
n

NDK: NLM Threads Management
Novell

m

ovdocx (E
N

U
)  01 February 2006
www . n o v e l l . c o

Developer Kit
O c t o b e r  1 1 ,  2 0 0 6

N L M ™ T H R E A D S  M A N A G E M E N T



novdocx (E
N

U
)  01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and 
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. 
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, 
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims 
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. 
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to 
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the 
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required 
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities 
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export 
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. 
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no 
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, 
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this 
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. 
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent 
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products, 
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products, 
see www.novell.com/documentation.



novdocx (E
N

U
)  01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.



novdocx (E
N

U
)  01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.



novdocx (E
N

U
)  01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.



novdocx (E
N

U
)  01 February 2006



Contents

novdocx (E
N

U
)  01 February 2006
About This Guide 9

1 Threads Concepts 11
1.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Thread Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Thread Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Thread Management in NetWare 3.x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Thread Management in NetWare 4.x-6.x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Routine Scheduling by Thread Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 When to Schedule a Routine as a Thread  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 When to Schedule a Routine as Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Context and Thread Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Creating and Terminating Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Creating and Terminating Thread Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 Interprocess Synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 NetWare Global Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Thread Global Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 Thread Group Global Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.3 NLM Global Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.4 Hierarchy of Global Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.5 NetWare 4.x-6.x Global Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Thread Function List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Multithreaded Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7.1 Shared Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7.2 Thread Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7.3 Relinquishing Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.8.1 Thread Level Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.8.2 Thread Group Level Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.3 NLM Level Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.4 Context Problems with OS Threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8.5 Context Solutions for OS Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 Context and Development of Drivers, Stacks, etc.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Threads Functions 39
abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
atexit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
AtUnload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
BeginThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
BeginThreadGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ClearNLMDontUnloadFlag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CloseLocalSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
EnterCritSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ExamineLocalSemaphore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
exit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
_exit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7



8 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ExitCritSec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ExitThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
FindNLMHandle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
getcmd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
GetNLMHandle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
GetNLMID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
GetNLMIDFromNLMHandle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
GetNLMIDFromThreadID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
GetNLMNameFromNLMID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
GetThreadContextSpecifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
GetThreadGroupID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
GetThreadHandicap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
GetThreadID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
GetThreadName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
longjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
main. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
MapNLMIDToHandle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
NWSMPIsLoaded (obsolete 9/2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
NWThreadToMP (obsolete 9/2001)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
NWThreadToNetWare (obsolete 9/2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
OpenLocalSemaphore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
raise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
RenameThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ResumeThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ReturnNLMVersionInfoFromFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ReturnNLMVersionInformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ScheduleWorkToDo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
setjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SetNLMDontUnloadFlag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SetNLMID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SetThreadContextSpecifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
SetThreadGroupID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
SetThreadHandicap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SignalLocalSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
spawnlp, spawnvp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SuspendThread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ThreadSwitch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ThreadSwitchLowPriority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ThreadSwitchWithDelay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
TimedWaitOnLocalSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
WaitOnLocalSemaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Revision History 127
hreads Management



novdocx (E
N

U
)  01 February 2006
About This Guide

This documentation explains functions used for developing applications that make use of classical 
NetWare® threads.

IMPORTANT: Access to functionality in the multi-processor kernel of the NetWare 5.x and 6.x OS 
is provided through the Libraries for C (LiBC) (http://developer.novell.com/ndk/libc.htm). LibC 
provides a full set of mutex, reader-writer lock, condition variable, and semaphore API functions. It 
also provides functions for management of virtual machines (VMs), context and threads, general file 
and directory, and both physical and virtual memory.

This guide contains the following sections:

• Chapter 1, “Threads Concepts,” on page 11
• Chapter 2, “Threads Functions,” on page 39

Feedback

We want to hear your comments and suggestions about this manual and the other documentation 
included with this product. Please use the User Comments feature at the bottom of each page of the 
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB 
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

• NDK: NLM Development Concepts, Tools, and Functions
• NDK: Program Management
• NDK: Connection, Message, and NCP Extensions
• NDK: Multiple and Inter-File Services
• NDK: Single and Intra-File Services
• NDK: Volume Management
• NDK: Client Management 
• NDK: Network Management
• NDK: Server Management 
• NDK: Internationalization
• NDK: Unicode
• NDK: Sample Code
• NDK: Getting Started with NetWare Cross-Platform Libraries for C
• NDK: Bindery Management
9

http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm


10 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
For CLib source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C 
(including CLIB and XPlat) Developer Support Forums (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat 
development. 

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items 
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party 
trademark.
hreads Management

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm


1
novdocx (E

N
U

)  01 February 2006
1Threads Concepts

This documentation describes the NetWare® Threads API, its functions, and features.

1.1  Threads
A thread is a stream of control that can execute its instructions independently. In the past, threads 
have sometimes inaccurately been referred to as NetWare processes. Process is more properly a 
concept used in UNIX* or Windows* NT. For operating systems in which the kernel does not 
support threads, a process is the unit of execution. In contrast, for a multithreaded system in which 
the kernel supports threads, a thread-rather than a process-is the unit of execution.

The NetWare OS allows NLM™ applications to establish multiple threads, each representing a 
single path of execution. An NLM usually contains at least one thread to accommodate the main 
(page 83) function. (This is not true if the NLM is a library, such as CLIB.NLM.)

Two or more threads can be running concurrently-simultaneously in the midst of code execution-
although only one thread can have control of the CPU at any given time. Concurrent threads can be 
executing the same code or different code. In a multiprocessing evironment, two or more threads can 
also be running parallel-that is, simultaneously running on different processors. Parallel threads are 
of course also running concurrently.

Historically, the NetWare OS has been a nonpreemptive ("good guy") scheduling environment. 
(NLMs written for NetWare 5.x and 6.x can be marked preemtable, as explained below.) When a 
thread gains control of the CPU, the thread remains in control until it has run to the end of its 
execution or until it calls a function that ’blocks’-that is, relinquishes control of the CPU. (Blocking 
functions are identified in the function reference manuals.)

No other thread can interfere with an active thread, regardless of priority. Only a hardware interrupt 
can temporarily interrupt a currently running thread.

1.1.1  Thread Context
In the NetWare OS, many of the threads run in groups that are organized such that all threads in a 
group share data that is global to the group. The characteristics of that global data is collective called 
context. Context is one of the more important concepts to understand in programming to NetWare. 
For more information on context, see Section 1.4, “Context and Thread Groups,” on page 16 and 
Section 1.5, “NetWare Global Data,” on page 18 below.

For developers of driver, stack, and other lower-level code, please refer to Section 1.9, “Context and 
Development of Drivers, Stacks, etc.,” on page 38

1.2  Thread Management
Although the NetWare OS has used threads extensively since version 3.x, the model for handling 
threads has changed considerably over time.
Threads Concepts 11



12 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
1.2.1  Thread Management in NetWare 3.x
The thread management for the NetWare 3.x OS is different from that of the NetWare 4.x, 5.x, and 
6.x OS. The following figure illustrates thread management in the NetWare 3.x OS.

Figure 1-1   NetWare 3.x Thread Management

In the NetWare 3.x OS, threads waiting to be executed are placed in a Run Queue, which is serviced 
on a FIFO (first in, first out) order.

Threads waiting for resources to become available are placed in a blocked list, yielding the CPU to 
other threads in the Run Queue. When the needed resources become available, the thread moves 
from a blocked list to the end of the Run Queue.

Each time a thread becomes the current (executing) thread, or changes from the current thread to 
another state, a context switch occurs.
hreads Management



novdocx (E
N

U
)  01 February 2006
1.2.2  Thread Management in NetWare 4.x-6.x
The NetWare 4.0 OS introduced new features that add flexibility to thread management. The 
following figure illustrates thread management in the NetWare 4.x, 5.x, and 6.x OS.

Figure 1-2   NetWare 4.x-6.x Thread Management

The NetWare 4.0 OS introduced the concept of work. Each work unit has a routine and data 
associated with it, but the work unit is not a thread. To handle these work units, the OS reserves a 
pool of worker threads that are dedicated to running work.

When a work unit is scheduled, it is placed on the Work To Do List, and is serviced immediately 
after the current thread relinquishes the CPU. If the current thread is already a worker thread, the 
worker thread does not relinquish control; instead, it executes the next work unit, thereby avoiding a 
context switch.

Because worker threads avoid unnecessary context switching, single threads running many separate 
work units provide higher performance.

NOTE: Novell® recommends that work units be short, discrete routines that can complete quickly. 
If the work code calls a function that relinquishes control of the CPU, the worker thread is 
transformed into a regular thread.

Worker threads wait in their own pool. Regular (not worker) threads wait in the Run Queue, the 
Low-Priority Queue, or the Delay List, queues that are serviced on a FIFO order by the CPU.

The Work To Do List has the highest priority, followed by the Run Queue and the Low-Priority 
Queue. The Delay List has a variable priority status, and is usually serviced after the Low-Priority 
Queue has gained control of the CPU.
Threads Concepts 13



14 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
The Low-Priority Queue does not gain control of the CPU unless there is nothing else for the CPU to 
do. If a thread does "busy waiting" (looping while waiting for a resource to become available, for 
example), continually rescheduling itself on the Run Queue, the Low-Priority Queue cannot gain 
control of the CPU.

Following is an example of busy waiting:

   while (!finished)   
      ThreadSwitchWithDelay();

To allow the Low-Priority Queue to be serviced by the CPU, threads that do busy waiting should be 
rescheduled on the Delay List. After a thread has been scheduled on the Delay List, it waits for a 
number of context switches (50 is the default), then is placed at the end of the Run Queue. While 
threads wait in the Delay List, the Low-Priority Queue has a chance to be serviced by the CPU.

As in NetWare 3.x, each time a thread becomes the current thread, or changes from the current 
thread to another state, a context switch occurs.

For more information about programming with threads, see Section 1.7, “Multithreaded 
Programming,” on page 25.

1.3  Routine Scheduling by Thread Type
Threads can be scheduled either as normal threads or as work. To decide which type is appropriate 
for a given thread, consider the following sections. 

NOTE: Work is unique to the 4.x, 5.x, and 6.x OS. If your NLM is going to run on 3.x servers, you 
cannot schedule threads as work.

1.3.1  When to Schedule a Routine as a Thread
The following conditions serve as guidelines for when to schedule a routine as a thread:

• The routine is a long-term process
• It needs a very large stack
• It needs to deliberately handicap itself temporarily to avoid spin-waiting (being rescheduled 

while waiting for something needed to complete execution).

If a routine is a long-term process, little benefit results from scheduling it as work because work that 
yields cannot be rescheduled as work. Instead, it is rescheduled on the Run Queue at the same 
priority as a normal thread.

All work is given a single stack size; but you can specify a stack size for threads. If you need to 
specify the stack size, you must schedule your routine as a thread.

If your routine is a polling process or one that does spin-waiting, you should schedule it as a thread.

In general, if your NLM already uses the NetWare 3.x process-scheduling scheme-which can still be 
carried out in the NetWare 4.x, 5.x, and 6.x kernel-and its routines are mostly long-term, continue to 
schedule the routines as threads. But if any of the routines are short-term, you can reschedule them 
as work.
hreads Management



novdocx (E
N

U
)  01 February 2006
NOTE: If your NLM is going to run in the NetWare 3.x environment as well as in the NetWare 4.x, 
5.x, and 6.x environment, you cannot schedule any threads as work, since work does not exist in the 
NetWare 3.x environment. Schedule all threads then as normal threads.

Changing Thread Priority:  It is possible to change the priority of a thread in one of ways 
described in the following sections.

Permanently Handicapping Threads

(NetWare 4.x, 5.x, and 6.x) If a particular NLM does not yield often enough, the OS places a 
handicap in the NLM thread’s process control block (PCB), which prevents the thread from being 
rescheduled immediately. For example, it the OS places a handicap of 100 on a thread, 100 other 
pieces of work or threads run and yield before the handicapped thread is rescheduled in the RunList 
Queue.

A thread can also handicap itself by calling SetThreadHandicap.

Temporarily Handicapping Threads

(NetWare 3.x, 4.x, 5.x, and 6.x) If a thread needs a resource that will not be ready for a moment, but 
you do not want it to assume the overhead of sleeping on a semaphore or doing busy waiting, you 
can have the thread reschedule itself with a temporary handicap using ThreadSwitchWithDelay.

An example of busy waiting is the following:

   while (!finished)   
      ThreadSwitchWithDelay();

Temporarily handicapped threads are not placed in the Run Queue until their handicap has expired. 
Upon expiration, they are rescheduled at the end of the Run Queue. Letting threads temporarily 
handicap themselves prevents needless rescheduling overhead caused by a busy-waiting condition.

Temporarily handicapping threads is an issue for NetWare 4.x, 5.x, adn 6.x OS since the Low-
Priority Queue does not gain control of the CPU unless there is nothing else for the CPU to do. If a 
thread does "busy waiting", continually rescheduling itself on the Run Queue (by using 
ThreadSwitch), the Low-Priority Queue cannot gain control of the CPU.

Low Priority Threads

(NetWare 4.x, 5.x, and 6.x) Low priority threads run when there is nothing to run except hardware 
polling routines and temporarily handicapped threads. Programs that might be candidates for low 
priority threads are file compression utilities, once-a-week backup, and cleanup utilities.

A thread can reschedule itself as a low priority thread by calling ThreadSwitchLowPriority.

To maintain a thread as low priority when you relinquish control, you must use 
ThreadSwitchLowPriority. If you use ThreadSwitch, the thread becomes a regular thread.

1.3.2  When to Schedule a Routine as Work
The following criteria can help determine when you should schedule a routine as work:

• The routine has a high priority.
Threads Concepts 15



16 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
• It needs to gain control of the processor quickly, that is, get in and run with as little scheduling 
overhead as possible.

Examples

A database request routine needs to gain access to the processor quickly and does not need to yield 
before it is completed. The performance of the database would be enhanced by scheduling requests 
as work, so that the work is serviced quickly and the CPU is relinquished to the next thread.

Similarly, scheduling end-of-routine cleanup as work enhances the operation of all threads in the 
kernel. A task such as freeing up the stack needs to be executed immediately after a routine ends, 
and is quick.

Other candidates for work are service routines, which check and update an item regularly. A service 
routine that updates object information for network management, for example, could be scheduled 
as work.

In general, NLM applications benefit when lower-level services are scheduled as work. For 
example, repetitive services such as disk reads could be scheduled as work. NetWare typically does 
a lot of disk reading. The entire operation usually completes without yielding because the data is 
found in cache memory.

1.4  Context and Thread Groups
The abstractions of context and thread groups are unique to NetWare. These abstractions allow for 
various kinds of efficiency in the way threads perform, but they also require understanding of certain 
key concepts to avoid the pitfalls associated with that efficiency. Many if not most of the threads in 
an NLM require access to important global data. That global data can belong to the thread itself, to 
the thread group to which the thread belongs, or to an entire NLM. Of particular importance are the 
data associated with a thread itself and the data associated with its thread group. This thread group 
data is also called CLib context, and access to that data is essential to most of the threads created by 
an NLM in the execution of an NLM developer's code. For more detail, refer to Section 1.5, 
“NetWare Global Data,” on page 18 and Section 1.8, “Context,” on page 32 below.

Each NLM can have more than one thread group, and each thread group may consist of one or more 
threads, as defined by the programmer. When an NLM is started, it has one thread group that 
includes the thread that executes the user-supplied main function.

Threads are created by the NetWare® API in four ways, which determine the thread group:

• By default, a thread is started at the function main (page 83). This thread belongs to a default 
thread group.

• BeginThread (page 47) is called, creating a new thread that belongs to the current thread group.
• BeginThreadGroup (page 49) is called, creating a new thread group with one new thread 

belonging to it.
• ScheduleWorkToDo (page 98) is called, creating a new thread that belongs to the current thread 

group. ScheduleWorkToDo is works on the NetWare 4.x, 5.x, and 6.x OS.

The following figure shows a sample multithreaded NLM configuration. Threads 1 and 2 belong to 
the same group, Thread Group 1. All other numbered threads belong to Thread Group 2. This means 
threads 1 and 2 share the same thread group level context information (where their CWD could be 
\MYDIR1) and threads 3 through n share a different thread group level context (where their CWD 
could be \MYDIR2). Developers must understand that when there is more than one thread in a 
hreads Management



novdocx (E
N

U
)  01 February 2006
thread group, changing the context (such as CWD) for one thread changes the context for all of the 
threads in the group. For example, if thread 3 changes its CWD, it also changes the CWD of threads 
4 through n.

Figure 1-3   Multithreaded NLM

Because the display and input threads work together to handle server commands, the two threads 
have been assigned to the same thread group. This allows them to share the current working 
directory and current screen, among other resources.

1.4.1  Creating and Terminating Threads
The BeginThread function creates a thread. A thread can terminate itself using the ExitThread 
function as follows:

   ExitThread(EXIT_THREAD, ...)  
   ExitThread(TSR_THREAD, ...)

A return statement from the original function (the function that was started by BeginThread) also 
terminates the thread.

1.4.2  Creating and Terminating Thread Groups
A single thread or multiple threads can be grouped to have a unique context.

The BeginThreadGroup function creates a thread group. A thread group can be terminated using the 
ExitThread function as follows:

ExitThread(EXIT_THREAD, ...) 
in the last thread in the group 
ExitThread(TSR_THREAD, ...) 
in the last thread in the group,

A return statement from the original function (the function that was started by BeginThread) in the 
last thread in the group also terminates the thread group.

1.4.3  Interprocess Synchronization
Use local semaphores to control finite resources, to synchronize execution among threads, or to 
queue threads that need to use critical code sections. A semaphore has an associated signed 32-bit 
value.
Threads Concepts 17



18 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Local semaphores can be used only by NLM applications running on a particular server (as opposed 
to network semaphores, which can be used by all NLM applications executing on, and all 
workstations attached to, the server).

The following Execution Thread functions deal with local semaphores:

• CloseLocalSemaphore
• ExamineLocalSemaphore
• OpenLocalSemaphore
• SignalLocalSemaphore
• WaitOnLocalSemaphore

The OpenLocalSemaphore function allocates a semaphore and gives the NLM access (a handle) to 
it.

A thread can use the WaitOnLocalSemaphore call to gain access to the associated resource or to wait 
for the resource to become available. WaitOnLocalSemaphore can also be used to cause one thread 
to wait for another thread to signal it to continue. WaitOnLocalSemaphore decrements the 
semaphore’s associated value.

When a thread is finished using a semaphore’s resource, it typically calls SignalLocalSemaphore to 
increment the semaphore’s value. A thread can also use this function to cause a thread that is waiting 
on a semaphore to resume execution. SignalLocalSemaphore increments the semaphore’s associated 
value.

The ExamineLocalSemaphore call allows a thread to retrieve a semaphore’s value. The semaphore 
value can be positive or negative (from -2 31 through 2 31 -1). A negative value means that one or 
more threads are waiting on the semaphore.

1.5  NetWare Global Data
Because NLM applications can vary widely in their design and purpose, the NetWare API maintains 
a variety of global data items for NLM applications. These data items are divided into the following 
categories described in the sections below:

• Thread Global Data
• Thread Group Global (CLib) Data
• NLM Global Data

These global data items can be set and queried by various functions in the NetWare API. Each 
category of global data items represents a different level of scope or context.

1.5.1  Thread Global Data
Each thread has its own set of data items. The data items are global only within that thread. That is, 
they have separate values for each thread. The data items of one thread cannot be referenced by 
another thread.

A thread is the lowest level within an NLM, and its context can consist of the following data items:
hreads Management



novdocx (E
N

U
)  01 February 2006
1.5.2  Thread Group Global Data
One instance of the following data items exists for each thread group. This collection of data 
effectively makes up what is caled CLib context. Any change that one thread makes to the value of a 
thread group global data item affects all the threads in the group. All threads within a thread group 
share the same thread group context, and require this context data to for proper execution. This fact 
makes it important not to tear down the data structures assoicated with a thread group until all 
threads in the group have cleaned up the resources individually allocated to them and until thread 
group resoureces are cleaned up. This issue becomes centrally important at the time an NLM 
unloads, especially on the ULOAD command. For information and instructions on cleaning up 
threads and thread groups successfully for an UNLOAD termination, see Terminating an NLM in 
the Advanced NLM Tasks chapter of NDK: NLM Development Concepts, Tools, and Functions.

Data Item Description

asctime, asctime_r char String 
Pointer

Only allocated if asctime is called. The asctime function returns a 
char *.

Critical Section Count Contains the number of outstanding EnterCritSec (page 58) calls 
against a thread.

ctime, ctime_r, gmtime, 
gmtime_r, and localtime, 
localtime_r functions, tm 
structure 

The ctime, ctime_r, gmtime, gmtime_r, and localtime, localetime_r 
functions return a pointer to a tm structure. Each thread has its own 
tm structure. The tm structure is allocated only if one of these three 
functions is called.

errno Some functions set the errno return code to the last error code that 
was detected.

Last Value from the rand 
Function

Each thread has its own seed value (to start or continue a sequence 
of random numbers).

NetWareErrno A NetWare specific error code. Some functions set both 
NetWareErrno and errno

stack This points to the block of memory that BeginThread (page 47) 
allocated for the thread’s stack.

strtok Pointer The strtok function maintains a pointer into the string being parsed.

t_errno Used with Transport Level Interface (TLI) functions. chapter).

Thread Custom Data Area 
Pointer and Size

The threadCustomDataPtr points to space that the NetWare API 
allocates to be associated with an individual thread. The 
threadCustomDataPtrSize variable specifies the size (in bytes) 
of this data.

Suspend Count This count contains the number of outstanding SuspendThread 
(page 119) calls against a thread.

Data Item Description

Current Connection The current connection number is described in Connection Number 
and Task Management Concepts (NDK: Connection, Message, and 
NCP Extensions).
Threads Concepts 19



20 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
1.5.3  NLM Global Data
These data items have only one value for the entire NLM. The data items are global to all the thread 
groups and threads in the NLM. Any changes made to the values of NLM global data items affect all 
the thread groups and threads in the NLM.

Current Screen The current screen is the target of screen I/O functions (see Screen 
Handling).

Current Task The current task number is described in Connection Number and 
Task Management Concepts (Connection, Message, and NCP 
Extensions).

CWD Current working directory (see File System Concepts in Multiple and 
Inter-File Services).

Current User The "current user" is the user context used in NDS™ functions.

signal Settings Most signal handler functions are set by the signal function. (See 
signal (page 111) and raise (page 90).)

stdin, stdout, stderr These data items are the second-level standard I/O handles (see 
Stream I/O Concepts (Single and Intra-File Services)).

Thread Group Custom Data Area 
Pointer and Size

The threadGroupCustomDataPtr points to space that the 
NetWare API allocates to be associated with a thread group. The 
threadGroupCustomDataPtrSize variable specifies the size (in 
bytes) of this data.

umask Flags These flags are set by the umask function (see File System 
Concepts in Multiple and Inter-File Services).

Data Item Description

active "Advertisers" Each NLM may have a set of active "advertisers" (started by 
AdvertiseService (NLM)(unsupported)).

argv Array This is the argv array passed to main.

atexit, AtUnload Registers functions that are to be called when the NLM exits 
normally or is unloaded.

Libraries’ Work Areas Pointers Pointers to the data areas of any NLM libraries that the NLM has 
called (see Library Concepts (NDK: Program Management) for more 
information on library work areas).

locale Settings Used by the locale functions.

Open Directories The set of directories (opened by opendir) that the NLM has 
opened.

Open IPX/SPX Sockets The set of IPX/SPX™ sockets that the NLM has opened.

Open Files The set of files the NLM has opened. First-level open files include 
those opened with open, sopen, creat; second-level files include 
those opened with fopen, fdopen, freopen.

Data Item Description
hreads Management



novdocx (E
N

U
)  01 February 2006
1.5.4  Hierarchy of Global Data
The different scope levels of the global data items in the NetWare API form a three-tier hierarchy. 
The thread global data items comprise the bottom level of the hierarchy. At the middle level are the 
thread group global data items. The top level of the hierarchy includes NLM global data items.

Open Network Semaphores The set of network semaphores (opened by OpenSemaphore) the 
NLM has opened.

Open Screens The set of screens the NLM has opened.

Original Command Line A copy of the original command line that was entered when the NLM 
was started is saved (used by getcmd (page 68)).

Resource Tag A tag used whenever the NLM allocates memory.

signal Settings The SIGTERM constant that triggers a call to the signal handler in 
NLM termination.

Thread Name Pattern used for naming new threads (used by BeginThread 
(page 47) and BeginThreadGroup (page 49)).

Data Item Description
Threads Concepts 21



22 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
For example, consider the organization of a hypothetical NLM that services requests from multiple 
clients, as shown in the following figure.

Figure 1-4   Hierarchy of Global Data Items

Bottom Level-Thread Global Data Items:  Each of the four threads has its own set of global data 
items. The global data items in one thread cannot be referenced by any of the other threads.

Middle Level-Thread Group Global Data Items:  The global data items for the Control Thread 
Group are common to two threads: the Console Handler Thread and the Communications Manager 
Thread. The global items for the worker Thread Group #1 can be referenced only by worker Thread 
#1. The global items for the worker Thread Group #2 can be referenced only by Worker Thread #2.

Top Level-NLM Global Data Items:  The global data items for the Server NLM are common to all 
the thread groups and threads.
hreads Management



novdocx (E
N

U
)  01 February 2006
1.5.5  NetWare 4.x-6.x Global Data
The NetWare API for NetWare 4.x, 5.x, and 6.x has added custom data areas to the thread and thread 
group contexts. These custom data areas can be referenced with the following variables:

When a thread is running it can use the custom data associated with its thread and thread group. You 
can use these data areas to store in memory information associated with a thread or a thread group.

threadCustomDataPtr and threadGroupCustomDataPtr  point to areas in memory that 
the NetWare API has set aside. Before using the data areas these pointers point to, you should check 
threadCustomDataSize and threadGroupCustomDataSize to see if the available space 
is sufficient. (These data areas may shrink with future versions of the OS.)

NOTE: You should not change these pointers to point to data that you have allocated. However, you 
can use the data areas to hold the addresses to data that you have allocated.

1.6  Thread Function List

Variable Description

threadCustomDataPtr A void pointer that points to a data area always associated with 
the current thread. You can use this area to associate data with a 
thread.

threadCustomDataSize The size (in bytes) of the data area pointed to by 
threadCustomDataPtr. This variable is a LONG.

threadGroupCustomDataPtr A void pointer that points to a data area always associated with 
the current thread group. You can use this area to associate data 
with a thread group.

threadGroupCustomDataSize The size (in bytes) of the data area pointed to by 
threadGroupCustomDataPtr. This variable is a LONG.

Function Purpose

abort Terminates an NLM abnormally.

atexit Creates a list of functions that are executed on a last-in, first-out 
basis when the NLM exits normally or is unloaded.

AtUnload Registers a function that is called if the NLM is unloaded with the 
UNLOAD console command.

BeginThread Initiates a new thread within the current thread group.

BeginThreadGroup Establishes a new thread within a new thread group.

Breakpoint Suspends NLM execution and causes a break into the NetWare 
Internal Debugger.

ClearNLMDontUnloadFlag Sets a flag in the NLM header to allow the NLM to be unloaded with 
the UNLOAD console command.

delay Suspends execution for an interval (milliseconds).
Threads Concepts 23



24 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
EnterCritSec Prevents all other threads in the NLM from being scheduled.

exit Causes the NLM to terminate normally.

exit Terminates the NLM without executing atexit functions or flushing 
buffers.

ExitCritSec Allows other threads in the NLM to run.

ExitThread Terminates either the current thread or the NLM.

FindNLMHandle Returns the handle of a loaded NLM.

getcmd Returns the command line it its original format (unparsed).

getenv Searches the environment area for the environment variable and 
returns its value (presently environment variables are not 
supported).

GetNLMHandle Returns the handle of the current NLM.

GetNLMID Returns the ID of the current NLM.

GetNLMNameFromNLMID Returns the name of an NLM.

GetThreadContextSpecifier Returns the CLIB context used by callback routines scheduled by 
the specified thread.

GetThreadGroupID Returns the ID of the current thread group.

GetThreadHandicap Gets the number of context switches a thread is delayed before 
being rescheduled.

GetThreadID Returns the thread ID of the current thread.

GetThreadName Returns the name of a thread.

longjmp Restores a saved environment.

main A developer-supplied function where NLM execution begins.

MapNLMIDToHandle Returns the handle associated with the NLM ID.

raise Sends a signal to the executing program.

RenameThread Renames a thread.

ResumeThread Allows a previously suspended thread to run.

RetunNLMVersionInfoFromFile Returns version information for a loaded NLM that corresponds to 
the specified file.

ReturnNLMVersionInformation Returns version information for a loaded NLM that corresponds to a 
specified NLM handle.

ScheduleWorkToDo Schedules a routine as work, which puts it on the highest priority 
queue (NetWare 4.x, 5.x, and 6.x).

setjmp Saves its calling environment in its jmp_buf for subsequent use by 
longjmp.

SetNLMDontUnloadFlag Sets a flag in the NLM header to prevent the NLM from being 
unloaded with the UNLOAD console command.

Function Purpose
hreads Management



novdocx (E
N

U
)  01 February 2006
1.7  Multithreaded Programming
Multithreading is common in multiclient distributed applications. Typically, a client-server NLM 
uses a different thread group for each client to which it provides service. This allows the NLM to 
service multiple clients concurrently. In addition, NLM applications often establish specialized 
threads, such as display, input, and communication threads. These threads can be used, for example, 
to accept commands from the server console, receive incoming requests, and send outgoing replies.

An efficient way to handle multiple clients is for the NLM to create a new thread for each client it 
services. As the NLM receives client requests, it creates a new thread to process each request. Then, 
after the request is serviced, the thread runs to the end of its initial procedure and is terminated.

SetNLMID Changes the current NLM.

SetThreadContextSpecifier Determines the CLIB context that is used by all callback routines 
scheduled by the specified thread (NetWare 4.x, 5.x, and 6.x).

SetThreadGroupID Changes the current thread group.

SetThreadHandicap Sets the number of context switches a thread is permanently 
handicapped (delayed) before being rescheduled (NetWare 4.x, 5.x, 
and 6.x).

signal Specifies an action to take place when certain conditions are 
detected (signalled).

spawnlp, spawnvp Creates and executes a new child process.

SuspendThread Prevents a thread from being scheduled.

system Used to execute OS commands.

ThreadSwitch Allows other threads a chance to run, where no natural break in the 
running thread would normally occur.

ThreadSwitchLowPriority Reschedules a thread onto the low-priority queue (NetWare 4.x, 5.x, 
and 6.x).

ThreadSwitchWithDelay Reschedules a thread to be place on the RunList after a specified 
number of switches have taken place (NetWare 4.x, 5.x, and 6.x).

Local Semaphore Functions:

CloseLocalSemaphore Closes a local semaphore.

ExamineLocalSemaphore Returns the current value of a semaphore.

OpenLocalSemaphore Allocates a local semaphore and gives the NLM access to it.

SignalLocalSemaphore Increments a semaphore’s value.

TimedWaitOnLocalSemaphore Waits on a local semaphore until it is signalled or the specified 
timeout elapses.

WaitOnLocalSemaphore Decrements a semaphore’s value.

WaitOnLocalSemaphore Decrements a semaphore’s value

Function Purpose
Threads Concepts 25



26 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
There are cases where the method mentioned above would not be efficient. For example, if you are 
servicing 250 users and have 250 threads with 8 KB stacks, then just the stacks of these threads take 
up 2,000 KB of memory. In this case you might want to establish a pool of threads to handle 
multiple clients. As the NLM receives client requests, it selects a free thread to process the request. 
After the thread processes the request, it returns to the pool of free threads.

Using multiple threads has many advantages. It allows you to:

Simplify code through modularization 
By separating processes into threads, programs become more easily read, maintained, and 
updated. Multithreading relieves the developer of having to use task switching logic.

Increase throughput 
By dividing the NLM into multiple threads, you can reduce the amount of time the CPU 
remains idle. Instead of blocking during I/O requests, the OS switches control to another thread 
and more fully utilizes the CPU.

Enhance response time 
Because the server is able to switch between threads (thus preventing a single thread from 
monopolizing the CPU), clients receive faster replies to their requests. A lengthy I/O-intensive 
request from one workstation does not preclude the completion of a smaller request from 
another workstation.

Develop multiple contexts through thread grouping 
A thread group consists of one or more threads, as defined by the programmer. Threads in the 
same thread group share the same context, such as the CWD and current connection. This 
provides the programmer with shortcuts, such as the ability to use the CWD instead of 
specifying the full pathname.

The advantages of a multithreaded application are increased performance and efficiency. In a 
multithreaded application, processes get more equal time to use system resources. Additionally, any 
thread can process separately from other threads. For example, a process can update files in the 
background while a foreground process produces data that needs to be written to those files. 
Similarly, one thread can be used to interact with a client process while performing complex, time-
consuming computations in the background.

The following is a simple example showing the creation of multiple threads:

Creating Multiple Threads

#include <stdio.h>  
#include <stdlib.h>  
#include <process.h>  
  
  
int   getOut = FALSE;  
int   twoOut = FALSE;  
int   threeOut = FALSE;  
int   fourOut = FALSE;  
  
  
void ThreadTwo();  
void ThreadThree();  
hreads Management



novdocx (E
N

U
)  01 February 2006
void ThreadFour(void *data);  
  
  
main()  
{  
   BeginThreadGroup(ThreadThree, NULL, NULL, NULL);  
   ThreadSwitch();  
  
   BeginThread(ThreadTwo, NULL, NULL, NULL);  
   ThreadSwitch();  
  
   while (!kbhit())  
      printf("Thread One.\n");  
   getOut = TRUE;  
  
   // allow all threads to clean up before NLM exits  
   while (!(twoOut && threeOut && fourOut))  
      ThreadSwitch();  
}  
  
  
void ThreadTwo()  
{  
   while (!getOut)  
   {  
      printf("           Thread Two\n");  
      ThreadSwitch();  
   }  
   twoOut = TRUE;  
}  
  
  
void ThreadThree()  
{  
   BeginThread(ThreadFour, NULL, NULL, "THREAD FOUR");  
   while (!getOut)  
   {  
      printf("In Thread Three\n");  
      ThreadSwitch();  
   }  
   threeOut = TRUE;  
}  
  
  
void ThreadFour(void *data)  
{  
   while (!getOut)  
   {  
      printf("            %s\n",(char *) data);  
      ThreadSwitch();  
   }  
   fourOut = TRUE;  
}

Threads Concepts 27



28 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
See Threads Concepts for more information about threads, thread groups, and the context that the 
NetWare API maintains. The Section 1.8, “Context,” on page 32 also discusses context issues.

1.7.1  Shared Memory
For true reentrant NLM programming functionality, see the Libraries for C (LibC) (http://
developer.novell.com/ndk/libc.htm). CLib does not truly support this functionality—not without 
considerable resource leaks. For example, before NetWare 4.11 (when CLib started automatically 
cleaning up allocated semaphores), an abend occurs if you fail to manually deallocate semaphores. 
Plus, whenever CLib is unloaded, it almost always sends messages about unfreed memory 
resources.

However, LibC was designed to support reentrant NLM programming and the use of the 
REENTRANT flag. LibC's support of this functionality is mainly due to its context architecture and 
its ability to react to all penetrations of the library. 

Shared memory allows multiple threads to communicate. To share memory among threads in the 
same NLM, use a global or static pointer to a single block of memory. The following example uses a 
global pointer to share memory among thread groups in the same NLM:

Using a Global Pointer to Share Memory among Thread Groups

int SharedMemoryFlag = 0;  
char *SharedMemory;  
 
void ThreadGroup2()  
{  
   while (!SharedMemoryFlag)  
      ThreadSwitch();  
   strcpy (SharedMemory,  
      "ThreadGroup2 has accessed shared memory.");  
   SharedMemoryFlag = 0;  
}  
 
main()  
{  
   /* Start the second thread group */  
   if (BeginThreadGroup (ThreadGroup2,0,0,0) == EFAILURE)  
   {  
      printf ("BeginThreadGroup failed.\n");  
      exit(0);  
   }  
 
/* Allocate the memory to be shared. Note that SharedMemory  
 * could have been defined as an array, if desired. */  
   SharedMemory = malloc (100);  
   if (SharedMemory == NULL)  
   {  
      printf ("Could not allocate memory.\n");  
      exit(0);  
   }  
 
/* Store a string in the allocated memory and print it */  
hreads Management

http://developer.novell.com/ndk/libc.htm


novdocx (E
N

U
)  01 February 2006
strcpy (SharedMemory, "Main ThreadGroup has accessed shared memory.");  
printf ("%s\n",SharedMemory);  
 
/* Let ThreadGroup2 know it is OK to access the memory */  
SharedMemoryFlag = 1;  
 
/* Wait for ThreadGroup2 to access the memory */  
while (SharedMemoryFlag)  
   ThreadSwitch();  
 
/* Print the message stored by ThreadGroup2 */  
printf ("%s\n",SharedMemory);  
free (SharedMemory);  
}

If you want to use shared memory with multiple NLM applications, write a function that passes the 
memory address pointer among the modules. The following example shows the first NLM setting up 
values to share with the second NLM:

Setting up Values to Share Memory with Another NLM

/*  —— FIRST NLM ——  *  
 * This NLM must be loaded first. Its .LNK file    *  
 * exports the two shared values, SharedMemoryFlag *  
 * and SharedMemory.                               *  
 *  —————- */  
int SharedMemoryFlag = 0;  
char *SharedMemory;  
 
main()  
{  
   /* Allocate the memory to be shared. Note that  
    * SharedMemory could have been defined as an array,  
    * if desired. */  
   SharedMemory = malloc (100);  
   if (SharedMemory == NULL)  
   {  
      printf ("Could not allocate memory.\n");  
      exit(0);  
   }  
  
   /* Store a string in the allocated memory and print it */  
   strcpy (SharedMemory,  
      "The main NLM has accessed shared memory.");  
   printf ("%s\n",SharedMemory);  
     
   /* Let the other NLM know it is OK to access the   
      memory */  
   SharedMemoryFlag = 1;  
 
   /* Wait for the other NLM to access the memory */  
   while (SharedMemoryFlag)  
   ThreadSwitch();  
 

Threads Concepts 29



30 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
   /* Print the message stored by the other NLM */  
   printf ("%s\n",SharedMemory);  
   free (SharedMemory);  
}

The following directive file should be used to link the first NLM:

form novell nlm ’Example of Shared Memory between NLM applications’  
name     nlm1  
file     prelude,nlm1  
import   @clib.imp  
export   SharedMemoryFlag, SharedMemory

The following example shows the second NLM using the shared values set up by the first NLM:

A Second NLM Sharing Memory with the First

/*  —— SECOND NLM ——  *  
 * This NLM must be loaded after the first. Its     *  
 * .LNK file imports the two shared values.         *  
 *  —————-  */  
extern int SharedMemoryFlag = 0;  
extern char *SharedMemory;  
 
main()  
{  
   while (!SharedMemoryFlag)  
      ThreadSwitch();  
      strcpy (SharedMemory, "The second NLM has accessed shared
            memory.");  
    SharedMemoryFlag = 0;  
}

The following directive file should be used to link the second NLM:

form novell nlm ’Example of Shared Memory between NLM applications’  
name     nlm2  
file     prelude,nlm2  
import   @clib.imp, SharedMemoryFlag, SharedMemory

NOTE: For the NetWare® 4.x, 5.x, and 6.x OS, NLM applications can only share memory with 
modules that are loaded in the same domain (address space for NetWare 5.x and 6.x). For example 
NLMs loaded into OS address space can share memory among themselves, as can NLMs loaded into 
a protected address space. However, NLMs in the OS address space cannot share memory with 
NLMs loaded into a protected address space.

1.7.2  Thread Termination
Programming successfully for the thread termination process, especially CLIB threads, is discussed 
in Advanced NLM Tasks within the NDK: NLM Development Concepts, Tools, and Functions 
documentation.
hreads Management



novdocx (E
N

U
)  01 February 2006
1.7.3  Relinquishing Control
The NetWare 5.x and 6.x OS offers optional preemption for applications written to be preemptable 
and marked preemptive with MPKXDC.EXE. However, with previous versions of the NetWare OS 
that do not timeslice or preempt thread execution, the responsibility of relinquishing control falls to 
the thread itself. To relinquish control of the processor in nonpreempting NetWare versions, a thread 
can do one of the following:

Call a function that can relinquish control 
For example, if a thread calls printf, it can relinquish control because printf writes to a device. 
However, this method should not be used in a program that must be guaranteed that control is 
relinquished.
Functions that might block are identified in the function descriptions.

Call ThreadSwitch (page 122) 
ThreadSwitch passes control of the CPU to the OS, which then passes control to the next thread 
in the run queue. The calling thread is placed at the end of the run queue.

Call delay (page 56) or ThreadSwitchWithDelay (page 124) 
These functions suspend thread execution for a specified time (in milliseconds). 
ThreadSwitchWithDelay is can be used with the NetWare 4.x, 5.x, and 6.x OS, but it has been 
added to the 3.11 version of CLIB.

IMPORTANT: Threads that do busy waiting in NetWare 4.x, 5.x, and 6.x need to allow low 
priority threads to run. For this reason, these threads should call ThreadSwitchWithDelay, 
instead of ThreadSwitch. Low priority threads can only run when there are no threads waiting 
on the RunList, and ThreadSwitch places the threads that call it on the RunLIst. 
ThreadSwitchWithDelay places threads that call it on the DelayedList.

Call SuspendThread (page 119) 
The SuspendThread function puts a thread to sleep until it is awakened.

NOTE: A sleeping thread can be awakened only by calling ResumeThread (page 92) from 
another thread.

Call ThreadSwitchLowPriority (page 123) 
The ThreadSwitchLowPriority function suspends thread execution and places the thread in the 
Low-Priority Queue. This function can be used with the NetWare 4.x, 5.x, and 6.x OS, but it 
has not been added to the 3.11 version of CLIB.

Wait on an event 
The OS automatically puts to sleep any threads waiting on events. For example, if a thread 
waits in a semaphore queue, it relinquishes control.

IMPORTANT: Do not use this method when waiting to read a file from a disk. If the file is 
stored in cache memory, the thread does not have to wait and does not relinquish control.

One side effect of failing to relinquish control is that incoming client requests are still received by 
the server, but the packets cannot be processed. Thus, without acknowledgment of the request, the 
client connection eventually times out.
Threads Concepts 31



32 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
1.8  Context
The NetWare API maintains a context for each NLM that is running. The context is divided into 
three levels of scope: thread level context, thread group level context, and NLM level context. (The 
following figure illustrates the three levels of context.) Because this context is created using the 
functions found in CLIB.NLM, it is commonly known as CLIB context.

Figure 1-5   Levels of NLM Context

NOTE: An understanding of context is critical to NLM development. Many errors in NLM 
applications are caused by developers not understanding context and how it can change.

Threads created in one of the four ways described in Section 1.4, “Context and Thread Groups,” on 
page 16 have the CLIB thread level, group level, and NLM level context. These context levels 
contain different information that is changed by the NetWare API. The context information cannot 
be changed directly by the programmer.
hreads Management



novdocx (E
N

U
)  01 February 2006
NOTE: A fifth way to create threads is for the OS to create threads. These threads do not have CLIB 
context, and must be given CLIB context. This issue is discussed after the following discussion 
about the context levels.

1.8.1  Thread Level Context
Thread level context is the most private level of context information within an NLM; the context of 
each thread is available only to each thread. These values are separate for each thread. The data 
items of one thread cannot be referenced by another thread.

Threads maintain the following context:

asctime char string pointer 
This character string is only allocated if the asctime, asctime_r function is called. The asctime, 
asctime_r function returns a char *. (NDK: Program Management) 

critical section count 
This count contains the number of outstanding EnterCritSec calls against a thread.

ctime, ctime_r, gmtime, gmtime_r, and localtime, localtime_r tm structure pointer ( NDK: 
Program Management)  

The ctime, ctime_r, gmtime, gmtime_r, and localtime, localtime_r functions return a pointer to 
a tm structure. Each thread has its own tm structure. The tm structure is allocated only if one of 
these three functions is called.

errno 
Some functions set the errno return code to the last error code that was detected.

Last value from the function rand 
Each thread has its own seed value (to start or continue a sequence of random numbers). (See 
rand, rand_r (NDK: Program Management).)

NetWareErrno 
This error code is a NetWare specific error code. Some functions set both NetWareErrno 
and errno.

Stack 
This points to the block of memory BeginThread (page 47) allocated for the thread’s stack.

strtok pointer 
The strtok function maintains a pointer into the string being parsed (NDK: Program 
Management).

t_errno 
This error code is used by TLI functions.

Suspend count 
This count contains the number of outstanding SuspendThread calls against a thread.
Threads Concepts 33



34 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
1.8.2  Thread Group Level Context
All of the threads in a thread group share the same thread group level context. Any change that one 
thread makes to the value of a thread group data item affects all the threads in the group. The context 
of a thread group, however, is not shared with other thread groups, so changes within one thread 
group do not affect another group.

Thread groups maintain the following context:

Current connection 
The current connection number is described in Connection Number and Task Management 
Concepts (NDK: Connection, Message, and NCP Extensions).

Current screen 
The current screen is the target of screen I/O functions, as described in Screen Handling 
Concepts (NDK: NLM Development Concepts, Tools, and Functions).

Current task 
The current task number is described in Connection Number and Task Management Concepts 
(NDK: Connection, Message, and NCP Extensions).

CWD 
Current Working Directory (NDK: NLM Development Concepts, Tools, and Functions, as 
described in "OS Related Issues" in this documentation.

Signal settings 
Signal handler functions are set by signal. (The signal and raise functions are discussed in 
Signal Handling in NDK: NLM Development Concepts, Tools, and Functions.)

stdin, stdout, stderr 
These data items are the second-level standard I/O handles, as mentioned in Stream I/O 
Concepts (Single and Intra-File Services).

umask flags 
These flags are set by the umask (Multiple and Inter-File Services) function.

Current user 
The "current user" is the user context used by NDS™ functions (NetWare® 4.x, 5.x, and 6.x).

1.8.3  NLM Level Context
The NLM™ level context is shared by all thread groups and threads in the NLM, and these data 
items have only one value for the entire NLM. The data items are global to all the thread groups and 
threads in the NLM. Any changes made to the values of NLM global data items affect all the thread 
groups and threads in the NLM.

NLM applications maintain the following context on a per NLM basis:

"Active advertisers" 
Each NLM can have a set of "active advertisers" (started by AdvertiseService (NLM) 
(unsupported)).
hreads Management



novdocx (E
N

U
)  01 February 2006
argv array 
This is the argv array passed to main (page 83).

atexit (page 43), AtUnload (page 45) (which signal the SIGTERM handler) 
These functions register functions that are to be called when the NLM exits normally or is 
unloaded.

Libraries’ work areas pointers 
These are pointers to the data areas of any NLM libraries that the NLM has called, as described 
in Library Concepts (NDK: Program Management).

Locale settings 
These settings are used by the locale functions.

Open directories 
The set of directories (opened by opendir) the NLM has open.

Open IPX/SPX/SPX II sockets 
The set of IPX/SPX/SPX II sockets the NLM has open.

Open files 
The set of files the NLM has open. First-level open files include those opened with open, 
sopen, and creat. Second-level files include those opened with fopen, fdopen, and freopen 
(Single and Intra-File Services).

Open network semaphores 
The set of network semaphores (opened by NWOpenSemaphore (Single and Intra-File 
Services)) the NLM has open.

open screens 
The set of screens the NLM has open.

original command line 
A copy of the original command line when the NLM was started is saved (used by the getcmd 
function).

thread name 
This pattern is used for naming new threads (used by BeginThread and BeginThreadGroup).

1.8.4  Context Problems with OS Threads
There are two types of threads running in the NetWare® OS: OS threads (such as callbacks) and 
CLIB threads (those created by the CLIB.NLM functions). The OS threads are created by the OS in 
instances such as when the LOAD and the UNLOAD commands are used. CLIB threads are created 
by calling the NetWare API functions BeginThread, ScheduleWorkToDo, and BeginThreadGroup, 
Threads Concepts 35



36 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
and by a default thread starting at the main function. The following figure shows that OS threads are 
missing the context that CLIB threads have.

Figure 1-6   Context of OS and CLIB Threads

The problem here is that many-but not all-NetWare API functions need to have a context in order to 
work correctly. For example: printf writes to the calling thread’s current screen. The current screen 
is kept in the thread’s thread group context. OS threads do not have any CLIB context, so their calls 
to printf do not produce output anywhere. In more extreme cases, OS threads calling the NetWare 
API functions that need CLIB context can cause the server to abend.

NOTE: The solution to this problem is to give the OS threads context, thereby turning them into 
CLIB threads. The method for doing this is presented in the following section.

Developers must be aware of all the situations where NLMs will be running with OS threads instead 
of CLIB threads, and adjust their code accordingly to give the OS threads CLIB context. The 
following is a list of conditions where the NLM runs with OS threads:

• In the optional startup function that is specified with the "OPTION START" directive, when 
using the WLINK linker, or with the "START" directive for NLMLINK

• In the check function that is specified with the "OPTION CHECK" directive when using the 
WLINK linker, or with the "CHECK" directive for NLMLINK

• In the function registered with FERegisterNSPathParser (might not have the correct context) 
• In the library cleanup function set by RegisterLibrary

In the following conditions, threads might or might not have CLIB context, depending on the 
context specifier:

• In functions registered with RegisterForEvent
• In functions registered with ScheduleSleepAESProcessEvent
• In functions registered with ScheduleNoSleepAESProcessEvent
• In the function registered with RegisterConsoleCommand (see Adding Console Commands: 

Example.)
hreads Management



novdocx (E
N

U
)  01 February 2006
1.8.5  Context Solutions for OS Threads
Two solutions to these context problems are as follows:

NetWare 3.11, 4.x, 5.x, and 6.x solution: read group ID of one of the groups, such as for the 
default thread group created for the main (page 83) function. (You might also want to create a global 
variable for each of the thread groups that are created.) The thread group ID of the current thread 
group can be obtained with GetThreadGroupID (page 78), as shown in the following example:

#include <process.h>  
   int globalThreadGroupID;  
     
   main()  
   {  
      globalThreadGroupID = GetThreadGroupID();  
      ...  
   }

Then, when you have an OS thread running, you give the OS thread context using 
SetThreadGroupID as follows:

oldTGID = SetThreadGroupID(globalThreadGroupID); /* do work */  
... 
SetThreadGroupID(oldTGID); /* always set back the thread group ID */ 

At this point, the NetWare® API takes the OS thread and gives it context, just as if it had been a 
CLIB thread. This lets you use the NetWare API functions that need context.

IMPORTANT: You must be careful when using the thread group ID that other threads are using. 
Changes to the context affect all threads in that group.

NetWare 4.x, 5.x, and 6.x solution: CLIB threads in the NetWare 4.x, 5.x, and 6.x OS have been 
given a context specifier that gives these threads the ability to automatically give context to 
callbacks (OS threads that are registered to be called to run when specific conditions occur) that they 
register. The context that is given to the callbacks when they are registered is determined by the 
setting of the registering thread’s context specifier. The context specifier can be set to one of the 
following settings:

NO_CONTEXT 
Use this when you don’t want callbacks to be automatically registered with a CLIB context. 
The advantage here is that you avoid the overhead needed for setting up CLIB context. The 
disadvantage is that without the context, the callback is only able to call NetWare API functions 
that manipulate data or manage local semaphores.
Call SetThreadGroupID (page 108) and pass in a valid thread group ID. Use this once inside 
your callback to give your callback thread CLIB context.

USE_CURRENT_CONTEXT 
Use this to register callbacks to have the thread group context of the registering thread.

A valid thread group ID 
Use this when you want the callbacks to have a different thread group context than the thread 
that schedules them.
Threads Concepts 37



38 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
You can determine the existing setting of the registering thread’s context specifier by calling 
GetThreadContextSpecifier. Call SetThreadContextSpecifier to set a thread’s context specifier.

When a new thread is started with BeginThread, BeginThreadGroup, or ScheduleWorkToDo, its 
context specifier is set to USE_CURRENT_CONTEXT by default.

Using this solution, if you want the registered thread to have the thread group context of the 
registering thread, you would set the registering thread’s context specifier to 
USE_CURRENT_CONTEXT (if it has been changed from the default) and then register the 
function that will run as a callback.

NOTE: The drawback to using this solution is that the context specifier is specific to the NetWare 
4.x, 5.x, and 6.x OS. If you use this solution, your NLM will not run on the NetWare 3.11 OS.

1.9  Context and Development of Drivers, Stacks, 
etc.
Developing code for drivers, stacks, and similar low-lever funcionality requires you to use only 
functions that have no dependency on library context. If your code has this need, use only klib.imp 
to link into NDK interfaces. Functions of symbols thus imported are guaranteed to work in a classic 
NLM/CLib environment, in an NKS/LibC environment, or an a low-level environment that has no 
library context at all.
hreads Management



2
novdocx (E

N
U

)  01 February 2006
2Threads Functions

This documentation alphabetically lists the threads functions and describes their purpose, syntax, 
parameters, and return values.

• “abort” on page 41
• “atexit” on page 43
• “AtUnload” on page 45
• “BeginThread” on page 47
• “BeginThreadGroup” on page 49
• “Breakpoint” on page 52
• “ClearNLMDontUnloadFlag” on page 53
• “CloseLocalSemaphore” on page 55
• “delay” on page 56
• “EnterCritSec” on page 58
• “ExamineLocalSemaphore” on page 60
• “exit” on page 61
• “_exit” on page 62
• “ExitCritSec” on page 64
• “ExitThread” on page 65
• “FindNLMHandle” on page 67
• “getcmd” on page 68
• “getenv” on page 70
• “GetNLMHandle” on page 71
• “GetNLMID” on page 72
• “GetNLMIDFromNLMHandle” on page 73
• “GetNLMIDFromThreadID” on page 74
• “GetNLMNameFromNLMID” on page 76
• “GetThreadContextSpecifier” on page 77
• “GetThreadGroupID” on page 78
• “GetThreadHandicap” on page 79
• “GetThreadID” on page 80
• “GetThreadName” on page 81
• “longjmp” on page 82
• “main” on page 83
• “MapNLMIDToHandle” on page 85
• “NWSMPIsLoaded (obsolete 9/2001)” on page 86
• “NWThreadToMP (obsolete 9/2001)” on page 87
Threads Functions 39



40 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
• “NWThreadToNetWare (obsolete 9/2001)” on page 88
• “OpenLocalSemaphore” on page 89
• “raise” on page 90
• “RenameThread” on page 91
• “ResumeThread” on page 92
• “ReturnNLMVersionInfoFromFile” on page 94
• “ReturnNLMVersionInformation” on page 96
• “ScheduleWorkToDo” on page 98
• “setjmp” on page 101
• “SetNLMDontUnloadFlag” on page 102
• “SetNLMID” on page 104
• “SetThreadContextSpecifier” on page 106
• “SetThreadGroupID” on page 108
• “SetThreadHandicap” on page 110
• “signal” on page 111
• “SignalLocalSemaphore” on page 114
• “spawnlp, spawnvp” on page 115
• “SuspendThread” on page 119
• “system” on page 120
• “ThreadSwitch” on page 122
• “ThreadSwitchLowPriority” on page 123
• “ThreadSwitchWithDelay” on page 124
• “TimedWaitOnLocalSemaphore” on page 125
• “WaitOnLocalSemaphore” on page 126
hreads Management



novdocx (E
N

U
)  01 February 2006
abort
Terminates an NLM™ application abnormally

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <assert.h> 
#include <nwthread.h> 
#include <stdlib.h>  
 
void abort  (void); 

Return Values
None

Remarks
This function causes the NLM to be terminated abnormally. It writes the following termination 
message to the System Console Screen: 

 ABNORMAL NLM TERMINATION in: NLMname 

The abort function then raises SIGABRT and calls _exit (3).

The following sequence of events occurs when the NLM is terminated abnormally: 

• All threads in the NLM are destroyed. 
• Cleanup routines are called for any libraries that have registered cleanup routines and that the 

NLM has called. (For more information, see Library Concepts (NDK: Program Management).) 
• All screens are closed. 
• All first-level files (opened with open, sopen, create), including UNIX STREAMS, and also 

including files opened as a result of second-level I/O (opened with fopen, fdopen, freopen), are 
closed; however, the buffers of these are not flushed. 

• All open directories are closed. 
• All service advertising (started by AdvertiseService) is terminated.
• All memory allocated by the NLM is freed. 
• The NLM is unloaded. 

See Also
exit (page 61), _exit (page 62), ExitThread (page 65), raise (page 90)
Threads Functions 41



42 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Example
#include <assert.h> 
#include <nwthread.h> 
#include <stdlib.h>  
#include <nwconio.h>  
 
main()  
{  
   printf("this should print\r\n");  
   getch();  
   abort();  
   printf("this should not print\r\n");  
   getch();  
} 
hreads Management



novdocx (E
N

U
)  01 February 2006
atexit
(Designed for drivers) Creates a list of functions that are executed on a "last-in, first-out" basis when 
the NLM exits normally or is unloaded

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <nwthread.h>  
#include <stdlib.h> 
 
int  atexit  (  
   void   (* func) (void));

Parameters
func 

(IN) Points to the function to be registered as an exit function.

Return Values
The following table lists return values and descriptions.

Remarks

WARNING: The atexit function is designed to be used by drivers. Do not use it as an NLM cleanup 
routine. A server abend may result for this reason:

CLIB context does not exist for a thread that is running an atexit or AtUnload routine, since all NLM 
thread groups have been destroyed by the time these functions are called. Thus any saved thread 
group ID is invalid, and neither atexit nor AtUnload routines can use SetThreadGroupID to establish 
CLIB context for the thread. They therefore also cannot use NetWare API functions that require 
thread group or thread level context.

It is wise programing practice to have one exit point for a program, which could be the cleanup 
routine for the NLM. The "Remarks" section of AtUnload (page 45) gives suggestions for 
developing a cleanup routine to be executed when an NLM is manually unloaded. The same routine 
can be used when exit is called from your program.

Value Hex Name Description

0 (0x00) ESUCCESS Registration was successful.

-1 EFAILURE Registration failed (32 functions are already registered). 
Threads Functions 43



44 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
The atexit function is called when an NLM is terminated normally.

Successive calls to atexit create a list of functions that are executed on a "last-in, first-out" basis 
when: 

• The NLM calls exit. 
• The NLM calls ExitThread and it causes the NLM to be terminated. 
• The last thread in the NLM returns from its original function. 
• The NLM is unloaded with the UNLOAD command. 

No more than 32 functions can be registered with atexit. The functions have no parameters and do 
not return values. Such functions can use only NLM (OS) level context.

See Using atexit() functions: Example (NDK: Sample Code).

See Also
AtUnload (page 45), exit (page 61), _exit (page 62), ExitThread (page 65)
hreads Management



novdocx (E
N

U
)  01 February 2006
AtUnload
(Designed for drivers) Registers a function that is called if the NLM is unloaded with the UNLOAD 
command

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int AtUnload  (  
   void   (*func) (void)); 

Parameters
func 

(IN) Points to the function to be registered. 

Return Values
The following table lists return values and descriptions.

Remarks

WARNING: AtUnload was designed for use with drivers when an NLM is unloaded with the 
UNLOAD command. Do not use it as a cleanup routine for NLM applications. CLIB context does 
not exist for a thread that is running an atexit or AtUnload routine, and a server abend may result.

The cleanup routine to be run at NLM unload time should be registered as a signal handler using 
signal with the condition SIGTERM. This signal handler can use the thread group ID from the main 
NLM to switch to a CLIB context, allowing it to call any CLIB function. Ensure that the signal 
handler routine always restores the original thread group ID before exiting. Also take care that the 
main NLM does not exit before the signal handler exits. You can do this with a global variable 
modified by the signal handler, which is monitored by the main NLM before exiting (see 
GetThreadGroupID (page 78) and SetThreadGroupID (page 108)).

The AtUnload function is passed the address of a function to be called when the NLM is unloaded. 
Such functions can use only NLM (OS) level context.

Value Hex Name Description

0 (0x00) ESUCCESS Registration was successful.

–1 EFAILURE Function was already registered.
Threads Functions 45



46 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Only one function can be registered with AtUnload. 

See Using AtUnload() functions: Example (NDK: Sample Code).

See Also
atexit (page 43), exit (page 61), _exit (page 62), ExitThread (page 65)
hreads Management



novdocx (E
N

U
)  01 February 2006
BeginThread
Initiates a new thread of execution within the current thread group

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int BeginThread  (  
   void       (*func) (void *),  
   void       *stack,   
   unsigned    stackSize,   
   void       *arg); 

Parameters
func 

(IN) Points to the function to execute as the new thread. 

stack  
(IN) Points to a block of memory to use for the new thread’s stack. 

stackSize  
(IN) Specifies the size (in bytes) of the stack.

arg  
(IN) Points to an argument to be passed to the new thread. 

Return Values
This function returns the new thread’s ID if successful. It returns EFAILURE if an error occurs. 

If an error occurs, errno is set to: 

Value Name Description

5 ENOMEM Not enough memory. 

9 EINVAL Invalid argument was passed in. 
Threads Functions 47



48 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Remarks
The new thread begins execution at the specified function ( func). The function func receives 
arg as a parameter. The stack parameter is a pointer to a block of memory that the new thread 
uses as its stack. 

• If stack is NULL, a block of memory (as specified by the stackSize parameter) is 
allocated.

• If stack is NULL and the specified stack size is too small, the size for the new thread stack is 
increased automatically. 

• If stack is not NULL and the specified stack size is too small, the function fails and errno is 
set to EINVAL. The minimum stack size for the 3.x OS is 2,064 bytes and 16,384 bytes for the 
NetWare 4.x, 5.x, and 6.x OS. 

• If stackSize is zero and stack is NULL, then the default stack size (8,192 bytes for 3.x or 
16,384 bytes for 4.x, 5.x, and 6.x) is used.

The arg parameter is any 32-bit quantity, although typically some sort of pointer is passed, or 
NULL is passed if the specified function does not take any arguments. 

If the newly created thread returns from the function func, it is be equivalent to its having executed 
the ExitThread function with an action code of EXIT_THREAD. 

To begin a thread in a new thread group, call BeginThreadGroup. 

See Also
BeginThreadGroup (page 49), ExitThread (page 65)

Example
#include <nwthread.h>  
 
void newThreadFunc (char *funcArg);  
int      completionCode;  
.  
.  
.  
completionCode = BeginThread (newThreadFunc, NULL, 8192, /A/Q
     "input.fil");  
.  
.  
.  
void newThreadFunc (char *arg)  
{  
   printf ("in new thread\n");  
} 
hreads Management



novdocx (E
N

U
)  01 February 2006
BeginThreadGroup
Establishes a new thread within a new thread group

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int BeginThreadGroup  (  
   void       (*func) (void*),  
   void       *stack,   
   unsigned    stackSize,   
   void       *arg); 

Parameters
func 

(IN) Points to the function to execute as the new thread. 

stack  
(IN) Points to a block of memory to use for the new thread’s stack. 

stackSize  
(IN) Specifies the size (in bytes) of the stack.

arg  
(IN) Points to an argument to be passed to the new thread. 

Return Values
This function returns the new thread group’s ID if successful. It returns EFAILURE if an error 
occurs. 

If an error occurs, errno is set to: 

Value Name Description

5 ENOMEM Not enough memory. 

9 EINVAL Invalid argument was passed in. 
Threads Functions 49



50 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Remarks
The BeginThreadGroup function creates a new thread group which contains one thread defined by 
func. Other than putting the new thread in its own thread group, this function is identical to 
BeginThread. A thread group can consist of one or more threads as defined by the programmer, and 
an NLM can have more than one thread group.

The new thread group is not the current thread group. To create more threads within the new thread 
group, you must make the new thread group current by calling SetThreadGroupID with the thread 
group ID returned by BeginThreadGroup. You can then create more threads within the new thread 
group by calling BeginThread for each additional thread for the new thread group. 

The new thread begins execution at the specified function ( func). The function func receives 
arg as a parameter. The stack parameter is a pointer to a block of memory that the new thread 
uses as its stack. 

• If stack is NULL, a block of memory (as specified by the stackSize parameter) is 
allocated.

• If stack is NULL and the specified stack size is too small, the size for the new thread stack is 
increased automatically. 

• If stack is not NULL and the specified stack size is too small, the function fails and errno is 
set to EINVAL. The minimum stack size for the 3.x OS is 2,064 bytes and 8,192 bytes for the 
4.x, 5.x, and 6.x OS. 

• If stackSize is zero and stack is NULL, then the default stack size (8,192 bytes for 3.x and 
for 4.x, 5.x, and 6.x) is used.

The arg parameter is any 32-bit quantity, although typically some sort of pointer is passed, or 
NULL is passed if the specified function does not take any arguments. 

If the newly created thread returns from the function func, it is be equivalent to its having executed 
the ExitThread function with an action code of EXIT_THREAD. 

See Also
BeginThread (page 47)

Example
#include <nwthread.h>  
#include <stdio.h>  
 
void newThreadFunc (char *funcArg);  
int   completionCode;  
.  
.  
.  
completionCode = BeginThreadGroup (newThreadFunc, NULL, 8192, "/A/Q
    input.fil");  
.  
.  
.  
void newThreadFunc(char *arg)  
hreads Management



novdocx (E
N

U
)  01 February 2006
{  
   printf ("in new thread group\n");  
} 
Threads Functions 51



52 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Breakpoint
Suspends the execution of an NLM and causes a break into the NetWare Internal Debugger

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
void Breakpoint  (  
   int   breakFlag); 

Parameters
breakFlag 

(IN) Specifies whether or not to take a breakpoint.

Return Values
None

Remarks
This function causes a breakpoint in the program if breakFlag is nonzero. The breakpoint occurs 
at the instruction following the call to Breakpoint. The breakFlag parameter can be any nonzero 
value to cause a breakpoint. The breakFlag value is loaded into the EDI register.

NOTE: If your application relies on the EDI register, you should not call Breakpoint with a nonzero 
value. Rather, call EnterDebugger, which merely enters the system debugger.
hreads Management



novdocx (E
N

U
)  01 February 2006
ClearNLMDontUnloadFlag
Sets a flag in the header of an NLM to allow it to be unloaded with the UNLOAD command at the 
system console

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ClearNLMDontUnloadFlag  (  
   int   NLMID); 

Parameters
NLMID 

(IN) Specifies the ID of the NLM that is to be made so it can be unloaded from the system 
console. This ID can be obtained from the GetNLMID function.

Return Values
The following table lists return values and descriptions.

Remarks
This function reverses the effects of the SetNLMDontUnloadFlag function.

If SetNLMDontUnloadFlag is called, the NLM cannot be unloaded until 
ClearNLMDontUnloadFlag is called. 

For more information unloading NLM applications, see CHECK Function (NDK: NLM 
Development Concepts, Tools, and Functions).

See Also
SetNLMDontUnloadFlag (page 102), GetNLMID (page 72)

Value Hex Name Description

–1 EFAILURE NLMID was an invalid NLM ID. 

0 (0x00) ESUCCESS The don’t unload flag has been set. 
Threads Functions 53



54 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Example
See example for SetNLMDontUnloadFlag (page 102).
hreads Management



novdocx (E
N

U
)  01 February 2006
CloseLocalSemaphore
Closes a local semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
int CloseLocalSemaphore  (  
   LONG   semaphoreHandle); 

Parameters
semaphoreHandle 

(IN) Specifies the semaphore handle of an open semaphore.

Return Values
The following table lists return values and descriptions.

WARNING: A bad semaphore handle causes the server to abend. 

Remarks
This function closes an open semaphore and makes any threads waiting on the semaphore runnable. 
After this function is called, the semaphore handle is no longer valid and should not be used again.

See Also
ExamineLocalSemaphore (page 60), OpenLocalSemaphore (page 89), SignalLocalSemaphore 
(page 114), TimedWaitOnLocalSemaphore (page 125), WaitOnLocalSemaphore (page 126)

Value Hex Name

0 (0x00) ESUCCESS 
Threads Functions 55



56 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
delay
Suspends execution for an interval (milliseconds)

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
void delay  (  
   unsigned   milliseconds); 

Parameters
milliseconds 

(IN) Specifies the number of milliseconds the calling thread is to be delayed. 

Return Values
This function returns no value. If an error occurs, errno is set to: 

Remarks
The delay function puts the calling thread to sleep for the number of milliseconds specified by the 
milliseconds parameter, rounded up to the next system clock tick.

NOTE: In practical application, the thread is delayed until it regains control of the processor, which 
might be considerably longer than the specified number of milliseconds.

A thread blocked on delay can be restarted (that is, delay can be cancelled) by calling 
ResumeThread. 

See Also
EnterCritSec (page 58), SuspendThread (page 119), ThreadSwitch (page 122)

Value Name Description

–1 ENOMEM Not enough memory. 
hreads Management



novdocx (E
N

U
)  01 February 2006
Example
#include <nwthread.h>  
#include <stdio.h>  
#include <nwconio.h>  
 
main()  
{  
   printf("start");  
   delay(10000);  
   printf("end");  
   getch();  
} 
Threads Functions 57



58 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
EnterCritSec
Prevents all other threads in the NLM from being scheduled

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int EnterCritSec  (void); 

Return Values
The following table lists return values and descriptions.

Remarks
The EnterCritSec function suspends all the other threads in the NLM. 

After executing EnterCritSec, the current thread runs exclusively until it calls ExitCritSec. The 
ExitCritSec function makes the other threads in the NLM runnable again. 

EnterCritSec and ExitCritSec can be nested. EnterCritSec maintains a count of the number of 
outstanding EnterCritSec requests. The count is increased with each call to EnterCritSec and 
decreased with each call to ExitCritSec. To restore normal thread dispatching ExitCritSec must be 
called once for each call to EnterCritSec.

The maximum number of concurrent critical sections is 4 billion.

Since NetWare 3.x, 4.x, 5.x, and 6.x are nonpreemptive operating systems, NLM applications very 
rarely need to use this function. The only time it is needed is when a critical section of code calls a 
function which might relinquish control. 

Additionally, use of the EnterCritSec function should be avoided in favor of using locks or 
semaphores.

NOTE: If a new thread is started while the NLM is in a critical section, the new thread is also in the 
critical section. If the new thread is started after a call to EnterCritSec but before a corresponding 
call to ExitCritSec, the new thread is immdeately suspended.

Value Hex Name Description

0 (0x00) ESUCCESS Threads were suspended in a critical section. 
hreads Management



novdocx (E
N

U
)  01 February 2006
See Also
ExitCritSec (page 64)
Threads Functions 59



60 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ExamineLocalSemaphore
Returns the current value of a local semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
int ExamineLocalSemaphore  (  
   LONG   semaphoreHandle); 

Parameters
semaphoreHandle 

(IN) Specifies the semaphore handle of an open semaphore.

Return Values
If successful, this function returns the current value of a semaphore. 

WARNING: If a bad semaphore handle is specified, the server abends.

Remarks
This function returns the current value of a semaphore. The semaphore value is decremented for 
each WaitOnLocalSemaphore and incremented for each SignalLocalSemaphore. A positive 
semaphore value indicates that the thread can access the associated resource. If the semaphore value 
is zero or negative, the thread must either enter a waiting queue by calling the function 
WaitOnLocalSemaphore, or temporarily abandon its attempt to access the resource. 

A semaphore handle is obtained by calling OpenLocalSemaphore. 

See Also
CloseLocalSemaphore (page 55), OpenLocalSemaphore (page 89), SignalLocalSemaphore 
(page 114), TimedWaitOnLocalSemaphore (page 125), WaitOnLocalSemaphore (page 126)
hreads Management



novdocx (E
N

U
)  01 February 2006
exit
Causes the NLM to terminate normally

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <nwthread.h> 
#include <stdlib.h> 
#include <unistd.h> 
  
void exit  (  
   int   status); 

Parameters
status 

(IN) Specifies the NLM’s return code. (Currently, the status is ignored.) 

Return Values
None

Remarks
The exit function causes a normal termination consisting of the following sequence of events:

• All threads in the NLM are destroyed. 
• This function calls the atexit functions, which are executed in "last-in, first-out" order. 
• Cleanup routines are called for any libraries that have registered cleanup routines and that the 

NLM has called. (For more information, see Library Concepts (NDK: Program Management).) 
• I/O buffers are flushed, and all second-level files (opened with fopen, fdopen, freopen) are 

closed. Any files created by tmpfile are deleted and purged. 
• All screens are closed. 
• All remote sessions are terminated. 
• All other resources allocated by the NLM are freed.
• The NLM is unloaded. 

See Also
abort (page 41), atexit (page 43), _exit (page 62), ExitThread (page 65), RegisterLibrary (NDK: 
Program Management)
Threads Functions 61



62 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
_exit
Terminates the NLM without executing atexit functions or flushing buffers

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Thread

Syntax
#include <nwthread.h>  
 
void _exit  (  
   int   status); 

Parameters
status 

(IN) Specifies the NLM’s return code (currently, the status is ignored.) 

Return Values
None. 

Remarks
The _exit function causes a normal termination consisting of the following sequence of events: 

• All threads in the NLM are destroyed. 
• Cleanup routines are called for any libraries that have registered cleanup routines and that the 

NLM has called. (For more information, see Library Concepts (NDK: Program Management).) 
• All second-level files (opened with fopen, fdopen, freopen) are closed; however, the buffers of 

these are not flushed. Any files created by tmpfile are deleted and purged.
• All screens are closed. 
• All remote sessions are terminated. 
• All other resources allocated by the NLM are freed.
• The NLM is unloaded. 

See Also
abort (page 41), exit (page 61), ExitThread (page 65), RegisterLibrary (NDK: Program 
Management)
hreads Management



novdocx (E
N

U
)  01 February 2006
Example
#include <nwthread.h>  
#include <stdio.h>  
 
int main (int argc, char **argv)  
{  
   FILE *fp;  
   atexit (myFunction);         /* myFunction declared elsewhere */  
   fp = fopen (argv[1], "r");  
   if (fp == NULL)  
   {  
      fprintf (stderr, Unable to open ’%s’\n, argv[1]);  
      _exit (1);  
   }  
   fclose (fp);  
   exit (0);  
} 
Threads Functions 63



64 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ExitCritSec
Allows other threads in the NLM to run

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ExitCritSec  (void); 

Return Values
The following table lists return values and descriptions.

Remarks
The ExitCritSec function reverses the effect of the EnterCritSec function. 

NOTE: If a thread is created (with BeginThread or BeginThreadGroup) while the NLM is in a 
critical section, ExitCritSec returns EWRNGKND, but still releases threads suspended by 
EnterCritSec.

See Also
EnterCritSec (page 58), ResumeThread (page 92)

Value Hex Name Description

0 (0x00) ESUCCESS Threads suspended by EnterCritSec are released to 
resume. 

19 EWRNGKND One or more threads in the NLM were not in a critical 
section. 
hreads Management



novdocx (E
N

U
)  01 February 2006
ExitThread
Terminates either the current thread or the NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h> 
  
void ExitThread  (  
   int   action_code,   
   int   status); 

Parameters
action_code 

(IN) Specifies action code: 
TSR_THREAD (-1)-Terminate only the current thread. 
EXIT_THREAD (0)-Terminate the current thread; if the current thread is also the last thread, 
terminate the NLM. 
EXIT_NLM (1)-Terminate the entire NLM. 

status  
(IN) Specifies the return code of the NLM (currently, the status is ignored). 

Return Values
None

Remarks
The action code determines whether to destroy the current thread or the NLM: 

• Action code TSR_THREAD terminates only the current thread and should only be used in 
NLM applications that are libraries (that is, they export symbols).

• Action code EXIT_THREAD is used to terminate the current thread. If the current thread is 
also the only thread of the NLM, the NLM itself is terminated. 

• Action code EXIT_NLM is equivalent to the exit function. 

The ExitThread function causes a normal NLM termination consisting of the following sequence of 
events: 

• All threads in the NLM are destroyed. 
Threads Functions 65



66 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
• This function calls the atexit functions, which are executed in "last-in, first-out" order. 
• Cleanup routines are called for any libraries that have registered cleanup routines and that the 

NLM has called. (For more information, see Library Concepts (NDK: Program Management).) 
• I/O buffers are flushed, and all second-level files (opened with fopen, fdopen, freopen) are 

closed. Any files created by tmpfile are deleted and purged. 
• All screens are closed. 
• All remote sessions are terminated. 
• All other resources allocated by the NLM are freed.
• The NLM is unloaded. 

Executing the following statement 

   return (completionCode); 

from the function (including main) where a thread began is equivalent to the following: 

   ExitThread (EXIT_THREAD, completionCode); 

See Also
abort (page 41), exit (page 61), _exit (page 62), RegisterLibrary (NDK: Program Management)
hreads Management



novdocx (E
N

U
)  01 February 2006
FindNLMHandle
Returns the handle of a loaded NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
unsigned int FindNLMHandle  (  
   char   *moduleName); 

Parameters
moduleName 

(IN) Points to the full filename (including the extension) of the NLM whose handle is desired. 

Return Values
If the NLM is loaded, its handle is returned. Otherwise, NULL is returned. 

Remarks
This function searches the list of loaded NLM applications, comparing their names to the specified 
moduleName. If a match is found, the handle for that NLM is returned. 

See Also
GetNLMHandle (page 71)

Example
#include <nwthread.h>  
#include <stdio.h>  
 
unsigned int   moduleHandle;  
moduleHandle = FindNLMHandle ("TEST.NLM");  
if (moduleHandle == NULL)  
   printf ("This NLM is not loaded!\n"); 
Threads Functions 67



68 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
getcmd
Returns the command line parameters in their original format (unparsed), obtaining

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

Service: Thread

Syntax
#include <nwthread.h>  
 
char *getcmd  (  
   char   *originalCmdLine); 

Parameters
originalCmdLine 

(OUT) Points to a buffer into which to copy the command line parameters. 

Return Values
The address of originalCmdLine is returned if originalCmdLine is not NULL. Otherwise, 
the address of the system’s copy of the original command line is returned. 

Remarks
The getcmd function copies the command line, with the "load" command and the program name 
removed, into a buffer specified by originalCmdLine (if originalCmdLine is not NULL). 

If originalCmdLine is NULL, getcmd returns a pointer to the system’s copy of the original 
command line (without the "load" command or the program name). The system’s copy should not be 
written over. 

The information is terminated with a \0 character. This provides a method of obtaining the original 
parameters to a program unchanged (with the white space intact). 

This information can also be obtained by examining the argv vector of program parameters passed 
to the main function in the program. 

See Also
spawnlp, spawnvp (page 115)
hreads Management



novdocx (E
N

U
)  01 February 2006
Example
#include <stdio.h>  
#include <string.h>  
#include <nwthread.h>  
 
main()  
{  
   char   originalCmdLine[80];  
   char   cmdPtr;  
   getcmd(originalCmdLine)  
   printf("%s\n",originalCmdLine);  
   cmdPtr=getcmd(NULL);  
   printf("%s\n", cmdPtr);  
 
/*    If the load command is:  
   "load test param1 param2 param3"  
   The output is:  
   param1 param2 param3  
   param1 param2 param3  
*/  
} 
Threads Functions 69



70 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
getenv
Searches the environment area for the environment variable and returns the environment variable’s 
value (presently, environment variables are not supported)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <stdlib.h>  
 
char *getenv  (  
   const char   *varname); 

Parameters
varname 

(IN) Points to an environment variable. 

Return Values
This function returns a pointer to the string assigned to the environment variable if found, and 
NULL if no match was found. Currently, NULL is always returned. 

Remarks
The matching is case-insensitive; all lowercase letters are treated as if they were uppercase. 
hreads Management



novdocx (E
N

U
)  01 February 2006
GetNLMHandle
Returns the handle of the current NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
unsigned int GetNLMHandle  (void);

Return Values
Returns the handle of the current NLM.

Remarks
Ordinarily, the current NLM is the NLM that owns the currently running thread.

See impsymbl.c (../../../samplecode/clib_sample/nlm/impsymbl/impsymbl.c.html).

See Also
FindNLMHandle (page 67)
Threads Functions 71

../../../samplecode/clib_sample/nlm/impsymbl/impsymbl.c.html


72 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
GetNLMID
Returns the ID of the current NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetNLMID  (void); 

Return Values
This function returns the ID of the current NLM. 

Remarks
Ordinarily, the current NLM is the NLM that owns the currently running thread. The current NLM 
identifies which NLM owns any subsequently allocated resources. 

NOTE: The current NLM is usually the client even though the client might be executing a library’s 
code. 

See Also
SetNLMID (page 104)
hreads Management



novdocx (E
N

U
)  01 February 2006
GetNLMIDFromNLMHandle
Returns the ID of an NLM specified by its NLM handle

Local Servers: nonblocking

Remote Servers: N/A

Classification: 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetNLMIDFromNLMHandle  (
   int   NLMHandle); 

Parameters
NLMHandle 

(IN) Specifies the NLM handle of the NLM whose ID is to be returned

Return Values
The ID of an NLM whose NLM handle is passed in

Remarks
GetNLMIDFromNLMHandle is used to get the ID of an NLM (other than the current NLM) if its 
handle is already known. To get the ID of the currently running NLM, call GetNLMID (page 72).

See Also
GetNLMHandle (page 71), GetNLMIDFromThreadID (page 74), SetNLMID (page 104)
Threads Functions 73



74 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
GetNLMIDFromThreadID
Returns the ID of the NLM that the specified thread currently belongs to

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetNLMIDFromThreadID  (  
   int     threadID,   
   char   *fileName ); 

Parameters
threadID 

(IN) Specifies the ID of the thread. 

fileName  
(OUT) Points to the name of the file that the associated NLM was loaded from.

Return Values
If successful, GetNLMIDFromThreadID returns the ID of the NLM that the thread is associated 
with. On failure, it returns EFAILURE and errno is set to EBADHNDL. 

Remarks
An NLM, such as a library NLM, can take over ownership of another NLM’s threads by calling 
SetNLMID or SetThreadGroupID. However, an NLM must ensure that it owns all of its threads 
before unloading.

An NLM can keep track of the IDs of the threads it originates and can use 
GetNLMIDFromThreadID to determine if it still owns the threads. If at unload time, an NLM 
determines that it does not own its threads, the NLM must wait until ownership of the threads is 
returned to it. Then it can safely unload. 

GetNLMIDFromThreadID returns the NLM ID only for threads that have CLIB context. This 
function returns EFAILURE if passed the ID of a thread that is running as an OS thread. 

An example of an OS thread is a procedure scheduled with ScheduleSleepAESProcessEvent and 
with the registering thread’s context specifier set to NO_CONTEXT. The registered thread does not 
have CLIB context when it runs. 
hreads Management



novdocx (E
N

U
)  01 February 2006
NOTE: The interface to this function might change in the next release of the NetWare API to also 
return the name of the NLM. Currently, the name it returns is the name of the file that the NLM was 
loaded from. (An NLM can have a different name from its file name.) 

See Also
GetThreadID (page 80)
Threads Functions 75



76 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
GetNLMNameFromNLMID
Returns the name of a C Library NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetNLMNameFromNLMID  (  
   int     NLMID,   
   char   *NLMFileName,   
   char   *NLMName); 

Parameters
NLMID 

(IN) Specifies an NLM ID. 

NLMFileName  
(OUT) Points to the NLM filename used in the linker file. 

NLMName  
(OUT) Points to the descriptive name of the NLM.

Return Values
This function returns the NLM name. If an invalid NLM ID is passed, it returns a value of -1 and 
errno is set to EBADHNDL. 

Remarks
This function returns the long name (as it appears on the module listing) and the short name (as 
specified in the NAME directive in the linker directive file) of the NLM. For example, if you specify 
the ID for CLIB.NLM for the NLMID parameter, on return NLMFileName points to CLIB.NLM 
and NLMName  points to NLM.

See Also
MapNLMIDToHandle (page 85)
hreads Management



novdocx (E
N

U
)  01 February 2006
GetThreadContextSpecifier
Returns the CLIB context that is used by callback routines scheduled by the specified thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetThreadContextSpecifier  (  
   int   threadID); 

Parameters
threadID 

(IN) Specifies the ID of the thread whose context specifier you want to get. 

Return Values
The following table lists return values and descriptions.

Remarks
Many of the functions that are registered as callbacks run as OS threads. These threads need CLIB 
context to use the NetWare API functions. The function SetThreadContextSpecifier can be set to 
give these threads context when the callbacks are registered. This function lets you find out what 
those settings were. 

If additional callbacks are registered, their context run as part of the thread group that corresponds to 
the thread group ID that is returned by this function. 

See Also
SetThreadContextSpecifier (page 106)

Value Hex Name

-1 EFAILURE 

0 (0x00) NO_CONTEXT 

1 (0x01) USE_CURRENT_CONTEXT 

Other values are valid thread group IDs. 
Threads Functions 77



78 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
GetThreadGroupID
Returns the ID of the current thread group

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetThreadGroupID  (void); 

Return Values
This function returns the ID of the current thread group.

Remarks
Ordinarily, the current thread group is the thread group that the currently running thread belongs to. 
The current thread group identifies which thread group’s current connection, current task, current 
screen, and so on is active. (See Section 1.4, “Context and Thread Groups,” on page 16.)

See Also
SetThreadGroupID (page 108)
hreads Management



novdocx (E
N

U
)  01 February 2006
GetThreadHandicap
Gets the number of context switches a thread is delayed before being rescheduled

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
LONG GetThreadHandicap  (  
   int   threadID); 

Parameters
threadID 

(IN) Specifies a thread ID. 

Return Values
This function returns the current handicap for the specified thread. 

Remarks
A context switch is the task switching enacted by the OS when swapping the current thread. 

See Also
ThreadSwitchWithDelay (page 124)
Threads Functions 79



80 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
GetThreadID
Returns the thread ID of the currently executing thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetThreadID  (void); 

Return Values
The thread ID is returned. 

Remarks
This function is used to get a thread ID for those functions which require a thread ID. 

See Also
GetNLMID (page 72), GetThreadGroupID (page 78), SuspendThread (page 119)
hreads Management



novdocx (E
N

U
)  01 February 2006
GetThreadName
Returns the name of a C Library thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int GetThreadName  (  
   int     threadID,   
   char   *tName); 

Parameters
threadID 

(IN) Specifies a thread ID. 

tName  
(OUT) Points to the name of the thread. 

Return Values
This function returns the name of a thread. If an invalid thread ID is passed, it returns an 
EBADHNDL error. 

Remarks
This function returns the name of the specified C Library thread in tName. The tName parameter 
can hold up to 17+1 characters. 

See Also
GetThreadID (page 80), RenameThread (page 91)
Threads Functions 81



82 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
longjmp
Restores a saved environment

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <setjmp.h>  
 
void longjmp  (  
   jmp_buf   env,   
   int       value); 

Parameters
env 

(IN) Specifies the environment to be restored. 

value  
(IN) Specifies the value to return. 

Return Values
This function returns no value. 

Remarks
The longjmp function restores the environment saved by the most recent call to setjmp with the 
corresponding jmp_buf argument. After longjmp restores the environment, program execution 
continues as if the corresponding call to setjmp has just returned the value specified by value.

The setjmp function must be called before longjmp. The routine that called setjmp and set up env 
must still be active and cannot have returned before longjmp is called. If this happens, the results are 
unpredictable. If value is 0, the value returned is 1. 

See Also
setjmp (page 101)
hreads Management



novdocx (E
N

U
)  01 February 2006
main
A user-supplied function where NLM execution begins

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <nwthread.h>  
 
int main  (  
   int           argc,   
   const char   *argv []); 

int main  (void); 

void main  (  
   int           argc,   
   const char   *argv []); 

void main  (void); 

Parameters
argc 

(IN) Specifies the number of arguments on the command line. 

argv 
(IN) Points to the array of command line arguments pointers.

Syntax
The syntax for the main function can be any of the following:

Return Values
Currently, the return code from main is ignored. 

Remarks
The main function is a user-written function that is executed as the initial thread of the NLM. 

Prior to the main function receiving control, the _Prelude function (in PRELUDE.OBJ) does the 
following: 

• The current connection is set to 0 and a unique task number is allocated. 
Threads Functions 83



84 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
• A new screen is created. The screen name is the name specified by the linker directive 
SCREENNAME. If the screen name is not specified, the description text specified in the 
FORMAT directive is used as the screen name. If the screen name is "none," "default," or 
"System Console," no new screen is created. 

• A new thread is started with the specified stack size. If no stack size is specified, then the 
default stack size (8192 bytes) is used. 

• The thread’s name is the name specified by the linker directive THREADNAME. The thread 
name can be up to 16 characters long. The first thread name is generated by appending "0" to 
the specified thread name, the second by appending "1", and so on. If the thread name is not 
specified, the name specified with the linker directive NAME (with .NLM appended) is used as 
the pattern for generating thread names. 

• If the main function returns with a return code of rc, it is equivalent to its executing ExitThread 
(EXIT_THREAD, rc). See the discussion of the ExitThread function. 

• The command line to the program is assumed to be a sequence of tokens separated by blanks. 
The tokens are passed to the main function as an array of pointers to character strings in the 
argv parameter. The first element of argv is a pointer to a character string containing the 
program name, including the full path. The last element of the array pointed to by argv is a 
NULL pointer ( argv[argc] is NULL). Arguments that contain blanks can be passed to the 
main function by enclosing them within double quote characters (which are removed from that 
element in the argv vector). 

The command line can also be obtained in its original format by using the getcmd function.

See Also
abort (page 41), _exit (page 62), exit (page 61), ExitThread (page 65)

Example
#include <nwthread.h>  
 
int main (int argc, char *argv[])  
{  
   /* Do the work */  
   .  
   .  
   .  
   /* Terminate thread and NLM */  
   return 0;  
} 
hreads Management



novdocx (E
N

U
)  01 February 2006
MapNLMIDToHandle
Returns the handle associated with the NLM ID

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int MapNLMIDToHandle  (  
   int   NLMID); 

Parameters
NLMID 

(IN) Specifies an NLM ID (C Library structure).

Return Values
This function returns the handle associated with the specified NLM ID. It returns a value of -1 if an 
invalid NLM ID was passed. 

Remarks
This function can be used in registered LOAD and UNLOAD event handlers to compare known C 
Library NLM IDs with the NLM handle that the event handler function is passed with. 

See Also
FindNLMHandle (page 67), GetNLMID (page 72), RegisterForEvent (NDK: NLM Development 
Concepts, Tools, and Functions)
Threads Functions 85



86 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
NWSMPIsLoaded (obsolete 9/2001)
Returns whether the SMP kernel is loaded but is now obsolete.

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x and above SMP

Service: Thread

Syntax
#include <nwsmp.h>  
 
int NWSMPIsLoaded  (  
   void); 

Return Values
The following table lists return values and descriptions.

Remarks
The SMP kernel is loaded by loading smp.nlm in the startup.ncf file of a NetWare 4.x, 5.x, and 6.x 
server.

The value returned by NWSMPIsLoaded is not an indicator that more than one processor has been 
brought online. It is only an indicator the kernel is loaded.

MPDRIVER.NLM must be loaded in order to have multiple processors available to the SMP kernel.

TRUE Returned if the SMP kernel is loaded

FALSE Returned if the SMP kernel is not loaded
hreads Management



novdocx (E
N

U
)  01 February 2006
NWThreadToMP (obsolete 9/2001)
Migrates a NetWare thread from the Netware kernel to the SMP kernel but is now obsolete

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x and above SMP

Service: Thread

Syntax
#include <nwsmp.h>  
 
void NWThreadToMP  (  
   void); 

Return Values
None

Remarks
NWThreadToMP takes the currently running thread that was created by BeginThread, 
BeginThreadGroup, or ScheduleWorkToDo and migrates it to the SMP kernel. The SMP kernel then 
owns the thread scheduling and state context switches for that thread.

A thread migrated to the SMP kernel is still capable of having a CLib context. You can use the same 
CLib context functions to manipulate the CLib context.

Should an SMP thread call NWThreadToMP, the thread remains an SMP thread.

NWThreadToMP is exported by THREADS.NLM of the CLib suite.

See Also
NWThreadToNetWare (obsolete 9/2001) (page 88)
Threads Functions 87



88 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
NWThreadToNetWare (obsolete 9/2001)
Migrates an SMP thread managed by the SMP kernel to the NetWare kernel as a NetWare thread but 
is now obsolete

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x and above SMP

Service: Thread

Syntax
#include <nwsmp.h>  
 
void NWThreadToNetWare  (  
   void); 

Return Values
None

Remarks
NWThreadToNetWare takes a thread previously migrated to the SMP kernel, and puts it back on the 
NetWare kernel as a NetWare thread on the end of the run queue. A NetWare thread that calls 
NWThreadToNetWare will remain on the NetWare run queue.

NWThreadToNetWare is exported by THREADS.NLM of the CLib suite.

SMP threads are created by first creating a NetWare thread by calling BeginThread, 
BeginThreadGroup, or ScheduleWorkToDo and then migrating the thread to the SMP kernel by 
calling NWThreadToMP.

See Also
NWThreadToMP (obsolete 9/2001) (page 87)
hreads Management



novdocx (E
N

U
)  01 February 2006
OpenLocalSemaphore
Allocates a local semaphore and gives the NLM access to it

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
LONG OpenLocalSemaphore  (  
   LONG   initialValue); 

Parameters
initialValue 

(IN) Specifies the value to assign the semaphore.

Return Values
If successful, returns a semaphore handle. On failure, returns zero.

Remarks
This function creates and initializes the semaphore to initialValue. The initialValue 
parameter indicates the number of threads that can access the resource at a time. A call to 
SignalLocalSemaphore increments this value. A call to WaitOnLocalSemaphore decrements this 
value. 

WARNING: Developers must make sure to close local semaphores that are opened in an NLM 
because they are not automatically closed when an NLM unloads. If a local semaphore is opened but 
not closed before the NLM unloads, the server abends. 

See Also
CloseLocalSemaphore (page 55), ExamineLocalSemaphore (page 60), SignalLocalSemaphore 
(page 114), TimedWaitOnLocalSemaphore (page 125), WaitOnLocalSemaphore (page 126)
Threads Functions 89



90 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
raise
Sends a signal to the executing program

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <signal.h>  
 
int raise  (  
   int   condition); 

Parameters
condition 

(IN) Specifies the condition for which to raise a signal. 

Return Values
This function returns a value of 0 when the condition is successfully raised and a nonzero value 
otherwise. 

Remarks
The raise function signals the exception condition indicated by the condition parameter. The 
signal function can be used to specify the action to take place when a signal is raised. See the 
discussion of the signal function for a list of the possible conditions. 

There can be no return of control following a call to the raise function if the action for that condition 
is to terminate the program or to transfer control using longjmp . 

See Also
longjmp (page 82), signal (page 111)
hreads Management



novdocx (E
N

U
)  01 February 2006
RenameThread
Renames a C Library thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h> 
  
int RenameThread  (  
   int     threadID,   
   char   *newName); 

Parameters
threadID 

(IN) Specifies a thread ID. 

newName  
(IN) Points to the new thread name. 

Return Values
This function returns ESUCCESS if it completes successfully. It returns EBADHNDL if an invalid 
thread ID is passed. 

Remarks
This function renames a C Library thread. The new name can be up to 17 characters long. 
Threads Functions 91



92 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ResumeThread
Allows a previously suspended thread to run

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ResumeThread  (  
   int   threadID); 

Parameters
threadID 

(IN) Specifies the ID of the thread to be resumed.

Return Values
The following table lists return values and descriptions.

Remarks
The ResumeThread function reverses the effect of SuspendThread.

IMPORTANT: Your application must be aware of how its threads are suspended and must call 
ResumeThread only when it is appropriate. For example, if your application suspends a thread, it is 
appropriate for your application to resume the thread. However, it is not appropriate for your 
application to call ResumeThread for one of its threads that has been suspended by the OS, while the 
thread is running in OS code. Calling ResumeThread at an inappropriate time will cause 
unpredictable behavior.

Value Hex Name Description

0 (0x00) ESUCCESS Thread was resumed. 

9 EINVAL Thread tried to resume itself. 

19 EWRNGKND Thread was not suspended.

22 (0x16) EBADHNDL Bad thread ID was passed in. 
hreads Management



novdocx (E
N

U
)  01 February 2006
See Also
ExitCritSec (page 64), SuspendThread (page 119)
Threads Functions 93



94 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ReturnNLMVersionInfoFromFile
Returns version information for a loaded NLM that corresponds to a specified file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ReturnNLMVersionInfoFromFile  (  
   BYTE   *__pathName  
   LONG   *majorVersion,   
   LONG   *minorVersion,   
   LONG   *revision,   
   LONG   *year,   
   LONG   *month,   
   LONG   *day,   
   BYTE   *copyrightString  
   BYTE   *description); 

Parameters
__pathName 

(IN) Points to the path to the NLM file whose version information is to be returned. 

majorVersion  
(OUT) Points to the major version number of the NLM. 

minorVersion  
(OUT) Points to the minor version number of the NLM. 

revision  
(OUT) Points to the revision number of the NLM.

year  
(OUT) Points to the number of the year that the NLM was created. 

month  
(OUT) Points to the number of the month that the NLM was created. 

day  
(OUT) Points to the number of the day that the NLM was created. 

copyrightString 
hreads Management



novdocx (E
N

U
)  01 February 2006
(OUT) Points to a buffer that receives an ASCIIZ string containing the copyright string of the 
NLM. Buffer size should be 256 bytes.

description  
(OUT) Points to a buffer that receives an ASCIIZ string containing the name that is displayed 
when the NLM is loaded. Buffer size should be 128 bytes.

Return Values
The following table lists return values and descriptions.

Remarks
While __pathName must be supplied, the other parameters can be set to NULL if you do not want 
the information they return. 

The NLM specified by __pathName does not need to be running for this function to retrieve its 
information.

The information for majorVersion, minorVersion, revision, copyrightString, and  
description  are set with linker options when the NLM applications are linked. For more 
information about the linker options, see Using a Linker.

The buffer description points to should be at least 128 bytes. 

For the NetWare 3.11 OS, this function was made available in CLIB.NLM, version 3.11b. 

See Also
MapNLMIDToHandle (page 85), FindNLMHandle (page 67), ReturnNLMVersionInformation 
(page 96)

Value Name Description

–1 EFAILURE An invalid NLM handle was specified. 

0 ESUCCES 
Threads Functions 95



96 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ReturnNLMVersionInformation
Returns version information for a loaded NLM that corresponds a specified NLM handle

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ReturnNLMVersionInformation  (  
   int     NLMHandle,   
   LONG   *majorVersion,   
   LONG   *minorVersion,   
   LONG   *revision,   
   LONG   *year,   
   LONG   *month,   
   LONG   *day,   
   BYTE   *copyrightString,   
   BYTE   *description); 

Parameters
NLMHandle 

(IN) Specifies the handle of the NLM for which to return version information. This handle can 
be obtained by calling FindNLMHandle or MapNLMIDToHandle. 

majorVersion 
(OUT) Points to the major version number of the NLM. 

minorVersion 
(OUT) Points to the minor version number of the NLM. 

revision 
(OUT) Points to the revision number of the NLM.

year 
(OUT) Points to the number of the year that the NLM was created. 

month 
(OUT) Points to the number of the month that the NLM was created. 

day 
(OUT) Points to the number of the day that the NLM was created. 

copyrightString 
hreads Management



novdocx (E
N

U
)  01 February 2006
(OUT) Points to a buffer that receives an ASCIIZ string containing the copyright string of the 
NLM. Buffer size should be 256 bytes.

description  
(OUT) Points to a buffer that receives an ASCIIZ string containing the name that is displayed 
when the NLM is loaded. Buffer size should be 128 bytes.

Return Values
The following table lists return values and descriptions.

Remarks
While NLMHandle must be supplied, the other parameters can be set to NULL if you do not want 
the information they return. 

The information for majorVersion, minorVersion, revision, copyrightString, and 
description are set with linker options when the NLM applications are linked. For more 
information about the linker options, see Using a Linker (NDK: NLM Development Concepts, Tools, 
and Functions).

For the NetWare 3.11 OS, this function was made available in CLIB.NLM, version 3.11b. 

See Also
MapNLMIDToHandle (page 85), FindNLMHandle (page 67), ReturnNLMVersionInfoFromFile 
(page 94)

Value Name Description

–1 EFAILURE An invalid NLM handle was specified. 

0 ESUCCESS 
Threads Functions 97



98 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ScheduleWorkToDo
Schedules a routine as work, which puts it on the highest priority queue, the WorkToDoList

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int ScheduleWorkToDo  (  
   void       (*ProcedureToCall) ( ) ,  
   void       *workData,   
   WorkToDo   *workToDo); 

Parameters
ProcedureToCall 

(IN) Points to the routine being scheduled as work.

workData  
(IN) Points to the data to be passed to the worker thread. 

workToDo  
(IN) Points to a WorkToDo structure. 

Return Values
The following table lists return values and descriptions.

Remarks
This function schedules work to be executed by an OS worker thread. 

The ProcedureToCall parameter points to the procedure to be scheduled as work. Work is a 
high-priority, low overhead procedure. See “When to Schedule a Routine as Work” on page 15.

The workData parameter contains the data to be passed to ProcedureToCall. 

The workToDo parameter is a structure used by CLIB.NLM to set up WorkToDo process 
scheduling. The structure must be allocated before calling this function and released afterward (for 
example, by calling malloc and free). Other than allocating workToDo, the developer does not need 

0 Success 

5 ENOMEM 
hreads Management



novdocx (E
N

U
)  01 February 2006
to be concerned with the details of this stucture since the only user-defined fields in the structure are 
set by the ProcedureToCall and workData parameters. WorkToDo is defined in nwthread.h. 

Since the work that is scheduled is done by an OS worker thread, it is not be able to use the NetWare 
API functions that use context, unless context is given to the OS worker thread. 

The context that is given to the OS worker thread is determined by the value in the registering 
thread’s context specifier. You can set the context specifier to one of the following options: 

• NO_CONTEXT-Callbacks registered with this option are not given CLIB context. The 
advantage here is that you avoid the overhead needed for setting up CLIB context. The 
disadvantage is that without the context the callback is only able to call NetWare API functions 
that manipulate data or manage local semaphores. 

Once inside of your callback, you can manually give your callback thread CLIB context by 
calling SetThreadGroupID and passing in a valid thread group ID. If you manually set up your 
context, you need to reset its context to its original context, by setting the thread group ID back 
to its original value. 

• USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier 
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread. 

• A valid thread group ID-This is to be used when you want the callbacks to have a different 
thread group context than the thread that schedules them. 

When a new thread is started with BeginThread, BeginThreadGroup or ScheduleWorkToDo, its 
context specifier is set to USE_CURRENT_CONTEXT by default. 

You can determine the current setting of the registering thread’s context specifier by calling 
GetThreadContextSpecifier. You use SetThreadContextSpecifier to set the registering thread’s 
context specifier to one of the above options. 

For more information on using CLIB context, see “Context Problems with OS Threads” on page 35.

See Also
BeginThread (page 47), BeginThreadGroup (page 49)

Example
#include <stdio.h>  
#include <nwthread.h>  
#include <nwconio.h>  
 
int   count = 0;  
 
/*........................*/  
void ScreenUpdater(void *data)  
{  
   data = data;  
   count++;  
   clrscr();  
   printf("You could use a work to do thread\n\n");  
   printf("to do screen updates.  %i.\n\n\n", count);  
   printf("Work to do threads get into the\n\n");  
Threads Functions 99



100 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
   printf("system fast and are useful to\n\n");  
   printf("accomplish finite definable tasks.");  
}  
 
/*........................*/  
main()  
{  
   WorkToDo   screenWork;  
   char       ch = 0;  
   SetAutoScreenDestructionMode(TRUE);  
   while (ch != ’q’)  
   {  
      ScheduleWorkToDo(ScreenUpdater, NULL, &screenWork);  
 
      /* ThreadSwitch makes sure work to do gets a chance to run. */  
      ThreadSwitch();  
      if (!kbhit())  
      ThreadSwitchWithDelay();  
      else  
      ch = getch();  
   }  
}  
/*........................*/ 
hreads Management



novdocx (E
N

U
)  01 February 2006
setjmp
Saves its calling environment in its env parameter for subsequent use by the longjmp function

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <setjmp.h>  
 
int setjmp  (  
   jmp_buf   env); 

Parameters
env 

(OUT) Specifies the buffer in which to save environment.

Return Values
This function returns a value of 0 when it is initially called. The return value is nonzero if the return 
is the result of a call to the longjmp function. An if statement is often used to handle these two 
returns. When the return value is 0, the initial call to setjmp has been made; when the return value is 
nonzero, a return from a longjmp has just occurred.

Remarks
In some cases, error handling can be implemented by using setjmp to record the point to which a 
return occurs following an error. When an error is detected in a called function, that function uses 
longjmp to jump back to the recorded position. The original function which called setjmp must still 
be active (it cannot have returned to the function which called it). 

Special care must be exercised to ensure that any side effects that have occurred (such as allocated 
memory and opened files) are satisfactorily handled. 

See Also
longjmp (page 82)
Threads Functions 101



102 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SetNLMDontUnloadFlag
Sets a flag in the header of an NLM to prevent the NLM from being unloaded with the UNLOAD 
command at the system console

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int SetNLMDontUnloadFlag  (  
   int   NLMID); 

Parameters
NLMID 

(IN) Specifies the ID of the NLM that is to be made so it cannot be unload from the command 
line. 

Return Values
The following table lists return values and descriptions.

Remarks
A console operator can unload an NLM from the system console command line by issuing the 
following command: 

   UNLOAD NLM_NAME 

where NLM_NAME is the name of the NLM being unloaded. 

If there is a check function for the NLM (declared with the OPTION CHECK directive), it is called 
when the "UNLOAD NLM_NAME" command is entered. This function then must decide if it is 
safe to unload the NLM. If it is safe to unload the NLM, the function returns 0 and the NLM is 
unloaded. If the function determines that the NLM should not be unloaded, it returns a nonzero 
value and the following prompt is displayed on the system console: 

   UNLOAD module anyway? n 

Value Hex Name Description

–1 EFAILURE NLMID was an invalid NLM ID. 

0 (0x00) ESUCCESS The don’t unload flag has been set. 
hreads Management



novdocx (E
N

U
)  01 February 2006
In this case, the console operation can choose to unload the NLM anyway, by pressing the "y" key, 
instead of the "n" key. 

If SetNLMDontUnloadFlag is called, the NLM can only be unloaded after 
ClearNLMDontUnloadFlag is called.

For more information about unloading NLM applications, see CHECK Function (NDK: NLM 
Development Concepts, Tools, and Functions). 

See Also
ClearNLMDontUnloadFlag (page 53), GetNLMID (page 72)

Example
#include <nwconio.h>  
#include <errno.h>  
#include <stdio.h>  
#include <nwthread.h>  
 
main()  
{  
   int NLMID, result;  
   NLMID=GetNLMID();  
   result=SetNLMDontUnloadFlag(NLMID);  
   if(result==ESUCCESS)  
   {  
      printf("DONTUNLD.NLM cannot be unloaded now.\n");  
      printf("Press any key to be able to unload this NLM\n");  
      getch();  
      ClearNLMDontUnloadFlag(NLMID);  
      printf("\nYou can unload DONTUNLD.NLM now.\n");  
      getch();  
   }  
   else  
      printf("Could not set the don’t unload flag.\n");  
} 
Threads Functions 103



104 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SetNLMID
Changes the current NLM ID

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int SetNLMID  (  
   int   newNLMID); 

Parameters
newNLMID 

(IN) Specifies the ID of NLM to make current (returned by a previous call to SetNLMID or 
GetNLMID. 

Return Values
This function returns the ID of the previously current NLM if successful. Otherwise, it returns 
EFAILURE and sets errno to: 

Remarks
SetNLMID changes the NLM context for the calling thread and its entire thread group. If a library 
NLM calls SetNLMID from a client thread, the NLM level context of the thread's entire thread 
group in the client NLM is changed. For this reason, library NLMs are discouraged from calling 
SetNLMID.

The current NLM determines which NLM "owns" resources that are subsequently allocated. (See 
Connection Number and Task Management Concepts (NDK: Connection, Message, and NCP 
Extensions) for a discussion of resources.) 

The main implication of "ownership" of resources is the automatic cleanup performed by the 
NetWare API when an NLM terminates. In the case of a library/client relationship: 

• If a library allocates resources while being called by a client, by default (without calling 
SetNLMID), the resources are owned by the client. 

Value Hex Name Description

22 (0x16) EBADHNDL Invalid NLM ID was passed in. 
hreads Management



novdocx (E
N

U
)  01 February 2006
• If the library calls SetNLMID to make itself the current NLM and then allocates resources, the 
library owns the resources. 

NOTE: A library should save and restore the client’s NLM ID when it changes the current NLM ID. 

See Also
GetNLMID (page 72)
Threads Functions 105



106 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SetThreadContextSpecifier
Determines the CLIB context that is to be used by all callback routines scheduled by the specified 
thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int SetThreadContextSpecifier (  
   int   threadID,   
   int   contextSpecifier); 

Parameters
threadID 

(IN) Specifies the ID of the thread whose context specifier you want to get. 

contextSpecifier 
(IN) Specifies the context to give callback threads.

Return Values
The following table lists return values and descriptions.

Remarks
Many of the functions that are registered as callbacks run as OS threads. These threads need CLIB 
context to use the NetWare API functions, such as printf. This function is used to determine what 
context is given to callbacks when they are registered by the calling thread. 

The default setting is for callbacks to have the context of the thread that calls them. 

The thread context specifier is set on a per-thread basis. Changing the context specifier for one 
thread does not change it for any of the other threads. The threadID parameter specifies which 
thread should have its context specifier set. 

Value Hex Name

–1 EFAILURE 

0 (0x00) ESUCCESS 
hreads Management



novdocx (E
N

U
)  01 February 2006
The contextSpecifier parameter tells what the context should be. It can be one of the 
following: 

• NO_CONTEXT-Do not give CLIB context to callback functions when they are registered. You 
would use this option when your callback is not going to use any NetWare API functions other 
than local semaphore calls and SetThreadGroupID, which then creates context. You could also 
use this if you want to manually set the callbacks function with a call to SetThreadGroupID.

• USE_CURRENT_CONTEXT-Set the context of the callback being scheduled to be the same 
as the thread that is scheduling the callback. This is the default setting that exists when a new 
thread is started. 

• A valid thread group ID-Set the context of the callback to this thread group ID. The ID of the 
current thread group can be returned with a call to GetThreadGroupID.

See Also
GetThreadContextSpecifier (page 77), SetThreadGroupID (page 108), GetThreadGroupID 
(page 78)
Threads Functions 107



108 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SetThreadGroupID
Changes the thread group ID of the running thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h> 
  
int SetThreadGroupID  (  
   int   newThreadGroupID); 

Parameters
newThreadGroupID 

(IN) Specifies the ID of the thread group to make current (returned by a previous call to 
SetThreadGroupID or GetThreadGroupID. 

Return Values
This function returns the ID of the previously current thread group if successful. Otherwise, it 
returns EFAILURE and sets errno to: 

Remarks
The SetThreadGroupID function determines which instance of the current connection, current task, 
current screen, and so on, is used. (See Section 1.4, “Context and Thread Groups,” on page 16.) 
Since a thread group is owned by a particular NLM, this function also sets the current NLM ID to 
the NLM that owns the thread group that is being made current. 

NOTE: A library should save and restore the thread group ID whenever it changes the current 
thread group. 

See Also
GetThreadGroupID (page 78), SetNLMID (page 104)

Value Hex Name Description

22 (0x16) EBADHNDL Invalid thread group ID was passed in. 
hreads Management



novdocx (E
N

U
)  01 February 2006
Example
#include <nwthread.h>  
 
int   currentThreadGroupID;  
int   newThreadGroupID;  
currentThreadGroupID = SetThreadGroupID (newThreadGroupID); 
Threads Functions 109



110 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SetThreadHandicap
Sets the number of context switches a thread is permanently handicapped (delayed) before being 
rescheduled

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
void SetThreadHandicap  (  
   int   threadID,   
   int   handicap); 

Parameters
threadID 

(IN) Specifies a thread ID. 

handicap  
(IN) Specifies the number of context switches the thread waits before being put on the Run 
Queue. 

Return Values
None

Remarks
This function sets the value used to determine the number of context switches a thread waits before 
being put on the Run Queue. This sets the permanent handicap. 

See Also
GetThreadHandicap (page 79), ThreadSwitchWithDelay (page 124)
hreads Management



novdocx (E
N

U
)  01 February 2006
signal
Specifies an action to take place when certain conditions are detected (signalled) while a program 
executes

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Service: Thread

Syntax
#include <signal.h>  
 
void (*signal  (  
   int    sig,   
   void   (*func) (  
      int)))  
   (int); 

Parameters
sig 

(IN) Specifies the condition being signalled. 

func  
(IN) Points to the function to be called when the signalled condition occurs. 

Return Values
Returns the previous setting if successful or SIG_ERR if a failure occurred.

Remarks
signal is used to specify an action to take place when certain conditions are detected while a program 
executes. These conditions are defined to be:

Signal Description

SIGABRT Abnormal termination, caused by the abort function.

SIGFPE An erroneous floating-point operation occurs, such as division by zero, overflow 
and underflow (supported only for compiler option / fpc; not supported for options 
/fpi, /7, /fpi87).

SIGILL An illegal instruction is encountered. (Currently not supported.)

SIGINT Raised if the Ctrl+C keys are pressed during screen output (other than to the 
System Console Screen).
Threads Functions 111



112 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
The func parameter is used to specify an action to take for the specified condition:

When the func parameter is a function name, that function is called equivalently to the following 
code sequence.

      /*"sig" is the condition being signalled*/  
   signal (sig, SIG_DFL);  
   (*func) (sig); 

The function specified by the func parameter can terminate the program by calling the exit, _exit, 
ExitThread, or abort functions. It can also call the longjmp function or it can return. Because the 
next signal is handled with default handling, the program must again call signal if it is desired to 
handle the next condition of the type that has been signalled.

NOTE: The exit, _exit, ExitThread, and abort functions cannot be called from the context of a 
SIGTERM handler or the server console will be inoperational.

A registered SIGTERM signal handler in NetWare 3.11, 4.x, 5.x, and 6.x is on a per-NLM basis.You 
only have to register your SIGTERM handler once for the NLM. The other signals are on a per-
threadgroup basis. For these signals, you have to register your signal handler every time you start a 
new thread group (by calling the BeginThreadGroup function). If not, your signal handler is not 
called.

The initial settings for the NetWare API are as follows: 

A condition can be generated by a program by calling the raise function. 

The default action for the SIGABRT action is to call _exit (3). The default action for SIGINT is to 
call abort (). The default action for the other conditions is to ignore the condition.

SIGSEGV An illegal memory reference is detected. (Currently not supported.)

SIGTERM An UNLOAD command has been entered for the NL. 

Setting Description

SIG_IGN This value causes the indicated condition to be ignored. 

SIG_DFL This value causes the default action for the condition to occur. 

Signal Default Setting

SIGABRT SIG_DFL

SIGFPE SIG_IGN

SIGILL SIG_IGN

SIGINT SIG_DFL

SIGSEGV SIG_IGN

SIGTERM SIG_DFL

Signal Description
hreads Management



novdocx (E
N

U
)  01 February 2006
The functions registered with signal run as callbacks, so CLIB context is an issue. If a callback does 
not have CLIB context, it cannot make calls to the NetWare API functions that require context. 

The functions registered for SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM have the thread 
group context of the thread that was running when the signal condition was detected. They can use 
the NetWare API functions without additional setup. 

However, you do need to set up context for the functions registered for SIGABRT. 

For 3.11 NLM applications, you must manually create the thread group context in your callback 
functions, by calling SetThreadGroupID and passing a valid thread group ID. Before this thread 
returns, it should reset its context to its original context, by setting the thread group ID back to its 
original value. 

For 4.x, 5.x, and 6.x NLM applications, the context that is given to the callbacks when they are 
registered is determined by the value in the registering thread’s context specifier. You can set the 
context specifier to one of the following options: 

• NO_CONTEXT-Callbacks registered with this option are not given CLIB context. The 
advantage here is that you avoid the overhead needed for setting up CLIB context. The 
disadvantage is that without the context the callback is only able to call NetWare API functions 
that manipulate data or manage local semaphores. 

Once inside of your callback, you can manually give your callback thread CLIB context by 
calling SetThreadGroupID and passing in a valid thread group ID. If you manually set up your 
context, you need to reset its context to its original context, by setting the thread group ID back 
to its original value. 

• USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier 
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread. 

• A valid thread group ID-This is to be used when you want the callbacks to have a different 
thread group context than the thread that schedules them. 

When a new thread is started with BeginThread, BeginThreadGroup or ScheduleWorkToDo, its 
context specifier is set to USE_CURRENT_CONTEXT by default. 

You can determine the current setting of the registering thread’s context specifier by calling 
GetThreadContextSpecifier. You use SetThreadContextSpecifier to set the registering thread’s 
context specifier to one of the above options. 

For more information on using CLIB context, see “Context Problems with OS Threads” on page 35.

See Also
abort (page 41), _exit (page 62), longjmp (page 82), raise (page 90), setjmp (page 101)
Threads Functions 113



114 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
SignalLocalSemaphore
Increments the semaphore value of the specified semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
int SignalLocalSemaphore  (  
   LONG   semaphoreHandle); 

Parameters
semaphoreHandle 

(IN) Specifies the semaphore handle of an open semaphore.

Return Values
If successful, this function returns zero. 

WARNING: A bad semaphore handle causes the server to abend. 

Remarks
A thread normally call this function when finished accessing the resource associated with the 
semaphore.

A thread can also use this function to restart another thread waiting on the semaphore, as a means of 
interprocess synchronization.

If there are threads waiting on the semaphore (the semaphore value is negative), the first thread in 
the queue is released (made runnable). 

A semaphore handle can be obtained by calling OpenLocalSemaphore. 

See Also
CloseLocalSemaphore (page 55), ExamineLocalSemaphore (page 60), OpenLocalSemaphore 
(page 89), TimedWaitOnLocalSemaphore (page 125), WaitOnLocalSemaphore (page 126)
hreads Management



novdocx (E
N

U
)  01 February 2006
spawnlp, spawnvp
Executes a new NLM

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Thread

Syntax
#include <nwthread.h>  
 
int spawnlp  (  
   int           mode,   
   const char   *path,   
   char         *arg0,   
   ...); 

int spawnvp  (  
   int           mode,   
   const char   *path,   
   char        **argv); 

Parameters
mode 

(IN) Specifies how the invoking program behaves after it is initiated. 

path  
(IN) Points to the name of the compiled program to be started. 

arg0  
(IN) Points to the first of a list of arguments to be passed to the invoked program. 

argv  
(IN) Points to an array of pointers to arguments to be passed to the invoked program. 

Return Values
The following table lists return values and descriptions.

On error, errno is set to one of the following values:

Value Hex Name Description

0 (0x00) ESUCCESS Program was successfully loaded. 

–1 (0xFF) EFAILURE The function failed.
Threads Functions 115



116 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
Through a Novell internal conversion process, NwErrno may also be set to one of the following 
values:

NOTE: The errno code EINVAL indicates only that code was set to other than P_NOWAIT or 
P_WAIT.

Value Hex Name

1 (0x01) ENOENT

3 (0x03) ENOEXEC

5 (0x05) ENOMEM

6 (0x06) EACCES

9 (0X09) EINVAL (See note below)

16 (0x10) EINUSE

19 (0x13) EWRNGKND

21 (0x15) ERESOURCE

28 (0x1C) EIO

37 (0x25) EALREADY

Value Hex Name

1 (0x01) LOAD_COULD_NOT_FIND_FILE

2 (0x02) LOAD_ERROR_READING_FILE

3 (0x03) LOAD_NOT_NLM_FILE_FORMAT

4 (0x04) LOAD_WRONG_NLM_FILE_VERSION

5 (0x05) LOAD_REENTRANT_INITIALIZE_FAILURE

6 (x006) LOAD_CAN_NOT_LOAD_MULTIPLE_COPIES

7 (0x07) LOAD_ALREADY_IN_PROGRESS

8 (0x08) LOAD_NOT_ENOUGH_MEMORY

9 (0x09) LOAD_INITIALIZE_FAILURE

10 (0x0A) LOAD_INCONSISTENT_FILE_FORMAT

11 (0x0B) LOAD_CAN_NOT_LOAD_AT_STARTUP

12 (0x0C) LOAD_AUTO_LOAD_MODULES_NOT_LOADED

13 (0x0D) LOAD_UNRESOLVED_EXTERNAL

14 (0x0E) LOAD_PUBLIC_ALREADY_DEFINED
hreads Management



novdocx (E
N

U
)  01 February 2006
IMPORTANT: P_WAIT is operative only in NLMs made with CLIB. Other NLMs indicate load 
completion only.

Remarks
The value of mode determines how the program is loaded and how the invoking program behaves 
after the it is initiated: 

IMPORTANT: P_WAIT functionality is available only on NetWare 5.x, 6.x, and NetWare 4 
systems updated to use CLib v. 4.11 libraries, the official update for NetWare v. 4.10 systems.

Arguments are passed to the child process by supplying one or more pointers to character strings as 
arguments in the spawn call. These character strings are concatenated with spaces inserted to 
separate the arguments to form one argument string for the child process. The length of this 
concatenated string must not exceed 128 bytes. 

The arguments can be passed as a list of arguments ( spawnlp) or as a vector of pointers ( spawnvp). 
At least one argument, arg0 or argv [0], must be passed to the child process. By convention, this 
first argument is the name of the program. 

If the arguments are passed as a list, there must be a NULL pointer to mark the end of the argument 
list. 

See Also
abort (page 41), atexit (page 43), exit (page 61), _exit (page 62), getcmd (page 68), getenv 
(page 70), main (page 83), system (page 120)

Example

spawnlp

#include <nwthread.h>  
 
int   completionCode:  
completionCode = spawnlp (P_NOWAIT, "helper.NLM", NULL); 

spawnvp

#include <nwthread.h>  
 
int    completionCode;  

Mode Description

P_NOWAIT The invoked program is loaded into available memory and is executed. The 
original program executes simultaneously with the invoked program. 

P_WAIT The invoked program is loaded into available memory and is executed. The 
calling thread is suspended until the invoked program finishes (the NLM loads). 
Under NetWare 5.x and 6.x, the exit status of the invoked program is returned.
Threads Functions 117



118 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
char   *argv[5];  
completionCode = spawnvp (P_NOWAIT, "helper.nlm", argv); 
hreads Management



novdocx (E
N

U
)  01 February 2006
SuspendThread
Prevents a specified thread in the NLM from being scheduled

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
int SuspendThread  (  
   int   threadID); 

Parameters
threadID 

(IN) Specifies the ID of the thread to be suspended.

Return Values
The following table lists return values and descriptions.

Remarks
This function causes a specified thread to be suspended. ResumeThread makes the thread runnable 
once again. 

SuspendThread maintains a count of the number of times a thread is suspended. An equal number of 
calls to ResumeThread must be performed for the thread to run again. This allows calls to 
SuspendThread and ResumeThread to be nested. 

Blocking Information SuspendThread does not block when suspending other threads, but blocks 
when suspending itself. 

See Also
EnterCritSec (page 58), ResumeThread (page 92)

Value Hex Name Description

0 (0x00) ESUCCESS Thread was suspended.

22 (0x16) EBADHNDL A bad thread ID was passed in. 
Threads Functions 119



120 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
system
Executes operating system commands

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

NetWare Server: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <stdlib.h>  
#include <nwthread.h> 
 
int  system  (  
   const char   *command); 

Parameters
command 

(IN) Points to a command to execute. 

Return Values
If successful in passing the command to the operating system, returns 0. Any errors in executing the 
operating system commands are shown on the system console screen. 

If the command string is longer than 512 characters, returns -1 and sets errno to the following:

Remarks
This function always echoes input directly to the system console screen. Errors in executing the 
operating system command are shown on the system console screen. 

NOTE: If the console operator is typing, your string will be intermixed with the input from the 
console operator.

See Also
abort (page 41), atexit (page 43), exit (page 61), _exit (page 62), spawnlp, spawnvp (page 115)

Decimal Constant Description

65 ENAMETOOLONG The command parameter exceeds the maximum length of 512 
characters.
hreads Management



novdocx (E
N

U
)  01 February 2006
Example
#include <stdio.h>  
#include <stdlib.h>  
#include <nwthread.h>  
 
/*————*/  
main ()  
{  
   .  
   .  
   .  
   system ("LOAD MONITOR");  
   .  
   .  
   .  
}  
/*————*/ 
Threads Functions 121



122 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ThreadSwitch
Allows other runnable threads a chance to get some work done, where no natural break in the 
currently running thread would normally occur

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
void ThreadSwitch  (void); 

Return Values
None

Remarks
The NetWare 3.x, 4.x, 5.x, and 6.x environment is a nonpreemptive environment in which threads 
can only relinquish control via system calls. Unless an executing thread relinquishes control, other 
threads do not have the opportunity to work. 

If no natural break occurs via a system call in a particular thread, ThreadSwitch can be used to cause 
that thread to relinquish control and allow other runnable threads to execute. 

NOTE: If you are using "busy waiting" or "spin locks" you should use ThreadSwitchWithDelay 
instead of ThreadSwitch because threads preempted with ThreadSwitch still have higher priority 
than threads on the low priority queue. These low priority threads (such as those doing file 
compression in the OS) still need an opportunity to run in the nonpreemptive 4.x, 5.x, and 6.x 
environment. 
hreads Management



novdocx (E
N

U
)  01 February 2006
ThreadSwitchLowPriority
Reschedules a thread onto the low-priority queue

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h>  
 
void ThreadSwitchLowPriority  (void); 

Return Values
None

Remarks
The ThreadSwitchLowPriority function can be used to schedule a thread to run only when there is 
nothing but hardware polling routines and temporarily handicapped threads to run. Routines suitable 
for this priority level would be once-a-week backup, file compression utilities, low-priority clean-up 
utilities, and so forth. 
Threads Functions 123



124 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
ThreadSwitchWithDelay
Reschedules the thread to be placed on the RunList after n number of context switches have taken 
place

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwthread.h> 
  
void ThreadSwitchWithDelay  (void); 

Return Values
None

Remarks
If a thread needs a resource that will not be ready for a moment but does not want the overhead of 
sleeping on a semaphore, rather than rescheduling itself repetitively the thread can reschedule itself 
with a temporary handicap. 

Temporarily handicapped threads are scheduled on a waiting queue, the DelayedList, until their 
handicap has expired. Upon expiration, they are rescheduled at the end of the RunList. Letting 
threads temporarily handicap themselves prevents needless rescheduling caused by a spin-waiting 
condition. 

The number of switches in each temporary handicap is a tunable parameter inside the NetWare OS. 
hreads Management



novdocx (E
N

U
)  01 February 2006
TimedWaitOnLocalSemaphore
Waits on a local semaphore until it is signalled or the specified timeout elapses

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
int TimedWaitOnLocalSemaphore  (  
   LONG   semaphoreHandle,   
   LONG   timeout);

Parameters
semaphoreHandle 

(IN) Specifies the handle of the semaphore to wait on.

timeout 
(IN) Specifies the maximum time, in milliseconds, to wait on the semaphore.

Return Values
The following table lists return values and descriptions.

WARNING: A bad semaphore handle causes the server to abend.

Remarks
TimedWaitOnLocalSemaphore is similar to WaitOnLocalSemaphore except that a waiting time is 
specified. If the semaphore is not signalled prior to the expiration of the timeout parameter 
period, TimedWaitOnLocalSemaphore returns an error.

See Also
CloseLocalSemaphore (page 55), ExamineLocalSemaphore (page 60), OpenLocalSemaphore 
(page 89), SignalLocalSemaphore (page 114), WaitOnLocalSemaphore (page 126)

Value Hex Name

0 (0x00) ESUCCESS

254 (0xFE) ERR_TIMEOUT_FAILURE
Threads Functions 125



126 NDK: NLM T

novdocx (E
N

U
)  01 February 2006
WaitOnLocalSemaphore
Decrements the semaphore value of the specified semaphore

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Thread

Syntax
#include <nwsemaph.h>  
 
int WaitOnLocalSemaphore  (  
   LONG   semaphoreHandle); 

Parameters
semaphoreHandle 

(IN) Specifies the semaphore handle of an open semaphore.

Return Values
If successful, this function returns zero. 

WARNING: A bad semaphore handle causes the server to abend. 

Remarks
A thread would typically call this function before accessing the resource associated with the 
semaphore. An NLM can also use this function to cause a thread to wait until another thread signals 
it to resume. 

If the semaphore value is still greater than or equal to zero after the function decrements it, the 
thread is not suspended. If the semaphore value is negative, the thread is suspended until the 
semaphore is signalled one more time than there are threads ahead of the current thread on the 
specified semaphore’s queue. 

A semaphore handle can be obtained by calling OpenLocalSemaphore. 

See Also
CloseLocalSemaphore (page 55), ExamineLocalSemaphore (page 60), OpenLocalSemaphore 
(page 89), SignalLocalSemaphore (page 114), TimedWaitOnLocalSemaphore (page 125)
hreads Management



Revision History

A
novdocx (E

N
U

)  01 February 2006

127

ARevision History

The following table outlines all the changes that have been made to the NLM Threads Management 
documentation (in reverse chronological order):

October 11, 2006 Updated AdvertiseService to show it as an unsupported function.

March 1, 2006 Updated format.

October 5, 2005 Transitioned to revised Novell documentation standards.

March 2, 2005 Fixed legal information.

Februray 18, 2004 Fixed the return values for the OpenLocalSemaphore (page 89) function.

October 2002 Updated the documentation for the system (page 120) function, adding 
information about the maximum length for the command parameter.

May 2002 Added comments to Remarks section of SetNLMID (page 104) on the reasons 
not to call this function.

Added information about true reentrant NLM programming functionality to 
“Shared Memory” on page 28.

February 2002 Updated links.

September 2001 
(mid-release 
change)

Updated NWSMPIsLoaded (obsolete 9/2001) (page 86), NWThreadToMP 
(obsolete 9/2001) (page 87), and NWThreadToNetWare (obsolete 9/2001) 
(page 88) to be obsolete functions.

September 2001 Added support for NetWare 6.x to documentation.

June 2001 Changed classification of GetNLMIDFromNLMHandle (page 73) to be 5.x only.

Changed example in FindNLMHandle (page 67).

Added links to Section 1.5, “NetWare Global Data,” on page 18.

Made changes to improve document accessibility.

Made minor formatting changes.

February 2001 Added "CLib" designation to delay (page 56) to distinguish it from setvbuf.

July 2000 Added documentation for GetNLMIDFromNLMHandle (page 73).

May 2000 Deleted the remaining SMP API documentation and changed the name of the 
documentation from Thread and Multi-Processor Management to NLM 
Threads Management.

Added revision history.


	NDK: NLM Threads Management
	About This Guide
	1 Threads Concepts
	1.1 Threads
	1.1.1 Thread Context

	1.2 Thread Management
	1.2.1 Thread Management in NetWare 3.x
	1.2.2 Thread Management in NetWare 4.x-6.x

	1.3 Routine Scheduling by Thread Type
	1.3.1 When to Schedule a Routine as a Thread
	1.3.2 When to Schedule a Routine as Work

	1.4 Context and Thread Groups
	1.4.1 Creating and Terminating Threads
	1.4.2 Creating and Terminating Thread Groups
	1.4.3 Interprocess Synchronization

	1.5 NetWare Global Data
	1.5.1 Thread Global Data
	1.5.2 Thread Group Global Data
	1.5.3 NLM Global Data
	1.5.4 Hierarchy of Global Data
	1.5.5 NetWare 4.x-6.x Global Data

	1.6 Thread Function List
	1.7 Multithreaded Programming
	1.7.1 Shared Memory
	1.7.2 Thread Termination
	1.7.3 Relinquishing Control

	1.8 Context
	1.8.1 Thread Level Context
	1.8.2 Thread Group Level Context
	1.8.3 NLM Level Context
	1.8.4 Context Problems with OS Threads
	1.8.5 Context Solutions for OS Threads

	1.9 Context and Development of Drivers, Stacks, etc.

	2 Threads Functions
	abort
	atexit
	AtUnload
	BeginThread
	BeginThreadGroup
	Breakpoint
	ClearNLMDontUnloadFlag
	CloseLocalSemaphore
	delay
	EnterCritSec
	ExamineLocalSemaphore
	exit
	_exit
	ExitCritSec
	ExitThread
	FindNLMHandle
	getcmd
	getenv
	GetNLMHandle
	GetNLMID
	GetNLMIDFromNLMHandle
	GetNLMIDFromThreadID
	GetNLMNameFromNLMID
	GetThreadContextSpecifier
	GetThreadGroupID
	GetThreadHandicap
	GetThreadID
	GetThreadName
	longjmp
	main
	MapNLMIDToHandle
	NWSMPIsLoaded (obsolete 9/2001)
	NWThreadToMP (obsolete 9/2001)
	NWThreadToNetWare (obsolete 9/2001)
	OpenLocalSemaphore
	raise
	RenameThread
	ResumeThread
	ReturnNLMVersionInfoFromFile
	ReturnNLMVersionInformation
	ScheduleWorkToDo
	setjmp
	SetNLMDontUnloadFlag
	SetNLMID
	SetThreadContextSpecifier
	SetThreadGroupID
	SetThreadHandicap
	signal
	SignalLocalSemaphore
	spawnlp, spawnvp
	SuspendThread
	system
	ThreadSwitch
	ThreadSwitchLowPriority
	ThreadSwitchWithDelay
	TimedWaitOnLocalSemaphore
	WaitOnLocalSemaphore

	A Revision History

