions.html


eXtend Workbench Development Guide
<h4>Use a tag library</h4>
<SampleTags:SimpleTag/>

<h4>Use the implicit Request object</h4>
<ul>
<li>Server name: <%= request.getServerName() %>
<li>Server port: <%= request.getServerPort() %>
<li>HTTP method: <%= request.getMethod() %>
</ul>

<h4>Use a Bean to access date information</h4>
<ul>
<li>Day of month: is  <jsp:getProperty name=”clock” property=”dayOfMonth”/>
<li>Another form of Day of month: is  <%=clock.getDayOfMonth() %>
<li>Year: is  <jsp:getProperty name=”clock” property=”year”/>
<li>Month: is  <jsp:getProperty name=”clock” property=”month”/>
</ul>

<h4>Call a function declared on the JSP page</h4>
<%-- Function declaration --%>
<%! 
   public String getAString(String x)
   {
   return x + “ was passed in”;
   }
%>

<ul>
<li>Call getAString: <%= getAString(“Hello”) %>
</ul>

<h4>Use a Bean to access a database</h4>
<%= sql.getSQL(request, “Select ID, LASTNAME, FIRSTNAME from EMPLOYEES”) %>

<h4>Execute a scriplet that has embedded text</h4>
<% if (java.util.Calendar.getInstance().get(java.util.Calendar.AM_PM) == 
java.util.Calendar.AM) {%>
Good morning!
<% } else { %>
Good afternoon
!
<% } %>

<h4>Include the output of another JSP</h4>
<jsp:include page=”include.jsp”/>

</html>
About JSP pages  35



3    Writing JSP Pages
Here is what the page looks like:

Features The sample page demonstrates most of the features of JSP including:

• Two JavaBeans that perform processing. The page uses an action (<jsp:useBean>) to 
associate each bean with an ID. Once this association has been made, the page uses the 
<jsp:getProperty> action or an expression (<%= ... %>) to get data back from the beans.

The JavaBeans are in separate Java source files, which are compiled and made available to 
the JSP pages.
36 About JSP pages



eXtend Workbench Development Guide
• A tag library that contains custom JSP tags. Tag libraries are defined in tag library 
descriptor (TLD) files and implemented with Java classes. The page’s taglib directive 
(<%@ taglib ... >) specifies the uri and prefix to use to reference the tags. The uri maps to 
a tag library that is specified in the Web application’s deployment descriptor (see “Writing 
the deployment descriptor” on page 40). The prefix is prepended to all tags in the library 
that are used on the page. 

The tag used on this page (SimpleTag) returns welcome text.

• Implicit objects that are accessed through implicit variables.

This page uses the implicit request variable to call several methods associated with the 
servlet request that triggered the page.

• A declaration (<%! ... %>) that defines a function on the page. The declaration uses an 
expression to call the function. 

• A scriptlet (<% ... %>) that executes some conditional logic on the page. Depending on 
the result of the test, the scriptlet writes the embedded text Good Morning! or Good 
Afternoon! directly to the output stream.

• A <jsp:include> action that includes the contents of another JSP page in the current page.

The <jsp:include> action includes content at runtime. JSP also provides a compile-time 
include mechanism. To include content that should be evaluated at compile time, use the 
<%@ include > directive.

Mixing HTML and Java As you can see from this example, JSP pages can contain both 
HTML and Java code. Using both works in this example because it is very simple and is meant 
only to demonstrate JSP features. However, interspersing HTML and Java in the same file may 
not be desirable in larger applications. Web page designers don’t necessarily know Java, and 
Java programmers often don’t write HTML as well as page designers. Furthermore, by 
maintaining HTML and Java in the same place, you blur the distinction between static content 
and dynamic content. 

For these reasons, you will usually want to keep your Java code separate from your JSP pages. 
You can do this in two ways:

• Maintain your Java code in JavaBeans components and make calls to these components 
from your JSP pages. 

• Encapsulate your Java code in tag libraries and use custom tags to perform actions 
implemented in these libraries. 

Both of these techniques are illustrated in the sample page.
About JSP pages  37



3    Writing JSP Pages
Developing JSP pages
To develop JSP-based applications (Web applications), you write your JSP pages, Java servlets, 
JavaBean components, and other supporting Java classes, as follows.

1. Create a directory structure for your application that conforms to the format required for 
the Web application. The directory structure should look something like the following.

NOTE SilverStream eXtend Workbench allows you to organize your files any way you 
want and map the file locations to the structure required for a WAR file. If you 
are new to JSP pages and Workbench, you might want to first organize your files 
to match the WAR specification to get used to JSP development. Then later you 
can take advantage of the flexibility that Workbench provides to organize your 
files any way you want. For more information, see Projects and Archives in the 
Tools Guide. 

WAR—Web archive file. Container for Web-based application.

root directory—Can contain JSP pages, HTML documents, and any other contents for 
the application. They could also be in subdirectories off the root. For example, you might 
want to put your JSP pages in a directory called jsps.
38 Developing JSP pages

toolsProjects.html


eXtend Workbench Development Guide
WEB-INF—A required subdirectory that contains all of the components of the 
application that should not be available directly to clients. The WEB-INF directory must 
contain a file called web.xml that is the deployment descriptor for the Web application.

The WEB-INF subdirectory can contain the following subdirectories:

• classes—Directory containing servlet and utility classes

• lib—Directory containing JARs of servlets, JavaBeans, and other utility classes

In addition to the classes and lib subdirectories, the WEB-INF subdirectory can optionally 
have other subdirectories. You can give these subdirectories any names you like. For 
example, you might include a subdirectory named tlds that contains tag library descriptor 
files.

2. Write your JSP pages and save them in the root directory of the Web application or a 
subdirectory of the root. 

3. Create any Java servlets, JavaBean components, or other supporting Java classes required 
by the application and compile these classes. 

In Workbench Here is the SilverStream eXtend Workbench project that was created for the 
sample application whose main JSP page was shown above.

The two JSP pages are in the jsps subdirectory. The tag library definition file (SampleTags.tld) 
is in the tlds subdirectory. All the Java source files are in the classes/util directory. They are:

• JspCalendar.java and JspSQL.java, the two JavaBeans referenced in the <jsp:useBean ... > 
action

• The Java files that implement the tag library (the one used by the page is SimpleTag.java)

Before the application was packaged, all the Java files in the project were compiled.
Developing JSP pages  39



3    Writing JSP Pages
Note that the JSP pages do not get compiled at this step. They get translated into Java servlet 
source files, then compiled, on the server when you deploy the application. So the files that get 
packaged in the WAR include:

• JSP sources

• Static resources, such as HTML pages, graphics, and style sheets (the sample application 
doesn’t use any of these)

• Compiled servlet and utility classes, either as CLASS files or as JAR files

• Tag libraries

Packaging the application
Once you have written the components of your Web application, you package the application in 
a WAR. To do this, you:

1. Create a deployment descriptor for the application.

The file must be named web.xml and you must save it in the WEB-INF directory.

2. Create a WAR file (a JAR file with the .WAR extension) and add the JSP source files and 
other application components to it.

Writing the deployment descriptor

The web.xml file is the deployment descriptor for a WAR file. It contains configuration 
information like:

• Security mappings

• Servlet/JSP mappings

• Error pages 

• Tag libraries used

Much of the information specified in the web.xml file pertains to servlets provided with the Web 
application. If you want to make a servlet directly accessible to the user through an URL, give 
the servlet a name and an URL pattern in web.xml. Note that you don’t need to specify names 
and URL patterns for JSP pages that are placed in a public directory outside the WEB-INF 
directory; they are automatically available for user requests. (You can, however, map JSP pages 
in web.xml if you want them accessible through URLs that are different from URLs that match 
the location of the JSP files in the WAR file.)
40 Packaging the application



eXtend Workbench Development Guide
The web.xml file must follow the format specified by the Sun J2EE Web application DTD called 
web-app_2_2.dtd located in the Resources/DTDCatalog subdirectory of your Workbench 
installation. Version 2.2 of the Java servlet specification provides complete documentation on 
each tag. You can find this document on the Sun Java Web site at 
http://java.sun.com/j2ee/docs.html.

Here is the sample application’s web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>

<taglib>
<taglib-uri>SampleTags</taglib-uri>
<taglib-location>/WEB-INF/tlds/SampleTags.tld</taglib-location>

</taglib>
</web-app>

The application’s web.xml file is very simple. It only has one entry, <taglib>, which maps the 
tag library’s uri (which, you’ll remember, is specified in JSP pages that use the tag library) to a 
file location in the WAR (in the sample application, the SampleTags.tld file is in the tlds 
subdirectory of the WEB-INF directory).

In Workbench You can use the Deployment Descriptor Editor to easily create and maintain 
your application’s deployment descriptor.
Packaging the application  41

new http://java.sun.com/j2ee/docs.html


3    Writing JSP Pages
Creating a WAR file

A Web application must be packaged in a WAR file. You use the archive tool of your choice to 
create a WAR file.

In Workbench To create your archive (WAR file), you can select Project>Build and 
Archive (which compiles any Java files that need to be compiled, then creates the WAR file) or 
Project>Rebuild All and Archive (which compiles all Java files in the project, then creates the 
WAR file).

Deploying the application
To make your application available to users, you deploy it on a J2EE server, such as the 
SilverStream eXtend Application Server. You:

1. Specify in a file the runtime deployment information specific to your application.

This step is server-specific (it is not specified in the J2EE standard). Each J2EE server has 
its own requirements for specifying runtime deployment information. For example, the 
SilverStream eXtend Application Server uses a deployment plan, and the Sun Reference 
Implementation uses a Runtime Deployment Descriptor.

2. Deploy the application.

What happens at deployment time The server does the following:

1. Compiles all JSP pages in the WAR into Java source files.

The Java source file defines a class that implements the HttpJspPage interface. It imports 
the following packages by default:

• javax.servlet.*;

• javax.servlet.http.*;

• javax.servlet.jsp.*;

• java.lang.*;

If necessary, you can import additional packages or classes by using the import attribute of 
the JSP page directive.

NOTE Some J2EE servers compile JSP pages at runtime, not at deployment time.

2. Compiles the Java sources.

The code generated for the Java class conforms to the JSP 1.1 specification. 

3. Adds the results to the deployed WAR file.

4. Makes all resources in the WAR available for user requests.
42 Deploying the application



eXtend Workbench Development Guide
In addition to the JSP pages, the deployed WAR can contain servlet classes and other supporting 
Java files that were compiled separately, as well as HTML documents, images, and any other 
files required by the application. Note that the deployment does not compile Java source files 
that are not .JSP files.

In Workbench To deploy your application:

1. Define a server profile for the J2EE server you want to deploy your application to.

For more information, see Setting Workbench profiles in the Tools Guide.

2. Make sure the server is running and accessible.

3. Select Project>Deploy Archive.

4. Fill in the information in the Deployment dialog.

The information you need to provide depends on the server you are deploying on. The 
Deployment dialog displays only information relevant to the specified server.

5. Click OK to deploy the application.

Here is how the sample application was deployed on the SilverStream eXtend Application 
Server. The SilverStream eXtend Application Server uses a deployment plan, an XML file that 
provides additional information about the contents of the WAR file and how it should be 
deployed in the SilverStream environment. You create your plan in the Deployment Plan Editor. 
For information about deployment plans, see Deployment Plan Editor in the Tools Guide.
Deploying the application  43

toolsBasics.html#SettingWorkbenchprofiles
toolsDeployPlanEditor.html


3    Writing JSP Pages
Here is how the properties were specified in the Deployment Plan Editor for the sample 
application:

Here is the xml file that Workbench created from these specifications:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE warJarOptions PUBLIC "-//SilverStream Software, Inc.//DTD J2EE WAR Deployment 
Plan//EN" "deploy_war.dtd">
<?AgMetaXML 1.0?><warJarOptions isObject="true">
  <warJar isObject="true">
    <warJarName type="String">C:\WorkbenchProjects\JSPSample\JSPSample.war</warJarName>
    <isEnabled>True</isEnabled>
    <sessionTimeout type="String">5</sessionTimeout>
    <urls type="StringArray">
      <el>JSPSample</el>
    </urls>
    <deployedObject type="String">JSPSample</deployedObject>
  </warJar>
</warJarOptions>

The deployment plan enables the application, sets the session timeout for the application, and 
defines the URL that can be used to access the application.
44 Deploying the application



eXtend Workbench Development Guide
Finally, the application was deployed by selecting Project>Deploy Archive, filling in the 
Deployment dialog, and clicking OK:
Deploying the application  45



3    Writing JSP Pages
Running the application
Once the application has been deployed, you can run it in your browser by specifying the 
appropriate URLs.

Here is the sample application:

Note the parts of the URL:

• localhost is the name of the server

• JSPSampleDB is the database
46 Running the application



eXtend Workbench Development Guide
• JSPSample is the URL specified in the deployment plan (by default, the name of the 
WAR)

• jsps is the directory containing the JSP page (there was no mapping in the deployment 
descriptor, so you specify the relative path from the WAR’s root)

• sample.jsp is the JSP page

Now that you know the basics of JSP pages and their development, you’ll probably want to get 
one of the many JSP books on the market and start developing your own.
Running the application  47



3    Writing JSP Pages
48 Running the application



4
 Writing Servlets Chapter 4
This chapter tells you how to use servlets in a J2EE application and includes these topics:

• About servlets

• Developing a servlet

• Packaging the application

• Deploying the application

• Running a servlet

This chapter assumes that you understand the HTTP protocol and are familiar with the contents 
of HTTP request and response headers. For more information, see the JDK documentation or 
the Servlet home page provided by Sun at http://java.sun.com. 

About servlets
Servlets are J2EE components that run on the server, allowing you to extend the server’s 
functionality. A servlet is associated with one or more URLs. The servlet executes when a client 
(such as a browser) makes an HTTP request to one of these URLs. 

Servlets can be used to:

• Access enterprise data using JDBC or EJBs

• Perform application logic on that data

• Generate an HTTP response to the client

• Maintain session data throughout a Web application

Servlet life cycle

When a client application (typically a Web browser) sends an HTTP request to an URL that is 
associated with a servlet, the J2EE server processes this request by handing it off to a servlet 
container. This container is responsible for managing the servlet life cycle from loading and 
initialization through request handling and servlet removal. 
49

http://java.sun.com


4    Writing Servlets
Servlet loading, instantiation, and initialization

Before a servlet can handle HTTP requests from clients, the container must:

• Load the servlet class

• Instantiate an object instance of the servlet class

• Initialize the servlet object by invoking the init() method of the servlet interface

The servlet class loading and instantiation can occur when the container starts or when the 
container determines that it needs the servlet to service a request. 

The container calls the init() method only when first creating the servlet; it does not call init() 
again for each user request. 

Request handling

Once a servlet is initialized, the container may use it to handle HTTP requests. 

Each time the server receives an HTTP request for a servlet, the container creates an object of 
type HttpServletRequest to represent the request, and an object of type HttpServletResponse so 
the servlet can create a response. The container calls the service() method of the servlet 
interface, passing these two objects.

The service() method checks the HTTP request type (GET, POST, PUT, DELETE, and so on) 
and calls the appropriate methods in the servlet interface (doGet(), doPost(), doPut(), 
DoDelete(), and so forth) as appropriate. Most of the servlet request processing logic appears in 
these methods.

The servlet can use the HttpServletRequest object to determine who the remote user is, what 
HTML form parameters may have been sent, and other data pertinent to the HTTP request. The 
servlet can use the HttpServletResponse object to create an HTTP response to send back to the 
client. 

End of service

The servlet container may remove a particular servlet instance (for example, as the result of a 
specific server administration command or because the container wants to conserve memory 
resources). When the container determines that a servlet should be removed from service, it 
calls the destroy() method of the servlet interface. 

Note that the destroy() method is called only when the servlet container removes the servlet as 
part of its regular processing. If the container is halted improperly (for example, if the server 
crashes), the code in this method might never be run before the servlet is removed. 
50 About servlets



eXtend Workbench Development Guide
Servlets and JSP pages

In J2EE, both servlets and JavaServer Pages (typically called JSP pages) can deliver 
dynamically generated content.

Servlets are a programmatic tool, in which your HTTP response (HTML, XML, or other format) 
must be coded within Java print statements. Servlets are designed to accept requests from 
browsers, possibly process information contained in the request, retrieve enterprise data, 
perform application logic on the data, and create the HTTP response.

JSP pages are a presentation-centric tool, coded in HTML-like pages. JSP pages support 
application logic using JavaBeans components, custom tags, and embedded Java scriptlets and 
expressions. JSP pages are designed to extend HTML pages to support application logic and to 
be modular, reusable presentation components.

For details about JSP technology, see Chapter 3, “Writing JSP Pages”.

Servlets and J2EE archive structure

In J2EE, servlets typically are packaged in Web archive (WAR) modules. WARs can contain 
servlets, JSP pages, and static Web content such as HTML files, pictures, sounds, movies, and 
so on. 

In Workbench

Workbench creates a project for each major J2EE archive. When you create a project, 
Workbench asks you to specify what kind of archive the project is to implement—for example, 
an Enterprise archive (EAR), Web archive (WAR), application client JAR, Enterprise JavaBean 
JAR, and so on.

When you create a servlet in Workbench, your options include associating it with an existing 
WAR project, creating a new WAR project for it, or creating the servlet without specifying any 
project for it.
About servlets  51



4    Writing Servlets
Developing a servlet
In J2EE, a servlet is typically a Java class that extends the standard Java class HttpServlet. 

A servlet imports these packages:

• javax.servlet.*

• javax.servlet.http.*

• java.io.*

• java.util.*

To code the servlet, you typically override the various methods that are called by the service() 
method when handling requests. In most cases, this means you override at least the doGet() and 
doPost() methods to provide code that processes HTTP GET and POST requests. 

In some cases, you might want to specify initialization and cleanup functionality by overriding 
the init() and destroy() methods. 

Creating a servlet class in Workbench

Workbench provides a Servlet Wizard to help you to create a Java servlet class. When you run 
this wizard, Workbench creates a Java source file for your servlet based on information you 
supply. It also creates any directory structure resulting from project or package specifications.

Running the Servlet Wizard

To start this wizard, click File>New and select Servlet from the New File dialog.

The Servlet Wizard asks you to specify servlet characteristics such as:

• Servlet class name

• Content type of the document in the HTTP response the servlet is to generate

• Whether to allow multithreading of servlet request processes or to require that only one 
request process be handled at any given time

• Which WAR project (if any) is to contain the servlet

• Where on the file system the source file(s) for the servlet are to reside

• Where in the archive the class file(s) for the servlet are to reside

• What package (if any) contains the servlet
52 Developing a servlet



eXtend Workbench Development Guide
• Which HttpServlet methods you want to override

You can specify these HttpServlet methods in the wizard: 

• doGet()

• doPost()

• doPut()

• doDelete()

• init()

• destroy()

You can override others manually after the wizard creates the servlet.

Example source file directory structure

If you specified that the servlet is to be part of a new or existing WAR or included in a package, 
the wizard creates the necessary file system directories to implement those choices. For 
example, if you specify the following when running the wizard:

• Your servlet class is called MwbiWelcomeUser

• The servlet is part of a WAR whose Workbench project directory is 
d:\warProjects\welcomeUser

• The servlet is part of a com.mwbi.welcome package

then the wizard creates this Java source file:

d:\warProjects\welcomeUser\com\mwbi\welcome\MwbiWelcomeUser.java

The wizard creates any directories that are specified in the wizard (for example, those resulting 
from package specifications, the servlet base directory, and so on) but do not yet exist in the file 
system.

Example servlet file source code

An example of a servlet file created by the wizard appears below. The Java code in this servlet 
file indicates that these characteristics were specified when running the Servlet Wizard:

• MwbiWelcomeUser is the class name

• The servlet is to be included in the package com.mwbi.welcome

• This servlet overrides only the doGet() and doPost() methods in the HttpServlet interface

• The output type of the HTTP response is to be HTML
Developing a servlet  53



4    Writing Servlets
package com.mwbi.welcome;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class MwbiWelcomeUser extends HttpServlet
{

static final String CONTENT_TYPE = "text/html";

// Handle the HTTP GET request
public void doGet( HttpServletRequest request, HttpServletResponse response )

throws ServletException, IOException
{
response.setContentType( CONTENT_TYPE );
PrintWriter out = response.getWriter();

/** @todo Process the HTTP "GET" request here, and write the proper
response to the PrintWriter "out". */
out.println( "<html><head><title>MwbiWelcomeUser</title></head><body>" );
out.println( "<p>Servlet MwbiWelcomeUser has received an HTTP GET.</p>" );
out.println( "<p>The servlet generated this page in response to the 

request.</p>");
out.println( "</body></html>" );
}

// Handle the HTTP POST request
public void doPost( HttpServletRequest request, HttpServletResponse response )

throws ServletException, IOException
{
response.setContentType( CONTENT_TYPE );
PrintWriter out = response.getWriter();
/** @todo Process the HTTP "POST" request here, and write the proper

response to the PrintWriter "out". */
out.println( "<html><head><title>MwbiWelcomeUser</title></head><body>" );
out.println( "<p>Servlet MwbiWelcomeUser has received an HTTP POST.</p>" );
out.println( "<p>The servlet generated this page in response to the request.</p>" 

);
out.println( "</body></html>" );
}

}

54 Developing a servlet



eXtend Workbench Development Guide
Processing the HTTP request

One of the main functions of a servlet is to process the HTTP request from the client. Typically, 
this includes performing some programming logic and generating content based on the data 
included in the request.

Typically, your servlet will handle HTTP GET and POST requests by overriding the doGet() 
and doPost() methods in your servlet class. These methods take two arguments:

• An object of type HttpServletRequest that represents the HTTP request from the client

• An object of type HttpServletResponse that you can use to create the HTTP response that 
will be returned to the client

Servlets support methods for other HTTP request types, such as PUT, DELETE, TRACE, and 
so forth. See your Java documentation for information on handling HTTP request types other 
than GET and POST in servlets.

This section describes the servlet functionality that reads information from the HTTP request. 
See “Generating the HTTP response” on page 56 for information about the servlet functionality 
that creates the HTTP response. 

Reading HTML form data

One of the main reasons for generating automated Web content is to be able to base that content 
on user input. Typically, you obtain user data by reading the data in an HTML form that a user 
fills out. 

Using the getParameter() method

Servlets can read HTML form parameters in the HTTP request using the getParameter() method 
in the HttpServletRequest interface. For example, if you want to read the value specified for a 
login_userid HTML form parameter into a variable in your servlet, you could code something 
like this:

userIDfromHtmlForm = request.getParameter( "login_userid" );

where:

• userIDfromHtmlFrom is a predefined variable of type String

• request is an object of type HttpServletRequest

• login_userid is the name of the parameter specified in the HTML form in the HTTP 
request
Developing a servlet  55



4    Writing Servlets
This describes a very simple way to read and store client-supplied data in a servlet. In J2EE, 
there are many technologies that support this, including JavaServer Pages, custom tags, 
Enterprise JavaBeans, and so forth. Consult your J2EE documentation and Java programming 
resources for more information. 

Reading HTTP request header information

HTTP request headers can contain lots of information that could be useful to your application, 
including:

• Cookie information

• Authorization information, such as authorization type and remote user

• Content information, such as length and type

• Date information

The HttpServletRequest interface supports a getHeader() method that can read any header you 
specify. For example, if you wanted to find out what character sets the client browser that sent 
the request can use, you could use this method:

request.getHeader( "Accept-Charset" );

Some of the more common headers have specific methods in the HttpServletRequest interface, 
such as getCookies(), getAuthType(), getRemoteUser(), getContentLength(), and so forth.

Consult the HTTP specification and your Java documentation for details about HTTP headers 
and how to read this information into your servlets.

Generating the HTTP response

Once the servlet reads the HTTP request information (as described under “Processing the HTTP 
request” on page 55), it typically generates some kind of a response in the form of an object of 
type HttpServletResponse. 

The response object typically contains a status line, one or more response headers, and the actual 
document. 

Specifying the status line

The HTTP status line contains the HTTP version, a status code, and a very short message 
corresponding to the status code. For example, a simple HTTP status line for a successful 
response could be:

HTTP/1.1 200 OK
56 Developing a servlet



eXtend Workbench Development Guide
Specifying the status code

Your server should specify a default status line (with a status code of 200) for your HTTP 
response as part of the processing for the methods doGet(), doPost(), and so on.

You can specify the status code explicitly using the setStatus() method of the 
HttpServletResponse interface. 

CAUTION If you want to specify the status code explicitly, you must do so before writing any 
document content. (See “Specifying the document content” on page 59 for more 
information.)

This method takes an integer as an argument. However, instead of using an explicit number, you 
should use the constants defined in the HttpServletReponse interface. Examples of common 
status constants include:

• SC_CONTINUE (100)

• SC_OK (200)

• SC_CREATED (201)

• SC_MOVED_PERMANENTLY (301)

• SC_MOVED_TEMPORARILY (302)

• SC_SEE_OTHER (303)

• SC_NOT_MODIFIED (304)

• SC_BAD_REQUEST (400)

• SC_UNAUTHORIZED (401)

• SC_FORBIDDEN (403)

• SC_NOT_FOUND (404)

• SC_INTERNAL_SERVER_ERROR (500)

For example, to set the status code of the response to 403, you could use this method:

response.setStatus( response.SC_FORBIDDEN );

See the Java documentation for the HttpServletResponse and the HTTP specification for 
details about the status code in HTTP responses.
Developing a servlet  57



4    Writing Servlets
Specifying HTTP response headers

HTTP response headers can provide:

• Accompanying information for particular status codes, such as locations for moved 
documents, authentication information, and so on

• Cookie information

• Page modification dates

• File sizes

The HttpServletResponse interface supports a setHeader() method that can define any header 
you specify. There are also specialized and convenience methods in HttpServletResponse, 
including:

For example, to redirect the user to another page, you could use this method:

response.sendRedirect( url );

where url is a variable containing the URL to which you want to redirect the user. 

CAUTION If you want to specify any HTTP response headers, you must do so before sending 
any document content. (See “Specifying the document content” on page 59 for 
more information.)

For details about HTTP headers and how to read this information into your servlets, 
consult the HTTP specification and your Java documentation.

Method Functionality

setDateHeader() Translates a Java date into a GMT time string

setIntHeader() Converts an int to a String before inserting it into the header

setContentType() Sets the Content-Type header

setContentLength() Sets the Content-Length header

addCookie() Inserts a cookie into the Set-Cookie header

sendRedirect() Sets the Location header and sets the status code to 302
58 Developing a servlet



eXtend Workbench Development Guide
Specifying the document content

Writing the document content in the HTTP response that your servlet will generate requires you 
to specify:

• The type of the response content (HTML, XML, and so on)

• The content of the document in the response (for example, the actual HTML tags that the 
browser will render in the client display)

Specifying the content type

To specify the content type, you can use the setContentType() method of the ServletResponse 
interface. Typical response content types include:

• text/html

• text/xml

• text/xhtml

• text/wml

For example, to set the content type to HTML, you could use the following method:

response.setContentType( "text/html" );

In Workbench The Servlet Wizard creates a variable of type String that contains the content 
type you specified when running the wizard. For example, the code for a servlet that generates 
an HTML response would contain this variable declaration:

static final String CONTENT_TYPE = "text/html" ;

In the request-handling methods (such as doGet() and doPost()), there would be a method call 
like this:

response.setContentType( CONTENT_TYPE );

Writing the document content

To write the document content, you can configure a PrintWriter object and write the content to 
that object using print() and println() methods. 

For example, to send a simple HTML “Hello, world” message as the response, you could use 
this code:

PrintWriter out = response.getWriter();

out.println( "<HTML><HEAD></HEAD><BODY>" );
Developing a servlet  59



4    Writing Servlets
out.println( "<P>Hello, world</P>" );
out.println( "</BODY></HTML>" );

CAUTION If you want to specify a status code or HTTP header for your response, you must 
do so before you write anything to your PrintWriter object. (See “Specifying the 
status line” on page 56 or “Specifying HTTP response headers” on page 58 for 
more information about the HTTP status line and headers.)

In Workbench

The Servlet Wizard inserts code that sets the content type based on your input, defines a 
PrintWriter object to contain the HTTP response, and provides a template for writing your 
document content to the HttpServletResponse object. 

For example, if you specified HTML under Content Type in the Servlet Wizard, the wizard 
creates this code in any method that handles HTTP requests and provides a response:

response.setContentType( CONTENT_TYPE );
PrintWriter out = response.getWriter();

/** @todo Process the HTTP "GET" request here, and write the proper
response to the PrintWriter "out". */

out.println( "<html><head><title>MwbiWelcomeCustomer</title></head><body>" );
out.println( "<p>Servlet MwbiWelcomeCustomer has received an HTTP GET.</p>" );
out.println( "<p>The servlet generated this page in response to the request.</p>" );
out.println( "</body></html>" );

where CONTENT_TYPE is defined as a static variable set to text/html, as described under 
“Specifying the content type” on page 59.

You must replace the out.println() statements to reflect your HTTP response document content.

CAUTION If you want to specify a status code or HTTP header for your response, you must 
do so before you write anything to your PrintWriter object. (See “Specifying the 
status line” on page 56 or “Specifying HTTP response headers” on page 58 for 
more information about the HTTP status line and headers.)
60 Developing a servlet



eXtend Workbench Development Guide
Specifying initialization and cleanup methods

If you want to define initialization and cleanup code for your servlet, you can override the init() 
and destroy() methods in your servlet class. (See “Servlet life cycle” on page 49 for more 
information about the init() and destroy() methods.)

In Workbench

When creating the servlet, the wizard asks if you want to override the init() and destroy() 
methods. If you specify that one or both are to be overridden, Workbench inserts skeletal 
method code into the servlet.

Wizard-supplied init() code

If you specify in the Servlet Wizard that you want to override the init() method, the wizard 
inserts this code into your servlet:

/**
This method is called once per instance of the servlet class.
Use this method to allocate any needed resources that should
be preserved for the life of the servlet instance.

*/
public void init( ServletConfig config )

throws ServletException
{

super.init( config );

/** @todo Initialize any instance variables here. */
}

While the servlet specifies an argument of type ServletConfig in the init() method, this method 
can be specified without an argument. Typically, you would specify the no-argument form of 
init() if the servlet does not need to read any settings that vary from server to server. 

If you do specify that init() takes the ServletConfig argument, the super.init() method must be 
the first statement in the method. 

Wizard-supplied destroy() code

If you specify in the Servlet Wizard that you want to override the destroy() method, the wizard 
inserts this code into your servlet:

/**
This method is called once per instance of the servlet class,
after the application server is done with that instance.
Developing a servlet  61



4    Writing Servlets
Use this method to free any resources owned by the
servlet instance.

*/
public void destroy()
    {
    }

Other servlet coding issues

This chapter provides only an overview of some of the issues you must confront when 
programming servlets. Other major topics that are outside the scope of this discussion include:

• Buffering content

• Tracking sessions

• Implementing security

• Accessing databases using JDBC and EJB

• Handling cookies

• Integrating servlets with JavaServer Pages

• Using Filters

For detailed information about these topics, see the J2EE documentation, Java language 
documentation, books on programming servlets, and so forth.

Packaging the application
Once you have written the components of your Web application (including servlets, JSP pages, 
and other supporting components), you package the application into a Web archive (WAR) file. 

This process is very similar to that described under “Packaging the application” on page 40 in 
Chapter 3, “Writing JSP Pages”, in that you:

1. Write a deployment descriptor for the Web application and specify the relevant 
information about the servlet.

2. Create a Web archive (WAR) file containing the servlet and any components required to 
support the servlet, such as JSP pages or supporting classes.

The main differences are in what you specify in the deployment descriptor, such as 
ServletContext initialization parameters, servlet mappings, servlet/JSP mappings, and so on.

For more information about specifying servlet information in deployment descriptors, 
consult the servlet and J2EE documentation. 
62 Packaging the application



eXtend Workbench Development Guide
In Workbench To write your servlet information into a deployment descriptor, you can use 
the Deployment Descriptor Editor. To create a WAR file, you can use the appropriate archive 
commands on the Project menu in Workbench.

For more information about writing deployment descriptors in Workbench, see 
Deployment Descriptor Editor in the Tools Guide. 

Deploying the application
To make your application available to users, you deploy it on a J2EE server, such as the 
SilverStream eXtend Application Server. The deployment process is very similar to that 
described under “Deploying the application” on page 42 in Chapter 3, “Writing JSP Pages”, in 
that you:

1. Create a Workbench server profile for your application server, if one does not already 
exist. 

2. Specify the runtime deployment information for your application as required by your 
J2EE server. 

3. Deploy the application. 

In Workbench To deploy the application to the J2EE server, select Project>Deploy 
Archive, as described under “Deploying the application” on page 42 in Chapter 3, “Writing JSP 
Pages”. 

Running a servlet
Once the application has been deployed, you can run it in your browser by specifying the 
appropriate URLs.
Deploying the application  63

toolsDeployDescEditor.html


4    Writing Servlets
64 Running a servlet



5
 Writing J2EE Application Clients Chapter 5
J2EE application clients are the standard way to provide Java-based clients that run on user 
machines and access J2EE servers. This chapter tells you how to use them in your own J2EE 
applications, including:

• About J2EE application clients

• Developing a client

• Packaging a client

• Deploying a client

• Running a client

About J2EE application clients
Although J2EE applications typically provide browser-based clients, they aren’t always the 
answer. You may sometimes want to implement a Java-based client instead (or in addition), 
such as when:

• Users will access the application within an intranet

• The application requires a richer user interface (more sophisticated than the browser)

• The client needs to perform operations not supported in a browser environment

In J2EE, you do this by building a J2EE application client.

Client features

In several ways, a J2EE application client is just like a standalone Java application that runs on 
a user machine. It:

• Consists of one or more Java classes

• Is invoked at the main() method in one of those classes

• Executes in its own Java virtual machine (and runs until that VM is terminated)

What makes a J2EE application client special is that it:

• Is a J2EE component that can be added to a J2EE application

• Is hosted by a J2EE client container on the user machine, enabling it to access J2EE 
services
65



5    Writing J2EE Application Clients
• Is portable across J2EE servers

Basic architecture

The following illustration shows how J2EE application clients fit into the overall J2EE 
application architecture:

Note that while HTTP and JDBC are supported, RMI-IIOP is the typical means by which J2EE 
application clients communicate with servers.

Specifications and blueprints

Sun documentation is the authoritative source on J2EE application clients. It defines their 
standard features, operation, and life cycle, as well as vendor requirements for supporting them. 
See:

Java 2 Platform Enterprise Edition Specification, Chapter 9, “Application Clients”

J2EE Blueprints
66 About J2EE application clients



eXtend Workbench Development Guide
These publications are available from the Sun Java Web site at:

java.sun.com/j2ee/docs.html

Client container

All J2EE application components rely on a container to provide supporting services. J2EE 
application clients are hosted by a client container that (at minimum) provides JNDI namespace 
access. Beyond that, the J2EE specification allows for a wide range of client container 
implementations, from basic to robust.

You can consult your J2EE server vendor to learn about the client container you should use. For 
example, SilverStream supplies a client container named SilverJ2EEClient that users can 
invoke to run J2EE application clients you’ve deployed to the SilverStream eXtend Application 
Server. SilverJ2EEClient provides a robust set of supporting services, including:

• Easy, self-updating container installation

• Automated client deployment to user machines

• User authentication and session housekeeping

• JNDI namespace access

For more information on SilverJ2EEClient, see the Facilities Guide of the SilverStream 
eXtend Application Server Core Help.

Client life cycle

The life cycle of a J2EE application client consists of several phases, each handled by specific 
J2EE job roles:

Phase What’s involved Which role handles it

1 Developing a client Coding and compiling classes for 
the client

Component Provider

2 Packaging a client Writing manifest and deployment 
descriptor files for the client

Creating an archive (JAR file) to 
contain all of the client classes and 
other files

Component Provider or 
Application Assembler
About J2EE application clients  67

new http://java.sun.com/j2ee/docs.html


5    Writing J2EE Application Clients
Depending on your organization, one or more people may take on these job roles. In particular, 
programmers developing client classes may need to test them by packaging, deploying, and 
running in their local environment.

Developing a client
Developing a J2EE application client involves:

1. Coding classes for the client

2. Compiling those classes

Coding client classes

Your J2EE application client can consist of one or more Java classes. The only requirement is 
that one class includes a main() method that can be invoked to start execution of the client.

Although you can code your client to do anything that Java allows, a common goal is to access 
a J2EE server—typically to call EJB session beans. When coding references to EJBs and other 
external entities, you should use names defined for them in the client’s JNDI namespace. This 
helps keep deployment-specific details out of your classes, reducing the need for client code 
changes when external entities change.

To learn about EJBs, see Chapter 6, “Writing Enterprise JavaBeans”.

3 Deploying a client Preparing server-specific 
deployment information and using 
it to deploy the client JAR to the 
J2EE server

Deployer

4 Running a client Helping users install the client 
container on their machines

Helping users invoke the client 
container and start the deployed 
client

Administering the deployed client 
on the J2EE server

Deployer or System 
Administrator

Phase What’s involved Which role handles it
68 Developing a client



eXtend Workbench Development Guide
Namespace setup

To set up the client’s JNDI namespace, you need to write a deployment descriptor file that will 
accompany your classes. It defines names that let you reference:

• Environment entries

• EJB references

• Resource references:

• JDBC data sources

• JavaMail connections

• JMS connections

• URL connections

To learn more about writing the deployment descriptor file, see “Packaging a client” on 
page 75.

API usage

You’ll use these standard Sun APIs in the client classes you develop:

• J2SE API from the Java 2 Platform, Standard Edition SDK

• J2EE APIs from the Java 2 Platform, Enterprise Edition SDK

If you decide to use any vendor-specific APIs, remember that this can affect the portability of 
your client. Try isolating such code so that you can more easily replace it if that becomes 
necessary in the future.

Example: coding a client class

This example presents the Java code for a simple J2EE application client (which displays a one-
line weather forecast for a specified day). It consists of a single class named AppClientSample 
that does the following:

• Defines a main() method to enable the client to be invoked

• Reads a command-line argument (passed from the client container to the client)

• Accesses an EJB session bean (using a bean reference defined in the deployment 
descriptor file) and calls one of its methods

• Accesses an environment entry value (using an environment entry defined in the 
deployment descriptor file)
Developing a client  69

new http://java.sun.com/j2se/
new http://java.sun.com/j2ee/


5    Writing J2EE Application Clients
• Displays a message dialog that includes the values obtained from the command-line 
argument, EJB method call, and environment entry

Here’s the AppClientSample.java file:

package com.exsamp.appclient;

import java.io.*;
import javax.naming.*;
import javax.rmi.*;
import javax.swing.*;

import com.exsamp.ejb.*;

// The AppClientSample class shows how you can develop a class 
// for use as a J2EE application client. It includes an example
// of using an environment entry and bean reference both defined
// separately in the deployment descriptor. The bean reference 
// is used to call an EJB session bean on the server.

public class AppClientSample
{
    
  // Main method, used for application client startup (as
  // specified in the manifest file).
   
  public static void main(String[] args)
  {
    if (args.length < 1) 
    {
      // Make sure all of the required command-line args have
      // been provided to the application client. Otherwise,
      // display an error message and terminate.
      JFrame frame = new JFrame();
      frame.show();
      JOptionPane.showMessageDialog(frame, 
        "Required arguments:\n" + 
        "* Day code (where 0=today, 1=tomorrow, etc.)" +
        "\n\nExample -- for today's forecast: 0",
        "Missing Command-Line Arguments", 
        JOptionPane.INFORMATION_MESSAGE);
      System.exit(0);
    }
    else 
    {
      // Get the command-line args so the application client can
      // pass them to the AppClientSample constructor.
      try
      {
70 Developing a client



eXtend Workbench Development Guide
        int daycode = Integer.parseInt(args[0]);
        
        // Create an instance of AppClientSample. This executes the 
        // constructor for the class, which calls a particular EJB
        // session bean.
        AppClientSample sample = new AppClientSample(daycode);
      }
      catch (NumberFormatException nfe)
      {
        System.out.println("AppClientSample requires one arg, " +
                           "which must be an integer");
        System.exit(0);
      }
    }
  }    

  // Constructor for the AppClientSample class. It:
  // * Finds a specific EJB session bean on the server
  // * Calls a method of that session bean
  // * Displays the result returned by that method (if any) 
  //
  // It takes 1 argument: Day code (where 0=today, 1=tomorrow, 
  // etc.)  Example -- for today's forecast: 0
  
  public AppClientSample(int daycode)
  {
    try  
    {
      // Find the appropriate EJB session bean on the server.

        // Using a bean reference, do a JNDI lookup to return the
        // bean's home interface as an Object.
        InitialContext initCtx = new InitialContext();
        Object sbobj = 
               initCtx.lookup("java:comp/env/ejb/myBean");

        // Narrow the Object returned by the lookup to make sure
        // it can be cast to the appropriate type (the class that
        // corresponds to your bean's home interface). Then, cast
        // it.
        sbobj = PortableRemoteObject.narrow(sbobj, 
                                            SBMyEJBHome.class);
        SBMyEJBHome sbhome = (SBMyEJBHome)sbobj;

        // Call the home object's create() method to get an 
        // instance of the bean's remote interface. 
        SBMyEJB sbremote = sbhome.create();
Developing a client  71



5    Writing J2EE Application Clients
      // Once you have the remote object, you're ready to call
      // business methods of the EJB session bean. (These are
      // the methods exposed by the bean's remote interface.)
      String result = sbremote.getMyText(daycode);

      // Now look up the value of the application client's 
      // environment entry reportTitle.

        // Get the application client's environment naming 
        // context. Use the InitialContext object created earlier
        // and stored in initCtx.
        Context env = (Context)initCtx.lookup("java:comp/env");

        // Get the reportTitle value set by the application
        // client's deployer.
        String title = (String)env.lookup("reportTitle");

      // Display the result returned from the EJB session
      // bean's business method, the title returned from the
      // environment entry lookup, and the value of the passed
      // command-line argument (daycode).
      String day = "";
      switch (daycode)
      {
        case 0:
          day = "today";
          break;
        case 1:
          day = "tomorrow";
          break;
        default:
          day = Integer.toString(daycode) + " days from today";
      }      
      JFrame frame = new JFrame();
      frame.show();
      JOptionPane.showMessageDialog(frame,
        "The forecast for " + day + " is:\n\n    " +
        result + "\n\n" +
        "Note: forecast obtained from getMyText() method " +
        "of EJB session bean SBMyEJB",
        title, 
        JOptionPane.INFORMATION_MESSAGE);
    }
    catch (Exception e) 
    {
      System.out.println("Application error in AppClientSample");
      e.printStackTrace();
    }
    finally 
    {
72 Developing a client



eXtend Workbench Development Guide
      // Now that the application client is all done,
      // make sure the VM terminates.
      System.exit(0);
    }
  }
}

In Workbench

To start coding a J2EE application client in SilverStream eXtend Workbench, you:

1. Create a CAR (client archive) project by using the New Project Wizard (File>New 
Project).

See the chapter on projects and archives in the Tools Guide.

2. Create the Java source files for your client classes. You can use the Java Class Wizard 
(File>New) to do that and add each file to your CAR project.

See the chapter on component wizards in the Tools Guide.

3. Edit your Java source files in the Java Editor. Use the Navigation Pane to open files you 
want to work on.

See the chapter on source editors in the Tools Guide.

For example, the following illustration shows the CAR project AppClientSample.spf. It 
contains the AppClientSample.java file and maps that class to this location in the archive:

com/exsamp/appclient
Developing a client  73

toolsProjects.html
toolsComponentWizards.html
toolsTextEditor.html


5    Writing J2EE Application Clients
The project also includes a META-INF directory, which you’ll learn more about shortly.

Compiling client classes

Compiling the classes you develop for a J2EE application client is just like compiling any other 
Java classes. You can use Sun javac or another comparable Java compiler. You just need to set 
your classpath so the compiler can find everything it needs, including:

• The source files for your client classes

• The Java API packages you use (both J2SE and J2EE)

• The EJB-client JAR files for any EJBs you access

In Workbench

Workbench automatically takes care of classpath requirements for the files in your project as 
well as the J2SE and J2EE packages. If you have other files to add to the project’s classpath, you 
can do that in the Project Settings dialog (Project>Project Settings).
74 Developing a client



eXtend Workbench Development Guide
For instance, the AppClientSample class accesses an EJB session bean (which is independent of 
the CAR project). So before AppClientSample can be compiled, the EJB-client JAR for that 
bean must be added to the project’s classpath:

Once your project’s classpath is set, you can compile individual source files (Project>Compile) 
or build the project to compile everything (Project>Build).

See the chapter on projects and archives in the Tools Guide.

Packaging a client
Packaging a J2EE application client involves:

1. Writing a manifest file

2. Writing a deployment descriptor file

3. Creating a JAR that contains the client files

Writing the manifest file

The manifest is a text file containing attributes that specify meta-information about a JAR file 
or other archive. For a client JAR, the only required attribute is Main-Class. It lets you specify 
the client class whose main() method is to be invoked when the client starts executing.

Make sure your manifest file ends with a new line.
Packaging a client  75

toolsProjects.html


5    Writing J2EE Application Clients
Name and location

Your manifest file must be named:

MANIFEST.MF

It must be located in the following directory of your client JAR:

META-INF

Specification

Sun documentation is the authoritative source on the JAR manifest and its attributes.

See the JAR File Specification in the Java 2 Standard SDK.

In Workbench

You can select File>New to create a new text file for your manifest. Then you can edit it in the 
Text Editor and add it to your CAR project.

For example, here’s the manifest file for the AppClientSample project:
76 Packaging a client



eXtend Workbench Development Guide
It specifies the AppClientSample class as the Main-Class:

Manifest-Version: 1.0
Main-Class: com.exsamp.appclient.AppClientSample

Writing the deployment descriptor file

The deployment descriptor is an XML file that you use to define the external entities referenced 
by your client classes. As mentioned earlier, these include:

• Environment entries

• EJB references

• Resource references (JDBC, JavaMail, JMS, URLs)

As of J2EE 1.3, you also have the option of specifying a callback handler class (to be used by 
the client container to collect authentication information from users).

Name and location

Your deployment descriptor file must be named:

application-client.xml

It must be located in the following directory of your client JAR:

META-INF

Specification

When writing the deployment descriptor file for a J2EE application client, you enter 
information as a hierarchy of XML tags. The format to follow is determined by the Sun DTD 
(document type definition) for this file.

For details, see the chapter on J2EE deployment descriptor DTDs in the Reference.

In Workbench

When you use the New Project Wizard (File>New Project) to create your CAR project, it 
automatically sets up a deployment descriptor file for you. Another way to create a deployment 
descriptor is by selecting File>New. Once you have this file in your project, you can edit it in 
the Deployment Descriptor Editor.

See the Deployment Descriptor Editor chapter in the Tools Guide.
Packaging a client  77

refJ2EEDeployDesc.html
toolsDeployDescEditor.html


5    Writing J2EE Application Clients
For example, this is the deployment descriptor file for the AppClientSample project:

The XML source for this deployment descriptor includes:

• Standard <?xml ...> and <!DOCTYPE ...> declarations

• Root tag <application-client>

• <display-name> and <description> tags that identify this J2EE application client

• An <env-entry> tag that defines the environment entry reportTitle used by the client

• An <ejb-ref> tag that defines the EJB session bean reference ejb/myBean used by the 
client
78 Packaging a client



eXtend Workbench Development Guide
Here’s the complete file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
Client 1.2//EN" "http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">
<application-client>
   <display-name>AppClientSample</display-name>
   <description>Sample J2EE application client that calls a session bean</description>
   <env-entry>
      <description>Environment entry used to provide report title text to the client

</description>
      <env-entry-name>reportTitle</env-entry-name>
      <env-entry-type>String</env-entry-type>
   </env-entry>
   <ejb-ref>
      <description>Sample session bean for accessing forecast information</description>
      <ejb-ref-name>ejb/myBean</ejb-ref-name>
      <ejb-ref-type>Session</ejb-ref-type>
      <home>com.exsamp.ejb.SBMyEJBHome</home>
      <remote>com.exsamp.ejb.SBMyEJB</remote>
   </ejb-ref>
</application-client>

Creating the client JAR file

The archive you create for a J2EE application client is a standard JAR file that includes:

• Your compiled client classes

• The manifest file

• The deployment descriptor file

• Any other supporting files this client requires

In Workbench

You can select Project>Build and Archive to create the client JAR file for your CAR project.

See the chapter on projects and archives in the Tools Guide.
Packaging a client  79

toolsProjects.html


5    Writing J2EE Application Clients
For instance, performing the build and archive operation for the AppClientSample project 
generates the client JAR file AppClientSample.jar and displays these messages:

Deploying a client
Deploying a J2EE application client involves:

1. Writing deployment information for your J2EE server

2. Deploying your client JAR to that server

Deployment alternatives This chapter focuses on the simple case of deploying a lone 
client JAR directly to the server. But often it’s advantageous to include client JARs in the 
context of a full J2EE application by deploying them to the server within an enterprise archive 
(EAR) file. Doing so provides better support for your application clients to reference other J2EE 
modules.

For information on setting up an EAR project, see the chapter on projects and archives in 
the Tools Guide.

Writing server-specific deployment information

When deploying a client JAR, you’ll usually need to provide server-specific information about 
that deployment. This includes mapping the environment entries, EJB references, and resource 
references defined in your standard deployment descriptor file (application-client.xml) to real 
entities in the target environment.

How you supply this information depends on the brand of J2EE server you’re deploying to. 
Typically it’s in the form of an XML file, similar to the standard deployment descriptor.
80 Deploying a client

toolsProjects.html


eXtend Workbench Development Guide
In Workbench

Workbench provides the following ways to create server-specific deployment information for 
your CAR project:

If your target server is You can

SilverStream eXtend Application 
Server

Select File>New to create a SilverStream deployment 
plan file. Then you can edit it in the Deployment Plan 
Editor.

The deployment plan is an XML file. When saving it, 
you can specify any name and location. (You can store 
it with your project files on disk, but don’t add it to the 
archive.)

Once you have a deployment plan for your project, 
you can open it again later by going to the Project tab 
and right-clicking your SPF file.

See the Deployment Plan Editor chapter in the 
Tools Guide.

Another J2EE server Select File>New to create a new XML file for your 
deployment information. Then you can edit it in the 
XML Editor and save it with whatever name and 
extension (typically .xml) your server requires.

For a summary of the deployment information 
required by specific J2EE servers, see the chapter on 
archive deployment in the Tools Guide.
Deploying a client  81

toolsDeployment.html
toolsDeployPlanEditor.html


5    Writing J2EE Application Clients
For example, suppose the client JAR from the AppClientSample project is to be deployed to the 
SilverStream eXtend Application Server. To prepare the required deployment information for 
the server, a deployment plan file named AppClientSampleDeplPlan.xml is created:

The XML source for this deployment plan includes:

• Standard <?xml ...>, <!DOCTYPE ...>, and <?AgMetaXML ...> declarations

• Root tag <carJarOptions> and the main tag it contains, <carJar>

• A <version> tag that specifies the internal version number this plan corresponds to

• An <environmentList> tag where details are specified for each environment entry used 
by this J2EE application client

One <environmentEntry> tag in this list that specifies the value to use at runtime for the 
reportTitle environment entry

• A <beanReferenceList> tag where details are specified for each EJB reference used by 
this J2EE application client

One <beanReference> tag in this list that maps the EJB reference ejb/myBean to the 
JNDI name (and server host) of a deployed EJB session bean to access at runtime
82 Deploying a client



eXtend Workbench Development Guide
• A <usesJars> tag that lists additional JAR files to be downloaded from the server to user 
machines at runtime (and added to the classpath), along with the client JAR

Two <el> tags in this list that specify the EJB-client JAR file and remote EJB JAR file 
needed by the client to access the EJB session bean it references

Here’s the complete file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software, Inc.//DTD J2EE CAR
Deployment Plan//EN" "deploy_car.dtd">
<?AgMetaXML 1.0?>
<carJarOptions isObject="true">
    <carJar isObject="true">
        <version type="String">1.0</version>
        <environmentList isObject="true">
            <environmentEntry isObject="true">
                <name type="String">reportTitle</name>
                <value type="String">AppClientSample: Forecast Report</value>
            </environmentEntry>
        </environmentList>
        <beanReferenceList isObject="true">
            <beanReference isObject="true">
                <name type="String">ejb/myBean</name>
                <beanLink type="String">sssw://jklobucher81k/RMI/SBMyEJB</beanLink>
            </beanReference>
        </beanReferenceList>
        <usesJars type="StringArray">
            <el>MyEJB-client.jar</el>
            <el>MyEJBRemote.jar</el>
        </usesJars>
    </carJar>
</carJarOptions>

Deploying the client JAR file

Once you have your client JAR and server-specific deployment information ready, you can 
deploy the J2EE application client. You can either use the native deployment tools provided 
with your target J2EE server or deploy from within Workbench.
Deploying a client  83



5    Writing J2EE Application Clients
In Workbench

Workbench supports deployment to a variety of popular J2EE servers. Select 
Project>Deployment Settings to specify how you want to deploy. Select Project>Deploy 
Archive to deploy immediately using your current settings.

See the chapter on archive deployment in the Tools Guide.

For instance, suppose the client JAR from the AppClientSample project is to be deployed to the 
SilverStream eXtend Application Server. This involves supplying the following deployment 
settings to the deploy archive operation:
84 Deploying a client

toolsDeployment.html


eXtend Workbench Development Guide
Messages in the Output Pane indicate the status of the deployment:

In this case, the result is a J2EE application client deployment named AppClientSample that’s 
ready for users to access from the SilverStream eXtend Application Server and run in the client 
container (SilverJ2EEClient). Here’s how this deployment appears in the SilverStream 
Management Console (SMC):
Deploying a client  85



5    Writing J2EE Application Clients
Running a client
Running a J2EE application client involves:

1. Installing the client container on each user machine

2. Invoking the client container to start the deployed client

Consult your J2EE server vendor to learn about the client container you should use, how to 
install it, and how to invoke it.

To learn about installing and invoking the SilverStream client container 
SilverJ2EEClient, see the Facilities Guide of the SilverStream eXtend Application Server Core 
Help.

For example, suppose the J2EE application client AppClientSample has been deployed to the 
SilverStream eXtend Application Server (as shown earlier) and you now want to run it. The 
following command line invokes the SilverJ2EEClient container, starts AppClientSample, and 
passes an argument (0) to the client:

SilverJ2EEClient jklobucher81k AppClientSampleDB AppClientSample 0

In this case, the client starts executing in the main() method of the AppClientSample class (as 
specified in the manifest). It then obtains some information (by accessing an EJB, an 
environment entry, and the passed argument) and displays it to the user:
86 Running a client



6
 Writing Enterprise JavaBeans Chapter 6
Enterprise JavaBeans (EJBs) are an important part of the J2EE application architecture. This 
chapter introduces EJBs. It covers these topics:

• About EJBs

• Developing EJBs

• Packaging EJBs

• Deploying EJBs

• Calling EJBs

• Tips for designing EJB applications

About EJBs
EJBs are reusable Java-based components that are transactional and secure and can be remotely 
accessible. You can use EJB components to provide the business logic for your application, link 
your application’s user interface with a back-end information system, or handle JMS messages.
87



6    Writing Enterprise JavaBeans
Sun defines the following EJB types: 

EJB type Description

Entity bean Represents data in an underlying data store like a relational or object 
database. Can also represent complex relationships among one or more 
related tables or components of a nonrelational data store. 

Since entity beans represent data in an underlying data store, the data 
contained in the entity instances must be synchronized with the data in the 
rows they represent. The process of synchronization is called persistence. 
Persistence includes creating, deleting, and modifying data rows. Creating 
an entity bean instance creates a row in the underlying data store; deleting 
and entity bean instance removes the row from the underlying data store; 
and so on.

EJBs support two persistence models:

• Bean-managed persistence (BMP)—You write code that synchronizes 
the data to the underlying data store.

• Container-managed persistence (CMP)—You set properties in the 
deployment descriptor that describe how the container should 
synchronize the data. The most common CMP models are described in 
the EJB1.1 and EJB2.0 specifications. There is an EJB1.0 CMP model, 
but it is no longer widely supported.
88 About EJBs



eXtend Workbench Development Guide
Session bean Represents business processes and can be used to manage relationships 
among other entity or session beans. For example, you might use a session 
bean as a client shopping cart application, or to access and manipulate your 
enterprise data. Session beans are transient and do not represent persistent 
data.

There are two kinds of session beans:

• Stateful—A stateful session bean is bound to the client session that 
creates it, so it can be used to maintain values associated with that client 
session. 

• Stateless—A stateless session bean is released to the instance pool after 
each method call completes, so it is not guaranteed that a client will 
have the same instance on subsequent method calls. 

Message-
driven bean 
(2.0 only)

Like a session bean, represents business processes. Resides in the EJB 
container and subscribes to or listens for asynchronous messages. When a 
message is received, the message-driven bean processes it and then waits 
for the next message. Message-driven beans can be used for the same types 
applications as session beans, but their methods cannot be called by a 
client; they can only respond to JMS messages.

Message-driven beans are accessed via JMS.

EJB type Description
About EJBs  89



6    Writing Enterprise JavaBeans
The following diagram shows how EJBs can be used in J2EE applications.

Benefits of EJB container From this diagram you can see that an EJB runs on a J2EE 
server within an EJB container. The EJB container (as defined by the EJB specification) 
provides the EJB runtime environment that includes such low-level services as naming services, 
remote access, security, and transaction support.

The EJB container provides two benefits:

• You focus on business logic Because you can rely on these services being available and 
accessed in a standard way, you can focus your development efforts on writing the 
business logic and not on low-level services.

• Your EJBs are portable Because all EJB containers must meet these requirements, 
EJBs can be portable across many EJB container implementations. 

NOTE EJB container vendors can provide additional services for EJBs deployed on their 
systems. But EJBs developed to take advantage of nonstandard services are not 
portable.
90 About EJBs



eXtend Workbench Development Guide
How clients access the EJB You can also see from the diagram that EJB clients do not 
access the EJB directly. Entity beans and session beans are accessed via the EJBObject and the 
EJBHome object. The EJBObject provides access to the EJB’s business methods; the 
EJBHome object provides access to the EJB’s life cycle methods. A new feature for EJB2.0 
allows beans within the same container to access one another using a local interface instead of 
a remote interface; this avoids the overhead of the remote calls. (The two new local interfaces 
are EJBLocalHome and EJBLocalObject.) Message-driven beans are not accessed via any 
interfaces. Client programs cannot access message-driven beans directly, because they are 
accessed only via a JMS message server.
About EJBs  91



6    Writing Enterprise JavaBeans
Developing EJBs
The components you develop depend on the version of the EJB specification and the types of 
enterprise beans you are developing. This table shows what is required for each specification:  

To test or deploy the EJBs you develop, you need to:

1. Package the beans and the interfaces in an EJB JAR file and include a deployment 
descriptor. (See “Packaging EJBs” on page 95 for more information on the deployment 
descriptor.)

2. (Optional) Assemble the beans (from one or more EJB JARs) into an application.

3. Deploy the EJB JAR on a J2EE-compatible server. (See “Deploying EJBs” on page 97.)

4. Write a client to call the EJB. (See “Calling EJBs” on page 97.)

Looking at a sample session bean

This sample shows the components of a stateful session bean and includes:

• The remote interface

• The home interface

EJB 
version Bean type

Interface or class that you must 
provide

EJB1.1 Entity or session beans • Home and remote interface

• Bean implementation class

• (Optional) Primary key class (entity 
beans only)

EJB2.0 Entity or session beans • LocalHome and local component 
interface and/or RemoteHome and 
remote interface

• Bean implementation class

• (Optional) Primary key class (entity 
beans only)

• (Optional) Dependent objects (for entity 
beans only)

Message-driven beans • Bean implementation class
92 Developing EJBs



eXtend Workbench Development Guide
• The bean implementation class

The remote interface Some things to note about this sample:

• The remote interface extends javax.ejb.EJBObject. 

• The doCalculation() business method is included so that clients will be able to call it.

• All methods on the remote interface throw java.rmi.RemoteException.
/**
 * @(#)SBCalculator.java
* SBCalculator is a Stateful session EJB (EJB v1.1).
*/
import java.rmi.RemoteException;
public interface SBCalculator extends javax.ejb.EJBObject 
{

public int doCalculation( int piFirstValue, int piSecondValue )
throws RemoteException;

}

The home interface Some things to note about this sample:

• The home interface extends javax.ejb.EJBHome. 

• The life cycle method create() corresponds to the ejbCreate() method on the session bean 
implementation class.

• The create() method throws both the javax.ejb.CreateException and the 
java.rmi.RemoteException.
/**
 * @(#)SBCalculatorHome.java
*/
import java.rmi.RemoteException;
import javax.ejb.CreateException;
public interface SBCalculatorHome extends javax.ejb.EJBHome 
{

public SBCalculator create() throws CreateException, RemoteException;
}

The bean implementation class Some things to note about the bean implementation 
class: 

• It extends javax.ejb.SessionBean.

• It includes life cycle methods like ejbCreate() and ejbRemove().

• It includes container callback methods like ejbActivate() and ejbPassivate(). These 
methods allow the container to manage the bean.

• It includes the implementation of the doCalculation() method.
Developing EJBs  93



6    Writing Enterprise JavaBeans
/**
 * @(#)SBCalculator.java
* SBCalculator is a Stateful session EJB (EJB v1.1).
*/
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;

public class SBCalculatorBean implements javax.ejb.SessionBean
{

protected SessionContext m_sessionContext;
public int m_iTotal=0;
public void ejbCreate() throws CreateException

{
}

public int doCalculation( int piFirstValue, int piSecondValue )
{
int iTotal = piFirstValue + piSecondValue;
m_iTotal += iTotal;
return m_iTotal; 
}

public void setSessionContext( javax.ejb.SessionContext ctx )
{
m_sessionContext = ctx;
}

public void ejbActivate()
{
 }

public void ejbPassivate()
{
}

public void ejbRemove()
{
}

}

What Workbench does

Workbench provides an EJB Wizard that prompts you for information about the EJB you want 
to create. It prompts you for:

• The version of the EJB specification you want to use (1.1 or 2.0)

• The kind of EJB you want to create: session bean (stateful or stateless), entity bean (BMP, 
CMP1.x, or CMP2.x), or message-driven bean

• The methods the EJB will contain (including parameters, return types, and exceptions)

• Information about the underlying data store (for entity beans)
94 Developing EJBs



eXtend Workbench Development Guide
When you have provided all of the information, the wizard constructs: 

Packaging EJBs
Once you have developed the components of your EJB, you package them in an EJB JAR. To 
do this you:

1. Write a deployment descriptor for the EJB JAR.

2. Create an EJB JAR file (a JAR with the .JAR extension) and add the EJB source files and 
any other utility classes needed by the EJB.

Writing the deployment descriptor

The deployment descriptor is an XML description of the contents of an EJB JAR file. This file 
can have any valid file name and be located in any directory; but in the EJB JAR file it must be 
named ejb-jar.xml and reside in a directory named META-INF. The ejb-jar.xml file must follow 
the format specified by the Sun Enterprise JavaBeans DTD. For more information about the 
DTD, see J2EE Deployment Descriptors in the online Reference.

What the wizard constructs Details

Remote and/or local 
component interface

Includes all of the implementation class’s public methods

You do not have to write any code

RemoteHome and/or 
LocalHome

Includes the life cycle methods that are required by the 
specification, plus any additional create() methods 
defined in the implementation class

You do not have to write any code

Bean implementation class Includes all necessary imports, member variables, and 
method skeletons for all methods you specify

The resulting Java file also includes not implemented 
comments so you can quickly scan the class for what is 
complete and what is not 

Primary key class A separate primary key class is only generated when a 
bean field is not sufficient for use as a primary key.
Packaging EJBs  95

refJ2EEDeployDesc.html


6    Writing Enterprise JavaBeans
An EJB deployment descriptor includes:  

What Workbench does

When you create an EJB as part of an EJB project, Workbench automatically creates a 
deployment descriptor that complies with the EJB deployment descriptor DTD. As you add 
components to the EJB project, Workbench updates the deployment descriptor to keep the 
project and the deployment descriptor synchronized.

You use the Workbench Deployment Descriptor Editor to modify and update the ejb-jar.xml 
file. You can also create an EJB deployment descriptor using the Deployment Descriptor Editor.

Creating an EJB JAR file

An EJB must be packaged in an EJB JAR file. You can use the archive tool of your choice to 
create an EJB JAR file.

What Workbench does

Workbench automates the archiving process. You can use Workbench to compile and archive 
your EJBs using Projects>Build and Archive.

Contents Defined by Description

Description of the 
individual beans in 
the JAR

Bean 
developer

Information about the individual beans in the EJB 
JARs, such as the name of the EJB’s Java class file and 
the names of its home and remote interfaces

Runtime attributes 
of the beans in the 
JAR 

Application 
assembler

Information about the runtime attributes of the beans 
in the EJB JAR, such as entries that name roles, 
method permissions, and transaction attributes

The deployer then uses this combination of 
information to install the EJB JAR on the target server 
and map this information to actual entities in the 
runtime environment
96 Packaging EJBs

refJ2EEDeployDesc.html
toolsDeployDescEditor.html


eXtend Workbench Development Guide
Deploying EJBs
To make your EJBs available to users, you deploy the EJB JAR on a J2EE server, such as the 
SilverStream eXtend Application Server. To do this you:

1. Provide the runtime deployment information specific to your application and server.

Each J2EE server has its own requirements for specifying the runtime deployment 
information. For example, the SilverStream eXtend Application Server uses a deployment 
plan, and the Sun Reference Implementation (RI) uses a Runtime Deployment Descriptor.

2. Deploy the EJB JAR.

In Workbench To deploy your EJB JAR:

1. Make sure the J2EE server is running and accessible.

2. Select Project>Deploy Archive.

3. Fill in the Deployment dialog.

The deployment information depends on the server you are deploying to. You use the 
server profile dialog to create a J2EE server profile that Workbench can use to execute the 
appropriate deployment tool based on the selected server.

4. Click OK to deploy the EJB JAR.

Workbench provides automatic deployment to several J2EE servers. 

For more information, see the chapter on archive deployment in the Tools Guide.

Calling EJBs
To call an EJB on a J2EE server, a client must:

1. Find the EJB.

2. Create an instance of the EJB.

3. Call the bean’s remote methods or send a JMS message to the appropriate topic or queue.

Finding the EJB

To find the EJB, the client application locates the EJBHome object in one of these ways:

• The JNDI name

• A bean reference using the environment context
Deploying EJBs  97

toolsDeployment.html


6    Writing Enterprise JavaBeans
Finding the home object using the JNDI name This example shows how to do a JNDI 
lookup and a PortableRemoteObject.narrow:

1. Create an instance of the javax.naming.InitialContext class. 
initialContext = new InitialContext();

2. Use it to call the InitialContext.lookup() method. In this example, the session bean’s JNDI 
name is SBCalculator and it is located in the RMI subcontext.

Object obj = initialContext.lookup("RMI/SBCalculator");

3. Call the javax.rmi.PortableRemoteObject.narrow() to perform type-narrowing of the 
client-side representations of the home and remote interfaces. Then cast the returned 
object to the appropriate type (in this case SBCalculatorHome). 

m_sbCalculatorHome = (SBCalculatorHome)
javax.rmi.PortableRemoteObject.narrow(obj,

com.examples.calculatordemo.SBCalculatorHome.class);

Finding a bean reference using the environment context This example shows how 
to find a bean using a bean reference from another J2EE component.

1. Create an instance of the javax.naming.InitialContext class. 
m_initialContext = new javax.naming.InitialContext();

2. Create an instance of the environment context and call the InitialContext.lookup() method.
Context contextEnv = (Context) m_initialContext.lookup("java:comp/env");

3. Call the environment context lookup using the bean reference.
Object objEntityBeanLookup = (Object)

contextEnv.lookup("ejb/beanrefname");

4. Call the javax.rmi.PortableRemoteObject.narrow() to perform type-narrowing of the 
client-side representations of the home and remote interfaces. Then cast the returned 
object to the appropriate type. 

m_myBeanHome = (myBeanHome) 
PortableRemoteObject.narrow(objEntityBeanLookup,
com.examples.bankdemo.myBeanHome.class); 

Instantiating an EJBObject

You call the create() method or a finder method on the resulting EJBHome to get an EJBObject 
for an entity bean:

m_myBean = m_myEntityBeanHome.findByPrimaryKey(pkCompany);

or a session bean:

m_myBean = m_mySessionBeanHome.create();
98 Calling EJBs



eXtend Workbench Development Guide
Calling the bean’s remote methods Once your client has a remote reference to the EJB, 
you can call any of the exposed business methods as though the EJB were local. Your client 
application can call only methods exposed by the remote interface and the life cycle methods 
exposed by the home interface. Clients that access entity beans can also call methods on the 
primary key class. 

The bean provider must provide some type of written documentation that describes the EJB’s 
available business methods. 
Calling EJBs  99



6    Writing Enterprise JavaBeans
Tips for designing EJB applications
Designing a good EJB application means following the standard practices of designing any 
good database application—plus these EJB-specific practices: 

EJB practice Details

Use appropriate-weight 
components

• Define methods at the business logic level

• Take advantage of EJB’s built-in transaction support 
whenever possible

Keep transactions short • Never start a transaction from a remote client (such as a 
form); if the client crashes, the database will be locked until 
the transaction times out

• It is OK to start a transaction from a servlet or page; but the 
servlet or page should close the transaction before 
responding to the browser—don’t keep transactions open 
across user interactions

• Consider using session beans to manage transactions

Integrate with the user 
interface

When possible, call EJBs directly from a page or servlet—do 
not expose EJBs directly to remote Java clients

Always use the 
javax.rmi.PortableRemot
eObject.narrow() method 
with bean lookups or 
references

Casting is not sufficient for RemoteHome and remote 
component interfaces.

Always implement an 
equals() method and a 
hashCode() method for 
entity bean primary key 
classes

These methods must override the default implementation (on 
Object) with the correct signature

Call the remove() method 
on session beans when 
you no longer need them

The remove() method will get rid of the bean instance and 
unexport the corresponding remote object
100 Tips for designing EJB applications



7
 Using Resource Adapters Chapter 7
Resource adapters are an important part of the J2EE Connector technology. This chapter 
introduces resource adapters and includes the following sections:

• About resource adapters

• Deploying resource adapters

• Using resource adapters

About resource adapters
Resource adapters are software components that reside on a J2EE server and allow J2EE 
components to interact with enterprise information systems (EIS) that reside outside of the J2EE 
server. Some examples of EIS systems include nonrelational databases, SAP, and PeopleSoft. A 
resource adapter is like a JDBC driver; it provides a standard API that J2EE application servers 
can use to access and provide services (like connection pooling and transaction and security 
management) for the EIS. Resource adapters also define and implement interfaces that J2EE 
client applications can use to access the resources managed by the EIS. The Connector 
Architecture Specification (1.0) defines a client interface called the Common Client Interface 
(CCI) that a resource adapter can implement for use by client applications, but it is not required.

Resource adapters are stored in resource adapter archive (RAR) files and are deployed to J2EE 
servers in the same way that other archive types are deployed. Once deployed, a resource 
adapter and its underlying EIS is not available to client applications until a Connector 
connection pool is created and configured using the target server’s tools. 
101



7    Using Resource Adapters
The following diagram illustrates how resource adapters can be used in J2EE applications.

Each resource adapter is developed to allow access a particular data source (EIS), so it is 
possible that more than one resource adapter is installed on any J2EE server. The J2EE 
Connector Architecture requires that the resource adapter implement the following contracts:

Contract Description

Common Client Interface 
(CCI)

Defines APIs that clients can use to access data via a 
resource adapter. Resource adapter providers are not 
required to implement the CCI. The CCI API is common 
across heterogeneous EIS data stores and includes 
methods and classes to create and manage EIS 
connections and data.

See the CCI Specification for more information. 

Connection management Defines the APIs that allow J2EE application servers to 
create and manage connection pools that can improve 
performance and scalability of applications using the 
resource adapter.
102 About resource adapters

new http://jcp.org/jsr/detail/016.jsp


eXtend Workbench Development Guide
Deploying resource adapters
Resource adapters are stored in resource adapter archive (RAR) files and can be deployed on 
any J2EE-compatible server. The RAR file should include: 

• The classes needed to implement the resource adapter.

• A deployment descriptor. The file must be called ra.xml and it must be stored in the 
META-INF file. 

In addition, most J2EE servers will require a file that contains runtime deployment information, 
so you’ll need to provide the file as required by the target J2EE server. 

In Workbench To deploy your RAR:

1. Start Workbench and access the RAR from the file system.

2. Create a deploy-only project and add the RAR to it.

Transaction management Defines the APIs that allow J2EE application servers to 
enlist EIS resources in global or local transactions via the 
resource adapter. The J2EE Connection Architecture 
defines the following types of resource adapters:

• XA (global)—transactions that can span multiple 
resource managers. Global transactions require 
coordination by an external transaction manager that 
will typically be bundled with the application server. 
XA transactions may require two-phase commit if the 
transaction spans multiple EIS applications. It will use 
a single-phase commit if only one EIS participates. 

• local transactions—transactions that are limited to a 
single EIS system and its associated resource manager 
(at the EIS).

• nontransactional

Security Defines the APIs that allow J2EE application servers to 
support secure connections to EIS resources via the 
resource adapter. The security supported by the resource 
adapter is dependent on the requirements of the EIS. 

Contract Description
Deploying resource adapters  103



7    Using Resource Adapters
3. Make sure the J2EE server is running and accessible.

4. Select Project>Deploy Archive.

5. Fill in the Deployment dialog.

The deployment information depends on the server you are deploying to. You use the 
server profile dialog to create a J2EE server profile that Workbench can use to execute the 
appropriate deployment tool based on the selected server.

6. Click OK to deploy the RAR.

Workbench provides automatic deployment to several J2EE servers. 

For more information, see the chapter on archive deployment in the Tools Guide.

Using Workbench to create resource adapters You can also use Workbench to create 
a resource adapter. For more information on using Workbench to develop J2EE components, see 
the Tools Guide.

Using resource adapters
Client applications never directly access the EIS or the resource adapter. Client applications 
access the resource adapter connection pool.

To access an EIS, client applications:

• Import javax.resource.ResourceException and any other packages necessary to use the 
resource adapter’s client interfaces. For example: if CCI is used, the client application 
must import javax.resource.cci.* and

• Use JNDI to get the ConnectionFactory for the resource adapter (and the username and 
password values if necessary)

• Access an unused connection from the connection pool. When CCI is used, the client 
application would use the getCCIConnection() method.

Once you have the connection, you use the methods of the CCI or a proprietary interface 
defined by the resource adapter vendor to access the data.

The following code shows how to locate the ConnectionFactory (via JNDI) and to establish a 
connection using the CCI.

public void setSessionContext(SessionContext ctx) {
try {

m_sessionContext = ctx;
Context ic = new InitialContext();
username = (String) ic.lookup("java:comp/env/user");
password = (String) ic.lookup("java:comp/env/password");
Object obj=ic.lookup("java:comp/env/myEIS");
104 Using resource adapters

toolsDeployment.html


eXtend Workbench Development Guide
cf=(ConnectionFactory)obj;
} catch (NamingException ex) {
ex.printStackTrace();
}

}

Using resource adapters  105



7    Using Resource Adapters
106 Using resource adapters



Part II Producing and Consuming Web Services
A primer on Web Services that prepares you for creating and using them in 
Workbench

• Chapter 8, “Understanding Web Services”
• Chapter 9, “Generating Web Services”
• Chapter 10, “Generating Web Service Consumers”





8
 Understanding Web Services Chapter 8
Web Services enable businesses to share application functionality regardless of the source 
language, operating system, or hardware used to create that functionality. Web Services 
overcome implementation incompatibilities by using standard Internet protocols and XML-
based messaging to provide intercomponent communication.

This chapter gives an overview of Web Service technologies and SilverStream eXtend 
Workbench support for the development and use of Web Services. Topics include:

• About Web Services

• Web Service providers, consumers, and registries

• Providing Web Services

• Using Web Services

• Using Web Service registries

• Learning more about Web Services

• Popular Web Service implementations

• Web Services and Workbench

About Web Services
Web Services are modular software components whose application functionality is accessible 
over the Web using Simple Object Access Protocol (SOAP), a standardized XML-based 
messaging protocol.

Applications invoke Web Services like remote procedure calls, except that the procedure call 
and response are handled using SOAP messages embedded in HTTP requests and responses. 
An application calls a Web Service by sending a SOAP message embedded in an HTTP request 
to a Web location associated with that service. The Web Service performs the application logic 
for that message then returns any application output in the form of another SOAP message 
embedded in an HTTP response.

To learn more about SOAP messages, see www.w3.org/TR/SOAP.
109

new http://www.w3.org/TR/SOAP


8    Understanding Web Services
Web Service providers, consumers, and registries
The Web Service architecture typically consists of Web Service providers, consumers, and 
registries:

A Web Service provider is an organization that creates and hosts Web Services. Typically, a 
provider publishes information about their organization and the services they offer in a Web 
Service registry that can be queried by members of the organization or possibly by other 
businesses.

A Web Service consumer finds a Web Service (typically by querying a Web Service registry) 
then runs the service by establishing a connection to the provider. This is called binding to a 
Web Service.

A Web Service registry is a collection of business and service information that is readily 
accessible to providers and consumers, through programmatic publishing and querying 
interfaces.
110 Web Service providers, consumers, and registries



eXtend Workbench Development Guide
Providing Web Services
A Web Service provider:

1. Creates and deploys Web Service components

2. Creates a WSDL file to describe the Web Service

3. Publishes information about the Web Service so prospective consumers can discover and 
use it

Creating Web Service components

A provider creates the application logic components and deploys them to a network-accessible 
location, typically using a Web application server. To make these logic components into a Web 
Service, the provider creates and deploys a SOAP message-handling interface that enables 
HTTP requests containing well-defined SOAP messages to invoke the appropriate Web Service 
functionality.

When a consumer application accesses the service by sending a SOAP message embedded in an 
HTTP request, the provider runs the application logic and returns any application output in 
another SOAP message embedded in an HTTP response. For example:
Providing Web Services  111



8    Understanding Web Services
Creating a WSDL file

To specify information about a Web Service in a standard form, the provider creates a Web 
Services Description Language (WSDL) document describing its characteristics. WSDL is an 
XML-based format that describes a Web Service by using these elements:

In WSDL, an endpoint specifies a network address as well as the protocol and data format of 
messages exchanged with that address.

Given the flexibility of the WSDL specification, the information in a WSDL document can 
become complicated. For easier understanding, think of a WSDL document as essentially 
specifying the interface and port location of a Web Service.

To learn more about WSDL, see www.w3.org/TR/wsdl.

Publishing Web Service information

Once a Web Service has been created and deployed, the provider can publish information about 
the service and the provider organization in one or more registries. This enables prospective 
consumers to discover that the service is available and learn how to use it.

For details, see “Using Web Service registries” on page 114.

Another way to publish Web Service information is to provide the information directly to 
specific consumers by using Web pages, e-mail, personal communications, and so on. This is 
called direct publishing.

Element Contains definitions of

Type Data types specified in message content

Message Data formats of messages

Port type Endpoint types and the operations they support

Binding Message formats and protocol details for a particular port type

Port A network address for each endpoint

Service Groups of related endpoints
112 Providing Web Services

new http://www.w3c.org/TR/wsdl


eXtend Workbench Development Guide
Using Web Services
A Web Service consumer creates applications that use Web Services. Typically, a consumer 
finds an appropriate Web Service by querying a Web Service registry (see “Using Web Service 
registries” on page 114).

From the WSDL information provided, the consumer can create the SOAP message-handling 
code needed to use the Web Service. When the consumer application calls the Web Service, the 
SOAP message-handling code binds to that service, as follows:

1. Establishes an HTTP connection to the provider

2. Creates and sends a SOAP message embedded in an HTTP request, instructing the 
provider to invoke the appropriate Web Service application logic

3. If the HTTP response contains a SOAP message, converts that message (into a data format 
understandable to the consumer application) then returns the data to the application

To the consumer application, this is similar to calling a remote method. However, the interaction 
between the application code and the Web Service uses SOAP messaging embedded in a 
standard HTTP request and response. For example:
Using Web Services  113



8    Understanding Web Services
Using Web Service registries
A Web Service registry is a repository of Web Service information that can be accessed 
programmatically over a network. Both providers and consumers can use Web Service 
registries:

• Providers can publish information about their organization and services to registries, 
making them visible to prospective consumers.

• Consumers can query registries to find the services and businesses that fit their needs 
and to retrieve provider-supplied information about those services (such as where and how 
to access them, the WSDL representation, and so on).

About registries

A registry can contain these kinds of information:

Category Includes

Business information Name, industry or product category, geographic location, 
and business identification numbers (such as NAICS or 
DUNS numbers)

Web Service information General description, business process or category, and 
technical information (about connecting to and 
communicating with the Web Services for a given 
business)

Business service information Corporate home page URL, sales and technical support 
contact information, business services not hosted on the 
Web, and so forth

Specification pointers URL addresses of WSDL for services and other technical 
documents
114 Using Web Service registries



eXtend Workbench Development Guide
Registry data formats

Registries store their business and service information in a standard XML-based format such as 
Universal Description, Discovery, and Integration (UDDI) or Electronic Business XML 
(ebXML). Businesses hosting registries typically provide Web page, GUI, or programmatic 
interfaces for publishing to and querying the registry (so providers and consumers don’t need to 
know details about the internal registry implementation).

To learn more about UDDI, see www.uddi.org. To learn more about ebXML, see 
www.ebxml.org.

Public and local registries

Businesses may use public or local registries:

• A public registry is typically visible to anyone on the Web and contains information 
about numerous companies and services. It may implement varying degrees of 
authentication and authorization security for publishing and querying.

• A local registry might be limited to local network access, enabling a business to share 
Web Services internally without exposing them to consumers outside the organization.

Learning more about Web Services
Here’s a summary of Web sites you can visit to find out more about specific Web Service 
technologies:

Topic Site

SOAP www.w3.org/TR/SOAP

HTTP www.w3.org/Protocols

WSDL www.w3.org/TR/wsdl

UDDI www.uddi.org

ebXML www.ebxml.org
Learning more about Web Services  115

new http://www.w3.org/TR/SOAP
new http://www.w3c.org/Protocols
new http://www.w3c.org/TR/wsdl
new http://www.uddi.org
new http://www.ebxml.org
new http://www.uddi.org
new http://www.ebxml.org


8    Understanding Web Services
Popular Web Service implementations
While it’s important to know about the underlying Web Service technologies (SOAP, WSDL, 
UDDI, ebXML, etc.), it’s usually not efficient to develop applications at that level. As a result, 
higher-level implementations have emerged to make those technologies more accessible by 
wrapping them in familiar constructs. These implementations include:

• J2EE Java 2 Enterprise Edition provides Web Service support through its JAX-RPC 
(Java API for XML-based RPC) specification.

• .NET Microsoft provides Web Service support through its .NET platform.

For example, a programmer familiar with J2EE can more easily use a JAX-RPC implementation 
to develop and access Web Services. There’s no need to become a SOAP expert or process 
SOAP messages manually.

When properly designed and built, Web Services should be interoperable across different 
implementations. For instance, a JAX-RPC client should be able to access a .NET Web Service 
and a .NET client should be able to access a JAX-RPC Web Service.

Web Services and Workbench
SilverStream eXtend Workbench is a J2EE-oriented IDE that providers can use to create, 
deploy, and maintain Web Services based on the JAX-RPC standard. That means Web Services 
are packaged in J2EE Web archives (WARs) that can be deployed to any J2EE-compatible 
server. Workbench can also be used to develop Java-based Web Service consumers that comply 
with JAX-RPC.

To help you implement Web Services and Web Service consumers, Workbench provides these 
facilities:

Facility Description

jBroker Web Core technologies for eXtend Web Service support, including 
compilers and SOAP runtime based on JAX-RPC

Web Service Wizard Tool that helps you invoke the jBroker Web compilers to 
generate Java classes and WSDL files for Web Services and 
Web Service consumers

Registry Manager Tool for querying and publishing to Web Service registries

WSDL Wizard and Editor Tools for creating and editing WSDL files
116 Popular Web Service implementations

new http://java.sun.com/xml/jaxrpc
new http://www.microsoft.com/net


eXtend Workbench Development Guide
jBroker Web

jBroker Web is a JAX-RPC implementation that includes compilers and a runtime 
environment for developing and executing Web Service provider and consumer applications.

The Web Service Wizard uses the jBroker Web compilers to create Web Service components 
(skeletons, ties, stubs) and WSDL files. Developers can also invoke these compilers separately 
from the command line.

Both provider and consumer deploy jbroker-web.jar (and some supporting JARs) with their 
applications to provide the necessary runtime environment. This includes the SOAP engine that 
runs when stub and skeleton components pass SOAP messages between consumer and provider 
applications.

For more information, see the jBroker Web help.

Web Service Wizard

The Web Service Wizard enables you to create Web Service components from Java classes or 
WSDL files. It generates the Java remote interface for accessing an object as well as skeleton, 
tie, and stub Java classes that handle SOAP message communication between a consumer 
application and a Web Service. The generated code is based on JAX-RPC.

The provider deploys a Web Service as a Web archive (WAR) in which the skeleton and tie 
classes implement a servlet that processes incoming SOAP messages. A consumer application 
accesses Web Service functionality by calling methods in the stub class, which sends SOAP 
messages to the server.

For more information, see:

• Chapter 9, “Generating Web Services”

• Chapter 10, “Generating Web Service Consumers”

• Web Service Wizard chapter in the Tools Guide
Web Services and Workbench  117

toolsWebServiceWizard.html
new ../../jbroker-web/README.html


8    Understanding Web Services
Registry Manager

The Registry Manager helps providers publish to Web Service registries. It helps consumers 
query Web Service registries.

For more information, see the Registry Manager chapter in the Tools Guide.

WSDL Wizard and Editor

The WSDL Wizard helps providers create new WSDL documents. The WSDL Editor helps 
providers edit and use existing WSDL documents.

For more information, see the WSDL Editor chapter in the Tools Guide.
118 Web Services and Workbench

toolsRegManager.html
toolsWSDLEditor.html


9
 Generating Web Services Chapter 9
This chapter walks you through the basic steps and typical scenarios for using the Web Service 
Wizard to generate Web Services from a variety of sources. Topics include:

• Basics

• Steps

• Choosing an implementation model

• Scenario: starting with a Java class

To learn about the steps and scenarios for using the wizard when you want a program to 
access Web Services, see Chapter 10, “Generating Web Service Consumers”.

Basics
You can use the Web Service Wizard of Workbench to develop standard (SOAP-based) Web 
Services that are implemented as Java remote objects (using RMI). The wizard generates Java 
source files based on JAX-RPC (Java API for XML-based RPC) and jBroker Web (the JAX-
RPC implementation included with SilverStream eXtend). JAX-RPC is the J2EE specification 
that provides Web Service support.

The generated files include a servlet to handle access to your Web Service and its methods from 
HTTP SOAP requests. You can use the generated files as is or modify them when necessary. The 
advantage of this Java-oriented approach is that you can deal with Web Services using the 
familiar technologies of RMI and J2EE instead of coding lower-level SOAP APIs.

For an introduction to Web Service concepts, standards, and technologies, see Chapter 8, 
“Understanding Web Services”.

For detailed documentation on the wizard, see the Web Service Wizard chapter in the 
Tools Guide.
119

toolsWebServiceWizard.html
new http://java.sun.com/xml/jaxrpc
new ../../jbroker-web/README.html


9    Generating Web Services
Steps
The complete development process involves:

1. Preparing to generate

2. Generating Web Service files

3. Examining the generated files

4. Editing the generated files

5. Using the generated files

Preparing to generate

To prepare for using the Web Service Wizard, you:

1. Set up a WAR project in Workbench.

For each Web Service you generate, the wizard creates a servlet to handle access to that 
Web Service (from HTTP SOAP requests). As a result, a WAR is required to package your 
Web Services (one or more per WAR) for deployment to a J2EE server where they will 
run.

A possible variation is to set up a JAR subproject in your WAR and use that JAR to 
contain the servlet and other classes for a Web Service. In any case, the servlet mapping 
will be in the WAR’s deployment descriptor (web.xml).

(Note that the approach of using a JAR subproject is not currently supported by the Web 
Service Wizard when you generate a Web Service from a WSDL file. In this situation, it 
only supports a WAR project.)
120 Steps



eXtend Workbench Development Guide
2. Add these files to the project:

Files Details

Source files, classes, or archives from 
which your Web Services are to be 
generated

You can generate a Web Service from any 
one of the following:

• A JavaBean or other Java class

• An EJB session bean

• A Java remote interface

• A WSDL file

No matter which one you provide, it 
should (at minimum) declare the methods 
you want your generated Web Service to 
expose.

Compile your Java files If you provide 
any Java files, make sure you compile 
them in your project before starting the 
Web Service Wizard (because the wizard 
works from compiled classes).

Edit your WSDL bindings If you 
provide any WSDL files, edit them as 
needed to make sure the SOAP address in 
the service definition specifies the correct 
binding URL. The Web Service Wizard 
will use this URL in the files it generates 
for your Web Service.
Steps  121



9    Generating Web Services
3. Edit the classpath of your project so you can compile your Web Service classes once 
they’re generated and edited. You’ll need to include:

• j2ee_api_1_n.jar (automatically added when you create a WAR project)

• jbroker-web.jar

• jaxrpc-api.jar and saaj-api.jar

• xerces.jar (or another XML parser)

• Any application-specific entries (such as an EJB-client JAR file you’ve provided for a 
session bean Web Service)

If you use SOAP message handlers (an advanced JAX-RPC feature) in your application, the 
project will also require the following archives: activation.jar, commons-logging.jar, dom4j.jar, 
jaxp-api.jar, and saaj-ri.jar. You’ll find these JARs in the Workbench compilelib directory.

Generating Web Service files

Once you’ve set up your WAR project, you’re ready to use the Web Service Wizard. The wizard 
produces one Web Service at a time, so you’ll need to use it multiple times if you have several 
to develop.

Each time you launch the wizard, it takes input from you about the kind of Web Service to 
produce. It then generates a set of source files that together make up the Web Service. Here’s a 
summary of the process:

1. Select File>New to display the New File dialog and go to the Web Services tab.

Archives required by jBroker Web:

• jbroker-web.jar, which contains the 
jBroker Web API classes needed at 
runtime

• jaxrpc-api.jar and saaj-api.jar, 
which contain the Java API classes 
for XML-based RPC and SOAP 
processing

• xerces.jar or another XML parser

You’ll find these JARs in the Workbench 
compilelib directory. Depending on your 
J2EE server configuration, you should do 
one of the following:

• Add them to the WEB-INF/lib 
directory of your WAR project

• Add them to the server classpath of 
your J2EE server

For more information, see the 
chapter on archive deployment in the Tools 
Guide.

Files Details
122 Steps

toolsDeployment.html#DeployingWebServices


eXtend Workbench Development Guide
2. Launch the Web Service Wizard by doing one of the following:

3. When the wizard prompts you for project location information, specify:

• The WAR or JAR project you set up to contain the generated Web Service files (if 
you’re generating from a WSDL file, the wizard currently requires you to specify a 
WAR project here)

• The target directory and package in that project (if you’re generating from a Java 
class, you won’t have to fill in some of these settings because the wizard will 
automatically handle them for you)

If you specify a JAR project to contain the generated Web Service files, the wizard will 
also ask you for a WAR project to map the Web Service’s servlet.

To generate a Web Service 
from Select

One of these:

• A JavaBean or other Java class

• An EJB session bean

• A Java remote interface

New Web Service

A WSDL file Existing Web Service

As its name suggests, this item is mainly used to 
generate Web Service consumers that access 
deployed Web Services (based on their WSDL 
files). But it can also be used to read WSDL 
files as blueprints and generate the matching 
Web Services themselves.
Steps  123



9    Generating Web Services
4. When the wizard prompts you, select the class or WSDL file to generate the Web Service 
from.

The wizard then asks for additional information based on your selection:

5. When the wizard prompts you for class-generation and SOAP options, you need to 
choose and configure the set of source files to generate for your Web Service.

The most important choice is whether to generate skeletons to be tie-based or not. The 
answer depends on the architectural model you want the implementation of your Web 
Service to follow. See “Choosing an implementation model” on page 135.

You can choose to generate stubs (which come with a simple client application) for testing 
your Web Service. When generating from a Java class, you can also request a WSDL file 
(for publishing the Web Service to a registry) as well as specify the binding style 
(document or RPC) and service address (URL) for the Web Service. When generating 
from a WSDL file, you can specify how complex types are to be mapped.

NOTE Support for jBroker Web 1.x applications is available via a backward-
compatibility option. For more information, see “If you choose jBroker Web 1.x 
compatibility” on page 128.

6. Click Finish when you’re done specifying options for the Web Service.

If you select The wizard prompts you to specify

A JavaBean or other Java 
class

• Which methods to expose in the generated Web 
Service (in contrast, when you generate from an 
EJB, remote interface, or WDSL file, all methods 
are automatically exposed)

• Class-generation and SOAP options

The home interface of an EJB 
session bean

• Lookup information for the EJB

• Class-generation and SOAP options

The remote interface of an 
EJB session bean or the 
SessionBean class itself

• The home interface of the EJB session bean

• Lookup information for the EJB

• Class-generation and SOAP options

A Java remote interface • Class-generation and SOAP options

A WSDL file • Class-generation and SOAP options
124 Steps



eXtend Workbench Development Guide
Examining the generated files

Once you finish the wizard, it generates everything you’ve specified for your Web Service and 
updates other parts of your project with supporting changes:

What the wizard generates Details

Java source file for remote 
interface

xxxWS.java This file is automatically generated 
whenever your input to the wizard is not a remote 
interface (such as when you start from a JavaBean, Java 
class, EJB session bean, or WSDL file). That’s because a 
remote interface (which extends java.rmi.Remote and 
declares the methods to expose) is required to construct 
your Web Service.

When you start from a WSDL file, the name of the 
generated remote interface is simply xxx.java.

Java source file for skeletons xxx_ServiceSkeleton.java Abstract servlet class that 
handles access to the Web Service (from HTTP SOAP 
requests).

In the tie model, xxx_ServiceTieSkeleton extends this 
class. In the skeleton model, you extend it yourself (with 
an implementation of your remote interface).
Steps  125



9    Generating Web Services
Java source files for tie-based 
skeletons

xxx_ServiceTieSkeleton.java Abstract servlet class 
that extends xxx_ServiceSkeleton.

xxxTie.java Servlet that’s used in the tie model as the 
front end for the Web Service. It extends 
xxx_ServiceTieSkeleton to handle access to the Web 
Service (from HTTP SOAP requests). It delegates to one 
of the following to process method calls for the Web 
Service:

• If you start with a JavaBean, Java class, or EJB session 
bean, xxxTie instantiates xxxDelegate and delegates to 
it.

• If you start with a Java remote interface or WSDL file, 
you must edit the xxxTie.java file to specify a class of 
your own to instantiate and delegate to.

xxxDelegate.java This file is generated if you start with 
a JavaBean, Java class, or EJB session bean that 
implements the methods for your Web Service. 
xxxDelegate instantiates that implementation class and 
calls those methods on it.

With an EJB session bean, xxxDelegate does a lookup and 
create to get the remote interface object. Then it uses that 
object to make the method calls.

What the wizard generates Details
126 Steps



eXtend Workbench Development Guide
Java source files for stubs xxxService.java Service interface used by JAX-RPC 
clients to obtain the stub for the target Web Service.

xxxServiceImpl.java Service implementation class that 
handles instantiation of the stub (xxx_Stub). It also 
supports alternative ways of accessing the target Web 
Service, including dynamic (stubless) calls.

(Note that, when you start from a WSDL file, the names 
generated for the service interface and implementation 
class depend on your WSDL and may omit the text 
Service.)

xxx_Stub.java Facilitates method calls from a Java-
based consumer to the target Web Service. xxx_Stub 
implements the remote interface corresponding to the 
Web Service by sending an appropriate HTTP SOAP 
request for each method call.

xxxClient.java Simple client application that works as a 
consumer of the target Web Service. It obtains the stub 
(via the Service object) then uses the stub to call Web 
Service methods.

You can run xxxClient from Workbench (select 
Project>Run Web Service Client Class) or from a 
command line.

WSDL file xxx.wsdl For use when publishing your Web Service to 
a registry. It describes the Web Service in a standard 
format.

Updates to deployment 
descriptor

In the tie model (when you generate tie-based skeletons), 
the wizard updates your WAR project’s web.xml file to 
declare xxxTie as the servlet to handle HTTP SOAP 
requests for your Web Service.

In the skeleton model, you must edit web.xml yourself to 
declare the servlet to use (your class that extends 
xxx_ServiceSkeleton).

What the wizard generates Details
Steps  127



9    Generating Web Services
About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by 
JAX-RPC. If you start with a Java class, the resulting file names are based on the name of that 
class. If you start with WSDL, the resulting file names are based on the definitions in that 
WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service 
file name that’s derived from a class name or WSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the jBroker Web compilers when generating 
the Web Service files listed above. In some cases, these compilers may generate additional code 
or files to support requirements specific to your application, such as:

• Type mapping

• Faults

• Multiple portType definitions

For more information, see the jBroker Web help.

If you choose jBroker Web 1.x compatibility

The current version of jBroker Web provides a high degree of backward-compatibility with 
earlier versions. However, some changes introduced to support the JAX-RPC standard may 
require you to modify code when upgrading an application that originated in jBroker Web 1.x. 
These changes involve the conventions used for:

• File names JAX-RPC specifies rules for naming certain Web Service files. In order to 
follow these rules while keeping all generated names simple and consistent, new name 
patterns were adopted (for details, see Generated 1.x-compatible files below).

• Stub access in client code With JAX-RPC, clients use a Service object to instantiate the 
stub instead of looking up the stub directly via JNDI.

Updates to project contents The wizard updates your project to add generated files 
(and other application-specific files) to it.

Updates to project classpath The wizard updates your project classpath to include 
application-specific files as needed.

What the wizard generates Details
128 Steps

new ../../jbroker-web/README.html


eXtend Workbench Development Guide
Although it’s recommended that you upgrade to the current jBroker Web and JAX-RPC 
conventions, it’s not required. By using the jBroker Web 1.x compatibility option in the Web 
Service Wizard, you can generate Web Service files according to the original jBroker Web 
conventions for file names and stub access. This enables you to take advantage of all the other 
improvements in the latest version of jBroker Web without altering your existing 1.x 
applications.

Generated 1.x-compatible files The following table describes the files generated when 
you use the jBroker Web 1.x compatibility option:

With 1.x compatibility 
on, you get

With 1.x compatibility 
off, this is named Details

xxx_REMOTE.java

Example:

MyObject_REMOTE.java

xxxWS.java

Example:

MyObjectWS.java

Generated remote interface.

_xxx_ServiceSkeleton.java

Example:

_MyObject_REMOTE_Ser
viceSkeleton.java

xxx_ServiceSkeleton.java

Example:

MyObjectWS_ServiceSk
eleton.java

Abstract servlet class.

_xxx_ServiceTieSkeleton.j
ava

Example:

_MyObject_REMOTE_Ser
viceTieSkeleton.java

xxx_ServiceTieSkeleton.ja
va

Example:

MyObjectWS_ServiceTi
eSkeleton.java

Abstract tie servlet class.

xxx_TIE.java

Example:

MyObject_TIE.java

xxxTie.java

Example:

MyObjectWSTie.java

Servlet for the Web Service 
(in the tie model).

xxx_SERVICE.java

Example:

MyObject_SERVICE.jav
a

xxxDelegate.java

Example:

MyObjectWSDelegate.j
ava

Delegate class for the tie 
servlet.
Steps  129



9    Generating Web Services
xxxService.java

Example:

MyObjectREMOTEServic
e.java

xxxService.java

Example:

MyObjectWSService.ja
va

Service interface for the stub.

This class is not used in 1.x-
style stub access. It is 
generated in case you want to 
upgrade your client code to 
the JAX-RPC approach.

xxxServiceImpl.java

Example:

MyObjectREMOTEServic
eImpl.java

xxxServiceImpl.java

Example:

MyObjectWSServiceImp
l.java

Service implementation class 
for the stub.

This class is not used in 1.x-
style stub access. It is 
generated in case you want to 
upgrade your client code to 
the JAX-RPC approach.

_xxx_ServiceStub.java

Example:

_MyObject_REMOTE_Ser
viceStub.java

xxx_Stub.java

Example:

MyObjectWS_Stub.java

Stub for the Web Service.

xxx_CLIENT.java

Example:

MyObject_CLIENT.java

xxxClient.java

Example:

MyObjectWSClient.jav
a

Client application for 
consuming the Web Service.

The 1.x-compatible client 
obtains the stub directly via a 
JNDI lookup. In contrast, the 
JAX-RPC client obtains the 
stub indirectly via the Service 
object.

xxx.wsdl

Example:

MyObject_REMOTE.wsdl

xxx.wsdl

Example:

MyObjectWS.wsdl

WSDL file for the Web 
Service.

With 1.x compatibility 
on, you get

With 1.x compatibility 
off, this is named Details
130 Steps



eXtend Workbench Development Guide
Editing the generated files

Follow these guidelines when editing the files generated by the Web Service Wizard:

It’s OK to edit any of the other generated files, but not typically required.

In some cases, completing the implementation of your Web Service may require you to add one 
or more manually coded files to work with the generated ones. See “Creating additional files” 
on page 133.

Editing the xxxTie.java file

The generated xxxTie.java file includes a couple of methods you may need to edit.

init() method If you start with a JavaBean or Java class, init() is generated to call the 
setTarget() method of xxx_ServiceTieSkeleton and pass an instance of xxxDelegate (to delegate 
to it). If xxxDelegate provides an empty constructor, the generated code uses that constructor to 
do the instantiation.

But if no implicit or explicit empty constructor is available, you must modify the code to 
indicate which one to use. You may also want to modify it to use a constructor that expects an 
argument.

Guideline Details

File you may need to edit • xxxTie.java

See “Editing the xxxTie.java file” on page 131.

File you must edit • xxxClient.java

See “Editing the xxxClient.java file” on page 132.

Files you should not edit • xxx_ServiceSkeleton.java

• xxx_ServiceTieSkeleton.java

• xxxService.java

• xxxServiceImpl.java

• xxx_Stub.java
Steps  131



9    Generating Web Services
The wizard automatically generates calls to setTarget() for every public constructor of 
xxxDelegate. Each line is commented out, except the one that uses the empty constructor (if 
available). Uncomment the line with the constructor you want and make any related changes:

//super.setTarget( new MyObjectWSDelegate(  java.lang.String arg0) );
//super.setTarget( new MyObjectWSDelegate(  java.lang.String arg0, java.lang.String arg1) 
);
super.setTarget( new MyObjectWSDelegate( ) );

If you start with a Java remote interface or WSDL file, init() is always generated with the 
setTarget() call commented out. In this case, you must provide a class of your own to instantiate 
and delegate to:

//super.setTarget(new CONSTRUCT_YOUR_SERVICE_OBJECT_HERE);

If you start with an EJB session bean, you shouldn’t need to edit the generated init() method.

doGet() method This method is generated to handle HTTP GET requests sent to your Web 
Service. It returns the WSDL file for the Web Service, if available. Otherwise, it notifies the user 
that GET requests are not supported.

If you want to implement your own HTTP GET behavior, you can customize the doGet() code. 
If you want to use the default SOAP behavior, you can remove this code or comment it out.

Editing the xxxClient.java file

Before you can test your Web Service with xxxClient, you must edit the generated xxxClient.java 
file to call one or more methods of the Web Service. Look for the process() method in this file 
and you’ll find comments listing all of the possible method calls:

// System.out.println("Test Result = " + remote.getString());
// System.out.println("Test Result = " + remote.setString(java.lang.String));
// System.out.println("Test Result = " + remote.sayHello());

Uncomment the method call(s) you want to test and supply appropriate argument values, as 
needed:

// System.out.println("Test Result = " + remote.getString());
System.out.println("Test Result = " + remote.setString(args[0]));
System.out.println("Test Result = " + remote.sayHello());

For additional changes you may want to make to the generated xxxClient.java file, see 
Chapter 10, “Generating Web Service Consumers”.
132 Steps



eXtend Workbench Development Guide
Creating additional files

In many scenarios, once the wizard finishes generating, you’ll have all of the Java source files 
you need for your Web Service. But there are cases where you must code additional classes 
yourself:

Using the generated files

To use the Web Service files generated by the wizard, you:

1. Update the deployment descriptor, if necessary.

When you use the tie model, the wizard automatically updates the WAR project’s web.xml 
file with the appropriate servlet mapping for your Web Service. But with the skeleton 
model, you must edit web.xml yourself to supply this information.

In the following example, MyService is the servlet class that the developer has coded for 
the Web Service MyRemote:

<servlet>
<servlet-name>MyService</servlet-name>
<servlet-class>com.exsamp.rem.MyService</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>MyService</servlet-name>
<url-pattern>MyRemote</url-pattern>

</servlet-mapping>

In this case You must add

When using the skeleton 
model

A class that extends the generated servlet 
xxx_ServiceSkeleton and implements the remote interface 
for your Web Service. You’ll use this manually coded 
class as the servlet for the Web Service.

When using the tie model and 
starting with a Java remote 
interface or WSDL file

A class that implements the remote interface for your Web 
Service. You must edit the generated xxxTie.java file to 
instantiate this manually coded class and delegate to it.
Steps  133



9    Generating Web Services
2. Update the project, if necessary.

As the wizard works, it automatically adds files to your project classpath and contents, as 
needed. But you should also check yourself to make sure the project has everything it 
requires to compile and run.

For instance, if your Web Service accesses an EJB session bean, the EJB-client JAR file 
should be on your project’s classpath. The EJB-client JAR file and remote EJB JAR file 
should be in the project’s WEB-INF/lib directory (assuming it’s a WAR project).

For details on setting up the required classpath and contents for your project 
(including what jBroker Web needs), see “Preparing to generate” on page 120.

3. Build and archive the project.

When you complete this step, you’ll have a WAR file containing the Web Service(s) 
you’ve generated.

4. Set up for deployment to your J2EE server.

Prepare the server-specific deployment information required to deploy the WAR to your 
J2EE server. For example, if you’re going to deploy to the SilverStream eXtend 
Application Server, create a SilverStream deployment plan file.

If you’re going to deploy from Workbench, you should also set up a server profile for your 
J2EE server.

5. Deploy the WAR to your J2EE server.

When you complete this step, each Web Service in the WAR will be accessible as a servlet 
that can respond to standard HTTP SOAP requests for your exposed methods.

6. Test your Web Service(s) running on the J2EE server.

If you’ve generated, edited, and compiled the xxxClient class for a Web Service, you can 
use it for a quick test of your method calls. To run xxxClient from Workbench, select 
Project>Run Web Service Client Class. The Web Service Wizard Client Runner 
displays, offering you a list of client classes from the current project to choose from.

You can also run xxxClient from a command line (providing that you include the 
appropriate directories and archives on your system classpath).

For further details on running xxxClient, see Chapter 10, “Generating Web Service 
Consumers”.
134 Steps



eXtend Workbench Development Guide
Choosing an implementation model
There are two basic implementation models you can choose from when developing with the 
Web Service Wizard. This section explores these choices to help you select the one that’s most 
appropriate for the Web Services you generate:

• Tie model

• Skeleton model

Tie model

Here’s an overview of the tie model and when to use it:

Topic Details

Typical use The tie model is typically used when you have an implementation 
class to provide as input to the Web Service Wizard. That might be a 
JavaBean, Java class, or EJB session bean that already implements 
the methods you want to expose as a Web Service.

How it works The tie model uses a delegation approach to hand off method calls 
from the generated Web Service classes (which handle the HTTP 
SOAP processing for your Web Service) to your implementation 
class (which handles the method processing).

Advantages The tie model enables you to keep your implementation class 
(business logic) separate from the generated infrastructure classes 
that support your Web Service. A related benefit is that you can 
reuse existing implementation classes currently accessible via other 
protocols.
Choosing an implementation model  135



9    Generating Web Services
It’s possible (but not as common) to use the tie model when you have only a Java remote 
interface or WSDL file to provide as input to the Web Service Wizard. In this case, the wizard 
output leaves the delegation part of the model for you to complete later. You’ll then need to code 
an implementation class and edit the generated tie class to instantiate it and delegate to it.

Skeleton model

Here’s an overview of the skeleton model and when to use it:

How to generate it When you specify class-generation and SOAP options in the Web 
Service Wizard, check both of these items:

• Generate skeletons

• Tie-based

Files generated If you start with a JavaBean, Java class, or EJB session bean, the 
wizard generates:

• xxxWS.java (remote interface)

• xxxDelegate.java

• xxxTie.java

• xxx_ServiceTieSkeleton.java

• xxx_ServiceSkeleton.java

Topic Details

Typical use The skeleton model is typically used when you know the methods 
you want to expose as a Web Service, but don’t yet have an 
implementation of them. In this case, you tell the Web Service 
Wizard about these methods by providing a Java remote interface or 
WSDL file as input, then implement them later in the context of the 
generated Web Service files.

How it works In the skeleton model, you implement your Web Service methods 
by subclassing the servlet that the wizard generates to handle HTTP 
SOAP processing. As a result, the same class that supports the 
logistics of your Web Service also processes the method calls.

Topic Details
136 Choosing an implementation model



eXtend Workbench Development Guide
Scenario: starting with a Java class
In this scenario, you’ll see how the Web Service Wizard can be used to generate a Web Service 
based on an existing Java class that implements the methods to expose:

• Project setup

• Input to the wizard

• Generated files for the Web Service

• Generated files for testing

• Deployment descriptor

• Runtime test result

Implementation model This scenario illustrates use of the tie model. For an overview of 
that architecture, see “Choosing an implementation model” on page 135.

Advantages The skeleton model is relatively simple, involving fewer classes to 
understand and maintain. At runtime, having less object overhead 
may also offer performance benefits.

How to generate it When you specify class-generation and SOAP options in the Web 
Service Wizard, check both of these items:

• Generate skeletons

• Not tie-based

Files generated If you start with a Java remote interface, the wizard generates:

• xxx_ServiceSkeleton.java

If you start with a WSDL file, the wizard generates:

• xxx.java (remote interface)

• xxx_ServiceSkeleton.java

File you add Once the wizard is done, you must code a class that extends the 
generated servlet xxx_ServiceSkeleton and implements the remote 
interface for your Web Service. You’ll use this manually coded class 
as the servlet for the Web Service.

Topic Details
Scenario: starting with a Java class  137



9    Generating Web Services
Project setup

The WAR project for this scenario is set up as follows:

• The name of this project is:
WebServiceSample.spf

• The archive resulting from this project will be:
WebServiceSample.war

• The initial content of this project is:
WEB-INF

lib
jbroker-web.jar
jaxrpc-api.jar
saaj-api.jar
xerces.jar

classes
com

exsamp
obj

MyObject.java
web.xml

• The classpath needed for this project is:
...\WEB-INF\lib\jbroker-web.jar
...\WEB-INF\lib\jaxrpc-api.jar
...\WEB-INF\lib\saaj-api.jar
...\WEB-INF\lib\xerces.jar
...\eXtendWorkbench\compilelib\j2ee_api_1_n.jar

Input to the wizard

Here’s the input provided to the Web Service Wizard for this scenario:

• MyObject class

• Project location panel

• Class selection panel

• Method selection panel

• Class-generation and SOAP options panel
138 Scenario: starting with a Java class



eXtend Workbench Development Guide
MyObject class

MyObject is an existing Java class from which the Web Service is to be generated. It implements 
the methods to expose. MyObject.java contains the following code (which must be compiled 
before you start the wizard):

package com.exsamp.obj;

public class MyObject {

    private String s;

    public MyObject() {
    }

    public MyObject(String xxx) {
    }

    public MyObject(String xxx, String yyy) {
    }

    public String getString() {
        return s;
    }

    public boolean setString(String s) {
        this.s = s;
        return true;
    }

    public String sayHello() {
        return "Hello there, I am on the server";
    }
}

Scenario: starting with a Java class  139



9    Generating Web Services
Project location panel

This wizard panel is completed as follows:

Class selection panel

This wizard panel is completed as follows:
140 Scenario: starting with a Java class



eXtend Workbench Development Guide
Method selection panel

This wizard panel is completed as follows:
Scenario: starting with a Java class  141



9    Generating Web Services
Class-generation and SOAP options panel

This wizard panel is completed as follows:

Generated files for the Web Service

Based on the input provided for this scenario, the Web Service Wizard generates these files to 
implement the Web Service:

• MyObjectWS.java

• MyObjectWS_ServiceSkeleton.java

• MyObjectWS_ServiceTieSkeleton.java

• MyObjectWSTie.java

• MyObjectWSDelegate.java

• MyObjectWS.wsdl

MyObjectWS.java

MyObjectWS is the remote interface for the Web Service. The wizard generates this source code 
for it:

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code can be freely modified
// and in some cases will *require* modifications to execute as expected.
142 Scenario: starting with a Java class



eXtend Workbench Development Guide
// Please keep in mind when making modifications that method signatures
// must be consistent across all generated objects.

package com.exsamp.obj;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface MyObjectWS extends Remote
{
    public java.lang.String getString( )
        throws RemoteException;

    public boolean setString( java.lang.String arg0 )
        throws RemoteException;

    public java.lang.String sayHello( )
        throws RemoteException;
}

MyObjectWS_ServiceSkeleton.java

MyObjectWS_ServiceSkeleton is the abstract servlet class that handles access to the Web 
Service. The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.rmi.RemoteException;
import java.util.Properties;
import com.sssw.jbroker.web.encoding.TypeMappingRegistry;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public abstract class MyObjectWS_ServiceSkeleton
    extends com.sssw.jbroker.web.portable.ServletSkeleton
    implements MyObjectWS
{
    private static final com.sssw.jbroker.web.QName _portType =
        new com.sssw.jbroker.web.QName("urn:com.exsamp.obj.MyObject", "MyObjectWS");
    
    public MyObjectWS_ServiceSkeleton()
    {
        super(_portType);
        _setProperty("xmlrpc.schema.uri", "http://www.w3.org/2001/XMLSchema");
        _setProperty("version", "1.1");
    }
Scenario: starting with a Java class  143



9    Generating Web Services
    
    private static java.util.Dictionary _atable = new java.util.Hashtable();
    static {
        _atable.put("\"urn:com.exsamp.obj.MyObject/setString\"", new 
java.lang.Integer(0));
        _atable.put("\"urn:com.exsamp.obj.MyObject/getString\"", new 
java.lang.Integer(1));
        _atable.put("\"urn:com.exsamp.obj.MyObject/sayHello\"", new java.lang.Integer(2));
    }
    
    private static java.util.Dictionary _mtable = new java.util.Hashtable();
    static {
        _mtable.put("setString", new java.lang.Integer(0));
        _mtable.put("getString", new java.lang.Integer(1));
        _mtable.put("sayHello", new java.lang.Integer(2));
    }
    
    public com.sssw.jbroker.web.portable.ServerResponse 

_invoke(com.sssw.jbroker.web.portable.ServerRequest in) throws java.io.IOException
    {
        com.sssw.jbroker.web.portable.ServerResponse out = null;
        String soapEncURI = "soap";
        String literalURI = "literal";
        
        try {
            
            java.lang.Integer _m = null;
            String sac = in.getAction();
            if (sac != null) _m = (java.lang.Integer) _atable.get(sac);
            
            if (_m == null) {
                sac = "\"" + sac + "\"";
                _m = (java.lang.Integer) _atable.get(sac);
            }
            
            if (_m == null) {
                String methodName = in.getMethod();
                if (methodName != null) _m = (java.lang.Integer) _mtable.get(methodName);
            }
            
            if (_m == null) throw new 

com.sssw.jbroker.web.ServiceException("unable to dispatch SOAP request");
            
            switch(_m.intValue()) {
                
                // setString
                case 0: {
                    in.setEncodingStyleURI(soapEncURI);
                    java.lang.String _arg0 = null;
                    try {
144 Scenario: starting with a Java class



eXtend Workbench Development Guide
                        _arg0 = (java.lang.String)
                        in.readObject(java.lang.String.class, "arg0");
                    } catch (java.io.EOFException eofExc) {
                        _arg0 = null;
                    }
                    boolean result = setString(_arg0);
                    //create reply
                    out = in.createReply();
                    //set the content type
                    java.lang.Object arg = null;
                    arg = new java.lang.Boolean(result);
                    out.writeObject(arg, "result");
                    break;
                }
                
                // getString
                case 1: {
                    in.setEncodingStyleURI(soapEncURI);
                    java.lang.String result = getString();
                    //create reply
                    out = in.createReply();
                    //set the content type
                    java.lang.Object arg = null;
                    arg = result;
                    out.writeObject(arg, "result");
                    break;
                }
                
                // sayHello
                case 2: {
                    in.setEncodingStyleURI(soapEncURI);
                    java.lang.String result = sayHello();
                    //create reply
                    out = in.createReply();
                    //set the content type
                    java.lang.Object arg = null;
                    arg = result;
                    out.writeObject(arg, "result");
                    break;
                }
            }
            
        } catch (java.lang.Throwable ex) {
            if (System.getProperty("SOAP_DEBUG") != null) ex.printStackTrace();
            out = in.createExceptionReply();
            out.writeException(ex, "exception");
        }
        
        return out;
Scenario: starting with a Java class  145



9    Generating Web Services
    }
    
    public boolean isDocument(String action)
    {
        return false;
    }
    
    
    private static Properties _rootHeaders = new Properties();
    static {
        _rootHeaders.setProperty("content-type", "text/xml; charset=UTF-8");
        _rootHeaders.setProperty("content-id", "<soapbody>");
    }
}

MyObjectWS_ServiceTieSkeleton.java

MyObjectWS_ServiceTieSkeleton is an abstract class that extends 
MyObjectWS_ServiceSkeleton to support the tie model. The wizard generates this source code 
for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.rmi.RemoteException;
import java.util.Properties;
import com.sssw.jbroker.web.encoding.TypeMappingRegistry;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public abstract class MyObjectWS_ServiceTieSkeleton
    extends com.exsamp.obj.MyObjectWS_ServiceSkeleton
    implements com.sssw.jbroker.web.portable.TieSkeleton
{
    private MyObjectWS _target;
    
    public void setTarget(java.rmi.Remote target)
    {
        _target = (MyObjectWS) target;
    }
    
    public java.rmi.Remote getTarget()
    {
        return _target;
    }
    
    public boolean setString(java.lang.String _arg0) 
        throws java.rmi.RemoteException
146 Scenario: starting with a Java class



eXtend Workbench Development Guide
    {
        return _target.setString(_arg0);
    }
    
    public java.lang.String getString() 
        throws java.rmi.RemoteException
    {
        return _target.getString();
    }
    
    public java.lang.String sayHello() 
        throws java.rmi.RemoteException
    {
        return _target.sayHello();
    }
}

MyObjectWSTie.java

MyObjectWSTie extends the abstract servlet classes to function as the front end for the Web 
Service. To process requests (method calls) it receives, this servlet instantiates and delegates to 
MyObjectWSDelegate. The wizard generates this source code for it:

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code can be freely modified
// and in some cases will *require* modifications to execute as expected.
// Please keep in mind when making modifications that method signatures
// must be consistent across all generated objects.

package com.exsamp.obj;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyObjectWSTie extends MyObjectWS_ServiceTieSkeleton
{

    public void init() throws ServletException
    {
        try
        {
            super.init();

            // The following are all public constructors for the implemented service
            // class. IMPORTANT NOTE: If available, the empty constructor has been
            // implemented by default. If no implicit or explicit empty constructor
            // is available, you *must* select one from the list below and uncomment
Scenario: starting with a Java class  147



9    Generating Web Services
            // it in order to construct the generated service implementation.

            //super.setTarget( new MyObjectWSDelegate(  java.lang.String arg0) );
            //super.setTarget( new MyObjectWSDelegate(  java.lang.String arg0, 
java.lang.String arg1) );
            super.setTarget( new MyObjectWSDelegate( ) );
        }
        catch (Exception _e)
        {
            throw new ServletException(_e);
        }
    }

    // The following method may be freely modified to provide custom behavior
    // when an HTTP GET request is made. Comment-out or remove this method to
    // provide default SOAP doGet functionality.
    public void doGet(HttpServletRequest request, HttpServletResponse response) 

throws ServletException, IOException
    {
        try
        {
            StringBuffer sb = new StringBuffer(1024);
            OutputStream out = null;
            InputStream in = null;
            String path = "/MyObjectWS.wsdl";

            try
            {
                // Try to load the WSDL file.
                in = getServletConfig().getServletContext().getResourceAsStream(path);
                if (in == null)
                {
                    // If it can't be found, return a default message.
                    sendDefaultMsg(response);
                }
                else
                {
                    // Try to determine the WSDL file's character encoding for content-
type.
                    byte[] buf = new byte[512];
                    int read = in.read(buf);

                    if (read <= 0)
                        sendDefaultMsg(response);

                    String cs = getXMLEncoding(buf);
                    StringBuffer ct = new StringBuffer(64);
                    ct.append("text/xml");
                    if (cs != null)
148 Scenario: starting with a Java class



eXtend Workbench Development Guide
                    {
                        ct.append("; charset=");
                        ct.append(cs);
                    }

                    // Return the WSDL file.
                    response.setContentType(ct.toString());
                    out = response.getOutputStream();
                    do
                    {
                        out.write(buf, 0, read);
                    } while ((read = in.read(buf)) >= 0);
                }
            }
            catch (Exception _e)
            {
                throw new ServletException("Exception trying to return " + path, _e);
            }
            finally
            {
                if (out != null)
                    out.close();
                if (in != null) 
                    in.close();
            }
        }
        catch (Exception _e)
        {
            throw new ServletException(_e);
        }
    }

    // Try to determine the character encoding of this XML document.
    public static String getXMLEncoding(byte[] bytes)
    {
        String lsLine = "";
        String lsEncoding = "UTF-8";

        if (bytes.length >=2 && bytes[0]==0xFE && bytes[1]==0xFF)
            return "UTF-16";
        String lsState = "";
        int liDeclStart = 0;
        int liDeclLength = 0;

        for (int i=0; i < bytes.length; i++) 
        {
            if (lsState.equals("") && bytes[i] == '<' && bytes[i+1] == '?') 
Scenario: starting with a Java class  149



9    Generating Web Services
            {
                lsState = "<?";
            }
            else
            {
                if (lsState.equals("<?") && bytes[i] == 'x' && bytes[i+1] == 'm'
                    && bytes[i+2] == 'l' && bytes[i+3] == ' ')
                {
                    liDeclStart = i;
                    lsState = "xml";
                }
                else
                {
                    if (lsState.equals("xml") && bytes[i] == '?' && bytes[i+1] == '>')
                    {
                        liDeclLength = i - liDeclStart;
                        break;
                    }
                }
            }
        }

        lsLine = new String(bytes, liDeclStart, liDeclLength);

        int liPos = lsLine.indexOf("encoding");
        if (liPos > 0) 
        {
            lsLine = lsLine.substring(liPos + 8);
            int liEncStart = lsLine.indexOf('"');
            int liEncEnd = lsLine.indexOf('"', liEncStart +1);
            if (liEncStart < 0 && liEncEnd < 0)
            {
                liEncStart = lsLine.indexOf("'");
                liEncEnd = lsLine.indexOf("'", liEncStart +1 );
            }

            if (liEncStart >= 0 && liEncEnd >= 0)
                lsEncoding = lsLine.substring(liEncStart + 1, liEncEnd);
        }

        return lsEncoding;
    }

    static private final String DEFAULT_MESSAGE = 
    "<html><head><title>SilverStream eXtend Web Service</title>" +
    "</head><body><h3 align=\"center\">SilverStream eXtend Web Service</h3>" +
    "By default, SOAP servers do not communicate via HTTP GET requests. The SilverStream " 
+

150 Scenario: starting with a Java class



eXtend Workbench Development Guide
    "eXtend Web Service Wizard has generated an overloaded version of the " +
    "<i>doGet()</i> method for your convience. This method, found in your " +
    "generated _TIE code, is producing this message. If the WSDL file for this Web Service 
" +
    "is available in the root of your Web Service WAR, this method will return the WSDL 
instead " +
    "of this default message. You may add any custom code you like in your generated 
_TIE's " +
    "<i>doGet()</i> method to handle HTTP GET support.</body></html>";

    private void sendDefaultMsg(HttpServletResponse response) throws IOException
    {
        PrintWriter out = null;

        try 
        {
            response.setContentType("text/html"); 
            response.setContentLength(DEFAULT_MESSAGE.length());
            out = response.getWriter();
            out.print(DEFAULT_MESSAGE);
        }
        finally 
        {
            if (out != null) out.close();
        }
    }
}

MyObjectWSDelegate.java

MyObjectWSDelegate instantiates the implementation class (MyObject) and makes the 
requested method calls against that instance. The wizard generates this source code for it:

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code can be freely modified
// and in some cases will *require* modifications to execute as expected.
// Please keep in mind when making modifications that method signatures
// must be consistent across all generated objects.

package com.exsamp.obj;

import java.rmi.Remote;
import java.rmi.RemoteException;

public class MyObjectWSDelegate implements MyObjectWS
{
    private MyObject m_objMyObject;
Scenario: starting with a Java class  151



9    Generating Web Services
    public MyObjectWSDelegate( java.lang.String arg0 )
    {
        m_objMyObject = new MyObject( arg0 );
    }

    public MyObjectWSDelegate( java.lang.String arg0, java.lang.String arg1 )
    {
        m_objMyObject = new MyObject( arg0, arg1 );
    }

    public MyObjectWSDelegate( )
    {
        m_objMyObject = new MyObject(  );
    }

    public java.lang.String getString( )
        throws RemoteException
    {
        return m_objMyObject.getString(  );
    }

    public boolean setString( java.lang.String arg0 )
        throws RemoteException
    {
        return m_objMyObject.setString( arg0 );
    }

    public java.lang.String sayHello( )
        throws RemoteException
    {
        return m_objMyObject.sayHello(  );
    }
}

MyObjectWS.wsdl

This generated file describes the Web Service in standard WSDL format (useful when 
publishing to a registry):

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MyObjectWSService"
 targetNamespace="urn:com.exsamp.obj.MyObject"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:com.exsamp.obj.MyObject"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types/>
152 Scenario: starting with a Java class



eXtend Workbench Development Guide
 <message name="setStringRequest">
  <part name="arg0" type="xsd:string"/>
 </message>
 <message name="setStringResponse">
  <part name="result" type="xsd:boolean"/>
 </message>
 <message name="getStringRequest"/>
 <message name="getStringResponse">
  <part name="result" type="xsd:string"/>
 </message>
 <message name="sayHelloRequest"/>
 <message name="sayHelloResponse">
  <part name="result" type="xsd:string"/>
 </message>
 <portType name="MyObjectWS">
  <operation name="setString" parameterOrder="arg0">
   <input message="tns:setStringRequest"/>
   <output message="tns:setStringResponse"/>
  </operation>
  <operation name="getString">
   <input message="tns:getStringRequest"/>
   <output message="tns:getStringResponse"/>
  </operation>
  <operation name="sayHello">
   <input message="tns:sayHelloRequest"/>
   <output message="tns:sayHelloResponse"/>
  </operation>
 </portType>
 <binding name="MyObjectWSBinding" type="tns:MyObjectWS">
  <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
  <operation name="setString">
   <soap:operation soapAction="urn:com.exsamp.obj.MyObject/setString"/>
   <input>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
   </input>
   <output>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
   </output>
  </operation>
  <operation name="getString">
   <soap:operation soapAction="urn:com.exsamp.obj.MyObject/getString"/>
   <input>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
Scenario: starting with a Java class  153



9    Generating Web Services
   </input>
   <output>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
   </output>
  </operation>
  <operation name="sayHello">
   <soap:operation soapAction="urn:com.exsamp.obj.MyObject/sayHello"/>
   <input>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
   </input>
   <output>
    <soap:body
     encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
     namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
   </output>
  </operation>
 </binding>
 <service name="MyObjectWSService">
  <port binding="tns:MyObjectWSBinding" name="MyObjectWSPort">
   <soap:address 
location="http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"/>
  </port>
 </service>
</definitions>

Generated files for testing

Based on the input provided for this scenario, the Web Service Wizard generates these files so 
you can test the Web Service once it’s deployed:

• MyObjectWSService.java

• MyObjectWSServiceImpl.java

• MyObjectWS_Stub.java

• MyObjectWSClient.java
154 Scenario: starting with a Java class



eXtend Workbench Development Guide
MyObjectWSService.java

MyObjectWSService is the service interface that’s used in JAX-RPC to help clients obtain the 
stub for the Web Service. The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import javax.xml.rpc.ServiceException;

public interface MyObjectWSService extends javax.xml.rpc.Service
{
    public MyObjectWS_Stub getMyObjectWSPort()
        throws ServiceException;
}

MyObjectWSServiceImpl.java

MyObjectWSServiceImpl is the service implementation class that handles instantiation of the 
stub (MyObjectWS_Stub). The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.io.FileNotFoundException;
import java.util.Iterator;
import java.util.Hashtable;
import java.util.Properties;
import java.util.ArrayList;
import java.net.URL;
import java.net.MalformedURLException;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceException;
import com.sssw.jbroker.web.Binding;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public class MyObjectWSServiceImpl
    extends com.sssw.jbroker.web.xml.rpc.ServiceImpl 
    implements MyObjectWSService
{
    public MyObjectWSServiceImpl()
    {
        try {
            createCalls();
Scenario: starting with a Java class  155



9    Generating Web Services
        } catch (ServiceException ex) {
            throw new javax.xml.rpc.JAXRPCException("failed to create the call objects: " 
+ ex.getMessage());
        }
    }
    
    public QName getServiceName() { return _serviceName; }
    
    public Iterator getPorts() { return _portMapping.keySet().iterator(); }
    
    public void setProxyMode(boolean proxy) { _proxy = proxy; }
    
    public boolean getProxyMode() { return _proxy; }
    
    public URL getWSDLDocumentLocation()
    {
        return null;
    }
    
    public java.rmi.Remote getPort(Class serviceDefInterface)
        throws ServiceException
    {
        if (serviceDefInterface == null)
            throw new ServiceException("No Service class specified.");
        if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))
            throw new ServiceException("Class is not a valid Interface.");
        
        String stubName = (String) _intfMapping.get(serviceDefInterface);
        Binding binding = (Binding) _intfBinding.get(serviceDefInterface);
        
        if (stubName == null)
            return getPort(serviceDefInterface, binding, 
                _classInfo, _typeMappingRegistry, null);
        else
            return getPort(stubName, binding, _typeMappingRegistry);
    }
    
    public java.rmi.Remote getPort(QName portName, Class serviceDefInterface) 
        throws ServiceException
    {
        return getPort(portName, serviceDefInterface, getProxyMode());
    }
    
    public java.rmi.Remote getPort(QName portName, Class serviceDefInterface, boolean 
proxy) 
        throws ServiceException
    {
        if (((proxy==false) || (serviceDefInterface == null)) && 
            (portName != null)) {
            String stubName = (String) _portMapping.get(portName);
156 Scenario: starting with a Java class



eXtend Workbench Development Guide
            Binding binding = (Binding) _portBinding.get(portName);
            
            if (stubName == null) return getPort(null, serviceDefInterface);
            
            try {
                return getPort(stubName, binding, portName,
                   _typeMappingRegistry);
            } catch (Exception ex) {
                return getPort(null, serviceDefInterface);
            }
        } else {
            if (serviceDefInterface == null)
                throw new ServiceException("No Service class specified.");
            if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))
                throw new ServiceException("Class is not a valid Interface.");
            
            Binding binding = (Binding) _intfBinding.get(serviceDefInterface);
            String uri = (portName == null) ? null : portName.getNamespaceURI();
            return getPort(serviceDefInterface, binding, _classInfo,
               _typeMappingRegistry, uri);
        }
    }
    
    public Call[] getCalls(QName portName)
        throws ServiceException
    {
        ArrayList callslist = (ArrayList) _calls.get(portName);
        if (callslist == null) return null;
        Call[] calls = new Call[callslist.size()];
        return (Call[]) callslist.toArray(calls);
    }
    
    private void addCall(QName portName, Call call)
    {
        ArrayList callslist = (ArrayList) _calls.get(portName);
        if (callslist == null) {
            callslist = new ArrayList();
            _calls.put(portName, callslist);
        }
        callslist.add(call);
    }
    
    public MyObjectWS_Stub getMyObjectWSPort()
        throws ServiceException
    {
        try {
            return (MyObjectWS_Stub) getPort(new QName(
                "urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"), null, 
false);
Scenario: starting with a Java class  157



9    Generating Web Services
        } catch (Exception ex) {
            return (MyObjectWS_Stub) getPort(com.exsamp.obj.MyObjectWS.class);
        }
    }
    
    private void createCalls()
        throws ServiceException
    {
        Call call = null;
        
        call = createCall(new QName("urn:com.exsamp.obj.MyObject", 
"com.exsamp.obj.MyObjectWSPort"), 

new QName("urn:com.exsamp.obj.MyObject", "setString"));
        call.addParameter("arg0", new QName("http://www.w3.org/2001/XMLSchema", "string"), 
java.lang.String.class, ParameterMode.IN);
        call.addParameter("result", new QName("http://www.w3.org/2001/XMLSchema", 
"boolean"), boolean.class, ParameterMode.OUT);
        call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema", "boolean"), 
boolean.class);
        call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");
        call.setProperty(Call.SOAPACTION_URI_PROPERTY, 
"\"urn:com.exsamp.obj.MyObject/setString\"");
        
call.setTargetEndpointAddress("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");
        addCall(new QName("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"), 
call);
        
        call = createCall(new QName("urn:com.exsamp.obj.MyObject", 
"com.exsamp.obj.MyObjectWSPort"), 

new QName("urn:com.exsamp.obj.MyObject", "getString"));
        call.addParameter("result", new QName("http://www.w3.org/2001/XMLSchema", 
"string"), java.lang.String.class, ParameterMode.OUT);
        call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema", "string"), 
java.lang.String.class);
        call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");
        call.setProperty(Call.SOAPACTION_URI_PROPERTY, 
"\"urn:com.exsamp.obj.MyObject/getString\"");
        
call.setTargetEndpointAddress("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");
        addCall(new QName("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"), 
call);
        
        call = createCall(new QName("urn:com.exsamp.obj.MyObject", 
"com.exsamp.obj.MyObjectWSPort"), 

new QName("urn:com.exsamp.obj.MyObject", "sayHello"));
        call.addParameter("result", new QName("http://www.w3.org/2001/XMLSchema", 
"string"), java.lang.String.class, ParameterMode.OUT);
158 Scenario: starting with a Java class



eXtend Workbench Development Guide
        call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema", "string"), 
java.lang.String.class);
        call.setProperty(Call.OPERATION_STYLE_PROPERTY, "rpc");
        call.setProperty(Call.SOAPACTION_URI_PROPERTY, 
"\"urn:com.exsamp.obj.MyObject/sayHello\"");
        
call.setTargetEndpointAddress("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");
        addCall(new QName("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"), 
call);
        
    }
    
    static boolean _proxy = true;
    static final QName _serviceName;
    static final Hashtable _intfMapping = new Hashtable();
    static final Hashtable _intfBinding = new Hashtable();
    static final Hashtable _portBinding = new Hashtable();
    static final Hashtable _portMapping = new Hashtable();
    static final Hashtable _classInfo = new Hashtable();
    private final Hashtable _calls = new Hashtable();

    static {
        _serviceName = new QName("urn:com.exsamp.obj.MyObject", 
"com.exsamp.obj.MyObjectWSService");
        
        _intfBinding.put(MyObjectWS.class, new Binding("soap", 
"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"));
        _portBinding.put(new QName("urn:com.exsamp.obj.MyObject", 
"com.exsamp.obj.MyObjectWSPort"), 

new Binding("soap", 
"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"));
        _intfMapping.put(MyObjectWS.class, "com.exsamp.obj.MyObjectWS_Stub");
        _portMapping.put(new QName("urn:com.exsamp.obj.MyObject",
        "com.exsamp.obj.MyObjectWSPort"), "com.exsamp.obj.MyObjectWS_Stub");
        
        Hashtable _methodInfo;
        Hashtable _paramInfo;
        Properties _props;
        
        _methodInfo = new Hashtable();
        _paramInfo = new Hashtable();
        _props = new Properties();
        
_props.setProperty("jbroker.web.soap.action","\"urn:com.exsamp.obj.MyObject/setString\"");
        _paramInfo.put("Properties", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "arg0");
        _props.setProperty("jbroker.web.parameter.inout", "1");
Scenario: starting with a Java class  159



9    Generating Web Services
        _paramInfo.put("Param0", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "result");
        _props.setProperty("jbroker.web.parameter.inout", "2");
        _paramInfo.put("Result", _props);
        _methodInfo.put("setString", _paramInfo);
        _paramInfo = new Hashtable();
        _props = new Properties();
        
_props.setProperty("jbroker.web.soap.action","\"urn:com.exsamp.obj.MyObject/getString\"");
        _paramInfo.put("Properties", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "result");
        _props.setProperty("jbroker.web.parameter.inout", "2");
        _paramInfo.put("Result", _props);
        _methodInfo.put("getString", _paramInfo);
        _paramInfo = new Hashtable();
        _props = new Properties();
        
_props.setProperty("jbroker.web.soap.action","\"urn:com.exsamp.obj.MyObject/sayHello\"");
        _paramInfo.put("Properties", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "result");
        _props.setProperty("jbroker.web.parameter.inout", "2");
        _paramInfo.put("Result", _props);
        _methodInfo.put("sayHello", _paramInfo);
        _classInfo.put("com.exsamp.obj.MyObjectWS", _methodInfo);
    }
}

MyObjectWS_Stub.java

MyObjectWS_Stub is used by clients as a proxy for accessing the Web Service. This stub class 
implements the remote interface (MyObjectWS) to handle the logistics of each method call. The 
wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.util.Properties;
import com.sssw.jbroker.web.core.Constants;
import com.sssw.jbroker.web.encoding.TypeMappingRegistry;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public class MyObjectWS_Stub
    extends com.sssw.jbroker.web.portable.Stub
    implements MyObjectWS
160 Scenario: starting with a Java class



eXtend Workbench Development Guide
{
    private static com.sssw.jbroker.web.QName _portType =
        new com.sssw.jbroker.web.QName("urn:com.exsamp.obj.MyObject", "MyObjectWS");
    
    private static final com.sssw.jbroker.web.Binding[] _bindings = 
        new com.sssw.jbroker.web.Binding[] {
            new com.sssw.jbroker.web.Binding("soap", 
"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"),
    };
    
    public MyObjectWS_Stub()
    {
        this(null);
    }
    
    public MyObjectWS_Stub(DefaultTypeMappingRegistry tmr)
    {
        super(_portType, _bindings);
        _setProperty("xmlrpc.schema.uri", (Object) 
"http://www.w3.org/2001/XMLSchema".intern());
        _setProperty("version", (Object) "1.1");
        TypeMappingRegistry _tm = null;
        try {
            if (tmr != null)
                _tm = tmr;
            else {
                _tm = new DefaultTypeMappingRegistry();
            }
            _setTypeMappingRegistry(_tm);
        } catch (Exception ex) {
            throw new javax.xml.rpc.JAXRPCException("failed to initialize type mapping 
registry: " + ex.getMessage());
        }
    }
    
    public boolean setString(java.lang.String _arg0) 
        throws java.rmi.RemoteException
    {
        com.sssw.jbroker.web.portable.ClientResponse in = null;
        
        try {
            // create an output stream
            _getDelegate().setProperty("xmlrpc.soap.operation.name", 

new com.sssw.jbroker.web.QName("urn:com.exsamp.obj.MyObject", "setString"));
            //create request
            com.sssw.jbroker.web.portable.ClientRequest out = 
                _request("setString", true, "soap", false, 
"\"urn:com.exsamp.obj.MyObject/setString\"");
Scenario: starting with a Java class  161



9    Generating Web Services
            _getDelegate().setProperty("soapAction", (Object) 
"\"urn:com.exsamp.obj.MyObject/setString\"");
            _getDelegate().setProperty(Constants.HTTP_CONTENT_TYPE, (Object) "text/xml; 
charset=utf-8");
            out._setProperties(_getDelegate().getProperties());
            Object arg = null;
            
            // marshal the parameters
            arg = _arg0;
            out.writeObject(arg, "arg0");
            
            // do the invocation
            in = _invoke(out);
            // unmarshal the results
            
            // return
            java.lang.Boolean retWrapper = (java.lang.Boolean)in.readObject(boolean.class, 
"result");
            boolean ret = retWrapper.booleanValue();
            return ret;
            
        } catch (java.lang.Throwable t) {
            
            // map to remote exception
            throw com.sssw.jbroker.web.ServiceException.mapToRemote(t);
        }
    }
    
    public java.lang.String getString() 
        throws java.rmi.RemoteException
    {
        com.sssw.jbroker.web.portable.ClientResponse in = null;
        
        try {
            // create an output stream
            _getDelegate().setProperty("xmlrpc.soap.operation.name", 

new com.sssw.jbroker.web.QName("urn:com.exsamp.obj.MyObject", "getString"));
            //create request
            com.sssw.jbroker.web.portable.ClientRequest out = 
                _request("getString", true, "soap", false, 
"\"urn:com.exsamp.obj.MyObject/getString\"");
            _getDelegate().setProperty("soapAction", (Object) 
"\"urn:com.exsamp.obj.MyObject/getString\"");
            _getDelegate().setProperty(Constants.HTTP_CONTENT_TYPE, (Object) "text/xml; 
charset=utf-8");
            out._setProperties(_getDelegate().getProperties());
            Object arg = null;
            
            // do the invocation
            in = _invoke(out);
162 Scenario: starting with a Java class



eXtend Workbench Development Guide
            // unmarshal the results
            
            // return
            java.lang.String ret = null;
            try {
                ret = (java.lang.String)
                in.readObject(java.lang.String.class, "result");
            } catch (java.io.EOFException eofExc) {
                ret = null;
            }
            return ret;
            
        } catch (java.lang.Throwable t) {
            
            // map to remote exception
            throw com.sssw.jbroker.web.ServiceException.mapToRemote(t);
        }
    }
    
    public java.lang.String sayHello() 
        throws java.rmi.RemoteException
    {
        com.sssw.jbroker.web.portable.ClientResponse in = null;
        
        try {
            // create an output stream
            _getDelegate().setProperty("xmlrpc.soap.operation.name", 

new com.sssw.jbroker.web.QName("urn:com.exsamp.obj.MyObject", "sayHello"));
            //create request
            com.sssw.jbroker.web.portable.ClientRequest out = 
                _request("sayHello", true, "soap", false, 
"\"urn:com.exsamp.obj.MyObject/sayHello\"");
            _getDelegate().setProperty("soapAction", (Object) 
"\"urn:com.exsamp.obj.MyObject/sayHello\"");
            _getDelegate().setProperty(Constants.HTTP_CONTENT_TYPE, (Object) "text/xml; 
charset=utf-8");
            out._setProperties(_getDelegate().getProperties());
            Object arg = null;
            
            // do the invocation
            in = _invoke(out);
            // unmarshal the results
            
            // return
            java.lang.String ret = null;
            try {
                ret = (java.lang.String)
                in.readObject(java.lang.String.class, "result");
            } catch (java.io.EOFException eofExc) {
Scenario: starting with a Java class  163



9    Generating Web Services
                ret = null;
            }
            return ret;
            
        } catch (java.lang.Throwable t) {
            
            // map to remote exception
            throw com.sssw.jbroker.web.ServiceException.mapToRemote(t);
        }
    }
    
    
    private static Properties _rootHeaders = new Properties();
    static {
        _rootHeaders.setProperty("content-type", "text/xml; charset=UTF-8");
        _rootHeaders.setProperty("content-id", "<soapbody>");
    }
}

MyObjectWSClient.java

MyObjectWSClient is a simple client application that accesses the Web Service by:

1. Instantiating MyObjectWSService via JNDI lookup

2. Using the MyObjectWSService object to obtain the stub (MyObjectWS_Stub)

3. Calling Web Service methods via the MyObjectWS_Stub object

The wizard generates this source code for it:

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code *requires* process() method
// modification in order to execute as expected. Please keep in mind when making
// modifications that method signatures must be consistent across all
// generated objects.

package com.exsamp.obj;

import javax.naming.*;

public class MyObjectWSClient
{
    public void process(String[] args) throws Exception
    {
        MyObjectWS remote = getRemote(args);

        // The following code has been generated for your testing convenience. In
        // order to successfully test your Web Service, you must uncomment one or
        // more of these lines and supply meaningful arguments where necessary.
        // Once you have modified the test method(s) below, compile this class and
164 Scenario: starting with a Java class



eXtend Workbench Development Guide
        // execute it from a command line with your class path set appropriately.

        // System.out.println("Test Result = " + remote.getString());
        // System.out.println("Test Result = " + remote.setString(java.lang.String));
        // System.out.println("Test Result = " + remote.sayHello());

    }

    public MyObjectWS getRemote(String[] args) throws Exception
    {
        InitialContext ctx = new InitialContext();
        
        String lookup = "xmlrpc:soap:com.exsamp.obj.MyObjectWSService";
        MyObjectWSService service = (MyObjectWSService)ctx.lookup(lookup);
        MyObjectWS remote = (MyObjectWS)service.getMyObjectWSPort();
            
        return remote;
    }

    public static void main(String[] args)
    {
        try
        {
            MyObjectWSClient client = new MyObjectWSClient();
            client.process(args);
        }
        catch (Exception _e)
        {
            System.out.println("*** Error Executing Generated Test Client ***");
            _e.printStackTrace();
        }
    }

}

Modifications needed The process() method of the generated MyObjectWSClient.java 
file must be edited to uncomment the Web Service method call to be tested. Here’s the change:

// System.out.println("Test Result = " + remote.getString());
// System.out.println("Test Result = " + remote.setString(java.lang.String));
System.out.println("Test Result = " + remote.sayHello());
Scenario: starting with a Java class  165



9    Generating Web Services
Deployment descriptor

Because this scenario uses the tie model, the Web Service Wizard automatically updates the 
web.xml file to declare MyObjectWSTie as the servlet class to handle requests for the 
MyObject Web Service:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
                         "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
    <servlet>
        <servlet-name>MyObject</servlet-name>
        <servlet-class>com.exsamp.obj.MyObjectWSTie</servlet-class>
    </servlet>
    <servlet-mapping>
        <servlet-name>MyObject</servlet-name>
        <url-pattern>MyObject</url-pattern>
    </servlet-mapping>
</web-app>

Runtime test result

Once this project is built and the WAR file is created and deployed to the J2EE server, the 
MyObject Web Service is ready for a test run. Here’s the result of using the Client Runner in 
Workbench to execute the MyObjectWSClient application:
166 Scenario: starting with a Java class



10
 Generating Web Service Consumers Chapter 10
This chapter walks you through the basic steps and a typical scenario for using the Web Service 
Wizard to generate a Web Service consumer (a program that accesses a Web Service).

To learn about the steps and scenarios for using the wizard when you want to create a Web 
Service, see Chapter 9, “Generating Web Services”.

Basics
You can use the Web Service Wizard of Workbench to generate the code needed for a Java-
based consumer program to access any standard (SOAP-based) Web Service. The 
generated code handles all HTTP SOAP processing under the covers, enabling the consumer 
program to call the Web Service as a Java remote object (using RMI) and invoke its methods.

For input, the wizard requires a WSDL file that describes the Web Service to access. It can 
handle a wide variety of Web Service implementations, including:

• Document-style and RPC-style bindings

• Basic and complex types

• J2EE providers, Microsoft .NET providers, and others

The wizard generates Java source files based on JAX-RPC (Java API for XML-based RPC) and 
jBroker Web (the JAX-RPC implementation included with SilverStream eXtend). JAX-RPC is 
the J2EE specification that provides Web Service support.

You can use the generated files as is or modify them when necessary. The advantage of this Java-
oriented approach is that you can deal with Web Services using the familiar technologies of RMI 
and J2EE instead of coding lower-level SOAP APIs.

For an introduction to Web Service concepts, standards, and technologies, see Chapter 8, 
“Understanding Web Services”.

For detailed documentation on the wizard, see the Web Service Wizard chapter in the 
Tools Guide.
167

new http://java.sun.com/xml/jaxrpc
new ../../jbroker-web/README.html
toolsWebServiceWizard.html


10    Generating Web Service Consumers
Steps
The process of developing your consumer program involves:

1. Preparing to generate by setting up your project

2. Providing a WSDL file that describes the Web Service for which you want the wizard to 
generate consumer code

3. Generating the consumer files by using the wizard

4. Examining the generated files that the wizard creates, including Java source for:

• A remote interface, service classes, and a stub class that facilitate the Web Service 
access

• Any type classes needed for method arguments and return values

• A simple Java client class that uses the other classes to make method calls

5. Editing the generated files to adjust the method calls to make and the Web Service location 
to point to

6. Using the generated files either as is or by including the consumer code in some other Java 
application

7. Running the consumer program in your development environment (for testing) and in the 
production environment

Preparing to generate
To prepare for using the Web Service Wizard, you:

1. Set up an appropriate project in Workbench.

The type of project you should create depends on how you ultimately plan to use the 
consumer code that the wizard will generate. For instance:

If you plan to use the consumer code in You should create

A standard Java application (perhaps based on the 
simple Java client class that the wizard generates)

A JAR project

A J2EE application client A CAR project

A JSP page or servlet A WAR project

An Enterprise JavaBean An EJB JAR project
168 Steps



eXtend Workbench Development Guide
2. Add the archives required by jBroker Web to your project:

• jbroker-web.jar, which contains the jBroker Web API classes needed at runtime

• jaxrpc-api.jar and saaj-api.jar, which contain the Java API classes for XML-based 
RPC and SOAP processing

• xerces.jar or another XML parser

You’ll find these JARs in the Workbench compilelib directory.

3. Edit the classpath of your project so you can compile your consumer classes once they’re 
generated and edited. You’ll need to include:

• jbroker-web.jar

• jaxrpc-api.jar and saaj-api.jar

• xerces.jar (or another XML parser)

• Any application-specific entries

For J2EE projects, you’ll also need j2ee_api_1_n.jar (it’s included automatically when you 
create a J2EE project in Workbench).

If you use SOAP message handlers (an advanced JAX-RPC feature) in your application, the 
project will also require the following archives: activation.jar, commons-logging.jar, dom4j.jar, 
jaxp-api.jar, saaj-ri.jar, and j2ee_api_1_n.jar (for mail support). You’ll find these JARs in the 
Workbench compilelib directory.

Providing a WSDL file
To generate consumer code, you’ll need to provide the Web Service Wizard with a WSDL file 
that describes the target Web Service. It’s a good idea to obtain the file location or URL of this 
WSDL file before you start the wizard.

These are common scenarios:

• For a Web Service developed in your organization, you might have the WSDL file on 
your file system or even in your project.

• For an external Web Service, you should be able to get the WSDL file’s URL from the 
appropriate Web site or registry.
Providing a WSDL file  169



10    Generating Web Service Consumers
Example: WSDL file for Autoloan .NET Web Service

Suppose you want to generate consumer code to use the Autoloan .NET Web Service, which is 
listed on the XMethods public registry under the name Equated Monthly Instalment (EMI) 
Calculator. That Web Service calculates and returns the monthly loan payment for a given term 
(number of months), interest rate, and loan amount.

In this case, you can go to the Web site www.xmethods.net to discover the URL for the 
corresponding WSDL file:

http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

When you provide this URL to the Web Service Wizard, it will read the WSDL file to learn what 
it needs to know about the Autoloan Web Service:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema" 
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
             xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" 
             xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" 
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
             xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
             xmlns:s0="http://circle24.com/webservices/" 
             targetNamespace="http://circle24.com/webservices/" 
             xmlns="http://schemas.xmlsoap.org/wsdl/">
  <types>
    <s:schema attributeFormDefault="qualified" elementFormDefault="qualified" 
              targetNamespace="http://circle24.com/webservices/">
      <s:element name="Calculate">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="Months" type="s:double" />
            <s:element minOccurs="1" maxOccurs="1" name="RateOfInterest" type="s:double" 
/>
            <s:element minOccurs="1" maxOccurs="1" name="Amount" type="s:double" />
          </s:sequence>
        </s:complexType>
      </s:element>
      <s:element name="CalculateResponse">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="1" maxOccurs="1" name="CalculateResult" nillable="true" 
                       type="s:string" />
          </s:sequence>
        </s:complexType>
      </s:element>
      <s:element name="string" nillable="true" type="s:string" />
    </s:schema>
  </types>
  <message name="CalculateSoapIn">
170 Providing a WSDL file

new http://www.xmethods.net


eXtend Workbench Development Guide
    <part name="parameters" element="s0:Calculate" />
  </message>
  <message name="CalculateSoapOut">
    <part name="parameters" element="s0:CalculateResponse" />
  </message>
  <message name="CalculateHttpGetIn">
    <part name="Months" type="s:string" />
    <part name="RateOfInterest" type="s:string" />
    <part name="Amount" type="s:string" />
  </message>
  <message name="CalculateHttpGetOut">
    <part name="Body" element="s0:string" />
  </message>
  <message name="CalculateHttpPostIn">
    <part name="Months" type="s:string" />
    <part name="RateOfInterest" type="s:string" />
    <part name="Amount" type="s:string" />
  </message>
  <message name="CalculateHttpPostOut">
    <part name="Body" element="s0:string" />
  </message>
  <portType name="AutoloanSoap">
    <operation name="Calculate">
      <input message="s0:CalculateSoapIn" />
      <output message="s0:CalculateSoapOut" />
    </operation>
  </portType>
  <portType name="AutoloanHttpGet">
    <operation name="Calculate">
      <input message="s0:CalculateHttpGetIn" />
      <output message="s0:CalculateHttpGetOut" />
    </operation>
  </portType>
  <portType name="AutoloanHttpPost">
    <operation name="Calculate">
      <input message="s0:CalculateHttpPostIn" />
      <output message="s0:CalculateHttpPostOut" />
    </operation>
  </portType>
  <binding name="AutoloanSoap" type="s0:AutoloanSoap">
    <soap:binding transport="http://schemas.xmlsoap.org/soap/http" 
                  style="document" />
    <operation name="Calculate">
      <soap:operation soapAction="http://circle24.com/webservices/Calculate" 
                      style="document" />
      <input>
        <soap:body use="literal" />
      </input>
      <output>
Providing a WSDL file  171



10    Generating Web Service Consumers
        <soap:body use="literal" />
      </output>
    </operation>
  </binding>
  <binding name="AutoloanHttpGet" type="s0:AutoloanHttpGet">
    <http:binding verb="GET" />
    <operation name="Calculate">
      <http:operation location="/Calculate" />
      <input>
        <http:urlEncoded />
      </input>
      <output>
        <mime:mimeXml part="Body" />
      </output>
    </operation>
  </binding>
  <binding name="AutoloanHttpPost" type="s0:AutoloanHttpPost">
    <http:binding verb="POST" />
    <operation name="Calculate">
      <http:operation location="/Calculate" />
      <input>
        <mime:content type="application/x-www-form-urlencoded" />
      </input>
      <output>
        <mime:mimeXml part="Body" />
      </output>
    </operation>
  </binding>
  <service name="Autoloan">
    <documentation>This Web Service mimics a Simple Autoloan calculator.</documentation>
    <port name="AutoloanSoap" binding="s0:AutoloanSoap">
      <soap:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
    </port>
    <port name="AutoloanHttpGet" binding="s0:AutoloanHttpGet">
      <http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
    </port>
    <port name="AutoloanHttpPost" binding="s0:AutoloanHttpPost">
      <http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
    </port>
  </service>
</definitions>
172 Providing a WSDL file



eXtend Workbench Development Guide
Understanding the WSDL

In the Autoloan WSDL, you can ignore the definitions for HttpGet and HttpPost (including 
message, portType, binding, and service port). Only the Soap definitions apply to the Web 
Service consumer program you’re developing.

Notice that this Web Service exposes one method named calculate(). It takes a Calculate object 
containing three doubles (Months, RateOfInterest, and Amount) and returns a 
CalculateResponse object containing one string (CalculateResult). The Web Service Wizard 
will generate a corresponding remote interface in Java to support calling this method.

The types section specifies the XML Schema definitions for Calculate and CalculateResponse. 
The Web Service Wizard will generate corresponding type classes in Java to represent these 
objects.

If you look in the binding section for AutoloanSoap, you’ll see that this Web Service is defined 
as document style (as opposed to RPC style). That’s typical of .NET Web Services. Binding 
style describes the format of SOAP messages and can affect interoperability with other Web 
Service environments:

The Web Service Wizard will generate the Java code needed to handle the specified binding 
style.

The port definition for AutoloanSoap (at the end of the WSDL file) specifies the address 
(URL) where the Web Service can be accessed:

http://upload.eraserver.net/circle24/autoloan.asmx

The Web Service Wizard will use this URL in the service and stub classes it generates for calling 
the Web Service.

Binding style What it means

Document (with literal 
use)

The SOAP message body contains just the XML document being 
exchanged and message parts map to elements literally defined in 
the WSDL file’s XML schema.

RPC (with encoded 
use)

The SOAP message body contains argument and return values, 
individually wrapped in ad hoc elements that the recipient must 
interpret by applying specified encoding rules to each message 
part’s type.
Providing a WSDL file  173



10    Generating Web Service Consumers
Generating the consumer files
Once you’ve set up your project and located the appropriate WSDL file, you’re ready to use the 
Web Service Wizard. The wizard produces one Web Service consumer at a time, so you’ll need 
to use it multiple times if you have several to develop.

Each time you launch the wizard, it uses the WSDL file and other input you provide to generate 
a set of consumer source files. Here’s a summary of the process:

1. Select File>New to display the New File dialog and go to the Web Services tab.

2. Launch the Web Service Wizard by selecting Existing Web Service.

3. When the wizard prompts you for project location information, specify:

• The project you set up to contain the generated Web Service consumer files

• The target directory and package in that project

For example, suppose you’re generating a consumer for the Autoloan Web Service. You 
might specify WebServiceConsumerSample as the target JAR project and com.exsamp.net 
as the package for generated classes:
174 Generating the consumer files



eXtend Workbench Development Guide
4. When the wizard prompts you, specify the WSDL file that describes your target Web 
Service.

For example, when generating a consumer for the Autoloan Web Service, you specify the 
WSDL file URL obtained from the XMethods public registry:
Generating the consumer files  175



10    Generating Web Service Consumers
5. When the wizard prompts you for class-generation and SOAP options, you must specify 
details about the code to create:

• To get the files needed for a Web Service consumer, check Generate stubs (and leave 
Generate skeletons unchecked).

• To automatically generate type classes for any complex types in the WSDL, check 
Map complex XML types to Java types.

For example, these options will generate the appropriate consumer source files (including 
type classes) for the Autoloan Web Service:

NOTE Support for jBroker Web 1.x applications is available via a backward-
compatibility option. For more information, see If you choose jBroker Web 1.x 
compatibility (in the previous chapter).

6. Click Finish when you’re done specifying options for the Web Service consumer.
176 Generating the consumer files



eXtend Workbench Development Guide
Examining the generated files
Once you finish the wizard, it generates everything you’ve specified for your Web Service 
consumer and updates other parts of your project with supporting changes:

What the wizard generates Details

Java source file for remote 
interface

xxx.java An interface that extends java.rmi.Remote and 
declares the methods exposed by the target Web Service 
(as determined from the WSDL file). The generated stub 
class xxx_Stub implements this interface to support 
method calls for the Web Service.

Java source files for stubs xxxService.java Service interface used by JAX-RPC 
clients to obtain the stub for the target Web Service.

xxxServiceImpl.java Service implementation class that 
handles instantiation of the stub (xxx_Stub). It also 
supports alternative ways of accessing the target Web 
Service, including dynamic (stubless) calls.

(Note that the names generated for the service interface 
and implementation class depend on your WSDL and 
may omit the text Service.)

xxx_Stub.java Facilitates method calls from a Java-
based consumer to the target Web Service. xxx_Stub 
implements the generated remote interface by sending an 
appropriate HTTP SOAP request for each method call.

xxxClient.java Simple client application that works as a 
consumer of the target Web Service. It obtains the stub 
(via the Service object) then uses the stub to call Web 
Service methods.

You can run xxxClient from Workbench (select 
Project>Run Web Service Client Class) or from a 
command line.

Updates to project contents The wizard updates your project to add generated files to 
it.
Examining the generated files  177



10    Generating Web Service Consumers
About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by 
JAX-RPC. For a Web Service consumer, the resulting file names are based on the definitions in 
the WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service 
consumer file name that’s derived from a WSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the jBroker Web compilers when generating 
the Web Service consumer files listed above. In some cases, these compilers may generate 
additional code or files to support requirements specific to your application, such as:

• Type mapping

• Faults

• Multiple portType definitions

For more information, see the jBroker Web help.

Example: generated consumer files for Autoloan .NET Web Service

The consumer code that the Web Service Wizard generates for the Autoloan Web Service 
consists of these standard files for Web Service access:

• AutoloanSoap.java (remote interface)

• Autoloan.java (service interface)

• AutoloanImpl.java (service implementation class)

• AutoloanSoap_Stub.java

• AutoloanSoapClient.java

And these application-specific files for mapping the complex types defined in the WSDL:

• Calculate.java

• CalculateMarshaler.java

• CalculateHolder.java

• CalculateResponse.java

• CalculateResponseMarshaler.java
178 Examining the generated files

new ../../jbroker-web/README.html


eXtend Workbench Development Guide
• CalculateResponseHolder.java

• autoloan.asmx.xmlrpc.type.mappings

When creating these files, the wizard adds them to your project on the directory path you’ve 
specified:

AutoloanSoap.java

This is the remote interface used by the stub class to support method calls for the Autoloan Web 
Service.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:23 EDT 2002

package com.exsamp.net;

import java.rmi.Remote;
Examining the generated files  179



10    Generating Web Service Consumers
import java.rmi.RemoteException;

public interface AutoloanSoap extends Remote
{
    com.exsamp.net.CalculateResponse calculate(com.exsamp.net.Calculate parameters) 
      throws RemoteException;
}

Autoloan.java

This is the service interface that’s used in JAX-RPC to help clients obtain the stub for the Web 
Service.

// Tue Jun 04 11:36:23 EDT 2002

package com.exsamp.net;

import javax.xml.rpc.ServiceException;

public interface Autoloan extends javax.xml.rpc.Service
{
    public AutoloanSoap_Stub getAutoloanSoap()
        throws ServiceException;
}

AutoloanImpl.java

This is the service implementation class that handles instantiation of the stub 
(AutoloanSoap_Stub).

// Tue Jun 04 11:36:23 EDT 2002

package com.exsamp.net;

import java.io.FileNotFoundException;
import java.util.Iterator;
import java.util.Hashtable;
import java.util.Properties;
import java.util.ArrayList;
import java.net.URL;
import java.net.MalformedURLException;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceException;
import com.sssw.jbroker.web.Binding;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;
180 Examining the generated files



eXtend Workbench Development Guide
public class AutoloanImpl
    extends com.sssw.jbroker.web.xml.rpc.ServiceImpl 
    implements Autoloan
{
    public AutoloanImpl()
    {
        try {
            _typeMappingRegistry.importTypeMappings(_tmprops);
        } catch (Exception ex) {
            throw new javax.xml.rpc.JAXRPCException("failed to populate default type 
mapping registry: " + ex.getMessage());
        }
        try {
            createCalls();
        } catch (ServiceException ex) {
            throw new javax.xml.rpc.JAXRPCException("failed to create the call objects: " 
+ ex.getMessage());
        }
    }
    
    public QName getServiceName() { return _serviceName; }
    
    public Iterator getPorts() { return _portMapping.keySet().iterator(); }
    
    public void setProxyMode(boolean proxy) { _proxy = proxy; }
    
    public boolean getProxyMode() { return _proxy; }
    
    public URL getWSDLDocumentLocation()
    {
        return null;
    }
    
    public java.rmi.Remote getPort(Class serviceDefInterface)
        throws ServiceException
    {
        if (serviceDefInterface == null)
            throw new ServiceException("No Service class specified.");
        if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))
            throw new ServiceException("Class is not a valid Interface.");
        
        String stubName = (String) _intfMapping.get(serviceDefInterface);
        Binding binding = (Binding) _intfBinding.get(serviceDefInterface);
        
        if (stubName == null)
            return getPort(serviceDefInterface, binding, 
                _classInfo, _typeMappingRegistry, null);
        else
            return getPort(stubName, binding, _typeMappingRegistry);
Examining the generated files  181



10    Generating Web Service Consumers
    }
    
    public java.rmi.Remote getPort(QName portName, Class serviceDefInterface) 
        throws ServiceException
    {
        return getPort(portName, serviceDefInterface, getProxyMode());
    }
    
    public java.rmi.Remote getPort(QName portName, Class serviceDefInterface, boolean 
proxy) 
        throws ServiceException
    {
        if (((proxy==false) || (serviceDefInterface == null)) && 
            (portName != null)) {
            String stubName = (String) _portMapping.get(portName);
            Binding binding = (Binding) _portBinding.get(portName);
            
            if (stubName == null) return getPort(null, serviceDefInterface);
            
            try {
                return getPort(stubName, binding, portName,
                   _typeMappingRegistry);
            } catch (Exception ex) {
                return getPort(null, serviceDefInterface);
            }
        } else {
            if (serviceDefInterface == null)
                throw new ServiceException("No Service class specified.");
            if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))
                throw new ServiceException("Class is not a valid Interface.");
            
            Binding binding = (Binding) _intfBinding.get(serviceDefInterface);
            String uri = (portName == null) ? null : portName.getNamespaceURI();
            return getPort(serviceDefInterface, binding, _classInfo,
               _typeMappingRegistry, uri);
        }
    }
    
    public Call[] getCalls(QName portName)
        throws ServiceException
    {
        ArrayList callslist = (ArrayList) _calls.get(portName);
        if (callslist == null) return null;
        Call[] calls = new Call[callslist.size()];
        return (Call[]) callslist.toArray(calls);
    }
    
    private void addCall(QName portName, Call call)
    {
        ArrayList callslist = (ArrayList) _calls.get(portName);
182 Examining the generated files



eXtend Workbench Development Guide
        if (callslist == null) {
            callslist = new ArrayList();
            _calls.put(portName, callslist);
        }
        callslist.add(call);
    }
    
    public AutoloanSoap_Stub getAutoloanSoap()
        throws ServiceException
    {
        try {
            return (AutoloanSoap_Stub) getPort(new QName(
                "http://circle24.com/webservices/", "AutoloanSoap"), null, false);
        } catch (Exception ex) {
            return (AutoloanSoap_Stub) getPort(com.exsamp.net.AutoloanSoap.class);
        }
    }
    
    private void createCalls()
        throws ServiceException
    {
        Call call = null;
        
        call = createCall(new QName("http://circle24.com/webservices/", "AutoloanSoap"), 
          new QName("http://circle24.com/webservices/", "Calculate"));
        call.addParameter("{http://circle24.com/webservices/}Calculate", 
          new QName("http://circle24.com/webservices/", "Calculate"), 
com.exsamp.net.Calculate.class, ParameterMode.IN);
        call.addParameter("{http://circle24.com/webservices/}CalculateResponse", 
          new QName("http://circle24.com/webservices/", "CalculateResponse"), 
com.exsamp.net.CalculateResponse.class, ParameterMode.OUT);
        call.setReturnType(new QName("http://circle24.com/webservices/", 
"CalculateResponse"), com.exsamp.net.CalculateResponse.class);
        call.setProperty(Call.OPERATION_STYLE_PROPERTY, "document");
        call.setProperty(Call.ENCODINGSTYLE_URI_PROPERTY, null);
        call.setProperty(Call.SOAPACTION_URI_PROPERTY, 
"\"http://circle24.com/webservices/Calculate\"");
        
call.setTargetEndpointAddress("http://upload.eraserver.net/circle24/autoloan.asmx");
        addCall(new QName("http://circle24.com/webservices/", "AutoloanSoap"), call);
        
    }
    
    static boolean _proxy = true;
    static final QName _serviceName;
    static final Hashtable _intfMapping = new Hashtable();
    static final Hashtable _intfBinding = new Hashtable();
    static final Hashtable _portBinding = new Hashtable();
    static final Hashtable _portMapping = new Hashtable();
Examining the generated files  183



10    Generating Web Service Consumers
    static final Hashtable _classInfo = new Hashtable();
    static final Properties _tmprops = new Properties();
    private final Hashtable _calls = new Hashtable();

    static {
        _serviceName = new QName("http://circle24.com/webservices/", 
"com.exsamp.net.Autoloan");
        
        _intfBinding.put(AutoloanSoap.class, 
          new Binding("soap", "http://upload.eraserver.net/circle24/autoloan.asmx"));
        _portBinding.put(new QName("http://circle24.com/webservices/", "AutoloanSoap"), 
          new Binding("soap", "http://upload.eraserver.net/circle24/autoloan.asmx"));
        _intfMapping.put(AutoloanSoap.class, "com.exsamp.net.AutoloanSoap_Stub");
        _portMapping.put(new QName("http://circle24.com/webservices/",
        "AutoloanSoap"), "com.exsamp.net.AutoloanSoap_Stub");
        
        Hashtable _methodInfo;
        Hashtable _paramInfo;
        Properties _props;
        
        _methodInfo = new Hashtable();
        _paramInfo = new Hashtable();
        _props = new Properties();
        
_props.setProperty("jbroker.web.soap.action","\"http://circle24.com/webservices/Calculate\
"");
        _paramInfo.put("Properties", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "parameters");
        _props.setProperty("jbroker.web.parameter.inout", "1");
        _paramInfo.put("Param0", _props);
        _props = new Properties();
        _props.setProperty("jbroker.web.parameter.name", "parameters");
        _props.setProperty("jbroker.web.parameter.inout", "2");
        _paramInfo.put("Result", _props);
        _methodInfo.put("Calculate", _paramInfo);
        _classInfo.put("com.exsamp.net.AutoloanSoap", _methodInfo);
        
        _tmprops.put("tm1", "com.exsamp.net.CalculateResponse 
com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler 
http://circle24.com/webservices/ CalculateResponse none");
        _tmprops.put("tm0", "com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler 
com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none");
    }
}

184 Examining the generated files



eXtend Workbench Development Guide
AutoloanSoap_Stub.java

This is the stub class. It passes method calls to the Autoloan Web Service as HTTP SOAP 
requests.

// Tue Jun 04 11:36:23 EDT 2002

package com.exsamp.net;

import com.exsamp.net.holders.*;

import java.util.Properties;
import com.sssw.jbroker.web.core.Constants;
import com.sssw.jbroker.web.encoding.TypeMappingRegistry;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public class AutoloanSoap_Stub
    extends com.sssw.jbroker.web.portable.Stub
    implements AutoloanSoap
{
    private static com.sssw.jbroker.web.QName _portType =
        new com.sssw.jbroker.web.QName("http://circle24.com/webservices/", 
"AutoloanSoap");
    
    private static final com.sssw.jbroker.web.Binding[] _bindings = 
        new com.sssw.jbroker.web.Binding[] {
            new com.sssw.jbroker.web.Binding("soap", 
"http://upload.eraserver.net/circle24/autoloan.asmx"),
    };
    
    public AutoloanSoap_Stub()
    {
        this(null);
    }
    
    public AutoloanSoap_Stub(DefaultTypeMappingRegistry tmr)
    {
        super(_portType, _bindings);
        _setProperty("xmlrpc.schema.uri", (Object) 
"http://www.w3.org/2001/XMLSchema".intern());
        _setProperty("version", (Object) "1.1");
        TypeMappingRegistry _tm = null;
        try {
            if (tmr != null)
                _tm = tmr;
            else {
                _tm = new DefaultTypeMappingRegistry();
                if (_tmprops.size() > 0) _tm.importTypeMappings(_tmprops);
            }
Examining the generated files  185



10    Generating Web Service Consumers
            _setTypeMappingRegistry(_tm);
        } catch (Exception ex) {
            throw new javax.xml.rpc.JAXRPCException("failed to initialize type mapping 
registry: " + ex.getMessage());
        }
    }
    
    public com.exsamp.net.CalculateResponse calculate(com.exsamp.net.Calculate _arg0) 
        throws java.rmi.RemoteException
    {
        com.sssw.jbroker.web.portable.ClientResponse in = null;
        
        try {
            // create an output stream
            _getDelegate().setProperty("xmlrpc.soap.operation.name", 
              new com.sssw.jbroker.web.QName("http://circle24.com/webservices/", 
"Calculate"));
            //create request
            com.sssw.jbroker.web.portable.ClientRequest out = 
                _request("Calculate", true, "literal", true, 
"\"http://circle24.com/webservices/Calculate\"");
            _getDelegate().setProperty("soapAction", (Object) 
"\"http://circle24.com/webservices/Calculate\"");
            _getDelegate().setProperty(Constants.HTTP_CONTENT_TYPE, (Object) "text/xml; 
charset=utf-8");
            out._setProperties(_getDelegate().getProperties());
            Object arg = null;
            
            // marshal the parameters
            arg = _arg0;
            out.writeObject(arg,  "http://circle24.com/webservices/", "Calculate");
            
            // do the invocation
            in = _invoke(out);
            // unmarshal the results
            
            // return
            com.exsamp.net.CalculateResponse ret = null;
            try {
                ret = (com.exsamp.net.CalculateResponse)
                in.readObject(com.exsamp.net.CalculateResponse.class, 
"http://circle24.com/webservices/", "CalculateResponse");
            } catch (java.io.EOFException eofExc) {
                ret = null;
            }
            return ret;
            
        } catch (java.lang.Throwable t) {
            
            if (t instanceof com.sssw.jbroker.web.ServiceException) {
186 Examining the generated files



eXtend Workbench Development Guide
                com.sssw.jbroker.web.ServiceException sex = 
                    (com.sssw.jbroker.web.ServiceException) t;
                if (sex.getTargetException() != null)
                    t = sex.getTargetException();
            }
            
            // map to remote exception
            throw com.sssw.jbroker.web.ServiceException.mapToRemote(t);
        }
    }
    static final Properties _tmprops = new Properties();
    
    static {
        
        _tmprops.put("tm1", "com.exsamp.net.CalculateResponse 
com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler 
http://circle24.com/webservices/ CalculateResponse none");
        _tmprops.put("tm0", "com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler 
com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none");
    }
    
    private static Properties _rootHeaders = new Properties();
    static {
        _rootHeaders.setProperty("content-type", "text/xml; charset=UTF-8");
        _rootHeaders.setProperty("content-id", "<soapbody>");
    }
}

AutoloanSoapClient.java

This is a simple client application that obtains the stub (via the Service object) then uses it to call 
the calculate() method of the Autoloan Web Service. (Notice that this method call is generated 
as a comment. You’ll learn what to do with it a little later in “Editing the generated files”.)

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code *requires* process() method
// modification in order to execute as expected. Please keep in mind when making
// modifications that method signatures must be consistent across all
// generated objects.

package com.exsamp.net;

import javax.naming.*;

public class AutoloanSoapClient
{
    public void process(String[] args) throws Exception
    {
Examining the generated files  187



10    Generating Web Service Consumers
        AutoloanSoap remote = getRemote(args);

        // The following code has been generated for your testing convenience. In
        // order to successfully test your Web Service, you must uncomment one or
        // more of these lines and supply meaningful arguments where necessary.
        // Once you have modified the test method(s) below, compile this class and
        // execute it from a command line with your class path set appropriately.

        // System.out.println("Test Result = " + 
remote.calculate(com.exsamp.net.Calculate));

    }

    public AutoloanSoap getRemote(String[] args) throws Exception
    {
        InitialContext ctx = new InitialContext();
        
        String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
        Autoloan service = (Autoloan)ctx.lookup(lookup);
        AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap();
            
        return remote;
    }

    public static void main(String[] args)
    {
        try
        {
            AutoloanSoapClient client = new AutoloanSoapClient();
            client.process(args);
        }
        catch (Exception _e)
        {
            System.out.println("*** Error Executing Generated Test Client ***");
            _e.printStackTrace();
        }
    }

}

Calculate.java

This class represents the complex type Calculate that’s defined in the WSDL.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002
188 Examining the generated files



eXtend Workbench Development Guide
package com.exsamp.net;

public class Calculate implements java.io.Serializable
{
    public Calculate() {}
    
    public Calculate(double monthsVal, double rateOfInterestVal, double amountVal) {
        _months = monthsVal;
        _rateOfInterest = rateOfInterestVal;
        _amount = amountVal;
    }
    private double _months;
    public double getMonths() {
        return _months;
    }
    public void setMonths(double monthsVal) {
        _months = monthsVal;
    }
    private double _rateOfInterest;
    public double getRateOfInterest() {
        return _rateOfInterest;
    }
    public void setRateOfInterest(double rateOfInterestVal) {
        _rateOfInterest = rateOfInterestVal;
    }
    private double _amount;
    public double getAmount() {
        return _amount;
    }
    public void setAmount(double amountVal) {
        _amount = amountVal;
    }
    public java.lang.String toString()
    {
        StringBuffer buffer = new StringBuffer();
        buffer.append("{");
        buffer.append("months=" + _months);
        buffer.append(",");
        buffer.append("rateOfInterest=" + _rateOfInterest);
        buffer.append(",");
        buffer.append("amount=" + _amount);
        buffer.append("}");
        return buffer.toString();
    }
}

Examining the generated files  189



10    Generating Web Service Consumers
CalculateMarshaler.java

This class handles serialization and deserialization for Calculate.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;

import java.io.IOException;
import org.xml.sax.Attributes;
import com.sssw.jbroker.web.*;
import com.sssw.jbroker.web.encoding.*;
import com.sssw.jbroker.web.portable.InputStream;
import com.sssw.jbroker.web.portable.OutputStream;

public class CalculateMarshaler implements Marshaler
{
    // attributes
    // elements
    private static final java.lang.String _MONTHS = "Months";
    private static final java.lang.String _RATEOFINTEREST = "RateOfInterest";
    private static final java.lang.String _AMOUNT = "Amount";
    
    public Attribute[] getAttributes(Object obj)
    {
        return null;
    }
    
    public void serialize(OutputStream os, Object obj) throws IOException
    {
        Calculate jt = (Calculate) obj;
        os.writeObject(new java.lang.Double(jt.getMonths()), _MONTHS);
        os.writeObject(new java.lang.Double(jt.getRateOfInterest()), _RATEOFINTEREST);
        os.writeObject(new java.lang.Double(jt.getAmount()), _AMOUNT);
    }
    
    public Object deserialize(InputStream is, Class javaType)
        throws IOException
    {
        if (javaType != Calculate.class)
            throw new
                ServiceException("can't deserialize " + javaType.getName());
        
        try {
            // instantiate the object
            Calculate jt = (Calculate) javaType.newInstance();
            try {
                // read elements
                jt.setMonths(is.readDouble(_MONTHS));
190 Examining the generated files



eXtend Workbench Development Guide
                jt.setRateOfInterest(is.readDouble(_RATEOFINTEREST));
                jt.setAmount(is.readDouble(_AMOUNT));
            } catch (java.io.EOFException eofExc) {}
            
            return jt;
        } catch (Exception ex) {
            if (ex instanceof IOException)
                throw (IOException) ex;
            throw new ServiceException(ex);
        }
    }
    
    public java.lang.String getMechanismType() { return null; }
}

CalculateHolder.java

This is the Holder class required by JAX-RPC to implement type mapping support for 
Calculate. Note that this class is generated in the holders subdirectory.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net.holders;

import com.exsamp.net.Calculate;

public final class CalculateHolder implements javax.xml.rpc.holders.Holder
{
    public com.exsamp.net.Calculate value;
    
    public CalculateHolder() { }
    
    public CalculateHolder(com.exsamp.net.Calculate val)
    {
        value = val;
    }
}

CalculateResponse.java

This class represents the complex type CalculateResponse that’s defined in the WSDL.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;
Examining the generated files  191



10    Generating Web Service Consumers
public class CalculateResponse implements java.io.Serializable
{
    public CalculateResponse() {}
    
    public CalculateResponse(java.lang.String calculateResultVal) {
        _calculateResult = calculateResultVal;
    }
    private java.lang.String _calculateResult;
    public java.lang.String getCalculateResult() {
        return _calculateResult;
    }
    public void setCalculateResult(java.lang.String calculateResultVal) {
        _calculateResult = calculateResultVal;
    }
    public java.lang.String toString()
    {
        StringBuffer buffer = new StringBuffer();
        buffer.append("{");
        buffer.append("calculateResult=" + _calculateResult);
        buffer.append("}");
        return buffer.toString();
    }
}

CalculateResponseMarshaler.java

This class handles serialization and deserialization for CalculateResponse.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;

import java.io.IOException;
import org.xml.sax.Attributes;
import com.sssw.jbroker.web.*;
import com.sssw.jbroker.web.encoding.*;
import com.sssw.jbroker.web.portable.InputStream;
import com.sssw.jbroker.web.portable.OutputStream;

public class CalculateResponseMarshaler implements Marshaler
{
    // attributes
    // elements
    private static final java.lang.String _CALCULATERESULT = "CalculateResult";
    
    public Attribute[] getAttributes(Object obj)
    {
192 Examining the generated files



eXtend Workbench Development Guide
        return null;
    }
    
    public void serialize(OutputStream os, Object obj) throws IOException
    {
        CalculateResponse jt = (CalculateResponse) obj;
        os.writeObject(jt.getCalculateResult(), _CALCULATERESULT);
    }
    
    public Object deserialize(InputStream is, Class javaType)
        throws IOException
    {
        if (javaType != CalculateResponse.class)
            throw new
                ServiceException("can't deserialize " + javaType.getName());
        
        try {
            // instantiate the object
            CalculateResponse jt = (CalculateResponse) javaType.newInstance();
            try {
                // read elements
                
jt.setCalculateResult((java.lang.String)is.readObject(java.lang.String.class, 
_CALCULATERESULT));
            } catch (java.io.EOFException eofExc) {}
            
            return jt;
        } catch (Exception ex) {
            if (ex instanceof IOException)
                throw (IOException) ex;
            throw new ServiceException(ex);
        }
    }
    
    public java.lang.String getMechanismType() { return null; }
}

CalculateResponseHolder.java

This is the Holder class required by JAX-RPC to implement type mapping support for 
CalculateResponse. Note that this class is generated in the holders subdirectory.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net.holders;

import com.exsamp.net.CalculateResponse;
Examining the generated files  193



10    Generating Web Service Consumers
public final class CalculateResponseHolder implements javax.xml.rpc.holders.Holder
{
    public com.exsamp.net.CalculateResponse value;
    
    public CalculateResponseHolder() { }
    
    public CalculateResponseHolder(com.exsamp.net.CalculateResponse val)
    {
        value = val;
    }
}

autoloan.asmx.xmlrpc.type.mappings

The settings specified in this file tell jBroker Web how to configure the type mappings for 
Calculate and CalculateResponse. These mappings apply when data is converted from XML to 
Java or vice versa.

Since the generated stub and service classes automatically configure the mappings, this 
mappings file is not typically needed. It is provided for special situations (such as when you 
want to override a mapping).

The mappings file is generated in the base directory of the source tree (src).

Calculate=com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler 
com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none
CalculateResponse=com.exsamp.net.CalculateResponse 
com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler 
http://circle24.com/webservices/ CalculateResponse none
194 Examining the generated files



eXtend Workbench Development Guide
Editing the generated files
Follow these guidelines when editing the files generated by the Web Service Wizard:

It’s OK to edit any of the other generated files, but not typically required.

Editing the xxxClient.java file

Before using the generated xxxClient.java file, you:

• Must edit the process() method to call one or more methods of the target Web Service

• May need to edit the getRemote() method to specify the correct location (binding) for 
accessing the target Web Service

process() method

The process() method is where the generated client application calls methods of the Web 
Service. Here you’ll find commented code for calling each method defined in the generated 
remote interface and displaying return values on the console. For example:

public void process(String[] args) throws Exception
{
    AutoloanSoap remote = getRemote(args);

    // The following code has been generated for your testing convenience. In
    // order to successfully test your Web Service, you must uncomment one or
    // more of these lines and supply meaningful arguments where necessary.
    // Once you have modified the test method(s) below, compile this class and
    // execute it from a command line with your class path set appropriately.

    // System.out.println("Test Result = " + remote.calculate(com.exsamp.net.Calculate));

}

Guideline Details

File you must edit • xxxClient.java

Files you should not edit • xxxService.java

• xxxServiceImpl.java

• xxx_Stub.java
Editing the generated files  195



10    Generating Web Service Consumers
You need to modify this code as follows:

1. Uncomment one or more method calls you want to execute.

2. Provide appropriate arguments for each method call, either as hardcoded values or as 
parameters to be furnished at runtime. For runtime arguments, you may also want to add 
code that validates the values supplied.

3. Check the return data type to make sure it can be converted using toString(). If not, use 
an alternative to System.out.println for displaying the data returned.

Here’s what the line with the calculate() method call looks like after editing:

System.out.println("Autoloan Web Service\n  " + 
  "Loan input data:\n    24 months, 8%, $15000\n  " +
  "Output from the Web Service:\n    " +
  remote.calculate(new com.exsamp.net.Calculate(24, 8, 15000)));

getRemote() method

This section explains the basic use of the getRemote() method and how to modify it when you 
need to specify binding information.

Basic use The getRemote() method is where the generated client application obtains the 
remote object to handle its method calls to the Web Service. That remote object is an instance of 
the generated stub class (xxx_Stub). To create the stub instance, getRemote() does the following:

1. Instantiates the Service object (from the service interface and implementation classes, 
xxxService and xxxServiceImpl) via JNDI lookup

2. Calls a method that the Service object provides (in the service interface) to get the stub

Here’s an example of the typical code generated for getRemote(). Normally, you don’t need to 
edit it:

public AutoloanSoap getRemote(String[] args) throws Exception
{
    InitialContext ctx = new InitialContext();
        
    String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
    Autoloan service = (Autoloan)ctx.lookup(lookup);
    AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap();
            
    return remote;
}

196 Editing the generated files



eXtend Workbench Development Guide
Specifying binding information The wizard includes the binding information for your 
target Web Service in the generated stub class (xxx_Stub.java) and service implementation class 
(xxxServiceImpl.java). The binding provides the service endpoint address where the Web 
Service can be accessed. In a WSDL file, this address is the URL in the soap:address location 
element.

As an alternative, you can specify the binding to use when creating the stub instance in the 
getRemote() method. This enables you to override the binding in the stub class (such as when 
the Web Service has moved to a new location). You just need to add a line of code to set the 
address property for the stub:

public AutoloanSoap getRemote(String[] args) throws Exception
{
    InitialContext ctx = new InitialContext();
        
    String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
    Autoloan service = (Autoloan)ctx.lookup(lookup);
    AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap();

    ((javax.xml.rpc.Stub)remote)._setProperty("javax.xml.rpc.service.endpoint.address",
      "http://upload.eraserver.net/circle24/autoloan.asmx");

    return remote;
}

Using the generated files
How you use the Web Service consumer code that you have at this point depends on the nature 
of the application you’re developing. Sometimes you might want to enhance the generated 
xxxClient.java file and include it in your application. At other times you may just copy syntax 
from xxxClient.java into your own classes. But in either case, you’ll always need the generated 
remote interface, service, and stub files.

Before you start any application-specific coding, it’s a good idea to test the basic xxxClient to 
make sure your consumer code works as expected. You’ll first need to build your project to 
compile the source files. Then you can run xxxClient as described in the next section.
Using the generated files  197



10    Generating Web Service Consumers
Running the consumer program
The generated Web Service consumer program xxxClient is a standard Java application. You can 
run it in either of these ways:

• From Workbench

• From a command line

From Workbench

To help you test your generated client quickly and easily, Workbench provides the Web Service 
Wizard Client Runner. This facility lists the client applications in your current project and lets 
you select one to execute. For each run, it automatically sets the classpath to include all required 
files and lets you supply command-line arguments.

To use the Client Runner:

1. Open the project that contains the compiled client class you want to run.

2. Select Project>Run Web Service Client Class to display the Client Runner window.

3. Select a client from the Client class to run dropdown.

This dropdown lists every compiled class in your project that has a main() method.

4. Check Show command line if you want to:

• See the complete command line that the Client Runner uses to execute your client (it 
will appear in the display console portion of the window after you click Run)

• Optionally copy that command line to the system clipboard by clicking Copy 
command line (after a run)

5. Type any command-line Arguments required by your client (use a space to separate each 
argument).

6. Click Run to execute your client and see its output in the display console portion of the 
window.
198 Running the consumer program



eXtend Workbench Development Guide
For example, here’s what it looks like to execute the generated AutoloanSoapClient class using 
the Client Runner:

When AutoloanSoapClient runs, it calls the calculate() method of the Autoloan Web Service 
and passes a Calculate object containing loan data (term, rate, amount). The calculate() method 
returns a CalculateResponse object containing a string of payment information, which 
AutoloanSoapClient displays on the screen:

Running com.exsamp.net.AutoloanSoapClient...
*********************
Autoloan Web Service
  Loan input data:
    24 months, 8%, $15000
  Output from the Web Service:
    {calculateResult=Equated Monthly Instalment (EMI) For the Amount $15000 is $678}
*********************

From a command line

You can also execute the generated client from the command prompt of your operating system. 
Doing so demands that you set the classpath to include all required files (such as the generated 
consumer classes, jbroker-web.jar, and so on).

The recommended approach is to use the Web Service Wizard Client Runner to display and 
copy the command line for your client (as described in the previous section). Then you can paste 
that line to your command prompt and run it.

If you plan to run the client on other computers (beyond your development machine), make sure 
they have access to all of the files listed in this command line.
Running the consumer program  199



10    Generating Web Service Consumers
200 Running the consumer program



Index
A
application clients

about 19, 65
API usage 68
classpaths 74
coding classes 68
compiling 74
containers 67, 86
creating 65, 68
creating a client archive 79
deploying 65, 80, 83
deployment descriptors 77
deployment documents 80
designing 65
example 69
in J2EE modules 24
JNDI namespace 68
life cycle 67
manifest files 75
packaging into an archive 75
running 65, 86

archives
application clients in 66
creating 8
deploying 9
deploying Web Services as WAR files 117
deployment descriptors 24
directory structure considerations 4
EJBs in 87, 95
J2EE 24
JavaServer Pages in 38
servlets in 51
validating 8

B
bindings

from consumers to Web Services 195

C
classpaths

for application clients 74
Client Runner facility

for testing Web Service consumers 198
consumers

see Web Services
containers

see J2EE

D
deployment descriptors

about 24
creating 40
EJB JARs 95
for application client archives 68
for Web archives 40
in J2EE application clients 77
modifying 7

deployment documents
about 9
application clients 80
EJBs 97
for Web archives 42

deployment plans
about 9

E
Electronic Business XML (ebXML)

see Web Services
Enterprise JavaBeans (EJBs)

about 19, 87
containers 87
creating 87, 92
deploying 87, 97
designing 87
entity beans 19
home interfaces 92
201



Index
implementation classes 92
JNDI lookup 97
message-driven beans 19
packaging in an archive 95
remote interfaces 92
running 87, 97
session beans 19
tips for designing applications 100

J
J2EE

about 15, 26
application clients 65
architecture 21, 66
archives 3
Blueprints 27
client tier 21
components 13, 17
containers 21, 32, 49, 67, 87
creating JavaServer Pages 31
creating servlets 49
data access services 20
deployment descriptors 75
deployment services 20
designing applications 1, 21, 26
developing applications 3
Enterprise Information System tier 21
file support 20
Internet protocols 20
manifest files 75
messaging services 20
META-INF directories 75
middle tier 21
Model-View-Controller (MVC) model 26
modules 24
naming services 20
OMG protocols 20
RMI protocols 20
roles 25
security services 20
technologies 17
testing and debugging applications 10
transaction services 20
WEB-INF directories 38

web.xml 40
Workbench support for 28

JavaServer Pages
about 18, 31
creating 31, 38
deploying 42
designing 38
example 34
in Web applications 32
in Web archives 38, 40
in Web modules 24
mixing HTML and Java 37
running 46
servlets and JSP pages 33

JAX-RPC
about 116
generating consumers for 167
support for 119

jBroker Web
about 117
packaging jbroker-web.jar with generated 

consumers 168
packaging jbroker-web.jar with generated Web 

Services 120

M
manifest files

see J2EE, application clients
META-INF directories

see J2EE
Microsoft .NET

about 116
generating consumers for 167

Model-View-Controller (MVC)
see J2EE

P
project files

creating 5
saving 7
202



eXtend Workbench Development Guide
projects
adding source files and directories 5, 8
compiling, building, and archiving 8
creating 5
creating components 5
creating enterprise archive (EAR) projects 5
deploying 9
designing 3
organizing 4
supporting team development 7

providers
see Web Services

R
registries

see Web Services

S
servers

creating profiles 9
servlets

about 18, 49
containers 49
creating 49, 52
deploying 63
designing 49
event listeners 18
example 52
filters 18
generating an HTTP response 56
in Web modules 24
JavaServer Pages and servlets 33, 51
life cycle 49
packaging into a Web archive 62
processing HTTP requests 55
reading HTML form data 55
reading HTTP request header information 56
running 63
specifying init() and destroy() methods 61
specifying the HTTP document content 59

SilverStream eXtend Application Server
deploying Web archives to 43
deployment documents 80
deployment plans 9
deployment plans for EJB JARs 97
SilverJ2EEClient 67, 86

skeleton model
for Web Services 135

SOAP (Simple Object Access Protocol)
see Web Services

source files
adding to projects 4, 5
creating components 5
directory structure considerations 4
editing 5

SPF files
see project files

subprojects
see projects

T
tie model

for Web Services 135

U
UDDI

see Web Services

W
Web Service consumers

binding style 173
binding to services 195
generating 167
J2EE 167
Microsoft .NET 167
packaging jbroker-web.jar with 168
running 198
type mapping 173
using JAX-RPC 167
203



Index
Web Service Wizard
Client Runner facility 198
generating consumers with 167
generating Web Services with 119
implementation model choices 135
using jbroker-web.jar with 120, 168

Web Services
about 109, 115
browsing registries 114
consumers 110
creating components 111, 117
designing applications 1
developing applications 3
ebXML 114, 115
generating 119
HTTP 109, 111, 113, 115, 117
implementation models for 135
JAX-RPC 116
JAX-RPC support 119
jBroker Web 117
local registries 115
Microsoft .NET 116
packaging jbroker-web.jar with 120
providers 110, 111
publishing to registries 112, 114
registries 110, 112, 114, 115
SOAP 109, 111, 113, 115, 117
testing and debugging applications 10
tools provided in Workbench 116
UDDI 114, 115
using 113, 167
WSDL 111, 113, 115

WEB-INF directories
see J2EE

Workbench
J2EE support 28

WSDL (Web Services Description Language)
see Web Services
204


	Development Guide
	Contents
	About This Book
	Purpose
	Audience
	Prerequisites
	Organization

	Developing Applications with Workbench
	Part I Writing J2EE Components
	Understanding J2EE
	What is J2EE?
	What J2EE gives you
	Two kinds of applications
	J2EE technologies

	How are J2EE applications put together?
	Three tiers
	J2EE applications are delivered in archive files
	Roles in J2EE development
	Model-View-Controller application model

	Learning more about J2EE
	The J2EE Blueprints
	J2EE Web sites

	J2EE and Workbench
	Support for J2EE versions
	Support for J2EE roles
	J2EE-oriented IDE and projects
	Wizards and editors for J2EE components
	Build and archive facilities for J2EE modules
	J2EE deployment services


	Writing JSP Pages
	About JSP pages
	SilverStream eXtend Workbench support for JSP pages
	Looking at a sample JSP page

	Developing JSP pages
	Packaging the application
	Deploying the application
	Running the application

	Writing Servlets
	About servlets
	Servlet life cycle
	Servlets and JSP pages
	Servlets and J2EE archive structure

	Developing a servlet
	Creating a servlet class in Workbench
	Processing the HTTP request
	Generating the HTTP response
	Specifying initialization and cleanup methods
	Other servlet coding issues

	Packaging the application
	Deploying the application
	Running a servlet

	Writing J2EE Application Clients
	About J2EE application clients
	Client features
	Client container
	Client life cycle

	Developing a client
	Coding client classes
	Compiling client classes

	Packaging a client
	Writing the manifest file
	Writing the deployment descriptor file
	Creating the client JAR file

	Deploying a client
	Writing server-specific deployment information
	Deploying the client JAR file

	Running a client

	Writing Enterprise JavaBeans
	About EJBs
	Developing EJBs
	What Workbench does

	Packaging EJBs
	Writing the deployment descriptor
	What Workbench does
	Creating an EJB JAR file
	What Workbench does

	Deploying EJBs
	Calling EJBs
	Finding the EJB

	Tips for designing EJB applications

	Using Resource Adapters
	About resource adapters
	Deploying resource adapters
	Using resource adapters


	Part II Producing and Consuming Web Services
	Understanding Web Services
	About Web Services
	Web Service providers, consumers, and registries
	Providing Web Services
	Creating Web Service components
	Creating a WSDL file
	Publishing Web Service information

	Using Web Services
	Using Web Service registries
	About registries
	Registry data formats
	Public and local registries

	Learning more about Web Services
	Popular Web Service implementations
	Web Services and Workbench
	jBroker Web
	Web Service Wizard
	Registry Manager
	WSDL Wizard and Editor


	Generating Web Services
	Basics
	Steps
	Preparing to generate
	Generating Web Service files
	Examining the generated files
	Editing the generated files
	Using the generated files

	Choosing an implementation model
	Tie model
	Skeleton model

	Scenario: starting with a Java class
	Project setup
	Input to the wizard
	Generated files for the Web Service
	Generated files for testing
	Deployment descriptor
	Runtime test result


	Generating Web Service Consumers
	Basics
	Steps
	Preparing to generate
	Providing a WSDL file
	Example: WSDL file for Autoloan .NET Web Service
	Understanding the WSDL

	Generating the consumer files
	Examining the generated files
	About generated file names
	Additional details of generation
	Example: generated consumer files for Autoloan .NET Web Service

	Editing the generated files
	Editing the xxxClient.java file

	Using the generated files
	Running the consumer program
	From Workbench
	From a command line



	Index

