SilverStream eXtend eXtend Workbench

Development Guide

Version 4.0

June 2002

SitverStream’

Copyright ©2002 SilverStream Software, Inc. All rights reserved.
SilverStream software products are copyrighted and al rights are reserved by SilverStream Software, Inc.
SilverStream and jBroker are registered trademarks and SilverStream eXtend is atrademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such noticeson al copiesor extracts of the Software
or its documentation. You do not acquire any rights of ownership in the Software.

Third Party Software:

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant, Xaan and Xerces software islicensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xercesin source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project”, "Jakarta-Regexp", "Xerces', “Xaan”, "Ant" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE ISPROVIDED “AS 1S’ AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISSOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with thedistribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact |license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “ASI|S” AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network |s The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network |s Going,
SunWorkShop, X View, JavaWorkShop, the Java Coffee Cup logo, Visua Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM Jikes™ and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executabl e form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/devel operworks/opensource/licensel0.html. Source code for
JikesTM isavailable at <http://oss.software.ibm.com/devel operworks/opensourcel/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/devel operworks/projects/bsf.

This software contains code in executable form obtained pursuant to the Mozilla Public License, acopy of which may be obtained at
<http://www.mozilla.org/MPL/>. Source code is available at http://www.mozilla.org/rhino/downl oad.html.

This Software isderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents

About This Book ix

Purpose ix
Audience ix
Prerequisites ix
Organization ix

Chapter 1 Developing Applications with Workbench

Designing an application 1
Designing J2EE applications 1
Designing Web Services 2
Developing an application 3
Setting up your project 3
Working on components 5
Updating deployment descriptors 7
Supporting team development 7
Building the project 8
Deploying project archives 9
Deploying from Workbench 9
Deploying outside Workbench 10
Testing and debugging an application 10
Deploying your application to a test server
Running your application 11
Debugging your application 11

PART | WRITING J2EE COMPONENTS

Chapter 2 Understanding J2EE 15
What is J2EE? 15
What J2EE givesyou 16
Two kinds of applications 17
J2EE technologies 17
How are J2EE applications put together? 21
Three tiers 21

10

J2EE applications are delivered in archive files 24

Roles in J2EE development 25
Model-View-Controller application model

26

Contents

Learning more about J2EE 26
The J2EE Blueprints 27
J2EE Web sites 27
J2EE and Workbench 28
Support for J2EE versions 28
Support for J2EE roles 28
J2EE-oriented IDE and projects 28
Wizards and editors for J2EE components 29
Build and archive facilities for J2EE modules 29
J2EE deployment services 29

Chapter 3 Writing JSP Pages 31

About JSP pages 32
SilverStream eXtend Workbench support for JSP pages
Looking at a sample JSP page 34

Developing JSP pages 38

Packaging the application 40

Deploying the application 42

Running the application 46

Chapter 4 Writing Servlets 49
About servlets 49
Servlet life cycle 49
Servlets and JSP pages 51
Servlets and J2EE archive structure 51
Developing a servlet 52
Creating a servlet class in Workbench 52
Processing the HTTP request 55
Generating the HTTP response 56
Specifying initialization and cleanup methods 61
Other servlet coding issues 62
Packaging the application 62
Deploying the application 63
Running a servlet 63

Chapter 5 Writing J2EE Application Clients 65
About J2EE application clients 65
Client features 65
Client container 67
Client life cycle 67
Developing a client 68
Coding client classes 68
Compiling client classes 74

34

eXtend Workbench Development Guide

Packaging a client 75
Writing the manifest file 75
Writing the deployment descriptor file 77
Creating the client JAR file 79

Deploying a client 80
Writing server-specific deployment information 80
Deploying the client JAR file 83

Running a client 86

Chapter 6 Writing Enterprise JavaBeans 87
About EJBs 87
Developing EJBs 92
What Workbench does 94
Packaging EJBs 95
Writing the deployment descriptor 95
What Workbench does 96
Creating an EJB JAR file 96
What Workbench does 96
Deploying EJBs 97
Calling EJBs 97
Finding the EJB 97
Tips for designing EJB applications 100

Chapter 7 Using Resource Adapters 101
About resource adapters 101
Deploying resource adapters 103
Using resource adapters 104

PART Il PRODUCING AND CONSUMING WEB SERVICES

Chapter 8 Understanding Web Services 109
About Web Services 109
Web Service providers, consumers, and registries 110
Providing Web Services 111
Creating Web Service components 111
Creating a WSDL file 112
Publishing Web Service information 112
Using Web Services 113
Using Web Service registries 114
About registries 114
Registry data formats 115

Contents

Public and local registries 115
Learning more about Web Services 115
Popular Web Service implementations 116
Web Services and Workbench 116

jBroker Web 117

Web Service Wizard 117

Registry Manager 118

WSDL Wizard and Editor 118

Chapter 9 Generating Web Services 119
Basics 119
Steps 120
Preparing to generate 120
Generating Web Service files 122
Examining the generated files 125
Editing the generated files 131
Using the generated files 133
Choosing an implementation model 135
Tie model 135
Skeleton model 136
Scenario: starting with a Java class 137
Projectsetup 138
Input to the wizard 138
Generated files for the Web Service 142
Generated files for testing 154
Deployment descriptor 166
Runtime testresult 166

Chapter 10 Generating Web Service Consumers 167
Basics 167
Steps 168
Preparing to generate 168
Providing a WSDL file 169
Example: WSDL file for Autoloan .NET Web Service 170
Understanding the WSDL 173
Generating the consumer files 174
Examining the generated files 177
About generated file names 178
Additional details of generation 178
Example: generated consumer files for Autoloan .NET Web Service
178

Vi

eXtend Workbench Development Guide

Editing the generated files 195
Editing the xxxClient.java file 195
Using the generated files 197
Running the consumer program 198
From Workbench 198
From a command line 199

vii

Contents

viii

About This Book

Purpose

Thisguidetells you how to develop J2EE and Web Service applications using SilverStream
eXtend Workbench.

Audience

Thisguideisfor J2EE application programmerswho need to create, assembl e, and deploy J2EE
and Web Service components.

Prerequisites

This guide assumesthat you are familiar with the Java programming language, the Internet, and
Web applications. You can find learning materials on these topics readily available from a
variety of public and commercial sources.

Organization

Here'sasummary of the topicsyou'll find in this guide:

Topic Description

Developing Applications with Examines the process of developing applicationsin

Workbench Workbench and discusses Workbench support for J2EE
and Web Services

Writing J2EE Components Provides an overview of J2EE technologies and

explores how Workbench helps you develop J2EE
components (JSP pages, servlets, application clients,
Enterprise JavaBeans) and use supporting services
(resource adapters)

Producing and Consuming Web | Provides an overview of Web Service technologies and
Services explores how Workbench helps you create, publish,
find, and consume Web Service components

1 Developing Applications with Workbench

This chapter explores the life cycle of aJ2EE or Web Service application. It looks at each
phase of the devel opment process and explains how SilverStream eXtend Workbench can help
you along the way. The process consists of :

1. Designing an application

2. Developing an application

3. Building the project

4. Deploying project archives

5. Testing and debugging an application

Designing an application

A comprehensive design phaseis strongly recommended to help you make appropriate choices
in architecture and technol ogies, ensuring success for your project. Thisincludes:

« Designing J2EE applications
» Designing Web Services

You can design your application manually or with automated design and modeling tools, then
implement that design using Workbench.

Designing J2EE applications

When you design an application for a J2EE (Java 2 Platform, Enterprise Edition) server, give
careful consideration to the programming model it should follow. Good models, such asthe

M odel-View-Controller (MVC) architecture, are available for handling the potential
complexity of J2EE applications. The Jakarta Struts project isapopular MV C implementation.

Your application design should al so specify which J2EE technol ogies you need. These may
include:

e Component technologies such as application clients, servlets, JavaServer Pages (JSP
pages), and Enterprise JavaBeans (EJBS)

» Servicetechnologies such as Java Naming and Directory Interface (JNDI), Java Database
Connectivity (JDBC), Connector architecture (resource adapters), Java Transaction AP
(JTA), Java Authentication and Authorization Service (JAAS), JavaMail, Java Messaging
Service (IMS), Java API for XML Parsing (JAXP), and others

1 Developing Applications with Workbench

L For more on J2EE technologies, see Chapter 2, “Understanding J2EE” .

L For details on J2EE application design, consult the following table:

To learn about

See

Designing J2EE applications

Designing Enterprise Applications with the Java
2 Platform, Enterprise Edition, from the Sun
Blueprints at java.sun.com/blueprints

Using the Struts implementation of the
MV C architecture

jakarta.apache.org/struts

Best practices in J2EE development
recommended by SilverStream

devcenter.silverstream.com

Designing Web Services

The design of aWeb Service involves several standard technologies, including:

» Simple Object Access Protocol (SOAP), an XML -based messaging protocol that enables
software components to communicate regardless of development platform and source

language differences

* Web Services Description Language (WSDL), an XML-based language that represents

characteristics of aWeb Service

» Universal Description, Discovery, and Integration (UDDI) registries, which enable you
to publish to and make inquiries of a central, network-accessible repository of information

about businesses and Web Services

Web Service providers must ensure that their services are highly available, reliable, and
scalable, typically through careful hardware and software design choices. Web Services created
in Workbench are implemented using J2EE technologies, so J2EE best practices apply to their

design aswell.

L1 For more on Web Service technologies, see Chapter 8, “Understanding Web Services'.

Designing an application

new http://java.sun.com/blueprints
new http://jakarta.apache.org/struts/
new http://devcenter.silverstream.com

eXtend Workbench Development Guide

[N

For details on Web Service design, consult the following table:

To learn about

See

Designing applications that implement
Web Services

Chapter 9, “Generating Web Services’

Designing applicationsthat access Web
Services

Chapter 10, “Generating Web Service
Consumers’

Developi

ng an application

Using Workbench to devel op a J2EE application or Web Service involves:

1
2
3.
4

Setting up your project

Working on components
Updating deployment descriptors
Supporting team devel opment

Setting up your project

In Workbench, a project typically represents a J2EE module that you want to build. You can
create Workbench projects that build the following J2EE ar chives:

Enterprise archive (EAR)
Web archive (WAR)
Resource adapter archive (RAR)

Enterprise JavaBean archive (EJB JAR)

Application client archive (client JAR)

Javaclass archive (JAR)

These Workbench projects support the J2EE component model of development. This enables
you to create, change, and build small parts of your enterprise application or the entire
application.

Developing an application

1 Developing Applications with Workbench

Basic steps Thetypical process of setting up a J2EE development project in Workbench
involves:

1. Organizing your source directories and files on the file system

2. Creating projects and subprojects in Workbench for the J2EE archives you need

3. Adding existing source directories and files to your projectsin Workbench

For example, you might create asingle, top-level project that represents an enterprise
application. You might then create subprojects for the various modules that make up the

application, including Web modules for the user interface, EJB modules for the businesslogic
and database access, and so on.

L) For details on projects and subprojects in Workbench, see Projects and Archivesin the
Tools Guide.

Setting up a Web Service project In Workbench, Web Services are deployed as Web
archives (WARS). To set up aWeb Service project, you follow the same steps as when creating
aWAR project.

Organizing your source directories and files

Your initial setup steps depend on whether you’ re creating a project from scratch or importing
existing J2EE source into Workbench:

If you're starting
with Do this

No source Create a directory tree on thefile system for your project. Often this
directoriesor files consists of asingletop-level directory for the application and
subdirectories to group components (JSP pages, servlets, EIBs, Java
classfiles, and so on.). Another possible approach isto store
component directoriesindependently (in case they’reused in
multiple applications).

Existing source Make sure the directory structure on your file system maps well to
directoriesand files | the J2EE modules for your project. This helps you import source
into Workbench (because you can simply import entire directories).
If your file system is not organized properly, you may have to
import filesindividually (which makes project maintenance harder).

4 Developing an application

toolsProjects.html

eXtend Workbench Development Guide

Creating projects and subprojects

Workbench provides a New Project Wizard that helps you create a project for each type of
archive you want to build. For example, if you' re creating an enterprise archive, you can select
EAR asthe project type then specify the project name, file system location, and J2EE version.
Workbench creates a SilverStream project file (with SPF extension) in the project location.

Once you create projectsfor your application’s J2EE modules (WARs, RARs, EJB JARs, client
JARS), you can add them to the EAR project as subprojects.

L) For more information on organizing projects and subprojects, see Organizing projectsin
the Tools Guide.

L To learn about choosing the J2EE version for a project, see the chapter on how to handle
J2EE versionsin Getting Sarted.

Adding existing source directories and files to your projects

Once your application architecture is represented in Workbench projects and subprojects, you
can add any existing source directories and files to them. For example, you may aready have
the Java classes for some application components. You might have some standard resources
(such as graphics) that you’ re reusing from other applications.

Wherever possible, add the directory that contains the files rather than the individual files. If
you add adirectory to a project, any filesin that directory are automatically included in the
project. If you specify individual files, you must add any new files created in that directory to
the project manually.

L For moreinformation on adding directories and files to a project, see Populating projects
in the Tools Guide.

Working on components

Workbench provides component wizards and sour ce editor s to help you create and maintain
J2EE components for your projects. Because Workbench adheres to J2EE standards, you also
have the option of using any third-party tool to develop components for a Workbench project.

Developing an application 5

toolsProjects.html#Organizingprojects
toolsProjects.html#Populatingprojects
gsJ2EEVersions.html
gsJ2EEVersions.html

1 Developing Applications with Workbench

Using component wizards

Whenever you request a new filein Workbench, awizard helps you create the kind of J2EE
component or other item you want. Workbench provideswizardsfor JSP pagesand tag libraries,
servlets, EJBs, JavaBeans and Java classes, XML files, WSDL files, text files, Web Services,
and more. The Web Service Wizard lets you create Web Services (SOAP-enabled serviets and
supporting classes for a WAR project) or Web Service consumers (classes for accessing Web
Services).

Each wizard collects information about the requested item, creates files and directories for it
(including Java source where possible), and adds it to the appropriate project.

L For more information, see Creating source files and Component Wizardsin the Tools
Guide.

Using source editors

Workbench provides a variety of editorsyou can use to further develop the source filesin your

projects:

« JavaEditor

e JSP Editor

e HTML Editor
e Text Editor
XML Editor

+ WSDL Editor
» Deployment Descriptor Editor
e Deployment Plan Editor

When you open afile, Workbench automatically invokes the appropriate editor for that filetype.
Editor features include archive-awareness, various coding conveniences, and version control
access.

L) For more information on using these editors, see Source Editorsin the Tools Guide.

L Tolearn about version control access, see the chapter on Workbench basics in the Tools
Guide.

6 Developing an application

toolsProjects.html#Creatingsourcefiles
toolsTextEditor.html
toolsBasics.html#Usingversioncontrol
toolsWebServiceWizard.html
toolsComponentWizards.html

eXtend Workbench Development Guide

Using other tools

Workbench supports any J2EE module or component, regardless of how it was created. This
means you can develop modules and components using your favorite third-party tools (such as
another I DE or editor) then import them intoWorkbench (as described in “ Adding existing
source directories and files to your projects’ on page 5).

Updating deployment descriptors

Workbench generates an appropriate deployment descriptor for any J2EE project or subproject
you create. When you modify the contents of a project, Workbench automatically updates the
corresponding deployment descriptor.

Workbench provides a Deployment Descriptor Editor that enablesyou to manually edit a
deployment descriptor file. This editor offers both graphical and text-based views of the
deployment descriptor information.

L) See Deployment Descriptor Editor in the Tools Guide.

Supporting team development

Because Workbench maintains projects on your file system, it’s easy to share work among
multiple devel opers. This section provides some tips on making the process flow smoothly:

» Keeping project files current
e Using relative paths

Keeping project files current

When you make changes to a project (such as adding files, directories, components, or
modules), Workbench updates the project’s SPF and deployment descriptor files as needed.
When multiple devel opers work on the same set of project files, there are several ramifications
of such changes. Following good source control processes usually ensures that changes in the
project structure and content are handled appropriately.

You must have write access to the appropriate project fileswhen making project-level changes.
Typically, this means checking out SPF, deployment descriptor, and component filesfrom a
version control system. To share project-level changes with others on your team, you must
check in your project files. Other members of the team must update their work areas to reflect
the changed project structure and content.

Developing an application 7

toolsDeployDescEditor.html

1 Developing Applications with Workbench

Using relative paths

When creating components or modules in Workbench, you specify paths for archives and
directories. When multiple devel opers work on a project, you may want to specify these paths
relative to the project directory.

The advantage of using relative pathsisthat project files don't rely on drive letters or other
absol ute path structures (which can be problematic acrossfile systems). For example, aZ: drive
mapped on your computer might not exist on another devel oper’s computer. Unless you can
guarantee that all devel opers accessing your project have some known set of drives, you should
use relative paths.

The disadvantage is that in deep directory structures, relative paths are sometimes difficult to
decipher (for example, afile might be specified as ..\..\..\..\beans\cl asses\checker.cl ass).

Building the project
Workbench gives you flexibility in building project files and creating J2EE archives. You can:

» Compilejust the currently open Java file without affecting the rest of your project

e Build an entire project (and its subprojects) with the option of compiling all classes or
only those that need it

* Generatethearchivefor aproject (and its subprojects)
You can perform build operations from the Workbench IDE or from the command line. In either

case, your project settings are used to specify build details (such as where to generate classfiles
and archives).

L) For more information, see Compiling, building, and archiving in the Tools Guide.

Validating project archives Workbench also enables you to validate the generated
archive for aproject (and its subprojects). Validation is a good check to perform before
deployment. It makes sure the archive's deployment descriptor agrees with the appropriate
J2EE deployment descriptor DTD and with the archive’s content.

L For more information, see Validating archives in the Tools Guide.

8 Building the project

toolsProjects.html#Compiling,building,andarchiving
toolsProjects.html#Validatingarchives

eXtend Workbench Development Guide

Deploying project archives

Once you generate the archive for aWorkbench project, you can deploy it to a J2EE server. You
have a choice of deployment approaches:

Deploying from Workbench
Deploying outside Workbench

Deploying from Workbench

Workbench provides built-in support for deployment to avariety of J2EE servers:

BEA WebL ogic Server

IBM WebSphere Application Server
Jakarta Tomcat

Oracledi Application Server

SilverStream eXtend Application Server
Sun J2EE Reference |mplementation Server

Basic steps To deploy aproject archive from Workbench to one of these servers, you:

1.
2.

4.
RN

Define aserver profile that specifies configuration details about your target J2EE server.

Prepare server-specific deployment infor mation that describes how the archive should
run on your target J2EE server.

Thisinformation istypically expressed in XML, similar to the standard J2EE deployment
descriptors. For example, when deploying to a SilverStream server, you provide an XML
file called adeployment plan (which you can edit in the Deployment Plan Editor
included in Workbench).

Specify deployment settings that tell Workbench how and where to deploy.

These settingsinclude arapid deployment option that's helpful during the development
phase to quickly deploy and test changes you make.

Use the Project>Deploy Archive command to start the deployment.

To learn more about deploying from Workbench, see Archive Deployment in the Tools

Guide.

Deploying project archives

toolsDeployment.html

1 Developing Applications with Workbench

Deploying outside Workbench

Alternatively, you can take archives generated in Workbench and deploy them via other J2EE-
compatible tools (such as the deployment facilities provided by your J2EE server). This
approach should enable you to deploy to any standard J2EE server.

Testing and debugging an application

Before you can release a J2EE or Web Service application for production use, you must make
sureit operates properly and with acceptable performance. Your quality control process should
include:

« Deploying your application to a test server

* Running your application

» Debugging your application

Deploying your application to a test server

By deploying to atest server, you can discover application problemswithout exposing end users
or other groups to them. Here are some common test server scenarios:

In this scenario You might
You are unit testing your own Deploy to a J2EE server on your local machine
development work

You are integrating your development Set up an integration test machine for the team

work with the work of your team and deploy to a J2EE server on it
Your team is preparing to move its Set up a preproduction staging machine for
development work into production quality assurance and deploy to a J2EE server on

it

Wherever possible, test environments shoul d approximate the production environment in which
your applicationwill run. You can facilitate deployment to a set of test serversby defining server
profiles for them in Workbench.

L Seethe Server profile discussion in the Tools Guide.

10

Testing and debugging an application

toolsBasics.html#Serverprofile

eXtend Workbench Development Guide

Running your application

In many cases, you can test how a deployed J2EE application runs by using a Web browser to
reguest aparticular URL from your J2EE server. Thisapproach applieswhen you’ retesting JSP
pages and servlets, aswell as other components or services that they then access (such as Web
Services, EJBs, resource adapters, tag libraries, filters, JavaBeans, and supporting classes).

Testing a deployed J2EE application client requires a different approach. This essentially
involvesinvoking the client container and asking it to start the client (although the exact process
depends on your J2EE server’simplementation of the client container).

L For moreinformation on running a specific type of J2EE component, see the appropriate
chapter in Part I, “Writing J2EE Components”.

L) For details on testing Web Services or Web Service consumers, see the appropriate
chapter in Part I1, “Producing and Consuming Web Services’.

Debugging your application

Once you' re running an application, you can use debugging tools to control program execution
and monitor program status. This enables you to find and fix runtime errors. Workbench
provides a Debugger that you can launch to debug J2EE and other Java applications (including
client-side or server-side objects, on alocal or remote machine).

L For more information, see the Debugger chapter in the Tools Guide.

Testing and debugging an application 11

toolsDebugger.html

1 Developing Applications with Workbench

12

Testing and debugging an application

Part |

Writing J2EE Components

A primer on J2EE components and supporting services that prepares you for
creating and using them in Workbench

¢ Chapter 2, “Understanding J2EE”

e Chapter 3, “Writing JSP Pages”

e Chapter 4, “Writing Servlets”

e Chapter 5, “Writing J2EE Application Clients”
e Chapter 6, “Writing Enterprise JavaBeans”

e Chapter 7, “Using Resource Adapters”

2 Understanding J2EE

The move of enterprise computing to the Internet and World Wide Web poses challenges to
application providers. More than ever, enterprise applications must be responsive, easily
updatable, distributed, scalable, cross-platform, and integrated with a variety of existing back-
end information systems. Sun’s Java 2, Enter prise Edition (J2EE) addresses these challenges.

This chapter provides a concise overview of J2EE and introduces the J2EE features of
SilverStream eXtend Workbench. Topics include;

* What is J2EE?

» How are J2EE applications put together?
e Learning more about J2EE

e J2EE and Workbench

What is J2EE?

J2EE isastandard that provides a component-based approach to designing, implementing, and
deploying multitier enterprise-level applications. With J2EE, you get reusability of components,
portability, transaction support, a unified security model, and more.

This section explores the basics of J2EE, including:
* What J2EE givesyou

« Two kinds of applications
» J2EE technologies

15

2 Understanding J2EE

What J2EE gives you

The J2EE platform provides the following benefits:

J2EE applications have a standar dized, component-based architecture

J2EE applications consist of components (including servlets, JavaServer Pages, and
Enterprise JavaBeans) that are bundled into modules. Because J2EE applications are
component-based, you can easily reuse components in multiple applications, saving time
and effort and enabling you to quickly deliver applications.

This modular development model also supports clear division of labor across
development, assembly, and deployment of applications so you can best leverage the skills
of individuals at your site.

J2EE applications are distributed and multitier

J2EE provides server-side and client-side support for enterprise applications. J2EE
applications present the user interface on the client (typically a Web browser), perform
their business logic and other services on the application server in the middletier, and are
connected to enterprise information systems on the back end (these three tiers are
described in alittle more detail later). With this architecture, functionality exists on the
most appropriate platform.

J2EE applications are standar ds-based and portable

J2EE defines standard APIs, which all J2EE-compatible vendors must support. This
ensures that your J2EE development is not tied to a particular vendor’s tools or server.

This means that you have your choice of tools, components, and servers. Because J2EE
components use standard APIs, you can develop them in any J2EE devel opment tool
(including Workbench), develop components or purchase them from a component
provider, and deploy them on any J2EE-compatible server. You pick the tools,
components, and server that make the most sense for you.

J2EE applications are scalable

J2EE applications run in containers, which are part of a J2EE server. These containers can
themselves be designed to be scalable, so scalability can be handled by the J2EE server
provider without any effort from the application devel oper.

J2EE applications can be easily integrated with back-end information systems

The J2EE platform provides standard APIs for accessing a variety of enterprise
information systems (EISs), including relational database management systems, e-mail
systems, and CORBA systems. For broader connectivity, J2EE includes the Connector
architecture, which defines a standard means for accessing heterogeneous EI Ss.

16

What is J2EE?

eXtend Workbench Development Guide

Two kinds of applications

There are two kinds of J2EE applications:

* Web applications use Web browsers as clients and download static HTML, dynamic
HTML, or XML generated by JavaServer Pages or servlets on the server.

* Non-Web applications use a standalone client (usually written in Java) or an appl et
embedded in a nonbrowser appliance, such asacell phone.

The J2EE Blueprints document from Sun recommends using Web applications as much as
possible. Web browsers are standard and you don’t have to deploy client software onto user
desktops. When used with supporting technologies (such as JavaScript, DHTML, and
XML/XLS), Web applications can be made highly interactive. And browser technology
continues to advance, making browsers ever more attractive as the client environment.

J2EE technologies

J2EE technol ogies can be divided into these categories:

e J2EE components
* J2EE services

J2EE components
J2EE includes the following kinds of components:

* Web components
e Enterprise JavaBean components
» Client components

It al so supports JavaBean components, which are part of J2SE (Java 2, Standard Edition).

What is J2EE? 17

2 Understanding J2EE

Web components

Web applications consist of Web components and other resources bundled together. There are
two major kinds of Web components:

Web component

Description

Servlets

Servlets extend the functionality of a Web server, much like Common
Gateway Interface (CGI) programs. Servlets are a better choice
because, unlike CGI programs, they are portable (written in Java),
scale well, and are easy to maintain.

Servlets describe how to process an HTTP request and generate a
response. You can use them to deliver dynamic content.

JavaServer Pages
(ISP pages)

Like servlets, JSP pages describe how to process and respond to
HTTP requests. Unlike servlets, JSP pages are text-based documents
that include a combination of HTML and JSP tags, Java code, and
other information.

JSP pages and servlets both solve the same problem, but JSP pages
have the advantage of separating presentation (expressed in HTML)
from application logic (coded in Java). With servlets, the presentation
and application logic are mixed together in the same Javafile. By
using JSP pages, you can have your Ul devel opers working on
presentation of information, while your Java programmers are
separately developing the application’slogic.

You should use JSP pages in most of your Web applications.

Web applications can also contain some other supporting components:

» Filterscan be used to modify the data or headers of an incoming request, or of an

outgoing response.

« Event listeners can be used to monitor the servlet context or HTTP session for state
changes and then perform any appropriate processing.

L For more on Web components, see Chapter 3, “Writing JSP Pages’ and Chapter 4,

“Writing Servlets’.

18

What is J2EE?

eXtend Workbench Development Guide

Enterprise JavaBean components

The businesslogic of a 2EE application resides in Enterprise JavaBeans (EJBs). EJBs are the
layer between your application’s presentation (viewed in a Web browser) and the datain your
back-end enterprise information systems. There are three kinds of EJB components:

EJB component

Description

Session beans

Session beans implement logic that is specific to one client session.
In a shopping cart application, for example, you would maintain a
client's state (such astheitemsin aclient’s shopping cart) in a
session bean. Session beans are not shared across clients.

Entity beans

Entity beans represent persistent business data, such asarow in a
relational database. Entity beans are object models—they
encapsulate the data along with the methods that act upon the data.
Entity beans can be shared across clients and persist aslong as the
data they represent persists.

M essage-driven
beans

M essage-driven beans are statel ess EJBs invoked asynchronously by
the arrival of aJMS (Java Messaging Service) message. After
receiving a message, a message-driven bean performs business logic
to process it and then waits for the next message. A client accesses a
message-driven bean by sending messages to an appropriate IMS
gueue or topic.

L For more on EJB components, see Chapter 6, “Writing Enterprise JavaBeans’ .

Client components

While most J2EE applications use a standard Web browser as the primary or sole client, 2EE
also supports a couple of clients that execute a Java Virtual Machine:

e Applets

e Standalone Java application clients

L For more on client components, see Chapter 5, “Writing J2EE Application Clients’.

What is J2EE?

19

2 Understanding J2EE

J2EE services

J2EE provides awide range of standard services, including the following:

Service

Description

Deployment

J2EE applications are deployed as a set of modules. Each module
contains adeployment descriptor that specifies how to assemble and
deploy the module in aruntime environment. Customized information
can be provided at both assembly time and deployment time without
the need to recompile the application objects.

L To learn who performs deployment tasks, see “Rolesin J2EE
development” on page 25.

Naming

Because J2EE applications are distributed, they need away to look up
and access remote objects and resources, such as EJBs and data
sources. Thisis supported viathe Java Naming and Directory
Interface (JNDI).

Data access

J2EE supports both declarative and programmatic data access. It
provides the Java Database Connectivity API (JDBC) for
connectivity with relational database systems. It provides the
Connector architecture (resource adapters) to give applications
uniform access to various kinds of enterprise information systems.

For more on the Connector architecture, see Chapter 7, “Using
Resource Adapters’.

Transaction

J2EE supports both declarative and programmatic transactions. It
provides the Java Transaction API (JTA) to handle transaction
processing.

Security

J2EE supports both declarative and programmatic security. It provides
the Java Authentication and Authorization Service (JAAS) to
authenticate and enforce access controls upon users.

Messaging

J2EE provides JavaMail and the Java M essaging Service (JMS) to
asynchronously send and receive messages. JavaMail isfor e-mail
messages. IM S isfor program-to-program messages.

20

What is J2EE?

eXtend Workbench Development Guide

Service

Description

Communication

J2EE supports the following protocols:

¢ Internet protocols—These include TCP/IR, HTTP 1.0, and SSL
3.0 (for secure communication)

* RMI protocols—Remote Method Invocation is a set of APIs used
by Java distributed applications, including EJBs

¢ OMG protocols—Object Management Group protocols allow
J2EE applications to communicate with remote CORBA objects

File support

J2EE implementations must support the following file types: HTML
3.2 files, GIF and JPEG files, JAR files, Java CLASS files, and XML
files. XML manipulation is supported viathe Java APl for XML
Parsing (JAXP).

How are J2EE applications put together?

This section takes a closer look at the implementation of J2EE applications:

e Threetiers

e J2EE applications are delivered in archivefiles
* Rolesin J2EE development
» Model-View-Controller application model

Three tiers

J2EE applications run on threetiers:

Tier

Description

Client tier

Web browsers or standalone application clients. The J2EE
Blueprints document recommends using Web browsers as clients
whenever possible.

How are J2EE applications put together? 21

2 Understanding J2EE

Tier

Description

Middletier

Consists of two subtiers:

* Web tier. The J2EE Blueprints document recommends using
JSP pages (with supporting servlets) to provide the core of the
user interface for your application.

« EJB tier (or businesstier). Thisiswhere the business logic,
including data access, resides.

Enterprise Information
System tier

Back-end databases and other information sources.

22

How are J2EE applications put together?

eXtend Workbench Development Guide

Here'sasimplified illustration of these tiers:

Wweb

JZ2EE server

¥

browser

Web container

JSF pages

Standalone

client

4

- Serviet -

e

&

¥
o

EJB container

Enterprise data

Client tier

Containers At the heart of the J2EE component model are containers. Containers are the

Middle tier

Enterprise Information System tier

runtime environments implemented by J2EE platform providers. Containers provide life-cycle

management and other services so that application developers can concentrate on the
presentation and business logic of their applications.

For example, Web container s (which primarily contain JSP pages and servlets) provide support

for receiving and responding to client requests. EJB container s provide built-in support for
transaction management (among other things). Containers also provide built-in support for
accessing enterprise information systems, such as supporting JDBC to access rel ational

databases.

The Web and EJB containers run within the J2EE-compatible application server.

How are J2EE applications put together?

23

2 Understanding J2EE

J2EE applications are delivered in archive files

A J2EE application consists of one or more J2EE modul es and one deployment descriptor,
packaged in an enter prise archive (EAR) file, which isa JAR file with the .EAR extension:

JZEE application

Enterprise archive (EAR) filg

EIB JAR file

EIB JAR file

Application
client JAR file

RAR file

JZEE deployrment descriptor

Deployment descriptors A deployment descriptor isan XML document that describes
how to assemble and deploy a J2EE application or modul e in the runtime environment.

J2EE modules J2EE modules consist of one or more J2EE components of the same type
and one component deployment descriptor. There are four kinds of J2EE modules:

Module Description

Web modules Consist of JSP files, classesfor servliets, HTML or XML files, a
deployment descriptor, and graphicsfiles. Stored in aWeb archive
(WAR) file.

EJB modules Consist of EJB classes and interfaces, plus a deployment descriptor.

Stored in an EJB archive (JAR) file.

Application client
modules

Consist of classfiles and a deployment descriptor. Stored in a client
archive (JAR) file.

Resource adapter
modules

Consist of classfiles and a deployment descriptor. Stored in a
resour ce adapter archive (RAR) file.

24

How are J2EE applications put together?

eXtend Workbench Development Guide

Roles in J2EE development

One strength of the J2EE platform isthat the implementation processis divided naturally into
roles, which can be performed by different individual s with different skills.

Because of this role-based development, you can use your staff efficiently. You can have your
developers do what they do best: code high-performing applications, without worrying about
the details of the Ul. And you can have your designers do what they do best: design attractive,
easy-to-use interfaces, without having to be involved in the application’s coding.

Here are the J2EE roles:

Role

Function

J2EE Product Provider

Provides the J2EE platform, including the J2EE-compatible
server that supports your applications.

Application Component
Provider

Creates Web components (JSP pages and servlets) and EJBs
for usein J2EE applications. You can develop your own
components or purchase components from others.

Application Assembler

Takes application components from component providers and
assembl es them into an enterprise archive (EAR) file.

During this process, the assembler verifies that the
components are defined properly to work together. The
assembl er also creates or modifies the application’s
deployment descriptor.

Deployer

Deploys the application in the runtime environment (the J2EE
server). Defines final security, transaction, and other
mappings as needed.

System Administrator

Configures and administers the runtime environment.

Tool Provider

Provides J2EE devel opment, assembly, and deployment tools.
Workbench is an example of a J2EE tool set.

How are J2EE applications put together? 25

2 Understanding J2EE

Model-View-Controller application model

J2EE applications are best devel oped using the Model-View-Controller (MV C) application
model, which consists of the following three elements:

Element Description

Model Represents the application data and the business rules that manage the
data. In J2EE applications, the model istypically represented by EJBs.

View Renders the content of the model to the user of the application. In 2EE
applications, the view istypically provided by JSP pages.

Controller Defines how the application works. It maps user actions (such as button
clicks) to operations performed by the model (such as updating
information in a database). The controller mediates between the view and
the model.

In J2EE applications, the controller istypically aservlet, JavaBean, or
session bean.

Using the MV C architecture, you can separate the data, display, and flow of an application,
allowing for greater flexibility and ease of reuse. MV C is also avery good way to develop
applications that support multiple presentations of the same data.

Sample MVC applications The sample application provided with the J2EE Blueprints
uses the MV C model. The Workbench Web application tutorial also uses MV C, implemented
viathe Struts framework from the Jakarta project.

Learning more about J2EE
This section lists other J2EE learning resources:

e The J2EE Blueprints
e J2EE Web sites

26 Learning more about J2EE

tutallAbout.html
new http://java.sun.com/blueprints

eXtend Workbench Development Guide

The J2EE Blueprints

The J2EE Blueprints from Sun include the following learning materialsto help you gain J2EE
expertise:
» Thebook Designing Enterprise Applications for the Java 2 Platform, Enterprise Edition

Thisisone of the best resources for learning about how to build J2EE applications and use
J2EE technologies. It aso illustrates best practices via the accompanying sample
application.

» The sample application Java Pet Store

Thisisan e-commerce J2EE application presented through a standard Web browser. It's
an excellent demonstration of how to build J2EE applications using the MV C architecture,
a shopping cart metaphor, and many J2EE features (including JSP pages and EJBS).

These materials are available from the Sun Blueprints Web site (listed below). The book isalso
purchasable in hardcopy from major bookstores.

J2EE Web sites
Here are some J2EE Web sites that you may find helpful:

Site URL
J2EE home page java.sun.com/j2ee
J2EE downloads java.sun.com/j2ee/download.html

J2EE documentation | java.sun.com/j2ee/docs.html

J2EE Blueprints java.sun.com/blueprints

Learning more about J2EE 27

new http://java.sun.com/j2ee
new http://java.sun.com/blueprints
new http://java.sun.com/j2ee/docs.html
new http://java.sun.com/j2ee/download.html

2 Understanding J2EE

J2EE and Workbench

SilverStream eXtend Workbench provides all the capabilities you need to create, organize,
maintain, and deploy J2EE applications:

» Support for J2EE versions

e Support for J2EE roles

* J2EE-oriented IDE and projects

e Wizards and editors for J2EE components

» Build and archive facilities for J2EE modules

e J2EE deployment services

Support for J2EE versions

Workbench provides built-in support for multiple versions of J2EE, including 1.2 and 1.3. It
helps you handle version-related tasks throughout the life cycle of a project, including
development, migration, and deployment.

L1 Seethe chapter on how to handle J2EE versions in Getting Sarted.

Support for J2EE roles

Workbench maintains a separation of development, assembly, and deployment operations to
support the roles and responsibilities described in the J2EE specification.

J2EE-oriented IDE and projects

Workbench provides a graphical IDE that helps you create, organize, and maintain J2EE
applications at the project, archive, and source (file system) levels. You can easily see how the
source directories and files for a J2EE project are mapped into the resulting archive.

Workbench gives you a natural, consistent approach to devel oping J2EE components and
assembling them into J2EE modul es and applications.

L) Seethe chapter on projects and archives in the Tools Guide.

28

J2EE and Workbench

gsJ2EEVersions.html
toolsProjects.html

eXtend Workbench Development Guide

Wizards and editors for J2EE components
Workbench provides automated wizards that hel p you create well-structured J2EE components,
including:
e JSPpagesandtag libraries
* Servlets
* EJBs
» JavaBeans and Java classes

Workbench al so provides source editors and debugging tools that simplify maintaining these
components.

See the chapter on Workbench basicsin the Tools Guide.

Build and archive facilities for J2EE modules

Workbench provides automated compiling, building, and archiving functionsthat enable you to
produce J2EE modules such as:

e Enterprise archives (EARS)

* Web archives (WARs)

e EJB archives (EJB JARS)

» Application client archives (client JARs or CARS)

» Resource adapter archives (RARS)

» Javaclassarchives (JARS)

L) Seethe chapter on projects and archives in the Tools Guide.

J2EE deployment services

Workbench provides automated wizards that create and update deployment descriptorsfor your
J2EE modules and applications. There are also editors for any manual changes you need to
make.

Workbench provides built-in support for deployment to avariety of J2EE servers. Alternatively,
you can take archives generated in Workbench and deploy them via other 2EE-compatible
tools (such as the deployment facilities provided by your J2EE server).

See the chapter on archive deployment in the Tools Guide.

J2EE and Workbench 29

toolsBasics.html
toolsProjects.html
toolsDeployment.html

2 Understanding J2EE

30

J2EE and Workbench

Writing JSP Pages

JavaServer Pages (JSP) technology provides a standard way to generate dynamic content and

incorporate that content in Web-based applications. This chapter introduces you to JSP. It

coversthe following topics:

About JSP pages
Developing JSP pages
Packaging the application
Deploying the application
Running the application

31

3 Writing JSP Pages

About JSP pages

JSP pages are an important part of Sun’s J2EE platform, which recommends using JSP pagesto
provide the core of the user interface of your application. JSP pages are typically used in Web-
based J2EE applications (Web applications). A Web application includes JSP pages, servlets,
JavaBeans, utility classes, images, and so on that are packaged in an archive called a Web
archive (WAR) file. These applications are accessed by browser clients.

The following diagram shows how JSP pages and servlets are part of J2EE’s middletier,
sometimes called the Web tier.

JZ2EE server

web container

JSP page
Wweb . - -
brawser [T ° " -
-

EJB container Enterprise data

A

Client tier Middle tier Enterprise Informatior
. : System tier

JSP pages simplify the process of creating dynamic Web content, because they combine the
power of Javawith the ease of use of a Web markup language. JSP pages:
e Describe how to process and respond to HTTP requests

» Aretext-based documents that include a combination of HTML and JSP tags, Java code,
and other information

e Separate presentation (expressed in HTML) from application logic, coded in Java

» Allow you to extend the capabilities of a JSP page by including calls to JavaBeans
components as well as embedded Java code fragments

32

About JSP pages

eXtend Workbench Development Guide

e Can also contain custom tags defined in tag libraries

If none of the standard JSP tags provides the functionality you need for your application,
you can write your own application-specific tag library and use custom tags defined by
thislibrary inyour pages. Alternatively, you can use atag library provided by athird party,
such as the Jakarta project.

» Canact asafront end to Enterprise JavaBeans

About JSP pages and servlets JSP pages use the underlying servlet technology of the
application server. When a JSP pageis deployed to an application server, it istranslated into a
servlet, which isthen compiled for execution. So how do servlets and JSP pages differ?

Servlets extend the functionality of aWeb server, much like Common Gateway Interface (CGI)
programs. Servletsare abetter choicethan CGI programs—because, unlike CGI programs, they
are portable (because they are written in Java), scale well, and are easy to maintain. Servlets
describe how to process an HTTP request and generate aresponse. You can use them to deliver
dynamic content.

Likeservlets, JSP pages describe how to process and respond to HT TP requests. Unlike servlets,
which are written in Java, JSP pages are text-based documents that include a combination of
HTML and JSP tags, Java code, and other information.

JSP pages and servlets both solve the same problem, but JSP pages have the advantage of
separating presentation (expressed in HTML) from application logic, coded in Java. With
servlets, the presentation and application logic are mixed together in the same Javafile. So by
using JSP pages, you can have your Ul devel opers working on presentation of information,
while your Java programmers are separately developing the application’slogic.

About JSP pages 33

new http://jakarta.apache.org

3 Writing JSP Pages

SilverStream eXtend Workbench support for JSP pages

SilverStream eXtend Workbench providestools that help you develop and deploy JSP pages. It

specifically provides:

Workbench tool Description

JSP Wizard Lets you quickly specify avariety of attributes for a new
JSP page and adds your JSP page to an open project
For information on the JSP Wizard, see the chapter on
component wizards in the Tools Guide

Tag Handler Wizard Letsyou quickly create atag handler classesand TLDsfor

custom JSP tags

For information on the Tag Handler Wizard, see the
chapter on component wizards in the Tools Guide

Deployment Descriptor Editor

Lets you create and populate J2EE-compatible
deployment descriptors

Deployment Plan Editor

Lets you create and popul ate a deployment plan for
deploying J2EE-compatible componentsto a SilverStream
eXtend Application Server

Deployment tool

Allowsyou to deploy J2EE-compatible archive files (such
asWARYs) to avariety of J2EE servers. You can deploy the
archives to servers that support J2EE 1.2 and 1.3.

Workbench supports devel oping both 2.2 and 2.3 WARS. For making decisions about what
WAR version you write to, see the chapter on J2EE versions.

L For more information and to access the specifications, see the Sun Java Web site at
http://java.sun.com/j2ee/docs.html.

Looking at a sample JSP page

Hereis asample JSP page:

<htmls>

<jsp:useBean id="clock” scope="page” class="util.JspCalendar”/>
<jsp:useBean id="sgl” scope="request” class="util.JspSQL”/>

<%@ taglib uri="SampleTags” prefix="SampleTags” %>

34

About JSP pages

toolsComponentWizards.html
new http://java.sun.com/j2ee/docs.html
toolsComponentWizards.html
gsJ2EEVersions.html

eXtend Workbench Development Guide

<h4>Use a tag library</h4>
<SampleTags:SimpleTag/>

<h4>Use the implicit Request object</h4>

Server name:

request .getServerName (
request .getServerPort ()
request.getMethod () %>

Server port:
<1i>HTTP method:
</uls>

AN AN A
o° o o°
1]

<h4>Use a Bean to access date information</h4s>
<uls>

<lis>Day of month: is <jsp:getProperty name="clock” property="dayOfMonth”/>

Another form of Day of month: is <%=clock.getDayOfMonth() %>
Year: is <jsp:getProperty name="clock” property="year”/>
<lis>Month: is <jsp:getProperty name="clock” property="month”/>

<h4>Call a function declared on the JSP page</h4>
<%-- Function declaration --%>
<%!

public String getAString(String x)

{

return x + “ was passed in”;

}

o
\%

Call getAString: <%= getAString(“Hello”) %>

<h4>Use a Bean to access a database</h4>
<%= sqgl.getSQL(request, “Select ID, LASTNAME, FIRSTNAME from EMPLOYEES”)

<h4>Execute a scriplet that has embedded text</h4>

<% if (java.util.Calendar.getInstance() .get(java.util.Calendar.AM PM) ==
java.util.Calendar.AM) {%>

Good morning!

<% } else { %>

Good afternoon

5)

o°
o°
\2

<

<h4>Include the output of another JSP</h4>
<jsp:include page="include.jsp”/>

</html>

o°
Vv

About JSP pages

35

3 Writing JSP Pages

Hereiswhat the page looks like:

/J http:/ localhostAJ5PS ampleDB A5 PS5 ample/jsps/sample.jzp - Microsoft. .. [B[=] [E3

J File Edit “iew Favortes Toolz Help |

J¢- > . @@ B 4 | & @ @m *

Back i Eanward Stop Refresh Home Size Search Favorites

JAereSS I@ hittp: #localhost /S PS ampleD B ASPS ampledjsps/sample.j:p j & Go |J Links

=

Use a tag library
Welcome to the ISP sample page.
Use the implicit Request object

. Server name: localhost
. Server port: 80
. HTTP method: GET

Use a Bean to access date information

. Day of month: is 25

. Another form of Day of month: is 25
. Year:is 2001

. Month: is October

Call a function declared on the JSP page
. Call getastring: Hello was passed in

Use a Bean to access a database

1D LASTHAME |FIRSTHAME
100|(Hildebrand | Emily
101|[Hildebrand|| Craig

Execute a scriplet that has embedded text
Good afternoon!
Include the output of another ISP

This text Is from include jsp!

H

|@ Done ’_’_Eﬂ Local intranet &

Features The sample page demonstrates most of the features of JSP including:

» Two JavaBeansthat perform processing. The page uses an action (<jsp:useBean>) to
associate each bean with an ID. Once this association has been made, the page uses the
<jsp:getProperty> action or an expression (<%= ... %>) to get data back from the beans.

The JavaBeans arein separate Java source files, which are compiled and made available to

the JSP pages.

36

About JSP pages

eXtend Workbench Development Guide

» Ataglibrary that contains custom JSP tags. Tag libraries are defined in tag library
descriptor (TLD) files and implemented with Java classes. The page'staglib directive
(<%@ taglib ... >) specifiesthe uri and prefix to use to reference the tags. The uri mapsto
atag library that is specified in the Web application’s deployment descriptor (see “Writing
the deployment descriptor” on page 40). The prefix is prepended to all tags in the library
that are used on the page.

The tag used on this page (Simpl€eTag) returns welcome text.
* Implicit objectsthat are accessed through implicit variables.

This page uses the implicit request variable to call several methods associated with the
servlet request that triggered the page.

e Adeclaration (<%! ... %>) that defines a function on the page. The declaration uses an
expression to call the function.

* Ascriptlet (<% ... %>) that executes some conditional logic on the page. Depending on
the result of the test, the scriptlet writes the embedded text Good M orning! or Good
Afternoon! directly to the output stream.

* A <jsp:include> action that includes the contents of another JSP page in the current page.

The <jsp:include> action includes content at runtime. JSP also provides a compile-time
include mechanism. To include content that should be evaluated at compile time, use the
<%@ include > directive.

Mixing HTML and Java Asyou can see from this example, JSP pages can contain both
HTML and Java code. Using both worksin this example becauseit isvery simple and is meant
only to demonstrate JSP features. However, interspersing HTML and Javain the same file may
not be desirablein larger applications. Web page designers don’t necessarily know Java, and
Java programmers often don't write HTML aswell as page designers. Furthermore, by
maintaining HTML and Javain the same place, you blur the distinction between static content
and dynamic content.

For these reasons, you will usually want to keep your Java code separate from your JSP pages.
You can do thisin two ways:

* Maintain your Java code in JavaBeans components and make calls to these components
from your JSP pages.

» Encapsulate your Javacodein tag libraries and use custom tags to perform actions
implemented in these libraries.

Both of these techniques are illustrated in the sample page.

About JSP pages 37

3 Writing JSP Pages

Developing JSP pages

To devel op JSP-based applications (Web applications), you write your JSP pages, Java servlets,
JavaBean components, and other supporting Java classes, as follows.

1. Create adirectory structure for your application that conforms to the format required for
the Web application. The directory structure should look something like the following.

NOTE SilverStream eXtend Workbench allows you to organize your files any way you
want and map the file locations to the structure required for aWAR file. If you
are new to JSP pages and Workbench, you might want to first organize your files
to match the WAR specification to get used to JSP development. Then later you
can take advantage of the flexibility that Workbench provides to organize your
files any way you want. For more information, see Projects and Archivesin the
Tools Guide.

| utility classes

images |

HTHL documents

[roat directory

[v

JEP pages

claszes CLASE files

JAR files

tlds TLD files

WAR—Web archive file. Container for Web-based application.

root directory—Can contain JSP pages, HTML documents, and any other contents for
the application. They could also be in subdirectories off the root. For example, you might
want to put your JSP pagesin adirectory called jsps.

38 Developing JSP pages

toolsProjects.html

eXtend Workbench Development Guide

WEB-INF—A required subdirectory that contains all of the components of the
application that should not be available directly to clients. The WEB-INF directory must
contain afile called web.xml that is the deployment descriptor for the Web application.
The WEB-INF subdirectory can contain the following subdirectories:

» classes—Directory containing servlet and utility classes

« lib—Directory containing JARs of servlets, JavaBeans, and other utility classes

In addition to the classes and lib subdirectories, the WEB-INF subdirectory can optionally
have other subdirectories. You can give these subdirectories any names you like. For
example, you might include a subdirectory named tlds that contains tag library descriptor
files.

2. Write your JSP pages and save them in the root directory of the Web application or a
subdirectory of the root.

3. Create any Javaservlets, JavaBean components, or other supporting Java classes required
by the application and compile these classes.

In Workbench Hereisthe SilverStream eXtend Workbench project that was created for the
sampl e application whose main JSP page was shown above.

ey using: Im
E-g JEPSample.spt
== WEB-INF
S B classes
o0 util
-] tids
=B

|:| include j=p
|:| sample j=p

Q Directory ﬁ Project | EE, Registries

The two JSP pages arein the jsps subdirectory. Thetag library definition file (SampleTags.tld)
isin thetlds subdirectory. All the Java source files are in the classes/util directory. They are:

e JspCalendar.javaand JspSQL .java, the two JavaBeans referenced in the <jsp:useBean ... >
action

» TheJavafilesthat implement the tag library (the one used by the page is SimpleTag.java)
Before the application was packaged, all the Javafilesin the project were compiled.

Developing JSP pages 39

3 Writing JSP Pages

Note that the JSP pages do not get compiled at this step. They get trandated into Java servlet
sourcefiles, then compiled, on the server when you deploy the application. So the filesthat get
packaged in the WAR include;

» JSPsources

e Static resources, such as HTML pages, graphics, and style sheets (the sample application
doesn’t use any of these)

e Compiled servlet and utility classes, either as CLASSfilesor as JAR files
e Taglibraries

Packaging the application

Once you have written the components of your Web application, you packagethe applicationin
aWAR. To do this, you:

1. Create adeployment descriptor for the application.
The file must be named web.xml and you must save it in the WEB-INF directory.

2. CreateaWAR file (aJAR file with the WAR extension) and add the JSP source files and
other application componentsto it.

Writing the deployment descriptor

The web.xml fileisthe deployment descriptor for aWAR file. It contains configuration
information like:

* Security mappings

e Servlet/JSP mappings
e Error pages

e Taglibraries used

Much of theinformation specified inthe web.xml file pertainsto servlets provided with the Web
application. If you want to make a servlet directly accessible to the user through an URL, give
the servlet aname and an URL pattern in web.xml. Note that you don’t need to specify names
and URL patterns for JSP pages that are placed in a public directory outside the WEB-INF
directory; they are automatically availablefor user requests. (You can, however, map JSP pages
inweb.xml if you want them accessible through URL sthat are different from URL s that match
the location of the JSP filesin the WAR file.)

40

Packaging the application

eXtend Workbench Development Guide

Theweb.xml file must follow the format specified by the Sun J2EE Web application DTD called
web-app_2 2.dtd located in the Resources/DTDCatalog subdirectory of your Workbench
installation. Version 2.2 of the Java servlet specification provides complete documentation on
each tag. You can find this document on the Sun Java Web site at
http://java.sun.com/j2ee/docs.html.

Hereisthe sample application’s web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">
<web-app>
<taglib>
<taglib-uris>SampleTags</taglib-uris>
<taglib-location>/WEB-INF/tlds/SampleTags.tld</taglib-location>
</taglib>
</web-app>

The application’s web.xml fileis very simple. It only has one entry, <taglib>, which mapsthe
tag library’s uri (which, you'll remember, is specified in JSP pages that usethetag library) to a
filelocation in the WAR (in the sample application, the SampleTags.tld fileisin thetlds
subdirectory of the WEB-INF directory).

In Workbench You can use the Deployment Descriptor Editor to easily create and maintain
your application’s deployment descriptor.

Wies uzing: IArchive layout vl b |
CivorkbenchProjectsWSPSample WWEB-INF week xml ®
it = § Web Archive
; EB : E.J Context Parameters == Properties E
-0 i
9 Serviets wink Tag Libraryl

Q Servlet Mapping
¥ Mime Mapping
@) Welcome Files
Q Error Pages

= '-' Tag Libraries
4l SampleTags :I

ﬁ Resource References
@ Security Constraints
% Login Configuration
M Roles

* Environment

% EJB References

Tag library URL

ISampIeTags

Tag library location:
pWEEI-INF.ﬂIds!SampIeTags.tld

Q Directory ﬁ Praject | EE, Regiztries Descriptor | E XMLl

Packaging the application 41

new http://java.sun.com/j2ee/docs.html

3 Writing JSP Pages

Creating a WAR file

A Web application must be packaged in a WAR file. You use the archive tool of your choice to
create aWAR file.

In Workbench To create your archive (WAR file), you can select Project>Build and
Archive (which compiles any Javafilesthat need to be compiled, then createsthe WAR file) or
Project>Rebuild All and Archive (which compilesall Javafilesin the project, then createsthe
WAR file).

Deploying the application

To make your application available to users, you deploy it on a J2EE server, such asthe
SilverStream eXtend Application Server. You:

1.

2.

Specify in afile the runtime deployment information specific to your application.

This step is server-specific (it is not specified in the J2EE standard). Each J2EE server has
its own requirements for specifying runtime deployment information. For example, the
SilverStream eXtend Application Server uses a deployment plan, and the Sun Reference

I mplementation uses a Runtime Deployment Descriptor.

Deploy the application.

What happens at deployment time The server doesthe following:

1.

Compiles all JSP pagesin the WAR into Java source files.

The Java source file defines a class that implements the HttpJspPage interface. It imports
the following packages by default:

e javax.servlet.*;

e javax.servlet.http.*;

e javax.serviet.jsp.*;

* javalang.*;

If necessary, you can import additional packages or classes by using the import attribute of
the JSP page directive.

NOTE Some J2EE servers compile JSP pages at runtime, not at deployment time.
Compiles the Java sources.

The code generated for the Java class conforms to the JSP 1.1 specification.

Adds the results to the deployed WAR file.

Makes al resourcesin the WAR available for user requests.

42

Deploying the application

eXtend Workbench Development Guide

In addition to the JSP pages, the deployed WAR can contain servlet classes and other supporting
Javafilesthat were compiled separately, aswell asHTML documents, images, and any other
files required by the application. Note that the deployment does not compile Java source files
that are not .JSP files.

In Workbench To deploy your application:

1.

5.

Define a server profile for the J2EE server you want to deploy your application to.
L For more information, see Setting Workbench profiles in the Tools Guide.
Make sure the server is running and accessible.

Select Project>Deploy Archive.

Fill in the information in the Deployment dial og.

The information you need to provide depends on the server you are deploying on. The
Deployment dialog displays only information relevant to the specified server.

Click OK to deploy the application.

Hereis how the sample application was deployed on the SilverStream eXtend Application
Server. The SilverStream eXtend Application Server uses a deployment plan, an XML file that
provides additional information about the contents of the WAR file and how it should be
deployed in the SilverStream environment. You create your plan in the Deployment Plan Editor.
For information about deployment plans, see Deployment Plan Editor in the Tools Guide.

Deploying the application 43

toolsBasics.html#SettingWorkbenchprofiles
toolsDeployPlanEditor.html

3 Writing JSP Pages

Hereis how the properties were specified in the Deployment Plan Editor for the sample
application:

Deployment Plan |

Enahbled: @ True O Falze

WAR Mame:
CrivorkbenchProjectsWSPSampleWSPSample war

Deployed object name:
lJSPSampIe

Server Profile:

Session timeout (minutes):E ::I

= URLs:

JEPSample
Edlit LURL=...

=l Excluded JSPs:
Edit Excluded JSP=...

=lUses JARS:
Edit Uzes J&Rs List...

Hereisthe xml file that Workbench created from these specifications:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE warJarOptions PUBLIC "-//SilverStream Software, Inc.//DTD J2EE WAR Deployment
Plan//EN" "deploy war.dtd"s
<?AgMetaXML 1.0?><warJarOptions isObject="true"s>
<wardar isObject="true">
<warJarName type="String">C:\WorkbenchProjects\JSPSample\JSPSample.war</warJarName>
<isEnabled>True</isEnabled>
<sessionTimeout type="String">5</sessionTimeout>
<urls type="StringArray"s>
<el>JSPSample</el>
</urls>
<deployedObject type="String">JSPSample</deployedObject>
</warJar>
</warJarOptions>

The deployment plan enables the application, sets the session timeout for the application, and
defines the URL that can be used to access the application.

44 Deploying the application

eXtend Workbench Development Guide

Finally, the application was deployed by selecting Project>Deploy Archive, filling in the
Deployment dialog, and clicking OK:

2Z Deployment - [C:\WorkbenchProjects\J5PSample\J5P5a... B4

Server Profiles

Enabling Rapid deploy crestes the application under the application
server's wehapps directory. This is only recommended for testing and

development. Please disable rapid deploy and do & full deploy in
production environment.

["] Enable Rapid Deploymert.

SilverStream Deployment Plan:

pSPSampIeDepIPlan.xml |

|| Overwrite existing deployment erbosty: |3 'l

|7 lgnore compile errars

SilverCmd Flags :

DRSS Gancel| Deploy Help

Deploying the application 45

3 Writing JSP Pages

Running the application
Once the application has been deployed, you can run it in your browser by specifying the

appropriate URLSs.

Hereisthe sample application:

/J http:/ localhostAJ5PS ampleDB A5 PS5 ample/jsps/sample.jzp - Microsoft. .. [B[=] [E3

J File Edit “iew Favortes Toolz Help |

2- @ M@ &

Size Search Favorites

J¢- s R A

Back i Eanward Stop Refresh Home

JAereSS I@ hittp: #localhost /S PS ampleD B ASPS ampledjsps/sample.j:p j & Go |J Links

=

Use a tag library
Welcome to the ISP sample page.
Use the implicit Request object

. Server name: localhost
. Server port: 80
. HTTP method: GET

Use a Bean to access date information

. Day of month: is 25

. Another form of Day of month: is 25
. Year:is 2001

. Month: is October

Call a function declared on the JSP page
. Call getastring: Hello was passed in

Use a Bean to access a database

1D LASTHAME |FIRSTHAME
100|(Hildebrand | Emily
101|[Hildebrand|| Craig

Execute a scriplet that has embedded text

Good afternoon!

Include the output of another ISP

This text Is from include jsp!

|@ Done ’_’_Eﬂ Local intranet

Note the parts of the URL ;

* |ocalhost isthe name of the server
e JSPSampleDB isthe database

46

Running the application

eXtend Workbench Development Guide

» JSPSampleisthe URL specified in the deployment plan (by default, the name of the
WAR)

* jspsisthedirectory containing the JSP page (there was no mapping in the deployment
descriptor, so you specify the relative path from the WAR’s root)

» samplejsp isthe JSP page

Now that you know the basics of JSP pages and their development, you'll probably want to get
one of the many JSP books on the market and start developing your own.

Running the application 47

3 Writing JSP Pages

48

Running the application

4 Writing Servlets

This chapter tells you how to use servletsin a J2EE application and includes these topics:

* About servlets

e Developing aserviet

» Packaging the application

» Deploying the application

e Running aservlet

This chapter assumes that you understand the HT TP protocol and are familiar with the contents

of HTTP request and response headers. For more information, see the JDK documentation or
the Servlet home page provided by Sun at http://java.sun.com.

About servlets

Servlets are J2EE components that run on the server, allowing you to extend the server’s
functionality. A servlet isassociated with one or more URL s. The servlet executeswhen aclient
(such as a browser) makes an HTTP request to one of these URLSs.

Servlets can be used to:

e Accessenterprise datausing JDBC or EJBs

» Perform application logic on that data

e Generate an HTTP response to the client

* Maintain session data throughout a Web application

Servlet life cycle

When aclient application (typically a Web browser) sendsan HTTP request to an URL that is
associated with a servlet, the J2EE server processes this request by handing it off to a servlet
container. This container is responsible for managing the servlet life cycle from loading and
initialization through request handling and servlet removal.

49

http://java.sun.com

4 Writing Servlets

Servlet loading, instantiation, and initialization
Before a servlet can handle HTTP requests from clients, the container must:

* Loadthe servlet class
e Instantiate an object instance of the servlet class
» Initialize the servlet object by invoking the init() method of the servlet interface

The servlet class loading and instantiation can occur when the container starts or when the
container determines that it needs the servlet to service arequest.

The container callsthe init() method only when first creating the servlet; it does not call init()
again for each user request.

Request handling
Once aservlet isinitialized, the container may use it to handle HTTP requests.

Each time the server receives an HTTP request for a servlet, the container creates an object of
type HttpServletRequest to represent the request, and an object of type HttpServletResponse so
the servlet can create aresponse. The container callsthe service() method of the servlet
interface, passing these two objects.

The service() method checks the HTTP request type (GET, POST, PUT, DELETE, and so on)
and calls the appropriate methods in the servlet interface (doGet(), doPost(), doPut(),
DoDelete(), and so forth) as appropriate. Most of the servlet request processing logic appearsin
these methods.

The servlet can use the HttpServletRequest object to determine who the remote user is, what
HTML form parameters may have been sent, and other data pertinent to the HTTP request. The
servlet can use the HttpServletResponse object to create an HT TP response to send back to the
client.

End of service

The servlet container may remove a particular servlet instance (for example, asthe result of a
specific server administration command or because the container wants to conserve memory
resources). When the container determines that a servlet should be removed from service, it
callsthe destroy() method of the servlet interface.

Note that the destroy() method is called only when the servlet container removes the servlet as
part of itsregular processing. If the container is halted improperly (for example, if the server
crashes), the code in this method might never be run before the servlet is removed.

50

About servlets

eXtend Workbench Development Guide

Servlets and JSP pages

In J2EE, both servlets and JavaServer Pages (typically called JSP pages) can deliver
dynamically generated content.

Servletsare aprogrammatic tool, in which your HTTPresponse (HTML, XML, or other format)
must be coded within Java print statements. Servlets are designed to accept requests from
browsers, possibly process information contained in the request, retrieve enterprise data,
perform application logic on the data, and create the HT TP response.

JSP pages are a presentation-centric tool, coded in HTML-like pages. JSP pages support
application logic using JavaBeans components, custom tags, and embedded Java scriptl ets and
expressions. JSP pages are designed to extend HTML pages to support application logic and to
be modular, reusabl e presentation components.

LX) For details about JSP technology, see Chapter 3, “Writing JSP Pages’.

Servlets and J2EE archive structure

In J2EE, servletstypically are packaged in Web archive (WAR) modules. WARS can contain
servlets, JSP pages, and static Web content such asHTML files, pictures, sounds, movies, and
SO on.

In Workbench

Workbench creates a project for each major J2EE archive. When you create a project,
Workbench asks you to specify what kind of archive the project isto implement—for example,
an Enterprise archive (EAR), Web archive (WAR), application client JAR, Enterprise JavaBean
JAR, and so on.

When you create a servlet in Workbench, your optionsinclude associating it with an existing
WAR project, creating anew WAR project for it, or creating the servlet without specifying any
project for it.

About servlets 51

4 Writing Servlets

Developing a servlet

In J2EE, aserviet istypically aJava class that extends the standard Java class HttpServlet.
A servlet imports these packages:

* javax.servlet.*

e javax.servlet.http.*

e javaio.*

e javautil.*

To code the servlet, you typically override the various methods that are called by the service()

method when handling requests. In most cases, this meansyou override at least the doGet() and
doPost() methods to provide code that processes HTTP GET and POST requests.

In some cases, you might want to specify initialization and cleanup functionality by overriding
theinit() and destroy() methods.

Creating a servlet class in Workbench

Workbench provides a Servlet Wizard to help you to create a Java servlet class. When you run
this wizard, Workbench creates a Java source file for your servlet based on information you
supply. It also creates any directory structure resulting from project or package specifications.

Running the Servlet Wizard
To start thiswizard, click File>New and select Servlet from the New File dialog.
The Servlet Wizard asks you to specify servlet characteristics such as:

* Servlet class name
» Content type of the document in the HTTP response the servlet is to generate

* Whether to allow multithreading of servlet request processes or to require that only one
request process be handled at any given time

* Which WAR project (if any) isto contain the servlet

» Where on thefile system the source file(s) for the servlet are to reside
* Wherein the archive the class file(s) for the servlet are to reside

* What package (if any) contains the servlet

52

Developing a servlet

eXtend Workbench Development Guide

* Which HttpServlet methods you want to override
You can specify these HttpServlet methods in the wizard:

* doGet()

+ doPost()

* doPut()

* doDelete)
o init()

e destroy()

You can override others manually after the wizard creates the servlet.

Example source file directory structure

If you specified that the servlet isto be part of anew or existing WAR or included in apackage,
the wizard creates the necessary file system directories to implement those choices. For
example, if you specify the following when running the wizard:

* Your servlet classis called MwbiWel comeUser

e Theservletis part of a WAR whose Workbench project directory is
d:\warProjects\wel comeUser

* Theservletis part of acom.mwbi.welcome package
then the wizard creates this Java sourcefile:
d:\warProjects\welcomeUser\com\mwbi\welcome\MwbiWelcomeUser.java

Thewizard creates any directoriesthat are specified in the wizard (for example, those resulting
from package specifications, the servlet base directory, and so on) but do not yet exist in thefile
system.

Example servlet file source code

An example of aservlet file created by the wizard appears below. The Java codein this servlet
file indicates that these characteristics were specified when running the Servlet Wizard:

* MwbiWelcomeUser isthe class name

* Theservletisto beincluded in the package com.mwbi.welcome

e Thisservlet overrides only the doGet() and doPost() methods in the HttpServlet interface
* The output type of the HTTP responseisto be HTML

Developing a servlet

53

4 Writing Servlets

package com.mwbi.welcome;

import
import
import
import

public

{

javax.servlet.*;
javax.servlet.http.*;
java.io.*;
java.util.x;

class MwbiWelcomeUser extends HttpServlet

static final String CONTENT TYPE = "text/html";

// Handle the HTTP GET request
public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
response.setContentType (CONTENT TYPE) ;
PrintWriter out = response.getWriter();

/** @todo Process the HTTP "GET" request here, and write the proper
response to the PrintWriter "out". */

out.println("<htmls><head><title>MwbiWelcomeUser</title></head><body>") ;
out.println("<p>Servlet MwbiWelcomeUser has received an HTTP GET.</p>");
out.println("<p>The servlet generated this page in response to the

request.</p>") ;

out.println("</body></html>");

}

// Handle the HTTP POST request
public void doPost (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType (CONTENT TYPE) ;

PrintWriter out = response.getWriter();
/** @todo Process the HTTP "POST" request here, and write the proper
response to the PrintWriter "out". */

out.println("<htmls><head><title>MwbiWelcomeUser</title></head><body>") ;
out.println("<p>Servlet MwbiWelcomeUser has received an HTTP POST.</p>");
out.println("<p>The servlet generated this page in response to the request

out.println("</body></html>") ;

}

.</p>"

54

Developing a servlet

eXtend Workbench Development Guide

Processing the HTTP request

One of the main functions of aservlet isto processthe HTTP request from the client. Typically,
thisincludes performing some programming logic and generating content based on the data
included in the request.

Typically, your servlet will handle HTTP GET and POST requests by overriding the doGet()

and doPost() methods in your servlet class. These methods take two arguments:

* Anobject of type HttpServletRequest that represents the HT TP request from the client

e Anobject of type HttpServletResponse that you can use to create the HTTP response that
will be returned to the client

Servlets support methods for other HTTP request types, such as PUT, DELETE, TRACE, and
so forth. See your Java documentation for information on handling HTTP request types other
than GET and POST in servlets.

This section describes the servlet functionality that reads information from the HTTP request.
See“ Generating the HTTP response” on page 56 for information about the servlet functionality
that creates the HT TP response.

Reading HTML form data

One of the main reasons for generating automated Web content isto be able to base that content
on user input. Typically, you obtain user data by reading the datain an HTML form that a user
fills out.

Using the getParameter() method

Servletscanread HTML form parametersinthe HT TP request using the getParameter() method
in the HitpServletRequest interface. For example, if you want to read the value specified for a
login_userid HTML form parameter into avariablein your servlet, you could code something
like this:

userIDfromHtmlForm = request.getParameter("login userid");
where:
e userlDfromHtmIFrom is a predefined variable of type String

e request is an object of type HttpServletRequest

e login_userid isthe name of the parameter specifiedinthe HTML forminthe HTTP
request

Developing a servlet 55

4 Writing Servlets

This describes avery simple way to read and store client-supplied datain a servlet. In J2EE,
there are many technologies that support this, including JavaServer Pages, custom tags,
Enterprise JavaBeans, and so forth. Consult your J2EE documentation and Java programming
resources for more information.

Reading HTTP request header information

HTTP request headers can contain lots of information that could be useful to your application,
including:

» Cookieinformation

e Authorization information, such as authorization type and remote user

» Content information, such as length and type

» Dateinformation

The HttpServletRequest interface supports a getHeader() method that can read any header you

specify. For example, if you wanted to find out what character sets the client browser that sent
the request can use, you could use this method:

request .getHeader ("Accept-Charset");

Some of the more common headers have specific methods in the HttpServletRequest interface,
such as getCookies(), getAuthType(), getRemoteUser(), getContentL ength(), and so forth.

Consult the HT TP specification and your Java documentation for details about HTTP headers
and how to read thisinformation into your servlets.

Generating the HTTP response

Oncethe servlet readsthe HT TP request information (as described under “ Processing the HTTP
request” on page 55), it typically generates some kind of aresponsein the form of an object of
type HttpServletResponse.

Theresponse object typically containsastatusline, one or more response headers, and the actual
document.

Specifying the status line

The HTTP status line contains the HT TP version, a status code, and a very short message
corresponding to the status code. For example, asimple HTTP status line for a successful
response could be;

HTTP/1.1 200 OK

56

Developing a servlet

eXtend Workbench Development Guide

Specifying the status code

Your server should specify a default status line (with a status code of 200) for your HTTP
response as part of the processing for the methods doGet(), doPost(), and so on.

You can specify the status code explicitly using the setStatus() method of the
HttpServletResponse interface.

CAUTION If youwant to specify the status code explicitly, you must do so before writing any
document content. (See “ Specifying the document content” on page 59 for more
information.)

Thismethod takes an integer asan argument. However, instead of using an explicit number, you
should use the constants defined in the HttpServletReponse interface. Examples of common
status constants include:

e SC_CONTINUE (100)

SC_OK (200)

SC_CREATED (201)

SC_MOVED_PERMANENTLY (301)

SC_MOVED_TEMPORARILY (302)

e SC _SEE OTHER (303)

SC_NOT_MODIFIED (304)

SC_BAD_REQUEST (400)

SC_UNAUTHORIZED (401)

SC_FORBIDDEN (403)

SC_NOT_FOUND (404)

e SC INTERNAL_SERVER_ERROR (500)

For example, to set the status code of the response to 403, you could use this method:

response.setStatus (response.SC_FORBIDDEN) ;

L Seethe Javadocumentation for the HttpServletResponse and the HT TP specification for
details about the status code in HT TP responses.

Developing a servlet 57

4 Writing Servlets

Specifying HTTP response headers

HTTP response headers can provide:

» Accompanying information for particular status codes, such as locations for moved
documents, authentication information, and so on

» Cookieinformation

» Page modification dates

* Filesizes

The HttpServletResponse interface supports a setHeader() method that can define any header

you specify. There are also specialized and convenience methods in HttpServletResponse,
including:

Method Functionality

setDateHeader() Translates a Java date into a GMT time string
setlntHeader() Converts an int to a String before inserting it into the header
setContentType() Sets the Content-Type header

setContentL ength() Sets the Content-L ength header

addCookie() Inserts a cookie into the Set-Cookie header

sendRedirect() Sets the Location header and sets the status code to 302

For example, to redirect the user to another page, you could use this method:
response.sendRedirect (url);

where url is avariable containing the URL to which you want to redirect the user.

CAUTION If you want to specify any HTTP response headers, you must do so before sending
any document content. (See “ Specifying the document content” on page 59 for
more information.)

L) For details about HTTP headers and how to read thisinformation into your servlets,
consult the HT TP specification and your Java documentation.

58

Developing a servlet

eXtend Workbench Development Guide

Specifying the document content

Writing the document content in the HT TP response that your servlet will generate requiresyou
to specify:

» Thetype of the response content (HTML, XML, and so on)

* The content of the document in the response (for example, the actual HTML tags that the
browser will render in the client display)

Specifying the content type

To specify the content type, you can use the setContentType() method of the ServletResponse
interface. Typical response content typesinclude:

e text/html
e text/xml
e text/xhtml
e text/wml

For example, to set the content typeto HTML, you could use the following method:
response.setContentType ("text/html");
In Workbench The Servlet Wizard createsavariable of type String that containsthe content

type you specified when running the wizard. For example, the code for a servlet that generates
an HTML response would contain this variable declaration:

static final String CONTENT TYPE = "text/html" ;

In the request-handling methods (such as doGet() and doPost()), there would be a method call
likethis:

response.setContentType (CONTENT TYPE) ;

Writing the document content

To write the document content, you can configure a PrintWriter object and write the content to
that object using print() and println() methods.

For example, to send asimple HTML “Hello, world” message as the response, you could use
this code:

PrintWriter out = response.getWriter();

out.println("<HTML><HEAD></HEAD><BODY>") ;

Developing a servlet 59

4 Writing Servlets

out.println("<P>Hello, world</P>");
out.println("</BODY></HTML>") ;

CAUTION If you want to specify a status code or HTTP header for your response, you must
do so before you write anything to your PrintWriter object. (See “ Specifying the
status ling” on page 56 or “ Specifying HTTP response headers’ on page 58 for
more information about the HTTP status line and headers.)

In Workbench

The Servlet Wizard inserts code that sets the content type based on your input, defines a
PrintWriter object to contain the HTTP response, and provides atemplate for writing your
document content to the HttpServletResponse object.

For example, if you specified HTM L under Content Typein the Servlet Wizard, the wizard
creates this code in any method that handles HT TP requests and provides aresponse:

response.setContentType (CONTENT TYPE) ;
PrintWriter out = response.getWriter();

/** @todo Process the HTTP "GET" request here, and write the proper
response to the PrintWriter "out". */

out.println("<htmls<heads><title>MwbiWelcomeCustomer</title></head><body>") ;
out.println("<p>Servlet MwbiWelcomeCustomer has received an HTTP GET.</p>");
out.println("<p>The servlet generated this page in response to the request.</p>");
out.println("</body></htmls>") ;
where CONTENT _TYPE isdefined as a static variable set to text/html, as described under
“ Specifying the content type” on page 59.

You must replace the out.printIn() statements to reflect your HT TP response document content.

CAUTION If you want to specify a status code or HTTP header for your response, you must
do so before you write anything to your PrintWriter object. (See “ Specifying the
statusline” on page 56 or “ Specifying HT TP response headers’ on page 58 for
more information about the HTTP status line and headers.)

60 Developing a servlet

eXtend Workbench Development Guide

Specifying initialization and cleanup methods

If you want to defineinitialization and cleanup code for your servlet, you can overridetheinit()
and destroy() methodsin your servlet class. (See*“ Servlet life cycle” on page 49 for more
information about the init() and destroy() methods.)

In Workbench

When creating the servlet, the wizard asks if you want to override the init() and destroy()
methods. If you specify that one or both are to be overridden, Workbench inserts skeletal
method code into the servlet.

Wizard-supplied init() code

If you specify in the Servlet Wizard that you want to override the init() method, the wizard
inserts this codeinto your servlet:

/**
This method is called once per instance of the servlet class.
Use this method to allocate any needed resources that should
be preserved for the life of the servlet instance.

*/

public void init (ServletConfig config)
throws ServletException

{

super.init (config);

/** @todo Initialize any instance variables here. */

}

While the servlet specifies an argument of type ServletConfig in the init() method, this method
can be specified without an argument. Typically, you would specify the no-argument form of
init() if the servlet does not need to read any settings that vary from server to server.

If you do specify that init() takes the ServletConfig argument, the super.init() method must be
thefirst statement in the method.

Wizard-supplied destroy() code

If you specify in the Servlet Wizard that you want to override the destroy() method, the wizard
inserts this code into your servlet:
/ * %

This method is called once per instance of the servlet class,
after the application server is done with that instance.

Developing a servlet 61

Writing Servlets

Use this method to free any resources owned by the
servlet instance.
*/
public void destroy ()
{
}

Other servlet coding issues

This chapter provides only an overview of some of the issues you must confront when
programming servlets. Other major topicsthat are outside the scope of this discussion include:
» Buffering content

e Tracking sessions

* Implementing security

e Accessing databases using JDBC and EJB

* Handling cookies

e Integrating servlets with JavaServer Pages

* Using Filters

L1 For detailed information about these topics, see the J2EE documentation, Java language
documentation, books on programming servlets, and so forth.

Packaging the application

Once you have written the components of your Web application (including servlets, JSP pages,
and other supporting components), you package the application into a\Web archive (WAR) file.

This processis very similar to that described under “ Packaging the application” on page 40 in

Chapter 3, “Writing JSP Pages’, in that you:

1. Write adeployment descriptor for the Web application and specify the relevant
information about the servlet.

2. Create aWeb archive (WAR) file containing the servlet and any components required to
support the servlet, such as JSP pages or supporting classes.

The main differences are in what you specify in the deployment descriptor, such as
ServletContext initialization parameters, servlet mappings, servlet/JSP mappings, and so on.

L For more information about specifying servlet information in deployment descriptors,
consult the servlet and J2EE documentation.

62

Packaging the application

eXtend Workbench Development Guide

In Workbench To write your servlet information into a deployment descriptor, you can use
the Deployment Descriptor Editor. To create a WAR file, you can use the appropriate archive
commands on the Proj ect menu in Workbench.

L) For more information about writing deployment descriptors in Workbench, see
Deployment Descriptor Editor in the Tools Guide.

Deploying the application

To make your application available to users, you deploy it on a J2EE server, such asthe
SilverStream eXtend Application Server. The deployment processis very similar to that
described under “Deploying the application” on page 42 in Chapter 3, “Writing JSP Pages’, in

that you:

1. Create a Workbench server profile for your application server, if one does not already
exist.

2. Specify the runtime deployment information for your application as required by your
J2EE server.

3. Deploy the application.

In Workbench To deploy the application to the J2EE server, select Project>Deploy
Archive, asdescribed under “ Deploying the application” on page 42 in Chapter 3, “Writing JSP
Pages’.

Running a servlet

Once the application has been deployed, you can run it in your browser by specifying the
appropriate URLS.

Deploying the application 63

toolsDeployDescEditor.html

4 Writing Servlets

64

Running a servlet

5 Writing J2EE Application Clients

J2EE application clients are the standard way to provide Java-based clients that run on user
machines and access J2EE servers. This chapter tells you how to use them in your own J2EE
applications, including:

e About J2EE application clients

» Developing aclient

e Packaging aclient

» Deploying aclient

* Running aclient

About J2EE application clients

Although J2EE applicationstypically provide browser-based clients, they aren’t ways the
answer. You may sometimes want to implement a Java-based client instead (or in addition),
such as when:

e Userswill access the application within an intranet

» Theapplication requires aricher user interface (more sophisticated than the browser)

e Theclient needs to perform operations not supported in a browser environment

In J2EE, you do this by building a J2EE application client.

Client features

In several ways, a J2EE application client isjust like a standal one Java application that runs on
auser machine. It:

» Consists of one or more Java classes
e Isinvoked at the main() method in one of those classes
» Executesin its own Java virtua machine (and runs until that VM is terminated)

What makes a J2EE application client special isthat it:

* |saJ2EE component that can be added to a J2EE application

» Ishosted by a J2EE client container on the user machine, enabling it to access J2EE
services

65

5 Writing J2EE Application Clients

e Isportableacross J2EE servers

Basic architecture

The following illustration shows how J2EE application clients fit into the overall J2EE
application architecture:

J2EE server

Web container EJB container

F
Y

Enterprise data

' Server tiers
Client tiers
HTTP RMI-IICP {user machines)
S50 S50
¥ Y
EJB container 1IDBC
JZEE
application 1Z25E (including JNDI
client and RMI-ITOP)Y
JAAS oeC
JAXP IMs

Note that while HTTP and JDBC are supported, RMI-110P is the typical means by which J2EE
application clients communicate with servers.

Specifications and blueprints

Sun documentation is the authoritative source on J2EE application clients. It defines their
standard features, operation, and life cycle, aswell asvendor requirements for supporting them.
See:

L Java 2 Platform Enterprise Edition Specification, Chapter 9, “Application Clients’
L J2EE Blueprints

66

About J2EE application clients

eXtend Workbench Development Guide

These publications are avail able from the Sun Java Web site at:

java.sun.com/j2ee/docs.html

Client container

All J2EE application components rely on a container to provide supporting services. J2EE
application clients are hosted by aclient container that (at minimum) provides JNDI namespace
access. Beyond that, the J2EE specification allows for awide range of client container
implementations, from basic to robust.

You can consult your J2EE server vendor to learn about the client container you should use. For
example, SilverStream supplies aclient container named Silver J2EECIient that users can
invoketo run J2EE application clientsyou’ ve deployed to the SilverStream eXtend Application
Server. SilverJ2EECIient provides arobust set of supporting services, including:

» Easy, self-updating container installation

» Automated client deployment to user machines

e User authentication and session housekeeping

e INDI namespace access

L For moreinformation on SilverJ2EECIient, see the Facilities Guide of the SilverStream
eXtend Application Server Core Help.

Client life cycle

Thelife cycle of a J2EE application client consists of several phases, each handled by specific
J2EE jobroles:

Phase What's involved Which role handles it

1 | Developing aclient Coding and compiling classes for Component Provider
the client

2 | Packaging aclient Writing manifest and deployment Component Provider or
descriptor filesfor the client Application Assembler

Creating an archive (JAR file) to
contain all of the client classes and
other files

About J2EE application clients 67

new http://java.sun.com/j2ee/docs.html

5 Writing J2EE Application Clients

Phase What's involved Which role handles it

3 | Deploying aclient Preparing server-specific Deployer
deployment information and using
it to deploy the client JAR to the
J2EE server

4 | Running aclient Helping usersinstall the client Deployer or System
container on their machines Administrator

Helping usersinvoke the client
container and start the deployed
client

Administering the deployed client
on the J2EE server

Depending on your organization, one or more people may take on these job roles. In particular,
programmers developing client classes may need to test them by packaging, deploying, and
running in their local environment.

Developing a client
Developing a J2EE application client involves:

1. Coding classesfor the client
2. Compiling those classes

Coding client classes

Your J2EE application client can consist of one or more Java classes. The only requirement is
that one class includes a main() method that can be invoked to start execution of the client.

Although you can code your client to do anything that Java allows, acommon goal isto access
a J2EE server—typically to call EJB session beans. When coding referencesto EJBs and other
external entities, you should use names defined for them in the client’s INDI namespace. This
hel ps keep deployment-specific details out of your classes, reducing the need for client code
changes when external entities change.

L Tolearn about EJBs, see Chapter 6, “Writing Enterprise JavaBeans”.

68 Developing a client

eXtend Workbench Development Guide

Namespace setup

To set up theclient’s INDI namespace, you need to write adeployment descriptor filethat will
accompany your classes. It defines names that let you reference:
e Environment entries
* EJB references
e Resource references:
« JDBC data sources
e JavaMail connections
e JMS connections
e URL connections

L Tolearn more about writing the deployment descriptor file, see “ Packaging aclient” on
page 75.

APl usage
You'll use these standard Sun APIsin the client classes you develop:

« J2SE API from the Java 2 Platform, Standard Edition SDK
* J2EE APIsfrom the Java 2 Platform, Enterprise Edition SDK
If you decide to use any vendor-specific APIs, remember that this can affect the portability of

your client. Try isolating such code so that you can more easily replaceit if that becomes
necessary in the future.

Example: coding a client class

This example presents the Java code for asimple J2EE application client (which displays a one-
line weather forecast for a specified day). It consists of a single class named AppClientSample
that does the following:

» Definesa main() method to enable the client to be invoked

« Readsacommand-line argument (passed from the client container to the client)

» Accessesan EJB session bean (using a bean reference defined in the deployment
descriptor file) and calls one of its methods

e Accessesan environment entry value (using an environment entry defined in the
deployment descriptor file)

Developing a client 69

new http://java.sun.com/j2se/
new http://java.sun.com/j2ee/

5 Writing J2EE Application Clients

» Displays a message dialog that includes the val ues obtained from the command-line
argument, EJB method call, and environment entry

Here'sthe AppClientSample.javafile:

packag

import
import
import
import

import

// The
// for
// of
// sep
// is

public

{

// M
// s

publ

{
if

{

}

el

{

e com.exsamp.appclient;

java.io.*;
javax.naming.*;
javax.rmi.*;
javax.swing. *;

com.exsamp.ejb.*;

AppClientSample class shows how you can develop a class
use as a J2EE application client. It includes an example
using an environment entry and bean reference both defined
arately in the deployment descriptor. The bean reference

used to call an EJB session bean on the server.

class AppClientSample

ain method, used for application client startup (as
pecified in the manifest file).

ic static void main(String[] args)
(args.length < 1)

// Make sure all of the required command-line args have
// been provided to the application client. Otherwise,
// display an error message and terminate.
JFrame frame = new JFrame () ;
frame.show () ;
JOptionPane.showMessageDialog (frame,
"Required arguments:\n" +
"* Day code (where O=today, l=tomorrow, etc.)" +
"\n\nExample -- for today's forecast: 0",
"Missing Command-Line Arguments",
JOptionPane.INFORMATION MESSAGE) ;
System.exit (0) ;

se

// Get the command-line args so the application client can
// pass them to the AppClientSample constructor.
try

{

70

Developing a client

eXtend Workbench Development Guide

int daycode = Integer.parselnt (args[0]) ;

// Create an instance of AppClientSample. This executes the
// constructor for the class, which calls a particular EJB
// session bean.

AppClientSample sample = new AppClientSample (daycode) ;

}

catch (NumberFormatException nfe)

{
System.out.println("AppClientSample requires one arg, " +

"which must be an integer");

System.exit (0) ;

}

}
}

// Constructor for the AppClientSample class. It:

// * Finds a specific EJB session bean on the server

// * Calls a method of that session bean

// * Displays the result returned by that method (if any)

//

// It takes 1 argument: Day code (where O=today, l=tomorrow,
// etc.) Example -- for today's forecast: 0

public AppClientSample (int daycode)
{
try

{

// Find the appropriate EJB session bean on the server.

// Using a bean reference, do a JNDI lookup to return the
// bean's home interface as an Object.
InitialContext initCtx = new InitialContext () ;
Object sbobj =
initCtx.lookup ("java:comp/env/ejb/myBean") ;

// Narrow the Object returned by the lookup to make sure

// it can be cast to the appropriate type (the class that

// corresponds to your bean's home interface). Then, cast

// it.

sbobj = PortableRemoteObject.narrow (sbobj,
SBMyEJBHome.class) ;

SBMyEJBHome sbhome = (SBMyEJBHome) sbobj;

// Call the home object's create() method to get an
// instance of the bean's remote interface.
SBMyEJB sbremote = sbhome.create() ;

Developing a client

5 Writing J2EE Application Clients

// Once you have the remote object, you're ready to call
// business methods of the EJB session bean. (These are

// the methods exposed by the bean's remote interface.)

String result = sbremote.getMyText (daycode) ;

// Now look up the value of the application client's
// environment entry reportTitle.

// Get the application client's environment naming

// context. Use the InitialContext object created earlier
// and stored in initCtx.

Context env = (Context)initCtx.lookup("java:comp/env") ;

// Get the reportTitle value set by the application
// client's deployer.
String title = (String)env.lookup ("reportTitle") ;

// Display the result returned from the EJB session
// bean's business method, the title returned from the
// environment entry lookup, and the value of the passed
// command-line argument (daycode) .
String day = "";
switch (daycode)
{
case 0:
day = "today";
break;
case 1:
day = "tomorrow";
break;
default:
day = Integer.toString(daycode) + " days from today";
1
JFrame frame = new JFrame() ;
frame.show() ;
JOptionPane.showMessageDialog (frame,
"The forecast for " + day + " is:\n\n "o
result + "\n\n" +
"Note: forecast obtained from getMyText () method " +
"of EJB session bean SBMyEJB",
title,
JOptionPane.INFORMATION_ MESSAGE) ;

}

catch (Exception e)

{

System.out.println("Application error in AppClientSample");
e.printStackTrace() ;

}

finally

{

72 Developing a client

eXtend Workbench Development Guide

// Now that the application client is all done,
// make sure the VM terminates.
System.exit (0) ;
1
1
1

In Workbench

To start coding a J2EE application client in SilverStream eXtend Workbench, you:

1. Create a CAR (client archive) project by using the New Project Wizard (File>New
Project).

L) Seethe chapter on projects and archivesin the Tools Guide.

2. Create the Java source files for your client classes. You can use the Java Class Wizard
(File>New) to do that and add each fileto your CAR project.

L1 Seethe chapter on component wizards in the Tools Guide.

3. Edit your Java source files in the Java Editor. Use the Navigation Pane to open files you
want to work on.

L) Seethe chapter on source editors in the Tools Guide.

For example, the following illustration shows the CAR project AppClientSample.spf. It
contains the AppClientSample.java file and maps that classto this location in the archive:

com/exsamp/appclient

Developing a client 73

toolsProjects.html
toolsComponentWizards.html
toolsTextEditor.html

5 Writing J2EE Application Clients

The project also includes aMETA-INF directory, which you' |l learn more about shortly.

f SilverStream [AppClient5ample] - Java Editor [_ (O]]
File Edit ‘“iew Search Project Documents Help

UEeEE | Y00 BSE gB®R SilverStrean
Yiewy Using: IW CheHtendProject=\AppClient k oo plappclientbppClientSample java »

-

E-g AppCliertSample spf
- E00 META-INF

= com { J

5 exsamp

public class AppClientSample

/¢ Main method, used for application client startup (as
/¢ specified in the manifest file).

public static void main(String[] args)
i
if {args.length < 1)
i
/¢ Make sure all of the recquired command-line args hawve
/¢ been provided to the application client. Otherwise,
/¢ display an error message and terminate.

JFrame frame = new JFrame();: _l_vl
Q Directory ﬁ Project || L 4
B Open @1; Registries | @ Source |

| -

-
] | B
| % Buildd E‘ Validatel l:. Deployl @ Findl ‘\E. Wieh zervice Wizard

I Line: 1 Column: 1 Ry

.l AppClientSample. java

Compiling client classes

Compiling the classes you develop for a J2EE application client isjust like compiling any other
Java classes. You can use Sun javac or another comparable Java compiler. You just need to set
your classpath so the compiler can find everything it needs, including:

e Thesourcefilesfor your client classes

» TheJava API packages you use (both J2SE and J2EE)

e TheEJB-client JAR filesfor any EJBs you access

In Workbench

Workbench automatically takes care of classpath requirements for the filesin your project as
well asthe J2SE and J2EE packages. If you have other filesto add to the project’s classpath, you
can do that in the Project Settings dialog (Project>Pr oj ect Settings).

74

Developing a client

eXtend Workbench Development Guide

For instance, the AppClientSampl e class accesses an EJB session bean (which isindependent of
the CAR project). So before AppClientSample can be compiled, the EJB-client JAR for that
bean must be added to the project’s classpath:

Y Project Settings []
Project: |AppCIientSampIe ;I

General I Contents
Clazsspath entries:

C:\eXtendProjectshyEJBWyEJB-client jar
4 SILYERS TREAM _¥WWE_HOMES:\compilelibj2ee_api_1_2 jar

By
]

Entries that are listed in the Cortents pane are automatically
included in the clazspath.

Add Entry ... Add Directary .. | Ediit... I Delete |

Cancel| Help

Onceyour project’sclasspath is set, you can compileindividual sourcefiles(Project>Compile)
or build the project to compile everything (Project>Build).

L) Seethe chapter on projects and archives in the Tools Guide.

Packaging a client
Packaging a J2EE application client involves:

1. Writing amanifest file
2. Writing a deployment descriptor file
3. Creating a JJAR that contains the client files

Writing the manifest file

The manifest isatext file containing attributes that specify meta-information about a JAR file
or other archive. For aclient JAR, the only required attributeis Main-Class. It |ets you specify
the client class whose main() method isto be invoked when the client starts executing.

Make sure your manifest file ends with anew line.

Packaging a client 75

toolsProjects.html

5 Writing J2EE Application Clients

Name and location

Your manifest file must be named:

MANIFEST.MF

It must be located in the following directory of your client JAR:

META-INF

Specification

Sun documentation is the authoritative source on the JAR manifest and its attributes.

L Seethe JAR File Specification in the Java 2 Standard SDK.

In Workbench

You can select File>New to create anew text file for your manifest. Then you can edit it in the
Text Editor and add it to your CAR project.

For example, here's the manifest file for the AppClientSample project:

f SilverStream [AppClient5ample] - Text Editor [_ (O]]
File Edit ‘“iew Search Project Documents Help

DEE y00 BN S F2m SitverStreanr
Yiewy Using: IW ChertendProjects\bppClientSamplettET A-INFIRANIFEST MF ®

E}-g AppCliertSample spf
[P ET A IF
- com

|:| application-client. xml
B 11amiFEST MF

g Directory ﬁ Praject
[~ Open @} Regiztries |

Manifest-Version: 1.0
Main-Class: con.exsanp.appclient.ippClientSanple

-

4
'ETextl

4

|
] % Build E‘ Walidate | !§ Deploy | @ Find | ‘\E. Wieh zervice Wizard

Line: 1

Column: 1 Ry

76

Packaging a client

eXtend Workbench Development Guide

It specifies the AppClientSample class as the Main-Class:

Manifest-Version: 1.0
Main-Class: com.exsamp.appclient.AppClientSample

Writing the deployment descriptor file

The deployment descriptor isan XML filethat you useto define the external entitiesreferenced
by your client classes. As mentioned earlier, these include:

e Environment entries
 EJB references
* Resource references (JDBC, JavaMail, IMS, URLYS)

Asof J2EE 1.3, you a so have the option of specifying acallback handler class (to be used by
the client container to collect authentication information from users).

Name and location

Your deployment descriptor file must be named:
application-client.xml
It must be located in the following directory of your client JAR:

META-INF

Specification

When writing the deployment descriptor file for a J2EE application client, you enter
information as a hierarchy of XML tags. The format to follow is determined by the Sun DTD
(document type definition) for thisfile.

L For details, see the chapter on J2EE deployment descriptor DTDs in the Reference.

In Workbench

When you use the New Project Wizard (File>New Proj ect) to create your CAR project, it
automatically sets up a deployment descriptor filefor you. Another way to create a deployment
descriptor is by selecting File>New. Once you have thisfilein your project, you can edit it in
the Deployment Descriptor Editor.

L) Seethe Deployment Descriptor Editor chapter in the Tools Guide.

Packaging a client 77

refJ2EEDeployDesc.html
toolsDeployDescEditor.html

5 Writing J2EE Application Clients

For example, thisis the deployment descriptor file for the AppClientSample project:

f SilverStream [AppClient5ample] - Car Deployment Descriptor Editor M =]k
File Edit ‘iew Search Project Documents Help
= 2=E r b e
UEE8 +y00 BN Z | g2m SitverStream
CheHtendProjects\AppClientSample WET A-INFiapplication-client =ml »

ey using: IArchive layout vl

E}-g AppCliertSample spf

= &8 Application Client Archive

B MET &-IMF = $ Environment
D com * reportTitle
= & EJB References
ﬁ ejb/myBean

' application-client. xml
[manresT MF

B Directory

B Open

ﬁ Project

'LR’; Regiztries | Descriptor | E XMLl

A4

Bl
| % Biuild E‘ Validatel l}, Deployl @ Findl ‘\E. Weh ser

ﬁ Resource References

CAR

Mame:

kjb.l‘myElean

Referenced Bean Mame:

Bean type:

Description:

Home interface:

ISession ;I

l:om exsamp.ejb SBMyEJBHome

Remote interface: l:om.exsamp.ejb.SElMyEJEl

nformation

ample session bean for accessing forecast

The XML source for this deployment descriptor includes:
e Standard <?xml ...> and <IDOCTY PE ...> declarations

* Root tag <application-client>

» <display-name> and <description> tags that identify this J2EE application client
« An<env-entry> tag that defines the environment entry reportTitle used by the client
* An<gb-ref> tag that defines the EJB session bean reference ejb/myBean used by the

client

78

Packaging a client

eXtend Workbench Development Guide

Here'sthe complete file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
Client 1.2//EN" "http://java.sun.com/j2ee/dtds/application-client 1 2.dtd">
<application-clients>
<display-name>AppClientSample</display-name>
<description>Sample J2EE application client that calls a session bean</descriptions
<env-entry>
<description>Environment entry used to provide report title text to the client
</description>
<env-entry-namesreportTitle</env-entry-name>
<env-entry-types>String</env-entry-type>
</env-entry>
<ejb-ref>
<description>Sample session bean for accessing forecast informations</descriptions>
<ejb-ref-names>ejb/myBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.exsamp.ejb.SBMyEJBHome</home >
<remotes>com.exsamp.ejb.SBMyEJB</remote>
</ejb-ref>
</application-client>

Creating the client JAR file

The archive you create for a J2EE application client is astandard JAR file that includes:

* Your compiled client classes

* Themanifest file

* The deployment descriptor file

« Any other supporting filesthis client requires

In Workbench
You can select Project>Build and Archive to create the client JAR file for your CAR project.

L) Seethe chapter on projects and archives in the Tools Guide.

Packaging a client 79

toolsProjects.html

Writing J2EE Application Clients

For instance, performing the build and archive operation for the AppClientSample project
generates the client JAR file AppClientSample.jar and displays these messages.

Buildfile: C:ieXtendProjectsiappClient3ampletbuildibuild-appClient3ample.xnl

Building project "ippClientSawple™ - Septewber 11, 2001 3:21 PM

Created dir: C:heXtendProjectshippClient3ampletbuildiippClientSample-classes

Compiling 1 source file to C:heXtendProjectshippClient3ampletbuildi\ippClientSample-classes
Building zip: C:iveXtendProjects‘\idppClientianple’ippClientSample. jar

| v

BUILD SUCCESSFUL

S

Total time: Z seconds

4
| % Biuild E‘ Validatel “:, Deployl @ Findl ‘\E. Weh service Wizard

Deploying a client

Deploying a J2EE application client involves:

1. Writing deployment information for your J2EE server
2. Deploying your client JAR to that server

Deployment alternatives This chapter focuses on the simple case of deploying alone
client JAR directly to the server. But often it's advantageous to include client JARs in the
context of afull J2EE application by deploying them to the server within an enterprise archive
(EAR) file. Doing so provides better support for your application clientsto reference other J2EE
modules.

L For information on setting up an EAR project, see the chapter on projectsand archivesin
the Tools Guide.

Writing server-specific deployment information

When deploying aclient JAR, you' |l usually need to provide server-specific information about
that deployment. Thisincludes mapping the environment entries, EJB references, and resource
references defined in your standard deployment descriptor file (application-client.xml) to real
entitiesin the target environment.

How you supply this information depends on the brand of J2EE server you’ re deploying to.
Typicdly it'sin the form of an XML file, similar to the standard deployment descriptor.

80

Deploying a client

toolsProjects.html

eXtend Workbench Development Guide

In Workbench

Workbench provides the following ways to create server-specific deployment information for

your CAR project:

If your target server is

You can

SilverStream eXtend Application
Server

Select File>New to create a SilverStream deployment
plan file. Then you can edit it in the Deployment Plan
Editor.

The deployment planisan XML file. When saving it,
you can specify any name and location. (You can store
it with your project fileson disk, but don’t add it to the
archive.)

Once you have a deployment plan for your project,
you can open it again later by going to the Project tab
and right-clicking your SPF file.

See the Deployment Plan Editor chapter in the
Tools Guide.

Another J2EE server

Select File>New to create anew XML filefor your
deployment information. Then you can edit it in the
XML Editor and save it with whatever name and
extension (typically .xml) your server requires.

Ll For asummary of the deployment information
required by specific J2EE servers, see the chapter on
archive deployment in the Tools Guide.

Deploying a client

81

toolsDeployment.html
toolsDeployPlanEditor.html

5 Writing J2EE Application Clients

For example, suppose the client JAR from the AppClientSampl e project isto be deployed to the
SilverStream eXtend Application Server. To prepare the required deployment information for
the server, adeployment plan file named AppClientSampleDepl Plan.xml is created:

*" SilverStream [AppClient5ample] - Car Deployment Plan Editor =]k
File Edit ‘“iew Search Project Documents Help
Uedd vy00BNE gl SitverStreany

| =+ _4 extendProjects ;I C:leXtendProjects\AppCientSampleldppCientSampleDeplPlan xml £

S |~ Cliert Sample TR 3 5
] build 12| | |= S8 appiication Client Archive

£ | META-INF = ¥ Environment Entries

'—3 i % reportTitle AppClientSample: Forecast Report

| CreditCheck

- = % EJB References

; = J
1 | _,l_l 485 ejbimyB szewiikiobucherS kRMISEMYEJS |
[appcientsample. jar ¥ Properties [<]

D AppClientSample, spf
B AppClientSampleDE.db

Deployment Plan, Bean Reference |

l AppClientSamplebeplPlan. xml Mame:
B TestMotes, kxt ejbimyBean

Referenced Bean Mame or JMDI Mame:
Isssw:.l’.l]klobucher81 kiRMISBMYEJB

B Directory =9 Project | || :
[Open I 13} Registries Descriptor | E XMLl Bean type: Session
Home interface:

com.exsamp.ejb SBMyEJBHome ot

Remote interface:
com exzamp.ejb SBMyEJB _l_vl
3

4
| % Biuild Eﬁ Validatel l}, Deployl @ Findl ‘\E. Weh service'
|

The XML source for this deployment plan includes:

e Standard <?xml ...>, <IDOCTYPE ...>, and <?AgMetaXML ...> declarations
» Root tag <car Jar Options> and the main tag it contains, <car Jar >
* A <version> tag that specifies the internal version number this plan corresponds to

e An<environmentList> tag where details are specified for each environment entry used
by this J2EE application client
One <environmentEntry> tag in thislist that specifiesthe value to use at runtime for the
reportTitle environment entry

» A <beanReferencel ist> tag where details are specified for each EJB reference used by
this J2EE application client

One <beanReference> tag in thislist that maps the EJB reference gjb/myBean to the
JNDI name (and server host) of a deployed EJB session bean to access at runtime

82

Deploying a client

eXtend Workbench Development Guide

* A <useslars>tag that lists additional JAR filesto be downloaded from the server to user
machines at runtime (and added to the classpath), along with the client JAR

Two <el> tagsin thislist that specify the EJB-client JAR file and remote EJB JAR file
needed by the client to access the EJB session bean it references

Here'sthe completefile:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software, Inc.//DTD J2EE CAR
Deployment Plan//EN" "deploy car.dtd"s>
<?AgMetaXML 1.07?>
<carJarOptions isObject="true">
<carJdar isObject="true">
<version type="String">1.0</version>
<environmentList isObject="true">
<environmentEntry isObject="true">
<name type="String"sreportTitle</name>
<value type="String"s>AppClientSample: Forecast Report</value>
</environmentEntry>
</environmentList>
<beanReferencelList isObject="true">
<beanReference isObject="true">
<name type="String"sejb/myBean</name>
<beanLink type="String"s>sssw://jklobucher8lk/RMI/SBMyEJB</beanLink>
</beanReference>
</beanReferenceList>
<usesJars type="StringArray">
<el>MyEJB-client.jar</el>
<el>MyEJBRemote.jar</el>
</usesJars>
</carJar>
</carJarOptions>

Deploying the client JAR file

Once you have your client JAR and server-specific deployment information ready, you can
deploy the J2EE application client. You can either use the native deployment tools provided
with your target J2EE server or deploy from within Workbench.

Deploying a client 83

5 Writing J2EE Application Clients

In Workbench

Workbench supports deployment to a variety of popular J2EE servers. Select
Project>Deployment Settings to specify how you want to deploy. Select Project>Deploy
Archive to deploy immediately using your current settings.

L) Seethe chapter on archive deployment in the Tools Guide.

For instance, suppose the client JAR from the AppClientSample project isto be deployed to the
SilverStream eXtend Application Server. Thisinvolves supplying the following deployment
settings to the deploy archive operation:

2Z Deployment - [C:\eXtendProjects\AppClientS ample\AppClientS ample._jar]

Deployment dislog contains the information to deploy a J2EE application. An install directory is the place
where deployment tools can be found for the given server.

Server Profiles are used at deployment. They specify the information necessary to deploy to a given
server.

Mote: & server type is valid for the server version specified or greater, unless a higher numbered version
iz available.

Profile name: |&ppClientSample server ;I ey |
Server type: SilverStream 4.0 Exlit... |

Server version: 4.0
Deployment tools directory: C:\Program Files'SilverStreamiextend AppServeribin Leettz |

Rapid Deployment directory: C:\Program Files'SilverStreamiextend AppServerebApps

Server specific information:
Server name: localhost
Database name: AppClientSampleDB

Uzer name: |

Pazsword: |

OK® Cancel| Deploy Help

84

Deploying a client

toolsDeployment.html

eXtend Workbench Development Guide

Messagesin the Output Pane indicate the status of the deployment:

..3erver: http://localhost -

. .database: AppClientSampleDB

..Jjarname: C:%eXtendProjects\ippClientianple’\ippClientSample. jar

..We found a plan and a deployment descriptor so we are now going to merge them.

..adding AglheploymentDescriptor.meta to the jar at meta-inf

..about to send Ci:heXtendProjects‘\ipplClientlfampleddppClientSample.jar's metadata to http: /7]

..We found a plan and a deployment plan so we are now going to get the assoc jars.

... We found a plan and a deployment plan so we are now going to get the assoc jars.
Uploadlng application client to http://localhost/ippClientianpleDB/Silveritrean/Objectstore/J;
Uploading application client to http://localhost/idppClientianpleDB/Silveritrean/Classes/Jars/i
Successfully uploaded application client 'http://localhost/idppClientianpleDB/Silveritrean/Clas

-

s | B
] % Eluildl ﬁ Validate| !:. Deploy |@ Findl ‘\E. Weh service \I\ﬂzardl

In this case, the result is a J2EE application client deployment named AppClientSample that’s
ready for usersto access from the SilverStream eXtend Application Server and run in the client
container (SilverJ2EECIient). Here's how this deployment appears in the SilverStream
Management Console (SMC):

SilverStream Server Management Console - USER: Anonymous

File “iew Help

SilverStreanr g & F 0 N

Management Console Configuration Security Monitor Deployment Choose Restart Stop

t localhost:80| |Deployed Objects JHDI Tree Manage URLS Resource Adapters

Deployed Objects:
= @ AppclientsampleDB

g AppClientSample
& WEJBDeployed
+ a Silvermaster4d

Deploying a client 85

5 Writing J2EE Application Clients

Running a client

Running a J2EE application client involves:

1. Installing the client container on each user machine
2. Invoking the client container to start the deployed client

Consult your J2EE server vendor to learn about the client container you should use, how to
install it, and how to invokeit.

L Tolearn about installing and invoking the SilverStream client container
SilverJ2EECIient, seethe Facilities Guide of the SilverStream eXtend Application Server Core
Help.

For example, suppose the J2EE application client AppClientSample has been deployed to the
SilverStream eXtend Application Server (as shown earlier) and you now want to runit. The
following command line invokes the SilverJ2EECIient container, starts AppClientSample, and
passes an argument (0) to the client:

SilverJ2EEClient jklobucher8lk AppClientSampleDB AppClientSample 0

In this case, the client starts executing in the main() method of the AppClientSample class (as
specified in the manifest). It then obtains some information (by accessing an EJB, an
environment entry, and the passed argument) and displaysit to the user:

E‘%Appclienlﬁample: Forecast Report [%]

@ The forecast for today is;

Sunny and warm with a light hreeze

Mote: forecast obtained from gethyText() method of EJB session bean SEMyEJE

86

Running a client

6 Writing Enterprise JavaBeans

Enterprise JavaBeans (EJBs) are an important part of the J2EE application architecture. This
chapter introduces EJBs. It covers these topics:

About EJBs

Developing EJBs

Packaging EJBs

Deploying EJBs

Calling EJBs

Tipsfor designing EJB applications

About EJBs

EJBsarereusabl e Java-based componentsthat are transactional and secure and can be remotely
accessible. You can use EJB componentsto provide the businesslogic for your application, link
your application’s user interface with aback-end information system, or handle JIM S messages.

87

6 Writing Enterprise JavaBeans

Sun defines the following EJB types:

EJB type

Description

Entity bean

Represents datain an underlying data store like arelational or object
database. Can also represent complex relationships among one or more
related tables or components of a nonrelational data store.

Since entity beans represent datain an underlying data store, the data
contained in the entity instances must be synchronized with the datain the
rows they represent. The process of synchronization is called persistence.
Persistence includes creating, deleting, and modifying data rows. Creating
an entity bean instance creates arow in the underlying data store; deleting
and entity bean instance removes the row from the underlying data store;
and so on.

EJBs support two persistence models:

« Bean-managed per sistence (BM P)—You write code that synchronizes
the data to the underlying data store.

e Container-managed persistence (CM P)—You set propertiesin the
deployment descriptor that describe how the container should
synchronize the data. The most common CMP models are described in
the EJB1.1 and EJB2.0 specifications. Thereisan EJB1.0 CMP model,
but it is no longer widely supported.

88

About EJBs

eXtend Workbench Development Guide

EJB type

Description

Session bean

Represents business processes and can be used to manage relationships
among other entity or session beans. For example, you might use a session
bean as a client shopping cart application, or to access and manipulate your
enterprise data. Session beans are transient and do not represent persistent
data.

There are two kinds of session beans:

* Sateful—A stateful session bean is bound to the client session that
createsit, so it can be used to maintain values associated with that client
session.

* Sateless—A stateless session bean isreleased to the instance pool after
each method call completes, so it isnot guaranteed that a client will
have the same instance on subsequent method calls.

Message-
driven bean
(2.0 only)

Like a session bean, represents business processes. Resides in the EJB
container and subscribes to or listens for asynchronous messages. When a
message is received, the message-driven bean processesit and then waits
for the next message. M essage-driven beans can be used for the same types
applications as session beans, but their methods cannot be called by a
client; they can only respond to JM S messages.

M essage-driven beans are accessed viaJMS.

About EJBs

89

6 Writing Enterprise JavaBeans

The following diagram shows how EJBs can be used in J2EE applications.

Wweb browser >

JZEE server

web container

JSP page

G
1

EIB container

EJBHome
EIBObject

Message-
driven bean

Benefits of EJB container From thisdiagram you can seethat an EJB runs on a 2EE
server within an EJB container. The EJB container (as defined by the EJB specification)
providesthe EJB runtime environment that includes such low-level servicesas haming services,
remote access, security, and transaction support.

Enterprise datg

¥

Standalone client|<—

The EJB container provides two benefits:

* Youfocuson businesslogic Because you can rely on these services being available and
accessed in a standard way, you can focus your development efforts on writing the
business logic and not on low-level services.

* Your EJBsareportable Because all EJB containers must meet these requirements,
EJBs can be portable across many EJB container implementations.

NOTE EJB container vendors can provide additional servicesfor EJBs deployed on their
systems. But EJBs developed to take advantage of nonstandard services are not
portable.

90 About EJBs

eXtend Workbench Development Guide

How clients access the EJB You can also see from the diagram that EJB clients do not
accessthe EJB directly. Entity beans and session beans are accessed viathe EJBODbject and the
EJBHome abject. The EIBObject provides access to the EJB’s business methods; the
EJBHome object provides access to the EJB’slife cycle methods. A new feature for EJB2.0
allows beans within the same container to access one another using alocal interface instead of
aremote interface; this avoids the overhead of the remote calls. (The two new local interfaces
are EJBL ocalHome and EJBL ocalObject.) Message-driven beans are not accessed via any
interfaces. Client programs cannot access message-driven beans directly, because they are
accessed only viaa JM 'S message server.

About EJBs 91

6 Writing Enterprise JavaBeans

Developing EJBs

The components you devel op depend on the version of the EJB specification and the types of
enterprise beans you are developing. This table showswhat is required for each specification:

EJB Interface or class that you must
version Bean type provide
EJB1l.1 Entity or session beans » Home and remote interface

¢ Bean implementation class

e (Optional) Primary key class (entity
beans only)

EJB2.0 Entity or session beans e LocaHome and local component
interface and/or RemoteHome and
remote interface

¢ Bean implementation class

¢ (Optional) Primary key class (entity
beans only)

* (Optional) Dependent objects (for entity
beans only)

M essage-driven beans * Beanimplementation class

To test or deploy the EJBs you develop, you need to:

1. Package the beans and the interfacesin an EJB JAR file and include a deployment
descriptor. (See “Packaging EJBS” on page 95 for more information on the deployment
descriptor.)

2. (Optional) Assemble the beans (from one or more EJB JARS) into an application.
3. Deploy the EJB JAR on a REE-compatible server. (See “ Deploying EJBS’ on page 97.)
4. Writeaclient to call the EJB. (See “Calling EJBS’ on page 97.)

Looking at a sample session bean
This sample shows the components of a stateful session bean and includes:

e Theremote interface
¢ The homeinterface

92 Developing EJBs

eXtend Workbench Development Guide

* The bean implementation class

The remote interface Some thingsto note about this sample:

» Theremoteinterface extends javax.ejb.EJBObject.
e ThedoCalculation() business method isincluded so that clients will be ableto call it.
» All methods on the remote interface throw java.rmi.RemoteException.

/* *

* @ (#)SBCalculator.java

* SBCalculator is a Stateful session EJB (EJB v1.1).

*/

import java.rmi.RemoteException;

public interface SBCalculator extends javax.ejb.EJBObject

{

public int doCalculation(int piFirstValue, int piSecondvalue)
throws RemoteException;

}

The home interface Some thingsto note about this sample:

e The home interface extends javax.ejb.EJBHome.

» Thelife cycle method create() corresponds to the gjbCreate() method on the session bean
implementation class.

e The create() method throws both the javax.ejb.CreateException and the
java.rmi.RemoteException.
/ * %
* @ (#)SBCalculatorHome.java
*/
import java.rmi.RemoteException;
import javax.ejb.CreateException;
public interface SBCalculatorHome extends javax.ejb.EJBHome

{
}

public SBCalculator create() throws CreateException, RemoteException;

The bean implementation class Some things to note about the bean implementation
class:

* |t extendsjavax.ejb.SessionBean.

e Itincludeslife cycle methods like gjbCreate() and ejbRemove().

* Itincludes container callback methods like gjbActivate() and gjbPassivate(). These
methods allow the container to manage the bean.

e Itincludes the implementation of the doCalculation() method.

Developing EJBs 93

6 Writing Enterprise JavaBeans

/**
* @(#)SBCalculator.java
* SBCalculator is a Stateful session EJB (EJB vl1.1).
*/
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;

public class SBCalculatorBean implements javax.ejb.SessionBean

protected SessionContext m_sessionContext;

public int m_ iTotal=0;

public void ejbCreate() throws CreateException

public int doCalculation(int piFirstValue, int piSecondvalue)
int iTotal = piFirstValue + piSecondValue;
m_iTotal += iTotal;
return m_iTotal;

}

public void setSessionContext (javax.ejb.SessionContext ctx)

{

m_sessionContext = ctx;

}
public void ejbActivate()
{
}
public void ejbPassivate()
{
}
public void ejbRemove ()
{
}

What Workbench does

Workbench provides an EJB Wizard that prompts you for information about the EJB you want
to create. It prompts you for:

The version of the EJB specification you want to use (1.1 or 2.0)

Thekind of EJB you want to create: session bean (stateful or stateless), entity bean (BMP,
CMP1.x, or CMP2.x), or message-driven bean

The methods the EJB will contain (including parameters, return types, and exceptions)
Information about the underlying data store (for entity beans)

94

Developing EJBs

eXtend Workbench Development Guide

When you have provided al of the information, the wizard constructs:

What the wizard constructs | Details

Remote and/or local Includes al of the implementation class's public methods

component interface You do not haveto writeany code

RemoteHome and/or Includes the life cycle methods that are required by the
LocalHome specification, plus any additional create() methods
defined in the implementation class

You do not haveto write any code

Bean implementation class Includes all necessary imports, member variables, and
method skeletons for all methods you specify

The resulting Java file a so includes not implemented
comments so you can quickly scan the class for what is
complete and what is not

Primary key class A separate primary key classisonly generated when a
bean field is not sufficient for use as a primary key.

Packaging EJBs

Once you have devel oped the components of your EJB, you package them in an EJB JAR. To
do thisyou:

1. Write adeployment descriptor for the EJB JAR.

2. Createan EJB JAR file (a JAR with the .JAR extension) and add the EJB source files and
any other utility classes needed by the EJB.

Writing the deployment descriptor

The deployment descriptor isan XML description of the contents of an EJB JAR file. Thisfile
can have any valid file name and be located in any directory; but in the EJB JAR fileit must be
named gjb-jar.xml and residein adirectory named META-INF. The gjb-jar.xml file must follow
the format specified by the Sun Enterprise JavaBeans DTD. For more information about the
DTD, see J2EE Deployment Descriptors in the online Reference.

Packaging EJBs 95

refJ2EEDeployDesc.html

6 Writing Enterprise JavaBeans

An EJB deployment descriptor includes:;

Contents Defined by

Description

Description of the | Bean
individual beansin | developer
the JAR

Information about the individual beansin the EJB
JARS, such as the name of the EJB’s Javaclassfile and
the names of its home and remote interfaces

Runtime attributes | Application
of the beansinthe | assembler
JAR

Information about the runtime attributes of the beans
in the EJB JAR, such as entries that name roles,
method permissions, and transaction attributes

The deployer then uses this combination of
information to install the EJB JAR on the target server
and map this information to actual entitiesin the
runtime environment

What Workbench does

When you create an EJB as part of an EJB pr oj ect, Workbench automatically creates a
deployment descriptor that complies with the EJB deployment descriptor DTD. Asyou add
components to the EJB project, Workbench updates the deployment descriptor to keep the
project and the deployment descriptor synchronized.

You use the Workbench Deployment Descriptor Editor to modify and update the gjb-jar.xml
file. You can aso create an EJB deployment descriptor using the Deployment Descriptor Editor.

Creating an EJB JAR file

An EJB must be packaged in an EJB JAR file. You can use the archive tool of your choiceto

create an EJB JAR file.

What Workbench does

Workbench automates the archiving process. You can use Workbench to compile and archive
your EJBs using Projects>Build and Archive.

96

Packaging EJBs

refJ2EEDeployDesc.html
toolsDeployDescEditor.html

eXtend Workbench Development Guide

Deploying EJBs

To make your EJBs available to users, you deploy the EJB JAR on a J2EE server, such asthe
SilverStream eXtend Application Server. To do thisyou:

1.

2.

Provide the runtime deployment information specific to your application and server.

Each J2EE server has its own requirements for specifying the runtime deployment
information. For example, the SilverStream eXtend A pplication Server uses a deployment
plan, and the Sun Reference Implementation (RI) uses a Runtime Deployment Descriptor.

Deploy the EJB JAR.

In Workbench To deploy your EJB JAR:

Make sure the J2EE server is running and accessible.
Select Project>Deploy Archive.
Fill in the Deployment dialog.

The deployment information depends on the server you are deploying to. You use the
server profile dialog to create a J2EE server profile that Workbench can use to execute the
appropriate deployment tool based on the selected server.

4. Click OK to deploy the EJB JAR.
Workbench provides automatic deployment to several J2EE servers.
L For more information, see the chapter on archive deployment in the Tools Guide.
Calling EJBs

To cal an EJB on a J2EE server, aclient must:

1.
2.
3.

Find the EJB.
Create an instance of the EJB.
Call the bean’'s remote methods or send a JM'S message to the appropriate topic or queue.

Finding the EJB

To find the EJB, the client application locates the EJBHome object in one of these ways:

The JNDI name
A bean reference using the environment context

Deploying EJBs 97

toolsDeployment.html

6 Writing Enterprise JavaBeans

Finding the home object using the JNDI name Thisexampleshowshow todoaJNDI
lookup and a PortableRemoteObj ect.narrow:

1. Create an instance of the javax.naming.lnitial Context class.
initialContext = new InitialContext () ;

2. Useitto call the Initial Context.lookup() method. In this example, the session bean’s INDI
name is SBCalculator and it is located in the RMI subcontext.

Object obj = initialContext.lookup ("RMI/SBCalculator") ;

3. Cdl the javax.rmi.PortableRemoteObject.narrow() to perform type-narrowing of the
client-side representations of the home and remote interfaces. Then cast the returned
object to the appropriate type (in this case SBCal culatorHome).

m_sbCalculatorHome = (SBCalculatorHome)
javax.rmi.PortableRemoteObject.narrow (obj,
com.examples.calculatordemo.SBCalculatorHome.class) ;

Finding a bean reference using the environment context Thisexample showshow
to find abean using a bean reference from another J2EE component.

1. Create an instance of the javax.naming.lnitial Context class.
m_initialContext = new javax.naming.InitialContext () ;
2. Create an instance of the environment context and call the Initia Context.lookup() method.
Context contextEnv = (Context) m initialContext.lookup ("java:comp/env") ;
3. Cdl the environment context |lookup using the bean reference.

Object objEntityBeanLookup = (Object)
contextEnv.lookup ("ejb/beanrefname") ;

4. Cal the javax.rmi.PortableRemoteObject.narrow() to perform type-narrowing of the
client-side representations of the home and remote interfaces. Then cast the returned
object to the appropriate type.

m_myBeanHome = (myBeanHome)
PortableRemoteObject .narrow (objEntityBeanLookup,
com.examples.bankdemo.myBeanHome.class) ;

Instantiating an EJBObject

You call the create() method or afinder method on the resulting EJBHome to get an EJBObject
for an entity bean:

m_myBean = m_myEntityBeanHome.findByPrimaryKey (pkCompany) ;
or a session bean:

m_myBean = m_mySessionBeanHome.create() ;

98

Calling EJBs

eXtend Workbench Development Guide

Calling the bean’s remote methods Onceyour client hasaremote referencetothe EJB,
you can call any of the exposed business methods as though the EJB were local. Your client
application can call only methods exposed by the remote interface and the life cycle methods
exposed by the home interface. Clients that access entity beans can also call methods on the
primary key class.

The bean provider must provide some type of written documentation that describes the EJB’s
available business methods.

Calling EJBs 99

6 Writing Enterprise JavaBeans

Tips for designing EJB applications

Designing agood EJB application means following the standard practices of designing any
good database application—yplus these EJB-specific practices:

EJB practice

Details

Use appropriate-weight
components

Define methods at the business logic level

Take advantage of EJB’s built-in transaction support
whenever possible

K eep transactions short

Never start a transaction from aremote client (such asa
form); if the client crashes, the database will be locked until
the transaction times out

Itis OK to start atransaction from aservlet or page; but the
servlet or page should close the transaction before
responding to the browser—don’t keep transactions open
across user interactions

Consider using session beans to manage transactions

javax.rmi.PortableRemot
eObject.narrow() method
with bean lookups or
references

Integrate with the user When possible, call EJBs directly from a page or servlet—do
interface not expose EJBs directly to remote Java clients
Always usethe Casting is not sufficient for RemoteHome and remote

component interfaces.

Alwaysimplement an
equals() method and a
hashCode() method for
entity bean primary key
classes

These methods must override the default implementation (on
Object) with the correct signature

Call the remove() method
on session beans when
you no longer need them

The remove() method will get rid of the bean instance and
unexport the corresponding remote object

100

Tips for designing EJB applications

7 Using Resource Adapters

Resource adapters are an important part of the J2EE Connector technology. This chapter
introduces resource adapters and includes the following sections:

» About resource adapters
» Deploying resource adapters
» Using resource adapters

About resource adapters

Resource adapters are software components that reside on a J2EE server and allow J2EE
componentsto interact with enterpriseinformation systems (EI S) that reside outside of the J2EE
server. Some examples of EIS systemsinclude nonrelational databases, SAP, and PeopleSoft. A
resource adapter islikeaJDBC driver; it provides astandard API that J2EE application servers
can use to access and provide services (like connection pooling and transaction and security
management) for the EIS. Resource adapters also define and implement interfaces that J2EE
client applications can use to access the resources managed by the EIS. The Connector
Architecture Specification (1.0) defines a client interface called the Common Client Interface
(CClI) that aresource adapter can implement for use by client applications, but it is not required.

Resource adapters are stored in resource adapter archive (RAR) files and are deployed to J2EE
serversin the same way that other archive types are deployed. Once deployed, a resource
adapter and its underlying EISis not available to client applications until a Connector
connection pool is created and configured using the target server’stools.

101

7 Using Resource Adapters

The following diagram illustrates how resource adapters can be used in J2EE applications.

web browser |

JZEE server

web container

JSP page

EIB container

EJBObject

¥

Resource -«
Adapter Enterprise data

F'

h 4

¥

Standalone cIient}q—«{

Message-driven bean

| rveriesn>
]
» IMS server

Each resource adapter is devel oped to allow access a particular data source (EIS), soitis
possible that more than one resource adapter isinstalled on any J2EE server. The J2EE
Connector Architecture requires that the resource adapter implement the following contracts:

Contract Description
Common Client Interface Defines APIs that clients can use to access dataviaa
(Car resource adapter. Resource adapter providers are not

required to implement the CCl. The CCl API is common
across heterogeneous EI S data stores and includes
methods and classes to create and manage EIS
connections and data.

L1 Seethe CCI Specification for more information.

Connection management Defines the APIs that allow J2EE application serversto
create and manage connection pools that can improve
performance and scalability of applications using the

resource adapter.

102

About resource adapters

new http://jcp.org/jsr/detail/016.jsp

eXtend Workbench Development Guide

Contract

Description

Transaction management

Defines the APIsthat allow J2EE application serversto
enlist EIS resourcesin global or local transactions viathe
resource adapter. The J2EE Connection Architecture
defines the following types of resource adapters:

e XA (global)—transactions that can span multiple
resource managers. Global transactions require
coordination by an external transaction manager that
will typically be bundled with the application server.
XA transactions may require two-phase commit if the
transaction spans multiple EIS applications. It will use
a single-phase commit if only one EIS parti cipates.

* local transactions—transactions that are limited to a
single EI'S system and its associated resource manager
(at the EIS).

* nontransactiona

Security

Defines the APIsthat allow J2EE application serversto
support secure connections to EIS resources viathe
resource adapter. The security supported by the resource
adapter is dependent on the requirements of the EIS.

Deploying resource adapters

Resource adapters are stored in resource adapter archive (RAR) files and can be deployed on
any J2EE-compatible server. The RAR file should include:

» The classes needed to implement the resource adapter.
e A deployment descriptor. The file must be called ra.xml and it must be stored in the

META-INF file.

In addition, most J2EE serverswill require afile that contains runtime deployment information,
so you'll need to provide the file as required by the target J2EE server.

In Workbench To deploy your RAR:

1. Start Workbench and access the RAR from the file system.
2. Create adeploy-only project and add the RAR to it.

Deploying resource adapters

103

7 Using Resource Adapters

Make sure the J2EE server is running and accessible.
Select Project>Deploy Archive.
Fill in the Deployment dialog.

The deployment information depends on the server you are deploying to. You use the
server profile dialog to create a J2EE server profile that Workbench can use to execute the
appropriate deployment tool based on the selected server.

Click OK to deploy the RAR.
Workbench provides automatic deployment to several J2EE servers.

L For more information, see the chapter on archive deployment in the Tools Guide.

Using Workbench to create resource adapters You canaso use Workbench to create
aresource adapter. For moreinformation on using Workbench to devel op J2EE components, see
the Tools Guide.

Using resource adapters

Client applications never directly accessthe EIS or the resource adapter. Client applications
access the resource adapter connection pool.

To access an EIS, client applications:

Import javax.resource.ResourceException and any other packages necessary to use the
resource adapter’s client interfaces. For example: if CCl is used, the client application
must import javax.resource.cci.* and

Use JNDI to get the ConnectionFactory for the resource adapter (and the username and
password values if necessary)

Access an unused connection from the connection pool. When CCI is used, the client
application would use the getCClConnection() method.

Once you have the connection, you use the methods of the CCl or a proprietary interface
defined by the resource adapter vendor to access the data.

The following code shows how to locate the ConnectionFactory (viaJNDI) and to establish a
connection using the CClI.

public void setSessionContext (SessionContext ctx) {
try {
m_sessionContext = ctx;
Context ic = new InitialContext () ;
username = (String) ic.lookup("java:comp/env/user") ;
password = (String) ic.lookup ("java:comp/env/password") ;
Object obj=ic.lookup ("java:comp/env/myEIS") ;

104

Using resource adapters

toolsDeployment.html

eXtend Workbench Development Guide

cf=(ConnectionFactory) obj;
} catch (NamingException ex) {
ex.printStackTrace () ;

}

Using resource adapters 105

7 Using Resource Adapters

106 Using resource adapters

Part Il Producing and Consuming Web Services

A primer on Web Services that prepares you for creating and using them in
Workbench

« Chapter 8, “Understanding Web Services”
¢ Chapter 9, “Generating Web Services”
¢ Chapter 10, “Generating Web Service Consumers”

8 Understanding Web Services

Web Services enable businesses to share application functionality regardless of the source
language, operating system, or hardware used to create that functionality. Web Services
overcome implementation incompatibilities by using standar d Inter net protocolsand XML -
based messaging to provide intercomponent communication.

This chapter gives an overview of Web Service technologies and SilverStream eXtend
Workbench support for the development and use of Web Services. Topicsinclude:

* About Web Services

* Web Service providers, consumers, and registries

e Providing Web Services

» Using Web Services

« Using Web Service registries

* Learning more about Web Services

e Popular Web Service implementations

* Web Services and Workbench

About Web Services

Web Services are modular software components whose application functionality is accessible
over the Web using Simple Object Access Protocol (SOAP), a standardized XML -based

messaging protocol.

Applicationsinvoke Web Services like remote procedure calls, except that the procedure call
and response are handled using SOAP messages embedded in HT TP requests and responses.
An application calls aWeb Service by sending a SOA P message embedded in an HTTP request
to aWeb location associated with that service. The Web Service performs the application logic
for that message then returns any application output in the form of another SOAP message
embedded in an HTTP response.

L Tolearn more about SOAP messages, see www.w3.0rg/ TR/SOAP,

109

new http://www.w3.org/TR/SOAP

8 Understanding Web Services

Web Service providers, consumers, and registries

The Web Service architecture typically consists of Web Service providers, consumers, and

registries:

Provider

web service
application

A Web Service provider isan organization that creates and hosts Web Services. Typically, a
provider publishes information about their organization and the services they offer in aWeb
Serviceregistry that can be queried by members of the organization or possibly by other

businesses.

A Web Service consumer finds aWeb Service (typically by querying a Web Service registry)
then runs the service by establishing a connection to the provider. Thisiscalled bindingto a

Web Service.

A Web Serviceregistry isacollection of business and service information that is readily
accessible to providers and consumers, through programmatic publishing and querying

interfaces.

Publish

SOAP Bind SOAP
» Message »| message
handler handler

Find

Fublish
interface

Inquiry
interface
i

Business and service
reqgistration
information

Reqgistry

Consumer

Consumer
application

110

Web Service providers, consumers, and registries

eXtend Workbench Development Guide

Providing Web Services
A Web Service provider:

1. Creates and deploys Web Service components
2. Createsa WSDL file to describe the Web Service

3. Publishes information about the Web Service so prospective consumers can discover and
useit

Creating Web Service components

A provider creates the application logic components and depl oys them to a network-accessible
location, typically using a Web application server. To make these logic componentsinto a Web
Service, the provider creates and deploys a SOAP message-handling inter face that enables
HTTP requests containing well-defined SOA P messagesto invoke the appropriate Web Service
functionality.

When aconsumer application accesses the service by sending a SOA P message embedded in an
HTTP request, the provider runs the application logic and returns any application output in
another SOAP message embedded in an HTTP response. For example:

HTTP req t from c

POST /Stockluote HITPA1.1

Host: www_stockquoteserver.com

Content-Type: text/xml;

charset="utf-8"

Content-Length: nnnn

S0APAction: "wwm.stockquoteserver. comdservices/ getquote htm"

<E0AP-ENV:Envelope xmlns: S0AP-ENU="http://schemas xmlsoap.org/ soap/ envelope "
S0AP-ENY: encodingStyle="http://schemas.xmlsoap. org/ soap/ encoding/ ">
<30AP-EN: Bodys
<m: GetLastTradePrice
xmlns: m="wm_stockquoteserver . com services/ getquote _htm">
Provider <eymbol *0 154/ symbol>
</m: FetLastTradePrice>
</ S0AP-EN: Body>
</ S0AP-ENV:Envelope>

S

SOAP
l&----M message
handler

web service
application

HITR/1.1 200 0K
Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn

v

<E0AP-ENV:Envelope xmlns: S0AP-ENU="http://schemas xmlsoap.org/ soap/ envelope "
S0AP-ENY: encodingftyle="http://schemas.xmlsoap. org/ soap/ encodings "/ >
<30AP-EN: Bodys
<m: GetLastTradePriceResponse
xmlns: m="wm_stockquoteserver . com services/ getquote _htm">
“Pricer34. 5¢/Pricex
</m: GetLastTradePriceResp
</ S0AP-ENV: Body>
</ S0AP-ENV:Envelope>

HTTP response to consumer

Providing Web Services 111

8 Understanding Web Services

Creating a WSDL file

To specify information about a Web Service in a standard form, the provider creates a\Web
Services Description Language (WSDL) document describing its characteristics. WSDL isan
XML-based format that describes a Web Service by using these elements:

Element Contains definitions of

Type Data types specified in message content

Message Data formats of messages

Port type Endpoint types and the operations they support

Binding Message formats and protocol details for a particular port type
Port A network address for each endpoint

Service Groups of related endpoints

In WSDL, an endpoint specifies a network address aswell as the protocol and data format of
messages exchanged with that address.

Given the flexibility of the WSDL specification, the information in aWSDL document can
become complicated. For easier understanding, think of aWSDL document as essentially
specifying the interface and port location of aWeb Service.

L Tolearn more about WSDL, see www.w3.0rg/TR/wsdl.

Publishing Web Service information

Once aWeb Service has been created and deployed, the provider can publish information about
the service and the provider organization in one or more registries. This enables prospective
consumers to discover that the serviceis available and learn how to useit.

L For details, see “Using Web Service registries’ on page 114.

Another way to publish Web Service information is to provide the information directly to
specific consumers by using Web pages, e-mail, personal communications, and so on. Thisis
called direct publishing.

112

Providing Web Services

new http://www.w3c.org/TR/wsdl

eXtend Workbench Development Guide

Using Web Services

A Web Service consumer creates applications that use Web Services. Typically, a consumer
finds an appropriate Web Service by querying a Web Serviceregistry (see “Using Web Service
registries’ on page 114).

From the WSDL information provided, the consumer can create the SOAP message-handling
code needed to use the Web Service. When the consumer application callsthe Web Service, the
SOAP message-handling code binds to that service, asfollows:

1. Establishesan HTTP connection to the provider

2. Creates and sends a SOA P message embedded in an HTTP request, instructing the
provider to invoke the appropriate Web Service application logic

3. Ifthe HTTPresponse contains a SOAP message, converts that message (into a data format
understandabl e to the consumer application) then returns the data to the application

To the consumer application, thisissimilar to calling aremote method. However, theinteraction
between the application code and the Web Service uses SOAP messaging embedded in a
standard HTTP request and response. For example:

HTTP request to provider

POST /Stockluote HITPA1.1

Host: www_stockquoteserver.com

Content-Type: text/xml;

charset="utf-8"

Content-Length: nnnn

S0APAction: "wwm.stockquoteserver. comdservices/ getquote htm"

<E0AP-ENV:Envelope xmlns: S0AP-ENU="http://schemas xmlsoap.org/ soap/ envelope "
S0AP-ENY: encodingStyle="http://schemas.xmlsoap. org/ soap/ encoding/ ">
<30AP-EN: Bodys
<m: GetLastTradePrice
xmlns: m="wm_stockquoteserver . com services/ getquote _htm">

<gymbol >0 I18</ symbol > Consumer
</m: GetLastTradePrice>
</ S0AP-EN: Body>
</ S0AP-ENV:Envelope>
SOAP Consumer
rﬂ:if:l‘laeg: ™ application
HITE/ 1.1 200 0K

Content-Type: text/xml;
charset="utf-8"
Content-Length: nnnn

<E0AP-ENV:Envelope xmlns: S0AP-ENU="http://schemas xmlsoap.org/ soap/ envelope "
S0AP-ENY: encodingftyle="http://schemas.xmlsoap. org/ soap/ encodings "/ >
<30AP-EN: Bodys
<m: GetLastTradePriceResponse
xmlns: m="wm_stockquoteserver . com services/ getquote _htm">
<Pricer34 5</Pricex
</m: GetLastTradePriceResp
</ S0AP-ENV: Body>
</ S0AP-ENV:Envelope>

HTTP response from provider

Using Web Services 113

8 Understanding Web Services

Using Web Service registries

A Web Service registry isarepository of Web Service information that can be accessed
programmatically over anetwork. Both providers and consumers can use Web Service

registries:

* Providerscan publish information about their organization and servicesto registries,
making them visible to prospective consumers.

e Consumerscan query registriesto find the services and businesses that fit their needs
and to retrieve provider-supplied information about those services (such as where and how
to access them, the WSDL representation, and so on).

About registries

A registry can contain these kinds of information:

Category

Includes

Business information

Name, industry or product category, geographic location,
and business identification numbers (such as NAICS or
DUNS numbers)

Web Service information

General description, business process or category, and
technical information (about connecting to and
communicating with the Web Services for agiven
business)

Business service information

Corporate home page URL, sales and technical support
contact information, business services not hosted on the
Web, and so forth

Specification pointers

URL addresses of WSDL for services and other technical
documents

114

Using Web Service registries

eXtend Workbench Development Guide

Registry data formats

Registries storetheir business and service information in astandard XML -based format such as
Universal Description, Discovery, and Integration (UDDI) or Electronic Business XML
(ebXML). Businesses hosting registries typically provide Web page, GUI, or programmatic
interfacesfor publishing to and querying theregistry (so providersand consumersdon’t need to
know details about the internal registry implementation).

L Tolearn more about UDDI, see www.uddi.org. To learn more about ebXML, see
www.ebxml.org.

Public and local registries

Businesses may use public or local registries:

* A publicregistry istypically visible to anyone on the Web and contains information
about numerous companies and services. It may implement varying degrees of
authentication and authorization security for publishing and querying.

e Alocal registry might be limited to local network access, enabling a business to share
Web Services internally without exposing them to consumers outside the organization.

Learning more about Web Services
Here'sasummary of Web sites you can visit to find out more about specific Web Service

technologies:
Topic Site
SOAP www.w3.0rg/TR/SOAP
HTTP www.w3.org/Protocol s
WSDL www.w3.0rg/ TR/wsdl
uDDI www.uddi.org
ebXML www.ebxml.org

Learning more about Web Services 115

new http://www.w3.org/TR/SOAP
new http://www.w3c.org/Protocols
new http://www.w3c.org/TR/wsdl
new http://www.uddi.org
new http://www.ebxml.org
new http://www.uddi.org
new http://www.ebxml.org

8 Understanding Web Services

Popular Web Service implementations

While it'simportant to know about the underlying Web Service technologies (SOAP, WSDL,
UDDI, ebXML, etc.), it'susually not efficient to develop applications at that level. Asaresult,
higher-level implementations have emerged to make those technol ogies more accessible by
wrapping them in familiar constructs. These implementations include:

 J2EE Java?2 Enterprise Edition provides Web Service support through its JAX-RPC
(Java API for XML-based RPC) specification.

e NET Microsoft provides Web Service support through its .NET platform.

For example, aprogrammer familiar with J2EE can more easily useaJAX-RPC implementation
to develop and access Web Services. There’'s no need to become a SOAP expert or process
SOAP messages manually.

When properly designed and built, Web Services should be inter oper able across different
implementations. For instance, a JAX-RPC client should be able to accessa.NET Web Service
and a.NET client should be able to access a JAX-RPC Web Service.

Web Services and Workbench

SilverStream eXtend Workbench is a J2EE-oriented | DE that providers can use to create,
deploy, and maintain Web Servicesbased on the JAX-RPC standard. That means Web Services
are packaged in J2EE Web ar chives (WARs) that can be deployed to any J2EE-compatible
server. Workbench can al so be used to devel op Java-based Web Service consumersthat comply
with JAX-RPC.

To help you implement Web Services and Web Service consumers, Workbench provides these
facilities:

Facility Description

jBroker Web Core technologies for eXtend Web Service support, including
compilers and SOAP runtime based on JAX-RPC

Web Service Wizard Tool that helps you invoke the jBroker Web compilersto
generate Java classes and WSDL files for Web Services and
Web Service consumers

Registry Manager Tool for querying and publishing to Web Service registries

WSDL Wizard and Editor | Toolsfor creating and editing WSDL files

116

Popular Web Service implementations

new http://java.sun.com/xml/jaxrpc
new http://www.microsoft.com/net

eXtend Workbench Development Guide

jBroker Web

jBroker Web is a JAX-RPC implementation that includes compilersand aruntime
environment for developing and executing Web Service provider and consumer applications.

The Web Service Wizard uses the jBroker Web compilersto create Web Service components
(skeletons, ties, stubs) and WSDL files. Developers can also invoke these compilers separately
from the command line.

Both provider and consumer deploy jbroker-web.jar (and some supporting JARS) with their
applicationsto provide the necessary runtime environment. Thisincludesthe SOAP enginethat
runswhen stub and skeleton components pass SOA P messages between consumer and provider
applications.

L For more information, see the jBroker Web help.

Web Service Wizard

The Web Service Wizard enables you to create Web Service components from Java classes or
WSDL files. It generates the Javaremoteinterface for accessing an object aswell as skeleton,
tie, and stub Java classes that handle SOAP message communication between a consumer
application and a Web Service. The generated code is based on JAX-RPC.

The provider deploys a Web Service as a Web archive (WAR) in which the skeleton and tie
classesimplement a servlet that processes incoming SOAP messages. A consumer application
accesses Web Service functionality by calling methods in the stub class, which sends SOAP
messages to the server.

Provider Consumer

Java
Wweb service | skeleton ar Java stub Consurner
application tie classes class application
(zerulet] SOAP messages
over HTTP

d For moreinformation, see:

e Chapter 9, “Generating Web Services’
» Chapter 10, “Generating Web Service Consumers’
» Web Service Wizard chapter in the Tools Guide

Web Services and Workbench 117

toolsWebServiceWizard.html
new ../../jbroker-web/README.html

8 Understanding Web Services

Registry Manager

The Registry Manager helps providers publish to Web Service registries. It helps consumers
query Web Service registries.

L For more information, see the Registry Manager chapter in the Tools Guide.

WSDL Wizard and Editor

The WSDL Wizard helps providers create new WSDL documents. The WSDL Editor helps
providers edit and use existing WSDL documents.

L For more information, see the WSDL Editor chapter in the Tools Guide.

118 Web Services and Workbench

toolsRegManager.html
toolsWSDLEditor.html

Basics

Generating Web Services

This chapter walks you through the basic steps and typical scenariosfor using the Web Service
Wizard to generate Web Services from avariety of sources. Topicsinclude:

* Basics

e Steps

e Choosing an implementation model
» Scenario: starting with a Java class

L Tolearn about the steps and scenarios for using the wizard when you want a program to
access Web Services, see Chapter 10, “Generating Web Service Consumers’.

You can use the Web Service Wizard of Workbench to develop standard (SOAP-based) Web
Servicesthat areimplemented as Java remote obj ects (using RMI). Thewizard generates Java
source files based on JAX-RPC (Java APl for XML-based RPC) and jBroker Web (the JAX-
RPC implementation included with SilverStream eXtend). JAX-RPC is the J2EE specification
that provides Web Service support.

The generated filesinclude a ser vlet to handle accessto your Web Service and its methods from
HTTP SOAPrequests. You can usethe generated files asis or modify them when necessary. The
advantage of this Java-oriented approach is that you can deal with Web Services using the
familiar technologies of RMI and J2EE instead of coding lower-level SOAP APIs.

L For anintroduction to Web Service concepts, standards, and technologies, see Chapter 8,
“Understanding Web Services’.

L1 For detailed documentation on the wizard, see the Web Service Wizard chapter in the
Tools Guide.

119

toolsWebServiceWizard.html
new http://java.sun.com/xml/jaxrpc
new ../../jbroker-web/README.html

9 Generating Web Services

Steps

The complete devel opment process involves:
Preparing to generate
Generating Web Servicefiles
Examining the generated files
Editing the generated files
Using the generated files

S

Preparing to generate

To prepare for using the Web Service Wizard, you:

1. SetupaWAR project in Workbench.

For each Web Service you generate, the wizard creates a servlet to handle accessto that
Web Service (from HTTP SOAP requests). Asaresult, aWAR isrequired to package your
Web Services (one or more per WAR) for deployment to a J2EE server where they will
run.

A possible variation isto set up aJAR subproject in your WAR and use that JAR to
contain the servlet and other classes for a Web Service. In any case, the servlet mapping
will beinthe WAR’s deployment descriptor (web.xml).

(Note that the approach of using a JAR subproject is not currently supported by the Web
Service Wizard when you generate a Web Service from aWSDL file. In this situation, it
only supports a WAR project.)

120 Steps

eXtend Workbench Development Guide

2. Add thesefilesto the project:

Files

Details

Source files, classes, or archives from
which your Web Services are to be
generated

You can generate a Web Service from any
one of the following:

+ A JavaBean or other Java class
* AnEJB session bean

* A Javaremoteinterface

« AWSDL file

No matter which one you provide, it
should (at minimum) declare the methods
you want your generated Web Service to
EXpOose.

Compileyour Javafiles If you provide
any Java files, make sure you compile
them in your project before starting the
Web Service Wizard (because the wizard
works from compiled classes).

Edit your WSDL bindings If you
provide any WSDL files, edit them as
needed to make sure the SOAP addressin
the service definition specifies the correct
binding URL. The Web Service Wizard
will usethis URL inthefilesit generates
for your Web Service.

Steps

121

9 Generating Web Services

Files

Details

Archives required by jBroker Web:

» jbroker-web.jar, which contains the
jBroker Web API classes needed at
runtime

* jaxrpc-api.jar and saaj-api.jar,
which contain the Java APl classes
for XML-based RPC and SOAP
processing

» xercesjar or another XML parser

You'll find these JARs in the Workbench
compilelib directory. Depending on your
J2EE server configuration, you should do
one of the following:

+ Add them to the WEB-INF/lib
directory of your WAR project

* Add them to the server classpath of
your J2EE server

L For more information, see the
chapter on archive deployment in the Tools
Guide.

3. Edit the classpath of your project so you can compile your Web Service classes once
they’ re generated and edited. You'll need to include:

j2ee_api_1 n.jar (automatically added when you create a WAR project)

jbroker-web.jar
jaxrpc-api.jar and saaj-api.jar
xerces.jar (or another XML parser)

Any application-specific entries (such as an EJB-client JAR file you' ve provided for a

session bean Web Service)

If you use SOAP message handler s (an advanced JAX-RPC feature) in your application, the
project will also requirethe following archives: activation.jar, commons-logging.jar, dom4j jar,
jaxp-api.jar, and sagj-ri.jar. You'll find these JARs in the Workbench compilelib directory.

Generating Web Service files

Onceyou' ve set up your WAR project, you' re ready to use the Web Service Wizard. Thewizard
produces one Web Service at atime, so you' Il need to use it multiple timesif you have severa
to develop.

Each time you launch the wizard, it takes input from you about the kind of Web Service to
produce. It then generates a set of source files that together make up the Web Service. Here'sa
summary of the process:

1. Select File>New to display the New File dialog and go to the Web Services tab.

122

Steps

toolsDeployment.html#DeployingWebServices

eXtend Workbench Development Guide

2. Launch the Web Service Wizard by doing one of the following:

To generate a Web Service
from Select

One of these: New Web Service
* A JavaBean or other Javaclass
* An EJB session bean

* A Javaremote interface

A WSDL file Existing Web Service

Asitsname suggests, thisitem ismainly used to
generate Web Service consumer s that access
deployed Web Services (based on their WSDL
files). But it can also be used to read WSDL
files as blueprints and generate the matching
Web Services themselves.

3. When the wizard prompts you for project location information, specify:

« TheWAR or JAR project you set up to contain the generated Web Servicefiles (if
you're generating from a WSDL file, the wizard currently requires you to specify a
WAR project here)

e Thetarget directory and packagein that project (if you’'re generating from a Java
class, youwon't have to fill in some of these settings because the wizard will
automatically handle them for you)

If you specify a JAR project to contain the generated Web Service files, the wizard will
also ask you for aWAR project to map the Web Service's servlet.

Steps 123

9 Generating Web Services

When the wizard prompts you, select the class or WSDL fileto generate the Web Service
from.

The wizard then asks for additional information based on your selection:

If you select The wizard prompts you to specify
A JavaBean or other Java * Which methods to expose in the generated Web
class Service (in contrast, when you generate from an

EJB, remote interface, or WDSL file, all methods
are automatically exposed)

* Class-generation and SOAP options

The homeinterfaceof an EJB | * Lookup information for the EJB

session bean * Class-generation and SOAP options

The remote interface of an * The home interface of the EJB session bean
EJB session bean or the . .
onBean class itsalf Lookup information for the EJB

 Class-generation and SOAP options

A Javaremote interface * Class-generation and SOAP options

A WSDL file Class-generation and SOAP options

When the wizard prompts you for class-generation and SOAP options, you need to
choose and configure the set of source filesto generate for your Web Service.

The most important choice is whether to generate skeletons to be tie-based or not. The
answer depends on the architectural model you want the implementation of your Web
Serviceto follow. See “Choosing an implementation model” on page 135.

You can choose to generate stubs (which come with asimple client application) for testing
your Web Service. When generating from a Java class, you can also request aWSDL file
(for publishing the Web Service to aregistry) aswell as specify the binding style
(document or RPC) and service address (URL) for the Web Service. When generating
fromaWSDL file, you can specify how complex types are to be mapped.

NOTE Support for jBroker Web 1.x applications is available via abackwar d-
compatibility option. For more information, see “1f you choose jBroker Web 1.x
compatibility” on page 128.

Click Finish when you' re done specifying options for the Web Service.

124

Steps

eXtend Workbench Development Guide

Examining the generated files

Once you finish the wizard, it generates everything you' ve specified for your Web Service and
updates other parts of your project with supporting changes:

What the wizard generates

Details

Java source file for remote
interface

xxXWS.java Thisfileisautomatically generated
whenever your input to the wizard is not aremote
interface (such as when you start from a JavaBean, Java
class, EJB session bean, or WSDL fil€). That's because a
remote interface (which extends java.rmi.Remote and
declares the methods to expose) is required to construct
your Web Service.

When you start from a WSDL file, the name of the
generated remote interface is simply xxx.java.

Java source file for skeletons

XxX_ServiceSkeleton.java Abstract servlet class that
handles access to the Web Service (from HTTP SOAP
requests).

In the tie model, xxx_ServiceTieSkel eton extends this
class. In the skeleton model, you extend it yourself (with
an implementation of your remote interface).

Steps

125

9 Generating Web Services

What the wizard generates

Details

Java source files for tie-based
skeletons

xxX_ServiceTieSkeleton.java Abstract serviet class
that extends xxx_ServiceSkeleton.

xxxTiejava Servlet that's used in the tie model asthe
front end for the Web Service. It extends
xxx_ServiceTieSkeleton to handle access to the Web
Service (from HTTP SOAP requests). It delegatesto one
of the following to process method calls for the Web
Service:

* If you start with a JavaBean, Java class, or EJB session
bean, xxxTie instantiates xxxDel egate and delegates to
it.

* If you start with a Javaremote interface or WSDL file,

you must edit the xxxTie.javafile to specify a class of
your own to instantiate and delegate to.

xxxDelegatejava Thisfileisgenerated if you start with
aJavaBean, Java class, or EJB session bean that
implements the methods for your Web Service.
xxxDelegate instantiates that implementation class and
callsthose methods on it.

With an EJB session bean, xxxDelegate does alookup and
create to get the remote interface object. Then it uses that
object to make the method calls.

126

Steps

eXtend Workbench Development Guide

What the wizard generates

Details

Java source files for stubs

xxxServicejava Service interface used by JAX-RPC
clients to obtain the stub for the target Web Service.

xxxServicelmpl.java Serviceimplementation class that
handles instantiation of the stub (xxx_Stub). It also
supports aternative ways of accessing the target Web
Service, including dynamic (stubless) calls.

(Note that, when you start from aWSDL file, the names
generated for the service interface and implementation
class depend on your WSDL and may omit the text
Service.)

xxX_Stub.java Facilitates method calls from a Java-
based consumer to the target Web Service. xxx_Stub
implements the remote interface corresponding to the
Web Service by sending an appropriate HTTP SOAP
request for each method call.

xxxClient.java Simpleclient application that worksasa
consumer of the target Web Service. It obtains the stub
(viathe Service object) then uses the stub to call Web
Service methods.

You can run xxxClient from Workbench (select
Project>Run Web Service Client Class) or from a
command line.

WSDL file xxx.wsdl - For use when publishing your Web Service to
aregistry. It describes the Web Service in a standard
format.

Updates to deployment In the tie model (when you generate tie-based skeletons),

descriptor the wizard updates your WAR project’s web.xml file to

declare xxxTie as the servlet to handle HTTP SOAP
reguests for your Web Service.

In the skeleton model, you must edit web.xml yourself to
declare the servlet to use (your class that extends
XXX_ServiceSkeleton).

Steps

127

9 Generating Web Services

What the wizard generates | Details

Updates to project contents The wizard updates your project to add generated files
(and other application-specific files) to it.

Updates to project classpath The wizard updates your project classpath to include
application-specific files as needed.

About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by
JAX-RPC. If you start with a Java class, the resulting file names are based on the name of that
class. If you start with WSDL, the resulting file names are based on the definitionsin that
WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service
file name that’s derived from a class name or WSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the jBroker Web compiler s when generating
the Web Servicefileslisted above. In some cases, these compilers may generate additional code
or filesto support requirements specific to your application, such as:

* Typemapping
+ Faults
* Multiple portType definitions

L For moreinformation, see the jBroker Web help.

If you choose jBroker Web 1.x compatibility

The current version of jBroker Web provides a high degree of backward-compatibility with
earlier versions. However, some changes introduced to support the JAX-RPC standard may
require you to modify code when upgrading an application that originated in jBroker Web 1.x.
These changes involve the conventions used for:

* Filenames JAX-RPC specifies rulesfor naming certain Web Service files. In order to
follow these rules while keeping all generated names simple and consistent, new name
patterns were adopted (for details, see Generated 1.x-compatible files below).

e Subaccessinclient code With JAX-RPC, clients use a Service object to instantiate the
stub instead of looking up the stub directly via INDI.

128

Steps

new ../../jbroker-web/README.html

eXtend Workbench Development Guide

Although it's recommended that you upgrade to the current jBroker Web and JAX-RPC
conventions, it's not required. By using the jBroker Web 1.x compatibility option in the Web
Service Wizard, you can generate Web Service files according to the original jBroker Web
conventions for file names and stub access. This enables you to take advantage of all the other
improvementsin the latest version of jBroker Web without altering your existing 1.x

applications.

Generated 1.x-compatible files Thefollowing table describes the files generated when
you use the jBroker Web 1.x compatibility option:

With 1.x compatibility
on, you get

With 1.x compatibility
off, this is named

Details

xxXx_ REMOTE.java

Example:

MyObject_ REMOTE.java

XXWS.java

Example:

MyObjectWsS. java

Generated remote interface.

_XXX_ServiceSkeleton.java

Example:

_MyObject REMOTE_Ser
viceSkeleton.java

XXX_ServiceSkeleton.java

Example:

MyObjectWS_ServiceSk
eleton.java

Abstract servlet class.

_XxXX_ServiceTieSkeleton.j
ava

Example:

_MyObject REMOTE_Ser
viceTieSkeleton. java

XxX_ServiceTieSkeleton.ja
va

Example:

MyObjectWS_ServiceTi
eSkeleton.java

Abstract tie servlet class.

xxX_TIE.java
Example:

MyObject_ TIE.java

xxxTiejava
Example:

MyObjectWSTie.java

Servlet for the Web Service
(in the tie model).

xxX_SERVICE.java
Example:

MyObject_ SERVICE.jav
a

xxxDelegate.java
Example:

MyObjectWSDelegate.j
ava

Delegate classfor the tie
serviet.

Steps

129

9 Generating Web Services

With 1.x compatibility
on, you get

With 1.x compatibility
off, this is named

Details

XxxServicejava
Example:

MyObjectREMOTEServic
e.java

XxxServicejava
Example:

MyObjectWSService.ja
va

Service interface for the stub.

Thisclassisnot used in 1.x-
style stub access. Itis
generated in case you want to
upgrade your client codeto
the JAX-RPC approach.

xxxServicelmpl.java

xxxServicelmpl.java

Service implementation class
for the stub.

Example: Example:
MyObjectREMOTEServic MyObjectWSServiceImp Thisclassisnot use_d in1x-
eImpl.java l.java g:erS:Ub ?\CCGSS. Itis
generated in case you want to
upgrade your client codeto
the JAX-RPC approach.
_XXX_ServiceStub.java XXX_Stub.java Stub for the Web Service.
Example: Example:

_MyObject REMOTE_Ser
viceStub.java

MyObjectWS_Stub.java

xxX_CLIENT java

Example:

MyObject CLIENT.java

xxxClient.java

Example:

MyObjectWSClient.jav
a

Client application for
consuming the Web Service.

The 1.x-compatible client
obtains the stub directly viaa
JNDI lookup. In contrast, the
JAX-RPC client obtains the
stub indirectly viathe Service
object.

xoox.wsdl
Example:

MyObject_ REMOTE.wsdl

xoox.wsdl
Example:

MyObjectWsS.wsdl

WSDL file for the Web
Service.

Steps

eXtend Workbench Development Guide

Editing the generated files

Follow these guidelines when editing the files generated by the Web Service Wizard:

Guideline Details

File you may need to edit * xxxTiejava

See “Editing the xxxTiejavafile’” on page 131.

File you must edit * xxxClient.java

See “Editing the xxxClient.javafile’” on page 132.

Files you should not edit * XxX_ServiceSkeleton.java

* xXxx_ServiceTieSkeleton.java
e XxXxServicejava

e xXxxServicelmpl.java

e XxXx_Stub.java

It's OK to edit any of the other generated files, but not typically required.

In some cases, compl eting the implementation of your Web Service may require you to add one
or more manually coded files to work with the generated ones. See “ Creating additional files’
on page 133.

Editing the xxxTie.java file

The generated xxxTiejavafile includes a couple of methods you may need to edit.

init() method If you start with a JavaBean or Java class, init() is generated to call the
setTarget() method of xxx_ServiceTieSkeleton and pass an instance of xxxDelegate (to delegate
toit). If xxxDelegate provides an empty constructor, the generated code uses that constructor to
do the instantiation.

But if no implicit or explicit empty constructor is available, you must modify the code to
indicate which one to use. You may also want to modify it to use a constructor that expects an
argument.

Steps

131

9 Generating Web Services

The wizard automatically generates callsto setTarget() for every public constructor of
xxxDelegate. Each lineis commented out, except the one that uses the empty constructor (if
available). Uncomment the line with the constructor you want and make any related changes:
//super.setTarget (new MyObjectWSDelegate(java.lang.String arg0));
//super.setTarget (new MyObjectWSDelegate(Jjava.lang.String arg0, java.lang.String argl)
)i
super.setTarget (new MyObjectWSDelegate()):
If you start with a Javaremoteinterface or WSDL file, init() is always generated with the
setTarget() call commented out. Inthis case, you must provide aclass of your own to instantiate
and delegate to:

//super.setTarget (new CONSTRUCT_YOUR_SERVICE_OBJECT_HERE) ;

If you start with an EJB session bean, you shouldn’t need to edit the generated init() method.

doGet() method Thismethod isgenerated to handle HTTP GET requests sent to your Web
Service. Itreturnsthe WSDL filefor the Web Service, if available. Otherwise, it notifiesthe user
that GET requests are not supported.

If you want to implement your own HTTP GET behavior, you can customize the doGet() code.
If you want to use the default SOAP behavior, you can remove this code or comment it out.

Editing the xxxClient.java file

Before you cantest your Web Service with xxxClient, you must edit the generated xxxClient.java
fileto call one or more methods of the Web Service. Look for the process() method in thisfile
and you'll find comments listing all of the possible method calls:

// System.out.println("Test Result = " + remote.getString()) ;
// System.out.println("Test Result = " + remote.setString(java.lang.String)) ;
// System.out.println("Test Result = " + remote.sayHello()) ;

Uncomment the method call(s) you want to test and supply appropriate argument values, as

needed:
// System.out.println("Test Result = " + remote.getString()) ;
System.out.println("Test Result = " + remote.setString(args([0]));
System.out.println("Test Result = " + remote.sayHello());

L For additional changes you may want to make to the generated xxxClient.javafile, see
Chapter 10, “Generating Web Service Consumers’.

132 Steps

eXtend Workbench Development Guide

Creating additional files

In many scenarios, once the wizard finishes generating, you'll have all of the Java source files
you need for your Web Service. But there are cases where you must code additional classes

yourself:
In this case You must add
When using the skeleton A class that extends the generated servlet
model XxX_ServiceSkeleton and implements the remote interface

for your Web Service. You'll use this manually coded
class as the servlet for the Web Service.

When using thetiemodel and | A class that implements the remote interface for your Web
starting with a Java remote Service. You must edit the generated xxxTiejavafile to
interface or WSDL file instantiate this manually coded class and delegate to it.

Using the generated files

To use the Web Service files generated by the wizard, you:

1. Updatethe deployment descriptor, if necessary.

When you use the tie model, the wizard automatically updates the WAR project’s web.xml
file with the appropriate servlet mapping for your Web Service. But with the skeleton
model, you must edit web.xml yourself to supply thisinformation.

In the following example, MyServiceisthe servlet class that the devel oper has coded for
the Web Service MyRemote:

<servlet>
<servlet-name>MyService</servlet-name>
<servlet-class>com.exsamp.rem.MyService</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>MyService</servlet-name>
<url-pattern>MyRemote</url-patterns
</servlet-mapping>

Steps 133

9 Generating Web Services

2. Updatetheproject, if necessary.

Asthe wizard works, it automatically adds files to your project classpath and contents, as
needed. But you should also check yourself to make sure the project has everything it
reguires to compile and run.

For instance, if your Web Service accesses an EJB session bean, the EJB-client JAR file
should be on your project’s classpath. The EJB-client JAR file and remote EJB JAR file
should be in the project’s WEB-INF/lib directory (assuming it's a WAR project).

L1 For details on setting up the required classpath and contents for your project
(including what jBroker Web needs), see “ Preparing to generate” on page 120.

3. Build and archivethe project.
When you complete this step, you' [l have a WAR file containing the Web Service(s)
you've generated.

4. Set up for deployment to your J2EE server.

Prepare the server-specific deployment information required to deploy the WAR to your
J2EE server. For example, if you're going to deploy to the SilverStream eXtend
Application Server, create a SilverStream deployment plan file.

If you' re going to deploy from Workbench, you should also set up a server profile for your
J2EE server.

5. Deploy the WAR to your J2EE server.

When you complete this step, each Web Servicein the WAR will be accessible asa servlet
that can respond to standard HTTP SOAP requests for your exposed methods.

6. Test your Web Service(s) running on the J2EE server.

If you' ve generated, edited, and compiled the xxxClient class for a Web Service, you can
use it for aquick test of your method calls. To run xxxClient from Workbench, select
Project>Run Web Service Client Class. The Web Service Wizard Client Runner
displays, offering you alist of client classes from the current project to choose from.

You can a'so run xxxClient from a command line (providing that you include the
appropriate directories and archives on your system classpath).

L For further details on running xxxClient, see Chapter 10, “ Generating Web Service
Consumers”.

134 Steps

eXtend Workbench Development Guide

Choosing an implementation model

There are two basic implementation models you can choose from when devel oping with the
Web Service Wizard. This section explores these choices to help you select the one that’s most
appropriate for the Web Services you generate:

* Tiemode
e Skeleton model

Tie model

Here's an overview of thetie model and when to useit:

Topic

Details

Typical use

The tie model istypically used when you have an implementation
classto provide asinput to the Web Service Wizard. That might be a
JavaBean, Javaclass, or EJB session bean that already implements
the methods you want to expose as a Web Service.

How it works

The tie model uses a delegation approach to hand off method calls
from the generated Web Service classes (which handlethe HTTP
SOAP processing for your Web Service) to your implementation
class (which handles the method processing).

Advantages

Thetie model enables you to keep your implementation class
(business logic) separate from the generated infrastructure classes
that support your Web Service. A related benefit is that you can
reuse existing implementation classes currently accessible via other
protocols.

Choosing an implementation model 135

9 Generating Web Services

Topic

Details

How to generate it

When you specify class-generation and SOAP options in the Web
Service Wizard, check both of these items:

* Generate skeletons
¢ Tie-based

Files generated

If you start with a JavaBean, Java class, or EJB session bean, the
wizard generates:

* XXXWS.java (remote interface)
« xxxDelegate.java
« xxxTiejava

* xxx_ServiceTieSkeleton.java

* xxx_ServiceSkeleton.java

It's possible (but not as common) to use the tie model when you have only a Javaremote
interface or WSDL file to provide as input to the Web Service Wizard. In this case, the wizard
output leavesthe del egation part of the model for you to compl etelater. You'll then need to code
an implementation class and edit the generated tie class to instantiate it and delegateto it.

Skeleton model

Here's an overview of the skeleton model and when to useit:

Topic

Details

Typical use

The skeleton model is typically used when you know the methods
you want to expose as a Web Service, but don’t yet have an
implementation of them. In this case, you tell the Web Service
Wizard about these methods by providing a Javaremote interface or
WSDL file asinput, then implement them later in the context of the
generated Web Servicefiles.

How it works

In the skeleton model, you implement your Web Service methods
by subclassing the servlet that thewizard generatesto handle HTTP
SOAP processing. As aresult, the same class that supports the
logistics of your Web Service also processes the method calls.

136

Choosing an implementation model

eXtend Workbench Development Guide

Topic

Details

Advantages

The skeleton model isrelatively simple, involving fewer classesto
understand and maintain. At runtime, having less object overhead
may also offer performance benefits.

How to generate it

When you specify class-generation and SOAP options in the Web
Service Wizard, check both of these items:

* Generate skeletons
* Not tie-based

Files generated

If you start with a Java remote interface, the wizard generates:
* Xxx_ServiceSkeleton.java

If you start with aW SDL file, the wizard generates:

* Xxx.java (remote interface)

« Xxx_ServiceSkeleton.java

File you add

Once the wizard is done, you must code a class that extends the
generated servlet xxx_ServiceSkeleton and implements the remote
interface for your Web Service. You'll usethis manually coded class
as the servlet for the Web Service.

Scenario: starting with a Java class

In this scenario, you'll see how the Web Service Wizard can be used to generate aWeb Service
based on an existing Java class that implements the methods to expose:

Project setup

Input to the wizard

Generated files for the Web Service
Generated files for testing
Deployment descriptor

Runtime test result

Implementation model Thisscenario illustrates use of the tie model. For an overview of
that architecture, see “ Choosing an implementation model” on page 135.

Scenario: starting with a Java class 137

9 Generating Web Services

Project setup

The WAR project for this scenario is set up asfollows:

* Thename of thisproject is.
WebServiceSample.spf
» Thearchiveresulting from this project will be:
WebServiceSample.war
e Theinitial content of thisprojectis:
WEB-INF
1lib
jbroker-web.jar
jaxrpc-api.jar
saaj-api.jar
xerces.jar
classes
com
exsamp
obj
MyObject.java
web . xml

e Theclasspath needed for this project is:

. .\WEB-INF\lib\jbroker-web.jar

. .\WEB-INF\lib\jaxrpc-api.jar

. .\WEB-INF\lib\saaj-api.jar

. .\WEB-INF\lib\xerces.jar
..\eXtendWorkbench\compilelib\j2ee api 1 n.jar

Input to the wizard
Here'sthe input provided to the Web Service Wizard for this scenario:
* MyObject class
e Project location panel
» Classselection panel

e Method selection panel
» Class-generation and SOAP options panel

138 Scenario: starting with a Java class

eXtend Workbench Development Guide

MyObject class

MyObject isan existing Javaclassfrom which the Web Serviceisto be generated. It implements
the methods to expose. MyObject.java contains the following code (which must be compiled
before you start the wizard):

package com.exsamp.obj;
public class MyObject {
private String s;

public MyObject () ({

}

public MyObject (String xxx) {

}

public MyObject (String xxx, String yyy) {

}

public String getString()
return s;
1

public boolean setString(String s) {
this.s = s;
return true;

}

public String sayHello() {
return "Hello there, I am on the server";
1

Scenario: starting with a Java class 139

9 Generating Web Services

Project location panel

Thiswizard panel is completed as follows:

2Z Web Service Wizard [%]

Specify the WAR or JAR project and base directory where
the new Web Service classes should be added.

{* Addto open project: |WebServic:eSampIe ;I Create project... |

% Mo project -- just write files to the: disk.

Base directory: F::\e}{tendProjectsWebServiceSampIe\src ;I Browse... |

Package: |

File directory: CeXtendProjectsiWWehServiceSampletsrch
MOTE: The entire contents of this directory will be included in the archive.

& 2dd the files ta the root of the archive.

@& 2dd the files ta the archive with this prefix: IWEEl-lNF-"ClaSSES

= FEls ¥t =1 Cancel| Help

Class selection panel

Thiswizard panel is completed as follows:

2Z Web Service Wizard [%]

Select the class from which you would like to generate
new YWeb Service classes.

Available Classes (1)

— Class location {directory or JAR)

tendProjectsivehServic Ik il ivebServic Ik { JEB-IMF\classes |

— Class Filter

@& AllClasses O Remote Classes (O Mon-Remote Classes (& EJB Classes

= Back ¥t=1 Cancel| Help

140 Scenario: starting with a Java class

eXtend Workbench Development Guide

Method selection panel

Thiswizard panel is completed as follows:

2Z Web Service Wizard [%]

Select the methods you would like to expose in your new
Web Service.

class

|| com.exsamp.obj My Ohject

Methods (0}

i lected Methods (3)
String getString()
boolean setStringl String)

String sayvHellol)

Scenario: starting with a Java class

141

9 Generating Web Services

Class-generation and SOAP options panel

Thiswizard panel is completed as follows:

2Z Web Service Wizard [%]

Specify the Web Service classes you would like to
generate and any associated SOAP options.

— Generation Options
[v| Generate stubs

[v] Generate skeletons: (% Tie-based & Nat tie-based
[v| Generate VWSDL file

|_ Generate Broker Weh 1 x compatible classes

— S0AP Options

Target namespace: Iurn:com.exsamp.obj.MyObjed

Service address: Ir'rl'tp:.l’.l'loc:alho thvebhServic pleDBMWebServic pleMdy Ohject
Binding style: = Document style & literal encoding
(¥ RPC style & SOAP encoding

=Back Fin Cancel Help

Generated files for the Web Service

Based on the input provided for this scenario, the Web Service Wizard generates these filesto
implement the Web Service:

* MyObjectWSjava

e MyObjectWS ServiceSkeleton.java

* MyObjectWS ServiceTieSkeleton.java

* MyObjectWSTiejava

* MyObjectWSDelegatejava

e MyObjectWS.wsdl

MyObjectWS.java

MyObjectWSistheremoteinterfacefor the Web Service. Thewizard generatesthis source code
for it:
// The following code was generated within the SilverStream eXtend Workbench

// using the integrated Web Services Wizard. This code can be freely modified
// and in some cases will *require* modifications to execute as expected.

142 Scenario: starting with a Java class

eXtend Workbench Development Guide

// Please keep in mind when making modifications that method signatures
// must be consistent across all generated objects.

package com.exsamp.obj;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface MyObjectWS extends Remote

{

public java.lang.String getString()
throws RemoteException;

public boolean setString(java.lang.String arg0)
throws RemoteException;

public java.lang.String sayHello()
throws RemoteException;

MyObjectWS_ServiceSkeleton.java

MyObjectWS_ServiceSkeleton is the abstract servlet class that handles access to the Web
Service. The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.rmi.RemoteException;

import java.util.Properties;

import com.sssw.jbroker.web.encoding.TypeMappingRegistry;

import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public abstract class MyObjectWS_ServiceSkeleton
extends com.sssw.jbroker.web.portable.ServletSkeleton
implements MyObjectWs

private static final com.sssw.jbroker.web.QName _portType =
new com.sssw. jbroker.web.QName ("urn:com.exsamp.obj.MyObject", "MyObjectWs") ;

public MyObjectWS_ServiceSkeleton ()

{
super (_portType) ;
_setProperty ("xmlrpc.schema.uri", "http://www.w3.org/2001/XMLSchema") ;
_setProperty("version", "1.1");

Scenario: starting with a Java class 143

9 Generating Web Services

private static java.util.Dictionary _atable

static {

new java.util.Hashtable() ;

_atable.put ("\"urn:com.exsamp.obj.MyObject/setString\"", new

java.lang.Integer (0)) ;

_atable.put ("\"urn:com.exsamp.obj.MyObject/getString\"", new

java.lang.Integer (1)) ;

_atable.put ("\"urn:com.exsamp.obj.MyObject/sayHello\"", new java.lang.Integer(2));

}

private static java.util.Dictionary _mtable

static {

new java.util.Hashtable() ;

_mtable.put ("setString", new java.lang.Integer(0)) ;
_mtable.put ("getString", new java.lang.Integer(1l));
_mtable.put ("sayHello", new java.lang.Integer(2));

public com.sssw.jbroker.web.portable.ServerResponse
_invoke (com.sssw.jbroker.web.portable.ServerRequest in) throws java.io.IOException

{

com.sssw.jbroker.web.portable.ServerResponse out = null;

String soapEncURI = "soap";
String literalURI = "literal";
try {

java.lang.Integer _m = null;
String sac = in.getAction() ;

if (sac != null) _m = (java.lang.Integer)

if ((m == null) {

sac = "\"" 4+ sac + "\"";

_atable.get (sac) ;

~m = (java.lang.Integer) _atable.get (sac);

if ((m == null) {

String methodName = in.getMethod() ;
(java.lang.Integer) _mtable.get (methodName) ;

if (methodName != null)

if (_m == null) throw new

com.sssw.jbroker.web.ServiceException ("unable to dispatch SOAP request") ;

switch(m.intValue()) {

// setString
case 0: {

in.setEncodingStyleURI (soapEncURI) ;

java.lang.String _arg0

try {

144

Scenario: starting with a Java class

eXtend Workbench Development Guide

_arg0 = (java.lang.String)

in.readObject (java.lang.String.class, "arg0");
} catch (java.io.EOFException eofExc) {

_arg0 = null;
}

boolean result = setString(_arg0) ;
//create reply
out = in.createReply () ;

//set the content type
java.lang.Object arg = null;

arg = new java.lang.Boolean(result) ;
out.writeObject (arg, "result");
break;

// getString

case 1: {
in.setEncodingStyleURI (soapEncURI) ;
java.lang.String result = getString() ;
//create reply
out = in.createReply() ;
//set the content type
java.lang.Object arg = null;
arg = result;
out.writeObject (arg, "result");
break;

// sayHello

case 2: {
in.setEncodingStyleURI (soapEncURI) ;
java.lang.String result = sayHello();
//create reply
out = in.createReply();
//set the content type
java.lang.Object arg = null;
arg = result;
out.writeObject (arg, "result");
break;

}

} catch (java.lang.Throwable ex) {
if (System.getProperty ("SOAP_DEBUG") != null) ex.printStackTrace() ;
out = in.createExceptionReply () ;
out .writeException(ex, "exception");

return out;

Scenario: starting with a Java class 145

9 Generating Web Services

}

public boolean isDocument (String action)

{
}

return false;

private static Properties _rootHeaders = new Properties();
static {

_rootHeaders.setProperty ("content-type",

"text/xml; charset=UTF-8") ;
_rootHeaders.setProperty ("content-id", "<soapbody>") ;

MyObjectWS_ServiceTieSkeleton.java

MyObjectWS_ServiceTieSkeleton is an abstract class that extends
MyObjectWS_ServiceSkeleton to support the tie model. The wizard generates this source code

for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import
import
import
import

java.rmi.RemoteException;
java.util.Properties;

com.sssw.jbroker.web.encoding. TypeMappingRegistry;
com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public abstract class MyObjectWS_ServiceTieSkeleton
extends com.exsamp.obj.MyObjectWS_ServiceSkeleton
implements com.sssw.jbroker.web.portable.TieSkeleton

private MyObjectWS _target;

public void setTarget (java.rmi.Remote target)

{
}

_target = (MyObjectWS) target;

public java.rmi.Remote getTarget ()

{
}

return _target;

public boolean setString(java.lang.String _argo0)

throws java.rmi.RemoteException

146

Scenario

: starting with a Java class

eXtend Workbench Development Guide

{
}

return _target.setString(_argo0) ;

public java.lang.String getString()
throws java.rmi.RemoteException
{

}

return _target.getString() ;

public java.lang.String sayHello ()
throws java.rmi.RemoteException
{

}

return _target.sayHello() ;

MyObjectWSTie.java

MyObjectWSTie extends the abstract servlet classes to function as the front end for the Web
Service. To process requests (method calls) it receives, this servlet instantiates and del egates to

MyObjectWSDelegate. The wizard generates this source code for it:

// The following code was generated within the SilverStream eXtend Workbench
// using the integrated Web Services Wizard. This code can be freely modified
// and in some cases will *require* modifications to execute as expected.

// Please keep in mind when making modifications that method signatures

// must be consistent across all generated objects.

package com.exsamp.obj;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyObjectWSTie extends MyObjectWS ServiceTieSkeleton

{

public void init () throws ServletException
{
try

{

super.init () ;

// The following are all public constructors for the implemented service
// class. IMPORTANT NOTE: If available, the empty constructor has been

// implemented by default. If no implicit or explicit empty constructor
// is available, you *must* select one from the list below and uncomment

Scenario: starting with a Java class

147

9 Generating Web Services

// it in order to construct the generated service implementation.

//super.setTarget (new MyObjectWSDelegate(java.lang.String arg0));
//super.setTarget (new MyObjectWSDelegate(java.lang.String argo0,

java.lang.String argl));

}

super.setTarget (new MyObjectWSDelegate());

catch (Exception _e)

{
}

throw new ServletException(_e);

// The following method may be freely modified to provide custom behavior

// when

an HTTP GET request is made. Comment-out or remove this method to

// provide default SOAP doGet functionality.
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

try

{

type.

StringBuffer sb = new StringBuffer (1024) ;
OutputStream out = null;

InputStream in = null;

String path = "/MyObjectWS.wsdl";

try
{
// Try to load the WSDL file.
in = getServletConfig() .getServletContext () .getResourceAsStream(path) ;
if (in == null)
{
// If it can't be found, return a default message.
sendDefaultMsg (response) ;

}

else

{

// Try to determine the WSDL file's character encoding for content-

byte[] buf = new byte[512];
int read = in.read(buf) ;

if (read <= 0)
sendDefaultMsg (response) ;

String cs = getXMLEncoding (buf) ;
StringBuffer ct = new StringBuffer (64);
ct.append ("text/xml") ;

if (cs != null)

148

Scenario: starting with a Java class

eXtend Workbench Development Guide

ct.append("; charset=");
ct.append (cs) ;

// Return the WSDL file.
response.setContentType (ct.toString()) ;
out = response.getOutputStream() ;

do

{
out.write(buf, 0, read);
} while ((read = in.read(buf)) >= 0);

}

catch (Exception _e)

{
}

throw new ServletException ("Exception trying to return " + path, _e);

finally
{
if (out != null)
out.close() ;
if (in != null)
in.close() ;

}

catch (Exception _e)

{
}

throw new ServletException(_e);

// Try to determine the character encoding of this XML document.
public static String getXMLEncoding (byte[] bytes)

String lsLine = "";

String lsEncoding = "UTF-8";

if (bytes.length >=2 && bytes[0]==0xFE && bytes[1]==0xFF)
return "UTF-16";

String lsState = "";

int liDeclStart = 0;

int liDeclLength = 0;

for (int i1=0; i < bytes.length; i++)

{

if (lsState.equals("") && bytes[i] == '<' && bytes[i+1l] == '?")

Scenario: starting with a Java class 149

9 Generating Web Services

{

lsState = "<?";
}
else
{
if (lsState.equals("<?") && bytes[i] == 'x' && bytes[i+1] == 'm’'
&& bytes[i+2] == '1l' && bytes[i+3] == ' ")
{
liDeclStart = 1i;
lsState = "xml";
}
else
{
if (lsState.equals("xml") && bytes[i] == '?' && bytes[i+1l] ==

{

liDeclLength = i1 - liDeclStart;
break;

lsLine = new String(bytes, liDeclStart, liDeclLength) ;

int liPos = lsLine.indexOf ("encoding") ;
if (liPos > 0)

{

lsLine = lsLine.substring(liPos + 8);
int liEncStart = lsLine.indexOf ('"');
int 1iEncEnd = lsLine.indexOf ('"', 1liEncStart +1);

if (liEncStart < 0 && liEncEnd < 0)

{
liEncStart = lsLine.indexOf("'");
1iEncEnd = lsLine.indexOf("'", liEncStart +1);

if (liEncStart >= 0 && 1iEncEnd >= 0)
lsEncoding = lsLine.substring(liEncStart + 1, 1liEncEnd) ;

return lsEncoding;
static private final String DEFAULT MESSAGE =

"<html><head><title>SilverStream eXtend Web Service</title>" +
"</head><body><h3 align=\"center\">SilverStream eXtend Web Service</h3>" +

"By default, SOAP servers do not communicate via HTTP GET requests. The SilverStream "

150 Scenario: starting with a Java class

eXtend Workbench Development Guide

"eXtend Web Service Wizard has generated an overloaded version of the " +
"<i>doGet () </i> method for your convience. This method, found in your " +
"generated TIE code, is producing this message. If the WSDL file for this Web Service

"is available in the root of your Web Service WAR, this method will return the WSDL

instead " +

"of this default message. You may add any custom code you like in your generated

_TIE's " +

"<i>doGet () </i> method to handle HTTP GET support.</body></html>";

private void sendDefaultMsg (HttpServletResponse response) throws IOException

{

PrintWriter out = null;

try
response.setContentType ("text/html") ;
response.setContentLength (DEFAULT MESSAGE.length());
out = response.getWriter();
out.print (DEFAULT_MESSAGE) ;

}

finally

{
}

if (out != null) out.close();

MyObjectWSDelegate.java

MyObjectWSDelegate instantiates the implementation class (MyObject) and makes the
requested method calls against that instance. The wizard generates this source code for it:

The following code was generated within the SilverStream eXtend Workbench
using the integrated Web Services Wizard. This code can be freely modified
and in some cases will *require* modifications to execute as expected.
Please keep in mind when making modifications that method signatures

must be consistent across all generated objects.

package com.exsamp.obj;

import java.rmi.Remote;
import java.rmi.RemoteException;

public class MyObjectWSDelegate implements MyObjectWS

{

private MyObject m_objMyObject;

Scenario: starting with a Java class 151

9 Generating Web Services

public MyObjectWSDelegate(java.lang.String arg0)

{
}

m_objMyObject = new MyObject(arg0);

public MyObjectWSDelegate(java.lang.String arg0, java.lang.

{
}

m_objMyObject = new MyObject(arg0, argl);

public MyObjectWSDelegate ()

{
}

m_objMyObject = new MyObject();

public java.lang.String getString()
throws RemoteException
{

}

return m_objMyObject.getString();

public boolean setString(java.lang.String arg0)
throws RemoteException

}

return m_objMyObject.setString(arg0) ;

public java.lang.String sayHello()
throws RemoteException
{

}

return m_objMyObject.sayHello();

MyObjectWS.wsdl

String argl)

This generated file describes the Web Service in standard WSDL format (useful when

publishing to aregistry):

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MyObjectWSService"
targetNamespace="urn:com.exsamp.obj.MyObject"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="urn:com.exsamp.obj.MyObject"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<types/>

152 Scenario

: starting with a Java class

eXtend Workbench Development Guide

<message name="setStringRequest">
<part name="arg0" type="xsd:string"/>
</message>
<message name="setStringResponse'">
<part name="result" type="xsd:boolean"/>
</message>
<message name="getStringRequest"/>
<message name="getStringResponse'>
<part name="result" type="xsd:string"/>
</message>
<message name="sayHelloRequest"/>
<message name="sayHelloResponse">
<part name="result" type="xsd:string"/>
</message>
<portType name="MyObjectWS">
<operation name="setString" parameterOrder="arg0"s>
<input message="tns:setStringRequest"/>
<output message="tns:setStringResponse"/>
</operations>
<operation name="getString">
<input message="tns:getStringRequest"/>
<output message="tns:getStringResponse"/>
</operations>
<operation name="sayHello">
<input message="tns:sayHelloRequest"/>
<output message="tns:sayHelloResponse"/>
</operations>
</portType>

<binding name="MyObjectWSBinding" type="tns:MyObjectWS">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="setString">

<soap:operation soapAction="urn:com.exsamp.obj.MyObject/setString"/>

<input>
<soap :body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>

</input>
<output>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>

</output>
</operation>
<operation name="getString">

<soap:operation soapAction="urn:com.exsamp.obj.MyObject/getString"/>

<input>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>

Scenario: starting with a Java class

153

9 Generating Web Services

</input>
<output>

<soap:body
encodingStyle="http://schemas.
namespace="urn:com.exsamp.obj.

</output>

</operation>

<operation name="sayHello">

<soap:operation soapAction="urn:

<input>

<soap:body
encodingStyle="http://schemas.
namespace="urn:com.exsamp.obj.

</input>
<output>

<soap:body
encodingStyle="http://schemas
namespace="urn:com.exsamp.obj

</output>

</operation>

</binding>

<service name="MyObjectWSService">
<port binding="tns:MyObjectWSBinding" name="MyObjectWSPort"s>
<soap:address
location="http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"/>

</port>
</services>

</definitions>

Generated files for testing

Based on the input provided for this scenario, the Web Service Wizard generates these files so

you can test the Web Service onceit’s deployed:

MyObjectWSService.java
MyObjectWSServicel mpl.java
MyObjectWS_Stub.java
MyObjectWSClient.java

xmlsoap.org/soap/encoding/"
MyObject" use="encoded"/>

com.exsamp.obj .MyObject/sayHello"/>

xmlsoap.org/soap/encoding/"
MyObject" use="encoded"/>

.xmlsoap.org/soap/encoding/"
.MyObject" use="encoded"/>

154

Scenario: starting with a Java class

eXtend Workbench Development Guide

MyObjectWSService.java

MyObjectWSService isthe service interface that's used in JAX-RPC to help clients obtain the
stub for the Web Service. The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import

public

{

javax.xml.rpc.ServiceException;

interface MyObjectWSService extends javax.xml.rpc.Service

public MyObjectWS_Stub getMyObjectWSPort ()

throws ServiceException;

MyObjectWSServicelmpl.java

MyObjectWSServicel mpl is the service implementation class that handles instantiation of the
stub (MyObjectWS_Stub). The wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import
import
import
import
import
import
import
import
import
import
import
import
import

public

java.io.FileNotFoundException;
java.util.Iterator;
java.util.Hashtable;
java.util.Properties;
java.util.ArrayList;

java.net .URL;

java.net .MalformedURLException;
javax.xml.rpc.Call;
javax.xml.rpc.ParameterMode;
javax.xml.namespace.QName;
javax.xml.rpc.ServiceException;
com.sssw.jbroker.web.Binding;
com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

class MyObjectWSServiceImpl

extends com.sssw.jbroker.web.xml.rpc.ServiceImpl
implements MyObjectWSService

public MyObjectWSServiceImpl ()

{

try {
createCalls() ;

Scenario: starting with a Java class 155

9 Generating Web Services

} catch (ServiceException ex) ({
throw new javax.xml.rpc.JAXRPCException("failed to create the call objects:

+ ex.getMessage()) ;
}
1

public QName getServiceName () { return _serviceName; }

public Iterator getPorts() { return portMapping.keySet().iterator(); }
public void setProxyMode (boolean proxy) { proxy = proxy; }
public boolean getProxyMode () { return proxy; }

public URL getWSDLDocumentLocation ()

{
}

public java.rmi.Remote getPort (Class serviceDeflInterface)
throws ServiceException

return null;

{

if (serviceDeflInterface == null)
throw new ServiceException("No Service class specified.");
if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))

throw new ServiceException("Class is not a valid Interface.");

String stubName = (String) _intfMapping.get (serviceDefInterface);
Binding binding = (Binding) _intfBinding.get (serviceDefInterface) ;
if (stubName == null)

return getPort (serviceDefInterface, binding,
_classInfo, _typeMappingRegistry, null);
else
return getPort (stubName, binding, _typeMappingRegistry) ;

public java.rmi.Remote getPort (QName portName, Class serviceDefInterface)
throws ServiceException

{
}

public java.rmi.Remote getPort (QName portName, Class serviceDefInterface, boolean

return getPort (portName, serviceDefInterface, getProxyMode()) ;

proxy)

{

throws ServiceException

if (((proxy==false) || (serviceDeflnterface == null)) &&
(portName != null)) ({
String stubName = (String) _portMapping.get (portName) ;

156 Scenario: starting with a Java class

eXtend Workbench Development Guide

Binding binding = (Binding) _portBinding.get (portName) ;
if (stubName == null) return getPort (null, serviceDefInterface);
try {
return getPort (stubName, binding, portName,
_typeMappingRegistry) ;

} catch (Exception ex) {
return getPort (null, serviceDeflInterface) ;

} else {
if (serviceDefInterface == null)
throw new ServiceException("No Service class specified.");
if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))

throw new ServiceException("Class is not a valid Interface.");

Binding binding = (Binding) _intfBinding.get (serviceDefInterface) ;

String uri = (portName == null) ? null : portName.getNamespaceURI () ;

return getPort (serviceDefInterface, binding, _classInfo,
_typeMappingRegistry, uri);

public Call[] getCalls (QName portName)
throws ServiceException
{

ArrayList callslist = (ArrayList) _calls.get (portName) ;
if (callslist == null) return null;

Call[] calls = new Call[callslist.size()];

return (Call[]) callslist.toArray(calls);

private void addCall (QName portName, Call call)
{
ArrayList callslist = (ArrayList) _calls.get (portName) ;
if (callslist == null) {
callslist = new ArrayList();
_calls.put (portName, callslist);

}

callslist.add(call) ;

public MyObjectWS_Stub getMyObjectWSPort ()
throws ServiceException

{

try {
return (MyObjectWS_Stub) getPort (new QName (

"urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"),

false) ;

null,

Scenario: starting with a Java class

157

9 Generating Web Services

} catch (Exception ex) ({
return (MyObjectWS_Stub) getPort (com.exsamp.obj.MyObjectWS.class) ;

}

private void createCalls()
throws ServiceException

{

Call call = null;

call = createCall (new QName ("urn:com.exsamp.obj.MyObject",

"com.exsamp.obj.MyObjectWSPort") ,
new QName ("urn:com.exsamp.obj.MyObject", "setString")) ;

call.addParameter ("arg0", new QName ("http://www.w3.org/2001/XMLSchema", "string"),
java.lang.String.class, ParameterMode.IN) ;

call.addParameter ("result", new QName ("http://www.w3.org/2001/XMLSchema",
"boolean"), boolean.class, ParameterMode.OUT) ;

call.setReturnType (new QName ("http://www.w3.org/2001/XMLSchema", "boolean"),
boolean.class) ;

call.setProperty(Call.OPERATION_STYLE PROPERTY, "rpc");

call.setProperty (Call.SOAPACTION URI_PROPERTY,
"\"urn:com.exsamp.obj.MyObject/setString\"") ;

call.setTargetEndpointAddress ("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");

addCall (new QName ("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"),
call) ;

call = createCall (new QName ("urn:com.exsamp.obj.MyObject",

"com.exsamp.obj.MyObjectWSPort") ,
new QName ("urn:com.exsamp.obj.MyObject", "getString")) ;

call.addParameter ("result", new QName ("http://www.w3.org/2001/XMLSchema",
"string"), java.lang.String.class, ParameterMode.OUT) ;

call.setReturnType (new QName ("http://www.w3.org/2001/XMLSchema", "string"),
java.lang.String.class) ;

call.setProperty (Call.OPERATION_STYLE PROPERTY, "rpc");

call.setProperty(Call.SOAPACTION URI_ PROPERTY,
"\"urn:com.exsamp.obj.MyObject/getString\"") ;

call.setTargetEndpointAddress ("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");

addCall (new QName ("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"),
call) ;
call = createCall (new QName ("urn:com.exsamp.obj.MyObject",
"com.exsamp.obj.MyObjectWSPort") ,
new QName ("urn:com.exsamp.obj.MyObject", "sayHello")) ;
call.addParameter ("result", new QName ("http://www.w3.org/2001/XMLSchema",
"string"), java.lang.String.class, ParameterMode.OUT) ;

158 Scenario: starting with a Java class

eXtend Workbench Development Guide

call.setReturnType (new QName ("http://www.w3.org/2001/XMLSchema", "string"),
java.lang.String.class) ;

call.setProperty(Call.OPERATION STYLE PROPERTY, "rpc");

call.setProperty (Call.SOAPACTION URI_PROPERTY,
"\"urn:com.exsamp.obj.MyObject/sayHello\"") ;

call.setTargetEndpointAddress ("http://localhost/WebServiceSampleDB/WebServiceSample/MyObje
ct");

addCall (new QName ("urn:com.exsamp.obj.MyObject", "com.exsamp.obj.MyObjectWSPort"),
call) ;

static boolean _proxy = true;

static final QName _serviceName;

static final Hashtable _intfMapping = new Hashtable();

static final Hashtable _intfBinding = new Hashtable();
()
()

7

static final Hashtable portBinding = new Hashtable
static final Hashtable _portMapping = new Hashtable
static final Hashtable _classInfo = new Hashtable() ;
private final Hashtable calls = new Hashtable() ;

i

static {
_serviceName = new QName ("urn:com.exsamp.obj.MyObject",
"com.exsamp.obj.MyObjectWSService") ;

_intfBinding.put (MyObjectWS.class, new Binding("soap",
"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject")) ;

_portBinding.put (new QName ("urn:com.exsamp.obj.MyObject",
"com.exsamp.ob]j.MyObjectWSPort") ,

new Binding ("soap",

"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject")) ;

_intfMapping.put (MyObjectWS.class, "com.exsamp.obj.MyObjectWS Stub") ;

_portMapping.put (new QName ("urn:com.exsamp.obj.MyObject",

"com.exsamp.obj.MyObjectWSPort"), "com.exsamp.obj.MyObjectWS_ Stub") ;

Hashtable _methodInfo;
Hashtable _paramInfo;
Properties _props;

_methodInfo = new Hashtable() ;
_paramInfo = new Hashtable();

_props = new Properties();

_props.setProperty ("jbroker.web.soap.action", "\"urn:com.exsamp.obj.MyObject/setString\"") ;

_paramInfo.put ("Properties", props);

_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "arg0");
_props.setProperty ("jbroker.web.parameter.inout", "1");

Scenario: starting with a Java class 159

9 Generating Web Services

_paramInfo.put ("ParamO", _props);

_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "result");
_props.setProperty ("jbroker.web.parameter.inout", "2");
_paramInfo.put ("Result", _props);

_methodInfo.put ("setString", paramInfo);

_paramInfo = new Hashtable();

_props = new Properties();

_props.setProperty ("jbroker.web.soap.action", "\"urn:com.exsamp.obj.MyObject/getString\"") ;

_paramInfo.put ("Properties", _props) ;
_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "result");
_props.setProperty ("jbroker.web.parameter.inout", "2");
_paramInfo.put ("Result", _props);

_methodInfo.put ("getString", paramInfo) ;

_paramInfo = new Hashtable() ;
_props = new Properties();

_props.setProperty ("jbroker.web.soap.action", "\"urn:com.exsamp.obj.MyObject/sayHello\"") ;

_paramInfo.put ("Properties", _props) ;
_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "result");
_props.setProperty ("jbroker.web.parameter.inout", "2");
_paramInfo.put ("Result", props);

_methodInfo.put ("sayHello", _paramInfo) ;

_classInfo.put ("com.exsamp.obj.MyObjectWS", _methodInfo) ;

MyObjectWS_Stub.java

MyObjectWS_Stub is used by clients as a proxy for accessing the Web Service. This stub class
implementsthe remoteinterface (MyObjectWS) to handle thelogistics of each method call. The

wizard generates this source code for it:

// Fri May 31 10:15:21 EDT 2002

package com.exsamp.obj;

import java.util.Properties;

import com.sssw.jbroker.web.core.Constants;

import com.sssw.jbroker.web.encoding.TypeMappingRegistry;

import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public class MyObjectWS_Stub
extends com.sssw.jbroker.web.portable.Stub
implements MyObjectWs

160 Scenario: starting with a Java class

eXtend Workbench Development Guide

private static com.sssw.jbroker.web.QName _portType =

new com.sssw. jbroker.web.QName ("urn:com.exsamp.obj.MyObject", "MyObjectWs") ;
private static final com.sssw.jbroker.web.Binding[] _bindings =
new com.sssw.jbroker.web.Binding[] {

new com.sssw.jbroker.web.Binding("soap",
"http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"),

}i

public MyObjectWS_Stub()

{
}

public MyObjectWS_Stub (DefaultTypeMappingRegistry tmr)

{

this (null) ;

super (_portType, _bindings) ;

_setProperty ("xmlrpc.schema.uri", (Object)
"http://www.w3.0rg/2001/XMLSchema" .intern()) ;

_setProperty("version", (Object) "1.1");
TypeMappingRegistry _tm = null;
try {

if (tmr != null)

_tm = tmr;
else {

_tm = new DefaultTypeMappingRegistry () ;
}
_setTypeMappingRegistry (_tm) ;
} catch (Exception ex) ({
throw new javax.xml.rpc.JAXRPCException("failed to initialize type mapping

registry: " + ex.getMessage());
}
}
public boolean setString(java.lang.String _argo0)
throws java.rmi.RemoteException
{

com.sssw.jbroker.web.portable.ClientResponse in = null;

try {
// create an output stream

_getDelegate () .setProperty ("xmlrpc.soap.operation.name",
new com.sssw.jbroker.web.QName ("urn:com.exsamp.obj.MyObject", "setString")) ;
//create request
com.sssw.jbroker.web.portable.ClientRequest out =
_request ("setString", true, "soap", false,
"\"urn:com.exsamp.obj.MyObject/setString\"") ;

Scenario: starting with a Java class 161

9 Generating Web Services

_getDelegate() .setProperty ("soapAction", (Object)
"\"urn:com.exsamp.obj.MyObject/setString\"") ;

_getDelegate () .setProperty (Constants.HTTP CONTENT TYPE, (Object) "text/xml;
charset=utf-8") ;

out._setProperties(_getDelegate () .getProperties()) ;

Object arg = null;

// marshal the parameters
arg = _arg0;
out .writeObject (arg, "argO") ;

// do the invocation
in = _invoke (out) ;
// unmarshal the results

// return

java.lang.Boolean retWrapper = (java.lang.Boolean)in.readObject (boolean.class,
"result") ;

boolean ret = retWrapper.booleanValue() ;

return ret;

} catch (java.lang.Throwable t) {

// map to remote exception
throw com.sssw.jbroker.web.ServiceException.mapToRemote (t) ;

public java.lang.String getString()
throws java.rmi.RemoteException
{

com.sssw.jbroker.web.portable.ClientResponse in = null;

try {
// create an output stream
_getDelegate () .setProperty ("xmlrpc.soap.operation.name",
new com.sssw.jbroker.web.QName ("urn:com.exsamp.obj.MyObject", "getString")) ;
//create request
com.sssw.jbroker.web.portable.ClientRequest out =

_request ("getString", true, "soap", false,
"\"urn:com.exsamp.obj.MyObject/getString\"") ;
_getDelegate() .setProperty ("soapAction", (Object)

"\"urn:com.exsamp.obj.MyObject/getString\"") ;

_getDelegate () .setProperty (Constants.HTTP_CONTENT TYPE, (Object) "text/xml;
charset=utf-8") ;

out._ setProperties(getDelegate () .getProperties()) ;

Object arg = null;

// do the invocation
in = _invoke (out) ;

162 Scenario: starting with a Java class

eXtend Workbench Development Guide

// unmarshal the results

// return
java.lang.String ret = null;

try {
ret = (java.lang.String)
in.readObject (java.lang.String.class, "result");

} catch (java.io.EOFException eofExc) {
ret = null;
}

return ret;
} catch (java.lang.Throwable t) {

// map to remote exception

throw com.sssw.jbroker.web.ServiceException.mapToRemote (t) ;

public java.lang.String sayHello ()
throws java.rmi.RemoteException
{

com.sssw.jbroker.web.portable.ClientResponse in = null;
try {

// create an output stream
_getDelegate () .setProperty ("xmlrpc.soap.operation.name",

new com.sssw.jbroker.web.QName ("urn:com.exsamp.obj.MyObject",

//create request
com.sssw.jbroker.web.portable.ClientRequest out =

_request ("sayHello", true, "soap", false,
"\"urn:com.exsamp.obj.MyObject/sayHello\"") ;
_getDelegate () .setProperty ("soapAction", (Object)

"\"urn:com.exsamp.obj.MyObject/sayHello\"") ;
_getDelegate () .setProperty (Constants.HTTP_CONTENT TYPE,
charset=utf-8") ;
out._setProperties(_getDelegate () .getProperties()) ;
Object arg = null;

// do the invocation
in = _invoke (out) ;
// unmarshal the results

// return
java.lang.String ret = null;

try {
ret = (java.lang.String)
in.readObject (java.lang.String.class, "result");

} catch (java.io.EOFException eofExc) {

(Object)

"text/xml;

"sayHello")) ;

Scenario: starting with a Java class

163

9 Generating Web Services

ret = null;

return ret;

} catch (java.lang.Throwable t) {

// map to remote exception
throw com.sssw.jbroker.web.ServiceException.mapToRemote (t) ;

private static Properties _rootHeaders = new Properties();

static {
_rootHeaders.setProperty ("content-type", "text/xml; charset=UTF-8");
_rootHeaders.setProperty ("content-id", "<soapbody>") ;

MyObjectWSClient.java
MyObjectWSClient isasimple client application that accesses the Web Service by:

1. Instantiating MyObjectWSService via INDI lookup
2. Using the MyObjectWSService object to obtain the stub (MyObjectWS_Stub)
3. Cdling Web Service methods via the MyObjectWS_Stub object

The wizard generates this source code for it:

// The following code was generated within the SilverStream eXtend Workbench

// using the integrated Web Services Wizard. This code *requires* process () method
// modification in order to execute as expected. Please keep in mind when making
// modifications that method signatures must be consistent across all

// generated objects.

package com.exsamp.obj;
import javax.naming.*;

public class MyObjectWSClient

{

public void process (String[] args) throws Exception

{

MyObjectWS remote = getRemote (args) ;

// The following code has been generated for your testing convenience. In
// order to successfully test your Web Service, you must uncomment one or
// more of these lines and supply meaningful arguments where necessary.

// Once you have modified the test method(s) below, compile this class and

164 Scenario: starting with a Java class

eXtend Workbench Development Guide

// execute it from a command line with your class path set appropriately.

// System.out.println("Test Result = " + remote.getString()) ;
// System.out.println("Test Result = " + remote.setString(java.lang.String)) ;
// System.out.println("Test Result = " + remote.sayHello());

public MyObjectWS getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:com.exsamp.obj.MyObjectWSService";
MyObjectWSService service = (MyObjectWSService)ctx.lookup (lookup) ;
MyObjectWS remote = (MyObjectWS)service.getMyObjectWSPort () ;

return remote;

public static void main(Stringl[] args)

{

try

{

MyObjectWSClient client = new MyObjectWSClient () ;
client.process (args) ;

}

catch (Exception _e)

{

System.out.println("*** Error Executing Generated Test Client ***");
_e.printStackTrace() ;

Modifications needed The process() method of the generated MyObjectWSClient.java
file must be edited to uncomment the Web Service method call to be tested. Here's the change:

// System.out.println("Test Result = " + remote.getString()) ;
// System.out.println("Test Result = " + remote.setString(java.lang.String)) ;
System.out.println("Test Result = " + remote.sayHello());

Scenario: starting with a Java class 165

9 Generating Web Services

Deployment descriptor

Because this scenario uses the tie model, the Web Service Wizard automatically updates the
web.xml file to declare MyObjectWSTie as the servlet class to handle requests for the
MyObject Web Service:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">
<web-app>
<servlet>
<servlet-name>MyObject</servlet-name>
<servlet-class>com.exsamp.obj.MyObjectWSTie</servliet-class>
</servlets>
<servlet-mapping>
<servlet-name>MyObject</servlet-name>
<url-pattern>MyObject</url-patterns>
</servlet-mapping>
</web-app>

Runtime test result

Once this project is built and the WAR file is created and deployed to the J2EE server, the
MyObject Web Serviceisready for atest run. Here's the result of using the Client Runner in
Workbench to execute the MyObjectWSClient application:

Web Service Wizard Client Runner []
Cliert class to run:
Icom.exsamp.obj.MyObjec’(\u’\lSClierd LI
|7 Showy command line | Copy command line
Arguments:
Running conm.exsanp.obi.MyObjectWiClient. .. =

FEERERREFTTEXTTANEANESS
* Command line:
* C:\Program FileshJawaioft\JEE‘1.3.l_03%bin\java -classpath ";C:%

FEEFEEFFFFFFFFFFFFTTS

Test Result = Hello there, I am on the server
FEERERREFTTEXTTANEANESS

A4

Close Clear

166 Scenario: starting with a Java class

10

Basics

Generating Web Service Consumers

This chapter walks you through the basic stepsand atypical scenario for using the Web Service
Wizard to generate a Web Service consumer (a program that accesses a Web Service).

L Tolearn about the steps and scenarios for using the wizard when you want to create a\Web
Service, see Chapter 9, “Generating Web Services'.

You can use the Web Service Wizard of Workbench to generate the code needed for a Java-
based consumer program to access any standard (SOAP-based) Web Service. The
generated code handles all HTTP SOAP processing under the covers, enabling the consumer
program to call the Web Service as a Java remote object (using RMI) and invoke its methods.

For input, the wizard requiresaWSDL file that describes the Web Service to access. It can
handle awide variety of Web Service implementations, including:

* Document-style and RPC-style bindings

e Basic and complex types

» J2EE providers, Microsoft .NET providers, and others

Thewizard generates Java sourcefilesbased on JAX-RPC (JavaAPI for XML-based RPC) and

jBroker Web (the JAX-RPC implementation included with SilverStream eXtend). JAX-RPC is
the J2EE specification that provides Web Service support.

You can usethe generated filesasis or modify them when necessary. The advantage of this Java-
oriented approach isthat you can deal with Web Servicesusing thefamiliar technologies of RMI
and J2EE instead of coding lower-level SOAP APIs.

L For anintroduction to Web Service concepts, standards, and technologies, see Chapter 8,
“Understanding Web Services’.

L For detailed documentation on the wizard, see the Web Service Wizard chapter in the
Tools Guide.

167

new http://java.sun.com/xml/jaxrpc
new ../../jbroker-web/README.html
toolsWebServiceWizard.html

10 Generating Web Service Consumers

Steps

The process of developing your consumer program involves:

1. Preparing to generate by setting up your project

2. Providing aWSDL file that describes the Web Service for which you want the wizard to
generate consumer code

3. Generating the consumer files by using the wizard

4. Examining the generated files that the wizard creates, including Java source for:

« Aremoteinterface, service classes, and astub classthat facilitate the Web Service
access

« Any type classes needed for method arguments and return values
* A dsmpleJavaclient classthat uses the other classes to make method calls

5. Editing the generated files to adjust the method call sto make and the Web Service location
to point to

6. Using the generated files either asis or by including the consumer code in some other Java
application

7. Running the consumer program in your development environment (for testing) and in the
production environment

Preparing to generate

To prepare for using the Web Service Wizard, you:

1. Set up an appropriate project in Workbench.

The type of project you should create depends on how you ultimately plan to use the
consumer code that the wizard will generate. For instance:

If you plan to use the consumer code in You should create

A standard Java application (perhaps based on the A JAR project
simple Java client class that the wizard generates)

A J2EE application client A CAR project
A JSP page or servlet A WAR project
An Enterprise JavaBean An EJB JAR project

168

Steps

eXtend Workbench Development Guide

2. Addthearchivesrequired by jBroker Web to your project:
e jbroker-web.jar, which contains the jBroker Web API classes needed at runtime

e jaxrpc-api.jar and saaj-api.jar, which contain the Java APl classes for XML-based
RPC and SOAP processing

e xercesjar or another XML parser
You'll find these JARs in the Workbench compilelib directory.

3. Edit the classpath of your project so you can compile your consumer classes once they're
generated and edited. You'll need to include:

e jbroker-web.jar

e jaxrpc-api.jar and sagj-api.jar

e xerces.jar (or another XML parser)
* Any application-specific entries

For J2EE projects, you'll dso need j2ee api_1 n.jar (it'sincluded automatically when you
create a J2EE project in Workbench).

If you use SOAP message handler s (an advanced JAX-RPC feature) in your application, the
project will also requirethe following archives: activation.jar, commons-logging.jar, dom4j jar,
jaxp-api.jar, sagj-ri.jar, and j2ee api_1 n.jar (for mail support). You'll find these JARsin the
Workbench compilélib directory.

Providing a WSDL file

To generate consumer code, you'll need to provide the Web Service Wizard withaWSDL file
that describes the target Web Service. It'sagood ideato obtain the file location or URL of this
WSDL file before you start the wizard.

These are common scenarios:

* For aWeb Service developed in your organization, you might have the WSDL file on
your file system or even in your project.

e For an external Web Service, you should be able to get the WSDL file's URL from the
appropriate Web site or registry.

Providing a WSDL file 169

10 Generating Web Service Consumers

Example: WSDL file for Autoloan .NET Web Service

Suppose you want to generate consumer code to usethe Autoloan .NET Web Service, whichis
listed on the XM ethods public registry under the name Equated M onthly Instalment (EMI)
Calculator. That Web Service cal culates and returns the monthly loan payment for agiventerm
(number of months), interest rate, and loan amount.

In this case, you can go to the Web site www.xmethods.net to discover the URL for the
corresponding WSDL file:

http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

When you providethisURL to the Web Service Wizard, it will read the WSDL fileto learn what
it needs to know about the Autoloan Web Service:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s0="http://circle24.com/webservices/"
targetNamespace="http://circle24.com/webservices/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://circle24.com/webservices/">
<s:element name="Calculate">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="Months" type="s:double" />
<s:element minOccurs="1" maxOccurs="1" name="RateOfInterest" type="s:double"

<s:element minOccurs="1" maxOccurs="1" name="Amount" type="s:double" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="CalculateResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="CalculateResult" nillable="true"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="string" nillable="true" type="s:string" />
</s:schema>
</types>
<message name="CalculateSoapIn">

170 Providing a WSDL file

new http://www.xmethods.net

eXtend Workbench Development Guide

<part name="parameters" element="s0:Calculate" />
</message>
<message name="CalculateSoapOut">
<part name="parameters" element="s0:CalculateResponse" />
</message>
<message name="CalculateHttpGetIn">
<part name="Months" type="s:string" />
<part name="RateOfInterest" type="s:string" />
<part name="Amount" type="s:string" />
</message>
<message name="CalculateHttpGetOut">
<part name="Body" element="s0:string" />
</message>
<message name="CalculateHttpPostIn">
<part name="Months" type="s:string" />
<part name="RateOfInterest" type="s:string" />
<part name="Amount" type="s:string" />
</message>
<message name="CalculateHttpPostOut">
<part name="Body" element="s0:string" />
</message>
<portType name="AutoloanSoap">
<operation name="Calculate">
<input message="s0:CalculateSoapIn" />
<output message="s0:CalculateSoapOut" />
</operation>
</portType>
<portType name="AutoloanHttpGet">
<operation name="Calculate">
<input message="s0:CalculateHttpGetIn" />
<output message="s0:CalculateHttpGetOut" />
</operation>
</portType>
<portType name="AutoloanHttpPost">
<operation name="Calculate">
<input message="s0:CalculateHttpPostIn" />
<output message="s0:CalculateHttpPostOut" />
</operation>
</portType>
<binding name="AutoloanSoap" type="s0:AutoloanSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="Calculate">
<soap:operation soapAction="http://circle24.com/webservices/Calculate"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>

Providing a WSDL file

171

10 Generating Web Service Consumers

<soap:body use="literal" />
</output>
</operation>
</binding>
<binding name="AutoloanHttpGet" type="s0:AutoloanHttpGet">
<http:binding verb="GET" />
<operation name="Calculate">
<http:operation location="/Calculate" />
<input>
<http:urlEncoded />
</input>
<output>
<mime:mimeXml part="Body" />
</output>
</operation>
</binding>
<binding name="AutoloanHttpPost" type="s0:AutoloanHttpPost">
<http:binding verb="POST" />
<operation name="Calculate">
<http:operation location="/Calculate" />
<input>
<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>
<mime:mimeXml part="Body" />
</output>
</operation>
</binding>
<service name="Autoloan">
<documentation>This Web Service mimics a Simple Autoloan calculator.</documentation>
<port name="AutoloanSoap" binding="s0:AutoloanSoap">
<soap:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
</port>
<port name="AutoloanHttpGet" binding="s0:AutoloanHttpGet">
<http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
</port>
<port name="AutoloanHttpPost" binding="s0:AutoloanHttpPost">
<http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
</port>
</service>
</definitions>

172 Providing a WSDL file

eXtend Workbench Development Guide

Understanding the WSDL

In the Autoloan WSDL, you can ignore the definitions for HttpGet and HttpPost (including
message, portType, binding, and service port). Only the Soap definitions apply to the Web
Service consumer program you' re devel oping.

Noticethat thisWeb Service exposes one method named cal culate(). It takesaCal culate object
containing three doubles (Months, RateOf Interest, and Amount) and returns a
CalculateResponse object containing one string (CalculateResult). The Web Service Wizard
will generate a corresponding remote interface in Javato support calling this method.

Thetypes section specifiesthe XM L Schema definitionsfor Cal cul ate and Cal culateResponse.
The Web Service Wizard will generate corresponding type classes in Javato represent these
objects.

If youlook in the binding section for AutoloanSoap, you'll see that this Web Serviceis defined
as document style (as opposed to RPC style). That'stypical of .NET Web Services. Binding
style describes the format of SOA P messages and can affect interoperability with other Web
Service environments:

Binding style What it means

Document (withliteral | The SOAP message body containsjust the XML document being
use) exchanged and message parts map to elementsliterally defined in
the WSDL file's XML schema.

RPC (with encoded The SOAP message body contains argument and return values,
use) individually wrapped in ad hoc elements that the recipient must
interpret by applying specified encoding rules to each message
part’s type.

The Web Service Wizard will generate the Java code needed to handl e the specified binding
style.

The port definition for AutoloanSoap (at the end of the WSDL file) specifies the address
(URL) where the Web Service can be accessed:

http://upload.eraserver.net/circle24/autoloan.asmx

TheWeb Service Wizard will usethisURL inthe service and stub classesit generatesfor calling
the Web Service.

Providing a WSDL file 173

10 Generating Web Service Consumers

Generating the consumer files

Once you've set up your project and located the appropriate WSDL file, you' re ready to usethe
Web Service Wizard. The wizard produces one Web Service consumer at atime, so you'll need
to use it multiple timesif you have several to develop.

Each time you launch the wizard, it usesthe WSDL file and other input you provide to generate
aset of consumer source files. Here’'s a summary of the process:

1.
2.
3.

Select File>New to display the New File dialog and go to the Web Services tab.
Launch the Web Service Wizard by selecting Existing Web Service.

When the wizard prompts you for project location information, specify:

e Theproject you set up to contain the generated Web Service consumer files
» Thetarget directory and packagein that project

For exampl e, suppose you' re generating a consumer for the Autoloan Web Service. You
might specify WebServiceConsumerSample as the target JAR project and com.exsamp.net
as the package for generated classes:

2Z Web Service Wizard [%]

Specify the project, package, and base directory for the
generated classes.

{* Addto open project: |WebServiceConsumerSample ;I Create project... |

% Mo project -- just write files to the: disk.

Base directory: p\e}{tendProjects\WebServiceConsumerSample\src ;I Browse... |

Package: l:om.exsamp.net

File directory: CleXtendProjectsiWehServiceConsumer Sampletsrcicomiexsampinet
MOTE: The entire contents of this directory will be included in the archive.

& Addthe files ta the roct of the archive.

{1 Add the files to the archive with this prefix:

The files will be added to this location in the archive:
comfexsampinet

package

Help

174

Generating the consumer files

eXtend Workbench Development Guide

4. When the wizard prompts you, specify the WSDL file that describes your target Web
Service.

For example, when generating a consumer for the Autoloan Web Service, you specify the
WSDL file URL obtained from the XMethods public registry:

2Z Web Service Wizard [%]

Select the WSDL file or URL from which you would like
to generate Web Services classes.

~ WSDL Files In Project

r WSDL file or URL to use

|| hittp: fupload eraserver neticircle24fautoloan asm:x Pwsdl |

Cancel Help

Generating the consumer files 175

10 Generating Web Service Consumers

5. When thewizard prompts you for class-gener ation and SOAP options, you must specify
details about the code to create:

» Toget thefilesneeded for aWeb Service consumer, check Gener ate stubs (and leave
Gener ate skeletons unchecked).

e Toautomatically generate type classes for any complex typesin the WSDL, check
Map complex XML typesto Javatypes.

For example, these options will generate the appropriate consumer source files (including
type classes) for the Autoloan Web Service:

2Z Web Service Wizard [%]

Specify the Web Service classes you would like to
generate and any associated SOAP options.

Generation Options
[v| Generate stubs
[] Generate skeletons: & Tie-based & Mot tis-based

|_ Generate Broker Weh 1 x compatible classes
Directory with local XS0 files:

| E

|7 Map complex XML types to Java types

ancel

= EeCk

Help

NOTE Support for jBroker Web 1.x applications is available via abackwar d-
compatibility option. For more information, see If you choose jBroker Web 1.x
compatibility (in the previous chapter).

6. Click Finish when you’ re done specifying options for the Web Service consumer.

176 Generating the consumer files

eXtend Workbench Development Guide

Examining the generated files

Once you finish the wizard, it generates everything you' ve specified for your Web Service
consumer and updates other parts of your project with supporting changes:

What the wizard generates

Details

Java source file for remote
interface

xxxjava Aninterfacethat extends java.rmi.Remote and
declares the methods exposed by the target Web Service
(as determined from the WSDL file). The generated stub
class xxx_Stub implements this interface to support
method calls for the Web Service.

Java source files for stubs

xxxServicejava Service interface used by JAX-RPC
clients to obtain the stub for the target Web Service.

xxxServicelmpl.java Serviceimplementation classthat
handles instantiation of the stub (xxx_Stub). It also
supports alternative ways of accessing the target Web
Service, including dynamic (stubless) cals.

(Note that the names generated for the service interface
and implementation class depend on your WSDL and
may omit the text Service.)

xxX_Stub.java Facilitates method calls from a Java-
based consumer to the target Web Service. xxx_Stub
implements the generated remote interface by sending an
appropriate HTTP SOAP request for each method call.

xxxXClient.java Simpleclient application that worksasa
consumer of the target Web Service. It obtains the stub
(viathe Service object) then uses the stub to call Web
Service methods.

You can run xxxClient from Workbench (select
Project>Run Web Service Client Class) or from a
command line.

Updates to project contents

The wizard updates your project to add generated filesto
it.

Examining the generated files

177

10 Generating Web Service Consumers

About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by
JAX-RPC. For aWeb Service consumer, the resulting file names are based on the definitionsin
the WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service
consumer file name that’s derived from aWSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the jBroker Web compiler s when generating
the Web Service consumer fileslisted above. In some cases, these compilers may generate
additional code or files to support requirements specific to your application, such as:

e Typemapping
* Faults
e Multiple portType definitions

L For more information, see the jBroker Web help.

Example: generated consumer files for Autoloan .NET Web Service

The consumer code that the Web Service Wizard generates for the Autoloan Web Service
consists of these standard filesfor Web Service access:

e AutoloanSoap.java (remote interface)

* Autoloan.java (service interface)

e Autoloanimpl.java (service implementation class)

* AutoloanSoap_Stub.java

e AutoloanSoapClient.java

And these application-specific filesfor mapping the complex types defined in the WSDL :

e Cdculatejava

e CdculateMarshaer.java

e CdculateHolder.java

» CalculateResponsejava

e CdculateResponseMarshal er.java

178

Examining the generated files

new ../../jbroker-web/README.html

eXtend Workbench Development Guide

e CalculateResponseHolder.java
e autoloan.asmx.xmlirpc.type.mappings

When creating these files, the wizard adds them to your project on the directory path you've
specified:

2% SilverStream [WebServiceConsumerSample] - Java Editor [_ (O] %]
File Edit ‘“iew Search Project Documents Help

UEE +y00ESE R ®R | & SitverStream
Yiewy Using: W AutoloanSoap.javal

E% WebServiceConsumerSample spf CertendProjectsitiehServiceConsumer la] CACOl pinetisutoloanSoap java ®
B =t SF Gemerated from http:/supload.eraserver.net/circleid/autoloan. asmx?wsdl
S com 4/ On Tue Jun 04 11:36:23 EDT 2002
E}B EXSAMp
E‘Eb package Com.exsanp.net;
D holders

import java.rmi.Remote;
|:| Autoloan java import java.rmi.RemoteException:

|:| Autoloanimpl java

public interface Autoloanfoap extends Femote

i

|:| AutoloanSoapClient java
|:| AutoloanSoap_Stub java 1
|:| Calculate java

|:| CalculateMarshaler java
|:| CalculsteResponse java

Com. exsanp.net.CalculateResponse calculate (cow. exsanp.net.Calculate ps

|:| CalculsteResponseMarshaler java

Q Directory ﬁ Project | EE, Registries ‘l | _’I

| -

-
. "
| % Buildd E‘ Validatel rE Deployl [E% Findl o Todol

| Lines 13 Colummc 1 Rwy

AutoloanSoap.java

Thisistheremoteinterface used by the stub classto support method callsfor the Autoloan Web
Service.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:23 EDT 2002

package com.exsamp.net;

import java.rmi.Remote;

Examining the generated files 179

10 Generating Web Service Consumers

import java.rmi.RemoteException;

public interface AutoloanSoap extends Remote
com.exsamp.net.CalculateResponse calculate (com.exsamp.net.Calculate parameters)
throws RemoteException;

Autoloan.java

Thisisthe serviceinterface that’s used in JAX-RPC to help clients obtain the stub for the Web
Service.

// Tue Jun 04 11:36:23 EDT 2002
package com.exsamp.net;
import javax.xml.rpc.ServiceException;

public interface Autoloan extends javax.xml.rpc.Service
public AutoloanSoap_Stub getAutoloanSoap ()
throws ServiceException;

Autoloanimpl.java

Thisisthe service implementation class that handles instantiation of the stub
(AutoloanSoap_Stub).

// Tue Jun 04 11:36:23 EDT 2002
package com.exsamp.net;

import java.io.FileNotFoundException;
import java.util.Iterator;

import java.util.Hashtable;

import java.util.Properties;

import java.util.ArraylList;

import java.net.URL;

import java.net.MalformedURLException;
import javax.xml.rpc.Call;

import javax.xml.rpc.ParameterMode;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceException;
import com.sssw.jbroker.web.Binding;
import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

180 Examining the generated files

eXtend Workbench Development Guide

public class AutoloanImpl
extends com.sssw.jbroker.web.xml.rpc.ServiceImpl
implements Autoloan

public AutoloanImpl ()

{
try {
_typeMappingRegistry.importTypeMappings (_tmprops) ;
} catch (Exception ex) ({
throw new javax.xml.rpc.JAXRPCException("failed to populate default type
mapping registry: " + ex.getMessage()) ;
}
try {
createCalls () ;
} catch (ServiceException ex) ({
throw new javax.xml.rpc.JAXRPCException("failed to create the call objects: "
+ ex.getMessage ()) ;

}
}
public QName getServiceName () { return _serviceName; }
public Iterator getPorts() { return portMapping.keySet().iterator(); }
public void setProxyMode (boolean proxy) { proxy = proxy; }
public boolean getProxyMode () { return proxy; }

public URL getWSDLDocumentLocation ()

{
}

return null;

public java.rmi.Remote getPort (Class serviceDeflInterface)
throws ServiceException

{

if (serviceDefInterface == null)
throw new ServiceException("No Service class specified.");
if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))

throw new ServiceException("Class is not a valid Interface.");

String stubName = (String) _intfMapping.get (serviceDefInterface);
Binding binding = (Binding) _intfBinding.get (serviceDefInterface) ;
if (stubName == null)

return getPort (serviceDefInterface, binding,
_classInfo, _typeMappingRegistry, null);
else
return getPort (stubName, binding, _typeMappingRegistry) ;

Examining the generated files 181

10 Generating Web Service Consumers

public java.rmi.Remote getPort (QName portName, Class serviceDefInterface)
throws ServiceException

{
}

return getPort (portName, serviceDefInterface, getProxyMode()) ;

public java.rmi.Remote getPort (QName portName, Class serviceDefInterface, boolean

proxy)

{

throws ServiceException

if (((proxy==false) || (serviceDefInterface == null)) &&
(portName != null)) ({
String stubName = (String) _portMapping.get (portName) ;
Binding binding = (Binding) _portBinding.get (portName) ;
if (stubName == null) return getPort (null, serviceDefInterface);
try {
return getPort (stubName, binding, portName,
_typeMappingRegistry) ;

} catch (Exception ex) {
return getPort (null, serviceDeflInterface);

}

} else {
if (serviceDeflInterface == null)
throw new ServiceException("No Service class specified.");
if (!java.rmi.Remote.class.isAssignableFrom(serviceDefInterface))

throw new ServiceException("Class is not a valid Interface.");

Binding binding = (Binding) _intfBinding.get (serviceDefInterface) ;

String uri = (portName == null) ? null : portName.getNamespaceURI () ;

return getPort (serviceDefInterface, binding, _classInfo,
_typeMappingRegistry, uri);

public Call[] getCalls (QName portName)
throws ServiceException

{

ArrayList callslist = (ArrayList) _calls.get (portName) ;
if (callslist == null) return null;

Call[] calls = new Call[callslist.size()];

return (Call[]) callslist.toArray(calls);

private void addCall (QName portName, Call call)

{

ArrayList callslist = (ArrayList) _calls.get (portName) ;

182 Examining the generated files

eXtend Workbench Development Guide

if (callslist == null) {
callslist = new ArrayList();
_calls.put (portName, callslist);

}

callslist.add(call) ;

public AutoloanSoap_Stub getAutoloanSoap ()
throws ServiceException
{

try {
return (AutoloanSoap_ Stub) getPort (new QName (

"http://circle24.com/webservices/", "AutoloanSoap"), null, false);
} catch (Exception ex) {
return (AutoloanSoap_ Stub) getPort (com.exsamp.net.AutoloanSoap.class) ;
1

private void createCalls ()
throws ServiceException

{

Call call = null;

call = createCall (new QName ("http://circle24.com/webservices/", "AutoloanSoap"),
new QName ("http://circle24.com/webservices/", "Calculate"));
call.addpParameter ("{http://circle24.com/webservices/}Calculate",
new QName ("http://circle24.com/webservices/", "Calculate"),
com.exsamp.net.Calculate.class, ParameterMode.IN) ;
call.addparameter ("{http://circle24.com/webservices/}CalculateResponse",
new QName ("http://circle24.com/webservices/", "CalculateResponse"),
com.exsamp.net.CalculateResponse.class, ParameterMode.OUT) ;
call.setReturnType (new QName ("http://circle24.com/webservices/",
"CalculateResponse"), com.exsamp.net.CalculateResponse.class) ;
call.setProperty(Call.OPERATION_STYLE PROPERTY, "document");
call.setProperty (Call.ENCODINGSTYLE URI_PROPERTY, null);
call.setProperty(Call.SOAPACTION URI_ PROPERTY,
"\"http://circle24.com/webservices/Calculate\"") ;

call.setTargetEndpointAddress ("http://upload.eraserver.net/circle24/autoloan.asmx") ;
addCall (new QName ("http://circle24.com/webservices/", "AutoloanSoap"), call);

static boolean _proxy = true;

static final QName _serviceName;

static final Hashtable _intfMapping = new Hashtable() ;

static final Hashtable _intfBinding = new Hashtable();
)
)

7

static final Hashtable portBinding = new Hashtable(
static final Hashtable portMapping = new Hashtable (

7

Examining the generated files 183

10 Generating Web Service Consumers

static final Hashtable classInfo = new Hashtable() ;
static final Properties _tmprops = new Properties() ;
private final Hashtable calls = new Hashtable() ;

static {

_serviceName = new QName ("http://circle24.com/webservices/",

"com.exsamp.net.Autoloan") ;

_intfBinding.put (AutoloanSoap.class,
new Binding("soap", "http://upload.eraserver.net/circle24/autoloan.asmx")) ;
_portBinding.put (new QName ("http://circle24.com/webservices/", "AutoloanSoap"),
new Binding ("soap", "http://upload.eraserver.net/circle24/autoloan.asmx")) ;
_intfMapping.put (AutoloanSoap.class, "com.exsamp.net.AutoloanSoap Stub") ;
_portMapping.put (new QName ("http://circle24.com/webservices/",
"AutoloanSoap"), "com.exsamp.net.AutoloanSoap_ Stub") ;

Hashtable _methodInfo;
Hashtable _paramInfo;
Properties _props;

_methodInfo = new Hashtable() ;
_paramInfo = new Hashtable();
_props = new Properties();

_props.setProperty ("jbroker.web.soap.action", "\"http://circle24.com/webservices/Calculate\

llll);

_paramInfo.put ("Properties", _props) ;
_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "parameters");
_props.setProperty ("jbroker.web.parameter.inout", "1");
_paramInfo.put ("ParamO", _props);

_props = new Properties();

_props.setProperty ("jbroker.web.parameter.name", "parameters");
_props.setProperty ("jbroker.web.parameter.inout", "2");

_paramInfo.put ("Result", _props);
_methodInfo.put ("Calculate", _paramInfo);
_classInfo.put ("com.exsamp.net.AutoloanSoap", _methodInfo) ;

_tmprops.put ("tml", "com.exsamp.net.CalculateResponse

com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler
http://circle24.com/webservices/ CalculateResponse none") ;

_tmprops.put ("tm0", "com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler

com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none") ;

}

184

Examining the generated files

eXtend Workbench Development Guide

AutoloanSoap_Stub.java

Thisisthe stub class. It passes method calls to the Autoloan Web Service as HTTP SOAP
requests.

// Tue Jun 04 11:36:23 EDT 2002
package com.exsamp.net;
import com.exsamp.net.holders.*;

import java.util.Properties;

import com.sssw.jbroker.web.core.Constants;

import com.sssw.jbroker.web.encoding.TypeMappingRegistry;

import com.sssw.jbroker.web.encoding.DefaultTypeMappingRegistry;

public class AutoloanSoap_Stub
extends com.sssw.Jjbroker.web.portable.Stub
implements AutoloanSoap

private static com.sssw.jbroker.web.QName _portType =
new com.sssw.Jjbroker.web.QName ("http://circle24.com/webservices/",
"AutoloanSoap") ;

private static final com.sssw.jbroker.web.Binding[] _bindings =
new com.sssw.jbroker.web.Binding[] {
new com.sssw.jbroker.web.Binding("soap",
"http://upload.eraserver.net/circle24/autoloan.asmx"),

}i

public AutoloanSoap_Stub ()

{
}

this (null) ;

public AutoloanSoap_ Stub (DefaultTypeMappingRegistry tmr)

{

super (_portType, _bindings);

_setProperty ("xmlrpc.schema.uri", (Object)
"http://www.w3.0rg/2001/XMLSchema" .intern()) ;

_setProperty ("version", (Object) "1.1");
TypeMappingRegistry _tm = null;
try {

if (tmr != null)

_tm = tmr;
else {

_tm = new DefaultTypeMappingRegistry () ;
if (_tmprops.size() > 0) _tm.importTypeMappings (_tmprops) ;

Examining the generated files 185

10 Generating Web Service Consumers

_setTypeMappingRegistry (_tm) ;
} catch (Exception ex) {
throw new javax.xml.rpc.JAXRPCException("failed to initialize type mapping
registry: " + ex.getMessage());

}
}
public com.exsamp.net.CalculateResponse calculate (com.exsamp.net.Calculate _arg0)

throws java.rmi.RemoteException

com.sssw.jbroker.web.portable.ClientResponse in = null;

try {
// create an output stream
_getDelegate () .setProperty ("xmlrpc.soap.operation.name",
new com.sssw.jbroker.web.QName ("http://circle24.com/webservices/",
"Calculate")) ;

//create request
com.sssw.jbroker.web.portable.ClientRequest out =

_request ("Calculate", true, "literal", true,
"\"http://circle24.com/webservices/Calculate\"") ;
_getDelegate () .setProperty ("soapAction", (Object)

"\"http://circle24.com/webservices/Calculate\"") ;

_getDelegate () .setProperty (Constants.HTTP_CONTENT TYPE, (Object) "text/xml;
charset=utf-8") ;

out._setProperties(_getDelegate () .getProperties()) ;

Object arg = null;

// marshal the parameters
arg = _argo0;
out.writeObject (arg, "http://circle24.com/webservices/", "Calculate");

// do the invocation
in = _invoke (out) ;
// unmarshal the results

// return

com.exsamp.net.CalculateResponse ret = null;

try {
ret = (com.exsamp.net.CalculateResponse)
in.readObject (com.exsamp.net.CalculateResponse.class,

"http://circle24.com/webservices/", "CalculateResponse") ;

} catch (java.io.EOFException eofExc) {
ret = null;

}

return ret;
} catch (java.lang.Throwable t) {

if (t instanceof com.sssw.jbroker.web.ServiceException) {

186 Examining the generated files

eXtend Workbench Development Guide

com.sssw. jbroker.web.ServiceException sex =
(com.sssw.jbroker.web.ServiceException) t;
if (sex.getTargetException() != null)
t = sex.getTargetException() ;

}

// map to remote exception
throw com.sssw.jbroker.web.ServiceException.mapToRemote (t) ;

static final Properties _tmprops = new Properties() ;
static {

_tmprops.put ("tml", "com.exsamp.net.CalculateResponse
com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler
http://circle24.com/webservices/ CalculateResponse none") ;

_tmprops.put ("tm0", "com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler
com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none") ;

}

private static Properties _rootHeaders = new Properties();

static {
_rootHeaders.setProperty ("content-type", "text/xml; charset=UTF-8");
_rootHeaders.setProperty ("content-id", "<soapbody>") ;

AutoloanSoapClient.java

Thisisasimple client application that obtainsthe stub (viathe Service object) then usesit to call
the calculate() method of the Autoloan Web Service. (Notice that this method call is generated
asacomment. You'll learn what to do with it alittle later in “Editing the generated files’.)

// The following code was generated within the SilverStream eXtend Workbench

// using the integrated Web Services Wizard. This code *requires* process() method
// modification in order to execute as expected. Please keep in mind when making
// modifications that method signatures must be consistent across all

// generated objects.

package com.exsamp.net;
import javax.naming.*;
public class AutoloanSoapClient

{

public void process (String[] args) throws Exception

{

Examining the generated files 187

10 Generating Web Service Consumers

AutoloanSoap remote = getRemote (args) ;

// The following code has been generated for your testing convenience. In
// order to successfully test your Web Service, you must uncomment one or
// more of these lines and supply meaningful arguments where necessary.

// Once you have modified the test method(s) below, compile this class and
// execute it from a command line with your class path set appropriately.

// System.out.println("Test Result = " +
remote.calculate (com.exsamp.net.Calculate)) ;

}

public AutoloanSoap getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
Autoloan service = (Autoloan)ctx.lookup (lookup) ;
AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap () ;

return remote;

public static void main(Stringl[] args)

{

try

{

AutoloanSoapClient client = new AutoloanSoapClient () ;
client.process (args) ;

}

catch (Exception _e)

{

System.out.println("*** Error Executing Generated Test Client ***");
_e.printStackTrace() ;

Calculate.java
This class represents the complex type Calcul ate that’s defined in the WSDL.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

188 Examining the generated files

eXtend Workbench Development Guide

package com.exsamp.net;

public class Calculate implements java.io.Serializable

{

public Calculate() {}

public Calculate (double monthsVal, double rateOfInterestVal,
_months = monthsVal;
_rateOfInterest = rateOfInterestVal;
_amount = amountVal;

1

private double _months;

public double getMonths()
return _months;

}

public void setMonths (double monthsval)
_months = monthsVal;

}

private double _rateOfInterest;

public double getRateOfInterest ()
return _rateOflInterest;

1

public void setRateOfInterest (double rateOfInterestVal) {
_rateOfInterest = rateOfInterestVal;

private double _amount;

public double getAmount () {
return _amount;

public void setAmount (double amountVal) {
_amount = amountVal;

}

public java.lang.String toString/()

{
StringBuffer buffer = new StringBuffer();
buffer.append ("{") ;
buffer.append ("months=" + _months) ;
buffer.append(",");
buffer.append("rateOfInterest=" + _rateOfInterest);
buffer.append(",");
buffer.append ("amount=" + _amount) ;
buffer.append("}") ;
return buffer.toString() ;

double amountval) {

Examining the generated files

189

10 Generating Web Service Consumers

CalculateMarshaler.java

This class handles serialization and deserialization for Calcul ate.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;

import java.io.IOException;

import org.xml.sax.Attributes;

import com.sssw.jbroker.web.x*;

import com.sssw.jbroker.web.encoding.*;

import com.sssw.jbroker.web.portable.InputStream;
import com.sssw.jbroker.web.portable.OutputStream;

public class CalculateMarshaler implements Marshaler

{

// attributes
// elements

private static final java.lang.String _MONTHS = "Months";
private static final java.lang.String _RATEOFINTEREST = "RateOfInterest";
private static final java.lang.String _AMOUNT = "Amount";

public Attribute[] getAttributes (Object obj)

{
}

return null;

public void serialize (OutputStream os, Object obj) throws IOException

{

Calculate jt = (Calculate) obj;

os.writeObject (new java.lang.Double (jt.getMonths()), _MONTHS) ;
os.writeObject (new java.lang.Double (jt.getRateOfInterest()), _RATEOFINTEREST) ;
os.writeObject (new java.lang.Double (jt.getAmount ()), _AMOUNT) ;

public Object deserialize (InputStream is, Class javaType)
throws IOException
{

if (javaType != Calculate.class)
throw new
ServiceException("can't deserialize " + javaType.getName()) ;

try {
// instantiate the object
Calculate jt = (Calculate) javaType.newInstance() ;
try {
// read elements
jt.setMonths (is.readDouble (_MONTHS)) ;

190 Examining the generated files

eXtend Workbench Development Guide

jt.setRateOfInterest (is.readDouble (_RATEOFINTEREST)) ;
jt.setAmount (is.readDouble (_AMOUNT)) ;
} catch (java.io.EOFException eofExc) {}

return jt;
} catch (Exception ex) ({
if (ex instanceof IOException)
throw (IOException) ex;
throw new ServiceException (ex) ;

}

public java.lang.String getMechanismType() { return null; }

CalculateHolder.java

Thisisthe Holder class required by JAX-RPC to implement type mapping support for
Calculate. Note that this classis generated in the holder s subdirectory.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net.holders;
import com.exsamp.net.Calculate;
public final class CalculateHolder implements javax.xml.rpc.holders.Holder
{
public com.exsamp.net.Calculate value;

public CalculateHolder() { }

public CalculateHolder (com.exsamp.net.Calculate val)

{
}

value = val;

CalculateResponse.java

This class represents the complex type Cal culateResponse that's defined in the WSDL .

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;

Examining the generated files

191

10 Generating Web Service Consumers

public class CalculateResponse implements java.io.Serializable

{

public CalculateResponse() {}

public CalculateResponse(java.lang.String calculateResultval) {
_calculateResult = calculateResultVal;

}

private java.lang.String _calculateResult;

public java.lang.String getCalculateResult () ({
return _calculateResult;

}

public void setCalculateResult (java.lang.String calculateResultVal)
_calculateResult = calculateResultVal;

}

public java.lang.String toString/()

{
StringBuffer buffer = new StringBuffer();
buffer.append ("{") ;
buffer.append("calculateResult=" + _calculateResult) ;
buffer.append("}") ;
return buffer.toString() ;

CalculateResponseMarshaler.java

This class handles serialization and deserialization for CalculateResponse.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net;

import java.io.IOException;

import org.xml.sax.Attributes;

import com.sssw.jbroker.web.*;

import com.sssw.jbroker.web.encoding.*;

import com.sssw.jbroker.web.portable.InputStream;
import com.sssw.jbroker.web.portable.OutputStream;

public class CalculateResponseMarshaler implements Marshaler

{

// attributes
// elements
private static final java.lang.String _CALCULATERESULT = "CalculateResult";

public Attribute[] getAttributes (Object obj)

{

192 Examining the generated files

eXtend Workbench Development Guide

return null;

}

public void serialize (OutputStream os, Object obj) throws IOException

{

CalculateResponse jt = (CalculateResponse) obj;
os.writeObject (jt.getCalculateResult (), _CALCULATERESULT) ;

}

public Object deserialize (InputStream is, Class javaType)
throws IOException

{

if (javaType != CalculateResponse.class)
throw new
ServiceException("can't deserialize " + javaType.getName()) ;
try {
// instantiate the object
CalculateResponse jt = (CalculateResponse) javaType.newlInstance();
try {

// read elements

jt.setCalculateResult ((java.lang.String) is.readObject (java.lang.String.class,

_ CALCULATERESULT)) ;
} catch (java.io.EOFException eofExc) {}

return jt;
} catch (Exception ex) {
if (ex instanceof IOException)
throw (IOException) ex;
throw new ServiceException(ex) ;

}

public java.lang.String getMechanismType() { return null; }

CalculateResponseHolder.java

Thisisthe Holder class required by JAX-RPC to implement type mapping support for
CalculateResponse. Note that this classis generated in the holder s subdirectory.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Jun 04 11:36:21 EDT 2002

package com.exsamp.net.holders;

import com.exsamp.net.CalculateResponse;

Examining the generated files

193

10 Generating Web Service Consumers

public final class CalculateResponseHolder implements javax.xml.rpc.holders.Holder
{
public com.exsamp.net.CalculateResponse value;

public CalculateResponseHolder () { }

public CalculateResponseHolder (com.exsamp.net.CalculateResponse val)

{
}

value = val;

autoloan.asmx.xmlrpc.type.mappings

The settings specified in thisfile tell jBroker Web how to configure the type mappings for

Calculate and Cal cul ateResponse. These mappings apply when datais converted from XML to
Javaor viceversa

Since the generated stub and service classes automatically configure the mappings, this
mappingsfileis not typically needed. It is provided for special situations (such as when you
want to override a mapping).

The mappingsfile is generated in the base directory of the source tree (src).

Calculate=com.exsamp.net.Calculate com.exsamp.net.CalculateMarshaler
com.exsamp.net.CalculateMarshaler http://circle24.com/webservices/ Calculate none
CalculateResponse=com.exsamp.net.CalculateResponse
com.exsamp.net.CalculateResponseMarshaler com.exsamp.net.CalculateResponseMarshaler
http://circle24.com/webservices/ CalculateResponse none

194 Examining the generated files

eXtend Workbench Development Guide

Editing the generated files

Follow these guidelines when editing the files generated by the Web Service Wizard:

Guideline Details
File you must edit * xxxClient.java
Files you should not edit o XXxServicejava

* xxxServicelmpl.java

o Xxx_Stub.java

It's OK to edit any of the other generated files, but not typically required.

Editing the xxxClient.java file

public

{

Before using the generated xxxClient.javafile, you:

* Must edit the process() method to call one or more methods of the target Web Service

* May need to edit the getRemote() method to specify the correct location (binding) for
accessing the target Web Service

process() method

The process() method is where the generated client application calls methods of the Web
Service. Here you'll find commented code for calling each method defined in the generated
remote interface and displaying return values on the console. For example:

void process (String[] args) throws Exception

AutoloanSoap remote = getRemote (args) ;

The following code has been generated for your testing convenience. In
order to successfully test your Web Service, you must uncomment one or
more of these lines and supply meaningful arguments where necessary.
Once you have modified the test method(s) below, compile this class and
execute it from a command line with your class path set appropriately.

System.out.println("Test Result = " + remote.calculate(com.exsamp.net.Calculate));

Editing the generated files 195

10 Generating Web Service Consumers

You need to modify this code asfollows:

1. Uncomment one or more method calls you want to execute.

2. Provide appropriate arguments for each method call, either as hardcoded values or as
parameters to be furnished at runtime. For runtime arguments, you may also want to add
code that validates the values supplied.

3. Check thereturn data type to make sureit can be converted using toString(). If not, use
an alternative to System.out.println for displaying the data returned.

Here's what the line with the calculate() method call |ooks like after editing:

System.out.println("Autoloan Web Service\n " +
"Loan input data:\n 24 months, 8%, $15000\n " +
"Output from the Web Service:\n "o

remote.calculate (new com.exsamp.net.Calculate(24, 8, 15000)));

getRemote() method

This section explains the basi ¢ use of the getRemote() method and how to modify it when you
need to specify binding information.

Basic use The getRemote() method iswhere the generated client application obtains the
remote object to handleits method callsto the Web Service. That remote object isan instance of
the generated stub class (xxx_Stub). To create the stub instance, getRemote() doesthefoll owing:

1. Instantiatesthe Service object (from the service interface and implementation classes,
xxxService and xxxServicelmpl) via INDI lookup
2. Callsamethod that the Service object provides (in the service interface) to get the stub
Here's an example of the typical code generated for getRemote(). Normally, you don’t need to
edit it:
public AutoloanSoap getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;
String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
Autoloan service = (Autoloan)ctx.lookup (lookup) ;

AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap() ;

return remote;

196 Editing the generated files

eXtend Workbench Development Guide

Specifying binding information The wizard includes the binding information for your
target Web Servicein the generated stub class (x«x_Stub.java) and serviceimplementation class
(xxxServicelmpl .java). The binding provides the service endpoint addr ess where the Web
Service can be accessed. InaWSDL file, thisaddressisthe URL in the soap:addresslocation
element.

Asan alternative, you can specify the binding to use when creating the stub instance in the
getRemote() method. This enables you to override the binding in the stub class (such as when
the Web Service has moved to anew location). You just need to add aline of code to set the
address property for the stub:

public AutoloanSoap getRemote (String[] args) throws Exception

{

InitialContext ctx = new InitialContext () ;

String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
Autoloan service = (Autoloan)ctx.lookup (lookup) ;
AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap() ;

((javax.xml.rpc.Stub) remote) . setProperty("javax.xml.rpc.service.endpoint.address",
"http://upload.eraserver.net/circle24/autoloan.asmx") ;

return remote;

Using the generated files

How you use the Web Service consumer code that you have at this point depends on the nature
of the application you’ re developing. Sometimes you might want to enhance the generated
xxxClient.javafile and includeit in your application. At other times you may just copy syntax
from xxxClient.javainto your own classes. But in either case, you' |l always need the generated
remote interface, service, and stub files.

Before you start any application-specific coding, it's agood ideato test the basic xxxClient to
make sure your consumer code works as expected. You'll first need to build your project to
compile the source files. Then you can run xxxClient as described in the next section.

Using the generated files 197

10 Generating Web Service Consumers

Running the consumer program

The generated Web Service consumer program xxxClient isa standard Javaapplication. You can
runitin either of these ways:

From Workbench
From acommand line

From Workbench

To help you test your generated client quickly and easily, Workbench providesthe Web Service
Wizard Client Runner. Thisfacility liststhe client applicationsin your current project and lets
you select oneto execute. For each run, it automatically setsthe classpath to include all required
files and lets you supply command-line arguments.

> To use the Client Runner:

1.
2.
3.

Open the project that contains the compiled client class you want to run.

Select Project>Run Web Service Client Class to display the Client Runner window.
Select aclient from the Client classto run dropdown.

This dropdown lists every compiled class in your project that has a main() method.
Check Show command lineif you want to:

e Seethe complete command line that the Client Runner uses to execute your client (it
will appear in the display console portion of the window after you click Run)

» Optionaly copy that command line to the system clipboard by clicking Copy
command line (after arun)

Type any command-line Arguments required by your client (use a space to separate each
argument).

Click Run to execute your client and see its output in the display console portion of the
window.

198

Running the consumer program

eXtend Workbench Development Guide

For example, here’swhat it looks like to execute the generated A utoloanSoapClient class using
the Client Runner:

Web Service Wizard Client Runner []
Cliert class to run:
Icom.exsamp.net.AutoIoanSoapClient LI
|7 Showy command line | Copy command line
Arguments:

Running com.exsanp.net.iutoloanfoapClient...
FEERERREFTTEXTTANEANESS

| v

Autoloan Web Service
Loan input data:
24 months, 8%, 15000
Output from the Web Service:

Close Clear

When AutoloanSoapClient runs, it calls the cal culate() method of the Autoloan Web Service
and passes a Cal cul ate object containing loan data (term, rate, amount). The cal culate() method
returns a Cal culateResponse object containing a string of payment information, which
AutoloanSoapClient displays on the screen:

Running com.exsamp.net.AutoloanSoapClient...
khkkkkkkkkkkkkkkkkkkkk

Autoloan Web Service
Loan input data:
24 months, 8%, $15000
Output from the Web Service:

{calculateResult:Equated Monthly Instalment (EMI) For the Amount $15000 is $678}
khkhkhkhkhkhkhkdhkhkhkhkhkkhkhxhxkxx

From a command line

You can also execute the generated client from the command prompt of your operating system.
Doing so demands that you set the classpath to include all required files (such as the generated
consumer classes, jbroker-web.jar, and so on).

The recommended approach is to use the Web Service Wizard Client Runner to display and
copy thecommand linefor your client (as described in the previous section). Then you can paste
that line to your command prompt and run it.

If you planto run the client on other computers (beyond your development machine), make sure
they have accessto al of thefileslisted in thiscommand line.

Running the consumer program 199

10 Generating Web Service Consumers

200 Running the consumer program

Index

A C
application clients classpaths
about 19, 65 for application clients 74
APl usage 68 Client Runner facility
classpaths 74 for testing Web Service consumers 198
coding classes 68 consumers
compiling 74 see Web Services
containers 67, 86 containers
creating 65, 68 see PEE

creating aclient archive 79
deploying 65, 80, 83

deployment descriptors 77 D

deployment documents 80 .

designing 65 deployment descriptors

example 69 about 24

in J2EE modules 24 creating 40

JINDI namespace 68 EJB JARS) 9 . .
lifecycle 67 for application client archives 68

for Web archives 40
in J2EE application clients 77

manifest files 75
packaging into an archive 75

running 65, 86 modifying 7
archives deployment documents

application clientsin 66 about 9

cregting 8 application clients 80

deploying 9 EBs 97

deploying Web Servicesas WAR files 117 for Web archives 42

deployment descriptors 24 deployment plans

directory structure considerations 4 about 9
EJBsin 87,95
JEE 24
JavaServer Pagesin 38 E
sevletsin - 51 Electronic Business XML (ebXML)
validating - 8 see Web Services
Enterprise JavaBeans (EJBS)
about 19, 87
B containers 87
bindings creati ng 87,92
from consumers to Web Services 195 deploying 87,97
designing 87

entity beans 19
homeinterfaces 92

201

Index

implementation classes 92

INDI lookup 97

message-driven beans 19
packaging inan archive 95
remote interfaces 92

running 87,97

sessionbeans 19

tips for designing applications 100

J2EE

about 15, 26

application clients 65
architecture 21, 66

archives 3

Blueprints 27

clienttier 21

components 13, 17
containers 21, 32, 49, 67, 87
creating JavaServer Pages 31
creating servlets 49
dataaccessservices 20
deployment descriptors 75
deployment services 20
designing applications 1, 21, 26
developing applications 3
Enterprise Information System tier 21
filesupport 20

Internet protocols 20

manifest files 75

messaging services 20
META-INF directories 75
middletier 21
Model-View-Controller (MVC) modd 26
modules 24

naming services 20

OMG protocols 20

RMI protocols 20

roles 25

security services 20
technologies 17

testing and debugging applications 10
transaction services 20
WEB-INF directories 38

web.xml 40

Workbench support for 28
JavaServer Pages

about 18, 31

creating 31, 38

deploying 42

designing 38

example 34

in Web applications 32

in Web archives 38, 40

inWeb modules 24

mixing HTML and Java 37

running 46

servletsand JSP pages 33
JAX-RPC

about 116

generating consumersfor 167

support for 119
jBroker Web

about 117

packaging jbroker-web.jar with generated

consumers 168

packaging jbroker-web.jar with generated Web

Services 120

M

manifest files

see J2EE, application clients
META-INF directories

see J2EE
Microsoft .NET

about 116

generating consumersfor 167
Model-View-Controller (MVC)

see J2EE

P

project files
creating 5
saving 7

202

eXtend Workbench Development Guide

projects
adding sourcefilesand directories 5, 8
compiling, building, and archiving 8
creating 5
creating components 5
creating enterprise archive (EAR) projects 5
deploying 9
designing 3
organizing 4
supporting team development 7
providers
see Web Services

R
registries
see Web Services

S

servers
creating profiles 9
servlets
about 18,49
containers 49
creating 49, 52
deploying 63
designing 49
event listeners 18
example 52
filters 18
generating an HTTPresponse 56
in Web modules 24
JavaServer Pagesand servlets 33, 51
lifecycle 49
packaging into aWeb archive 62
processing HTTP requests 55
reading HTML formdata 55
reading HTTP request header information 56
running 63
specifying init() and destroy() methods 61
specifying the HTTP document content 59

SilverStream eXtend Application Server
deploying Web archivesto 43
deployment documents 80
deployment plans 9
deployment plansfor EJB JARs 97
SilverJ2EEClient 67, 86

skeleton model
for Web Services 135

SOAP (Simple Object Access Protocol)
see Web Services

sourcefiles
adding to projects 4,5
creating components 5
directory structure considerations 4
editing 5

SPFfiles
see project files

subprojects
see projects

T

tie model
for Web Services 135

U

uUDDI
see Web Services

w

Web Service consumers
binding style 173
binding to services 195
generating 167
JEE 167
Microsoft NET 167
packaging jbroker-web.jar with 168
running 198
type mapping 173
using JAX-RPC 167

203

Index

Web Service Wizard
Client Runner facility 198
generating consumerswith 167
generating Web Serviceswith 119
implementation model choices 135
using jbroker-web.jar with 120, 168
Web Services
about 109, 115
browsing registries 114
consumers 110
creating components 111, 117
designing applications 1
developing applications 3
ebXML 114,115
generating 119
HTTP 109, 111, 113, 115, 117
implementation modelsfor 135
JAX-RPC 116
JAX-RPC support 119
jBroker Web 117
local registries 115
Microsoft NET 116
packaging jbroker-web.jar with 120
providers 110, 111
publishing to registries 112, 114
registries 110, 112, 114, 115
SOAP 109, 111, 113, 115, 117
testing and debugging applications 10
tools provided in Workbench 116
uDDI 114,115
usng 113, 167
WsDL 111, 113, 115
WEB-INF directories
see 2EE
Workbench
J2EE support 28
WSDL (Web Services Description Language)
see Web Services

204

	Development Guide
	Contents
	About This Book
	Purpose
	Audience
	Prerequisites
	Organization

	Developing Applications with Workbench
	Part I Writing J2EE Components
	Understanding J2EE
	What is J2EE?
	What J2EE gives you
	Two kinds of applications
	J2EE technologies

	How are J2EE applications put together?
	Three tiers
	J2EE applications are delivered in archive files
	Roles in J2EE development
	Model-View-Controller application model

	Learning more about J2EE
	The J2EE Blueprints
	J2EE Web sites

	J2EE and Workbench
	Support for J2EE versions
	Support for J2EE roles
	J2EE-oriented IDE and projects
	Wizards and editors for J2EE components
	Build and archive facilities for J2EE modules
	J2EE deployment services

	Writing JSP Pages
	About JSP pages
	SilverStream eXtend Workbench support for JSP pages
	Looking at a sample JSP page

	Developing JSP pages
	Packaging the application
	Deploying the application
	Running the application

	Writing Servlets
	About servlets
	Servlet life cycle
	Servlets and JSP pages
	Servlets and J2EE archive structure

	Developing a servlet
	Creating a servlet class in Workbench
	Processing the HTTP request
	Generating the HTTP response
	Specifying initialization and cleanup methods
	Other servlet coding issues

	Packaging the application
	Deploying the application
	Running a servlet

	Writing J2EE Application Clients
	About J2EE application clients
	Client features
	Client container
	Client life cycle

	Developing a client
	Coding client classes
	Compiling client classes

	Packaging a client
	Writing the manifest file
	Writing the deployment descriptor file
	Creating the client JAR file

	Deploying a client
	Writing server-specific deployment information
	Deploying the client JAR file

	Running a client

	Writing Enterprise JavaBeans
	About EJBs
	Developing EJBs
	What Workbench does

	Packaging EJBs
	Writing the deployment descriptor
	What Workbench does
	Creating an EJB JAR file
	What Workbench does

	Deploying EJBs
	Calling EJBs
	Finding the EJB

	Tips for designing EJB applications

	Using Resource Adapters
	About resource adapters
	Deploying resource adapters
	Using resource adapters

	Part II Producing and Consuming Web Services
	Understanding Web Services
	About Web Services
	Web Service providers, consumers, and registries
	Providing Web Services
	Creating Web Service components
	Creating a WSDL file
	Publishing Web Service information

	Using Web Services
	Using Web Service registries
	About registries
	Registry data formats
	Public and local registries

	Learning more about Web Services
	Popular Web Service implementations
	Web Services and Workbench
	jBroker Web
	Web Service Wizard
	Registry Manager
	WSDL Wizard and Editor

	Generating Web Services
	Basics
	Steps
	Preparing to generate
	Generating Web Service files
	Examining the generated files
	Editing the generated files
	Using the generated files

	Choosing an implementation model
	Tie model
	Skeleton model

	Scenario: starting with a Java class
	Project setup
	Input to the wizard
	Generated files for the Web Service
	Generated files for testing
	Deployment descriptor
	Runtime test result

	Generating Web Service Consumers
	Basics
	Steps
	Preparing to generate
	Providing a WSDL file
	Example: WSDL file for Autoloan .NET Web Service
	Understanding the WSDL

	Generating the consumer files
	Examining the generated files
	About generated file names
	Additional details of generation
	Example: generated consumer files for Autoloan .NET Web Service

	Editing the generated files
	Editing the xxxClient.java file

	Using the generated files
	Running the consumer program
	From Workbench
	From a command line

	Index

