
n

NDK: Single and Intra-File Services
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
O c t o b e r 1 1 , 2 0 0 6

S I N G L E A N D I N T R A - F I L E S E R V I C E S

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 15

1 AFP Concepts 17
1.1 File Name and Path Conventions . 17
1.2 Data and Resource Forks . 17
1.3 Entry IDs . 17
1.4 File Information . 17
1.5 Mac OS Finder Information . 19

2 AFP Tasks 21
2.1 Checking for AFP Support . 21
2.2 Operating on AFP Directory Entries . 21

3 AFP Functions 23
NWAFPAllocTemporaryDirHandle . 24
NWAFPASCIIZToLenStr . 26
NWAFPCreateDirectory . 27
NWAFPCreateFile . 29
NWAFPDelete . 32
NWAFPDirectoryEntry . 35
NWAFPGetEntryIDFromHandle . 37
NWAFPGetEntryIDFromName. 39
NWAFPGetEntryIDFromPathName . 41
NWAFPGetFileInformation . 43
NWAFPOpenFileFork . 46
NWAFPRename . 49
NWAFPScanFileInformation. 52
NWAFPSetFileInformation . 56
NWAFPSupported . 60

4 AFP Structures 63
NW_AFP_FILE_INFO . 64
NW_AFP_SET_INFO . 67
RECPKT_AFPFILEINFO . 69

5 Direct File System Concepts 73
5.1 File Allocation . 73

5.1.1 Impact of Striping . 74
5.1.2 Setting the File Size and Zero-Filling with DFS. 74

5.2 File Locks. 74
5.2.1 Input and Output . 75

5.3 File Structures . 75
5.4 Volume Structures . 77
7

8 NDK: Single

novdocx (E
N

U
) 01 February 2006
5.5 Return Values. 78
5.6 Direct File System Functions . 79

6 Direct File System Tasks 81
6.1 Creating a File . 81
6.2 Extending Files Using Allocation . 81
6.3 Extending Files Using Specific Allocation. 82

7 Direct File System Functions 85
DFSclose. 86
DFScreat . 87
DFSExpandFile . 89
DFSFreeLimboVolumeSpace . 91
DFSRead. 93
DFSReadNoWait . 95
DFSReturnFileMappingInformation. 97
DFSReturnVolumeBlockInformation . 99
DFSReturnVolumeMappingInformation . 101
DFSSetDataSize . 103
DFSSetEndOfFile . 105
DFSsopen . 107
DFSWrite. 110
DFSWriteNoWait . 112

8 Direct File System Structures 115
DFSCallBackParameters . 116
FileMapStructure . 117
VolumeInformationStructure . 118

9 DOS Partition Concepts 121
9.1 DOS Partition Functions . 121

10 DOS Partition Functions 123
DOSChangeFileMode . 124
DOSClose . 125
DOSCopy . 126
DOSCreate . 127
DOSFindFirstFile . 128
DOSFindNextFile . 130
DOSMkdir . 131
DOSOpen . 132
DOSPresent . 133
DOSRead . 134
DOSRemove . 136
DOSRename . 137
DOSRmdir . 138
DOSSetDateAndTime . 139
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSShutOffFloppyDrive . 140
DOSsopen . 141
DOSUnlink . 143
DOSWrite . 144

11 DOS Partition Structures 147
find_t . 148

12 Extended Attribute Concepts 149
12.1 Extended Attribute Functions. 149

13 Extended Attribute Tasks 151
13.1 Scanning for Extended Attributes . 151
13.2 Accessing Extended Attributes . 151
13.3 Accessing Attribute Selections . 151
13.4 Closing Extended Attributes . 152

14 Extended Attribute Functions 153
NWCloseEA . 154
NWCloseEAExt . 156
NWFindFirstEA. 158
NWFindFirstEAExt . 160
NWFindNextEA . 162
NWFindNextEAExt . 164
NWGetEAHandleStruct . 166
NWGetEAHandleStructExt . 168
NWOpenEA . 170
NWOpenEAExt . 172
NWReadEA . 174
NWReadEAExt . 177
NWWriteEA . 180
NWWriteEAExt . 183

15 Extended Attribute Structures 187
NW_EA_FF_STRUCT . 188
NW_EA_FF_STRUCT_EXT. 190
NW_EA_HANDLE . 192
NW_EA_HANDLE_EXT . 194

16 Operating System I/O Concepts 197
16.1 File Permission Conversion . 197
16.2 File Paths. 197
16.3 Operating System I/O Functions . 198

17 Operating System I/O Functions 201
cancel . 202
9

10 NDK: Single

novdocx (E
N

U
) 01 February 2006
chsize . 203
close . 205
creat . 207
dup . 209
dup2 . 211
eof . 213
fcntl . 214
filelength . 216
fstat . 217
ioctl . 219
isatty . 223
lock . 224
lseek . 226
open . 229
pipe . 232
read . 234
setmode. 237
sopen. 238
tell . 242
unlock . 244
write. 246

18 Stream I/O Concepts 249
18.1 Stream I/O Functions . 249

19 Stream I/O Functions 251
clearerr . 253
fclose . 254
fcloseall . 255
fdopen . 256
feof . 259
ferror . 261
fflush . 263
fgetc. 264
fgetchar . 266
fgetpos. 267
fgets. 269
fileno . 271
flushall . 273
fopen . 274
fprintf . 277
fputc. 279
fputs. 281
fread . 283
freopen . 285
fscanf. 287
fseek . 289
fsetpos. 291
ftell . 293
fwrite . 295
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
getc. 297
getchar . 299
gets. 300
printf . 302
putc. 307
putchar . 309
puts. 311
rewind . 313
scanf . 314
setbuf . 319
setvbuf . 321
tmpfile . 323
ungetc. 324
vfprintf . 325
vfscanf . 327
vprintf . 329
vscanf . 331

20 Synchronization Concepts 333
20.1 Data Locks. 333

20.1.1 File Locks . 333
20.1.2 File Locking Functions. 333
20.1.3 Physical Record Locks . 334
20.1.4 Physical Record Locking Functions . 334
20.1.5 Logical Record Locks . 334
20.1.6 Logical Record Locking Functions . 334

20.2 Semaphores . 335
20.2.1 Semaphore Functions . 335

20.3 Synchronization Scan Functions . 335

21 Synchronization Tasks 337
21.1 Logging Files . 337
21.2 Clearing Logged Files . 337
21.3 Locking Data and Files . 337
21.4 Locking Files . 338
21.5 Releasing Locked Files . 338

22 Synchronization Functions 339
NWClearFileLock2 . 340
NWClearFileLockSet . 342
NWClearLogicalRecord . 344
NWClearLogicalRecordSet. 346
NWClearPhysicalRecord . 348
NWClearPhysicalRecordSet. 350
NWCloseSemaphore . 352
NWExamineSemaphore . 354
NWLockFileLockSet . 356
NWLockLogicalRecordSet . 358
NWLockPhysicalRecordSet . 360
NWLogFileLock2 . 362
11

12 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLogLogicalRecord . 365
NWLogPhysicalRecord . 368
NWOpenSemaphore . 371
NWReleaseFileLock2 . 373
NWReleaseFileLockSet . 375
NWReleaseLogicalRecord . 377
NWReleaseLogicalRecordSet . 379
NWReleasePhysicalRecord . 381
NWReleasePhysicalRecordSet . 383
NWScanLogicalLocksByConn. 385
NWScanLogicalLocksByName . 387
NWScanPhysicalLocksByConnFile . 389
NWScanPhysicalLocksByFile . 392
NWScanSemaphoresByConn . 395
NWScanSemaphoresByName . 397
NWSignalSemaphore . 399
NWWaitOnSemaphore . 401

23 Synchronization Structures 403
CONN_LOGICAL_LOCK . 404
CONN_LOGICAL_LOCKS . 405
CONN_PHYSICAL_LOCK . 407
CONN_PHYSICAL_LOCKS . 408
CONN_SEMAPHORE. 410
CONN_SEMAPHORES . 411
LOGICAL_LOCK . 413
LOGICAL_LOCKS. 414
PHYSICAL_LOCK. 416
PHYSICAL_LOCKS . 418
SEMAPHORE . 419
SEMAPHORES . 420

24 Server-Based AFP Concepts 423
24.1 File-Naming Conventions . 423
24.2 Server-Based AFP Functions . 424

25 Server-Based Extended Attribute Functions 425
CloseEA . 426
CopyEA . 427
EnumerateEA . 429
GetEAInfo . 431
OpenEA. 432
ReadEA . 434
WriteEA . 436

26 Server-Based Extended Attribute Structures 439
T_enumerateEAnoKey . 440
T_enumerateEAwithKey . 441
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
27 Server-Based Synchronization Concepts 443
27.1 Locking . 443
27.2 Semaphores . 444

27.2.1 Limiting the Number of Users . 444
27.2.2 Restricting Access to Resources. 445

27.3 Server-Based Synchronization Functions . 445

28 Server-Based Synchronization Functions 447
ClearFile . 448
ClearFileSet . 449
ClearLogicalRecord . 450
ClearLogicalRecordSet. 451
ClearPhysicalRecord . 452
ClearPhysicalRecordSet. 454
CloseSemaphore . 455
ExamineSemaphore . 456
LockFileSet . 458
LockLogicalRecordSet . 459
LockPhysicalRecordSet . 461
LogFile . 463
LogLogicalRecord. 465
LogPhysicalRecord. 467
OpenSemaphore . 469
ReleaseFile. 471
ReleaseFileSet . 472
ReleaseLogicalRecord . 473
ReleaseLogicalRecordSet . 474
ReleasePhysicalRecord . 475
ReleasePhysicalRecordSet . 477
SignalSemaphore . 478
WaitOnSemaphore . 479

A Revision History 481
13

14 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
About This Guide

This guide contains information primarily for services with functions that operate on one file at a
time, or that perform operations within a single file. It describes the following:

• Chapter 3, “AFP Functions,” on page 23
• Chapter 7, “Direct File System Functions,” on page 85
• Chapter 10, “DOS Partition Functions,” on page 123
• Chapter 14, “Extended Attribute Functions,” on page 153
• Chapter 17, “Operating System I/O Functions,” on page 201
• Chapter 19, “Stream I/O Functions,” on page 251
• Chapter 22, “Synchronization Functions,” on page 339
• Chapter 25, “Server-Based Extended Attribute Functions,” on page 425
• Chapter 28, “Server-Based Synchronization Functions,” on page 447

For functionality that operates principally on multiple files, refer to NDK: Multiple and Inter-File
Services.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm)

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

• NDK: NLM Development Concepts, Tools, and Functions
• NDK: Program Management
• NDK: NLM Threads Management
• NDK: Connection, Message, and NCP Extensions
• NDK: Multiple and Inter-File Services
• NDK: Internationalization
• NDK: Volume Management
• NDK: Client Management
• NDK: Network Management
• NDK: Server Management
• NDK: Unicode
15

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm

16 NDK: Single

novdocx (E
N

U
) 01 February 2006
• NDK: Sample Code
• NDK: Getting Started with NetWare Cross-Platform Libraries for C
• NDK: Bindery Management

For CLib source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C
(including CLIB and XPlat) Developer Support Forum (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat
development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
 and Intra-File Services

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

1
novdocx (E

N
U

) 01 February 2006
1AFP Concepts

This documentation describes AFP, its functions, and features.

1.1 File Name and Path Conventions
AFP directories and files differ from their counterparts in NetWare® in the length of file names and
the way naming paths are designated. AFP names can contain from 1 to 31 characters comprised of
any ASCII character between 1 and 255 except the colon or the NULL character. A NetWare server
automatically generates short names (DOS-style file names) for all AFP directories, as well as for
any files created or accessed from DOS. The server maintains both the long name and the short
name for each AFP directory and file.

Be aware that although most AFP functions use AFP directory paths, some require a directory path
in NetWare format, and that AFP and NetWare formats cannot be mixed for entry.

1.2 Data and Resource Forks
AFP files are divided into a data fork and a resource fork. The data fork stores data formatted
according to the creator’s discretion. The resource fork, if present, stores data understood in
prescribed formats, such as code, icons, menu bars, alerts, version information, and execution
behavior.

From the AFP standpoint, a DOS file is a data file with no resource fork or long name. To endow a
DOS file with a Macintosh name, the NetWare® OS permits Macintosh users to give the file a name
in the Macintosh name space. Otherwise, Macintosh users see the DOS name just as DOS users do.

1.3 Entry IDs
The AFP entry ID is similar to the NetWare® directory handle. The AFP long file name relates to an
AFP entry ID that represents some portion of the file’s directory path. However, AFP and NetWare
conventions are not interchangeable. Never mix NetWare directory handles with long names or AFP
entry IDs with short names.

AFP Services includes the following functions for returning AFP entry IDs using a NetWare
directory handle, a long name, or a short name.

• NWAFPGetEntryIDFromHandle (page 37)
• NWAFPGetEntryIDFromName (page 39)
• NWAFPGetEntryIDFromPathName (page 41)

1.4 File Information
AFP Services include three functions that access AFP file information:

• NWAFPGetFileInformation (page 43)
• NWAFPScanFileInformation (page 52)
• NWAFPSetFileInformation (page 56)
AFP Concepts 17

18 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPGetFileInformation (page 43) and NWAFPScanFileInformation (page 52) return file
information in an NW_AFP_FILE_INFO (page 64) structure. NWAFPSetFileInformation (page 56)
uses an NW_AFP_SET_INFO (page 67) structure to modify file information. AFP file information
includes the following items:

• The AFP ID of the entry
• The AFP ID of the parent of the entry
• File or directory attributes
• Data fork size
• Resource fork size
• Number of files and subdirectories contained in the entry
• Dates and times the entry was created, accessed, modified, and backed up
• Macintosh Finder information
• AFP long name
• The object ID that created or last modified the entry
• NetWare® name in the DOS or primary name space
• Access privileges of the client
• Apple Pro DOS information (Apple II Information)

All three functions include a request mask parameter that indicates the information to be returned or
modified. The request mask defines the following values:

First Byte:

Bit 0 = AFP_GET_ATTRIBUTES
Bit 1 = AFP_GET_PARENT_ID
Bit 2 = AFP_GET_CREATE_DATE
Bit 3 = AFP_GET_ACCESS_DATE
Bit 4 = AFP_GET_MODIFY_DATE/TIME
Bit 5 = AFP_GET_BACKUP_DATE/TIME
Bit 6 = AFP_GET_FINDER_INFO
Bit 7 = AFP_GET_LONG_NAME

Second Byte:

Bit 0 = AFP_GET_ENTRY_ID
Bit 1 = AFP_GET_DATE_FORK_LEN
Bit 2 = AFP_RESOURCE_LEN
Bit 3 = AFP_GET_NUM_OFFSPRING
Bit 4 = AFP_GET_OWNER_ID
Bit 5 = AFP_GET_SHORT_NAME
Bit 6 = AFP_GET_ACCESS_RIGHTS
Bit 7 = undefined
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
1.5 Mac OS Finder Information
The Mac OS uses Finder information—the file type, the icon’s location in its parents window, and
assorted file flags—to display files on the desktop. Operations such as creating an AFP file or
directory require Finder information. If you pass a NULL value for the Finder information when you
create a file, the Mac OS automatically creates Finder information.
AFP Concepts 19

20 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

2
novdocx (E

N
U

) 01 February 2006
2AFP Tasks

This documentation describes common tasks associated with AFP.

2.1 Checking for AFP Support
NetWare® servers support AFP files on a volume-by-volume basis. However, this support is
optional. The appropriate name space NLM™ application must be loaded at the server, and AFP
support must be enabled on the volume. This is equivalent to asking if MAC.NAM (or the
Macintosh name space NLM) is loaded for the volume in question.

Before attempting to perform AFP operations on an entry, call NWAFPSupported (page 60) to make
sure the AFP name space is supported on the NetWare volume.

2.2 Operating on AFP Directory Entries
Always use AFP Services to create, delete, and rename AFP directory entries. The File Access
Services used to access other NetWare® files cannot perform these operations since they are unable
to preserve the relationship between the files data and resource forks.

AFP Services include the following functions to operate on AFP files:

• NWAFPCreateDirectory (page 27)
• NWAFPCreateFile (page 29)
• NWAFPDelete (page 32)
• NWAFPOpenFileFork (page 46)
• NWAFPRename (page 49)

These functions take a combination AFP entry ID and path string that identifies the entry. Also, the
string should be length-preceded, the initial byte indicating the length of the string.
AFP Tasks 21

22 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

3
novdocx (E

N
U

) 01 February 2006
3AFP Functions

This documentation alphabetically lists the AFP functions and describes their purpose, syntax,
parameters, and return values.

• “NWAFPAllocTemporaryDirHandle” on page 24
• “NWAFPASCIIZToLenStr” on page 26
• “NWAFPCreateDirectory” on page 27
• “NWAFPCreateFile” on page 29
• “NWAFPDelete” on page 32
• “NWAFPDirectoryEntry” on page 35
• “NWAFPGetEntryIDFromHandle” on page 37
• “NWAFPGetEntryIDFromName” on page 39
• “NWAFPGetEntryIDFromPathName” on page 41
• “NWAFPGetFileInformation” on page 43
• “NWAFPOpenFileFork” on page 46
• “NWAFPRename” on page 49
• “NWAFPScanFileInformation” on page 52
• “NWAFPSetFileInformation” on page 56
• “NWAFPSupported” on page 60
AFP Functions 23

24 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPAllocTemporaryDirHandle
Allocates a directory handle for an AFP directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPAllocTemporaryDirHandle (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 constr nstr8 N_FAR *AFPPath,
 NWDIR_HANDLE N_FAR *dirHandle,
 pnuint8 accessRights);

Delphi Syntax
uses calwin32

Function NWAFPAllocTemporaryDirHandle
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 const AFPPathString : pnstr8;
 Var dirHandle : NWDIR_HANDLE;
 accessRights : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the AFP base ID.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
AFPPath
(IN) Points to the AFP style directory path relative to AFPEntryID.

dirHandle
(OUT) Points to the NetWare directory handle.

accessRights
(OUT) Points to the effective rights the requesting user has on the directory.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The directory handles allocated by NWAFPAllocTemporaryDirHandle are automatically deallocated
when the task terminates.

NCP Calls
0x2222 35 11 AFP Alloc Temporary Directory Handle

See Also
NWAllocTemporaryDirectoryHandle, NWAllocTempNSDirHandle2 (Multiple and Inter-File
Services)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x890A NLM_INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899D NO_MORE_DIRECTORY_HANDLES

0x89A1 DIRECTORY_IO_ERROR
AFP Functions 25

26 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPASCIIZToLenStr
Changes a NULL-terminated string to a length-preceded string

NetWare Server:

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPASCIIZToLenStr (
 pnstr8 pbstrDstStr,
 const nstr8 N_FAR *pbstrSrcStr);

Delphi Syntax
uses calwin32

Function NWAFPASCIIZToLenStr
 (pbstrDstStr : pnstr8;
 const pbstrSrcStr : pnstr8
) : NWCCODE;

Parameters
pbstrDstStr

(OUT) Points to a length-preceded string of Delphi type.

pbstrSrcStr
(IN) Points to a NULL-terminated string.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWAFPASCIIZToLenStr returns the length of the string if it is greater than the predetermined
accepted size.

0x0000 SUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPCreateDirectory
Creates an AFP directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPCreateDirectory (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnuint8 finderInfo,
 pnstr8 AFPPathString,
 pnuint32 newAFPEntryID);

Delphi Syntax
uses calwin32

Function NWAFPCreateDirectory
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 finderInfo : pnuint8;
 AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the AFP base ID.
AFP Functions 27

28 NDK: Single

novdocx (E
N

U
) 01 February 2006
finderInfo
(IN) Points to AFPFILEINFO containing the finder information for the new directory.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.

newAFPEntryID
(OUT) Points to the ID of the newly created directory.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 35 13 AFP 2.0 Create Directory

See Also
NWAFPDelete (page 32), NWCreateDirectory (Multiple and Inter-File Services)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8984 NO_CREATE_PRIVILEGES

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPCreateFile
Creates an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPCreateFile (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint8 delExistingFile,
 pnuint8 finderInfo,
 pnstr8 AFPPathString,
 pnuint32 newAFPEntryID);

Delphi Syntax
uses calwin32

Function NWAFPCreateFile
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 delExistingFile : nuint8;
 finderInfo : pnuint8;
 AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory’s entry location.
AFP Functions 29

30 NDK: Single

novdocx (E
N

U
) 01 February 2006
AFPEntryID
(IN) Specifies the AFP base ID.

delExistingFile
(IN) Specifies whether to delete the file of the same name (0 = do not delete).

finderInfo
(IN) Points to AFPFILEINFO containing the finder information for the new file.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.

newAFPEntryID
(OUT) Points to the ID of the newly created directory.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x890A NLM_INVALID_CONNECTION

0x8980 ERR_LOCK_FAIL

0x8981 NO_MORE_FILE_HANDLES

0x8983 IO_ERROR_NETWORK_DISK

0x8984 NO_CREATE_PRIVILEGES

0x8987 WILD_CARDS_IN_CREATE_FILE_NAME

0x8988 INVALID_FILE_HANDLE

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
The file resulting from NWAFPCreateFile is not opened; it is created as a normal Read/Write file
with the system and hidden bits cleared.

For AFPPathString, byte 0 must be the length of the file name. The file name begins at byte 1 of
the string. (Only include the file name—not the full path name—when calling NWAFPCreateFile.)

NCP Calls
0x2222 35 14 AFP 2.0 Create File

See Also
NWOpenNSEntry, NWOpenDataStream (Multiple and Inter-File Services), NWAFPDelete
(page 32), NWAFPRename (page 49)

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

0x89FF File Exists Error
AFP Functions 31

32 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPDelete
Deletes an AFP file or directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPDelete (
 NWCONN_HANDLE conn
 nuint16 volNum,
 nuint32 AFPEntryID,
 const nstr8 N_FAR *AFPPathString);

Delphi Syntax
uses calwin32

Function NWAFPDelete
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 const AFPPathString : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the AFP base ID.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The directories to be deleted must be empty. Files to be deleted must be closed by all users.

For AFPPathString, byte 0 must be the length of the file name. The file name begins at byte 1 of
the string. Include only the file name—not the full path name—when calling NWAFPDelete.

NCP Calls
0x2222 35 03 AFP Delete

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B Bad AFP Entry ID

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x899F DIRECTORY_ACTIVE

0x89A0 DIRECTORY_NOT_EMPTY

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

0x89FF File Exists Error
AFP Functions 33

34 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
NWAFPCreateDirectory (page 27), NWAFPCreateFile (page 29), NWAFPGetEntryIDFromName
(page 39), NWAFPGetEntryIDFromHandle (page 37), NWAFPGetEntryIDFromPathName
(page 41)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPDirectoryEntry
Tests a directory entry to see if it is an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPDirectoryEntry (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 constr nstr8 N_FAR *path);

Delphi Syntax
uses calwin32

Function NWAFPDirectoryEntry
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle for the path name.

path
(IN) Points to the path relative to dirHandle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
AFP Functions 35

36 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
The dirHandle and path parameters must be given in the DOS name space format.

NCP Calls
0x2222 22 5 Get Volume Number
0x2222 22 21 Get Volume Info With Handle
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 35 12 AFP Get Entry ID From Path Name
0x2222 35 15 AFP 2.0 Get File
0x2222 87 06 Obtain File or Subdirectory Information
0x2222 104 1 Ping for NDS NCP

See Also
NWAFPGetEntryIDFromPathName (page 41), NWGetVolumeInfoWithHandle (Volume
Management), NWParsePath (Multiple and Inter-File Services), NWGetVolumeNumber (Volume
Management), NWAFPGetFileInformation (page 43), NWGetOwningNameSpace (Multiple and
Inter-File Services)

0x0000 DOS File

0x0001 Macintosh File

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x89A2 READ_FILE_WITH_RECORD_LOCKED
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPGetEntryIDFromHandle
Returns an AFP entry ID for the specified NetWare handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwcaldef.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromHandle (
 NWCONN_HANDLE conn,
 const nuint8 N_FAR *NWHandle,
 pnuint16 volNum,
 pnuint32 AFPEntryID,
 pnuint8 forkIndicator);

Delphi Syntax
uses calwin32

Function NWAFPGetEntryIDFromHandle
 (conn : NWCONN_HANDLE;
 const NWHandle : pnuint8;
 volNum : pnuint16;
 AFPEntryID : pnuint32;
 forkIndicator : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NWHandle
(IN) Points to the 6-byte NetWare handle for the path name.

volNum
(OUT) Points to the volume number of the directory entry location.

AFPEntryID
AFP Functions 37

38 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the AFP file entry ID.

forkIndicator
(OUT) Points to the fork indicator (0 = data; 1 = resource).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
AFPEntryID points to the AFP file ID. It is not the AFP base ID. INVALID_PATH will be
returned if you use the AFPEntryID as the AFP base ID.

NCP Calls
0x2222 35 06 AFP Get Entry ID From NetWare Handle

See Also
NWAFPGetEntryIDFromName (page 39), NWAFPGetEntryIDFromPathName (page 41),
NWAFPGetFileInformation (page 43), NWAFPAllocTemporaryDirHandle (page 24)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPGetEntryIDFromName
Returns a unique AFP entry ID from an AFP entry ID of a parent and a modifying path

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromName (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 const nstr8 N_FAR *AFPPathString,
 pnuint32 newAFPEntryID);

Delphi Syntax
uses calwin32

Function NWAFPGetEntryIDFromName
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 const AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the unique AFP base ID.

AFPPathString
AFP Functions 39

40 NDK: Single

novdocx (E
N

U
) 01 February 2006
(IN) Points to the path string modifying AFPEntryID.

newAFPEntryID
(OUT) Points to the AFP entry ID of the given path.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 35 04 AFP Get Entry ID From Name

See Also
NWAFPGetEntryIDFromHandle (page 37), NWAFPGetEntryIDFromPathName (page 41)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_RRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPGetEntryIDFromPathName
Returns a unique 32-bit AFP file or directory ID, given a combination of path and directory handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromPathName (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 pnuint32 AFPEntryID);

Delphi Syntax
uses calwin32

Function NWAFPGetEntryIDFromPathName
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8;
 AFPEntryID : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle for path.

path
(IN) Points to the path given relative to the directory handle.

AFPEntryID
(OUT) Points to the AFP base ID.
AFP Functions 41

42 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The directory base and path specifications must be given in DOS name space format.

NCP Calls
0x2222 35 12 AFP Get Entry ID From Path Name

See Also
NWAFPGetEntryIDFromHandle (page 37), NWAFPGetEntryIDFromName (page 39),
NWAFPGetFileInformation (page 43), NWAFPAllocTemporaryDirHandle (page 24),
NWAllocTempNSDirHandle2 (Multiple and Inter-File Services)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_RRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPGetFileInformation
Returns AFP information for a directory or file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint16 reqMask,
 const nstr8 N_FAR *AFPPathString,
 nuint16 structSize,
 NW_AFP_FILE_INFO N_FAR *AFPFileInfo);

Delphi Syntax
uses calwin32

Function NWAFPGetFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 reqMask : nuint16;
 const AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPFileInfo : NW_AFP_FILE_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.
AFP Functions 43

44 NDK: Single

novdocx (E
N

U
) 01 February 2006
AFPEntryID
(IN) Specifies the unique AFP base ID.

reqMask
(IN) Specifies the request bit mask information.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.

structSize
(IN) Specifies the request AFPFILEINFO buffer size.

AFPFileInfo
(OUT) Points to AFPFILEINFO returning AFP file information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Valid bit map information request values follow for reqMask : (Bits can be ORed together.)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_I/O_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF Failure. NO_FILES_FOUND_ERROR

C Values Delphi Values Value Names

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 35 15 AFP 2.0 Get File

See Also
NWAFPSetFileInformation (page 56), NWAFPScanFileInformation (page 52)

0x0008 $0008 AFP_GET_ACCESS_DATE

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

C Values Delphi Values Value Names
AFP Functions 45

46 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPOpenFileFork
Opens an AFP file fork from a DOS environment

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPOpenFileFork (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint8 forkIndicator,
 nuint8 accessMode,
 const nstr8 N_FAR *AFPPathString,
 pnuint32 fileID,
 pnuint32 forkLength,
 pnuint8 NWHandle,
 NWFILE_HANDLE N_FAR *DOSFileHandle);

Delphi Syntax
uses calwin32

Function NWAFPOpenFileFork
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 forkIndicator : nuint8;
 accessMode : nuint8;
 const AFPPathString : pnstr8;
 fileID : pnuint32;
 forkLength : pnuint32;
 NWHandle : pnuint8;
 Var DOSFileHandle : NWFILE_HANDLE
) : NWCCODE;
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the AFP base ID.

forkIndicator
(IN) Specifies the data or resource fork indicator:

0 Data
1 Resource

accessMode
(IN) Specifies the file access mode indicator.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.

fileID
(OUT) Points to the file entry ID.

forkLength
(OUT) Points to the length of the opened fork.

NWHandle
(OUT) Points to the 6-byte NetWare file handle.

DOSFileHandle
(OUT) Points to the file handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8980 FILE_IN_USE_ERROR

0x8981 NO_MORE_FILE_HANDLES

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK
AFP Functions 47

48 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
If a file does not exist, NWAFPOpenFileFork returns NO_FILES_FOUND_ERROR.

If an existing file does not have a resource or data file fork associated with it, NWAFPOpenFileFork
will automatically create and open the specified file fork.

accessMode can have the following values:

NCP Calls
0x2222 35 08 AFP Open File Fork

See Also
NWAFPCreateFile (page 29), NWAFPGetFileInformation (page 43),
NWAFPGetEntryIDFromName (page 39)

0x8993 NO_READ_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C Invalid AFP Path String

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF LOCK_ERROR, NO_FILES_FOUND_ERROR

C Value Delphi Value Name

0x0001 $0001 AR_READ and AR_READ_ONLY

0x0002 $0002 AR_WRITE and AR_WRITE_ONLY

0x0004 $0004 AR_DENY_READ

0x0008 $0008 AR_DENY_WRITE

0x0010 $0010 AR_COMPATIBILITY
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWAFPRename
Renames an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPRename (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPSourceEntryID,
 nuint32 AFPDestEntryID,
 const nstr8 N_FAR *AFPSrcPath,
 const nstr8 N_FAR *AFPDstPath);

Delphi Syntax
uses calwin32

Function NWAFPRename
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPSourceEntryID : nuint32;
 AFPDestEntryID : nuint32;
 const AFPSrcPath : pnstr8;
 const AFPDstPath : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.

AFPSourceEntryID
(IN) Specifies the AFP source base ID.
AFP Functions 49

50 NDK: Single

novdocx (E
N

U
) 01 February 2006
AFPDestEntryID
(IN) Specifies the AFP destination base ID.

AFPSrcPath
(IN) Points to the AFP source directory path relative to AFPSourceEntryID.

AFPDstPath
(IN) Points to the AFP destination directory path, relative to AFPDestEntryID.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 35 07 AFP Rename

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8984 NO_CREATE_PRIVILEGES

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x898B NO_RENAME_PRIVILEGES

0x898E NO_FILES_AFFECTED_IN_USE

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8992 NO_FILES_RENAMED_NAME_EXISTS

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C Invalid AFP Path String

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
NWNSRename (Multiple and Inter-File Services), NWAFPGetEntryIDFromName (page 39)
AFP Functions 51

52 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPScanFileInformation
Scans a directory and returns AFP file/directory information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPScanFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnuint32 AFPLastSeenID,
 nuint16 searchMask,
 nuint16 reqMask,
 const nstr8 N_FAR *AFPPathString,
 nuint16 structSize,
 NW_AFP_FILE_INFO N_FAR *AFPFileInfo);

Delphi Syntax
uses calwin32

Function NWAFPScanFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 AFPLastSeenID : pnuint32;
 searchMask : nuint16;
 reqMask : nuint16;
 const AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPFileInfo : NW_AFP_FILE_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
volNum
(IN) Specifies the volume number of the directory entry location.

AFPEntryID
(IN) Specifies the AFP base ID.

AFPLastSeenID
(IN) Points to AFPEntryID.

searchMask
(IN) Specifies the search mask.

reqMask
(IN) Specifies the request bit mask information.

AFPPathString
(IN) Points to the AFP directory path relative to AFPEntryID.

structSize
(IN) Specifies the size of the AFPFILEINFO buffer.

AFPFileInfo
(OUT) Points to AFPFILEINFO returning AFP file information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_PATH

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
AFP Functions 53

54 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
AFPLastSeenID should be initialized to -1 on the first iteration.

Valid bit map information request values follow for reqMask. (Bits can be ORed together.)

NWSEARCH_MASK is defined as follows:

AFPFILEINFO attributes follow:

0x0001 = Search Mode
0x0002 = Search Mode

C Values Delphi Values Value Names

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE

0x0008 $0008 AFP_GET_ACCESS_DATE

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

C Values Delphi Values Value Names

0x0000 $0000 AFP_SA_NORMAL

0x0100 $0100 AFP_SA_HIDDEN

0x0200 $0200 AFP_SA_SYSTEM

0x0400 $0400 AFP_SA_SUBDIR

0x0800 $0800 AFP_SA_FILES

0xF00 $0F00 AFP_SA_ALL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

NCP Calls
0x2222 35 17 AFP 2.0 Scan File Information

See Also
NWAFPGetFileInformation (page 43)
AFP Functions 55

56 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPSetFileInformation
Sets AFP information for a file or directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPSetFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPBaseID,
 nuint16 reqMask,
 const nstr8 N_FAR *AFPPathString,
 nuint16 structSize,
 NW_AFP_SET_INFO N_FAR *AFPSetInfo);

Delphi Syntax
uses calwin32

Function NWAFPSetFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPBaseID : nuint32;
 reqMask : nuint16;
 const AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPSetInfo : NW_AFP_SET_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number of the directory entry location.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
AFPBaseID
(IN) Specifies the AFP base ID.

reqMask
(IN) Specifies the request bit mask information.

AFPPathString
(IN) Points to the AFP directory path relative to AFPBaseID.

structSize
(IN) Specifies the size of the AFPSETINFO buffer.

AFPSetInfo
(IN) Points to AFPSETINFO to set AFP file information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The following constants are used by NWAFPSetFileInformation to manipulate requestMask.
They are also used in by NWSEARCH_MASK in NWAFPScanFileInformation.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x890A NLM_INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8995 FILE_DETACHED

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF Failure; NO_FILES_FOUND_ERROR
AFP Functions 57

58 NDK: Single

novdocx (E
N

U
) 01 February 2006
These constants identify AFP entries to be included in NWAFPSetFileInformation.

Valid bit map information request values follow for reqMask: (Bits can be ORed together.)

C Values Delphi Values Value Names

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE

0x0008 $0008 AFP_GET_ACCESS_DATE

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

C Values Delphi Values Value Names

0x0000 $0000 AFP_SA_NORMAL

0x0100 $0100 AFP_SA_HIDDEN

0x0200 $0200 AFP_SA_SYSTEM

0x0400 $0400 AFP_SA_SUBDIR

0x0800 $0800 AFP_SA_FILES

0xF00 $0F00 AFP_SA_ALL

C Values Delphi Values Value Names

0x0001 $0001 AFP_SET_ATTRIBUTES

0x0004 $0004 AFP_SET_CREATE_DATE

0x0008 $0008 AFP_SET_ACCESS_DATE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
AFPSETINFO attributes follow:

0x0001 = Search Mode
0x0002 = Search Mode
0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

NCP Calls
0x2222 35 16 AFP 2.0 Set File Information

See Also
NWAFPGetFileInformation (page 43), NWAFPScanFileInformation (page 52), NWSetLongName
(Multiple and Inter-File Services)

0x0010 $0010 AFP_SET_MODIFY_DATETIME

0x0020 $0020 AFP_SET_BACKUP_DATETIME

0x0040 $0040 AFP_SET_FINDER_INFO

0x8000 $8000 AFP_SET_PRO_DOS_INFO

C Values Delphi Values Value Names
AFP Functions 59

60 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWAFPSupported
Reports whether the AFP is supported on a server volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: AFP

Syntax
#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPSupported (
 NWCONN_HANDLE conn,
 nuint16 volNum);

Delphi Syntax
uses calwin32

Function NWAFPSupported
 (conn : NWCONN_HANDLE;
 volNum : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number to test.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 AFP supported

Nonzero AFP not supported
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 22 6 Get Volume Name
0x2222 35 12 AFP Get Entry ID From Path Name

See Also
NWReadNSInfo (Multiple and Inter-File Services), NWGetVolumeName (Volume Management),
NWAFPGetEntryIDFromPathName (page 41)
AFP Functions 61

62 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

4
novdocx (E

N
U

) 01 February 2006
4AFP Structures

This documentation alphabetically lists the AFP structures and describes their purpose, syntax, and
fields.
AFP Structures 63

64 NDK: Single

novdocx (E
N

U
) 01 February 2006
NW_AFP_FILE_INFO
Defines file information for AFP files

Service: AFP

Defined In: nwafp.h

Structure
typedef struct
{
 nuint32 entryID ;
 nuint32 parentID ;
 nuint16 attributes ;
 nuint32 dataForkLength ;
 nuint32 resourceForkLength ;
 nuint16 numOffspring ;
 nuint16 creationDate ;
 nuint16 accessDate ;
 nuint16 modifyDate ;
 nuint16 modifyTime ;
 nuint16 backupDate ;
 nuint16 backupTime ;
 nuint8 finderInfo [32];
 nstr8 longName [34];
 nuint32 ownerID ;
 nstr8 shortName [14];
 nuint16 accessPrivileges ;
 nuint8 proDOSInfo [6];
} NW_AFP_FILE_INFO, AFPFILEINFO;

Delphi Structure
uses calwin32

AFPFILEINFO = packed Record
 entryID : nuint32;
 parentID : nuint32;
 attributes : nuint16;
 dataForkLength : nuint32;
 resourceForkLength : nuint32;
 numOffspring : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 longName : Array[0..33] Of nstr8;
 ownerID : nuint32;
 shortName : Array[0..13] Of nstr8;
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
 accessPrivileges : nuint16;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields
entryID

Specifies the unique AFP identifier of a file or directory.

parentID
Specifies the unique AFP identifier for the parent directory. The root will be 0.

attributes
Specifies the set of bits identifying the entry’s attributes:

0x0001 = Search Mode
0x0002 = Search Mode
0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

dataForkLength
Specifies the data size of the target AFP file. If pathModString specifies an AFP directory,
dataForkLength returns a zero (0).

resourceForkLength
Specifies the resource fork size of the target AFP file. If pathModString specifies an AFP
directory, resourceForkLength returns a zero.

numOffspring
Specifies the number of files and subdirectories contained within the specified directory. If the
AFP directory or file path specifies an AFP file, numOffspring returns a zero (0).

creationDate
Specifies the creation date (in AFP format) of the target directory or file.

accessDate
AFP Structures 65

66 NDK: Single

novdocx (E
N

U
) 01 February 2006
Specifies when the target AFP file was last accessed (returned in AFP format). If
pathModString specifies an AFP directory, accessDate returns a zero.

modifyDate
Specifies the last modified date (in AFP format) of the target AFP file. If pathModString
specifies an AFP directory, modifyDate returns zero.

modifyTime
Specifies the last modified time (in AFP format) of the target AFP file. If pathModString
specifies an AFP directory, modifyTime returns zero.

backupDate
Specifies the last backup date (in AFP format) of the specified directory or file.

backupTime
Specifies the last backup time (in AFP format) of the specified directory or file.

finderInfo
Specifies the 32-byte finder information structure associated with each AFP directory or file.

longName
Specifies the AFP directory or file name of the specified directory or file. An AFP directory or
file name can be from 1 to 31 characters long. longName is a null-terminated ASCII string.
One extra byte has been added for the NULL terminator and another byte has been added to
ensure word alignment.

ownerID
Specifies the 4-byte bindery object ID of the object creating or last modifying the file.

shortName
Specifies the NetWare® directory or file name of the specified directory or file in the DOS
name space. A NetWare directory or file name is in DOS 8.3 format. shortName is a null-
terminated ASCII string. One extra byte has been added for the NULL terminator and another
byte has been added to ensure word alignment.

accessPrivileges
Specifies the one-word bit mask of the calling station’s privileges for accessing the specified
file or directory.

proDOSInfo
Specifies the 6-byte structure defined in Apple documentation.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NW_AFP_SET_INFO
Defines Apple file attributes

Service: AFP

Defined In: nwafp.h

Structure
typedef struct
{
 nuint16 attributes ;
 nuint16 creationDate ;
 nuint16 accessDate ;
 nuint16 modifyDate ;
 nuint16 modifyTime ;
 nuint16 backupDate ;
 nuint16 backupTime ;
 nuint8 finderInfo [32];
 nuint8 proDOSInfo [6];
} NW_AFP_SET_INFO, AFPSETINFO;

Delphi Structure
uses calwin32

AFPSETINFO = packed Record
 attributes : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields
attributes

Specifies the file attributes.

creationDate
Specifies the creation date (in AFP format) of the target directory or file.

accessDate
Specifies when the target AFP file was last accessed (returned in AFP format).

modifyDate
AFP Structures 67

68 NDK: Single

novdocx (E
N

U
) 01 February 2006
Specifies the last modified date (in AFP format) of the target AFP file.

modifyTime
Specifies the last modified time (in AFP format) of the target AFP file.

backupDate
Specifies the last date (in AFP format) the file was backed up.

backupTime
Specifies the time (in AFP format) the file was last backed up.

finderInfo
Specifies the information defined in Apple documentation.

proDOSInfo
Specifies the 6-byte structure defined in Apple documentation.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
RECPKT_AFPFILEINFO
Is the structure actually returned from the NCP call

Service: AFP

Defined In: nwafp.h

Structure
typedef struct
{
 nuint32 entryID ;
 nuint32 parentID ;
 nuint16 attributes ;
 nuint32 dataForkLength ;
 nuint32 resourceForkLength ;
 nuint16 numOffspring ;
 nuint16 creationDate ;
 nuint16 accessDate ;
 nuint16 modifyDate ;
 nuint16 modifyTime ;
 nuint16 backupDate ;
 nuint16 backupTime ;
 nuint8 finderInfo [32];
 nstr8 longName [32];
 nuint32 ownerID ;
 nstr8 shortName [12];
 nuint16 accessPrivileges ;
 nuint8 proDOSInfo [6];
} RECPKT_AFPFILEINFO;

Delphi Structure
uses calwin32

RECPKT_AFPFILEINFO = packed Record
 entryID : nuint32;
 parentID : nuint32;
 attributes : nuint16;
 dataForkLength : nuint32;
 resourceForkLength : nuint32;
 numOffspring : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 longName : Array[0..31] Of nstr8;
 ownerID : nuint32;
 shortName : Array[0..11] Of nstr8;
AFP Structures 69

70 NDK: Single

novdocx (E
N

U
) 01 February 2006
 accessPrivileges : nuint16;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields
entryID

Specifies the unique AFP identifier of a file or directory.

parentID
Specifies the unique AFP identifier for the parent directory. The root will be 0.

attributes
Specifies the set of bits identifying the entry’s attributes:

0x0001 = Search Mode
0x0002 = Search Mode
0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

dataForkLength
Specifies the data size of the target AFP file. If pathModString specifies an AFP directory,
dataForkLength returns a zero (0).

resourceForkLength
Specifies the resource fork size of the target AFP file. If pathModString specifies an AFP
directory, resourceForkLength returns a zero.

numOffspring
Specifies the number of files and subdirectories contained within the specified directory. If the
AFP directory or file path specifies an AFP file, numOffspring returns a zero (0).

creationDate
Specifies the creation date (in AFP format) of the target directory or file.

accessDate
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Specifies when the target AFP file was last accessed (returned in AFP format). If
pathModString specifies an AFP directory, accessDate returns a zero.

modifyDate
Specifies the last modified date (in AFP format) of the target AFP file. If pathModString
specifies an AFP directory, modifyDate returns zero.

modifyTime
Specifies the last modified time (in AFP format) of the target AFP file. If pathModString
specifies an AFP directory, modifyTime returns zero.

backupDate
Specifies the last backup date (in AFP format) of the specified directory or file.

backupTime
Specifies the last backup time (in AFP format) of the specified directory or file.

finderInfo
Specifies the 32-byte finder information structure associated with each AFP directory or file.

longName
Specifies the AFP directory or file name of the specified directory or file. An AFP directory or
file name can be from 1 to 31 characters long.

ownerID
Specifies the 4-byte bindery object ID of the object creating or last modifying the file.

shortName
Specifies the NetWare® directory or file name of the specified directory or file in the DOS
name space. A NetWare directory or file name is in DOS 8.3 format.

accessPrivileges
Specifies the one-word bit mask of the calling station’s privileges for accessing the specified
file or directory.

proDOSInfo
Specifies the 6-byte structure defined in Apple documentation.
AFP Structures 71

72 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

5
novdocx (E

N
U

) 01 February 2006
5Direct File System Concepts

This documentation describes Direct File System, its functions, and features.

NetWare® Direct File System (DFS) functions provide a method of bypassing the NetWare disk
caching and TTS subsystems. The NetWare cache and NetWare TTS provide the best possible
throughput and should not normally be bypassed. However, several applications exist where this
bypass might be desirable:

• Large database packages typically provide their own caching and transaction tracking facilities,
tailored to specific requirements and integrated into the package, making it desirable to use
their caching and transaction facilities instead of those provided by NetWare. (Performance
degradation results when both are used together.)

• Backup applications often access large amounts of data not being accessed by other
applications. If these accesses are made through the cache, the cache becomes non-relevant for
all other accesses, and general server performance suffers for other users.

• Some utilities might require the ability to specify exactly where files are placed so that volumes
can be defragmented and files accessed optimally.

The DFS functions provide a standardized solution by bypassing the NetWare disk caching and TTS
subsystems, while providing more direct control of file allocation. The DFS functions fall into two
groups: basic direct mode file I/O, and file allocation primitives.

The following figure illustrates the DFS as it interfaces with the file system, applications, NLM
applications, and other portions of the NetWare OS:

Figure 5-1 DFS Interface Flow Chart

5.1 File Allocation
The DFS allocation functions allow a great deal of control in determining where and how file space
is allocated. The application NLM might allow the OS to allocate required space for a file using OS
default allocation, or might request allocation to be on a specific volume segment and/or specify the
Direct File System Concepts 73

74 NDK: Single

novdocx (E
N

U
) 01 February 2006
actual volume blocks to be allocated. File allocation can be used to fill holes in sparse files or to
extend existing files. Writing to a nonexistent area in a file (either to a hole or beyond the allocated
file space) is not allowed with the DFS functions.

• “Impact of Striping” on page 74
• “Setting the File Size and Zero-Filling with DFS” on page 74

See the following related tasks as well:

• Section 6.1, “Creating a File,” on page 81
• Section 6.2, “Extending Files Using Allocation,” on page 81
• Section 6.3, “Extending Files Using Specific Allocation,” on page 82

5.1.1 Impact of Striping
Causing a file to be allocated with striping has different effects on different configurations. A drive
array normally provides optimum throughput using internal striping, so specifying striping by the
OS in this case would defeat optimum throughput, while specifying striping on files on a SCSI host
adapter providing disconnect with multiple drives normally provides more optimal performance.
Striping does not necessarily provide significant performance benefits for extremely large files
accessed in true random fashion, but provides performance benefits when accessed sequentially.

5.1.2 Setting the File Size and Zero-Filling with DFS
The size of a file can be specified independent of the actual file space allocated by calling
DFSSetEndOfFile (page 105). Reads attempted beyond the current end-of-file (indicated by the file
size) are always rejected as an attempted operation beyond the current file size.

If the file size is expanded beyond its previous value, the additional file area incorporated in the new
file size is zero-filled, provided that the file space is actually allocated. If the file size specified is
smaller than the previously indicated file size and the returnTrunctatedBlocksFlag is
nonzero, blocks previously allocated beyond the newly defined file size are truncated, that is,
returned to the OS for future use.

The file size is also modified by calling DFSWrite (page 110) (only the "wait" version) indicating a
write to a file sector address beyond the current file size (the file size is updated accordingly) but
within the range of blocks allocated for the file. If the write does not start immediately following the
current file size, the intervening blocks are zero-filled.

When a file has additional space allocated at the end of the file by calling DFSExpandFile (page 89),
the additional file space is not zero-filled immediately. Subsequent writes to the file set a new file
size and eliminate the requirement to zero-fill the additional file space. Calling DFSSetEndOfFile
(page 105) also sets a new file size, and zero-fills any sectors in the new file size that are beyond the
previous file size.

When a file has additional space allocated to fill a hole in a sparse file, the DFSExpandFile
(page 89) function also zero-fills the additional space if the space is not beyond the current file size.

5.2 File Locks
All DFS application file, record, and field locks must be provided and managed by the DFS
application NLM. OS utilities that are designed to perform reorganization or relocation of DFS files
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
use an exclusive lock on the file, so that the lock fails if the file is currently in use by an application
NLM. An application NLM need only lock the file with a shared or nonexclusive lock to ensure that
an OS utility NLM has not exclusively locked the file for operations such as reorganization.

An application NLM should make sure that the current connection ID matches the connection ID of
the client so that OS Auditing is meaningful. However, auditing of database record and field
accesses require that the database application NLM perform its own auditing, since DFS is not
aware of the actual record and field definitions.

5.2.1 Input and Output
An open file is in one of two possible modes: normal mode or direct mode. In a normal open mode,
any of the valid opens are used. For direct open mode, the DFSsopen (page 107) function is used. If
a file is already open in normal mode and DFSsopen (page 107) is called, the file changes from the
normal mode to the direct mode.

In this condition, any files in the normal open mode can continue to be read, but attempts to write to
the file fail. Programs using the direct mode can read and write to the file successfully. The only way
to write to files in the normal open mode again is by closing all direct mode opens, and closing and
re-opening the normal mode open.

When a file is successfully opened for direct file I/O by calling DFSsopen (page 107), the server
opens the file, flushes all cache entries for the file, and flags the file so that future I/Os do not use
caching and TTS functions. Subsequent file I/O must be done using the I/O functions DFSRead
(page 93), DFSReadNoWait (page 95), DFSWrite (page 110), or DFSWriteNoWait (page 112). The
"no wait" versions of these functions do not block execution of the thread until completion, thus
allowing a single thread to have multiple outstanding DFS I/O functions.

When direct file I/O operations are completed, the file must be closed by calling DFSclose
(page 86). The file must not be used for normal I/O writes until all handles are relinquished for the
file by calling DFSclose (page 86), followed by a normal open. If a normal open exists, it must be
closed and reopened for read/writes.

When a file is in Direct mode, writes must not be made to areas of the file where a hole exists
(sparse files) or beyond the file’s currently allocated last block address. Read operations to these
areas are indicated successful and the data area is zeroed.

Also, a file cannot be extended while in Direct mode by writing beyond its current extents. A
separate call to DFSExpandFile (page 89) must be made to extend a file or to fill in holes in a file
area.

5.3 File Structures
Files in direct file mode can be viewed as an array of sectors numbered from zero to n, where n is the
last sector in the last block currently allocated for the file. All direct file I/O must be done in
multiples of sectors (one or more). The sectors allocated in the file are actually allocated on an
allocation block size, which is either 4 KB, 8 KB, 16 KB, 32 KB, or 64 KB with NetWare® (the
default allocation block size for NetWare 3.x is 4 KB). The allocation size must be specified for a
volume when the volume is created.

It is possible to create files that have blocks allocated for high addresses, but do not have blocks
allocated for intermediate addresses. (Such files are called sparse files, and have holes in their actual
allocation space). Normal (non-direct) I/O allows writes to be made into these holes or beyond the
Direct File System Concepts 75

76 NDK: Single

novdocx (E
N

U
) 01 February 2006
current end of allocated space for a file, in which case space is automatically allocated to fill the hole
or extend the file. However, the Direct File System does not allow such writes when the file is in
direct mode. Files must be extended before writes can be issued to holes or beyond the end of the
allocated space for a file.

The logical block address of the blocks in the above array are referred to as File Block Addresses,
and the associated logical sector addresses are referred to as File Sector Addresses. These addresses
exist even for holes in the file, though actual storage space might not have been allocated for the
corresponding locations on the file.

No space is allocated when a file is initially created by DFScreat (page 87) or DFSsopen (page 107).
All space must be allocated by the application process for files in direct mode (and must be allocated
on the same volume).

When a file not currently opened by another process is opened in direct mode, the OS creates a turbo
FAT for the file if one does not currently exist, flushes the cache of entries for the file, and marks the
file as open in direct mode (only direct mode operations are allowed).

The following figures shows a file with 4 KB allocation block size and only one block allocated:

Figure 5-2 One Allocated Block (4 KB)

The following figure shows a file with 4 KB allocation block size and four blocks allocated (no
holes):

Figure 5-3 Four Allocated Blocks (4 KB each with no holes)

The following figure shows a file with 4 KB allocation block size and three blocks allocated (with
hole):

Figure 5-4 Three Allocated Blocks (4 KB each with hole)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The following figure shows a file with 64 KB allocation and three blocks allocated (with hole):

Figure 5-5 Three Allocated Blocks (64 KB each with hole)

The following figure shows a file with 8 KB allocation block size and three blocks allocated (no
holes):

Figure 5-6 Three Allocated Blocks (8 KB each with no holes)

5.4 Volume Structures
NetWare® volumes can be viewed as an array of allocation blocks numbered from zero to n, where
n is the total number of allocation blocks in all segments of the volume (volume segments), minus
one. Volumes can be extended by adding additional segments, which are logically added at the end
of the list of current volume segments. Each logical block number in the logical array of volume
blocks is referred to by a Volume Block Number. There are no holes in the volume block numbers.
(Using this organization, a specific volume block number also indirectly indicates the segment upon
which it occurs in the list of volume segments.)

NetWare supports a maximum of 255 volumes, with a NetWare volume consisting of from 1 to 64
segments.

Multiple volume segments can exist on a single logical NetWare partition on a drive. It is also
possible that a drive has a single volume segment on it. A Logical partition has blocks numbered
logically from zero through the last block available in the partition, and does not include the
physical partition blocks which are allocated for Hot Fix™ and Mirroring tables at the time the
NetWare partition is created.

The following figure shows a volume with a single volume segment (9444 volume blocks):

Figure 5-7 Single Volume Segment
Direct File System Concepts 77

78 NDK: Single

novdocx (E
N

U
) 01 February 2006
The following figure shows a volume with four volume segments (25288 volume blocks):

Figure 5-8 Four Volume Segments

5.5 Return Values
The following table lists and defines DFS return values:

Decimal Constant Description

0 DFSNormalCompletion The operation was completed as specified.

1 DFSInsufficientSpace The required space does not currently exist on the
volume to expand the file as requested.

4 DFSVolumeSegmentDeactivated The volume segments on which the file is located
have been deactivated by the operating system.

16 DFSTruncationFailure DFSSetEndOfFile (page 105) detected that the
caller requested excess blocks to be truncated, but
the file was open for other connections, causing
the request to be rejected.

17 DFSHoleInFileError An operation (read or write) was requested for one
or more file sectors where file space has not been
allocated (a sparse file). The buffer is also zeroed
for read functions.

18 DFSParameterError The function caller supplied an invalid parameter.

19 DFSOverlapError An attempt was made to allocate additional file
space where file blocks already exist.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
5.6 Direct File System Functions
These functions allow you to directly manage file systems:

20 DFSSegmentError A volume segment number was requested that
was not one of the volume segments of the
volume.

21 DFSBoundaryError One or more blocks in the range requested are not
currently available, or are not in the volume or
volume segment specified.

22 DFSInsufficientLimboFileSpace The request could not be completed because
there were not enough contiguous limbo blocks to
complete the request successfully.

23 DFSNotInDirectFileMode A function requiring a file to be opened in direct
mode (using DFSsopen (page 107) or DFScreat
(page 87)) was requested, but the file is not
currently opened in direct mode.

24 DFSOperationBeyondEndOfFile A read operation was requested beyond the end-
of-file (current file size).

129 DFSOutOfHandles All available handles for the file are already in use.

131 DFSHardIOError Problem decompressing or insufficient allocatable
space.

136 DFSInvalidFileHandle A DFS function was called using a file handle that
is not valid—typically an open was omitted or the
user inadvertently closed the file before attempting
this access.

147 DFSNoReadPrivilege The current connection does not have read
privileges for the file.

148 DFSNoWritePrivilege The current connection does not have write
privileges for the file.

149 DFSFileDetached The file system will not allow further processing on
this handle.

150 DFSInsufficientMemory The Direct File System could not obtain sufficient
memory to complete the requested function.

152 DFSInvalidVolume The volume number specified does not exist or not
mounted.

-1 DFSFailedCompletion The requested operation was not completed.

DFSclose Closes a file that is open in direct file mode.

DFScreat Creates and opens a file in direct file mode, and
returns a file handle.

DFSExpandFile Expands a file with a range of contiguous blocks.

Decimal Constant Description
Direct File System Concepts 79

80 NDK: Single

novdocx (E
N

U
) 01 February 2006
DFSFreeLimboVolumeSpace Frees a number of limbo blocks on a volume.

DFSRead Reads sectors from a file in direct file mode (sleeps
until completion).

DFSReadNoWait Reads sectors from a file in direct file mode (returns
immediately after initiation).

DFSReturnFileMappingInformation Returns file extents, each with number of blocks and
starting file and volume block numbers.

DFSReturnVolumeBlockInformation Returns volume block usage bitmap.

DFSReturnVolumeMappingInformation Returns information about a volume required for file
allocation.

DFSSetEndOfFile Sets the file size of a file.

DFSsopen Opens a file in direct file mode.

DFSWrite Writes sectors into a file using DFS (sleeps until
completion).

DFSWriteNoWait Writes sectors into a file using DFS (returns
immediately after initiation).
 and Intra-File Services

6
novdocx (E

N
U

) 01 February 2006
6Direct File System Tasks

This documentation describes common tasks associated with Direct File System.

6.1 Creating a File
Files can be created by calling DFScreat (page 87). This creates a file on the specified volume with
the permissions indicated, and leaves the file open in Direct File Mode (the file must later be
closed). DFScreat (page 87) is the DFS equivalent of creat (page 207).

Create files by calling DFSsopen (page 107) (providing that the file does not currently exist).
DFSsopen (page 107) is the DFS equivalent of sopen (page 238).

6.2 Extending Files Using Allocation
Extend an NLM application file using default file allocation:

1 Determine if space is available.

Call DFSReturnVolumeMappingInformation (page 101) to obtain the volume size, allocation
unit size, sector size, number of free blocks, number of blocks available in deleted files,
number of blocks not available in deleted files, and so forth. If the desired number of blocks is
not available on the volume, skip to Step 4.

Since the OS is multitasking, it is possible (and likely) that other processes allocate (and free)
volume blocks at any time, making information returned by
DFSReturnVolumeMappingInformation (page 101) obsolete. As a result you must design DFS
NLM applications to repeat this procedure multiple times to deal with the failure of
DFSExpandFile (page 89) and DFSFreeLimboVolumeSpace (page 91).

2 Determine the current allocation of the file, specifically the file block where the file is to be
extended.
Call DFSReturnFileMappingInformation (page 97) to determine the file’s current mapping,
including volume segments and blocks allocated. The starting file block to be extended must be
specified in the extend request made in Step 3.
A file might not be extended by specifying file block addresses that already exist. This means
that an extend request to allocate file space for a hole in a sparse file must not specify a number
or contiguous blocks that exceed the size of the hole.

3 Allocate blocks to expand the file.
Call DFSExpandFile (page 89) specifying the number of blocks to be extended and wildcards
(-1) for the volume block number and optionally for the volume segment number. This allows
DFS to select the range of contiguous blocks used to extend the file.
For normal files, extending a file a single block at a time and specifying wildcards for both the
volume block address and the volume segment is identical in function to letting the NetWare®
OS allocate for normal files.
Specifying a wildcard segment number in conjunction with a wildcard volume block address
allows the OS to alternate its selection of volume segments for file allocation, thus facilitating
file striping on systems where it is advantageous to stripe files. Specifying a larger number of
Direct File System Tasks 81

82 NDK: Single

novdocx (E
N

U
) 01 February 2006
blocks with a wildcard volume segment stripes the file (provided that multiple volume
segments exist) with the larger granularity. If there is not enough contiguous available space to
expand the file by the requested number of blocks, applications may be required to make
several calls specifying smaller request sizes, or fail the request.
If the return code indicates that the above operation was not successful, proceed to Step 4.
Otherwise, the file has been extended as requested.

4 Free up volume space.
Call DFSFreeLimboVolumeSpace (page 91) specifying the volume number and the requested
number of blocks to be freed. This causes one or more deleted files to be purged from the
volume in order of time of deletion. Go to Step 1.

6.3 Extending Files Using Specific Allocation
Extend an NLM application file by selecting the volume segments and/or blocks to be allocated:

1 Determine if space is available.

Call DFSReturnVolumeMappingInformation (page 101) to obtain the volume size, allocation
unit size, sector size, number of free blocks, number of blocks available in deleted files,
number of blocks not available in deleted files, and so forth. If adequate space for the file
extension is not available, go to Step 5.

2 Determine the current allocation for the file.
Call DFSReturnFileMappingInformation (page 97) to determine the file’s current mapping,
including volume segments and blocks allocated. This information is required to determine
where to extend a file.
A file may not be extended by specifying file block addresses which already exist. This means
that an extend request to allocate file space for a hole in a sparse file must not specify a number
or contiguous blocks which exceed the size of the hole.

3 Determine the available blocks on a volume.
Call DFSReturnVolumeBlockInformation (page 99) to obtain a bit map of available blocks on
the desired volume. Determine from the bitmap a contiguous range of blocks large enough to
extend the file as needed.
As a result of multitasking, the bitmap of available blocks is valid only at the moment it is
obtained, and may have changed by the time an application NLM requests a specific range of
blocks to be allocated for a file (possibly requiring this step to be repeated multiple times).
Call DFSExpandFile (page 89) to specify the range of contiguous available blocks selected
from the preceding bitmap. Specifying more than a single block causes the requested
contiguous blocks to be allocated from the same volume segment. A good return code indicates
that the requested function is completed.

4 Extend the file.
If enough contiguous space to expand the file the requested number of blocks is not available,
applications may be required to make several calls specifying smaller request sizes, or fail the
request.
If the return code indicates that the above operation was not successful, proceed to Step 5.
Some other module may have allocated the requested blocks, so the calling application must be
prepared to retry the operation several times.

5 Free up volume space.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Call DFSFreeLimboVolumeSpace (page 91) to specify the volume number and the requested
number of blocks to be freed. This causes one or more deleted files to be purged from the
volume in the order of the time of deletion. Go back to Step 1.
Direct File System Tasks 83

84 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

7
novdocx (E

N
U

) 01 February 2006
7Direct File System Functions

This documentation alphabetically lists the direct file system functions and describes their purpose,
syntax, parameters, and return values.

• “DFSclose” on page 86
• “DFScreat” on page 87
• “DFSExpandFile” on page 89
• “DFSFreeLimboVolumeSpace” on page 91
• “DFSRead” on page 93
• “DFSReadNoWait” on page 95
• “DFSReturnFileMappingInformation” on page 97
• “DFSReturnVolumeBlockInformation” on page 99
• “DFSReturnVolumeMappingInformation” on page 101
• “DFSSetDataSize” on page 103
• “DFSSetEndOfFile” on page 105
• “DFSsopen” on page 107
• “DFSWrite” on page 110
• “DFSWriteNoWait” on page 112
Direct File System Functions 85

86 NDK: Single

novdocx (E
N

U
) 01 February 2006
DFSclose
Closes a file currently open in Direct File Mode

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSclose (
 LONG fileHandle);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior successful call to DFSsOpen (the file must
have previously opened by DFSsOpen). After a file is closed, the file handle is no longer valid
and should not be reused.

Return Values

Remarks
Calling DFSclose causes the file to be closed (the handle becomes invalid). If DFSClose determines
that this was the last valid handle (no other opens outstanding for the file), the Direct File Mode flag
is reset, allowing a subsequent open file call to be either open (normal mode), or DFSsOpen (direct
mode). Remember, if a file is in direct mode, any programs with normal mode opens into the file are
able to read the file but not write to it (see “Input and Output” on page 75).

See Also
DFSsopen (page 107)

Decimal Hex Status Code Description

0 (0x00) DFSNormalCompletion The operation was completed as specified.

-1 DFSFailedCompletion An error occurred closing the file. If this
status is returned, errno is set to: 4
EBADF (Bad file number). If the function
does not complete successfully,
NetWareErrno is set.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFScreat
Creates and opens a file in Direct File Mode, returning a file handle to the called file

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFScreat (
 BYTE *fileName,
 LONG access,
 LONG flagBits);

Parameters
fileName

(IN) Points to the name of the file to be created. The filename must be NULL-terminated and
must include the path, including the volume name but not the server name.

access
(IN) Specifies the access permissions for the file.

flagBits
(IN) Specifies the following when a file is created:

0x0001 DELETE_FILE_ON_CREATE_BIT
0x0002 NO_RIGHTS_CHECK_ON_CREATE_BIT

Return Values

If -1 is returned, errno is set to

!= -1 The file now exists, is open, and is in direct mode. The return value is the file handle
assigned when the file was created.

== -1 An error occurred creating the file.

Decimal Constant Description

1 ENONENT No such file.
Direct File System Functions 87

88 NDK: Single

novdocx (E
N

U
) 01 February 2006
If the function does not complete successfully, NetWareErrno is set to

Remarks
Calling DFScreat causes DFS to create a file, or to truncate the file if it already exists and if the
current connection has write privileges. The name of the file to be created is given by the
filename parameter. If the file exists, it is truncated to contain no data and the preceding
permission setting is unchanged. The file is switched to direct mode, forcing subsequent file
accesses to be direct (The file must be extended using DFSExpandFile to provide required file
space). The file is left open and must be closed by a subsequent call to DFSclose.

Not all functions are allowed with this form of open once the file has been created. If additional
functions such as specifying a stream are required, the caller should close the file and open it again
by calling DFSsopen.

The access permissions are defined in FCNTL.H as follows:

If access is 0, the default value is O_CREAT, O_TRUNC, and O_WRONLY.

See Also
DFSclose (page 86), DFSExpandFile (page 89), DFSsopen (page 107)

6 EACCES Permission denied.

9 EINVAL Invalid argument.

Decimal Hex Constant

152 (0x98) ERR_INVALID_VOLUME

156 (0x9C) ERR_INVALID_PATH

Hex Constant Description

0x0000 O_RDONLY open for read only now if this wrap

0x0001 O_WRONLY open for write only

0x0002 O_RDWR open for read and write

0x0010 O_APPEND writes done at end of file

0x0020 O_CREAT create new file if one does not exist

0x0040 O_TRUNC truncate existing file

0x0080 O_EXCL exclusive open

Decimal Constant Description
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSExpandFile
Requests DFS to expand a file with a range of contiguous blocks

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSExpandFile (
 LONG fileHandle,
 LONG fileBlockNumber,
 LONG numberOfBlocks,
 LONG volumeBlockNumber,
 LONG segmentNumber);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen or DFScreat call.

fileBlockNumber
(IN) Specifies the beginning file logical block number where the additional contiguous space is
to be allocated.

numberOfBlocks
(IN) Specifies the number of contiguous blocks requested to be linked into the file allocation at
the starting location.

volumeBlockNumber
(IN) Specifies the beginning volume logical block number at which contiguous blocks are to be
allocated for the file. A wildcard value of -1 indicates that DFS can allocate the blocks
anywhere it can find the required contiguous space on the volume segment.

segmentNumber
(IN) Specifies the volume segment number where the contiguous blocks are to be allocated
when the logical volume block number is not specified (a wildcard volume block number was
provided). A wildcard value of -1 in this parameter indicates that DFS can allocate the blocks
in any volume segment on the volume where the specified number of contiguous free blocks
can be found.
Direct File System Functions 89

90 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values

Remarks
The DFSExpandFile function is required to expand a file or to write in a hole in a sparse file (
DFSWrite and DFSWriteNoWait cannot expand a file by writing beyond the current end of the file
or by writing in a hole in a sparse file. Also, normal (non-direct) writes which could normally
expand a file are rejected by the OS while a file is in direct file mode).

Since it is always possible that DFS might find that some of the blocks in the indicated range have
been allocated by other threads or processes after the caller determined that they were free, the caller
must handle this contingency. It is logical that the caller repeat the sequence of freeing limbo blocks
and attempting to expand several times before reducing the number of contiguous blocks requested
and making multiple requests. For details on striping and other allocation details, see “Impact of
Striping” on page 74. New file space allocated to fill a hole in a sparse file is zero-filled. Contiguous
blocks added to the end of allocated file space are not zero-filled.

NOTE: A range of blocks that spans two volume segments is not considered contiguous, even
though the logical volume block addresses are contiguous.

See Also
DFSFreeLimboVolumeSpace (page 91)

Decimal Constant Description

0 DFSNormalCompletion File was expanded in the area specified.

1 DFSInsufficientSpace The required space does not exist on the volume to expand
the file as requested.

18 DFSParameterError The caller supplied one or more invalid parameters.

19 DFSOverlapError An attempt was made to allocate additional file space where
file blocks already exist.

20 DFSSegmentError A volume segment was specified which does not exist on
the volume.

21 DFSBoundaryError One or more blocks in the range requested are not available
or are not in the volume or volume segment specified.

131 DFSHardIOError Attempted allocation of file blocks where file blocks are
already defined, etc.

136 DFSInvalidFileHandle A DFS call was made using a file handle which is not valid—
typically an open was omitted or the user inadvertently
closed the file before attempting this access.

148 DFSNoWritePrivilege The current connection does not have write privileges for
this file.

149 DFSFileDetached The function was not performed because the file is
detached.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSFreeLimboVolumeSpace
Requests DFS to free a number of limbo blocks on a volume

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSFreeLimboVolumeSpace (
 LONG volumeNumber,
 LONG numberOfBlocks);

Parameters
volumeNumber

(IN) Specifies the volume number where the requested number of limbo blocks are to be freed.

numberOfBlocks
(IN) Specifies the number of limbo blocks requested to be freed.

Return Values

Remarks
This function requests the OS to free a number of limbo blocks on a given volume. This function
performs the equivalent of a purge of one or more files until it has freed the requested number of
blocks (or more). There is no guarantee that the OS can free as many blocks as requested by the
caller, or that the blocks freed are contiguous. Also there is no way to guarantee that the blocks will
be made available on a specific volume segment.

Other processes, including system functions, can acquire blocks that have just been freed before
they can be allocated. The OS normally stripes allocation of files when multiple segments exist for a

Decimal Constant Description

0 DFSNormalCompletion The operation was completed as specified.

22 DFSInsufficientLimboFileSpace The request could not be completed because
there were not enough contiguous limbo blocks to
complete the request successfully.

152 DFSInvalidVolume The volume does not exist or is not mounted.
Direct File System Functions 91

92 NDK: Single

novdocx (E
N

U
) 01 February 2006
volume, so it can be very difficult to find a large contiguous area of free blocks on a volume where
non-direct or normal files are allocated in multisegment volumes. Callers should be prepared to call
this function multiple times.

See Also
DFSExpandFile (page 89)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSRead
Reads the sectors requested from a file using DFS (sleeps until completion)

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSRead (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior call to open for the indicated file.

startingSector
(IN) Specifies the starting sector number (logical offset from beginning of the file) in the file
where the read operation is to begin.

sectorCount
(IN) Specifies the number of sectors to be read into the buffer.

buffer
(OUT) Points to a contiguous buffer area large enough to contain the number of sectors
indicated to be read.

Return Values

Decimal Constant Description

0 DFSNormalCompletion The operation was completed as specified.

17 DFSHoleInFileError A read was attempted to file sector addresses where
no file blocks are allocated. The buffer is zero-filled.

18 DFSParameterError The caller supplied one or more invalid parameters.
Direct File System Functions 93

94 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
This function performs a read of one or more sectors using a logical zero-based sector offset into the
indicated file. Since this function is blocking, control is returned to the caller after all reads relating
to the requested read function have been completed. If a status indicating a hole was detected during
the requested read operation, the buffer is zeroed. It is not possible to read beyond the end of the
allocated area of a file.

See Also
DFSReadNoWait (page 95), DFSWrite (page 110)

23 DFSNotInDirectFileMode A direct file read (DFSRead) was issued but the file
has not been opened successfully in direct mode.

24 DFSOperationBeyondEndOfFile A read function was requested beyond the current
end of file.

131 DFSHardIOError

136 DFSInvalidFileHandle A DFS call was made using a file handle which is not
valid. Typically an open was omitted or the user
inadvertently closed the file before attempting this
access.

147 DFSNoReadPrivilege Current connection does not have read privileges for
the file.

149 DFSFileDetached The function was not completed because the file is
detached.

150 DFSInsufficientMemory DFS could not allocate sufficient memory to
complete the request.

162 DFSIOLockError

Decimal Constant Description
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSReadNoWait
Reads the sectors requested from a file using DFS (returns after initiation)

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSReadNoWait (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer,
 struct DFSCallBackParameters *callBackNode);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior call to open for the indicated file.

startingSector
(IN) Specifies the starting sector number (logical offset from beginning of file) in the file where
the read operation is to begin.

sectorCount
(IN) Specifies the number of sectors to be read into the buffer.

buffer
(OUT) Points to a contiguous buffer area large enough to contain the number of sectors
indicated to be read.

callBackNode
(IN) Pointer to a structure used to signal completion of all requested reads for a particular call
to DFSReadNoWait.

Return Values

0 Read Normal Initiation

!=0 Read not initiated
Direct File System Functions 95

96 NDK: Single

novdocx (E
N

U
) 01 February 2006
NOTE: The actual completion is stored in the completionCode field of the DFSCallBackParameters
upon completion of the request.

Remarks
This function is identical to DFSRead, except that the return to the function caller is made
immediately after posting the reads to the driver. This means that the status returned from the
function only indicates whether the call was initiated or not. The completion status is returned in the
structure provided for completion notification. A calling process must allow other processes to run.
Consequently, any long sequence of code including this function call should make frequent calls to
ThreadSwitch to allow other processes to be executed.

The DFSCallBackParameters structure is defined as follows:

struct DFSCallBackParameters
{
 LONG localSemaphoreHandle;
 LONG completionCode;
};

The localSemaphoreHandle field contains a local semaphore handle obtained by calling
OpenLocalSemaphore. WaitOnLocalSemaphore or ExamineLocalSemaphore should be called to
determine when the semaphore has been signalled.

The completionCode field contains the actual completion code, initialized to -1 by this function
and updated upon completion. For completion code values, see DFSRead.

See Also
DFSRead (page 93), DFSWriteNoWait (page 112), OpenLocalSemaphore (NDK: NLM Threads
Management)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSReturnFileMappingInformation
Returns file extents, each with the number of blocks, and starting file and volume block numbers

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSReturnFileMappingInformation (
 LONG fileHandle,
 LONG startingBlockNumber,
 LONG *numberOfEntries,
 LONG tableSize,
 struct FileMapStructure *table);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior call to open for the file.

startingBlockNumber
(IN) Specifies the starting file block address for which map is requested (zero relative).

numberOfEntries
(OUT) Points to the number of valid file map entries returned.

tableSize
(IN) Specifies the number of file map entries for which space has been allocated by the caller in
the following table (that is, max # of struct FileMapStructure to be returned).

table
(OUT) Points to a table of file map entries.

Return Values

Decimal Constant Description

0 DFSNormalCompletion The operation was completed and information fields
are valid.

18 DFSParameterError The function caller supplied an invalid parameter.
Direct File System Functions 97

98 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks

This function is required to provide the calling NLM application with details of exactly where a
given file’s logical blocks are located, including where file holes and the end of a file’s allocated
storage space is, so that the application can expand the file by calling DFSExpandFile.

See Also
DFSReturnVolumeBlockInformation (page 99), DFSReturnVolumeMappingInformation (page 101)

136 DFSInvalidFileHandle A DFS call was made using a file handle that is not
valid. Typically an open was omitted or the user
inadvertently closed the file before attempting this
access.

Decimal Constant Description
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSReturnVolumeBlockInformation
Returns the volume block usage bitmap for requested volume

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSReturnVolumeBlockInformation (
 LONG volumeNumber,
 LONG startingBlockNumber,
 LONG numberOfBlocks,
 BYTE *buffer);

Parameters
volumeNumber

(IN) Specifies the volume number for which the volume block information is desired.

startingBlockNumber
(IN) Specifies volume logical block zero or an even multiple of 8 up to the last block of the
volume.

numberOfBlocks
(IN/OUT) Specifies the number of blocks for which allocation bit flags are to be transferred
into the buffer (If startingBlockNumber plus numberOfBlocks is greater than the
total number of volume blocks, the number of volume blocks remaining starting from
startingBlockNumber is substituted here).

buffer
(OUT) Points to a pointer to a buffer area where the information is returned. The area required
for the buffer is the number of blocks rounded up modulus 8. The format of the data in the
buffer is bit array, with 1 bits indicating available blocks. The relative bit address of each bit is
the block address relative to the beginning of the specified starting file block number.

Return Values

Decimal Constant Description

0 DFSNormalCompletion The operation is complete and information fields are
valid.
Direct File System Functions 99

100 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
This function is used to determine which blocks on a volume are in use and that are available for
allocation. This function returns a bitmap which has a bit for each block in the range specified in the
calling parameters, beginning with the logical (zero-based) volume block indicated by
startingBlockNumber. This information is required if an application NLM is attempting to do
specific allocation for a file, in order to pick block ranges of contiguous free blocks to expand a file.

The data returned by this function is only valid until it is changed by some request, and can change
dynamically before an application can successfully request allocation of the blocks selected. The
application process must be designed to handle this exception, as well as the case where there is not
a single contiguous free block area large enough to satisfy the file expansion request.

See Also
DFSReturnFileMappingInformation (page 97), DFSReturnVolumeMappingInformation (page 101)

152 DFSInvalidVolume The volume number specified does not exist or not
mounted.

Decimal Constant Description
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSReturnVolumeMappingInformation
Returns information about a volume required for file allocation

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSReturnVolumeMappingInformation (
 LONG volumeNumber,
 struct VolumeInformationStructure *volumeInformation);

Parameters
volumeNumber

(IN) Specifies the system volume number of the selected volume. A requesting process can
determine the appropriate volume number using the File System Services functions.

volumeInformation
(OUT) Points to a structure of type VolumeInformationStructure (see below).

Return Values

Remarks
This function provides volume information, including allocation block size, that is necessary to
determine how many blocks to allocate in order to allocate a specified number of bytes for a request.
This information changes dynamically. Therefore, it can become invalid before an application NLM
can use the information. Application NLM applications must be designed to handle the likelihood
that blocks available change dynamically.

Decimal Constant Description

0 DFSNormalCompletion The operation is complete and information fields are
valid.

152 DFSInvalidVolume The volume number specified does not exist or is not
mounted.
Direct File System Functions 101

102 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
DFSReturnFileMappingInformation (page 97), DFSReturnVolumeBlockInformation (page 99)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSSetDataSize
Sets file size

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSSetDataSize (
 LONG handle,
 unsigned__int64 newFileSize,
 LONG setSizeFlags);

Parameters
handle

(IN) Specifies the handle returned from DFSsopen or DFScreat for the file on which to set the
size

newFileSize
(IN) Specifies the logical byte offset at which the new end of the file is to be set

setSizeFlags
(IN) Specifes a bit in a mask indicating the ways in which the file can be expanded

Return Values
Zero on success or nonzero if an error occurs.

Remarks
DFSSetDataSize modifies the data size (end of file) for the open file identified by handle. If the
file has more than one data stream, only the size of the data stream identified by handle is
modified. To modify the size of more than one data stream, an application must open each stream
independently and call DFSSetDataSize once for each data stream.

DFSSetDataSize works with the Novell Storage Services file system only. If handle specifies a
file for any other system, DFSSetDataSize will not operate.

If the new size is smaller than the original size, the data at the end of the original data stream is
truncated. If the new size is larger than the original size, the data size is expanded.
Direct File System Functions 103

104 NDK: Single

novdocx (E
N

U
) 01 February 2006
The setSizeFlags parameter provides some control over file expansion through the following
bits:

See Also
DFScreat (page 87), DFSSetEndOfFile (page 105), DFSsopen (page 107)

SETSIZE_NON_SPARSE_FILE If a file is being expanded with this bit set, it is expanded in a
nonsparce manner, and data is physically allocated to the file.
Blocks in such added data are zero-filled unless
SETSIZE_NO_ZERO_FILL is also set. If this bit is not set the file
is expanded in a sparce manner and no data is physically written
to the file.

SETSIZE_NO_ZERO_FILL With this bit set, if a file is being expanded in a nonsparce
manner, newly allocated disk blocks are not zero filled. The
blocks are allocated to the file but not initialized. If this bit is not
set, zero-filled data is physically written from the original end of
the file to the new end.

This bit is allowed only from the NLM application running on the
local server and cannot be set by an NCP operation.

SETSIZE_UNDO_ON_ERR If an error occurs during file expansion, an error is returned and
the file is restored to its original size as though no expansion had
taken place. If this bit is not set and an error occurs during
expansion, the remaining expansion is aborted, and any partially
completed expansion remains part of the file.

SETSIZE_PHYSICAL_ONLY Only the physical end of the file is changed. The logical end is
untouched. File expansion with this bit set is done in a nonsparce
manner as though SETSIZE_NON_SPARSE_FILE were set.
Truncation is likewise only physical, with no change to the logical
end of the file.

SETSIZE_LOGICAL_ONLY With this bit set, DFSSetDataSize changes only the logical end of
the file. Allocated physical storage is neither expanded nor
truncated, but remains unchanged.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSSetEndOfFile
Sets file size

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSSetEndOfFile (
 LONG fileHandle,
 LONG newFileSize,
 LONG returnTruncatedBlocksFlag);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen or DFScreat call for the indicated
file.

newFileSize
(IN) Specifies the new file size in bytes.

returnTruncatedBlocksFlag
(IN) Specifies a nonzero value specified here indicates that any blocks truncated by the new file
size should be freed up for future OS use.

Return Values

Decimal Constant Description

0 DFSNormalCompletion The operation is complete as specified.

16 DFSTruncationFailure The DFSSetEndOfFile function detected that the
caller requested excess blocks to be truncated, but
the file was open for other connections, causing the
request to be rejected.

131 DFSHardIOError

136 DFSInvalidFileHandle A call was made with an invalid file handle. Typically
an open was omitted or the user inadvertently closed
the file.
Direct File System Functions 105

106 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
If the connection making the request is the only entity with the file open and if the
returnTruncatedBlocksFlag is nonzero, setting a new file size that is one or more blocks
less than the previous file size causes blocks (actually allocated) beyond the new defined file size to
be truncated, or returned for future OS usage. If a new file size is specified that is greater than the
previous file size, the newly defined file area is zero-filled, provided that actual file space is
allocated. A new file size can be specified that is beyond the range of current allocated file space, or
that is less than current allocated file space.

See Also
DFSExpandFile (page 89), DFSReturnFileMappingInformation (page 97), DFSWrite (page 110)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DFSsopen
Opens the requested file in Direct File Mode

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSsopen (
 BYTE *fileName,
 LONG access,
 LONG share,
 LONG permission,
 LONG flagBits,
 LONG dataStream);

Parameters
fileName

(IN) Points to the name of the file to be opened. The file name must be NULL-terminated and
must include the path including the volume name but not the server name.

access
(IN) Specifies the access mode.

share
(IN) Specifies the sharing mode of the file.

permission
(IN) Specifies the access permissions for the file. The access permissions (see the sys\stat.h
file) are as follows:

flagBits
(IN) Specifies the following flags when a file is opened:

S_IWRITE The file is writable

S_IREAD The file is readable

0x00000040 FILE_WRITE_THROUGH_BIT

0x00010000 NO_RIGHTS_CHECK_ON_OPEN_BIT
Direct File System Functions 107

108 NDK: Single

novdocx (E
N

U
) 01 February 2006
dataStream
(IN) Specifies the name space.

Return Values

If an error has occurred, errno can be set to

When an error occurs, NetWareErrno is set to

Remarks
The name of the file to be opened is given by the filename parameter. The file is accessed
according to the access mode specified by the access parameter.

When a file is opened in direct file mode by calling DFSsopen, DFS flags the file as being in direct
file mode. In this mode, the cache and TTS are bypassed for future accesses to the file. Existing
cache entries for the file are flushed and a turbo FAT for the file is built if one does not currently
exist.

This could cause problems with other applications that have already opened the file in normal non-
direct mode. In this case, the file is switched to direct mode, and the program with the file open in
normal mode is able to read the file but cannot write to it. A close must be issued for each handle
obtained by an open for the file before the file can be reopened for full normal mode access again
(see “Input and Output” on page 75).

The access parameter can have the following values as defined in FCNTL.H:

!= -1 The requested operation is complete. The actual value returned is a file handle which
is used for other functions that operate on the file.

== -1 The requested file was not opened.

1 No such file

4 Bad file handle

6 Permission denied

9 Invalid argument

Decimal Hex Constant

108 (0x6C) ERR_BAD_ACCESS

152 (0x98) ERR_INVALID_VOLUME

156 (0x9C) ERR_INVALID_PATH

Hex Constant Description

0x0000 O_RDONLY open for read only
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The share parameter can have the following values as defined in NWSHARE.H:

The dataStream parameter can have the following values as defined in nwfile.h:

0 DOS
1 MACINTOSH
2 NFS
3 FTAM
4 LONG
5 NT

See Also
DFSclose (page 86), DFScreat (page 87)

0x0001 O_WRONLY open for write only

0x0002 O_RDWR open for read and write

0x0010 O_APPEND writes done at end of file

0x0020 O_CREAT create new file

0x0040 O_TRUNC truncate existing file

0x0080 O_EXCL exclusive open

SH_COMPAT Sets compatibility mode

SH_DENYRW Prevents read or write access to the file

SH_DENYWR Prevents write access of the file

SH_DENYRD Prevents read access of the file

SH_DENYNO Permits both read and write access to the file

Hex Constant Description
Direct File System Functions 109

110 NDK: Single

novdocx (E
N

U
) 01 February 2006
DFSWrite
Writes sectors into a file using DFS (sleeps until completion)

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSWrite (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen or DFScreat call for the indicated
file.

startingSector
(IN) Specifies the starting sector number in the file (logical offset from beginning of the file)
where the write operation is to begin.

sectorCount
(IN) Specifies the number of sectors to be written from the buffer.

buffer
(IN) Points to a contiguous buffer area large enough to contain the number of sectors to be
written.

Return Values

Decimal Constant Description

0 DFSNormalCompletion The operation was completed as specified.

4 DFSVolumeSegmentDeactivated The volume segments on which the file is located
have been deactivated by the operating system.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
This function performs a write of one or more sectors using a logical zero-based sector offset into
the indicated file. Since this function is blocking, control is returned to the caller after all writes
relating to the requested write function are completed. If a status indicating a hole was detected
during the requested read operation, the operation failed. It is not possible to write beyond the end of
the allocated area of a file, or in holes where no blocks are allocated. This function sets a new file
size if a write is issued to allocated file space beyond the current file size.

See Also
DFSExpandFile (page 89), DFSWriteNoWait (page 112)

17 DFSHoleInFileError An attempt was made to write to a file block address
for which space has not been allocated (a hole in a
sparse file). Space must be allocated by calling
DFSExpandFile to fill holes in sparse files before the
associated file block address can be written to
successfully when using DFS.

18 DFSParameterError The function caller supplied an invalid parameter.

23 DFSNotInDirectFileMode A function requiring a file to be opened in direct
mode (using DFSsopen or DFScreat) was requested
but the file is not open in direct mode.

131 DFSHardIOError

136 DFSInvalidFileHandle (A DFS call was made using a file handle which is
not valid. Typically an open was omitted or the user
inadvertently closed the file before attempting this
access).

148 DFSNoWritePrivilege The current permissions that the file has been
opened with do not allow writes to this file.

149 DFSFileDetached

150 DFSInsufficientMemory The Direct File System could not obtain memory
necessary to complete the requested function.

162 DFSIOLockError

Decimal Constant Description
Direct File System Functions 111

112 NDK: Single

novdocx (E
N

U
) 01 February 2006
DFSWriteNoWait
Writes sectors into a file using DFS (returns immediately after initiation)

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Direct File System

Syntax
#include <nwdfs.h>

LONG DFSWriteNoWait (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer,
 struct DFSCallBackParameters *callBackNode);

Parameters
fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen call for the file.

startingSector
(IN) Specifies the starting sector number in the file (logical offset from beginning of file) where
the write operation is to begin.

sectorCount
(IN) Specifies the number of sectors to be written from the buffer.

buffer
(IN) Points to a contiguous buffer area large enough to contain the number of sectors to be
written.

callBackNode
(IN) Points to a structure used to signal completion of all requested writes for a particular call
to DFSWriteNoWait.

Return Values

0 Write operation initiated

-1 Bad file handle
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
This function can also return the return status codes found in the DFSWrite information above.

Remarks
Operation is identical to DFSWrite except that the current thread of execution is not blocked until
the completion of the requested operation (DFSWrite calls DFSWriteNoWait, then waits for the
completion to be signalled).

The localSemaphoreHandle field contains a local semaphore handle obtained by calling
OpenLocalSemaphore. WaitOnLocalSemaphore or ExamineLocalSemaphore should be called to
determine when the semaphore has been signalled.

The completionCode field contains a zero (or the value already in the field if it has not been
zeroed out before DFSWriteNoWait is called) if a bad file handle is passed, and a -1 for all other
completions.

See Also
DFSExpandFile (page 89), DFSWrite (page 110)
Direct File System Functions 113

114 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

8
novdocx (E

N
U

) 01 February 2006
8Direct File System Structures

This documentation alphabetically lists the direct file system structures and describes their purpose,
syntax, and fields.
Direct File System Structures 115

116 NDK: Single

novdocx (E
N

U
) 01 February 2006
DFSCallBackParameters
Is used to signal completion of DFSReadNoWait

Service: Direct File System

Defined In: nwdfs.h

Structure
struct DFSCallBackParameters
{
 LONG localSemaphoreHandle ;
 LONG completionCode ;
};

Fields
localSemaphoreHandle

Specifies a local semaphore handle obtained by calling OpenLocalSemaphore.

completionCode
Specifies the completion code for DFSReadNoWait.

Remarks
See DFSReadNoWait (page 95) for more information.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
FileMapStructure

Service: Direct File System

Defined In: nwdfs.h

Structure
struct FileMapStructure
{
 LONG fileBlock ;
 LONG volumeBlock ;
 LONG numberOfBlocks ;
};

Fields
fileBlock

Specifies the starting logical block (zero-based) of the file for this extent or group of
contiguous blocks.

volumeBlock
Specifies the actual starting logical volume block (zero-based) of the contiguous volume blocks
assigned to the logical file blocks above.

numberOfBlocks
Specifies the number of contiguous volume blocks that compose this extent (extent block
length).
Direct File System Structures 117

118 NDK: Single

novdocx (E
N

U
) 01 February 2006
VolumeInformationStructure
Contains information about a NetWare volume

Service: Direct File System

Defined In: nwdfs.h

Structure
struct VolumeInformationStructure
{
 LONG VolumeAllocationUnitSizeInBytes ;
 LONG VolumeSizeInAllocationUnits ;
 LONG VolumeSectorSize ;
 LONG AllocationUnitsUsed ;
 LONG AllocationUnitsFreelyAvailable ;
 LONG AllocationUnitsInDeletedFilesNotAvailable ;
 LONG AllocationUnitsInAvailableDeletedFiles ;
 LONG NumberOfPhysicalSegmentsInVolume ;
 LONG PhysicalSegmentSizeInAllocationUnits [64];
};

Fields
VolumeAllocationUnitSizeInBytes

Specifies the number of bytes contained in a block allocated by the OS (this can be 4K, 8K,
16K, 32K, or 64K).

VolumeSizeInAllocationUnits
Specifies the number of blocks of the size indicated in the parameter above that are contained
in a volume (the volume total size can be calculated with these two parameters).

VolumeSectorSize
Specifies the size of each sector on a volume (currently only a sector size of 512 bytes is
supported by the OS).

AllocationUnitsUsed
Specifies the number of blocks on a volume used with current non-deleted files.

AllocationUnitsFreelyAvailable
Specifies the number of blocks currently available for file allocation.

AllocationUnitsInDeletedFilesNotAvailable
Specifies the number of blocks on a volume which compose files that have been deleted but for
which the necessary time has not yet elapsed before they can be purged or moved to the
AllocationUnitsFreelyAvailable category.

AllocationUnitsInAvailableDeletedFiles
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Specifies the number of blocks which compose files deleted for which the required time has
expired prior to being purged, but which have not yet been purged or moved to the
AllocationUnitsFreelyAvailable category.

NumberOfPhysicalSegmentsInVolume
Specifies the number of physical volume segments that are linked to form a volume.

PhysicalSegmentSizeInAllocationUnits
Specifies an array that specifies the number of blocks in each volume segment, of which a
maximum of 64 are allowed per volume. This also allows an application process to determine
at what point in the logical volume block number a transition takes place from one volume
segment to another. This information is needed by applications doing specific file allocation.
Direct File System Structures 119

120 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

9
novdocx (E

N
U

) 01 February 2006
9DOS Partition Concepts

This documentation describes DOS partition, its functions, and features.

NOTE: DOS Partition Services provide functions for NLM development.

The DOS Partition functions allow developers to access files that are in a disk’s DOS partition.
These functions should be used only when it is absolutely necessary to access a file in the DOS
partition. Accessing files in the DOS partition is much slower than accessing files in the NetWare®
partition of a disk, and adversely affect other aspects of the server’s performance.

The DOS partition refers to the set of files accessible from the server PC booted under DOS. The set
of files includes files on floppy disks, on DOS partitions on hard disks, and on any other DOS drive.

A DOS drive can include RAM disks and network drives. However, accessing RAM disks and
network drives from NetWare is not recommended. Both RAM disks and NetWare 3.x and above
use extended memory and temporarily switch to protected mode, causing a conflict. Accessing
network drives uses the LAN board. Since the NetWare 3.x and above OS, in most configurations,
also uses this board, two programs would access the same board. For many kinds of LAN boards,
this causes a deadlock. Therefore, NLM applications that use the DOS partition should only
reference files on floppy or hard disks.

The DOS partition functions have been made available primarily for the installation of new software
from the DOS partition to the NetWare partition. If a file in the DOS partition is to be accessed more
than once or twice, it should be moved into the NetWare partition.

Additional functions for accessing the DOS partition are available through the File System Services
and Operating System I/O Services. You can call these functions on the DOS partition just as you
would for the NetWare partition. The functions available for NetWare 3.x and above are open
(page 229), fopen (page 274), and freopen (page 285). The same functions are available for NetWare
4.x, 5.x, and 6.x along with these additional functions: access, chmod, remove, and rename
(Multiple and Inter-File Management).

The DOS partition functions have been made available primarily for the installation of new software
from the DOS partition to the NetWare partition. If a file in the DOS partition is to be accessed more
than once or twice, it should be moved into the NetWare partition.

DOSPresent (page 133) should be called before using any of the DOS partition functions.

9.1 DOS Partition Functions
These functions allow you to manage DOS partitions:

DOSClose Closes a file in the DOS partition.

DOSCopy Copies a file from the DOS partition to the NetWare® partition.

DOSCreate Creates a file in the DOS partition of the disk.

DOSFindFirstFile Initializes a search for files in the DOS partition.

DOSFindNextFile Searches for files in the DOS partition.
DOS Partition Concepts 121

122 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSOpen Opens a file in the DOS partition of the disk.

DOSPresent Determines whether DOS is still present in memory.

DOSRead Reads from a file in the DOS partition.

DOSSetDateAndTime Sets the modification date and time for a file on the DOS partition.

DOSsopen Opens a DOS file for shared access.

DOSWrite Writes to a file in the DOS partition.
 and Intra-File Services

10
novdocx (E

N
U

) 01 February 2006
10DOS Partition Functions

This documentation alphabetically lists the DOS partition functions and describes their purpose,
syntax, parameters, and return values.

• “DOSChangeFileMode” on page 124
• “DOSClose” on page 125
• “DOSCopy” on page 126
• “DOSCreate” on page 127
• “DOSFindFirstFile” on page 128
• “DOSFindNextFile” on page 130
• “DOSMkdir” on page 131
• “DOSOpen” on page 132
• “DOSPresent” on page 133
• “DOSRead” on page 134
• “DOSRemove” on page 136
• “DOSRename” on page 137
• “DOSRmdir” on page 138
• “DOSSetDateAndTime” on page 139
• “DOSShutOffFloppyDrive” on page 140
• “DOSsopen” on page 141
• “DOSUnlink” on page 143
• “DOSWrite” on page 144
DOS Partition Functions 123

124 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSChangeFileMode
Changes a file's attributes

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSChangeFileMode (
 const char *name,
 LONG *attributes,
 LONG function,
 LONG newAttributes);

Parameters
name

(IN) Points to the path, including the file name.

attributes
(OUT) Points to the returned attributes of the file.

function
(IN) Specifies the type of attributes that you want to change:

0 Read attributes
1 Set attributes

newAttributes
(IN) Points to the new attributes to set for name.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSClose
Closes a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSClose (
 int handle);

Parameters
handle

(IN) Specifies the file handle obtained by DOSCreate or DOSOpen.

Return Values

See Also
DOSCreate (page 127), DOSOpen (page 132), DOSPresent (page 133)

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
DOS Partition Functions 125

126 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSCopy
Copies a file from the DOS partition to the NetWare® partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSCopy (
 const char *NetWareFileName,
 const char *DOSFileName);

Parameters
NetWareFileName

(IN) Points to the name of the file in the NetWare partition (full NetWare paths, including
volume names, are allowed).

DOSFileName
(IN) Specifies the name of the file to be copied from the DOS partition (any legal DOS path
name is allowed).

Return Values

Remarks
If a file with the same name already exists in the NetWare partition, the new file overwrites it.

See Also
DOSPresent (page 133)

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSCreate
Creates a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSCreate (
 const char *fileName,
 int *handle);

Parameters
fileName

(IN) Points to the DOS filename of the file to be created (any legal DOS path name is allowed).

handle
(OUT) Points to a file handle which provides access to the DOS file.

Return Values

Remarks
If the file does not exist, DOSCreate creates it with read/write access. If the file does exist, it is
truncated to zero bytes in length.

See Also
DOSOpen (page 132), DOSPresent (page 133)

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
DOS Partition Functions 127

128 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSFindFirstFile
Searches for files in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSFindFirstFile (
 const char *fileName,
 WORD searchAttributes,
 struct find_t *diskTransferAddress);

Parameters
fileName

(IN) Points to the name of the file to be found in the DOS partition (full paths, including a drive
letter and wildcards, are allowed).

searchAttributes
(IN) Specifies the type of file for which to search.

diskTransferAddress
(OUT) Points to DOS information about the file.

Return Values

Remarks
DOSFindFirstFile finds the first file that matches the fileName and searchAttributes
parameters. If wildcards are used in the fileName parameter, call DOSFindNextFile to find other
files that also match the fileName and searchAttributes parameters.

searchAttributes can have the following values (defined in the nwdos.h file):

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
0x00 _A_NORMAL Read/Write file
0x01 _A_RDONLY Read only file
0x02 _A_HIDDEN Hidden file
0x04 _A_SYSTEM System file
0x08 _A_VOLID Volume ID entry
0x10 _A_SUBDIR Subdirectory
0x20 _A_ARCH Archive file

See Also
DOSFindNextFile (page 130), DOSPresent (page 133)
DOS Partition Functions 129

130 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSFindNextFile
Searches for files in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSFindNextFile (
 struct find_t *diskTransferAddress);

Parameters
diskTransferAddress

(IN/OUT) Points to an address returned by DOSFindFirstFile and receives information about
the file.

Return Values

Remarks
Consecutive calls to DOSFindNextFile return information about all DOS files which match the
fileName and searchAttributes parameters specified in DOSFindFirstFile.

See Also
DOSFindFirstFile (page 128), DOSPresent (page 133)

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSMkdir
Creates a directory on the DOS partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSMkdir(
 const char *dirName);

Parameters
dirName

(IN) Points to the DOS directory name to be created.

Return Values

0 Success

DOS error code Failure
DOS Partition Functions 131

132 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSOpen
Opens a file with read/write access in the DOS partition of the disk

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSOpen (
 const char *fileName,
 int *handle);

Parameters
fileName

(IN) Points to the DOS filename of the file to be opened (any legal DOS pathname is allowed).

handle
(OUT) Points to a file handle which provides access to the DOS file.

Return Values

See Also
DOSCreate (page 127), DOSPresent (page 133)

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSPresent
Determines whether DOS is still present in memory

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSPresent(void);

Return Values
Returns a value of 1 if DOS is still present in memory. Otherwise, it returns a value of 0.

Remarks
DOS must be present in memory for any of the other DOS functions to work.

The REMOVE DOS console command is used to remove DOS from memory.

NOTE: In NetWare 6.5 SP1, an installation option allows you to use NetWare as the boot OS
instead of DOS. For backwards compatibility, the DOSPresent function treats the NetWare boot OS
as if it were DOS and returns 1.
DOS Partition Functions 133

134 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSRead
Reads from a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSRead (
 int handle,
 LONG fileOffset,
 void *buffer,
 LONG numberOfBytesToRead,
 LONG *numberOfBytesRead);

Parameters
handle

(IN) Specifies the file handle obtained by DOSOpen or DOSCreate.

fileOffset
(IN) Specifies the position in the file to start reading.

buffer
(OUT) Points to the data read from the file.

numberOfBytesToRead
(IN) Specifies the number of bytes to be read from the file.

numberOfBytesRead
(OUT) Points to the number of bytes actually read from the file.

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
DOSPresent (page 133), DOSWrite (page 144)
DOS Partition Functions 135

136 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSRemove
Removes a file from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSRemove (
 const char *fileName);

Parameters
fileName

(IN) Points to the DOS file name to be removed.

Return Values

0 Success

DOS error code Failure
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSRename
Renames a file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSRename {
 const char *srcName;
 const char *dstName);

Parameters
srcName

(IN) Points to the original path, including the file name.

dstName
(IN) Points to the new path (and name) for the file.

Return Values

0 Success

DOS error code Failure
DOS Partition Functions 137

138 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSRmdir
Removes a directory from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Servers: 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSRmdir (
 const char *dirName);

Parameters
dirName

(IN) Points to the DOS directory name to be removed.

Return Values

0 Success

DOS error code Failure
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSSetDateAndTime
Sets the modification date and time for a file on the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSSetDateAndTime (
 int handle,
 LONG date,
 LONG time);

Parameters
handle

(IN) Specifies the file that is to be manipulated (returned from DOSOpen).

date
(IN) Specifies the DOS date to be set.

time
(IN) Specifies the DOS time to be set.

Return Values
Returns 0 for success or DOS errors for failure.

Remarks
DOSSetDateAndTime sets the last modified date and time on a DOS file. The value for the handle
parameter is obtained through a call to DOSOpen.

See Also
DOSFindFirstFile (page 128), DOSOpen (page 132), utime (Multiple and Inter-File Services)
DOS Partition Functions 139

140 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSShutOffFloppyDrive
Turns off the disk drive light

Local Servers: N/A

Remote Servers: N/A

NetWare Server: 4.1, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

void DOSShutOffFloppyDrive (void);

Remarks
After you've finished accessing the DOS partion, you can call DOSShutOffFloppyDrive to shut off
the drive light and to stop the disk from spinning.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSsopen
Opens a DOS file for shared access

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSsopen (
 const char *filename,
 int access,
 int share,
 int permission);

Parameters
access

(IN) Specifies the access mode of the file on open (defined in fcntl.h).

share
(IN) Specifies the sharing mode of the file on open for DOS 3.0+. (0 for DOS 2.x).

permission
(IN) Specifies a file permissions if file is created:

0x00 Normal Read/write
0x01 Read Only

Return Values
Returns a file handle if successful. Otherwise, returns:

Remarks
DOSsopen is similar to the NetWare partition function sopen except that it does not support
O_APPEND and O_BINARY.

The following access modes are defined in fcntl.h:

-1 The NetWare or DOS error is in NetWareErrno. (The DOS and NetWare error codes
do not overlap. If NetWareErrno = -1, DOS is not present.)
DOS Partition Functions 141

142 NDK: Single

novdocx (E
N

U
) 01 February 2006
0x0000 O_RDONLY Read only
0x0001 O_WRONLY Write only
0x0002 O_RDWR Read/Write

The following values can be ORed with the above access modes:

0x0020 O_CREAT Create new file
0x0040 O_TRUNC Truncate existing file

The following share modes are defined in nwshare.h:

0x00 SH_COMPAT Compatibility mode
0x10 SH_DENYRW Deny read/write mode
0x20 SH_DENYWR Deny write mode
0x30 SH_DENYRD Deny read mode
0x40 SH_DENYNO Deny none mode

See Also
DOSOpen (page 132), sopen (page 238)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
DOSUnlink
Removes a file from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSUnlink (
 const char *fileName);

Parameters
fileName

(IN) Points to the DOS file name to be removed.

Return Values

0 Success

DOS error code Failure
DOS Partition Functions 143

144 NDK: Single

novdocx (E
N

U
) 01 February 2006
DOSWrite
Writes to a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: DOS Partition

Syntax
#include <nwdos.h>

int DOSWrite(
 int handle,
 LONG fileOffset,
 const void *buffer,
 LONG numberOfBytesToWrite,
 LONG *numberOfBytesWritten);

Parameters
handle

(IN) Specifies the file handle obtained by DOSOpen or DOSCreate.

fileOffset
(IN) Specifies the position in the file to start writing.

buffer
(IN) Points to the data to write to the file.

numberOfBytesToWrite
(IN) Specifies the number of bytes in the buffer to write to the file.

numberOfBytesWritten
(OUT) Points to the number of bytes written to the file.

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS

DOSCode UNSUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
DOSPresent (page 133), DOSRead (page 134)
DOS Partition Functions 145

146 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

11
novdocx (E

N
U

) 01 February 2006
11DOS Partition Structures

This documentation alphabetically lists the DOS partition structures and describes their purpose,
syntax, and fields.
DOS Partition Structures 147

148 NDK: Single

novdocx (E
N

U
) 01 February 2006
find_t
Contains DOS file information

Service: DOS Partition

Defined In: nwdos.h

Structure
struct find_t
{
 char reserved [21];
 char attrib;
 unsigned short wr_time;
 unsigned short wr_date;
 long size;
 char name [13];
};

Fields
reserved

Reserved for future use by DOS.

attrib
Specifies the file’s attributes.

wr_time
Specifies the file’s time stamp in DOS format.

wr_date
Specifies the file’s date stamp in DOS format.

size
Specifies the file’s size in bytes.

name
Specifies the name of the file.
 and Intra-File Services

12
novdocx (E

N
U

) 01 February 2006
12Extended Attribute Concepts

This documentation describes Extended Attribute, its functions, and features.

A file’s extended attributes are stored as fields in a separate directory entry. This entry is not
accessible through conventional means (that is, directory handles and path specifications). Instead,
the entry and its fields are referenced by a NetWare® Extended Attribute (NWEA) structure. The
structure includes the following:

• Connection ID
• Read/write position
• Extended attribute handle
• Volume number
• Directory entry
• Key used
• Key length
• Key

The information in the NWEA structure is for internal use only. Allocate and maintain space for the
structure, but don’t modify its values.

12.1 Extended Attribute Functions
Extended Attribute Services include these functions:

NOTE: For information about the requirments for using the ...Ext family of extended attribute
functions, see UTF-8 Path and Filenames in Multiple and Inter-File Services.

NWCloseEA Closes the specified extended attribute.

NWFindFirstEA Initializes the process of scanning extended attributes.

NWFindNextEA Returns NWEA for accessing the next extended attribute.

NWGetEAHandleStruct Prepares NWEA to be used by NWReadEA (page 174) or NWWriteEA
(page 180).

NWOpenEA Opens the specified extended attribute.

NWReadEA Reads the next block of data from the specified extended attribute.

 NWWriteEA Writes data to an extended attribute. If the extended attribute doesn’t
exist, this function attempts to create it.
Extended Attribute Concepts 149

150 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

13
novdocx (E

N
U

) 01 February 2006
13Extended Attribute Tasks

This documentation describes common tasks associated with Extended Attribute.

13.1 Scanning for Extended Attributes
1 Call NWFindFirstEA (page 158) and NWFindNextEA (page 162) to scan the extended

attributes of a file.

NWFindFirstEA (page 158) initializes the scan operation and NWFindNextEA (page 162)
returns an NWEA structure for each extended attribute. The returned structure can be passed to
NWReadEA (page 174) or NWWriteEA (page 180).

NWFindFirstEA (page 158) takes an NW_IDX structure as input. NW_IDX must identify the
file associated with the extended attribute.

2 To prepare NW_IDX, call the Name Space Services function NWGetDirectoryBase.

13.2 Accessing Extended Attributes
Use the following functions to read and write to the extended attributes of a file:

• NWReadEA (page 174)
• NWWriteEA (page 180)

Both functions open the extended attribute before proceeding, and both require a valid NWEA
structure as input.

NOTE: There are several ways to prepare this structure before passing it to either function. Refer to
the structure information before proceeding.

13.3 Accessing Attribute Selections
To access an extended attribute by name, prepare the NWEA structure by calling NWOpenEA
(page 170).

NOTE: NWOpenEA (page 170) doesn’t actually open the extended attribute, but fills in the fields
in the NWEA structure. The NWOpenEA (page 170) function uses the directory handle/file path of
the associated file, the name of the extended attribute, and the name space as arguments.

You can also call the NWGetEAHandleStruct (page 166) function to obtain the NWEA structure if
you know the extended attribute name. This function requires a valid NW_IDX structure. Call
NWGetDirectoryBase (Multiple and Inter-File Management) . (NWOpenEA (page 170) performs
this step for you.)
Extended Attribute Tasks 151

152 NDK: Single

novdocx (E
N

U
) 01 February 2006
13.4 Closing Extended Attributes
1 Complete the read or write operation on an extended attribute before closing an extended

attribute.

Partial read or write operations aren’t allowed. Any data past the end of the last read or write
operation is lost when the file is closed.

2 Call NWCloseEA (page 154) to close the extended attribute directory entry after accessing a
file’s extended attributes.
 and Intra-File Services

14
novdocx (E

N
U

) 01 February 2006
14Extended Attribute Functions

This documentation alphabetically lists the extended attribute functions and describes their purpose,
syntax, parameters, and return values.

• “NWCloseEA” on page 154
• “NWCloseEAExt” on page 156
• “NWFindFirstEA” on page 158
• “NWFindFirstEAExt” on page 160
• “NWFindNextEA” on page 162
• “NWFindNextEAExt” on page 164
• “NWGetEAHandleStruct” on page 166
• “NWGetEAHandleStructExt” on page 168
• “NWOpenEA” on page 170
• “NWOpenEAExt” on page 172
• “NWReadEA” on page 174
• “NWReadEAExt” on page 177
• “NWWriteEA” on page 180
• “NWWriteEAExt” on page 183
Extended Attribute Functions 153

154 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWCloseEA
Closes the specified Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWCloseEA (
 const NW_EA_HANDLE N_FAR *EAHandle);

Delphi Syntax
uses calwin32

Function NWCloseEA
 (const EAHandle : pNW_EA_HANDLE
) : NWCCODE;

Parameters
EAHandle

(IN) Points to NW_EA_HANDLE.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x89CF INVALID_EA_HANDLE

0x89D3 EA_VOLUME_NOT_MOUNTED
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
NWCloseEA must be called to save any changes made to an Extended Attribute. NWCloseEA must
be called after a complete Read and/or Write cycle, not after each read or write function. (
NWCloseEA should not be called after a find.)

NW_EA_HANDLE is referenced in all Extended Attribute functions. NW_EA_HANDLE is for
internal use only; do not manipulate NW_EA_HANDLE in any way.

NCP Calls
0x2222 86 01 Close Extended Attribute Handle
Extended Attribute Functions 155

156 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWCloseEAExt
Closes the specified Extended Attribute, using UFT-8 path and filenames

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWCloseEAExt (
 const NW_EA_HANDLE_EXT N_FAR *EAHandle);

Parameters
EAHandle

(IN) Points to NW_EA_HANDLE_EXT.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCloseEAExt must be called to save any changes made to an Extended Attribute.
NWCloseEAExt must be called after a complete Read and/or Write cycle, not after each read or
write function. (NWCloseEAExt should not be called after a find.)

NOTE: NW_EA_HANDLE_EXT is referenced in all Extended Attribute functions.
NW_EA_HANDLE_EXT is for internal use only; do not manipulate NW_EA_HANDLE_EXT in
any way.

0x0000 SUCCESSFUL

0x89CF INVALID_EA_HANDLE

0x89D3 EA_VOLUME_NOT_MOUNTED
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 86 01 Close Extended Attribute Handle
Extended Attribute Functions 157

158 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWFindFirstEA
Initializes the find-first/find-next Extended Attribute process

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindFirstEA (
 NWCONN_HANDLE conn,
 const NW_IDX N_FAR *idxStruct,
 NW_EA_FF_STRUCT N_FAR *ffStruct,
 NW_EA_HANDLE N_FAR *EAHandle,
 pnstr8 EAName);

Delphi Syntax
uses calwin32

Function NWFindFirstEA
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var ffStruct : NW_EA_FF_STRUCT;
 Var EAHandle : NW_EA_HANDLE;
 EAName : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

idxStruct
(IN) Points to the NW_IDX structure containing the directory entry index.

ffStruct
(OUT) Points to the NW_EA_FF_STRUCT structure.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
EAHandle
(OUT) Points to the NW_EA_HANDLE structure for the Extended Attribute.

EAName
(OUT) Points to the name of the Extended Attribute (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If any EAs exist for the associated file, NWFindFirstEA returns the NW_EA_HANDLE structure. If
no EAs exist, NWFindFirstEA returns 1.

The NW_EA_HANDLE structure can call the NWReadEA and/or NWWriteEA function.
Therefore, you do not need to call the NWGetEAHandleStruct function after NWFindFirstEA to
initialize a Read or Write.

If you do call the NWGetEAHandleStruct function in preparation for writing, use the EAName
parameter. When you copy by calling either NWFindFirstEA or the NWFindNextEA function, you
must use the EAName parameter. If the EAName parameter is not needed, it can be passed NULL.

Information for the NW_IDX structure is obtained by calling the NWNSGetMiscInfo or
NWGetDirectoryBase function. Functions use the NW_IDX structure to hold information
concerning the name space and directory entry index of a file. This is how an application associates
an Extended Attribute with a particular directory entry.

NOTE: The NW_EA_HANDLE and NW_EA_FF_STRUCT structures are for internal use only; do
not manipulate these structures in any way.

NWFindFirstEA will return INVALID_PARAMETER if NULL is passed to either the ffStruct
or EAHandle parameters.

NCP Calls
0x2222 86 04 Enumerate Extended Attribute

See Also
NWFindNextEA (page 162), NWGetDirectoryBase (Multiple and Inter-File Management),
NWGetEAHandleStruct (page 166), NWReadEA (page 174), NWWriteEA (page 180)

0x0000 SUCCESSFUL

0x0001 No EAs

0x8801 INVALID_CONNECTION

0x8836 INVALID_PARAMETER

0x890A NLM_INVALID_CONNECTION
Extended Attribute Functions 159

160 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWFindFirstEAExt
Initializes the find-first/find-next Extended Attribute process, using UFT-8 path and filenames

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindFirstEAExt (
 NWCONN_HANDLE conn,
 const NW_IDX N_FAR *idxStruct,
 NW_EA_FF_STRUCT_EXT N_FAR *ffStruct,
 NW_EA_HANDLE_EXT N_FAR *EAHandle,
 pnstr8 EAName);

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

idxStruct
(IN) Points to the NW_IDX structure containing the directory entry index. See NW_IDX in
Multiple and Inter-File Services.

ffStruct
(OUT) Points to the NW_EA_FF_STRUCT_EXT structure.

EAHandle
(OUT) Points to the NW_EA_HANDLE_EXT structure for the Extended Attribute.

EAName
(OUT) Points to the name of the Extended Attribute (optional).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If any EAs exist for the associated file, NWFindFirstEAExt returns the NW_EA_HANDLE_EXT
structure. If no EAs exist, NWFindFirstEAExt returns 1.

With a NW_EA_HANDLE_EXT structure, you can call the NWReadEAExt and/or
NWWriteEAExt function. Therefore, you do not need to call the NWGetEAHandleStructExt
function after NWFindFirstEAExt to initialize a Read or Write.

If you do call the NWGetEAHandleStructExt function in preparation for writing, use the EAName
parameter. When you copy by calling either NWFindFirstEAExt or the NWFindNextEAExt
function, you must use the EAName parameter. If the EAName parameter is not needed, it can be
passed NULL.

Information for the NW_IDX structure is obtained by calling the NWGetDirectoryBaseExt function.
Functions use the NW_IDX structure to hold information concerning the name space and directory
entry index of a file. This is how an application associates an Extended Attribute with a particular
directory entry.

NOTE: The NW_EA_HANDLE_EXT and NW_EA_FF_STRUCT_EXT structures are for internal
use only; do not manipulate these structures in any way.

NWFindFirstEAExt will return INVALID_PARAMETER if NULL is passed to either the
ffStruct or EAHandle parameters.

NCP Calls
0x2222 86 04 Enumerate Extended Attribute
0x2222 89 54 Enhanced Enumerate Extended Attribute

See Also
NWFindNextEAExt (page 164), NWGetDirectoryBaseExt (Multiple and Inter-File Management),
NWGetEAHandleStructExt (page 168), NWReadEAExt (page 177), NWWriteEAExt (page 183)

0x0000 SUCCESSFUL

0x0001 No EAs

0x8801 INVALID_CONNECTION

0x8836 INVALID_PARAMETER

0x88F0 UTF8_CONVERSION_FAILED

0x890A NLM_INVALID_CONNECTION
Extended Attribute Functions 161

162 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWFindNextEA
Returns the NW_EA_HANDLE structure for the next Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindNextEA (
 NW_EA_FF_STRUCT N_FAR *ffStruct,
 NW_EA_HANDLE N_FAR *EAHandle,
 pnstr8 EAName);

Delphi Syntax
uses calwin32

Function NWFindNextEA
 (Var ffStruct : NW_EA_FF_STRUCT;
 Var EAHandle : NW_EA_HANDLE;
 EAName : pnstr8
) : NWCCODE;

Parameters
ffStruct

(IN/OUT) Points to the NW_EA_FF_STRUCT structure returned by the NWFindFirstEA
function.

EAHandle
(OUT) Points to the NW_EA_HANDLE structure.

EAName
(OUT) Points to the name of the Extended Attribute (optional).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Before calling NWFindNextEA, you must call the NWFindFirstEA function. NWFindNextEA can
then be called multiple times until all EAs have been found. EA_DONE is returned when there are
no more EAs.

The NW_EA_HANDLE structure can also call the NWReadEA and/or NWWriteEA function.
Therefore, do not call the NWGetEAHandleStruct function after the NWFindFirstEA function in
order initialize a Read or Write.

If you do call the NWGetEAHandleStruct function in preparation for a Write, use the EAName
parameter. When you copy by calling either the NWFindFirstEA or NWFindNextEA function, the
EAName parameter must be used. If the EAName parameter is not needed, pass NULL.

The NW_EA_FF_STRUCT structure is used by the NWFindFirstEA function to return a handle to
the first or next Extended Attribute.

The NW_EA_HANDLE and NW_EA_FF_STRUCT structures are for internal use only; do not
manipulate these structures in any way.

NCP Calls
0x2222 86 04 Enumerate Extended Attribute

See Also
NWFindFirstEA (page 158)

0x0000 SUCCESSFUL

0x0001 EA_DONE

0x8996 ERR_NO_ALLOC_SPACE

0x89C9 ERR_EA_NOT_FOUND

0x89CF ERR_INVALID_EA_HANDLE

0x89D1 ERR_EA_ACCESS_DENIED

0x89FB ERR_UNKNOWN_REQUEST

0x89FF ERR_BAD_PARAMETER
Extended Attribute Functions 163

164 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWFindNextEAExt
Returns the NW_EA_HANDLE_EXT structure for the next Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindNextEA (
 NW_EA_FF_STRUCT_EXT N_FAR *ffStruct,
 NW_EA_HANDLE_EXT N_FAR *EAHandle,
 pnstr8 EAName);

Parameters
ffStruct

(IN/OUT) Points to the NW_EA_FF_STRUCT_EXT structure returned by the
NWFindFirstEAExt function.

EAHandle
(OUT) Points to the NW_EA_HANDLE_EXT structure.

EAName
(OUT) Points to the name of the Extended Attribute (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x0001 EA_DONE

0x88F0 UTF8_CONVERSION_FAILED

0x8996 ERR_NO_ALLOC_SPACE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
Before calling NWFindNextEAExt, you must call the NWFindFirstEAExt function.
NWFindNextEAExt can then be called multiple times until all EAs have been found. EA_DONE is
returned when there are no more EAs.

With a NW_EA_HANDLE_EXT structure, you can also call the NWReadEAExt and/or
NWWriteEA function. Therefore, do not call the NWGetEAHandleStructExt function after the
NWFindFirstEAExt function in order initialize a Read or Write.

If you do call the NWGetEAHandleStructExt function in preparation for a Write, use the EAName
parameter. When you copy by calling either the NWFindFirstEAExt or NWFindNextEAExt
function, the EAName parameter must be used. If the EAName parameter is not needed, pass NULL.

The NW_EA_FF_STRUCT_EXT structure is used by the NWFindFirstEAExt and
NWFindNextEAExt functions to return a handle to the first or next Extended Attribute.

NOTE: The NW_EA_HANDLE_EXT and NW_EA_FF_STRUCT_EXT structures are for internal
use only; do not manipulate these structures in any way.

NCP Calls
0x2222 86 04 Enumerate Extended Attribute
0x2222 89 54 Enhanced Enumerate Extended Attribute

See Also
NWFindFirstEAExt (page 160), NWGetEAHandleStructExt (page 168), NWReadEAExt
(page 177), NWWriteEAExt (page 183)

0x89C9 ERR_EA_NOT_FOUND

0x89CF ERR_INVALID_EA_HANDLE

0x89D1 ERR_EA_ACCESS_DENIED

0x89FB ERR_UNKNOWN_REQUEST

0x89FF ERR_BAD_PARAMETER
Extended Attribute Functions 165

166 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWGetEAHandleStruct
Fills the NW_EA_HANDLE structure for use in the NWReadEA and NWWriteEA functions

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetEAHandleStruct (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *EAName,
 const NW_IDX N_FAR *idxStruct,
 NW_EA_HANDLE N_FAR *EAHandle);

Delphi Syntax
uses calwin32

Function NWGetEAHandleStruct
 (conn : NWCONN_HANDLE;
 const EAName : pnstr8;
 const idxStruct : pNW_IDX;
 Var EAHandle : NW_EA_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

EAName
(IN) Points to the string containing the name of the Extended Attribute.

idxStruct
(IN) Points to the NW_IDX structure containing the directory entry index.

EAHandle
(IN/OUT) Points to the NW_EA_HANDLE structure containing the handle of the current
Extended Attribute.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The NW_EA_HANDLE structure is referenced in all Extended Attribute functions. The
NWReadEA and NWWriteEA functions use the NW_EA_HANDLE structure to maintain state
information. The state information is required to access the Extended Attribute database.

The NW_IDX structure information is obtained by calling the NWNSGetMiscInfo or
NWGetDirectoryBase function. Functions use the NW_IDX structure to hold information about the
name space and directory entry index of a file. This is how an application associates an Extended
Attribute with a particular directory entry.

See Also
NWFindFirstEA (page 158), NWFindNextEA (page 162), NWGetDirectoryBase (Multiple and
Inter-File Management), NWReadEA (page 174), NWWriteEA (page 180)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Extended Attribute Functions 167

168 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWGetEAHandleStructExt
Fills the NW_EA_HANDLE_EXT structure for use in the NWReadEAExt and NWWriteEAExt
functions

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetEAHandleStructExt (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *EAName,
 const NW_IDX N_FAR *idxStruct,
 NW_EA_HANDLE_EXT N_FAR *EAHandle);

Parameters
conn

(IN) Specifies the NetWare server connection handle.

EAName
(IN) Points to the string containing the name of the Extended Attribute.

idxStruct
(IN) Points to the NW_IDX structure containing the directory entry index. See NW_IDX in
Multiple and Inter-File Services.

EAHandle
(IN/OUT) Points to the NW_EA_HANDLE structure containing the handle of the current
Extended Attribute.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x88F0 UTF8_CONVERSION_FAILED
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
The NW_EA_HANDLE_EXT structure is referenced in all Extended Attribute functions. The
NWReadEAExt and NWWriteEAExt functions use the NW_EA_HANDLE_EXT structure to
maintain state information. The state information is required to access the Extended Attribute
database.

The NW_IDX structure information is obtained by calling the NWGetDirectoryBaseExt function.
Functions use the NW_IDX structure to hold information about the name space and directory entry
index of a file. This is how an application associates an Extended Attribute with a particular
directory entry.

See Also
NWOpenEAExt (page 172), NWFindFirstEAExt (page 160), NWFindNextEAExt (page 164),
NWGetDirectoryBaseExt (Multiple and Inter-File Management), NWReadEAExt (page 177),
NWWriteEAExt (page 183)

0x89FF HARDWARE_FAILURE
Extended Attribute Functions 169

170 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWOpenEA
Fills the NW_EA_HANDLE structure so it can be used by the NWReadEA and NWWriteEA
functions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWOpenEA (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 pnstr8 EAName,
 nuint8 nameSpace,
 NW_EA_HANDLE N_FAR *EAHandle);

Delphi Syntax
uses calwin32

Function NWOpenEA
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8;
 EAName : pnstr8;
 nameSpace : nuint8;
 Var EAHandle : NW_EA_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the NetWare directory handle pointing to the directory to search.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
path
(IN) Points to a path.

EAName
(IN) Points to the string containing the name of the Extended Attribute.

nameSpace
(IN) Specifies the name space of the Extended Attribute (see Name Space Flag Values
(Multiple and Inter-File Services)).

EAHandle
(IN/OUT) Points to the NW_EA_HANDLE structure containing the handle of the current
Extended Attribute.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWOpenEA combines the functionality of the NWGetDirectoryBase and NWGetEAHandleStruct
functions in one function.

The NWFindFirstEA and NWFindNextEA functions also return a filled NW_EA_HANDLE
structure.

NCP Calls
0x2222 87 22 Generate Directory Base and Volume Number

See Also
NWFindFirstEA (page 158), NWFindNextEA (page 162), NWGetDirectoryBase (Multiple and
Inter-File Management), NWGetEAHandleStruct (page 166), NWReadEA (page 174),
NWWriteEA (page 180)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH
Extended Attribute Functions 171

172 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWOpenEAExt
Fills the NW_EA_HANDLE_EXT structure so it can be used by the NWReadEAExt and
NWWriteEAExt functions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWOpenEAExt (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 pnstr8 EAName,
 nuint8 nameSpace,
 NW_EA_HANDLE_EXT N_FAR *EAHandle);

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the NetWare directory handle pointing to the directory to search.

path
(IN) Points to a path. The characters in the string must be UTF-8.

EAName
(IN) Points to the string containing the name of the Extended Attribute, using UTF-8
characters.

nameSpace
(IN) Specifies the name space of the Extended Attribute (see Name Space Flag Values
(Multiple and Inter-File Services)).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
EAHandle
(IN/OUT) Points to the NW_EA_HANDLE_EXT structure containing the handle of the
current Extended Attribute.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWOpenEAExt combines the functionality of the NWGetDirectoryBaseExt and
NWGetEAHandleStructExt functions in one function.

The NWFindFirstEAExt and NWFindNextEAExt functions also return a filled
NW_EA_HANDLE_EXT structure.

NOTE: For information about the requirments for using the ...Ext family of extended attribute
functions, see UTF-8 Path and Filenames in Multiple and Inter-File Services.

NCP Calls
0x2222 87 22 Generate Directory Base and Volume Number
0x2222 89 22 Generate Directory Base and Volume Number

See Also
NWFindFirstEAExt (page 160), NWFindNextEAExt (page 164), NWGetDirectoryBaseExt
(Multiple and Inter-File Management), NWGetEAHandleStructExt (page 168), NWReadEAExt
(page 177), NWWriteEAExt (page 183)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88F0 UTF8_CONVERSION_FAILED

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH
Extended Attribute Functions 173

174 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWReadEA
Reads the next block of data from the specified Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWReadEA (
 NW_EA_HANDLE N_FAR *EAHandle,
 nuint32 bufferSize,
 pnuint8 buffer,
 pnuint32 totalEASize,
 pnuint32 amountRead);

Delphi Syntax
uses calwin32

Function NWReadEA
 (Var EAHandle : NW_EA_HANDLE;
 bufferSize : nuint32;
 buffer : pnuint8;
 totalEASize : pnuint32;
 amountRead : pnuint32
) : NWCCODE;

Parameters
EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure, obtained by calling either the
NWGetHandleStruct, NWFindFirstEA, NWFindNextEA, or NWOpenEA function.

bufferSize
(IN) Specifies the size of the buffer.

buffer
(OUT) Points to a data buffer.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
totalEASize
(OUT) Points to the size of the Extended Attribute.

amountRead
(OUT) Points to the total amount of data read with the call (not cumulative across multiple
calls).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The data block to be read is determined from the state information identified by the EAHandle
parameter.

NWReadEA and the NWWriteEA function can perform multiple actions, such as opening or
creating an Extended Attribute and then calling the appropriate function. To properly end
NWReadEA, call the NWCloseEA function after the last Read or Write.

Extended Attribute values should always be read or written completely. Extended Attributes are not
treated like files when transferring. Therefore, partial Reads or Writes are not allowed.

If 0x0000 is returned, more data can be read from the Extended Attribute by calling NWReadEA
again. In this case, EAHandle is already positioned correctly for the next subsequent call. If
0x0001 is returned, no more data can be read and the data in the buffer was read successfully. If
other error values are returned, the data in the buffer is not considered valid.

IMPORTANT: If an Extended Attribute is not read or written completely, data past the end of the
last Read or Write may be lost!

0x0000 SUCCESSFUL

0x0001 EA-EOF (SUCCESSFUL EOF READ)

0x8833 INVALID_BUFFER_LENGTH

0x8988 INVALID_FILE_HANDLE

0x898C NO_MODIFY_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x89C9 EA_NOT_FOUND

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D1 EA_ACCESS_DENIED

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D5 INSPECT_FAILURE
Extended Attribute Functions 175

176 NDK: Single

novdocx (E
N

U
) 01 February 2006
The NW_EA_HANDLE structure is referenced in all Extended Attribute functions. NWReadEA
and the NWWriteEA function use the NW_EA_HANDLE structure to maintain state information.
The state information is required to access the Extended Attribute database. The
NW_EA_HANDLE structure is for internal use only; do not manipulate it in any way.

Before calling NWReadEA initially, you must obtain the EAHandle parameter to access the
Extended Attribute database. An application can obtain an Extended Attribute handle by calling one
of the following functions:

NWFindFirstEA
NWFindNextEA
NWGetEAHandleStruct
NWOpenEA

NWReadEA can be called multiple times until the bytes of data read is equal to the value identified
by the totalEASize parameter.

NOTE: The value referenced by the amountRead parameter does not reflect the total number of
bytes in the Extended Attribute.

For Reads, the bufferSize parameter must be at least 512 bytes; it can be greater than 512
bytes—but must be in multiples of 512. If the bufferSize parameter is less than 512 bytes,
NWReadEA returns INVALID_BUFFER_LENGTH.

The NWEARead function reads up to the number of bytes specified by the bufferSize
parameter or until the end of the Extended Attribute data, whichever comes first.

NCP Calls
0x2222 86 03 Read Extended Attribute

See Also
NWFindNextEA (page 162), NWFindFirstEA (page 158), NWOpenEA (page 170), NWWriteEA
(page 180)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReadEAExt
Reads the next block of data from the specified Extended Attribute, using UFT-8 path and filenames

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWReadEAExt (
 NW_EA_HANDLE_EXT N_FAR *EAHandle,
 nuint32 bufferSize,
 pnuint8 buffer,
 pnuint32 totalEASize,
 pnuint32 amountRead);

Parameters
EAHandle

(IN/OUT) Points to the NW_EA_HANDLE_EXT structure, obtained by calling either the
NWGetHandleStructExt, NWFindFirstEAExt, NWFindNextEAExt, or NWOpenEAExt
function.

bufferSize
(IN) Specifies the size of the buffer.

buffer
(OUT) Points to a data buffer.

totalEASize
(OUT) Points to the size of the Extended Attribute.

amountRead
(OUT) Points to the total amount of data read with the call (not cumulative across multiple
calls).
Extended Attribute Functions 177

178 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The data block to be read is determined from the state information identified by the EAHandle
parameter.

NWReadEAExt and the NWWriteEAExt function can perform multiple actions, such as opening or
creating an Extended Attribute and then calling the appropriate function. To properly end
NWReadEAExt, call the NWCloseEAExt function after the last Read or Write.

Extended Attribute values should always be read or written completely. Extended Attributes are not
treated like files when transferring. Therefore, partial Reads or Writes are not allowed.

If 0x0000 is returned, more data can be read from the Extended Attribute by calling NWReadEAExt
again. In this case, EAHandle is already positioned correctly for the next subsequent call. If
0x0001 is returned, no more data can be read and the data in the buffer was read successfully. If
other error values are returned, the data in the buffer is not considered valid.

IMPORTANT: If an Extended Attribute is not read or written completely, data past the end of the
last Read or Write may be lost!

The NW_EA_HANDLE_EXT structure is referenced in all Extended Attribute functions.
NWReadEAExt and the NWWriteEAExt function use the NW_EA_HANDLE_EXT structure to
maintain state information. The state information is required to access the Extended Attribute
database. The NW_EA_HANDLE_EXT structure is for internal use only; do not manipulate it in
any way.

0x0000 SUCCESSFUL

0x0001 EA-EOF (SUCCESSFUL EOF READ)

0x8833 INVALID_BUFFER_LENGTH

0x88F0 UTF8_CONVERSION_FAILED

0x8988 INVALID_FILE_HANDLE

0x898C NO_MODIFY_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x89C9 EA_NOT_FOUND

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D1 EA_ACCESS_DENIED

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D5 INSPECT_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Before calling NWReadEAExt initially, you must obtain the EAHandle parameter to access the
Extended Attribute database. An application can obtain an Extended Attribute handle by calling one
of the following functions:

NWFindFirstEAExt
NWFindNextEAExt
NWGetEAHandleStructExt
NWOpenEAExt

NWReadEAExt can be called multiple times until the bytes of data read is equal to the value
identified by the totalEASize parameter.

NOTE: The value referenced by the amountRead parameter does not reflect the total number of
bytes in the Extended Attribute.

For Reads, the bufferSize parameter must be at least 512 bytes; it can be greater than 512
bytes—but must be in multiples of 512. If the bufferSize parameter is less than 512 bytes,
NWReadEAExt returns INVALID_BUFFER_LENGTH.

The NWEAReadExt function reads up to the number of bytes specified by the bufferSize
parameter or until the end of the Extended Attribute data, whichever comes first.

NCP Calls
0x2222 86 03 Read Extended Attribute
0x2222 89 53 Enhanced Read Extended Attribute

See Also
NWFindNextEAExt (page 164), NWFindFirstEAExt (page 160), NWOpenEAExt (page 172),
NWWriteEAExt (page 183), NWCloseEAExt (page 156)
Extended Attribute Functions 179

180 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWWriteEA
Writes data to an Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWWriteEA (
 NW_EA_HANDLE N_FAR *EAHandle,
 nuint32 totalWriteSize,
 nuint32 bufferSize,
 const nstr8 N_FAR *buffer,
 pnuint32 amountWritten);

Delphi Syntax
uses calwin32

Function NWWriteEA
 (Var EAHandle : NW_EA_HANDLE;
 totalWriteSize : nuint32;
 bufferSize : nuint32;
 buffer : pnuint8;
 amountWritten : pnuint32
) : NWCCODE;

Parameters
EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure returned by the NWGetEAHandleStruct,
NWFindFirstEA, NWFindNextEA, or NWOpenEA function.

totalWriteSize
(IN) Specifies the size of the total Write.

bufferSize
(IN) Specifies the size of the buffer.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
buffer
(IN) Points to a data buffer.

amountWritten
(OUT) Points to the amount of data written by NWWriteEA (not cumulative across multiple
calls).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If the Extended Attribute does not exist, NWWriteEA attempts to create it.

NWWriteEA returns 0x0000 when there is more data in the Extended Attribute and NWWriteEA
needs to be called again. NWWriteEA returns 0x0001 when there is valid data in the buffer but none
left in the Extended Attribute.

The NWReadEA function and NWWriteEA can perform multiple actions, such as opening or
creating an Extended Attribute and then performing the appropriate function. To properly end
NWWriteEA, the NWCloseEA function must be called after the last Read, Write, and/or Find
Extended Attribute function.

Extended Attribute values should always be read or written completely. Extended Attributes are not
treated like files when transferring. Therefore, partial Reads or Writes are not allowed.

0x0000 SUCCESSFUL; valid data remains in the Extended Attribute

0x0001 SUCCESSFUL; valid data remains in the buffer, not the Extended Attribute

0x8901 ERR_INSUFFICIENT_SPACE

0x898C NO_MODIFY_PRIVILEGES

0x899C INVALID_PATH

0x89C8 MISSING_EA_KEY

0x89C9 EA_NOT_FOUND

0x89CB EA_NO_KEY_NO_DATA

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D0 EA_POSITION_OUT_OF_RANGE

0x89D1 EA_ACCESS_DENIED

0x89D2 DATA_PAGE_ODD_SIZE

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D4 BAD_PAGE_BOUNDARY

0x89FF HARDWARE_FAILURE
Extended Attribute Functions 181

182 NDK: Single

novdocx (E
N

U
) 01 February 2006
IMPORTANT: If an Extended Attribute is not read or written completely, data past the end of the
last Read or Write may be lost!

Before calling NWWriteEA, an application must properly initialize the NW_EA_HANDLE
structure to access the Extended Attribute database. An application can initialize the
NW_EA_HANDLE structure by calling the NWFindFirstEA, NWFindNextEA,
NWGetEAHandleStruct, or NWOpenEA function. The NW_EA_HANDLE structure is for internal
use only; do not manipulate it in any way.

For Writes, the bufferSize parameter should be at least 512 bytes. If the bufferSize
parameter is less than the totalWriteSize parameter, it must be a multiple of 512.

NWWriteEA writes up to the number of bytes specified by the bufferSize parameter or until the
end of the Extended Attribute data, whichever comes first. If the data to be written is larger than the
buffer size, NWWriteEA must be called multiple times to write all the data to the Extended
Attribute.

An application should complete the entire Write before closing the Extended Attribute.

NCP Calls
0x2222 86 02 Write Extended Attribute

See Also
NWReadEA (page 174)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWWriteEAExt
Writes data to an Extended Attribute, using UFT-8 path and filenames

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Extended Attribute

Syntax
#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWWriteEA (
 NW_EA_HANDLE_EXT N_FAR *EAHandle,
 nuint32 totalWriteSize,
 nuint32 bufferSize,
 const nstr8 N_FAR *buffer,
 pnuint32 amountWritten);

Parameters
EAHandle

(IN/OUT) Points to the NW_EA_HANDLE_EXT structure returned by the
NWGetEAHandleStructExt, NWFindFirstEAExt, NWFindNextEAExt, or NWOpenEAExt
function.

totalWriteSize
(IN) Specifies the size of the total Write.

bufferSize
(IN) Specifies the size of the buffer.

buffer
(IN) Points to a data buffer.

amountWritten
(OUT) Points to the amount of data written by NWWriteEAExt (not cumulative across multiple
calls).
Extended Attribute Functions 183

184 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If the Extended Attribute does not exist, NWWriteEAExt attempts to create it.

NWWriteEAExt returns 0x0000 when there is more data in the Extended Attribute and
NWWriteEAExt needs to be called again. NWWriteEAExt returns 0x0001 when there is valid data
in the buffer but none left in the Extended Attribute.

The NWReadEAExt function and NWWriteEAExt can perform multiple actions, such as opening or
creating an Extended Attribute and then performing the appropriate function. To properly end
NWWriteEAExt, the NWCloseEAExt function must be called after the last Read, Write, and/or Find
Extended Attribute function.

Extended Attribute values should always be read or written completely. Extended Attributes are not
treated like files when transferring. Therefore, partial Reads or Writes are not allowed.

IMPORTANT: If an Extended Attribute is not read or written completely, data past the end of the
last Read or Write may be lost!

Before calling NWWriteEAExt, an application must properly initialize the
NW_EA_HANDLE_EXT structure to access the Extended Attribute database. An application can

0x0000 SUCCESSFUL; valid data remains in the Extended Attribute

0x0001 SUCCESSFUL; valid data remains in the buffer, not the Extended Attribute

0x88F0 UTF8_CONVERSION_FAILED

0x8901 ERR_INSUFFICIENT_SPACE

0x898C NO_MODIFY_PRIVILEGES

0x899C INVALID_PATH

0x89C8 MISSING_EA_KEY

0x89C9 EA_NOT_FOUND

0x89CB EA_NO_KEY_NO_DATA

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D0 EA_POSITION_OUT_OF_RANGE

0x89D1 EA_ACCESS_DENIED

0x89D2 DATA_PAGE_ODD_SIZE

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D4 BAD_PAGE_BOUNDARY

0x89FF HARDWARE_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
initialize the NW_EA_HANDLE_EXT structure by calling the NWFindFirstEAExt,
NWFindNextEAExt, NWGetEAHandleStructExt, or NWOpenEAExt function. The
NW_EA_HANDLE_EXT structure is for internal use only; do not manipulate it in any way.

For Writes, the bufferSize parameter should be at least 512 bytes. If the bufferSize
parameter is less than the totalWriteSize parameter, it must be a multiple of 512.

NWWriteEAExt writes up to the number of bytes specified by the bufferSize parameter or until
the end of the Extended Attribute data, whichever comes first. If the data to be written is larger than
the buffer size, NWWriteEAExt must be called multiple times to write all the data to the Extended
Attribute.

An application should complete the entire Write before closing the Extended Attribute.

NCP Calls
0x2222 86 02 Write Extended Attribute
0x2222 89 52 Enhanced Write Extended Attribute

See Also
NWFindNextEAExt (page 164), NWFindFirstEAExt (page 160), NWOpenEAExt (page 172),
NWReadEAExt (page 177), NWCloseEAExt (page 156)
Extended Attribute Functions 185

186 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

15
novdocx (E

N
U

) 01 February 2006
15Extended Attribute Structures

This documentation alphabetically lists the extended attributes structures and describes their
purpose, syntax, and fields.
Extended Attribute Structures 187

188 NDK: Single

novdocx (E
N

U
) 01 February 2006
NW_EA_FF_STRUCT
Maintains state information when scanning an extended attribute file

Service: Extended Attribute

Defined In: nwea.h

Structure
typedef struct
{
 NWCONN_HANDLE connID ;
 nuint16 nextKeyOffset ;
 nuint16 nextKey ;
 nuint32 numKeysRead ;
 nuint32 totalKeys ;
 nuint32 EAHandle ;
 nuint16 sequence ;
 nuint16 numKeysInBuffer ;
 nuint8 enumBuffer [512];
} NW_EA_FF_STRUCT;

Delphi Structure
uses calwin32

NW_EA_FF_STRUCT = packed Record
 connID : NWCONN_HANDLE;
 nextKeyOffset : nuint16;
 nextKey : nuint16;
 numKeysRead : nuint32;
 totalKeys : nuint32;
 EAHandle : nuint32;
 sequence : nuint16;
 numKeysInBuffer : nuint16;
 enumBuffer : Array[0..511] Of nuint8
 End;

Fields
connID

Specifies a connection to the server storing the Extended Attribute.

nextKeyOffset
Specifies a value that the server uses as part of an internal handle.

nextKey
Specifies a value that the server uses as part of an internal handle.

numKeysRead
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Specifies the number of keys that have been read from the extended attribute file.

totalKeys
Specifies the total number of keys in the extended attribute file.

EAHandle
Specifies the handle for the current key.

sequence
Specifies the current key number.

numKeysInBuffer
Specifies the number of keys in the current buffer.

enumBuffer
Specifies the current buffer containing keys read from the extended attribute file.

Remarks
NW_EA_FF_STRUCT is an internal handle for library use only. Applications must not modify this
structure in any way.
Extended Attribute Structures 189

190 NDK: Single

novdocx (E
N

U
) 01 February 2006
NW_EA_FF_STRUCT_EXT
Maintains state information when scanning an extended attribute file

Service: Extended Attribute

Defined In: nwea.h

Structure
typedef struct
{
 NWCONN_HANDLE connID ;
 nuint16 nextKeyOffset ;
 nuint16 nextKey ;
 nuint32 numKeysRead ;
 nuint32 totalKeys ;
 nuint32 EAHandle ;
 nuint16 sequence ;
 nuint16 numKeysInBuffer ;
 nuint8 enumBuffer [1530];
} NW_EA_FF_STRUCT_EXT;

Fields
connID

Specifies a connection to the server storing the Extended Attribute.

nextKeyOffset
Specifies a value that the server uses as part of an internal handle.

nextKey
Specifies a value that the server uses as part of an internal handle.

numKeysRead
Specifies the number of keys that have been read from the extended attribute file.

totalKeys
Specifies the total number of keys in the extended attribute file.

EAHandle
Specifies the handle for the current key.

sequence
Specifies the current key number.

numKeysInBuffer
Specifies the number of keys in the current buffer.

enumBuffer
Specifies the current buffer containing keys read from the extended attribute file.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
NW_EA_FF_STRUCT_EXT is an internal handle for library use only. Applications must not
modify this structure in any way.
Extended Attribute Structures 191

192 NDK: Single

novdocx (E
N

U
) 01 February 2006
NW_EA_HANDLE
Defines information associated with the extended attribute handle

Service: Extended Attribute

Defined In: nwea.h

Structure
typedef struct
{
 NWCONN_HANDLE connID ;
 nuint32 rwPosition ;
 nuint32 EAHandle ;
 nuint32 volNumber ;
 nuint32 dirBase ;
 nuint8 keyUsed ;
 nuint16 keyLength ;
 nuint8 key [256];
} NW_EA_HANDLE;

Delphi Structure
uses calwin32

NW_EA_HANDLE = packed Record
 connID : NWCONN_HANDLE;
 rwPosition : nuint32;
 EAHandle : nuint32;
 volNumber : nuint32;
 dirBase : nuint32;
 keyUsed : nuint8;
 keyLength : nuint16;
 key : Array[0..255] Of nuint8
 End;

Fields
connID

Specifies the server storing the Extended Attribute.

rwPosition
Specifies the current position within the Extended Attribute file.

EAHandle
Specifies the handle to the Extended Attribute file.

volNumber
Specifies the volume storing the Extended Attribute file.

dirBase
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Specifies the directory base associated with the Extended Attribute file.

keyUsed
Specifies the key used to access the Extended Attribute.

keyLength
Specifies the length of the key parameter.

key
Specifies the Extended Attribute key.

Remarks
NW_EA_HANDLE is an internal handle for library use only. Applications must not modify this
structure in any way.
Extended Attribute Structures 193

194 NDK: Single

novdocx (E
N

U
) 01 February 2006
NW_EA_HANDLE_EXT
Defines information associated with the extended attribute handle

Service: Extended Attribute

Defined In: nwea.h

Structure
typedef struct
{
 NWCONN_HANDLE connID ;
 nuint32 rwPosition ;
 nuint32 EAHandle ;
 nuint32 volNumber ;
 nuint32 dirBase ;
 nuint8 keyUsed ;
 nuint16 keyLength ;
 nuint8 key [766];
} NW_EA_HANDLE_EXT;

Fields
connID

Specifies the server storing the Extended Attribute.

rwPosition
Specifies the current position within the Extended Attribute file.

EAHandle
Specifies the handle to the Extended Attribute file.

volNumber
Specifies the volume storing the Extended Attribute file.

dirBase
Specifies the directory base associated with the Extended Attribute file.

keyUsed
Specifies the key used to access the Extended Attribute.

keyLength
Specifies the length of the key parameter.

key
Specifies the Extended Attribute key.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
NW_EA_HANDLE_EXT is an internal handle for library use only. Applications must not modify
this structure in any way.
Extended Attribute Structures 195

196 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

16
novdocx (E

N
U

) 01 February 2006
16Operating System I/O Concepts

This documentation describes Operating System I/O, its functions, and features.

Operating system I/O functions perform nonbuffered I/O operations. The functions in this section
reference files using a file handle that is returned when a file is opened. The file handle is passed to
the other functions. Files opened at the OS level (with the open (page 229), sopen (page 238), and
creat (page 207) functions), or opened at the stream level and referenced with the fileno (page 271)
function are called first-level open files.

NOTE: As used in this chapter, streams are standard files and are not to be confused with
NetWare® STREAMS.

Operating System I/O provides functions for NLM development.

16.1 File Permission Conversion
When a file is created during the operation of creat, open, or sopen, the permission parameter
can be specified as S_IWRITE (writable), S_IREAD (readable) or S_IWRITE | S_IREAD (writable
and readable). 0 also allows both writing and reading.

Files created with the S_IWRITE option can be written to, modified, and deleted by any object
having such rights to the file. Files created with S_IREAD are created as read-only. S_IREAD is
converted to directory attributes that prohibit writing, renaming, deletion, copying, or the ability to
migrate or compress.

16.2 File Paths
When specifying a file to an Operating System I/O function, the file paths include the following
conditions:

• The file paths do not have drive letters.

File path drive letters are not used in NLM™ applications.
• File paths can contain volume names.

Any volumes mounted on the server may be referenced by the NLM. Volume names are from 2
to 15 characters long.

The syntax for a file path that includes a volume name is as follows:

volume: directory\...\directory\filename

Each thread group in an NLM has its own current working directory (CWD). If a relative path is
specified, it is assumed to be relative to the thread group’s CWD. When a thread group is started, the
initial value of the CWD is "SYS:" (root directory on the SYS volume). The only exception to this is
when the (CLIB_OPT) parameters are specified when the NLM is loaded. These parameters change
the CWD for the initial thread group.

NOTE: The maximum number of file handles that can be open at once for NetWare® 4.x is 1700.
Operating System I/O Concepts 197

198 NDK: Single

novdocx (E
N

U
) 01 February 2006
NLM applications can open a given file more than once. The file handle and task information for
subsequent opens depend on the circumstances of the open, as follows:

• If a file is opened more than once by a particular thread, using the same connection and task,
then the same file handle is returned. A count of the number of times a file is opened with a
particular handle is associated with each handle. A handle remains usable as long as its open
count is greater than zero.

• If a file is opened more than once by different threads or by the same thread but with a different
connection or task (than a previous connection or task with which the file was opened), then a
different handle is returned. Closing one handle for a given file has no effect on any other
handles to that file.

• If a file is opened more than once with the same connection and task but with different threads,
then the second (and subsequent) open is done with a newly allocated task number. The task
number is automatically allocated on the current connection by open (page 229) (or sopen
(page 238) or creat (page 207)). The current task number is not affected.

I/O redirection on first-level files and file handles is supported only for NetWare 4.x and above (see
dup (page 209) and dup2 (page 211)). Redirection of second-level files is supported for all NetWare
versions. Second-level files include those opened with fopen (page 274), fdopen (page 256), or
freopen (page 285).

Text mode for first-level file handles is not supported. Only binary mode is supported. (In binary
mode, data is transmitted unchanged. In text mode, carriage-return/line-feed pairs are translated to
line feeds on input, and line feeds are translated to carriage-return/line-feed pairs on output.)

The following handles are predefined and always available:

STDIN (0)—Input from the current screen

STDOUT (1)—Output to the current screen

STDERR (2)—Output to the current screen

16.3 Operating System I/O Functions
These are the functions to handle OS input and output:

chsize Changes the file size.

close Closes a file, stream, or BSD socket.

creat Creates and opens a file or stream.

dup Returns a file handle that refers to the same open file as handle. Supported only for
the NetWare® 4.x and above OS.

dup2 Forces file handle handle2 to reference the same open file as handle Supported only
for NetWare 4.x and above.

eof Determines if the end of the file has been reached for a specified file.

fcntl Provides control over open files.

filelength Returns the number of bytes in an open file.

fstat Obtains information about an open file.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
isatty Tests whether the specified handle refers to a screen or not.

lock Locks a portion of a file.

lseek Sets the current file position.

open Opens a file, stream, or socket.

read Reads data from a file, stream, or socket.

sopen Opens a file, stream, or socket for shared access.

tell Determines the current file position.

unlock Unlocks a previously locked portion of a file.

write Writes data to a file, stream, or socket.
Operating System I/O Concepts 199

200 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

17
novdocx (E

N
U

) 01 February 2006
17Operating System I/O Functions

This documentation alphabetically lists the operating system I/O functions and describes their
purpose, syntax, parameters, and return values.

• “cancel” on page 202
• “chsize” on page 203
• “close” on page 205
• “creat” on page 207
• “dup” on page 209
• “dup2” on page 211
• “eof” on page 213
• “fcntl” on page 214
• “filelength” on page 216
• “fstat” on page 217
• “ioctl” on page 219
• “isatty” on page 223
• “lock” on page 224
• “lseek” on page 226
• “open” on page 229
• “pipe” on page 232
• “read” on page 234
• “setmode” on page 237
• “sopen” on page 238
• “tell” on page 242
• “unlock” on page 244
• “write” on page 246
Operating System I/O Functions 201

202 NDK: Single

novdocx (E
N

U
) 01 February 2006
cancel
Cancels any current call to setvbuf for the specified thread

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Operating System I/O

Syntax
#include <unistd.h>

int cancel (
 int t_id);

Parameters
t_id

(IN) Specifies the target thread id, exactly as returned when the target thread as created.

Return Values
Returns 0 on success. If an error occurs, it returns -1 and errno is set to:

Remarks
A CLib thread was optionally awakened from delay by calling ResumeThread (Threads
Management) and, to overcome the affects of delay, cancel must be called.

See Also
setvbuf (page 321), GetThreadID (Threads Management)

0x0000004E ECANCELED The operation is invalid because the target thread is either not in
a delay operation or the delay operation has already been
cancelled.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
chsize
Changes the file size

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int chsize (
 int handle,
 LONG size);

Parameters
handle

(IN) Specifies a file handle.

size
(IN) Specifies the file size.

Return Values
chsize returns a value of 0 if successful. It returns a value of -1 if an error occurs.

If an error occurs, errno is set to:

If chsize does not complete successfully, NetWareErrno is set.

Remarks
The chsize function changes the size of the file associated with the file handle. It can truncate or
extend the file, depending on the value of size compared to the file’s original size.

The mode in which the file was opened must allow writing.

If chsize extends the file, it appends NULL characters (\0). If it truncates the file, all data beyond the
new end-of-file indicator is lost.

Decimal Constant Description

4 EBADF Bad file number.

6 EACCES Permission denied.

12 ENOSPC No space left on device.
Operating System I/O Functions 203

204 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
eof (page 213), filelength (page 216)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
close
Closes a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int close (
 int handle);

Parameters
handle

(IN) Specifies a file handle.

Return Values
When an error occurs while closing the file, a value of -1 is returned. Otherwise, a value of 0 is
returned.

If an error occurs, errno is set to:

If the function does not complete successfully, NetWareErrno is set.

Remarks
This function also works on the DOS partition.

The handle value is the file handle returned by a successful execution of the open, sopen, or creat
function. After a file is closed, the file handle is no longer valid and should not be reused.

UNIX STREAMS: If a Stream file is closed and the calling process had previously registered to
receive a SIGPOLL signal for events associated with that file, the calling process is unregistered for
events associated with the file.

The last close for a Stream causes the Stream associated with handle to be dismantled.

• If O_NDELAY is not set and no signals have been posted for the Stream, the close function
waits up to 15 seconds for each module and driver and for any output to drain before
dismantling the Stream.

4 EBADF Bad file number.
Operating System I/O Functions 205

206 NDK: Single

novdocx (E
N

U
) 01 February 2006
• If the O_NDELAY flag is set or if there are any pending signals, the close function does not
wait for output to drain and dismantles the Stream immediately.

See Also
creat (page 207), dup (page 209), dup2 (page 211), open (page 229), sopen (page 238)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
creat
Creates and opens a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <fcntl.h>

int creat (
 const char *filename,
 int permission);

Parameters
filename

(IN) Points to the name of the file to be created (considered within the context of the currently
set name space).

permission
(IN) Specifies the access permissions for the file.

Return Values
When an error occurs while creating the file, a value of -1 is returned. Otherwise, an integer (not
equal to -1), known as the file handle, is returned to be used with the other functions that operate on
the file.

When an error occurs, errno can be set to:

When an error occurs, NetWareErrno is set to:

Decimal Constant Description

1 ENONENT No such file.

6 EACCES Permission denied.

9 EINVAL Invalid argument.

Decimal Hex Constant Description

152 (0x98) ERR_INVALID_VOLUME
Operating System I/O Functions 207

208 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks

This function also works on the DOS partition.

This function allows for as many open files as there is available memory. The filename parameter
supplies the name of the file to be created. If the file exists (the current connection must have Write
rights), it is truncated to contain no data and the preceding permission setting is unchanged.

If the file does not exist, it is created with access permission given by the permission parameter.

The access permission for the file is specified as a combination of bits (defined in the SYS\STAT.H
header file):

The permission parameter can be specified as S_IWRITE, S_IREAD or S_IWRITE|S_IREAD.
Specifying 0 also makes a file both writable and readable.

The current connection must have Create rights to create a new file or have Read/Write rights to
write to a file that already exists.

See Also
dup (page 209), dup2 (page 211), open (page 229), sopen (page 238)

Example
#include <stddef.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>

main()
{
 int fh;
 if((fh = creat("name",0)) == -1)
 printf ("creat() error\n");
 else
 close (fh);
}

156 (0x9C) ERR_INVALID_PATH

191 (0xBF) ERR_INVALID_NAME_SPACE On remote servers when using a non-DOS
name space.

S_IWRITE The file is writable.

S_IREAD The file is readable.

Decimal Hex Constant Description
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
dup
Returns a file handle that refers to the same open file as handle (supported only for NetWare 4.x and
above)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int dup (
 int handle);

Parameters
handle

(IN) Specifies the file handle that is to be duplicated.

Return Values
When an error occurs, a value of -1 is returned. Otherwise, the return value is a nonnegative integer
that is the file handle.

If an error occurs, errno can be set to:

Remarks
The dup function duplicates a file handle by returning a file handle that refers to the same open file
as handle. Since both handles reference the same file, either handle can be used for operations on
the file.

NOTE: For an example of how to reverse the effect of redirecting stdin, see the example for
fdopen (page 256).

Decimal Constant Description

4 EBADF Bad file number

11 EMFILE Too many open files
Operating System I/O Functions 209

210 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
close (page 205), creat (page 207), dup2 (page 211), eof (page 213), fdopen (page 256), filelength
(page 216), fileno (page 271), fstat (page 217), ftell (page 293), isatty (page 223), lseek (page 226),
open (page 229), read (page 234), sopen (page 238), write (page 246)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
dup2
Forces the file handle to reference the same open file as the handle parameter (supported only for
NetWare 4.x and above)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int dup2 (
 int handle,
 int handle2);

Parameters
handle

(IN) Specifies the file handle to be duplicated.

handle2
(IN) Specifies the file handle to be forced to reference the same file as the handle parameter.

Return Values
When an error occurs, a value of -1 is returned. Otherwise, the return value is a nonnegative integer
that is the file handle.

If an error occurs, errno can be set to:

Remarks
The handle parameter must be a handle to a file that is already open. If handle2 references a file
that is already open, that file is closed before handle2 is forced to reference the file for handle.

Decimal Constant Description

4 EBADF Bad file number

11 EMFILE Too many open files
Operating System I/O Functions 211

212 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
close (page 205), creat (page 207), dup (page 209), eof (page 213), filelength (page 216), fileno
(page 271), fstat (page 217), ftell (page 293), isatty (page 223), lseek (page 226), open (page 229),
read (page 234), sopen (page 238), write (page 246)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
eof
Determines if the end of the file has been reached for a specified file

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int eof (
 int handle);

Parameters
handle

(IN) Specifies a file handle.

Return Values
eof returns a value of 1 if the current file position is at the end of the file. If the current file position
is not at the end, a value of 0 is returned. If an error is detected, a value of -1 is returned.

If an error occurs, errno is set to:

If eof does not complete successfully, NetWareErrno is set.

Remarks
The eof function determines if the end of the file has been reached for the file whose file handle is
given by handle. Because the current file position is set following an input operation, eof can be
called to detect the end of the file before an input operation beyond the end of the file is attempted.

See Also
dup (page 209), dup2 (page 211), read (page 234)

4 EBADF Bad file number.
Operating System I/O Functions 213

214 NDK: Single

novdocx (E
N

U
) 01 February 2006
fcntl
Controls file handles

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <fcntl.h>

int fcntl (
 int handle,
 int cmd,
 int arg);

Parameters
handle

(IN) Specifies a file handle to be operated on by cmd.

cmd
(IN) Specifies one of two commands to act on the specified file handle.

arg
(IN/OUT) Specifies the handle status flags.

Return Values
Upon successful completion of the F_GETFL command, fcntl returns the current value of the
requested flag. Otherwise, a value of -1 is returned and errno indicates the error.

Decimal Constant Description

4 EBADF The specified file handle is not a valid one.

9 EINVAL Either cmd or val is not supported.

35 EWOULDBLOCK Either no data is available to a read call or a write operation is in a
blocking mode.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
The fcntl function provides for file control over file handles. The handle parameter is a file handle
to be operated on by cmd. The cmd parameter includes either the F_GETFL or the F_SETFL
commands described below:

Flags are passed in the arg parameter. The FNDELAY flag is defined for the F_GETFL and
F_SETFL commands. It establishes a nonblocking I/O mode; if no data is available to a read call or
if a write operation is in a blocking mode, the call returns a value of -1 with the error
EWOULDBLOCK.

See Also
ioctl (page 219)

F_GETFL Get handle status flags.

F_SETFL Set handle status flags.
Operating System I/O Functions 215

216 NDK: Single

novdocx (E
N

U
) 01 February 2006
filelength
Returns the number of bytes in an open file

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

LONG filelength (
 int fildes);

Parameters
handle

(IN) Specifies a file handle.

Return Values
filelength returns a value of -1 if an error occurs.

If an error occurs, errno can be set to:

If filelength does not complete successfully, NetWareErrno is set.

Remarks
The filelength function returns the number of bytes in the opened file indicated by the file handle.

See Also
dup (page 209), dup2 (page 211), eof (page 213), lseek (page 226), tell (page 242)

Example
#include <fcntl.h>

LONG length;
int handle;
length = filelength (handle);

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fstat
Obtains information about an open file

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <sys\stat.h>

int fstat (
 int handle,
 struct stat *statblk);

Parameters
handle

(IN) Specifies a file handle.

statblk
(OUT) Points to the address of the structure stat.

Return Values
fstat returns a value of 0 when the information is obtained successfully. Otherwise, a value of -1 is
returned.

If an error occurs, errno is set to:

If fstat does not complete successfully, NetWareErrno is set.

Remarks
The fstat function obtains information about an open file whose file handle is handle. This
information is placed in the structure located at the address indicated by the statblk parameter.

The SYS\STAT.H header file contains definitions for stat and describes the contents of the fields
within that structure.

4 EBADF Bad file number.
Operating System I/O Functions 217

218 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
dup (page 209), dup2 (page 211), open (page 229), stat (Multiple and Inter-File Services)

Example
#include <stdio.h>
#include <nwtypes.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>

main()
{
 int handle;
 struct stat buf;
 handle = open ("test.dat",O_RDONLY | O_BINARY,0);
 if(handle == -1)
 {
 printf ("could not open file");
 exit (0);
 }
 if(fstat (handle,&buf) == -1)
 printf ("fstat error\r\n");
 close(handle);
 printf ("st_dev = %x\r\n",buf.st_dev);
 printf ("st_ino = %x\r\n",buf.st_ino);
 printf ("st_mode = %x\r\n",buf.st_mode);
 printf ("st_nlink = %x\r\n",buf.st_nlink);
 printf ("st_uid = %x\r\n",buf.st_uid);
 printf ("st_gid = %x\r\n",buf.st_gid);
 printf ("st_rdev = %x\r\n",buf.st_rdev);
 printf ("st_size = %x\r\n",buf.st_size);
 printf ("st_atime = %x\r\n",buf.st_atime);
 printf ("st_mtime = %x\r\n",buf.st_mtime);
 printf ("st_ctime = %x\r\n",buf.st_ctime);
 printf ("st_btime = %x\r\n",buf.st_btime);
 printf ("st_attr = %x\r\n",buf.st_attr);
 printf ("st_archivedID = %x\r\n",buf.st_archivedID);
 printf ("st_updatedID = %x\r\n",buf.st_updatedID);
 printf ("st_inheritedRightsMask =
 %x\r\n",buf.st_inheritedRightsMask);
 printf ("st_originatingNameSpace =
 %c\r\n",buf.st_originatingNameSpace);
 printf ("st_name = %s\r\n",buf.st_name);
/*—————- new fields starting in v. 4.11 —————-*/
 printf ("st_name2 = %s\r\n",buf.st_name2);
 printf ("st_blksize = %x\r\n",buf.st_blksize);
 printf ("st_blocks = %x\r\n",buf.st_blocks);
 printf ("st_flags = %x\r\n",buf.st_flags);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ioctl
Performs a variety of control functions on a STREAMS, BSD Socket, and pipe file descriptors

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX (nonstandard)

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: Operating System I/O

Syntax
#include <sys/ioctl.h>
#include <stropts.h>

int ioctl (
 int filedes,
 int command,
 void *arg);

Parameters
filedes

(IN) Specifies a descriptor returned from the open, pipe, sopen, socket, etc., functions.

command
(IN) Specifies the control function to be performed.

arg
(IN/OUT) Points to an additional argument to be used or points to an argument returned by
ioctl (depending on the control function performed).

Return Values
Upon successful completion, the value returned depends upon the control function (command
argument) but must be a nonnegative integer. Otherwise, errno indicates the occurring error.

Remarks
See spxc_rw.c (NDK: NetWare Server Protocol Libraries for C)(unsupported) for sample code.

For Stream files, ioctl performs the following control operations:
Operating System I/O Functions 219

220 NDK: Single

novdocx (E
N

U
) 01 February 2006
FIOGETNBIO Supported for TCP, UDP, ICMP, RAWIP sockets. Returns the nonblocking
status of the socket. The status is returned in the third parameter of ioctl as a
value and result parameter. A nonzero value indicates the flag is SET, and a
zero value indicates the flag is CLEAR.

FIONBIO Supported for TCP, UDP, ICMP, RAWIP sockets. Sets and clears the
nonblocking flag for the sockets, depending on the value of the third parameter
that is passed to ioctl. A nonzero value indicates the flag is SET, and a zero
value indicates the flag is CLEAR.

FIONREAD Supported for TCP, UDP, ICMP, RAWIP sockets. Returns the number of bytes
that are currently in the socket receive buffer. The value is returned in the third
parameter of ioctl.

I_FDINSERT Creates a message from user-specified buffers, adds information about
another Stream and sends the message downstream. The message contains
a control part and an optional data part. On failure, errno is set.

I_FIND Compares the names of all modules currently present in the Stream to the
name pointed to by the arg parameter, and returns a value of 1 if the named
module is present in the Stream. It returns a value of 0 if the named module is
not present. On failure, errno is set.

I_FLUSH Flushes all input and/or output queues, depending on the value of the arg
parameter :

FLSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

I_GETSIG Returns the events for which the calling process is currently registered to be
sent a SIGPOLL signal. The events are returned as a bit mask pointed to by
the arg parameter, where the events are those specified in the description of
I_SETSIG. On failure, errno is set.

I_GRDOPT Returns the current read mode setting in an int pointed to by the arg
parameter. On failure, errno is set.

I_LINK Connects two Streams, where the filedes parameter contains the file
descriptor of the Stream connected to the multiplexing driver, and the arg
parameter is the file descriptor of the Stream connected to another driver. The
Stream designated by the arg parameter is connected below the multiplexing
driver. I_LINK requires the multiplexing driver to send an acknowledgment
message to the stream-head regarding the linking operation. It returns a
multiplexer ID number (an identifier used to disconnect the multiplexer) on
success, and a value of -1 on failure. On failure, errno is set.

I_LOOK Retrieves the name of the module just below the stream-head of the Stream
pointed to by the filedes parameter, and places it in a NULL-terminated
character string pointed to by the arg parameter. On failure, errno is set.

I_NREAD Counts the number of data bytes in data blocks in the first message on the
stream-head read queue, and places this value in the location pointed to by
the arg parameter. The return value for the command is the number of
messages on the stream-head read queue. On failure, errno is set.

For a pipe file, counts the number of data bytes left to read on the descriptor
before the read function blocks.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
I_NWRITE Counts the number of data bytes that may be written on a pipe descriptor
before the write function blocks. Similar to I_NREAD. For example,
err=ioctl(pipeFD, I_NWRITE, &pending);.

I_PEEK Allows a user to retrieve the information in the first message on the stream-
head read queue without taking the message off the queue. The arg
parameter points to a strpeek structure. I_PEEK returns a value of 1 if a
message was retrieved, and returns a value of 0 if no message was found on
the stream-head read queue.

I_POP Removes the module just below the stream-head of the Stream pointed to by
the filedes parameter. The arg parameter should be 0 in an I_POP request.
On failure, errno is set.

I_PUSH Pushes the module whose name is pointed to by the arg parameter onto the
top of the current Stream, just below the stream-head. It then calls the open
routine of the newly pushed module. On failure, errno is set.

I_RECVFD Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. The arg parameter points to a data buffer
large enough to hold the strrecvfd structure. If the message at the stream-
head is a message sent by an I_SEND descriptor, a new user file descriptor is
allocated for the file pointer contained in the message. The new file descriptor
is placed in the fd field of the strrecvfd structure. The structure is copied into
the user data buffer pointed to by the arg parameter. On failure, errno is set.

I_SENDFD Requests the Stream associated with the file descriptor to send a message,
containing a file pointer, to the stream-head at the other end of a stream pipe.
The arg parameter must point to a file descriptor. I_SENDFD converts the
arg parameter into the corresponding system file pointer. It allocates a
message block and inserts the file pointer in the block. The user ID and group
ID associated with the sending process are also inserted. This message is
placed directly on the read queue for the stream-head at the other end of the
stream pipe to which it is connected. On failure, errno is set.

I_SETBUF Exchanges the buffer currently underlying the pipe for one of a different size.
The pipe becomes empty and cleared with respect to data read or written. For
example, err=ioctl(pipeFD, I_SETBUF, 8192);.

I_SETSIG Informs the stream-head that the user wants the kernel to issue the SIGPOLL
signal when a particular event has occurred on the Stream associated with the
filedes parameter. I_SETSIG supports an asynchronous processing
capability in STREAMS. The value of the arg parameter is a bit mask that
specifies the events for which the user should be signaled. It is the bitwise OR
of any combination of the following constants:

S_INPUT Nonpriority message has arrived.

S_HIPRI Priority message is present.

S_OUTPUT The write queue is no longer full. There is room for sending (or
writing) data downstream.

S_MSG Stream signal message containing the SIGPOLL signal has
reached the front of the stream-head read queue. On failure,
errno is set.

I_SRDOPT Sets the read mode using the arg parameter. Legal values for the arg
parameter are:

RNORM Byte-stream mode (the default)
Operating System I/O Functions 221

222 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
pipe (page 232), poll (unsupported), putmsg (NDK: NetWare Server Protocol Libraries for
C)(unsupported), open (page 229), read (page 234), socket (NDK: NetWare Server Protocol
Libraries for C)(unsupported), write (page 246)

RMSGD Message-discard mode

RMSGN Message-nondiscard mode

I_STR Constructs an internal Stream ioctl message from the data pointed to by the
arg parameter and sends that message downstream. I_STR blocks until the
system responds with either a positive or negative acknowledgment message
or until the request times out after some period of time. If the request fails,
errno is set.

I_UNLINK Disconnects the two Streams specified by the filedes and arg parameters.
The filedes parameter is the file descriptor of the Stream connected to the
multiplexing driver. The descriptor must correspond to the Stream on which the
ioctl I_LINK command was issued to link the Stream below the multiplexing
driver. The arg parameter is the multiplexer ID number that was returned by
the I_LINK call. If the arg parameter is -1, all Streams which were linked to the
filedes parameter are disconnected. As in I_LINK, it requires the
multiplexing driver to acknowledge the unlink. On failure, errno is set.

SIOCATMARK Supported for TCP sockets. Returns a nonzero value if the socket's read
pointer is currently at the out-of-band mark. A zero value indicates the read
pointer is not at the out-of-band mark. The value is returned in the third
parameter of ioctl.

SIOCDGRAMSIZE Supported for RAWIP sockets (NetWare specific). Returns the size of the
datagram to be sent, in bytes. The value is returned in the third parameter of
ioctl.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
isatty
Tests whether the specified handle refers to a screen

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int isatty (
 int handle);

Parameters
handle

(IN) Specifies a file handle.

Return Values
isatty n returns a value of 0 if the device or file is not a character device; otherwise, a nonzero is
returned.

If an error occurs, errno can be set to:

Remarks
The isatty function tests if the opened file or device referenced by the file handle is a character
device (namely, the console).

See Also
dup (page 209), dup2 (page 211), open (page 229)

4 EBADF Bad file number.
Operating System I/O Functions 223

224 NDK: Single

novdocx (E
N

U
) 01 February 2006
lock
Locks a portion of a file

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

int lock (
 int fildes,
 LONG offset,
 LONG length);

Parameters
handle

(IN) Specifies a file handle.

offset
(IN) Specifies the starting byte that is to be locked.

length
(IN) Specifies the amount of data (in bytes) to be locked.

Return Values
Returns a value of 0 if successful, and a value of -1 when an error occurs.

If an error occurs, errno is set to:

Remarks
lock locks the amount of data specified by the length parameter in the file specified by the
handle parameter, starting at the byte specified by the offset parameter in the file.

lock prevents other open handles from reading or writing into the locked region until an unlock has
been done for this locked region of the file. All locked regions of a file must be unlocked before a
file is closed.

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
open (page 229), sopen (page 238), unlock (page 244)
Operating System I/O Functions 225

226 NDK: Single

novdocx (E
N

U
) 01 February 2006
lseek
Sets the current file position

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

LONG lseek (
 int handle,
 LONG offset,
 int origin);

Parameters
handle

(IN) Specifies a file handle.

offset
(IN) Specifies the relative offset from a file position.

origin
(IN) Specifies the seek starting point.

Return Values
On success, lseek returns the new current file position in a system-dependent manner. A value of 0
indicates the start of a file. If an error occurs, lseek returns 0xFFFFFFFF, and errno is set to:.

If lseek does not complete successfully, NetWareErrno is also set.

Remarks
The file is referenced using the specified file handle.

The value of the offset parameter is used as a relative offset from a file position determined by
the value of the origin parameter. An absolute offset can be from 0 to 2 32. It must be unsigned
long, which cannot be negative.

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The new file position is determined in a manner dependent upon the value of the origin
parameter, which can have one of three possible values (defined in the STDIO.H header file):

The files’s position can be set to a position outside of the bounds of the file.

See Also
close (page 205), creat (page 207), dup (page 209), dup2 (page 211), eof (page 213), filelength
(page 216), fileno (page 271), fstat (page 217), isatty (page 223), open (page 229), read (page 234),
sopen (page 238), tell (page 242), write (page 246)

Example
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

main()
{
 int fh;
 if((fh = open ("test.dat",O_RDWR | O_CREAT | O_TRUNC,0)) < 0)
 {
 printf ("could not open file\r\n");
 exit(0);
 }
 write (fh,"1234567890",10);
 if(lseek (fh,1,SEEK_SET) < 0)
 {
 printf ("error on seek 1\r\n");
 goto end;
 }
 write (fh,"a",1);
 if(lseek(fh,-2,SEEK_END) < 0)
 {
 printf ("error on seek 2\r\n");
 goto end;
 }
 write (fh,"b",1);
 if(lseek (fh,-5,SEEK_CUR) < 0)
 {
 printf ("error on seek 3\r\n");
 goto end;
 }
 write (fh,"c",1);

SEEK_SET The new file position is computed relative to the start of the file.

SEEK_CUR The new file position is computed relative to the current file position.

SEEK_END The new file position is computed relative to the end of the file.
Operating System I/O Functions 227

228 NDK: Single

novdocx (E
N

U
) 01 February 2006
 end:
 close (fh);
 getch ();
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
open
Opens a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <fcntl.h>

int open (
 const char *path,
 int oflag,
 ...);

Parameters
path

(IN) Points to the name of the file to open (considered within the context of the currently set
namespace).

oflag
(IN) Specifies the access mode.

Return Values
When an error occurs while opening the file, a value of -1 is returned. Otherwise, an integer (not
equal to -1), known as the file handle, is returned to be used with the other functions that operate on
the file.

If an error occurs, errno can be set to:

When an error occurs, NetWareErrno is set to:

Decimal Constant Description

1 ENONENT No such file.

6 EACCES Permission denied.

9 EINVAL Invalid argument.

Decimal Hex Constant

108 (0x6C) ERR_BAD_ACCESS
Operating System I/O Functions 229

230 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
This function also works on the DOS partition.

This function allows for as many open files as there is available memory. The path parameter
supplies the name of the file to be opened. The file is accessed according to the access mode
specified by the oflag parameter.

The access mode is established as a combination of the bits defined in the FCNTL.H header file. The
following bits can be set:

O_CREAT must be specified when the file does not exist and it is to be written.

An optional third parameter, int permission, is used when the file is to be created (O_CREAT is
specified) to set file permissions. File permissions are set according to the value contained in the
permission parameter. The access permissions for the file is specified as a combination of bits
(defined in the SYS\STAT.H header file).

The permission parameter can be specified as S_IWRITE, S_IREAD or S_IWRITE|S_IREAD.
Specifying 0 also makes a file both writable and readable.

When opening a UNIX Stream file, access must be constructed from O_NDELAY and either
O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to Stream devices

152 (0x98) ERR_INVALID_VOLUME

156 (0x9C) ERR_INVALID_PATH

O_RDONLY Permits the file to be only read.

O_WRONLY Permits the file to be only written.

O_RDWR Permits the file to be both read and written.

O_APPEND Causes each record that is written to be written at the end of the file.

O_CREAT Has no effect when the file indicated by the file name parameter already exists;
otherwise, the file is created.

O_TRUNC Causes the file to be truncated to contain no data when the file exists; has no
effect when the file does not exist. O_TRUNC must be ORed with write access to
truncate a file:

O_TRUNC | O_RDWR

O_TRUNC | O_WRONLY

O_BINARY Causes the data to be transmitted unchanged. (Text mode for first-level handles
is not supported. In text mode, carriage- return/line-feed pairs are translated to
line feeds on input, and line feeds are translated to carriage-return/line-feed pairs
on output.)

S_IWRITE The file is writable.

S_IREAD The file is readable.

Decimal Hex Constant
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
and have no effect on them. The value of O_NDELAY affects the operation of Stream drivers and
certain function calls (read, getmsg, putmsg, and write). For drivers, the implementation of
O_NDELAY is device-specific. Each Stream device driver can treat this option differently.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

See Also
close (page 205), creat (page 207), dup (page 209), dup2 (page 211), eof (page 213), filelength
(page 216), fileno (page 271), fstat (page 217), isatty (page 223), lseek (page 226), read (page 234),
sopen (page 238), tell (page 242), write (page 246)

Example
#include <stddef.h>
#include <fcntl.h>
#include <errno.h>

main()
{
 int fh,size;
 char buffer[] = {"a text record to be written\n" };
 fh = open ("test.dat",O_WRONLY | O_CREAT | O_TRUNC,0);
 printf ("handle: %d\n\r",fh);
 if(fh == EFAILURE)
 {
 printf ("could not open file\r\n");
 goto end;
 }
 printf ("%d\n\r",tell(fh));
 size = write (fh,buffer,sizeof(buffer));
 if(size < 29)
 {
 printf ("could not write to file\r\n");
 goto end;
 }
 printf ("%d\r\n",tell(fh));
 close (fh);
 end:
 printf ("%d\r\n",errno);
 getch ();
}

Operating System I/O Functions 231

232 NDK: Single

novdocx (E
N

U
) 01 February 2006
pipe
Creates an inter-process channel.

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX (nonstandard)

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

int pipe (
 int fildes[2]);

Parameters
fildes

(OUT) Specifies the file descriptions for the ends of the newly created pipe.

Return Values
pipe returns zero upon successful completion. Otherwise, -1 is returned and errno indicates the
occurring error.

If an error occurs, errno can be set to:

Remarks
pipe creates a pipe and places two file descriptions (into fildes[0] and fildes[1]) for the read
and write ends of the pipe. Their integer values shall be the two lowest that available at the time pipe
is called. O_NONBLOCK and FD_CLOEXEC, which can be set by calling fcntl, should be clear on
both file descriptors.

Data can be written to fildes[1] and read from fildes[0]. A read on fildes[0] accesses the
data written to fildes[1] on a first-in-first-out basis.

A process has the pipe open for reading if it has a file descriptor open that refers to the read end,
fildes[0]. A process has the pipe open for writing if it has a file descriptor open that refers to the
write end, fildes[1].

EMFILE More than (OPEN_MAX)-2 file descriptors are already in use.

ENFILE The number of simultaneously open files in the system would exceed a system-
imposed limit.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Upon successful completion, pipe updates the st_atime, st_ctime, and st_mtime fields of
the new pipe.

See Also
fcntl (page 214), ioctl (page 219), poll (unsupported), putmsg (unsupported) (NDK: NetWare Server
Protocol Libraries for C), open (page 229), read (page 234), socket (unsupported) (NDK: NetWare
Server Protocol Libraries for C), write (page 246)
Operating System I/O Functions 233

234 NDK: Single

novdocx (E
N

U
) 01 February 2006
read
Reads data from a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

LONG read (
 int handle,
 char *buffer,
 LONG len);

Parameters
handle

(IN) Specifies a file handle.

buffer
(OUT) Points to a buffer to receive the data.

len
(IN) Specifies the number of bytes to read.

Return Values
read returns the number of bytes of data transmitted from the file to the buffer. Normally, this is the
number given by the len parameter. When the end-of- file is encountered before the read
completes, the return value is less than the number of bytes requested.

A value of -1 is returned when an input/output error is detected. If an error occurs, errno can be set
to:

If read does not complete successfully, NetWareErrno is set.

Remarks
This function also works on the DOS partition.

The read function returns the number of bytes of data transmitted from the file to the buffer.

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The handle value is returned by the open, sopen, creat, or fileno function. The access mode must
have included either O_RDONLY or O_RDWR when the open or sopen function was invoked. The
data is read starting at the current file position for the file in question. This file position can be
determined with the tell function and can be set with the lseek function.

A read from a Stream file can operate in three different modes: byte-stream mode, message-
nondiscard mode, and message-discard mode. The default is byte-stream mode. This can be changed
using the I_SRDOPT ioctl request, and can be tested with the I_GRDOPT ioctl. In byte-stream
mode, the read function retrieves data from the Stream until it has received nbyte bytes, or until
there is no more data to be retrieved. Byte-stream mode ignores message boundaries.

In Stream message-nondiscard mode, the read function retrieves data until it has read nbytes bytes
or until it reaches a message boundary. If the read function does not retrieve all the data in the
message, the remaining data are placed on the Stream, and can be retrieved by the next read or
getmsg call. Message-discard mode also retrieves data until it has retrieved nbyte bytes or it
reaches a message boundary. However, unread data remaining in a message after the read function
returns are discarded and are not available for a subsequent read or getmsg.

When reading from a Stream file, handling of zero-byte messages is determined by the current read
mode setting. In byte-stream mode, the read function accepts data until it has read nbyte bytes, or
until there is no more data to read or until a zero-byte message block is encountered. The read
function returns the number of bytes read and places the zero-byte message back on the Stream to be
retrieved by the next read or getmsg. In the two other modes, a zero-message returns a value of 0 and
the message is removed from the Stream. When a zero-byte message is read as the first message on
a Stream, a value of 0 is returned regardless of the read mode.

A read from a Stream file can only process data messages. It cannot process any type of protocol
message and fails if a protocol message is encountered at the stream head.

A read from a Stream file also fails if an error message is received at the stream head. In this case,
errno is set to the value returned in the error message. If a hang up occurs on the Stream being
read, the read function continues to operate normally until the stream head read queue is empty.
Thereafter, it returns 0.

See Also
close (page 205), creat (page 207), dup (page 209), dup2 (page 211), eof (page 213), filelength
(page 216), fileno (page 271), fstat (page 217), isatty (page 223), lseek (page 226), open (page 229),
sopen (page 238), tell (page 242), write (page 246)

Example
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <dirent.h>
#include <nwconio.h>

#define BUFFER_SIZE 512

Operating System I/O Functions 235

236 NDK: Single

novdocx (E
N

U
) 01 February 2006
main()
{
 int handle, rc, i, ch = 0;
 char buffer[BUFFER_SIZE];
 handle = open ("test.dat", O_RDONLY, 0);
 if (handle < 0)
 {
 printf ("\r%s\r\n\n",strerror(errno));
 exit (0);
 }
 while (1)
 {
 if ((rc = read (handle, buffer, BUFFER_SIZE)) <= 0)
 {
 lseek (handle,0,SEEK_SET);
 rc = 0;
 }
 for (i = 0; i < rc; i++)
 {
 putchar (buffer[i]);
 if (kbhit ())
 {
 if ((ch = getch()) == 0x03)
 {
 printf ("^C");
 close (handle);
 exit (0);
 }
 else if(ch == ’l’)
 {
 printf ("\r\n\n***** lock %s\r\n\n",
 lock (handle,1,10) ? "failed" : "succeeded");
 getch ();
 }
 else if(ch == ’u’)
 {
 printf ("\r\n\n***** unlock %s\r\n\n",
 unlock(handle,1,10) ? "failed" : "succeeded");
 getch ();
 }
 else getch (); /* Pause*/
 }
 }
 }
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
setmode
Sets, at the operating system level, the translation mode to the specified value

Local Servers: nonblocking

Remote Servers: nonblocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

int setmode (
 int handle,
 int mode);

Parameters
handle

(IN) Specifies a file handle.

mode
(IN) Specifies the translation mode.

Return Values
If successful, the setmode function returns the previous mode that was set for the file. Otherwise, a
value of -1 is returned. When an error has occurred, the global variable errno contains a value
indicating the type of error that has been detected.

Remarks
The setmode function sets the translation mode to be the value of mode for the file whose file handle
is given by handle. The mode parameter can contain the following value:

• O_BINARY—Data is read or written unchanged.

See Also
close (page 205), creat (page 207), eof (page 213), filelength (page 216), fileno (page 271), fstat
(page 217), isatty (page 223), lseek (page 226), open (page 229), read (page 234), sopen (page 238),
tell (page 242), write (page 246)
Operating System I/O Functions 237

238 NDK: Single

novdocx (E
N

U
) 01 February 2006
sopen
Opens a file or stream for shared access

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

int sopen (
 const char *path,
 int oflag,
 int shflag,
 ...);

Parameters
path

(IN) Points to the path of the file to open.

oflag
(IN) Specifies the access mode.

shflag
(IN) Specifies the sharing mode of the file.

Return Values
When an error occurs while opening the file, a value of –1 is returned. Otherwise, an integer (not
equal to –1), known as the file handle, is returned to be used with the other functions that operate on
the file.

When an error occurs, errno is set to:

When an error occurs, NetWareErrno is set to:

Decimal Constant Description

1 ENOENT No such file.

6 EACCESS Permission denied.

9 EINVAL Invalid argument.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NOTE: A problem was introduced in the 4.01d version of clib.nlm. It manifests itself when sopen is
called multiple times by the same thread.

In clib.nlm versions prior to 4.01d, a valid file handle will be returned from sopen when a file is
opened multiple times by the same thread. In the 4.01d version of clib.nlm (and later versions) an
error occurs and returns -1 while errno is set to EINUSE.

Beginning with version 4.10d (notice this is 4.1 and not 4.01) PTR 2/1/95, you can pass the
NWSH_PRE_401D_COMPAT bit (0x80000000) in as part of the share flags passed to sopen to get
functionality of clib versions prior to 4.01d (if you have experienced problems with multiple threads
opening the same file multiple times).

As an alternative to the above work around, you can pass in a CLIB_OPT switch on the command
line of the .nlm you are using. CLIB_OPT/U86414 will provide the same functionality as passing in
the share flags with the additional bits ORed in. This is only available on clib.nlm version 4.10d
PTF.

Remarks
This function also works on the DOS partition.

The path of the file to be opened is given by the path parameter. The file is accessed according to
the access mode specified by the oflag parameter.

The access mode is established as a combination of the bits defined in the FCNTL.H header file. The
following bits can be set:

Decimal Hex Constant

107 (0x6B) ERR_BAD_SHFLAG

108 (0x6C) ERR_BAD_ACCESS

152 (0x98) ERR_INVALID_VOLUME

156 (0x9C) ERR_INVALID_PATH

O_RDONLY Permits the file to be only read.

O_WRONLY Permits the file to be only written.

O_RDWR Permits the file to be both read and written.

O_APPEND Causes each record that is written to be written at the end of the file.

O_CREAT Has no effect when the file indicated by the filename parameter already exists;
otherwise, the file is created.

O_TRUNC Causes the file to be truncated to contain no data when the file exists; has no
effect when the file does not exist. O_TRUNC must be ORed with write access to
truncate a file:

O_TRUNC | O_RDWR

O_TRUNC | O_WRONY
Operating System I/O Functions 239

240 NDK: Single

novdocx (E
N

U
) 01 February 2006
O_CREAT must be specified when the file does not exist and it is to be written.

The shared access for the file is established by the combination of bits set in the shflag parameter
where the following values are defined in NWFATTR.H.

NOTE: If a new file is created by this function, the share flag is ignored.

An optional fourth parameter, int permission, is used when the file is to be created (O_CREAT is
specified) to set file permissions. File permissions are set according to the value contained in the
permission parameter. The access permissions for the file is specified as a combination of bits
(defined in the SYS\STAT.H header file).

The permission parameter can be specified as S_IWRITE, S_IREAD or S_IWRITE|S_IREAD.
Specifying 0 also makes a file both writable and readable.

See Also
close (page 205), dup (page 209), dup2 (page 211), open (page 229)

Example
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dirent.h>
#include <nwbindry.h>
#include <nwfattr.h>
#include <nwerrno.h>
#include <nwconn.h>
#include <nwfileio.h>
#include <unistd.h>

O_BINARY Causes the data to be transmitted unchanged. (Text mode for first-level handles is
not supported. In text mode, carriage- return/line-feed pairs are translated to line
feeds on input, and line feeds are translated to carriage-return/line-feed pairs on
output.)

SH_COMPAT Sets compatibility mode.

SH_DENYRW Prevents read or write access to the file.

SH_DENYWR Prevents write access of the file.

SH_DENYRD Prevents read access to the file.

SH_DENYNO Permits both read and write access to the file.

S_IWRITE The file is writable.

S_IREAD The file is readable.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
#define BUFFER_SIZE 512
main()
{
 int ccode, handle;
 errno=0;
 printf("Login %s\r\n\n", LoginToFileServer("ADMIN",//
 supervisor for NW 3.x OT_USER,"\x0")?"Failed":"Succeeded");
 handle=sopen("test.c", O_RDWR, SH_DENYNO, 0);
 if (handle==-1)
 {
 printf("\r%s\r\n\n",strerror(errno));
 close(handle);
 Logout();
 exit(0);
 }
 ccode=lock(handle, 1, 10);
 if (ccode)
 {
 printf("\n***lock failed\n");
 printf("r%s\r\n\n", strerror(errno));
 }
 else
 printf("\n***lock succeeded\n");
 getch();
 ccode=unlock(handle, 1, 10);
 if (ccode)
 {
 printf("\n***unlock failed\n");
 printf("\r%s\r\n\n", strerror(errno));
 }
 else
 printf("\n***unlock succeeded\n");
 close(handle);
 Logout();
}

Operating System I/O Functions 241

242 NDK: Single

novdocx (E
N

U
) 01 February 2006
tell
Determines the current file position

Local Servers: nonblocking

Remote Servers: nonblocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

LONG tell (
 int fildes);

Parameters
handle

(IN) Specifies a file handle.

Return Values
When an error occurs, a value of -1 is returned. Otherwise, the current file position is returned in a
system-dependent manner. A value of 0 indicates the start of the file.

If an error occurs, errno is set to:

Remarks
The handle value is the file handle returned by a successful execution of the open, sopen, creat, or
fileno function. This function can be used in conjunction with lseek to reset the current file position.

See Also
close (page 205), creat (page 207), eof (page 213), filelength (page 216), fileno (page 271), fstat
(page 217), ftell (page 293), isatty (page 223), lseek (page 226), open (page 229), read (page 234),
sopen (page 238), write (page 246)

Example
#include <fcntl.h>

LONG position;

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
int handle;
position = tell (handle);
Operating System I/O Functions 243

244 NDK: Single

novdocx (E
N

U
) 01 February 2006
unlock
Unlocks a region of previously locked data in a file

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Operating System I/O

Syntax
#include <nwfileio.h>

int unlock (
 int fildes,
 LONG offset,
 LONG length);

Parameters
handle

(IN) Specifies a file handle.

offset
(IN) Specifies the starting byte.

length
(IN) Specifies the amount of data (in bytes).

Return Values
unlock returns a value of 0 if successful and a value of -1 when an error occurs.

If an error occurs, errno can be set to:

If unlock does not complete successfully, NetWareErrno is set.

Remarks
The unlock function unlocks the region of the file previously locked with the lock function that
specified the same offset as the call to unlock. If the file does not have a locked region starting at
offset, the unlock function returns a value of -1 and sets errno to EWRNGKND. All locked
regions of a file should be unlocked before a file is closed.

Decimal Constant Description

4 EBADF Bad file number.

19 EWRNGKND The region was not locked.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
dup (page 209), dup2 (page 211), lock (page 224), open (page 229), sopen (page 238)
Operating System I/O Functions 245

246 NDK: Single

novdocx (E
N

U
) 01 February 2006
write
Writes data (blocks even if writing to the screen)

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: Operating System I/O

Syntax
#include <unistd.h>

LONG write (
 int handle,
 char *buffer,
 LONG len);

Parameters
handle

(IN) Specifies a file handle.

buffer
(IN) Point to the address at which to start transmitting data.

len
(IN) Specifies the number of bytes transmitted.

Return Values
write returns the number of bytes of data transmitted to the file. When there is no error, this is the
number given by the len parameter. In the case of an error, such as there being no space available to
contain the file data, the return value is less than the number of bytes transmitted. A value of -1 is
returned in the case of output errors.

If an error occurs, errno can be set to:

If write does not complete successfully, NetWareErrno is set.

Remarks
This function also works on the DOS partition.

4 EBADF Bad file number.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The handle value is returned by open, sopen, or creat. The access mode must have included either
O_WRONLY or O_RDWR when open or sopen was invoked. The data is written to the file at the
end when the file was opened with O_APPEND included as part of the access mode; otherwise, it is
written at the current file position for the file in question. This file position can be determined with
tell and can be set with lseek.

For Stream files, the operation of write is determined by the values of the minimum and maximum
n-byte range (packet size) accepted by the Stream. These values are contained in the topmost Stream
module. Unless the user pushes the topmost module, these values cannot be set or tested from user
level.

• If n-byte falls within the packet size range, n-byte bytes are written.
• If n-byte does not fall within the range and the minimum packet size value is zero, write breaks

the buffer into maximum packet size segments prior to sending the data downstream (the last
segment can contain less than the maximum packet size).

• If nbyte does not fall within the range and the minimum value is nonzero, write fails with
errno set to ERANGE. Writing a zero-length buffer (n-byte is 0) sends zero bytes with zero
bytes returned.

For Stream files, if O_NDELAY is not set and the Stream cannot accept data (the stream write queue
is full due to internal flow control conditions), write blocks until data can be accepted. O_NDELAY
prevents a process from blocking due to flow control conditions. If O_NDELAY is set and the
Stream cannot accept data, write fails. If O_NDELAY is set and part of the buffer has been written
when a condition in which the Stream cannot accept additional data occurs, write terminates and
returns the number of bytes written.

See Also
close (page 205), creat (page 207), dup (page 209), dup2 (page 211), eof (page 213), filelength
(page 216), fileno (page 271), fstat (page 217), isatty (page 223), lseek (page 226), open (page 229),
read (page 234), sopen (page 238), tell (page 242)

Example
#include <stddef.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>

main()
{
 int fh,size;
 char buffer[] = { "NLM test file" };
 size = strlen(buffer);
 errno = 0;
 if((fh = creat ("test.dt1",0)) != -1)
 {
 printf ("open 1: %s\r\n",strerror(errno));
 }
 else
 {
Operating System I/O Functions 247

248 NDK: Single

novdocx (E
N

U
) 01 February 2006
 if(write (fh,buffer,size) < size)
 printf ("write 1: %s\r\n",strerror(errno));
 printf ("file length 1: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 1: %s\r\n",strerror(errno));
 }
 if((fh = creat ("test.dt2",0)) != -1)
 {
 printf ("open 2: %s\r\n",strerror(errno));
 }
 else
 {
 if(write (fh,buffer,size) < size)
 printf ("write 2: %s\r\n",strerror(errno));
 printf ("file length 2: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 2: %s\r\n",strerror(errno));
 }
 if((fh = creat ("test.dt3",0)) != -1)
 {
 printf ("open 3: %s\r\n",strerror(errno));
 }
 else
 {
 if(write (fh,buffer,size) < size)
 printf ("write 3: %s\r\n",strerror(errno));
 printf ("file length 3: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 3: %s\r\n",strerror(errno));
 }
 printf ("\r\n exit: %s\r\n",strerror(errno));
 getch ();
}

 and Intra-File Services

18
novdocx (E

N
U

) 01 February 2006
18Stream I/O Concepts

This documentation describes Stream I/O, its functions, and features.

NOTE: The streams discussed here are standard files, not to be confused with UNIX STREAMS or
STREAMS.

Developed by USL, the UNIX based STREAMS facility, or mechanism, is a collection of system
calls, kernel resources, and kernel utility routines. The STREAMS mechanism creates, uses, and
dismantles a Stream, which is a full-duplex processing and data transfer path between a driver in
kernel space and a process in user space; a STREAM consists of three basic components: a stream
head, stream modules (protocol stacks), and a stream driver.

Stream I/O functions can be used for "standard" read and write file operations. Data can be
transmitted as characters, strings, or blocks of memory.

A stream is the name given to a second-level file that has been opened for data transmission. When a
stream is opened, a pointer to a FILE structure is returned. This pointer is used to reference the
stream when other functions are subsequently invoked.

18.1 Stream I/O Functions
These are the functions for handling stream input and output:

clearerr Clears end-of-file error indicators for a stream.

fclose Closes a stream file.

fcloseall Closes all open stream files except stdin, stdout, and stderr.

fdopen Associates a stream with a file handle that represents an open file or device.

feof Tests the end-of-file indicator for a stream.

ferror Tests the error indicator for a stream.

fflush Flushes the output buffer of a stream.

fgetc Returns the next character from the input stream.

fgetchar Returns the next character from the input stream pointed to by stdin.

fgetpos Retrieves the current position of a stream.

fgets Gets a string of characters from a stream and stores them in an array.

fileno Returns the file handle for a stream.

flushall Clears all buffers associated with input streams and writes any buffers
associated with output streams.

fopen Opens a file and associates a stream with it.

fprintf Writes output to a stream under format control.

fputc Writes a character to the output stream.
Stream I/O Concepts 249

250 NDK: Single

novdocx (E
N

U
) 01 February 2006
fputs Writes a string to an output stream.

fread Reads data from a stream.

freopen Opens a file and associates a previously opened stream with it.

fscanf Scans input from a stream under format control.

fseek Changes the read/write position of a stream.

fsetpos Sets the current position of a stream.

ftell Returns the current read/write position of a stream.

fwrite Writes elements to a stream.

getc Gets the next character from a stream.

getchar Gets the next character from stdin.

gets Gets a string from a stream and stores it in an array.

printf Writes output to the stream designated by stdout.

putc Writes a character to an output stream.

putchar Writes a character to an output stream.

puts Writes a specified character string to an output stream and appends a newline
character to the output.

rewind Sets the stream position indicator to the beginning of the file.

scanf Scans input from a stream.

setbuf Associates a buffer with a stream after the stream is open and before it has
been read or written to.

setvbuf Associates a buffer with a stream after the stream is open and before it has
been read or written to.

tmpfile Creates a temporary binary file.

ungetc Pushes a character back onto the specified input stream.

vfprintf Writes output to a stream under format control.

vfscanf Scans input from a stream under format control.

vprintf Writes output to a stream under format control.

vscanf Scans input from the stream designated by stdin.
 and Intra-File Services

19
novdocx (E

N
U

) 01 February 2006
19Stream I/O Functions

This documentation alphabetically lists the Stream I/O functions and describes their purpose,
syntax, parameters, and return values.

• “clearerr” on page 253
• “fclose” on page 254
• “fcloseall” on page 255
• “fdopen” on page 256
• “feof” on page 259
• “ferror” on page 261
• “fflush” on page 263
• “fgetc” on page 264
• “fgetchar” on page 266
• “fgetpos” on page 267
• “fgets” on page 269
• “fileno” on page 271
• “flushall” on page 273
• “fopen” on page 274
• “fprintf” on page 277
• “fputc” on page 279
• “fputs” on page 281
• “fread” on page 283
• “freopen” on page 285
• “fscanf” on page 287
• “fseek” on page 289
• “fsetpos” on page 291
• “ftell” on page 293
• “fwrite” on page 295
• “getc” on page 297
• “getchar” on page 299
• “gets” on page 300
• “printf” on page 302
• “putc” on page 307
• “putchar” on page 309
• “puts” on page 311
• “rewind” on page 313
• “scanf” on page 314
Stream I/O Functions 251

252 NDK: Single

novdocx (E
N

U
) 01 February 2006
• “setbuf” on page 319
• “setvbuf” on page 321
• “tmpfile” on page 323
• “ungetc” on page 324
• “vfprintf” on page 325
• “vfscanf” on page 327
• “vprintf” on page 329
• “vscanf” on page 331
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
clearerr
Clears the end-of-file and error indicators for a stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

void clearerr (
 FILE *fp);

Parameters
fp

(IN) Points to the file to be cleared.

Remarks
The clearerr function or macro clears the end-of-file and error indicators for the file pointed to by
fp. These indicators are cleared only when the file is opened or by an explicit call to the clearerr or
rewind functions.

See Also
feof (page 259), ferror (page 261), perror (NDK: NLM Development Concepts, Tools, and
Functions)

clearerr Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 fp=fopen("testfile", "wt");
 if (ferror (fp))
 { /* If error,*/
 clearerr (fp); /* clear the error */
 fputc (c, fp); /* and retry it */
 }
}

Stream I/O Functions 253

254 NDK: Single

novdocx (E
N

U
) 01 February 2006
fclose
Closes a stream file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fclose (
 FILE *fp);

Parameters
fp

(IN) Points to the file to close.

Return Values
The fclose function returns a value of 0 if the file was successfully closed or nonzero if any errors
were detected. When an error has occurred, errno is set.

Remarks
This function also works on the DOS partition.

The fclose function closes the file pointed to by fp. If there is unwritten buffered data for the file, it
is written before the file is closed. Unread buffered data is discarded. If the associated buffer was
automatically allocated, it is deallocated.

See Also
fcloseall (page 255), fdopen (page 256), fopen (page 274), freopen (page 285)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fcloseall
Closes all open stream files except stdin, stdout and stderr

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fcloseall (void);

Return Values
The fcloseall function returns the number of files that were closed, if no errors were encountered.
When an error occurs, EOF is returned.

Remarks
The fcloseall function closes all open stream files except stdin, stdout, and stderr. Files closed
includes files created (and not yet closed) by fdopen, fopen, and freopen.

See Also
fclose (page 254), fdopen (page 256), fopen (page 274), freopen (page 285)

fcloseall Example
#include <stdio.h>

main ()
{
 printf ("The number of files closed is %d\n", fcloseall ());
}

Stream I/O Functions 255

256 NDK: Single

novdocx (E
N

U
) 01 February 2006
fdopen
Associates a stream with a file handle that represents an open file or device

Local Servers: nonblocking

Remote Servers: nonblocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

FILE *fdopen (
 int handle,
 const char *mode);

Parameters
handle

(IN) Specifies a file handle.

mode
(IN) Points to a file mode.

Return Values
The fdopen function returns a pointer to the object controlling the stream. This pointer must be
passed as a parameter to subsequent functions for performing operations on the file. If the open
operation fails, fdopen returns a NULL pointer. When an error has occurred, errno is set.

Remarks
The fdopen function associates a stream with handle, which represents an opened file or device.
The handle was returned by a creat or open function. mode must match the mode with which the file
or device was originally opened.

If mode does not match the access flags used in opening the file originally, errno will be set to
EINVAL and fdopen will fail. This includes the mode accesses read, write, append, and binary. See
argument oflag for function open.

The fdopen function opens the file whose name is the string pointed to by filename, and
associates a stream with it. The argument mode points to a string beginning with one of the
following sequences:

r Opens file for reading.

w Creates file for writing, or truncates to zero length; uses default file translation.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
fopen (page 274), freopen (page 285), open (page 229), sopen (page 238)

fdopen Example
This example shows how to reverse the effects of redirecting stdin.

#include <stdio.h>
int func (char *filepath)
{
 int fd, stdin_fd;
 char line[512];
 FILE *fp;

a Appends; opens or creates text file for writing at end-of-file; uses default file
translation.

rb Opens binary file for reading.

rt Opens text file for reading.

wb Creates binary file for writing, or truncates to zero length.

wt Creates text file for writing, or truncates to zero length.

ab Appends; opens or creates binary file for writing at end-of-file.

at Appends; opens or creates text file for writing at end-of-file.

r+ Opens file for update (reading and/or writing); uses default file translation.

w+ Creates file for update, or truncates to zero length; uses default file translation.

a+ Appends; opens or creates file for update, writing at end-of-file; uses default file
translation.

r+b Opens binary file for update (reading and/or writing).

r+t Opens text file for update (reading and/or writing).

w+b Creates binary file for update, or truncates to zero length.

w+t Creates text file for update, or truncates to zero length.

a+b Appends; opens or creates binary file for update, writing at end-of-file.

a+t Appends; opens or creates text file for update, writing at end-of-file.

rb+ Opens binary file for update (reading and/or writing).

rt+ Opens text file for update (reading and/or writing).

wb+ Creates binary file for update, or truncates to zero length.

wt+ Creates text file for update, or truncates to zero length.

ab+ Appends; opens or creates binary file for update, writing at end-of-file.

at+ Appends; opens or creates text file for update, writing at end-of-file.
Stream I/O Functions 257

258 NDK: Single

novdocx (E
N

U
) 01 February 2006
 stdin_fd = fileno(stdin); /*save descriptor for ’stdin’ */
 fd = dup(stdin_fd);

 if (fd == -1)
 return -1; /* failed to duplicate input descriptor
*/

 /* use the duplicated descriptor to redirect input... */
 fp = fdopen (fd, "r");

 if (!fp)
 return -2; /* failed to open duplicated descriptor
*/

 stdin = freopen (filepath, "r", fp);

 if (!stdin)
 return -3; /* failed to redirect stream input */

 /* use redirected stream (example)... */
 while (gets(line))
 printf("%s\n", line);

 /* UNDO: now undo the effects of redirecting input... */
 fclose(stdin);

 stdin = fdopen(stdin_fd, "r");

 if (!stdin)
 return -4; /* failed to reestablish ’stdin’ */

 return 0;
}

If stdin is redirected by a console command such as

LOAD NLM-NAME /(CLIB_OPT)/<filename>

you can likewise return the standard input to the keyboard by using the statements following the
"UNDO" comment in the example.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
feof
Tests the end-of-file indicator for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int feof (
 FILE *fp);

Parameters
fp

(IN) Points to the file to be tested.

Return Values
feof returns nonzero if the EOF indicator is set for fp.

Remarks
The feof function or macro tests the end-of-file indicator for the file pointed to by fp. Because this
indicator is set when an input operation attempts to read past the end of the file, feof detects the end
of the file only after an attempt is made to read beyond the end of the file. Thus, if a file contains 10
lines, feof does not detect the end of the file after the tenth line is read; it detects the end of the file
once the program attempts to read more data.

See Also
clearerr (page 253), ferror (page 261), fopen (page 274), freopen (page 285), read (page 234)

feof Example
#include <stdio.h>

main ()
{
 FILE *fp;
 char buffer[100];
 fgets (buffer, sizeof (buffer), fp);
Stream I/O Functions 259

260 NDK: Single

novdocx (E
N

U
) 01 February 2006
 while (! feof (fp))
 {
 process_record (buffer);
 fgets (buffer, sizeof (buffer), fp);
 }
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ferror
Tests the error indicator for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int ferror (
 FILE *fp);

Parameters
fp

(IN) Points to the file to be tested.

Return Values
ferror returns nonzero if the error indicator is set for fp.

Remarks
The ferror function or macro tests the error indicator for the file pointed to by fp.

See Also
clearerr (page 253), feof (page 259), strerror (NDK: NLM Development Concepts, Tools, and
Functions)

ferror Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 c = fgetc (fp);
 if (ferror (fp))
 { /* if end-of-file */
 fclose (fp); /* close the file */
Stream I/O Functions 261

262 NDK: Single

novdocx (E
N

U
) 01 February 2006
 c = EOF;
 }
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fflush
Flushes the output buffer of a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fflush (
 FILE *fp);

Parameters
fp

(IN) Points to the file to be flushed.

Return Values
The fflush function returns nonzero if a write error occurs, and returns zero otherwise. If an error
occurs, errno is set.

Remarks
If the file pointed to by fp is open for output or update, the fflush function causes any unwritten data
to be written to the file. If the file pointed to by fp is open for input or update, the fflush function
undoes the effect of any preceding ungetc operation on the stream. If the value of fp is NULL, all
open files are flushed.

See Also
fgetc (page 264), fgets (page 269), flushall (page 273), fopen (page 274), getc (page 297), gets
(page 300), setbuf (page 319), setvbuf (page 321), ungetc (page 324)
Stream I/O Functions 263

264 NDK: Single

novdocx (E
N

U
) 01 February 2006
fgetc
Returns the next character from the input stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fgetc (
 FILE *fp);

Parameters
fp

(IN) Points to the file.

Return Values
The fgetc function returns the next character from the input stream pointed to by fp. If the stream is
at end-of-file, the EOF indicator is set and fgetc returns EOF. If a read error occurs, the error
indicator is set and fgetc returns EOF. If an error occurs, errno is set.

Remarks
The fgetc function gets the next character from the file designated by fp. The character is signed.

See Also
fgets (page 269), fopen (page 274), getc (page 297), gets (page 300), ungetc (page 324)

fgetc Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc (fp)) != EOF)
 putchar (c);
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
 fclose (fp);
}

Stream I/O Functions 265

266 NDK: Single

novdocx (E
N

U
) 01 February 2006
fgetchar
Equivalent to fgetc with the argument stdin (implemented for NetWare® 3.11 and above)

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fgetchar (void);

Return Values
The fgetchar function returns the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the EOF indicator is set and fgetchar returns EOF. If a read error occurs, the
error indicator is set and fgetchar returns EOF. When an error has occurred, the global variable
errno contains a value indicating the type of error detected.

Remarks
The fgetchar function is equivalent to fgetc with the argument stdin.

See Also
fgetc (page 264), getc (page 297), getchar (page 299)

fgetchar Example
#include <stdio.h>

main()
{
 int c;
 while((c = fgetchar()) != EOF)
 putchar(c);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fgetpos
Stores the current position of a stream in an object

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fgetpos (
 FILE *fp,
 fpos_t *pos);

Parameters
fp

(IN) Points to the file.

pos
(OUT) Points to the object into which the position of the file is stored.

Return Values
The fgetpos function returns a value of 0 if successful. Otherwise, the fgetpos function returns a
nonzero value. If an error occurs, errno is set.

Remarks
The fgetpos function stores the current position of the file pointed to by fp in the object pointed to
by pos. The value stored is usable by the fsetpos function for repositioning the file to the position it
had at the time of the call to fgetpos.

See Also
fopen (page 274), fseek (page 289), fsetpos (page 291), ftell (page 293)

fgetpos Example
#include <stdio.h>

main ()
{
Stream I/O Functions 267

268 NDK: Single

novdocx (E
N

U
) 01 February 2006
 int completionCode;
 FILE *fp;
 fpos_t position;
 completionCode = fgetpos (fp, &position);
 completionCode = fsetpos (fp, &position);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fgets
Gets a string of characters from a stream and stores them in an array

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

char *fgets (
 char *buf,
 size_t n,
 FILE *fp);

Parameters
buf

(OUT) Points to the array into which the characters are to be stored.

n
(IN) Specifies the number of characters to read.

fp
(IN) Points to the file to be read.

Return Values
The fgets function returns buf if successful. NULL is returned if end-of-file is encountered or if a
read error occurs. If an error occurs, errno is set.

If you link your application to the PRELUDE.OBJ file, the first character in the buffer is set to zero
(0).

If you link your application to the NWPRE.OBJ file, the buffer passed to fgets is left untouched if
the return is set to zero (0).

Remarks
The fgets function gets a string of characters from the file designated by fp and stores them in the
array pointed to by buf. The fgets function stops reading characters when end-of-file is reached, or
when a newline character is read, or when n-1 characters have been read, whichever comes first.
The newline character is not discarded. A NULL character is placed immediately after the last
character read into the array.
Stream I/O Functions 269

270 NDK: Single

novdocx (E
N

U
) 01 February 2006
The gets function is similar to fgets except that it operates with stdin ; it has no size argument, and
it replaces a newline character with the NULL character.

For backward compatibility with versions of CLIB.NLM previous to version 4.11, applications
should link to PRELUDE.OBJ. For ANSI or POSIX compliance, applications should link to
NWPRE.OBJ. Applications cannot link to both.

See Also
fgetc (page 264), fopen (page 274), getc (page 297), gets (page 300)

fgets Example
#include <stdio.h>

main ()
{
 FILE *fp;
 char buffer[80];
 fp = fopen ("data.fil", "r");
 while (fgets (buffer, 80, fp) != NULL)
 fputs (buffer, stdout);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fileno
Returns the file handle for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fileno (
 FILE *fp);

Parameters
fp

(IN) Points to a stream opened with a previous call to fopen or fdopen.

Return Values
fileno returns the file handle designated by the fp parameter.

If an error occurs, errno is set to:

If fileno does not complete successfully, NetWareErrno is set.

Remarks
The returned file handle can be used to access the stream with any of the functions that take a
handle.

There are two versions of fileno in the NetWare API:

• The fileno macro in STDIO.H does not do any error checking against a bad file pointer.
• The fileno function checks the handle passed in. If you want to use this function and are

including STDIO.H, place a sequence such as the following in your code:
 #ifdef fileno
 #undef fileno
 #endif

4 EBADF Bad file number.
Stream I/O Functions 271

272 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
close (page 205), creat (page 207), eof (page 213), filelength (page 216), fdopen (page 256), fopen
(page 274), fstat (page 217), isatty (page 223), lseek (page 226), open (page 229), read (page 234),
sopen (page 238), tell (page 242), write (page 246)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
flushall
Clears all buffers associated with input streams and writes any buffers associated with output
streams

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int flushall (void);

Return Values
The flushall function returns the number of open streams. If an output error occurs while writing to a
file, errno is set.

Remarks
The flushall function clears all buffers associated with input streams and writes any buffers
associated with output streams. A subsequent read operation on an input file causes new data to be
read from the associated file or device.

IMPORTANT: This function was designed to be used by applications that are cleaning up before
exiting. If you need to flush all write buffers and then continue to run, you should call the the fflush
function with the fp parameter set to NULL.

Novell recommends using LibC instead of CLib for any new NLM development. See Libraries for C
(LibC) (http://developer.novell.com/ndk/libc.htm).

See Also
fflush (page 263), fopen (page 274)

flushall Example
#include <stdio.h>

main ()
{
 printf ("The number of open files is %d\n", flushall ());
}

Stream I/O Functions 273

http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/libc.htm

274 NDK: Single

novdocx (E
N

U
) 01 February 2006
fopen
Opens a file and associates a stream with it

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

FILE *fopen (
 const char *filename,
 const char *mode);

Parameters
filename

(IN) Points to the name of the file to be opened.

mode
(IN) Points to the file mode.

Return Values
The fopen function returns a pointer to the object controlling the stream. This pointer must be passed
as a parameter to subsequent functions for performing operations on the file. If the open operation
fails, fopen returns NULL. If an error occurs, errno is set.

Remarks
This function also works on the DOS partition.

The fopen function opens the file whose name is the string pointed to by filename, and associates
a stream with it. The argument mode points to a string beginning with one of the following
sequences:

r Opens file for reading; uses default file translation

w Creates file for writing, or truncates to zero length; uses default file translation.

a Appends; opens or creates text file for writing at end-of-file; uses default file
translation.

rb Opens binary file for reading.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Opening a file with read mode (r as the first character in the mode argument) fails if the file does not
exist or if it cannot be read. Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to the file to be forced to the current end-of-file, regardless
of previous calls to the fseek function. When a file is opened with update mode (+ as the second or
third character of the mode argument), both input and output can be performed on the associated
stream.

NOTE: For an example of how to reverse the effect of redirecting stdin, see the example for
fdopen (page 256).

See Also
fclose (page 254), fcloseall (page 255), fdopen (page 256), freopen (page 285)

fopen Example
#include <stdio.h>

rt Opens text file for reading.

wb Creates binary file for writing, or truncates to zero length.

wt Creates text file for writing, or truncates to zero length.

ab Appends; opens or creates binary file for writing at end-of-file.

at Appends; opens or creates text file for writing at end-of-file.

r+ Opens file for update (reading and/or writing); uses default file translation.

w+ Creates file for update, or truncates to zero length; uses default file translation.

a+ Appends; opens or creates file for update, writing at end-of-file; uses default file
translation.

r+b Opens binary file for update (reading and/or writing).

r+t Opens text file for update (reading and/or writing).

w+b Creates binary file for update, or truncates to zero length.

w+t Creates text file for update, or truncates to zero length.

a+b Appends; opens or creates binary file for update, writing at end-of-file.

a+t Appends; opens or creates text file for update, writing at end-of-file.

rb+ Opens binary file for update (reading and/or writing).

rt+ Opens text file for update (reading and/or writing).

wb+ Creates binary file for update, or truncates to zero length.

wt+ Creates text file for update, or truncates to zero length.

ab+ Appends; opens or creates binary file for update, writing at end-of-file.

at+ Appends; opens or creates text file for update, writing at end-of-file.
Stream I/O Functions 275

276 NDK: Single

novdocx (E
N

U
) 01 February 2006
main ()
{
 char filename[13];
 FILE *fp;
 strcpy (filename, "REPORTAA.DAT");
 fp = fopen (filename, "r");

/* Do something */

 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fprintf
Writes output to a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fprintf (
 FILE *fp,
 const char *format,
 ...);

Parameters
fp

(IN) Points to the file to be written to.

format
(IN) Points to the format control string.

Return Values
The fprintf function returns the number of characters written or a negative value if an output error
occurred. If an error occurs, errno is set.

Remarks
The fprintf function writes output to the file pointed to by fp under control of the argument
format. The format string is described under the description of the printf function.

See Also
printf (page 302), sprintf, vfprintf (page 325)

fprintf Example
#include <stdio.h>

main ()
{
Stream I/O Functions 277

278 NDK: Single

novdocx (E
N

U
) 01 February 2006
 char *weekday = {"Saturday"};
 char *month = {"April"};
 fprintf (stdout, "%s, %s %d, %d\n", weekday, month, 18, 1991);
}

produces the following:

Saturday, April 18, 1991
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fputc
Writes a character to the output stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fputc (
 int c,
 FILE *fp);

Parameters
c

(IN) Specifies the character to be written.

fp
(IN) Points to the output stream.

Return Values
The fputc function returns the character written. If a write error occurs, the error indicator is set and
fputc returns EOF. If an error occurs, errno is set.

Remarks
The fputc function writes the character specified by the argument c to the output stream designated
by fp.

See Also
fclose (page 254), fgetc (page 264), fopen (page 274), fputs (page 281), putc (page 307), puts
(page 311)

fputc Example
#include <stdio.h>

main ()
{
Stream I/O Functions 279

280 NDK: Single

novdocx (E
N

U
) 01 February 2006
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc (fp)) != EOF)
 fputc (c, stdout);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fputs
Writes a character string to the output stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fputs (
 const char *buf,
 FILE *fp);

Parameters
buf

(IN) Points to the character string to be written.

fp
(IN) Points to the file

Return Values
If you have linked your program with NWPRE.OBJ, fputs returns the number of character put on
success.

If you have linked your program with PRELUDE.OBJ, fputs returns -1 for failure and zero for
success.

If an error occurs, errno is set.

Remarks
The fputs function writes the character string pointed to by buf to the file designated by fp. The
terminating NULL character is not written.

For backward compatibility with versions of CLIB.NLM previous to version 4.11, applications
should link to PRELUDE.OBJ. For ANSI or POSIX compliance, applications should link to
NWPRE.OBJ. Applications cannot link to both.

See Also
fopen (page 274), fputc (page 279), putc (page 307), puts (page 311)
Stream I/O Functions 281

282 NDK: Single

novdocx (E
N

U
) 01 February 2006
fputs Example
#include <stdio.h>

main ()
{
 FILE *fp;
 char buffer [80];
 fp = fopen ("data.fil", "r");
 while (fgets (buffer, 80, fp)) != NULL)
 fputs (buffer, stdout);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fread
Reads data from a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

size_t fread (
 void *buf,
 size_t elsize,
 size_t nelem,
 FILE *fp);

Parameters
buf

(OUT) Points to the location to receive data.

elsize
(IN) Specifies the size (in bytes) of each element.

nelem
(IN) Specifies the number of elements.

fp
(IN) Points to the file to be read.

Return Values
The fread function returns the number of complete elements successfully read. This value can be
less than the requested number of elements.

Call feof and ferror to determine whether the end of the file was encountered, or if an input/output
error has occurred. If an error occurs, errno is set.

Remarks
This function also works on the DOS partition.

The fread function reads nelem elements of elsize bytes each from the file specified by fp.
Stream I/O Functions 283

284 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
feof (page 259), ferror (page 261), fopen (page 274), read (page 234)

fread Example
The following example reads a simple student record containing binary data. The student record is
described by the struct student_data declaration.

#include <stdio.h>

struct student_data
{
 int student_id;
 unsigned char marks [10];
};

int read_data (FILE *fp, struct student_data *p)
{
 return (fread (p, sizeof (*p), 1, fp));
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
freopen
Opens a file and associates a stream with it

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

FILE *freopen (
 const char *filename,
 const char *mode,
 FILE *fp);

Parameters
filename

(IN) Points to the name of the file to be opened.

mode
(IN) Points to the file mode.

fp
(IN) Points to the file structure.

Return Values
The freopen function returns a pointer to the object controlling the stream. This pointer must be
passed as a parameter to subsequent functions for performing operations on the file. If the open
operation fails, freopen returns NULL. If an error occurs, errno is set.

Remarks
The stream located by the fp pointer is closed. The freopen function opens the file whose name is
the string pointed to by filename, and associates a stream with it. The stream information is
placed in the structure located by the fp pointer.

The argument mode is described in the description of the fopen function.

NOTE: For an example of how to reverse the effect of redirecting stdin, see the example for
fdopen (page 256).
Stream I/O Functions 285

286 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
fdopen (page 256), fopen (page 274)

freopen Example
#include <stdio.h>
main ()

{
 FILE *fp;
 fp = freopen ("report.dat", "r", stdin);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fscanf
Scans input from a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fscanf (
 FILE *fp,
 const char *format,
 ...);

Parameters
fp

(IN) Points to the file.

format
(IN) Points to the format control string.

Return Values
The fscanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, it returns the number of input arguments for which values were successfully
scanned and stored. If a file input error occurs, errno is set.

Remarks
The fscanf function scans input from the file designated by fp under control of the argument
format. Following the format string is a list of addresses to receive values. The format string is
described under the description of the scanf function.

See Also
scanf (page 314), sscanf

fscanf Example
To scan a date in the form "Saturday April 18 1991":
Stream I/O Functions 287

288 NDK: Single

novdocx (E
N

U
) 01 February 2006
#include <stdio.h>

main ()
{
 int day, year;
 char weekday[10], month[12];
 FILE *in_data;
 in_data = fopen ("mydates.dat", "r");
 fscanf (in data, "%s %s %d %d", weekday, month, &day, &year);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fseek
Changes the read/write position of a stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fseek (
 FILE *fp,
 long int offset,
 int where);

Parameters
fp

(IN) Points to the file.

offset
(IN) Specifies the file position to seek.

where
(IN) Specifies the relative file position.

Return Values
The fseek function returns a value of 0 if successful, nonzero otherwise. If an error occurs, errno is
set.

Remarks
The fseek function changes the read/write position of the file specified by fp. This position defines
the character to be read or written on the next I/O operation on the file. The argument fp is a file
pointer returned by fopen or freopen. The argument offset is the position to seek, relative to one
of three positions specified by the argument where. Allowable values for the where parameter
are:

SEEK_SET Relative to beginning of file; the offset must be positive.

SEEK_CUR Relative to the current position in the file.

SEEK_END Relative to the end of the file.
Stream I/O Functions 289

290 NDK: Single

novdocx (E
N

U
) 01 February 2006
The fseek function clears the end-of-file indicator and undoes any effects of the ungetc function on
the same file.

Call ftell to obtain the current position in the file before changing it. Restore the position by using
the value returned by ftell in a subsequent call to fseek with the where parameter set to SEEK_SET.

See Also
fgetpos (page 267), fopen (page 274), fsetpos (page 291), ftell (page 293), lseek (page 226)

fseek Example
You can determine the size of a file by means of the following example, which saves and restores the
current position of the file.

#include <stdio.h>

long int filesize (FILE *fp)
{
 long int save_pos, size_of_file;
 save_pos = ftell (fp);
 fseek (fp, 0L, SEEK_END);
 size_of_file = ftell (fp);
 fseek (fp, save_pos, SEEK_SET);
 return (size_of_file);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fsetpos
Positions a stream according to the value of an object

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int fsetpos (
 FILE *fp,
 const fpos_t *pos);

Parameters
fp

(IN) Points to the file.

pos
(IN) Points to the object that specifies the new file position.

Return Values
The fsetpos function returns a value of 0 if successful; otherwise, the fsetpos function returns a
nonzero value. If an error occurs, errno is set.

Remarks
The fsetpos function positions the file pointed to by fp according to the value of the object pointed
to by pos, which shall be a value returned by an earlier call to the fgetpos function on the same file.

See Also
fgetpos (page 267), fopen (page 274), fseek (page 289), ftell (page 293)

fsetpos Example
#include <stdio.h>

main ()
{
 FILE *fp;
Stream I/O Functions 291

292 NDK: Single

novdocx (E
N

U
) 01 February 2006
 fpos_t position;
 fgetpos (fp, &position);
 fsetpos (fp, &position);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ftell
Returns the current read/write position of a stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

long int ftell (
 FILE *fp);

Parameters
fp

(IN) Points to the file.

Return Values
The ftell function returns the current read/write position of the file specified by fp. When an error is
detected, a value of -1 is returned. If an error occurs, errno is set.

Remarks
The ftell function returns the current read/write position of the file specified by fp. This position
defines the character to be read or written by the next I/O operation on the file. You can use the value
returned by ftell in a subsequent call to fseek in order to set the file to the same position.

See Also
fgetpos (page 267), fopen (page 274), fseek (page 289), fsetpos (page 291)

ftell Example
You can determine the size of a file by using the following example, which saves and restores the
current position of the file.

#include <stdio.h>

long int filesize (FILE *fp)

{
Stream I/O Functions 293

294 NDK: Single

novdocx (E
N

U
) 01 February 2006
 long int save_pos, size_of_file;
 save_pos = ftell (fp);
 fseek (fp, 0L, SEEK_END);
 size_of_file = ftell (fp);
 fseek (fp, save_pos, SEEK_SET);
 return (size_of_file);
}
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
fwrite
Writes elements to a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

size_t fwrite (
 const void *buf,
 size_t elsize,
 size_t nelem,
 FILE *fp);

Parameters
buf

(IN) Points to the buffer containing the data to write.

elsize
(IN) Specifies the size (in bytes) of each element.

nelem
(IN) Specifies the number of elements.

fp
(IN) Points to the file.

Return Values
This function also works on the DOS partition.

The fwrite function returns the number of complete elements that are successfully written. This
value is less than the requested number of elements only if a write error occurs.

Remarks
The fwrite function writes nelem elements of elsize bytes each to the file specified by fp.
Stream I/O Functions 295

296 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
ferror (page 261), fopen (page 274)

fwrite Example
The following example writes a simple student record containing binary data.

#include <stdio.h>

struct student_data
{
 int student_id;
 unsigned char marks[10];
};

int write_data (FILE *fp, struct student_data *p)
{
 return (fwrite (p, sizeof (*p), 1, fp));
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
getc
Gets the next character from a stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int getc (
 FILE *fp);

Parameters
fp

(IN) Points to the file.

Return Values
The getc function or macro returns the next character from the input stream pointed to by fp. If the
stream is at end-of-file, the EOF indicator is set and getc returns EOF. If a read error occurs, the
error indicator is set and getc returns EOF. If an error occurs, errno is set.

Remarks
The getc function or macro gets the next character from the file designated by fp. The character is
returned as an int value.

The getc function is equivalent to fgetc, except that it can be implemented as a macro.

See Also
fgetc (page 264), fgets (page 269), fopen (page 274), gets (page 300), ungetc (page 324)

getc Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
Stream I/O Functions 297

298 NDK: Single

novdocx (E
N

U
) 01 February 2006
 fp = fopen ("data.fil", "r");
 while ((c = getc (fp)) != EOF)
 putchar (c);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
getchar
Equivalent to getc with the argument stdin (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int getchar (void);

Return Values
The getchar function or macro returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the EOF indicator is set and getchar returns EOF. If a read
error occurs, the error indicator is set and getchar returns EOF. If an error occurs, errno is set.

Remarks
The getchar function or macro is equivalent to getc with the argument stdin.

See Also
getc (page 297)

getchar Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 fp = freopen ("data.fil", "r", stdin);
 while ((c = getchar ()) != EOF)
 putchar (c);
 fclose (fp);
}
Stream I/O Functions 299

300 NDK: Single

novdocx (E
N

U
) 01 February 2006
gets
Gets a string of characters from stdin and stores them in an array

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

char *gets (
 char *buf);

Parameters
buf

(OUT) Points to the array into which the characters are to be stored.

Return Values
The gets function returns buf if successful. It returns NULL if a read error occurs.

Remarks
The gets function gets a string of characters from the file designated by stdin and stores them in
the array pointed to by buf until a newline character is read. Any newline character is discarded,
and a NULL character is placed immediately after the last character read into the array.

It is recommended that fgets be used instead of gets because data beyond the array buf is destroyed
if a newline character is not read from the input stream stdin before the end of the array buf is
reached.

See Also
fgetc (page 264), fgets (page 269), fopen (page 274), getc (page 297), ungetc (page 324)

gets Example
#include <stdio.h>

main ()
{
 char buffer[80];
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
 while (gets (buffer)) != NULL)
 puts (buffer);
}

Stream I/O Functions 301

302 NDK: Single

novdocx (E
N

U
) 01 February 2006
printf
Writes formatted output to a specified file designated by stdout

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int printf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format control string.

Return Values
The printf function returns the number of characters written, or it returns a negative value if an
output error occurred. If an error occurs, errno is set.

Remarks
The printf function writes output to the file designated by stdout under control of the argument
format.

The format control string consists of ordinary characters, which are written exactly as they occur in
the format string, and of conversion specifiers, which cause argument values to be written as they
are encountered during the processing of the format string. An ordinary character in the format
string is any character, other than a percent (%) character, that is not part of a conversion specifier. A
conversion specifier is a sequence of characters in the format string. The conversion specifier begins
with a % and is followed, in sequence, by the following:

• Zero or more format control flags, which can modify the final effect of the format directive.
• An optional decimal integer, or an asterisk character (*), which specifies a minimum field

width to be reserved for the formatted item.
• An optional precision specification in the form of a period character (.) followed by an optional

decimal integer or an asterisk character (*).
• An optional type-length specification. It can be any one of the following characters:

h l L N F
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
• A character that specifies the type of conversion to be performed. It can be any one of the
following characters:
c d e E f F g G i n o p s u x X

The valid format control flags are:

If no field width is specified, or if the value that is given is less than the number of characters in the
converted value (subject to any precision value), a field of sufficient width to contain the converted
value is used. If the converted value has fewer characters than are specified by the field width, the
value is padded on the left (or right, subject to the left-justification flag) with spaces or zero
characters (0). If the field width begins with a zero, the value is padded with zeros; otherwise, the
value is padded with spaces. If the field width is *, a value of type int from the argument list is used
(before a precision argument or a conversion argument) as the minimum field width. A negative
field width value is interpreted as a left- justification flag, followed by a positive field width.

As with the field width specifier, a precision specifier of * causes a value of type int from the
argument list to be used as the precision specifier. If no precision value is given, a precision of 0 is
used. The precision value affects the following conversions:

• For d, i, o, u, x, and X (integer) conversions, the precision specifies the minimum number of
digits to appear.

• For e, E, and f (fixed-precision, floating-point) conversions, the precision specifies the number
of digits to appear after the decimal-point character.

• For g and G (variable-precision, floating-point) conversions, the precision specifies the
maximum number of significant digits to appear.

• For s (string) conversions, the precision specifies the maximum number of characters to appear.

A type length specifier affects the conversion as follows:

- The formatted item is left-justified within the field; normally, items are right-justified.

A signed, positive object always starts with a plus (+) character; normally, only negative
items begin with a sign.

" " A signed, positive object always starts with a space character; if both + and - are specified,
+ overrides -.

An alternate conversion form is used:

For o (unsigned octal) conversions, the precision is incremented so that the first digit is 0.

For x or X (unsigned hexadecimal) conversions, a nonzero value is prepended with 0x or
0X, respectively.

For e, E, f, g, or G (any floating-point) conversions, the result always contains a decimal-
point character, even if no digits follow it; normally, a decimal- point character appears in
the result only if there is a digit to follow it.

In addition to the preceding, for g or G conversions, trailing zeros are not removed from the
result.

h Causes a d, i, o, u, x, or X (integer) conversion to process a short int or unsigned short int
argument; note that although the argument can have been promoted as part of the function
call, the value is converted to the smaller type before it is converted.
Stream I/O Functions 303

304 NDK: Single

novdocx (E
N

U
) 01 February 2006
The valid conversion type specifiers are:

It causes an n (converted length assignment) operation to assign the converted length to
an object of type unsigned short int.

l Causes a d, i, o, u, x, or X (integer) conversion to process a long int or unsigned long int
argument.

It causes an n (converted length assignment) operation to assign the converted length to
an object of type unsigned long int.

F Causes the pointer associated with n, p, or s conversions to be treated as a far pointer.

L Causes an e, E, f, g, or G (double) conversion to process a long double argument.

N Causes the pointer associated with n, p, or s conversions to be treated as a near pointer.

c An argument of type int is converted to a value of type char and the corresponding ASCII
character code is written to the output stream.

d, i An argument of type int is converted to a signed decimal notation and written to the output
stream. The default precision is 1, but if more digits are required, leading zeros are added.

 e, E An argument of type double is converted to a decimal notation in the form [-]d.ddde[+|-]ddd
similar to FORTRAN exponential (E) notation. The leading sign appears (subject to the
format control flags) only if the argument is negative. If the argument is nonzero, the digit
before the decimal point character is nonzero. The precision is used as the number of digits
following the decimal point character. If the precision is not specified, a default precision of
6 is used. If the precision is 0, the decimal point character is suppressed. The value is
rounded to the appropriate number of digits. For E conversions, the exponent begins with
the character E rather than e. The exponent sign and a three-digit number (that indicates
the power of ten by which the decimal fraction is multiplied) are always produced.

f An argument of type double is converted to a decimal notation in the form [-]ddd.ddd similar
to FORTRAN fixed-point (F) notation. The leading sign appears (subject to the format
control flags) only if the argument is negative. The precision is used as the number of digits
following the decimal point character. If the precision is not specified, a default precision of
6 is used. If the precision is 0, the decimal point character is suppressed, otherwise, at
least one digit is produced before the decimal point character. The value is rounded to the
appropriate number of digits.

g, G An argument of type double is converted using either the f or e (or E, for a G conversion)
style of conversion depending on the value of the argument. In either case, the precision
specifies the number of significant digits that are contained in the result. The e style
conversion is used only if the exponent from such a conversion would be less than -4 or
greater than the precision. Trailing zeros are removed from the result and a decimal-point
character only appears if it is followed by a digit.

n The number of characters that have been written to the output stream is assigned to the
integer pointed to by the argument. No output is produced.

o An argument of type int is converted to an unsigned octal notation and written to the output
stream. The default precision is 1, but if more digits are required, leading zeros are added.

p, P An argument of type void * is converted to a value of type int and the value is formatted as
for a hexadecimal (x) conversion.

s Characters from the string specified by an argument of type char *, up to, but not including,
the terminating NULL character (\0), are written to the output stream. If a precision is
specified, no more than that many characters are written.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Any other conversion type specifier character, including another percent (%) character, is written to
the output stream with no special interpretation.

The arguments must correspond with the conversion type specifiers, left to right in the string;
otherwise, indeterminate results occur.

For example, a specifier of the form %8.*f defines a field to be at least 8 characters wide and gets
the next argument for the precision to be used in the conversion.

The output from

printf ("f1 = %8.4f f2 = %10.2E x = %#08x i = %d",
 23.45, 3141.5926, 0x1db, -1);

would be

f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

You can also use strings similar to the following:

printf ("Test: %3$s %2$d %1$s", string, 10, string);

See Also
fprintf (page 277), sprintf, vfprintf (page 325)

printf Example
#include <stdio.h>

main ()
{
 char *weekday, *month;
 int day, year;
 weekday = "Saturday";
 month = "April";
 day = 18;
 year = 1991;
 printf ("%s, %s %d, %d\n", weekday, month, day, year);
}

produces the following:

S Characters from a length-preceded string are written to the output stream. If a precision is
specified, no more than that many characters are written.

u An argument of type int is converted to an unsigned decimal notation and written to the
output stream. The default precision is 1, but if more digits are required, leading zeros are
added.

x, X An argument of type int is converted to an unsigned hexadecimal notation and written to
the output stream. The default precision is 1, but if more digits are required, leading zeros
are added. Hexadecimal notation uses digits (0 through 9) and characters (a through f or A
through F) for x or X conversions respectively, as the hexadecimal digits. Subject to the
alternate-form control flag, 0x or 0X is affixed to the output.
Stream I/O Functions 305

306 NDK: Single

novdocx (E
N

U
) 01 February 2006
Saturday, April 18, 1991
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
putc
Writes a character to the output stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int putc (
 int c,
 FILE *fp);

Parameters
c

(IN) Specifies the character to be written.

fp
(IN) Points to the file.

Return Values
The putc function or macro returns the character written. If a write error occurs, the error indicator is
set and putc returns EOF.

Remarks
The putc function is equivalent to fputc, except that it can be implemented as a macro. The putc
function or macro writes the character specified by the argument c to the output stream designated
by fp.

See Also
ferror (page 261), fopen (page 274), fputs (page 281), puts (page 311)

putc Example
#include <stdio.h>

main ()
{
Stream I/O Functions 307

308 NDK: Single

novdocx (E
N

U
) 01 February 2006
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc(fp)) != EOF)
 putc (c, stdout);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
putchar
Writes a character to the output stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int putchar (
 int c);

Parameters
c

(IN) Specifies the character to be written.

Return Values
This function or macro returns the character written. If a write error occurs, the error indicator is set
and putchar returns EOF. If an error occurs, errno is set.

Remarks
The putchar function or macro writes the character specified by the argument c to the output stream
stdout.

The function is equivalent to:

 fputc (c, stdout);

See Also
fputc (page 279), fputs (page 281)

putchar Example
#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
Stream I/O Functions 309

310 NDK: Single

novdocx (E
N

U
) 01 February 2006
 fp = fopen ("data.fil", "r");
 c = fgetc (fp);
 while (c != EOF)
 {
 putchar (c);
 c = fgetc (fp);
 };
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
puts
Writes a specified character string to the output stream and appends a newline character to the output

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int puts (
 const char *buf);

Parameters
buf

(IN) Points to the character string.

Return Values
The puts function returns a nonzero value if an error occurs; otherwise, it returns a value of 0. If an
error occurs, errno is set.

Remarks
The puts function writes the character string pointed to by buf to the output stream designated by
stdout and appends a newline character to the output. The terminating NULL character is not
written.

See Also
fputs (page 281), putc (page 307)

puts Example
#include <stdio.h>

main ()
{
 FILE *fp;
 char buffer[80];
 fp = freopen ("data.fil", "r", stdin);
 while (gets (buffer) != NULL)
Stream I/O Functions 311

312 NDK: Single

novdocx (E
N

U
) 01 February 2006
 puts (buffer);
 fclose (fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
rewind
Sets the file position indicator to the beginning of the file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

void rewind (
 FILE *fp);

Parameters
fp

(IN) Points to the file.

Remarks
The rewind function sets the file position indicator for the stream indicated by fp to the beginning
of the file. It is equivalent to:

 fseek(fp, 0L, SEEK_SET);

except that the error indicator for the stream is cleared.

See Also
clearerr (page 253), fopen (page 274)

rewind Example
#include <stdio.h>

FILE *fp;

if ((fp = fopen ("program.asm", "r")) != NULL)
{
 assemble_pass (1);
 rewind (fp);
 assemble_pass (2);
 fclose (fp);
}

Stream I/O Functions 313

314 NDK: Single

novdocx (E
N

U
) 01 February 2006
scanf
Scans input from a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int scanf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format control string.

Return Values
The scanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned.

Remarks
The scanf function scans input from the file designated by stdin under control of the argument
format. Following the format string is the list of addresses of items to receive values.

The format control string consists of zero or more format directives that specify acceptable input file
data. Subsequent arguments are pointers to various types of objects that are assigned values as the
format string is processed.

A format directive can be a sequence of one or more white-space characters, an ordinary character,
or a conversion specifier. An ordinary character in the format string is any character, other than a
white-space character or the percent (%) character, that is not part of a conversion specifier. A
conversion specifier is a sequence of characters in the format string, which begins with a % and is
followed, in sequence, by the following:

• An optional assignment suppression indicator: the asterisk character (*)
• An optional decimal integer that specifies the maximum field width to be scanned for the

conversion
• An optional pointer type specification: one of N or F
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
• An optional type length specification: one of h, l or L
• A character that specifies the type of conversion to be performed. It can be any one of the

following characters: c, d, e, f, g, i, o, n, p, s, u, x, or [.

As each format directive in the format string is processed, the directive can successfully complete,
fail because of a lack of input data, or fail because of a matching error as defined by the particular
directive. If end-of-file is encountered on the input data before any characters that match the current
directive have been processed (other than leading white-space where permitted), the directive fails
for lack of data. If end-of-file occurs after a matching character has been processed, the directive is
completed (unless a matching error occurs), and the function returns without processing the next
directive. If a directive fails because of an input character mismatch, the character is left unread in
the input stream. Trailing white-space characters, including newline characters, are not read unless
matched by a directive. When a format directive fails, or the end of the format string is encountered,
the scanning is completed and the function returns.

When one or more white-space characters—space, horizontal tab (\t), vertical tab (\v), form feed
(\f), carriage return (\r), newline or line feed (\n)—occur in the format string, input data up to the
first nonwhite-space character is read, or until no more data remains. If no white-space characters
are found in the input data, the scanning is complete and the function returns.

An ordinary character in the format string is expected to match the same character in the input
stream.

A conversion specifier in the format string is processed as follows:

• For conversion types other than [, c, and n, leading white-space characters are skipped.
• For conversion types other than n, all input characters, up to any specified maximum field

length, that can be matched by the conversion type are read and converted to the appropriate
type of value; the character immediately following the last character to be matched is left
unread; if no characters are matched, the format directive fails.

• Unless the assignment suppression indicator (*) was specified, the result of the conversion is
assigned to the object pointed to by the next unused argument (if assignment suppression was
specified, no argument is skipped); the arguments must correspond in number, type, and order
to the conversion specifiers in the format string.

A pointer type specification is used to indicate the type of pointer used to locate the next argument to
be scanned:

The pointer type defaults to that used for data in the memory model for which the program has been
compiled.

A type length specifier affects the conversion as follows:

F Points to a far pointer.

N Points to a near pointer.

h Causes a d, i, o, u, or x (integer) conversion to assign the converted value to an object
of type short int or unsigned short int.

It causes an n (read length assignment) operation to assign the number of characters
that have been read to an object of type unsigned short int.
Stream I/O Functions 315

316 NDK: Single

novdocx (E
N

U
) 01 February 2006
The valid conversion type specifiers are:

l Causes a d, i, o, u, or x (integer) conversion to assign the converted value to an object
of type long int or unsigned long int.

It causes an n (read length assignment) operation to assign the number of characters
that have been read to an object of type unsigned long int.

It causes an e, f, or g (floating point) conversion to assign the converted value to an
object of type double.

L Causes an e, f, or g (floating point) conversion to assign the converted value to an
object of type long double.

c Any sequence of characters in the input stream of the length specified by the field
width, or a single character if no field width is specified, is matched. The argument is
assumed to point to the first element of a character array of sufficient size to contain
the sequence, without a terminating NULL character (\0). For a single-character
assignment, a pointer to a single object of type char is sufficient.

d A decimal integer, consisting of an optional sign, followed by one or more decimal
digits, is matched. The argument is assumed to point to an object of type int.

e, f, g A floating-point number, consisting of an optional sign (+ or -), followed by one or more
decimal digits, optionally containing a decimal-point character, followed by an optional
exponent of the form e or E, an optional sign, and one or more decimal digits, is
matched. The exponent, if present, specifies the power of ten by which the decimal
fraction is multiplied. The argument is assumed to point to an object of type float.

i An optional sign, followed by an octal, decimal, or hexadecimal constant is matched.
An octal constant consists of zero and zero or more octal digits. A decimal constant
consists of a nonzero decimal digit and zero or more decimal digits. A hexadecimal
constant consists of the characters 0x or 0X followed by one or more (upper- or
lowercase) hexadecimal digits. The argument is assumed to point to an object of type
int.

n No input data is processed. Instead, the number of characters that have already been
read is assigned to the object of type unsigned int that is pointed to by the argument.
The number of items that have been scanned and assigned (the return value) is not
affected by the n conversion type specifier.

o An octal integer, consisting of an optional sign, followed by one or more (zero or
nonzero) octal digits, is matched. The argument is assumed to point to an object of
type int.

p A hexadecimal integer, as described for x conversions below, is matched. The
converted value is further converted to a value of type void* and then assigned to the
object pointed to by the argument.

s A sequence of nonwhite-space characters is matched. The argument is assumed to
point to the first element of a character array of sufficient size to contain the sequence
and a terminating NULL character, which is added by the conversion operation.

u An unsigned decimal integer, consisting of one or more decimal digits, is matched.
The argument is assumed to point to an object of type unsigned int.

x A hexadecimal integer, consisting of an optional sign, followed by an optional prefix 0x
or 0X, followed by one or more (uppercase or lowercase) hexadecimal digits, is
matched. The argument is assumed to point to an object of type int.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
A conversion type specifier of % is treated as a single ordinary character that matches a single %
character in the input data. A conversion type specifier other than those listed above causes scanning
to terminate the function to return.

The line

 scanf ("%s%*f%3hx%d", name, &hexnum, &decnum)

with input

 some_string 34.555e-3 abc1234

copies some_string into the array name, skip 34.555e-3, assign 0xabc to hexnum and 1234 to
decnum. The return value is 3.

The line

char fmt[100];
 strcpy (fmt, "%[abcdefghijklmnopqrstuvwxyz");
 strcat (fmt,"[ABCDEFGHIJKLMNOPQRSTUVWZ]%*2s%[W\n]");
 scanf (fmt, string1, string2)

with input

 They may look alike, but they don’t perform alike.

assigns

 "They may look alike"

to string1, skip the comma and the space, and assign

 " but they don’t perform alike.".

to string2. (The %*2s only matches the ","; the next blank terminates that field.)

See Also
fscanf (page 287), sscanf (NDK: Program Management)

scanf Example
To scan a date in the form "Saturday April 18 1991":

[c1c2. ..] A sequence of characters, consisting of any of the characters c1, c2, ... called the
scanset, in any order, is matched. c1 cannot be the caret character (^). If c1 is], that
character is considered to be part of the scanset and a second] is required to end the
format directive. The argument is assumed to point to the first element of a character
array of sufficient size to contain the sequence and a terminating NULL character,
which is added by the conversion operation.

[^c1c2. ..] A sequence of characters, consisting of any of the characters other than the
characters between the ^ and], is matched. As with the preceding conversion, if c1 is
], it is considered to be part of the scanset and a second] ends the format directive.
The argument is assumed to point to the first element of a character array of sufficient
size to contain the sequence and a terminating NULL character, which is added by the
conversion operation.
Stream I/O Functions 317

318 NDK: Single

novdocx (E
N

U
) 01 February 2006
#include <stdio.h>
int day, year;
char weekday[10], month[12];
scanf ("%s %s %d %d", weekday, month, &day, &year);
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
setbuf
Associates a buffer with a file after the file is open and before it has been read or written to

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

void setbuf (
 FILE *fp,
 char *buffer);

Parameters
fp

(IN) Points to the file.

buffer
(IN) Points to the buffer.

Return Values
The setbuf function returns no value.

Remarks
The setbuf function can be used to associate a buffer with the file designated by fp. If this function
is used, it must be called after the file has been opened and before it has been read or written. If the
argument buffer is NULL, then all input/ output for the file pointed to by fp is completely
unbuffered. If the argument buffer is not NULL, then it must point to an array that is at least
BUFSIZ characters in length, and all input/output is fully buffered. BUFSIZ is a constant defined in
STDIO.H.

See Also
fopen (page 274), setvbuf (page 321)

setbuf Example
#include <stdio.h>

Stream I/O Functions 319

320 NDK: Single

novdocx (E
N

U
) 01 February 2006
main ()
{
 char *buffer;
 FILE *fp;
 fp = fopen ("data.fil", "r");
 buffer = malloc (BUFSIZ);
 setbuf (fp, buffer);
 fclose(fp);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
setvbuf
Associates a buffer with a file after the file is open and before it has been read or written to

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int setvbuf (
 FILE *fp,
 char *buf,
 int mode,
 size_t size);

Parameters
fp

(IN) Points to the file.

buf
(IN) Points to the buffer.

mode
(IN) Specifies the file mode that determines how to buffer the file.

size
(IN) Specifies the size of the array.

Return Values
The setvbuf function returns a value of 0 on success, or a nonzero value if an invalid value is given
for mode or size.

Remarks
The setvbuf function can be used to associate a buffer with the file designated by fp. If this function
is used, it must be called after the file has been opened and before it has been read or written. The
argument mode determines how the file pointed to by fp is to be buffered, as follows:

_IOFBF Causes input/output to be fully buffered.
Stream I/O Functions 321

322 NDK: Single

novdocx (E
N

U
) 01 February 2006
If the argument buf is not NULL, the array to which it points is used instead of an automatically
allocated buffer. The argument size specifies the size of the array.

See Also
fopen (page 274), setbuf (page 319)

setvbuf Example
#include <stdio.h>

main ()
{
 char *buf;
 FILE *fp;
 fp = fopen ("data.fil", "r");
 buf = malloc (1024);
 setvbuf (fp, buf, _IOFBF, 1024);
 fclose(fp);
}

_IOLBF Causes output to be line buffered (the buffer is flushed when a newline character is
written, when the buffer is full, or when input is requested).

_IONBF Causes input/output to be completely unbuffered.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
tmpfile
Creates a temporary binary file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

FILE *tmpfile (void);

Return Values
The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be
created, the tmpfile function returns NULL. If an error occurs, errno is set.

Remarks
The tmpfile function creates a temporary binary file that is automatically removed when it is closed
or at program termination. The file is opened for update.

See Also
fopen (page 274), freopen (page 285), tmpnam (Multiple and Inter-File Services)
Stream I/O Functions 323

324 NDK: Single

novdocx (E
N

U
) 01 February 2006
ungetc
Pushes a character back onto the specified input stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>

int ungetc (
 int c,
 FILE *fp);

Parameters
c

(IN) Specifies the character to be pushed back onto the specified input stream.

fp
(IN) Points to the input stream.

Return Values
The ungetc function returns the character pushed back.

Remarks
The ungetc function pushes the character specified by c back onto the input stream specified by fp.
This character is returned by the next read from the stream. Only the last character returned in this
way is remembered.

The ungetc function clears the EOF indicator, unless the value of c is EOF.

See Also
fopen (page 274) getc (page 297)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
vfprintf
Writes output to a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdarg.h>
#include <stdio.h>

int vfprintf (
 FILE *fp,
 const char *format,
 va_list arg);

Parameters
fp

(IN) Points to the file.

format
(IN) Points to the format control string.

arg
(IN) Specifies a variable argument.

Return Values
The vfprintf function returns the number of characters written or a negative value if an output error
occurred. If an error occurs, errno is set.

Remarks
The vfprintf function writes output to the file pointed to by fp under control of the argument
format. The format string is described under the description for printf. The vfprintf function is
equivalent to fprintf, with the variable argument list replaced with arg, which has been initialized
by the va_start macro.

See Also
fprintf (page 277), printf (page 302), sprintf, va_arg, va_end, va_start (NDK: Program
Management)
Stream I/O Functions 325

326 NDK: Single

novdocx (E
N

U
) 01 February 2006
vfprintf Example
#include <stdarg.h>
#include <stdio.h>

extern FILE *LogFile;

void errmsg /* A GENERAL ERROR ROUTINE */
(char *format, ...)
{
 va_list arglist;
 va_start (arglist, format);
 vfprintf (stderr, format, arglist);
 va_end (arglist);
 if (LogFile != NULL)
 {
 va_start (arglist, format);
 vfprintf (LogFile, format, arglist);
 va_end (arglist);
 }
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
vfscanf
Scans input from a stream under format control

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>
#include <stdarg.h>

int vfscanf (
 FILE *fp,
 const char *format,
 va_list arg);

Parameters
fp

(IN) Points to the file.

format
(IN) Points to the format control string.

arg
(OUT) Specifies a variable argument.

Return Values
The vfscanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned. If a file input error occurs, errno is set.

Remarks
The vfscanf function scans input from the file designated by fp under control of the argument
format. The format list is described with the scanf function.

The vfscanf function is equivalent to the fscanf function, with a variable argument list replaced with
arg, which has been initialized using the va_start macro.

See Also
fscanf (page 287), scanf (page 314), sscanf, va_arg, va_end, va_start (NDK: Program Management)
Stream I/O Functions 327

328 NDK: Single

novdocx (E
N

U
) 01 February 2006
vfscanf Example
#include <stdio.h>

#include <stdarg.h>
main ()
{
 auto va_list arglist;
 va_start (arglist, arg);
 vfprintf (fp, format, arglist);
 va_end (arglist);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
vprintf
Writes output to stdout under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: Stream I/O

Syntax
#include <stdarg.h>
#include <stdio.h>

int vprintf (
 const char *format,
 va_list arg);

Parameters
format

(IN) Points to the format control string.

arg
(IN) Specifies a variable argument.

Return Values
The vprintf function returns the number of characters written or a negative value if an output error
occurred. If an error occurs, errno is set.

Remarks
The vprintf function writes output to the file stdout under control of the argument format. The
format string is described under the description for printf. The vprintf function is equivalent to
printf, with the variable argument list replaced with arg, which has been initialized by the va_start
macro.

See Also
fprintf (page 277), printf (page 302), sprintf, va_arg, va_end, va_start (NDK: Program
Management)

vprintf Example
The following shows the use of vprintf in a general error message routine.
Stream I/O Functions 329

330 NDK: Single

novdocx (E
N

U
) 01 February 2006
#include <stdarg.h>
#include <stdio.h>

void errmsg (char *format, ...)
{
 va_list arglist;
 printf ("Error: ");
 va_start (arglist, format);
 vprintf (format, arglist);
 va_end (arglist);
}

 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
vscanf
Scans input from the stream designated by stdin

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Service: Stream I/O

Syntax
#include <stdio.h>
#include <stdarg.h>

int vscanf (
 const char *format,
 va_list arg);

Parameters
format

(IN) Points to the format control string.

arg
(OUT) Specifies a variable argument.

Return Values
The vscanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned.

Remarks
The vscanf function scans input from the file designated by stdin under control of the argument
format. The format list is described with the scanf function.

The vscanf function is equivalent to the scanf function, with a variable argument list replaced with
arg, which has been initialized using the va_start macro

See Also
fscanf (page 287), scanf (page 314), sscanf, va_arg, va_end, va_start (NDK: Program Management)

vscanf Example
#include <stdio.h>
#include <stdarg.h>
Stream I/O Functions 331

332 NDK: Single

novdocx (E
N

U
) 01 February 2006

void find (char *format, char *arg, ...)
{
 va_list arglist;
 va_start (arglist, arg);
 vscanf (format, arglist);
 va_end (arglist);
}

 and Intra-File Services

20
novdocx (E

N
U

) 01 February 2006
20Synchronization Concepts

This documentation describes Synchronization, its functions, and features.

Synchronization provides developers with the ability to lock users out of a file while it is being
accessed by someone else. Synchronization is essential to assuring data integrity on the network,
where many users can access the same data simultaneously. Data locks are the basis for controlling
file access.

NetWare® also supports semaphores for controlling access to files. However, semaphores can be
applied to other resources as well, and so aren’t exclusively a file synchronization mechanism.

In addition to locking data, you can scan for information about locks and semaphores such as a list
of locks associated with a specified connection or a list of connections locking a specified file.

NOTE: NetWare 3.11 introduced numerous new NCP requests for file locking and semaphore
management. Synchronization takes advantage of the new requests whenever possible.

20.1 Data Locks
NetWare® supports three types of data locks:

• “File Locks” on page 333 and “File Locking Functions” on page 333
• “Physical Record Locks” on page 334 and “Physical Record Locking Functions” on page 334
• “Logical Record Locks” on page 334 and “Logical Record Locking Functions” on page 334

20.1.1 File Locks
File locks control access to an entire file or several files at the same time. Once locked, a file can’t
be accessed by another connection.

20.1.2 File Locking Functions
These functions manage file locks:

NWClearFileLock2 Unlocks the specified file and removes it from the log table.

NWClearFileLockSet Unlocks and removes all files logged in the log table.

NWLockFileLockSet Locks all files logged in the log table.

NWLogFileLock2 Logs the specified file in the log table.

NWReleaseFileLock2 Unlocks the specified file but doesn’t remove it from the log table.

NWReleaseFileLockSet Unlocks all logged files but doesn’t remove them from the log table.
Synchronization Concepts 333

334 NDK: Single

novdocx (E
N

U
) 01 February 2006
20.1.3 Physical Record Locks
Physical record locks control access to byte ranges within a file. To lock a physical record, specify a
starting offset within the file and the length of the record in bytes. Only the byte range is locked; the
rest of the file remains free. Physical record locks can be exclusive or shareable.

20.1.4 Physical Record Locking Functions
These functions manage physical record locks:

20.1.5 Logical Record Locks
Logical record locks control access to a logical record name. You define logical record names for the
purposes of your application. By associating the logical record with a specific file or physical record
you can coordinate access to data within your application.

The NetWare® server only reports the status of the logical record. It’s up to your application to
enforce restrictions implied by a logical record. The server doesn’t prevent applications from
accessing physical data you have associated with the logical record. For this reason, we recommend
you don’t rely on file or physical record locks when using logical record locks.

20.1.6 Logical Record Locking Functions
These functions manage logical record locks:

NWClearPhysicalRecord Unlocks the specified physical record and removes it from the
log table.

NWClearPhysicalRecordSet Unlocks all logged physical records and removes them from
the log table.

NWLockPhysicalRecordSet Unlocks and removes all physical records from the log table.

NWLogPhysicalRecord Logs a physical record in the log table.

NWReleasePhysicalRecord Unlocks the specified physical record but doesn’t remove it
from the log table.

NWReleasePhysicalRecordSet Unlocks all logged physical records but doesn’t remove them
from the log table.

NWClearLogicalRecord Unlocks the specified logical record and removes it from the log
table.

NWClearLogicalRecordSet Unlocks and then removes all logical records logged in the log
table.

NWLogLogicalRecord Logs the specified logical record in the log table.

NWLockLogicalRecordSet Locks all logical records logged in the log table.

NWReleaseLogicalRecord Unlocks the specified logical record but doesn’t remove it from
the log table.

NWReleaseLogicalRecordSet Unlocks all log logical records but doesn’t remove them from
the log table.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
20.2 Semaphores
Like a logical record lock, a semaphore is used to control access to data stored on the NetWare®
server. As with logical records, you are responsible for defining and enforcing any restrictions
associated with a semaphore. A common use for semaphores is to limit the number of users who can
access a network application.

Unlike a logical record, a semaphore allows you to configure the number of applications that can
access the data. You can scan for the semaphores that a connection has open, as well as scan for the
connections that have opened a semaphore.

To set up a semaphore, call NWOpenSemaphore (page 371). It takes the name of the semaphore and
an initial semaphore value. The initial value is zero based and indicates the number of applications
that can access the semaphore. For example, if the initial value is 4, five applications can access the
semaphore (one of which is the application that opened the semaphore).

After the semaphore is open, applications needing access to the resource associated with the
semaphore must call NWWaitOnSemaphore (page 401), which decrements the semaphore. If the
resulting value is zero or greater, the function returns successfully. In that case, the resource is
considered available. If the semaphore reaches a negative value, the application must wait until the
semaphore returns to zero before accessing the resource.

When an application finishes using the protected resource, it calls NWCloseSemaphore (page 352),
which decrements the semaphore’s open count by one. The semaphore is deleted by the last process
to call this function.

20.2.1 Semaphore Functions
These functions manage semaphores:

20.3 Synchronization Scan Functions
These functions scan for synchronization information in association with workstation connections:

NWCloseSemaphore Closes a semaphore and decrements the open count.

NWExamineSemaphore Returns the semaphore value and the number of workstations that have
the semaphore open.

NWOpenSemaphore Creates and initializes a named semaphore to the specified value.

NWSignalSemaphore Increments the semaphore value by one.

NWWaitOnSemaphore Allows the application to queue up for access to the resource
associated with a semaphore.

NWScanLogicalLocksByConn Scans for all logical record locks on a specified connection.

NWScanLogicalLocksByName Scans for all record locks on a specified logical name.

NWScanPhysicalLocksByConnFile Scans for all physical record locks on a specified
connection for a specified file.

NWScanPhysicalLocksByFile Scans for all record locks on a specific physical file.
Synchronization Concepts 335

336 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWScanSemaphoresByConn Scans information about the semaphores that a specified
connection has open.

NWScanSemaphoresByName Scans information about a semaphore by name.
 and Intra-File Services

21
novdocx (E

N
U

) 01 February 2006
21Synchronization Tasks

This documentation describes common tasks associated with Synchronization.

21.1 Logging Files
Locking procedures are built around the file log table. The NetWare® server maintains a log table
for each connection task. (In multi-tasking environments, one task’s log table is not affected by
another’s.)

Call NWLogFileLock2 (page 362) to log files in the log table. Call this function for each file you
intend to lock. The timeOutLimit parameter lets you control the amount of time the server
spends attempting to lock the file. You can also have the server enter the file into the table without
attempting to lock it.

21.2 Clearing Logged Files
Files remain in the file log table until you clear them.

• NWClearFileLock2 (page 340) clears a single file from the log table.
• NWClearFileLockSet (page 342) clears all files from the log table.

If a file is locked when you ask the server to clear it from the table, the server releases the lock and
clears the file. The server also closes the file if it’s open.

21.3 Locking Data and Files
Locking procedures are built around the file log table. The NetWare® server maintains a log table
for each connection task. (In multi-tasking environments, one task’s log table is not affected by
another’s.)

To lock one or more files, log the files into the table and then request a file lock. If the server can’t
lock all the files, the operation fails and none of the files are locked. This method protects your
application from entering deadlock with another application, a situation in which each application is
waiting for the other to release a partially locked set of files.

The following steps explain file locking, but the basic steps are the same for locking files, physical
records, or logical records.

1 Call NWLogFileLock2 (page 362) for each file you intend to lock. This will log each file into
the log file. The timeOut parameter controls the duration of the server’s efforts.

2 After you have logged all files that you intend to lock, call NWLockFileLockSet (page 356).
This will lock all the files at once. Again, a timeout value controls the duration of the server’s
efforts.

3 Use the files you have locked.
4 Release the locks on the files you have locked. To release individual locks, call

NWReleaseFileLock2 (page 373) for each file. To release the entire set of files, call
NWReleaseFileLockSet (page 375).
Synchronization Tasks 337

338 NDK: Single

novdocx (E
N

U
) 01 February 2006
5 Clear the files from the file log table. To clear individual files, call NWClearFileLock2
(page 340) for each file. To clear the entire set of files, call NWClearFileLockSet (page 342).

NOTE: If a file is locked when you ask the server to clear it from the log table, the server
releases the lock and clears the file. The server also closes the file if it’s open.

21.4 Locking Files
After you have logged all the files you intend to lock, call NWLockFileLockSet (page 356). This
function locks all the files at once. The value of the timeOut parameter controls the duration of the
server’s efforts.

To lock one or more files, log the files into the table and then request a file lock. If the server can’t
lock all the files, the operation fails and none of the files are locked. This method protects your
application from entering deadlock with another application, a situation in which each application is
waiting for the other to release a partially locked set of files.

21.5 Releasing Locked Files
Files remain locked until you specifically ask the server to release them. You can release a file lock
on an individual file or on an entire set of locked files:

• NWReleaseFileLock2 (page 373) releases a lock on a single file.
• NWReleaseFileLockSet (page 375) releases the lock on a set of files.
 and Intra-File Services

22
novdocx (E

N
U

) 01 February 2006
22Synchronization Functions

This documentation alphabetically lists the synchronization functions and describes their purpose,
syntax, parameters, and return values.

• “NWClearFileLock2” on page 340
• “NWClearFileLockSet” on page 342
• “NWClearLogicalRecord” on page 344
• “NWClearLogicalRecordSet” on page 346
• “NWClearPhysicalRecord” on page 348
• “NWClearPhysicalRecordSet” on page 350
• “NWCloseSemaphore” on page 352
• “NWExamineSemaphore” on page 354
• “NWLockFileLockSet” on page 356
• “NWLockLogicalRecordSet” on page 358
• “NWLockPhysicalRecordSet” on page 360
• “NWLogFileLock2” on page 362
• “NWLogLogicalRecord” on page 365
• “NWLogPhysicalRecord” on page 368
• “NWOpenSemaphore” on page 371
• “NWReleaseFileLock2” on page 373
• “NWReleaseFileLockSet” on page 375
• “NWReleaseLogicalRecord” on page 377
• “NWReleaseLogicalRecordSet” on page 379
• “NWReleasePhysicalRecord” on page 381
• “NWReleasePhysicalRecordSet” on page 383
• “NWScanLogicalLocksByConn” on page 385
• “NWScanLogicalLocksByName” on page 387
• “NWScanPhysicalLocksByConnFile” on page 389
• “NWScanPhysicalLocksByFile” on page 392
• “NWScanSemaphoresByConn” on page 395
• “NWScanSemaphoresByName” on page 397
• “NWSignalSemaphore” on page 399
• “NWWaitOnSemaphore” on page 401
Synchronization Functions 339

340 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearFileLock2
Unlocks the specified file and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWClearFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path);

Delphi Syntax
uses calwin32

Function NWClearFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the directory containing the locked file.

path
(IN) Points to the string containing the name and path of the locked file.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
To avoid deadlock, a workstation must request those resources it needs to lock by making an entry in
the File Log Table at the NetWare server. Once the log table is complete, the application attempts to
lock those records. Locking works only if all records in the table are available. If some of the logged
resources cannot be locked, the lock fails and none of the resources are locked.

If the file is open, NWClearFileLock2 causes it to be closed on the server. The application should
close the associated file on the workstation to clear the local file handle correctly.

path can specify either a file’s complete path name or a path relative to the current working
directory. For example, if a file’s complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT
and the directory handle mapping is SYS:ACCOUNT, path could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT
DOMEST/TARGET.DAT

NCP Calls
0x2222 07 Clear File

See Also
NWClearFileLockSet (page 342), NWLogPhysicalRecord (page 368), NWLogFileLock2
(page 362)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF LOCK_ERROR
Synchronization Functions 341

342 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearFileLockSet
Unlocks all files logged in the File Log Table and removes them from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearFileLockSet (
 void);

Delphi Syntax
uses calwin32

Function NWClearFileLockSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
To avoid deadlock, a workstation must request those resources it needs to lock by making an entry in
the File Log Table at the NetWare server. Once the log table is complete, the application attempts to
lock those records. Locking works only if all records in the table are available. If some of the logged
resources cannot be locked, the lock fails and none of the resources are locked.

All open files in the task’s log table are closed. The file handles on the workstation itself are not
cleared—this should be done by the application and any error codes should be ignored.
NWClearFileLockSet is ignored if the associated task on the workstation does not have logged files.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearFileLock2 (page 340), NWLogFileLock2 (page 362), NWReleaseFileLock2 (page 373),
NWReleaseFileLockSet (page 375)
Synchronization Functions 343

344 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearLogicalRecord
Unlocks a logical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWClearLogicalRecord (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *logRecName);

Delphi Syntax
uses calwin32

Function NWClearLogicalRecord
 (conn : NWCONN_HANDLE;
 const logRecName : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle containing the logical record.

logRecName
(IN) Points to the name of the logical record being cleared (128 characters).

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
A logical record is simply a name (a string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

Applications define logical record names. A logical record name represents a group of files, physical
records, structures, etc. NWLogLogicalRecord or NWLockLogicalRecordSet lock one or more
logical record names, not the actual files, physical records, or structures associated with each logical
record name. Any uncooperative application can ignore a lock on the logical record name and
directly lock physical files or records. Therefore, applications using logical record locks must not
use other locking techniques simultaneously.

NCP Calls
0x2222 11 Clear Logical Record

See Also
NWClearLogicalRecordSet (page 346), NWLockLogicalRecordSet (page 358),
NWLogLogicalRecord (page 365), NWReleaseLogicalRecord (page 377),
NWReleaseLogicalRecordSet (page 379)

0x890A NLM_INVALID_CONNECTION

0x89FF LOCK_ERROR
Synchronization Functions 345

346 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearLogicalRecordSet
Unlocks and then removes all of the logical records logged in the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearLogicalRecordSet (
 void);

Delphi Syntax
uses calwin32

Function NWClearLogicalRecordSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A logical record is simply a name (a string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

If the requesting process does not have logged logical records, NWClearLogicalRecordSet is
ignored.

0x0000 SUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearLogicalRecord (page 344), NWLockLogicalRecordSet (page 358), NWLogLogicalRecord
(page 365), NWReleaseLogicalRecord (page 377), NWReleaseLogicalRecordSet (page 379)
Synchronization Functions 347

348 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearPhysicalRecord
Unlocks the specified physical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearPhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recSize);

Delphi Syntax
uses calwin32

Function NWClearPhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recSize : nuint32
) : NWCCODE;

Parameters
fileHandle

(IN) Specifies the file handle associated with the file containing the physical record being
cleared.

recStartOffset
(IN) Specifies the offset, from the beginning of the file, at which the record starts.

recSize
(IN) Specifies the length, in bytes, of the locked record.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
NWClearPhysicalRecord locates the physical record within the specified file by passing the offset in
recStartOffset and the length in recSize.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

recStartOffset and recSize should match the corresponding parameters in
NWLogPhysicalRecord.

NWClearPhysicalRecord is ignored if the requesting workstation does not have logged physical
records.

NCP Calls
0x2222 30 Sync Clear Physical Record

See Also
NWClearPhysicalRecordSet (page 350), NWLockPhysicalRecordSet (page 360),
NWLogPhysicalRecord (page 368), NWReleasePhysicalRecord (page 381),
NWReleasePhysicalRecordSet (page 383)

0x0000 SUCCESSFUL

0x8988 INVALID_FILE_HANDLE

0x89FF LOCK_ERROR
Synchronization Functions 349

350 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWClearPhysicalRecordSet
Unlocks and removes all physical records from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearPhysicalRecordSet (
 void);

Delphi Syntax
uses calwin32

Function NWClearPhysicalRecordSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
NWClearPhysicalRecordSet is ignored if the requesting workstation does not have logged or locked
physical records.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

0x0000 SUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
NWClearPhysicalRecord (page 348), NWLockPhysicalRecordSet (page 360),
NWLogPhysicalRecord (page 368), NWReleasePhysicalRecord (page 381),
NWReleasePhysicalRecordSet (page 383)
Synchronization Functions 351

352 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWCloseSemaphore
Closes a semaphore and decrements the open count of the semaphore, indicating one less process is
holding the semaphore open

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWCloseSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle);

Delphi Syntax
uses calwin32

Function NWCloseSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

semHandle
(IN) Specifies the semaphore handle obtained when the semaphore was opened by
NWOpenSemaphore.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
If the requesting process is the last process to have this semaphore open, the semaphore is deleted.

NCP Calls
0x2222 32 4 Close Semaphore

See Also
NWExamineSemaphore (page 354), NWOpenSemaphore (page 371), NWSignalSemaphore
(page 399), NWWaitOnSemaphore (page 401)

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FF INVALID_SEMAPHORE_HANDLE, LOCK_ERROR
Synchronization Functions 353

354 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWExamineSemaphore
Returns the semaphore value

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWExamineSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle,
 pnint16 semValue,
 pnuint16 semOpenCount);

Delphi Syntax
uses calwin32

Function NWExamineSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32;
 semValue : pnint16;
 semOpenCount : pnuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

semHandle
(IN) Specifies the semaphore handle obtained when the semaphore was opened by
NWOpenSemaphore.

semValue
(OUT) Points to the current semaphore value (optional).

semOpenCount
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the number of stations that currently have this semaphore open.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A semaphore value greater than 0 indicates the application can access the associated network
resource. A negative value indicates the number of processes waiting to use the semaphore. If the
semaphore value is negative, the application must either enter a waiting queue by calling
NWWaitOnSemaphore or temporarily abandon its attempt to access the network resource.

semOpenCount indicates the number of processes holding the semaphore open.
NWOpenSemaphore increments this value. NWCloseSemaphore decrements this value.

semValue is optional. Use NULL if a return value is not desired.

NCP Calls
0x2222 32 1 Examine Semaphore

See Also
NWCloseSemaphore (page 352), NWOpenSemaphore (page 371), NWSignalSemaphore
(page 399), NWWaitOnSemaphore (page 401)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FF LOCK_ERROR
Synchronization Functions 355

356 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLockFileLockSet
Locks files that have been logged by a workstation task in the File Log Table of a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockFileLockSet (
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLockFileLockSet
 (timeOut : nuint16
) : NWCCODE;

Parameters
timeOut

(IN) Specifies the length of time the NetWare server attempts to lock the record set before
timing out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
To help avoid deadlock, a workstation task can log file locks in the File Log Table of a NetWare
server. When the files in the log table are needed, NWLockFileLockSet can be called.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWLockFileLockSet will attempt to lock the logged set on all attached servers. Locks will be
attempted by ordering the servers according to their net node addresses and making the request on
each server. If the request fails at any point, NWLockFileLockSet will automatically release all
locks made to that point.

All files on all servers must be available for NWLockFileLockSet to complete successfully.

There is no way to determine which server the lock request failed on.

timeOut is the length of time the NetWare server will attempt the operation before failing. This
limit is specified in units of 1/18 second (0 = no wait).

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearFileLock2 (page 340), NWClearFileLockSet (page 342), NWLogFileLock2 (page 362),
NWReleaseFileLock2 (page 373), NWReleaseFileLockSet (page 375)
Synchronization Functions 357

358 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLockLogicalRecordSet
Locks all logical records logged in the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockLogicalRecordSet (
 nuint8 lockFlags,
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLockLogicalRecordSet
 (lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters
lockFlags

(IN) Specifies the lock flags.

timeOut
(IN) Specifies the length of time the NetWare server attempts to lock the record set before
timing out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
Applications define logical record names. A logical record name represents a group of files, physical
records, or data structures. NWLogLogicalRecord and NWLockLogicalRecordSet affect one or
more logical record names, not the actual files, physical records, or data structures associated with
each logical record name. Any uncooperative application can ignore a lock on the logical record
name and directly lock physical files or records. Therefore, applications using logical record locks
must not simultaneously use other locking techniques.

To avoid deadlock, request the resources needed to lock by making an entry in the File Log Table at
the NetWare server. Once the log table is complete, the application attempts to lock those records.
The locking works only if all records in the table are available. If some of the logged resources
cannot be locked, the lock fails and none of the resources are locked.

A logical record is simply a name (a string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

lockFlags is interpreted as follows:

0x00 Lock record with a shareable lock
0x01 Lock record with an exclusive loc

timeOut is specified in units of 1/18 second (0 = no wait).

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearLogicalRecord (page 344), NWClearLogicalRecordSet (page 346),
NWLogLogicalRecord (page 365), NWReleaseLogicalRecord (page 377),
NWReleaseLogicalRecordSet (page 379)

0x89FF LOCK_ERROR
Synchronization Functions 359

360 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLockPhysicalRecordSet
Locks all records logged in the physical record log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockPhysicalRecordSet (
 nuint8 lockFlags,
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLockPhysicalRecordSet
 (lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters
lockFlags

(IN) Specifies the lock flags.

timeOut
(IN) Specifies the length of time the NetWare server attempts to lock the record set before
timing out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
A physical record lock, as opposed to a logical lock, is the actual lock of a specified record relative
to a physical file. Before a record is locked, it is also entered in the File Log Table at the NetWare
server. Records can be locked only if all records in the log table are available for locking. This
avoids deadlock.

To avoid deadlock, request those resources needing to be locked by making an entry in the File Log
Table at the NetWare server. Once the log table is complete, NWLockPhysicalRecordSet attempts to
lock those records. The locking only works if all records in the table are available. If some of the
logged resources cannot be locked, the lock fails and none of the resources are locked.

timeOut is specified in units of 1/18 second (0 = no wait).

lockFlags is interpreted as follows:

0x00 Lock records with exclusive lock
0x02 Lock records with shareable lock

A shareable lock prevents any process, including the one which made the lock, from writing to the
record.

NWLockPhysicalRecordSet cannot lock a record that is already locked exclusively by another
application. If one or more records, identified in the log table, are already exclusively locked by
another application, the attempt to lock the set fails.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearPhysicalRecord (page 348), NWClearPhysicalRecordSet (page 350),
NWLogPhysicalRecord (page 368), NWReleasePhysicalRecord (page 381),
NWReleasePhysicalRecordSet (page 383)
Synchronization Functions 361

362 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLogFileLock2
Logs the specified file in the File Log Table and locks the file if the lock flag is set

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWLogFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 nuint8 lockFlags,
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLogFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle in which the file to be logged resides.

path
(IN) Points to the string containing the path and file name of the file to be logged.

lockFlags
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the lock flags.

timeOut
(IN) Specifies the length of time the NetWare server attempts to log the specified file before
timing out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
NWLogFileLock2 logs the specified file for exclusive use by the workstation. If bit 0 of
lockFlags is set, the server immediately attempts to lock the file.

lockFlags ’ values are interpreted as follows:

0x00 Log file
0x01 Log and lock the file

When lockFlags is 1, the server attempts to lock the file for the length of time specified by
timeOutLimit.

path can specify either a file’s complete path name or a path relative to the current working
directory. For example, if a file’s complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT
and the directory handle mapping is SYS:ACCOUNT, path could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT
DOMEST/TARGET.DAT

timeOut is specified in units of 1/18 second (0 = no wait).

NWLogFileLock2 cannot lock files already logged and exclusively locked by other applications. A
file can be locked by a client even if the file does not yet exist. This reserves the file name for use by
the client locking it.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897F ERR_LOCK_WAITING

0x8982 NO_OPEN_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR
Synchronization Functions 363

364 NDK: Single

novdocx (E
N

U
) 01 February 2006
The File Log Table contains data locking information used by a NetWare server. The NetWare server
tracks this information for each workstation and process. Whenever a file, logical record, or physical
record is logged, information identifying the data being logged is entered in the log table. Normally,
a set of files or records is logged and then locked as a set. However, a single file or record can also
be locked when it is entered in the table.

When using log tables, a task first logs all of the files or records that are needed to complete a
transaction. The task then attempts to lock the logged set of files or records. If some of the logged
resources cannot be locked, the lock fails and none of the resources are locked.

NCP Calls
0x2222 03 Log File
0x2222 23 17 Get File Server Information

See Also
NWClearFileLock2 (page 340), NWClearFileLockSet (page 342), NWLockFileLockSet
(page 356), NWReleaseFileLock2 (page 373)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWLogLogicalRecord
Logs a logical record in a log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLogLogicalRecord (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *logRecName,
 nuint8 lockFlags,
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLogLogicalRecord
 (conn : NWCONN_HANDLE;
 const logRecName : pnstr8;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logRecName
(IN) Points to the name of the logical record being logged (128 characters).

lockFlags
(IN) Specifies the lock flags.

timeOut
Synchronization Functions 365

366 NDK: Single

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the length of time the NetWare server attempts to lock the record before timing
out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A logical record is simply a name (string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

When lockFlags is set to option one or three, the NetWare server attempts to lock the logical
record for the length of time specified by timeOut. timeOut is specified in 1/18 second units.

lockFlags ’ values are the following:

0 = Log only
1 = Log and lock exclusive
3 = Log and lock shareable

timeOut is specified in units of 1/18 second (0 = no wait).

Normally, a set of files or records is logged and then locked as a set. However, a single file or record
can also be locked when it is placed in the log table. The release functions,
NWReleaseLogicalRecord and NWReleaseLogicalRecordSet, are used to unlock a lock (or set of
locks). The clear functions, NWClearLogicalRecord and NWClearLogicalRecordSet, are used to
unlock and remove a lock (or set of locks) from the log table.

To avoid deadlock, request those resources needing to be locked by making an entry in the File Log
Table at the NetWare server. Once the log table is complete, NWLogLogicalRecord attempts to lock
those records. Locking works only if all records in the table are available. If some of the logged
resources cannot be locked, the lock fails and none of the resources are locked.

NWLogLogicalRecord cannot lock files already logged and exclusively locked by other
applications.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NCP Calls
 0x2222 09 Log Logical Record

See Also
NWClearLogicalRecord (page 344), NWClearLogicalRecordSet (page 346),
NWLockLogicalRecordSet (page 358), NWReleaseLogicalRecord (page 377),
NWReleaseLogicalRecordSet (page 379)
Synchronization Functions 367

368 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWLogPhysicalRecord
Logs a physical record in preparation for a lock

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLogPhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recLength,
 nuint8 lockFlags,
 nuint16 timeOut);

Delphi Syntax
uses calwin32

Function NWLogPhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recLength : nuint32;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters
fileHandle

(IN) Specifies the file handle of the file whose record is being logged (must be valid).

recStartOffset
(IN) Specifies the offset into the file where the record being logged begins.

recLength
(IN) Specifies the length, in bytes, of the record to be logged.

lockFlags
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the lock flags.

timeOut
(IN) Specifies the length of time the NetWare server attempts to lock the record before timing
out.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
The NetWare server attempts to log the record for the length of time specified by timeOutLimit
before returning a time out error. timeOut is specified in units of 1/18 second (0 = no wait).

lockFlags ’ values follow:

0 = Log only
1 = Log and lock exclusive
3 = Log and lock shareable

timeOut is specified in units of 1/18 second (0 = no wait).

Normally, a set of files or records is logged and then locked as a set. However, a single file or record
can also be locked when it is entered in the log table.

The release functions, NWReleasePhysicalRecord and NWReleasePhysicalRecordSet, unlock a
lock or set of locks. The clear functions, NWClearPhysicalRecord and NWClearPhysicalRecordSet,
unlock and remove a lock or set of locks from the log table.

To avoid deadlock, request those resources needing to be locked by making an entry in the File Log
Table at the NetWare server. Once the log table is complete, NWLogPhysicalRecord can then lock
those records. The locking works only if all records in the table are available. If some of the logged
resources cannot be locked, the lock fails and none of the resources are locked.

NWLogPhysicalRecord returns 0x0006 if an invalid file handle is passed to the fileHandle
parameter.

0x0000 SUCCESSFUL

0x0006 INVALID_HANDLE

0x8988 INVALID_FILE_HANDLE

0x8996 SERVER_OUT_OF_MEMORY

0x89FD LOCK_COLLISION

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR
Synchronization Functions 369

370 NDK: Single

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 26 Log Physical Record

See Also
NWClearLogicalRecord (page 344), NWClearLogicalRecordSet (page 346),
NWLockLogicalRecordSet (page 358), NWReleaseLogicalRecord (page 377),
NWReleaseLogicalRecordSet (page 379)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWOpenSemaphore
Creates and initializes a named semaphore to the indicated value

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWOpenSemaphore (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *semName,
 nint16 initSemHandle,
 pnuint32 semHandle,
 pnuint16 semOpenCount);

Delphi Syntax
uses calwin32

Function NWOpenSemaphore
 (conn : NWCONN_HANDLE;
 const semName : pnstr8;
 initSemHandle : nint16;
 semHandle : pnuint32;
 semOpenCount : pnuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

semName
(IN) Points to the name of the semaphore to be opened.

initSemHandle
(IN) Specifies the number of tasks that can simultaneously access the resources to which the
semaphore is tied.
Synchronization Functions 371

372 NDK: Single

novdocx (E
N

U
) 01 February 2006
semHandle
(OUT) Points to the NetWare semaphore handle.

semOpenCount
(OUT) Points to the number of stations that currently have this semaphore open (optional; set
to NULL if you do not wish this number to be returned).

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
Calling NWOpenSemaphore increments the semOpenCount counter. If the semaphore exists,
initSemHandle is ignored. The handle returned must be used to access the semaphore. Only the
first application to open the semaphore (and thus create the semaphore) can set the initial value in
initSemHandle.

NWOpenSemaphore is usually called by setting initSemHandle to a value other than 0. If
initSemHandle is set to 0, consider the following items:

• Semaphore ownership will not be established until the semaphore is signaled.
• The semaphore cannot be used until it is first signaled by an application.
• Usually semaphore applications loop from waiting on a semaphore to signaling the semaphore.

If initSemHandle is 0, the semaphore must be signaled from outside the wait/signal loop.

NWWaitOnSemaphore decrements the semaphore value by 1 if it is greater than 0. If the semaphore
value and the timeOutValue parameter are both 0, a time out failure (LOCK_ERROR) will be
returned.

NWSignalSemaphore increments the semaphore value by 1.

NCP Calls
0x2222 32 Open Semaphore

See Also
NWCloseSemaphore (page 352), NWExamineSemaphore (page 354), NWSignalSemaphore
(page 399), NWWaitOnSemaphore (page 401)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FF LOCK_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleaseFileLock2
Unlocks the specified file but does not remove it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWReleaseFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path);

Delphi Syntax
uses calwin32

Function NWReleaseFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the new directory’s root directory.

path
(IN) Points to the string containing the name and path of the new directory.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.
Synchronization Functions 373

374 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
path can specify either a file’s complete path name or a path relative to the current working
directory. For example, if a file’s complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT
and the directory handle mapping is SYS:ACCOUNT, path could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

NWReleaseFileLock2 is ignored if the requesting workstation does not have locked files.

NCP Calls
0x2222 05 Release File

See Also
NWClearFileLock2 (page 340), NWClearFileLockSet (page 342), NWLogFileLock2 (page 362),
NWReleaseFileLockSet (page 375)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleaseFileLockSet
Unlocks all files logged in the log table but does not remove them from the table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseFileLockSet (
 void);

Delphi Syntax
uses calwin32

Function NWReleaseFileLockSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
To avoid deadlock, a workstation must request those files it needs to lock; it does so by making an
entry into the File Log Table at the NetWare server. Once the log table is complete, the application
can then lock those files. The locking works only if all files in the table are available.

NWReleaseFileLockSet is ignored if the requesting workstation does not have locked files.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)

0x0000 SUCCESSFUL
Synchronization Functions 375

376 NDK: Single

novdocx (E
N

U
) 01 February 2006
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearFileLock2 (page 340), NWClearFileLockSet (page 342), NWLogFileLock2 (page 362),
NWReleaseFileLock2 (page 373)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleaseLogicalRecord
Unlocks a logical record but does not remove it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWReleaseLogicalRecord (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *logRecName);

Delphi Syntax
uses calwin32

Function NWReleaseLogicalRecord
 (conn : NWCONN_HANDLE;
 logRecName : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle containing the logical record.

logRecName
(IN) Points to the name of the logical record being released (128 characters).

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
Synchronization Functions 377

378 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
A logical record is simply a name (a string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

File Log Table contains data locking information used by a NetWare server. The NetWare server
tracks this information for each workstation and workstation task. Whenever a file, logical record, or
physical record is logged, information identifying the data being logged is placed in the File Log
Table. Normally, a set of files or records is logged and then locked as a set. However, a single file or
record can also be locked when it is placed in the table.

NWReleaseLogicalRecord is ignored if the requesting workstation has no records to release.

NCP Calls
 0x2222 12 Release Logical Record

See Also
NWClearLogicalRecord (page 344), NWClearLogicalRecordSet (page 346),
NWLockLogicalRecordSet (page 358), NWReleaseLogicalRecordSet (page 379)

0x890A NLM_INVALID_CONNECTION

0x89FF LOCK_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleaseLogicalRecordSet
Unlocks all the logical records but does not remove them from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseLogicalRecordSet (
 void);

Delphi Syntax
uses calwin32

Function NWReleaseLogicalRecordSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A logical record is simply a name (a string) registered with the NetWare server. The name (as with a
semaphore) can then be locked or unlocked by applications and can be used as an inter-application
locking mechanism.

NOTE: Locking or unlocking a logical record does not physically lock or unlock those resources
associated with the logical record; only the applications using the record know about such an
association.

To avoid deadlock, a workstation is required to request those files it needs to lock; it does so by
making an entry into the File Log Table at the NetWare server. Once the log table is complete, the
application can then lock those files. The locking works only if all files in the table are available.

0x0000 SUCCESSFUL
Synchronization Functions 379

380 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWReleaseLogicalRecordSet is ignored if the requesting workstation or process does not have
locked logical records.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearLogicalRecord (page 344), NWClearLogicalRecordSet (page 346),
NWLockLogicalRecordSet (page 358), NWLogLogicalRecord (page 365),
NWReleaseLogicalRecord (page 377)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleasePhysicalRecord
Unlocks the specified physical record currently locked in the log table of the requesting workstation
but does not remove it from the table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleasePhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recSize);

Delphi Syntax
uses calwin32

Function NWReleasePhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recSize : nuint32
) : NWCCODE;

Parameters
fileHandle

(IN) Specifies the file handle associated with the file containing the specified record.

recStartOffset
(IN) Specifies the offset, within the file, where the physical record begins.

recSize
(IN) Specifies the length, in bytes, of the record being released.
Synchronization Functions 381

382 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A physical record lock, as opposed to a logical lock, is the actual lock of a specified record relative
to a physical file. When a record is locked, it is also entered into a log table. Records are allowed to
be locked only if all records in the log table are available for locking. This is done to avoid deadlock.

NWReleasePhysicalRecord is ignored if the requesting workstation or process does not have locked
physical records.

NCP Calls
0x2222 28 Release Physical Record

See Also
NWClearPhysicalRecord (page 348), NWClearPhysicalRecordSet (page 350),
NWLockPhysicalRecordSet (page 360), NWLogPhysicalRecord (page 368),
NWReleasePhysicalRecordSet (page 383)

0x0000 SUCCESSFUL

0x8988 INVALID_FILE_HANDLE

0x89FF LOCK_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWReleasePhysicalRecordSet
Unlocks, but does not remove, all records currently logged as physical records in the requesting
workstation’s log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleasePhysicalRecordSet (
 void);

Delphi Syntax
uses calwin32

Function NWReleasePhysicalRecordSet
 : NWCCODE;

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
A physical record lock, as opposed to a logical lock, is the actual lock of a specified record relative
to a physical file. When a record is locked, it is also entered into a log table. Records are locked only
if all records in the log table are available for locking. This is done to avoid deadlock.

NWReleasePhysicalRecordSet is ignored if the workstation does not have locked physical records.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)

0x0000 SUCCESSFUL
Synchronization Functions 383

384 NDK: Single

novdocx (E
N

U
) 01 February 2006
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWClearPhysicalRecord (page 348), NWClearPhysicalRecordSet (page 350),
NWLockPhysicalRecordSet (page 360), NWLogPhysicalRecord (page 368),
NWReleasePhysicalRecord (page 381)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWScanLogicalLocksByConn
Scans for all logical record locks in a specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanLogicalLocksByConn (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 pnint16 iterHandle,
 CONN_LOGICAL_LOCK N_FAR *logicalLock,
 CONN_LOGICAL_LOCKS N_FAR *logicalLocks);

Delphi Syntax
uses calwin32

Function NWScanLogicalLocksByConn
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 iterHandle : pnint16;
 Var logicalLock : CONN_LOGICAL_LOCK;
 Var logicalLocks : CONN_LOGICAL_LOCKS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

connNum
(IN) Specifies the connection number of the logged-in object to be scanned.

iterHandle
(IN/OUT) Points to the number of the next record to be scanned.

logicalLock
Synchronization Functions 385

386 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Points to CONN_LOGICAL_LOCK (optional).

logicalLocks
(OUT) Points to CONN_LOGICAL_LOCKS.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
The client must have console operator rights to call NWScanLogicalLocksByConn.

iterHandle should be set to 0 initially. Each subsequent call returns the number of the next
record to be scanned. iterHandle returns -1 upon completion and should not be changed during
the scan.

CONN_LOGICAL_LOCKS is a buffer and should be passed to subsequent
NWScanLogicalLocksByConn calls without modification.

If you pass a non-NULL pointer to logicalLock, CONN_LOGICAL_LOCKS passes one record
at a time to CONN_LOGICAL_LOCK. If you pass a NULL pointer to logicalLock,
CONN_LOGICAL_LOCKS is filled but no records are passed to CONN_LOGICAL_LOCK.

0x88FF is returned when the last record has been passed to CONN_LOGICAL_LOCK and
NWScanLogicalLocksByConn is called subsequently.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 239 Get Logical Records By Connection

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

0x88FF Scan Completed
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWScanLogicalLocksByName
Scans for all record locks in a specified logical name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWScanLogicalLocksByName (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *logicalName,
 pnint16 iterHandle,
 LOGICAL_LOCK N_FAR *logicalLock,
 LOGICAL_LOCKS N_FAR *logicalLocks);

Delphi Syntax
uses calwin32

Function NWScanLogicalLocksByName
 (conn : NWCONN_HANDLE;
 logicalName : pnstr8;
 iterHandle : pnint16;
 Var logicalLock : LOGICAL_LOCK;
 Var logicalLocks : LOGICAL_LOCKS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logicalName
(IN) Points to the logical lock name to be scanned.

iterHandle
(IN/OUT) Points to the number of the next record to be scanned.

logicalLock
Synchronization Functions 387

388 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Points to LOGICAL_LOCK (optional).

logicalLocks
(OUT) Points to LOGICAL_LOCKS.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
iterHandle should be set to 0 initially. Each subsequent call returns the number of the next
record to be scanned. iterHandle returns -1 upon completion and should not be changed during
the scan.

If logicalLock is a NULL pointer, logicalLocks returns the records in groups, instead of
one by one.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 240 Get Logical Record Information

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWScanPhysicalLocksByConnFile
Scans for all physical record locks by a specified connection on a specified file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWScanPhysicalLocksByConnFile (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 nuint8 dataStream,
 pnint16 iterHandle,
 CONN_PHYSICAL_LOCK N_FAR *lock,
 CONN_PHYSICAL_LOCKS N_FAR *locks);

Delphi Syntax
uses calwin32

Function NWScanPhysicalLocksByConnFile
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 dataStream : nuint8;
 iterHandle : pnint16;
 Var lock : CONN_PHYSICAL_LOCK;
 Var locks : CONN_PHYSICAL_LOCKS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

connNum
Synchronization Functions 389

390 NDK: Single

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the connection number of the logged-in object to be scanned.

dirHandle
(IN) Specifies the directory handle associated with the desired directory path.

path
(IN) Points to a full file path (or a path relative to dirHandle) specifying the file to be
checked. The last item must be a file name.

dataStream
(IN) Specifies the Macintosh name space (for 3.11 and above only) or set to 0:

0 Resource Fork
1 Data Fork

iterHandle
(IN/OUT) Points to the number of the next record to be scanned (set to 0 initially).

lock
(OUT) Points to the CONN_PHYSICAL_LOCK structure.

locks
(OUT) Points to the CONN_PHYSICAL_LOCKS structure.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
For 3.x, a client must have console operator rights to call NWScanPhysicalLocksByConnFile or
NO_CONSOLE_PRIVILEGES will be returned.

For 4.x and above, a client can call NWScanPhysicalLocksByConnFile to return information about
its connection without needing console operator privileges. To return information about other
connection numbers, you must have console rights. A client with console privileges can pass any
valid connection number to NWScanPhysicalLocksByConnFile and receive information about that
connection.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89FD BAD_STATION_NUMBER

0x89FF FILE_NAME_ERROR, NO_FILES_FOUND_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
iterHandle returns -1 upon completion and must not be changed during the scan.

If lock is a NULL pointer, locks returns the records in groups, instead of one by one.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 237 Get Physical Record Locks By Connection And File
0x2222 23 244 Convert Path To Entry
0x2222 62 Scan First
Synchronization Functions 391

392 NDK: Single

novdocx (E
N

U
) 01 February 2006
NWScanPhysicalLocksByFile
Scans for all record locks in a specified physical file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWScanPhysicalLocksByFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 nuint8 dataStream,
 pnint16 iterHandle,
 PHYSICAL_LOCK N_FAR *lock,
 PHYSICAL_LOCKS N_FAR *locks);

Delphi Syntax
uses calwin32

Function NWScanPhysicalLocksByFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 dataStream : nuint8;
 iterHandle : pnint16;
 Var lock : PHYSICAL_LOCK;
 Var locks : PHYSICAL_LOCKS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired directory path.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
path
(IN) Points to a full file path (or a path relative to dirHandle) specifying the file to be
checked.

dataStream
(IN) Specifies the Macintosh name space (for 3.11 and above only) or set to 0:

0 Resource Fork
1 Data Fork

iterHandle
(IN/OUT) Points to the next record to be scanned; must be set to 0 initially.

lock
(OUT) Points to PHYSICAL_LOCK (optional).

locks
(OUT) Points to PHYSICAL_LOCKS.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
The client must have console operator rights to call NWScanPhysicalLocksByFile.

iterHandle returns -1 upon completion, and should not be changed during the scan.

If lock is a NULL pointer, locks returns the records in groups, instead of one by one.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
Synchronization Functions 393

394 NDK: Single

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 238 Get Physical Record Locks By File
0x2222 23 244 Convert Path to Entry
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWScanSemaphoresByConn
Scans information about the semaphores opened by a specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanSemaphoresByConn (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 pnint16 iterHandle,
 CONN_SEMAPHORE NWPTR semaphore,
 CONN_SEMAPHORES NWPTR semaphores);

Delphi Syntax
uses calwin32

Function NWScanSemaphoresByConn
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 iterHandle : pnint16;
 Var semaphore : CONN_SEMAPHORE;
 Var semaphores : CONN_SEMAPHORES
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

connNum
(IN) Specifies the connection number of the logged-in object to be scanned.

iterHandle
(IN/OUT) Points to the number of the next record to be scanned; should be set to 0 initially.

semaphore
Synchronization Functions 395

396 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Points to CONN_SEMAPHORE (optional).

semaphores
(OUT) Points to CONN_SEMAPHORES.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
For 3.x, you must have console operator privileges to call NWScanSemaphoresByConn or
NO_CONSOLE_PRIVILEGES will be returned.

For 4.x and above, a client can call NWScanSemaphoresByConn to return information about its
connection without needing console operator privileges. To return information about other
connection numbers, you must have console rights. A client with console privileges can pass any
valid connection number to NWScanSemaphoresByConn and receive information about that
connection.

iterHandle returns -1 upon completion, and should not be changed during the scan.

If semaphore is a NULL pointer, semaphores returns the records in a group, instead of one by
one.

NWScanSemaphoresByConn returns SUCCESSFUL even when connNum is invalid. Call
NWGetFileServerInformation to return the maxConns supported for the specific server. Only use
connNum in the range of zero- maxConns.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 241 Get Connection’s Semaphores

See Also
NWCCGetConnRefInfo, NWGetObjectConnectionNumbers (NDK: Connection, Message, and
NCP Extensions)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWScanSemaphoresByName
Scans information about a semaphore by name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWScanSemaphoresByName (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *semName,
 pnint16 iterHandle,
 SEMAPHORE N_FAR *semaphore,
 SEMAPHORES N_FAR *semaphores);

Delphi Syntax
uses calwin32

Function NWScanSemaphoresByName
 (conn : NWCONN_HANDLE;
 semName : pnstr8;
 iterHandle : pnint16;
 Var semaphore : SEMAPHORE;
 Var semaphores : SEMAPHORES
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

semName
(IN) Points to the semaphore name to be scanned.

iterHandle
(IN/OUT) Points to the number of the next record to be scanned; should be set to 0 initially.

semaphore
Synchronization Functions 397

398 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Points to SEMAPHORE (optional).

semaphores
(OUT) Points to SEMAPHORES.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

Remarks
The client must have console operator rights to call NWScanSemaphoresByName.

iterHandle returns -1 upon completion, and should not be changed during the scan.

If semaphore is a NULL pointer, semaphores returns the records in groups, instead of one by
one .

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 242 Get Semaphore Information

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWSignalSemaphore
Increments the semaphore value by one

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
 #include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSignalSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle);

Delphi Syntax
uses calwin32

Function NWSignalSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

semHandle
(IN) Specifies the semaphore handle of the semaphore to be signaled (obtained by calling
NWOpenSemaphore).

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
Synchronization Functions 399

400 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
If another client is waiting on the semaphore, a successful completion code is returned to the waiting
client.

An application must call NWSignalSemaphore when it finishes accessing the network resource
associated with the semaphore. If processes are waiting to use the semaphore, the first process in the
queue is released (signaled).

NCP Calls
0x2222 32 3 Signal Semaphore

See Also
NWCloseSemaphore (page 352), NWExamineSemaphore (page 354), NWOpenSemaphore
(page 371), NWWaitOnSemaphore (page 401)

0x890A NLM_INVALID_CONNECTION

0x89F LOCK_ERROR
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NWWaitOnSemaphore
Waits on a semaphore for a specified time

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Synchronization

Syntax
#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWWaitOnSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle,
 nuint16 timeOutValue);

Delphi Syntax
uses calwin32

Function NWWaitOnSemaphore
 Function NWWaitOnSemaphore
(conn : NWCONN_HANDLE;
 semHandle : nuint32;
 timeOutValue : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

semHandle
(IN) Specifies the semaphore handle returned by calling NWOpenSemaphore.

timeOutValue
(IN) Specifies the length of time the application will wait for the semaphore.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESSFUL
Synchronization Functions 401

402 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks

NWWaitOnSemaphore decrements the semaphore value counter by 1 if it is greater than 0. If the
semaphore value counter and the timeOutValue parameter are both 0, a time out failure
(LOCK_ERROR) will be returned. If the value is 0 before the time out expires, Successful is
returned, and the application can access the associated resource.

If the value is <0, NWWaitOnSemaphore queues the application for the time interval specified in
timeOutValue.

timeOutValue indicates how long the NetWare server should wait if the semaphore value is
negative. timeOutValue is specified in units of 1/18 second (0 = no wait). It has no default value.

See Also
NWCloseSemaphore (page 352), NWExamineSemaphore (page 354), NWOpenSemaphore
(page 371), NWSignalSemaphore (page 399)

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR
 and Intra-File Services

23
novdocx (E

N
U

) 01 February 2006
23Synchronization Structures

This documentation alphabetically lists the Synchronization structures and describes their purpose,
syntax, and fields.
Synchronization Structures 403

404 NDK: Single

novdocx (E
N

U
) 01 February 2006
CONN_LOGICAL_LOCK
Returns a connection’s logical locks

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 taskNumber;
 nuint8 lockStatus;
 nstr8 logicalName[128];
} CONN_LOGICAL_LOCK;

Delphi Structure
uses calwin32

CONN_LOGICAL_LOCK = packed Record
 taskNumber : nuint16;
 lockStatus : nuint8;
 logicalName : Array[0..127] Of nstr8;
 End;

Fields
taskNumber

Specifies the task number of the workstation that has the file open.

lockStatus
Specifies a bit mask describing how the file is locked:

0x01 Locked
0x02 Open shareable
0x04 Logged
0x08 Open Normal
0x40 TTS holding
0x80 Transaction flag set

logicalName
Specifies the name of the logical lock.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
CONN_LOGICAL_LOCKS
Returns a connection’s logical lock list

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 nuint8 records[508];
 nuint16 curOffset;
 nuint16 curRecord;
} CONN_LOGICAL_LOCKS;

Delphi Structure
uses calwin32

 CONN_LOGICAL_LOCKS = packed Record
 nextRequest : nuint16;
 numRecords : nuint16;
 records : Array[0..507] Of nuint8;
 curOffset : nuint16;
 curRecord : nuint16;
 End;

Fields
nextRequest

Is used internally by NWScanLogicalLocksByConn to retrieve the next request.

numRecords
Specifies the number of CONN_LOGICAL_LOCK structures that are contained in records.

records
Specifies an array of CONN_LOGICAL_LOCK structures.

curOffset
Is for internal use only.

curRecord
Is for internal use only.
Synchronization Structures 405

406 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
You must not modify the values in nextRequest, curOffset and curRecord; they are used
internally to return the next record in a request.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
CONN_PHYSICAL_LOCK
Returns a connection’s physical locks

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 taskNumber;
 nuint8 lockType;
 nuint32 recordStart;
 nuint32 recordEnd;
} CONN_PHYSICAL_LOCK;

Delphi Structure
uses calwin32

CONN_PHYSICAL_LOCK = packed Record
 taskNumber : nuint16;
 lockType : nuint8;
 recordStart : nuint32;
 recordEnd : nuint32;
 End;

Fields
taskNumber

Specifies the number of the task using the file.

lockType
Specifies if the file is locked with the following bits being set:

none Not locked
Bit 0 Locked exclusive
Bit 1 Locked shareable
Bit 2 Logged
Bit 6 Lock held by TTS

recordStart
Specifies the byte offset of where the record begins in the file.

recordEnd
Specifies the byte offset of where the record ends in the file.
Synchronization Structures 407

408 NDK: Single

novdocx (E
N

U
) 01 February 2006
CONN_PHYSICAL_LOCKS
Returns a connection’s physical lock list

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 CONN_PHYSICAL_LOCK locks[51];
 nuint16 curRecord;
 nuint8 reserved[22];
} CONN_PHYSICAL_LOCKS;

Delphi Structure
uses calwin32

CONN_PHYSICAL_LOCKS = packed Record
 nextRequest : nuint16;
 numRecords : nuint16;
 locks : Array[0..50] Of CONN_PHYSICAL_LOCK;
 curRecord : nuint16;
 reserved : Array[0..21] Of nuint8;
 End;

Fields
nextRequest

Is used internally by NWScanPhysicalLocksByConnFile to retrieve the next request.

numRecords
Specifies the number of valid PHYSICAL_LOCK structures contained in locks.

locks
Specifies an array of CONN_PHYSICAL_LOCK structures.

curRecord
Specifies the current PHYSICAL_LOCK to return in lock.

reserved
Is reserved for future use.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
You must not modify the values in nextRequest, curOffset and curRecord; they are used
internally to return the next record in a request.
Synchronization Structures 409

410 NDK: Single

novdocx (E
N

U
) 01 February 2006
CONN_SEMAPHORE
Returns semaphore information list

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 openCount;
 nuint16 semaphoreValue;
 nuint16 taskNumber;
 nstr8 semaphoreName[128];
} CONN_SEMAPHORE;

Delphi Structure
uses calwin32

 CONN_SEMAPHORE = packed Record
 openCount : nuint16;
 semaphoreValue : nuint16;
 taskNumber : nuint16;
 semaphoreName : Array[0..127] Of nstr8;
 End;

Fields
openCount

Specifies the number of connections that have the semaphore open for use.

semaphoreValue
Specifies the current value of the semaphore.

taskNumber
Specifies the number of the connection's task that is using the semaphore.

semaphoreName
Specifies the name of the semaphore.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
CONN_SEMAPHORES
Returns a connection’s semaphore list

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 nuint8 records[508];
 nuint16 curOffset;
 nuint16 curRecord;
} CONN_SEMAPHORES;

Delphi Structure
uses calwin32

 CONN_SEMAPHORES = packed Record
 nextRequest : nuint16;
 numRecords : nuint16;
 records : Array[0..507] Of nuint8;
 curOffset : nuint16;
 curRecord : nuint16;
 End;

Fields
nextRequest

Is used internally by NWScanSemaphoresByConn to retrieve the next record.

numRecords
Specifies the number of CONN_SEMAPHORE structures that are contained in records.

records
Specifies a buffer of CONN_SEMAPHORE structures.

curOffset
Is for internal use only.

curRecord
Is for internal use only.
Synchronization Structures 411

412 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
You must not modify the values in nextRequest, curOffset and curRecord; they are used
internally to return the next record in a request.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LOGICAL_LOCK
Defines logical lock information

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 NWCONN_NUM connNumber;
 nuint16 taskNumber;
 nuint8 lockStatus;
} LOGICAL_LOCK;

Delphi Structure
uses calwin32

 LOGICAL_LOCK = packed Record
 connNumber : nuint16;
 taskNumber : nuint16;
 lockStatus : nuint8;
 End;

Fields
connNumber

Specifies the logical connection that is using the logical record.

taskNumber
Specifies the task number of the workstation that has the file open.

lockStatus
Specifies a bit mask describing how the file is locked:

0x01 Locked
0x02 Open shareable
0x04 Logged
0x08 Open Normal
0x40 TTS holding
0x80 Transaction flag set
Synchronization Structures 413

414 NDK: Single

novdocx (E
N

U
) 01 February 2006
LOGICAL_LOCKS
Returns a list of logical locks

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 useCount;
 nuint16 shareableLockCount;
 nuint8 locked;
 nuint16 nextRequest;
 nuint16 numRecords;
 LOGICAL_LOCK logicalLock[128];
 nuint16 curRecord;
} LOGICAL_LOCKS;

Delphi Structure
uses calwin32

 LOGICAL_LOCKS = packed Record
 useCount : nuint16;
 shareableLockCount : nuint16;
 locked : nuint8;
 nextRequest : nuint16;
 numRecords : nuint16;
 logicalLock : Array[0..127] Of LOGICAL_LOCK;
 curRecord : nuint16
 End;

Fields
useCount

Specifies the number of logical connections that have logged the logical record.

shareableLockCount
Specifies the number of logical connections that have a shareable lock on the logical record.

locked
Specifies whether the logical record is exclusively locked:

0 Not exclusively locked
1 Exclusively locked

nextRequest
Is used internally by NWScanLogicalLocksByName to retrieve the next request.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
numRecords
Specifies the number of LOGICAL_LOCK structures.

logicalLock
Specifies a buffer containing the LOGICAL_LOCK structure.

curRecord
Is for internal use only.

Remarks
You must not modify the values in nextRequest and curRecord; they are used internally to
return the next record in a request.
Synchronization Structures 415

416 NDK: Single

novdocx (E
N

U
) 01 February 2006
PHYSICAL_LOCK
Returns physical lock information

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 loggedCount;
 nuint16 shareableLockCount;
 nuint32 recordStart;
 nuint32 recordEnd;
 nuint16 connNumber;
 nuint16 taskNumber;
 nuint8 lockType;
} PHYSICAL_LOCK;

Delphi Structure
uses calwin32

PHYSICAL_LOCK = packed Record
 {$IfDef N_ARCH_32}
 loggedCount : nuint16;
 {$else}
 loggedCount : nuint8;
 {$EndIf}
 shareableLockCount : nuint16;
 recordStart : nuint32;
 recordEnd : nuint32;
 connNumber : nuint16;
 taskNumber : nuint16;
 lockType : nuint8;
 {$IfDef N_ARCH_32}
 filler : nuint8;
 filler2 : nuint16;
 {$EndIf}
 End;

Fields
loggedCount

Specifies the number of tasks having the record logged.

shareableLockCount
Specifies the number of tasks having the record locked shareable.

recordStart
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Specifies the byte offset of where the record begins in the file.

recordEnd
Specifies the logical connection that has exclusively locked the record.

connNumber
Specifies the logical connection number for the connection that has the record exclusively
locked.

taskNumber
Specifies the task number for the logical connection that has the record exclusively locked.

lockType
Specifies whether the record is locked:

0x00 Not locked
0xFE Locked by a file lock
0xFF Locked by begin share file set
Synchronization Structures 417

418 NDK: Single

novdocx (E
N

U
) 01 February 2006
PHYSICAL_LOCKS
Returns a list of physical locks

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 PHYSICAL_LOCK locks[32];
 nuint16 curRecord;
 nuint8 reserved[8];
} PHYSICAL_LOCKS;

Delphi Structure
uses calwin32

PHYSICAL_LOCKS = packed Record
 nextRequest : nuint16;
 numRecords : nuint16;
 locks : Array[0..31] Of PHYSICAL_LOCK;
 curRecord : nuint16;
 reserved : Array[0..7] Of nuint8;
End;

Fields
nextRequest

Is used internally by NWScanPhysicalLocksByFile to retrieve the next request.

numRecords
Specifies the number of valid PHYSICAL_LOCK structures.

locks
Specifies an array of PHYSICAL_LOCK structures.

curRecord
Specifies the current PHYSICAL_LOCK structure.

reserved
Is reserved for future use.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
SEMAPHORE
Returns semaphore information

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 NWCONN_NUM connNumber;
 nuint16 taskNumber;
} SEMAPHORE;

Delphi Structure
uses calwin32

 SEMAPHORE = packed Record
 connNumber : nuint16;
 taskNumber : nuint16;
 End;

Fields
connNumber

Specifies the logical connection number of the connection that is using the semaphore.

taskNumber
Specifies the task number of the logical connection that has the semaphore open.
Synchronization Structures 419

420 NDK: Single

novdocx (E
N

U
) 01 February 2006
SEMAPHORES
Returns a list of semaphores

Service: Synchronization

Defined In: nwsync.h

Structure
typedef struct
{
 nuint16 nextRequest;
 nuint16 openCount;
 nuint16 semaphoreValue;
 nuint16 semaphoreCount;
 SEMAPHORE semaphores[170];
 nuint16 curRecord;
} SEMAPHORES;

Delphi Structure
uses calwin32

SEMAPHORES = Record
 nextRequest : nuint16;
 openCount : nuint16;
 semaphoreValue : nuint16;
 semaphoreCount : nuint16;
 semaphores : Array[0..169] Of SEMAPHORE;
 curRecord : nuint16;
End;

Fields
nextRequest

Is used internally by NWScanSemaphoresByName to retrieve the next request.

openCount
Specifies the number of logical connections that have the semaphore open.

semaphoreValue
Specifies the current value of the semaphore (-127 to 128).

semaphoreCount
Specifies the number of SEMAPHORE structures.

semaphores
Specifies a buffer of SEMAPHORE structures.

curRecord
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Is for internal use only.

Remarks
You must not modify the values in nextRequest and curRecord; they are used internally to
return the next record in a request.
Synchronization Structures 421

422 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

24
novdocx (E

N
U

) 01 February 2006
24Server-Based AFP Concepts

This documentation describes Server-Based AFP, its functions, and features.

NOTE: Server-Based AFP functions are included for backwards compatibility. It is strongly
recommended that new applications use File Engine Services functions instead.

Server-Based AFP functions allow applications to create, access, and delete Mac OS format
directories and files on a NetWare® server.

The Mac OS name space driver must be loaded and the Mac OS name space must be added to each
desired volume.

24.1 File-Naming Conventions
The following is a discussion of the file-naming conventions that apply to Server-Based AFP in a
NetWare environment. Server-Based AFP directory and file names (long names) are 1 to 31
characters long. A long name is a Delphi string preceded by one byte specifying the length of the
name. Names can contain any ASCII character from 1 to 255 except a colon or a NULL character. A
server automatically generates a DOS-style name (short name) to correspond to each Server-Based
AFP directory or filename created. Therefore, all Server-Based AFP directory and file names on a
server have both a long name and a short name. To convert a long name with no periods to a short
name, the server selects the first eight DOS-valid characters in the long name:

Long Name

THIS IS A NAME

Short Name

THISISAN

If the long name contains a period within the first nine characters, the server selects the first eight
DOS-valid characters before the period and the first three after the period, excluding another period:

Long Name

THIS.IS.A.NAME

Short Name

THIS.IS

This renaming mechanism permits both Mac OS and other workstations to access Server-Based
AFP directories and files. However, suppose an application creates the following two files in a
parent directory:

Long Name

THIS IS THE FIRST FILE

THIS IS THE SECOND FILE
Server-Based AFP Concepts 423

424 NDK: Single

novdocx (E
N

U
) 01 February 2006
Since their short names are the same (THISISTH and THISISTH), the server adds an ascending
decimal number to the short name of the second file: THISIST1. Now, suppose a Mac OS
workstation copies THIS IS THE SECOND FILE (THISIST1) to a floppy diskette, and then copies
the file from the diskette to a different directory on the server. Since the short name of THIS IS THE
SECOND FILE no longer conflicts with another short name, the server changes the short name of
the file to THISISTH.

Unlike NetWare directory paths that contain slashes or backslashes to separate directory and file
names, Server-Based AFP paths contain NULL values (decimal zeros):

NetWare Path:

volume:directory/directory/file

Server-Based AFP Path:

volume:directory0directory0file

Applications frequently target the short name of a directory or file with a combination of a NetWare
directory handle and a short (NetWare style) directory or file path. Likewise, applications target the
long name of a directory or file with a combination of an Server-Based AFP entry ID and a long
(Server-Based AFP style) directory or file path. Applications should not combine NetWare directory
handles and long names, or Server-Based AFP entry IDs and short names. (The text of each function
explains more about Server-Based AFP entry IDs.)

24.2 Server-Based AFP Functions
These are the Server-Based AFP functions:

AFPAllocTemporaryDirHandle Maps a NetWare directory handle to an AFP directory

AFPCreateDirectory Creates a directory with an AFP directory name

AFPCreateFile Creates a file with an AFP filename

AFPDelete Deletes a file or directory

AFPDirectoryEntry Determines whether a directory or file is in AFP (long)
form

AFPGetEntryIDFromName Returns the AFP entry ID for an AFP file or directory

AFPGetEntryIDFromNetWareHandle Returns an AFP entry ID for a specified file

AFPGetEntryIDFromPathName Maps an AFP entry ID to a NetWare directory or file
path

AFPGetFileInformation Returns information about the AFP side of a file or
directory

AFPOpenFileFork Opens an AFP file fork from a DOS environment

AFPRename Moves and/or renames a file or directory

AFPScanFileInformation Returns information about an AFP directory or file

AFPSetFileInformation Sets information for an AFP file or directory

AFPSupported Determines whether a server supports AFP functions
 and Intra-File Services

25
novdocx (E

N
U

) 01 February 2006
25Server-Based Extended Attribute
Functions

This documentation alphabetically lists the server-based extended attribute functions and describes
their purpose, syntax, parameters, and return values.

• “CloseEA” on page 426
• “CopyEA” on page 427
• “EnumerateEA” on page 429
• “GetEAInfo” on page 431
• “OpenEA” on page 432
• “ReadEA” on page 434
• “WriteEA” on page 436

For cross-platform functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM
Development Concepts, Tools, and Functions) and call the alternative function listed with each
NLM function.
Server-Based Extended Attribute Functions 425

426 NDK: Single

novdocx (E
N

U
) 01 February 2006
CloseEA
Closes a file that was opened for EA I/O by OpenEA

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int CloseEA (
 int handle);

Parameters
handle

(IN) Specifies the EA handle opened by OpenEA.

Return Values

Remarks
For cross-platform functionality, call NWCloseEA (page 154).

Values for EAs are defined in the \nlm\nit\nwextatt.h file.

NOTE: This function does not work remotely on NetWare 3.x servers.

See Also
OpenEA (page 432), ReadEA (page 434), WriteEA (page 436)

0 Success

Nonzero Failure
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
CopyEA
Copies EAs from one file or directory to another

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int CopyEA (
 const char *srcPath,
 const char *destPath,
 int destVolumeNumber,
 LONG destDirectoryNumber,
 LONG *EAccount,
 LONG *EAdataSize,
 LONG *EAkeySize);

Parameters
srcPath

(IN) Specifies the source directory/file. Relative paths must be relative to the current working
directory (CWD).

destPath
(IN) Specifies the path of destination directory/file. Relative paths must be relative to the next
two parameters.

destVolumeNumber
(IN) Specifies the volume number of destination (only used if the volume is not specified in the
destPath)

destDirectoryNumber
(IN) Specifies the directory number of destination (only used if the directory is not specified in
the destPath).

EAcount
(OUT) Receives the number of EAs that were copied.

EAdataSize
(OUT) Receives the amount of EA data that was copied.

EAkeySize
(OUT) Receives the amount of EA key data that was copied.
Server-Based Extended Attribute Functions 427

428 NDK: Single

novdocx (E
N

U
) 01 February 2006
Return Values
If successful, this function returns zero. Otherwise, a nonzero value is returned.

Remarks
This function does not have a cross-platform counterpart.

All of the source EAs are copied to the destination.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: This function does not work remotely on NetWare 3.x servers.

See Also
OpenEA (page 432), ReadEA (page 434), WriteEA (page 436)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
EnumerateEA
Enumerates extended attributes (EAs) in a directory or file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int EnumerateEA (
 int handle,
 const char *keyBuffer,
 char *dataBuffer,
 LONG dataBufferSize,
 int startPosition,
 LONG *dataSize,
 LONG *EAsInReply);

Parameters
handle

(IN) Specifies the handle of the file or directory whose EAs are to be enumerated.

keyBuffer
(IN) Specifies the key of an EA defined in the file or directory or else NULL to retrieve all EA
information (maximum size is 255 bytes).

dataBuffer
(OUT) Receives the requested information. Either a single instance of the
T_enumerateEAwithKey (page 441) structure if a key was specified or multiple instances (one
for every EA) of T_enumerateEAnoKey (page 440).

dataBufferSize
(IN) Specifies the size of dataBuffer. Only as much information as can fit is returned (there
must be room to return information for at least one EA). If there is not enough room for at least
one EA, EAsInReply is 0.

startPosition
(IN) If no key is specified, the starting position identifies the EA for which to start returning
information. Normally, the starting position is 0.

dataSize
(OUT) Returns the number of bytes of information returned in dataBuffer.

EAsInReply
Server-Based Extended Attribute Functions 429

430 NDK: Single

novdocx (E
N

U
) 01 February 2006
(OUT) Returns the number of EAs for which information was returned.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code (nonzero value).

Remarks
This function is used to determine which EAs are defined for a particular file or directory or how big
an EA or set of EAs is.

If a key value is specified for keyBuffer, only information about that key is returned in
dataBuffer.

If NULL or an empty key is specified, information about all the keys is returned in dataBuffer.

This function does not work for remote NetWare 3.x servers.

See Also
GetEAInfo (page 431), ReadEA (page 434), WriteEA (page 436)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
GetEAInfo
Returns information about the EAs for a particular open file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int GetEAInfo (
 int handle,
 LONG *totalEAs,
 LONG *totalDataSizeOfEAs,
 LONG *totalKeySizeOfEAs);

Parameters
handle

(IN) Specifies the EA handle of the (open) file to return EA information about.

totalEAs
(OUT) Returns the number of EAs defined for the file.

totalDataSizeOfEAs
(OUT) Returns the sum of the sizes of the data portion of all the EAs.

totalKeySizeOfEAs
(OUT) Returns the sum of the sizes of the key portion of all the EAs.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code (nonzero value).

Remarks
This function is returned to get basic information about the set of EAs of a particular file. This
information can be used along with the function EnumerateEA to get more detailed information
about the EAs of a file.

See Also
CloseEA (page 426), EnumerateEA (page 429), OpenEA (page 432)
Server-Based Extended Attribute Functions 431

432 NDK: Single

novdocx (E
N

U
) 01 February 2006
OpenEA
Opens a file or directory for EA I/O

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int OpenEA (
 const char *path,
 LONG reserved);

Parameters
path

(IN) Path of file or directory whose extended attributes are to be read, written, or scanned.

reserved
(IN) Is reserved; set to zero.

Return Values
This function returns an EA handle if successful. Otherwise, it returns:

Remarks
For cross-platform functionality, call NWOpenEA (page 170).

The EA I/O functions that use an EA handle are CloseEA, EnumerateEA, GetEAInfo, ReadEA, and
WriteEA.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

If OpenEA fails, more information is available in NetWareErrno.

NOTE: OpenEA does not work on remote NetWare 3.x servers.

EFAILURE Failure errno and NetWareErrno are set.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
NetWare 3.12 and 4.1

If an incorrect server name is passed, 252 (FCh) is returned. If an incorrect volume name is passed,
152 (98h) is returned. For both of these naming errors, errno and NetWareErrno are both set to
zero.

See Also
CloseEA (page 426), ReadEA (page 434), WriteEA (page 436)
Server-Based Extended Attribute Functions 433

434 NDK: Single

novdocx (E
N

U
) 01 February 2006
ReadEA
Reads EAs

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int ReadEA (
 int handle,
 const char *keyBuffer,
 char *dataBuffer,
 LONG dataBufferSize,
 LONG *accessFlags);

Parameters
handle

(IN) Specifies the EA handle of the directory or file from which to read an EA.

keyBuffer
(IN) Specifies the ASCIIZ string. Contains key of EA to read. The maximum length of this
buffer is 255 bytes.

dataBuffer
(OUT) Specifies the buffer into which the data portion of the EA is read.

dataBufferSize
(IN) Specifies the size of dataBuffer. This value must be a multiple of 128 bytes.

accessFlags
(OUT) Returns access flags (set by WriteEA).

Return Values
This function returns the number of bytes read (1- 64 KB) if successful. Otherwise, it returns:

Remarks
For cross-platform functionality, call NWReadEA (page 174).

EFAILURE Failure (errno and NetWareErrno are set).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The directory or file must first be opened for extended attribute I/O with OpenEA. ReadEA reads
the EA specified by the key in keyBuffer. The EA is read into dataBuffer. The return value
of the function is the number of bytes that are actually read. The accessFlags parameter is the
user-defined value set by WriteEA.

The whole EA must be read with one call to ReadEA. If the dataBuffer is too small, an error and
no data is returned. The maximum length of data is 64 KB. EnumerateEA can be used to determine
how long an EA’s data value is.

This function does not work on remote NetWare 3.x servers.

See Also
CloseEA (page 426), OpenEA (page 432), WriteEA (page 436)
Server-Based Extended Attribute Functions 435

436 NDK: Single

novdocx (E
N

U
) 01 February 2006
WriteEA
Writes EAs

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Extended Attributes

Syntax
#include <\nlm\nit\nwextatt.h>

int WriteEA (
 int handle,
 const char *keyBuffer,
 const char *dataBuffer,
 LONG dataBufferSize,
 LONG accessFlags);

Parameters
handle

(IN) Specifies the EA handle of the directory or file to write an EA for.

keyBuffer
(IN) Specifies an ASCIIZ string. Contains the key of EA to write. The maximum length of this
buffer is 255 bytes.

dataBuffer
(IN) Specifies the buffer that contains the data to write to the EA.

dataBufferSize
(IN) Specifies the size of dataBuffer. This value must be a multiple of 128 bytes.

accessFlags
(IN) Specifies the user-defined access flags that can be used for setting additional information.

Return Values
Values for EAs are defined in nwfattr.h

This function returns the number of bytes written (equal to dataBufferSize) if successful.
Otherwise, it returns:

EFAILURE Failure (errno and NetWareErrno are set).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
Remarks
For cross-platform functionality, call NWWriteEA (page 180).

The directory or file must first be opened for extended attribute I/O with OpenEA. WriteEA writes
the EA specified by the key in keyBuffer. The EA’s data is assumed to be in dataBuffer. The
whole EA must be written with one call to WriteEA.

The return value of the function is the number of bytes actually written.

An EA can be deleted by setting dataBufferSize to 0 and dataBuffer to NULL.

This function does not work on remote NetWare 3.x servers.

See Also
CloseEA (page 426), OpenEA (page 432), ReadEA (page 434)
Server-Based Extended Attribute Functions 437

438 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

26
novdocx (E

N
U

) 01 February 2006
26Server-Based Extended Attribute
Structures

This documentation alphabetically lists the server-based extended attributes structures and describes
their purpose, syntax, and fields.
Server-Based Extended Attribute Structures 439

440 NDK: Single

novdocx (E
N

U
) 01 February 2006
T_enumerateEAnoKey
Describes the data layout returned by the EnumerateEA function when a key value is not specified

Service: Extended Attribute

Defined In: nwextatt.h

Structure
typedef struct
{
 LONG valueLength ;
 WORD keyLength ;
 LONG accessFlags ;
 char keyValue [1];
} T_enumerateEAnoKey;

Fields
valueLength

Specifies the length of the Extended Attribute corresponding to the key.

keyLength
Specifies the length of the key value, which starts at the keyValue field.

accessFlags
Specifies developer-defined access flags.

keyValue
Specifies the first character of the key value.

Remarks
The key is a developer-defined value used for categorizing Extended Attributes.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
T_enumerateEAwithKey
Describes the data layout returned by the EnumerateEA function when a key value is specified

Service: Extended Attribute

Defined In: nwextatt.h

Structure
typedef struct
{
 LONG EALength ;
 WORD keyLength ;
 LONG accessFlags ;
 LONG keyExtants ;
 LONG valueExtants ;
 char keyValue [1];
} T_enumerateEAwithKey;

Fields
EALength

Specifies the length of the Extended Attribute.

keyLength
Specifies the length of the keyValue field.

accessFlags
Specifies developer-defined access flags.

keyExtants
Specifies the number of 128-byte extants used by the key value.

valueExtants
Specifies the number of 128-byte extants used by the Extended Attribute.

keyValue
Specifies the first character of the key value.

Remarks
The key is a developer-defined value used for categorizing Extended Attributes.
Server-Based Extended Attribute Structures 441

442 NDK: Single

novdocx (E
N

U
) 01 February 2006
 and Intra-File Services

27
novdocx (E

N
U

) 01 February 2006
27Server-Based Synchronization
Concepts

This documentation describes Server-Based Synchronization, its functions, and features.

Synchronization functions enable applications to coordinate access to network files and other
resources. These services are divided into two categories: Locking and Semaphores.

27.1 Locking
The NetWare® OS provides calls that allow applications to lock files, physical records, or logical
records. Before locking a file/record, an application must record the following information about the
file/record in a log table residing on the server:

• Name (for files)
• Location and size (for records)

This log table is associated exclusively with the requesting task. Once all files/records are logged,
the application makes a call to lock everything identified in the log table. If all logged files/records
are available, the server locks them. However, if one or more files/records are in use by another
application, the request fails.

Applications can log physical or logical records before locking the records. The files/records may
also be locked as they are logged.

The technique of logging file/record sets (as opposed to single items) before locking them ensures
that either all necessary files/records in a set are locked, or none of the files/records are locked. This
prevents a phenomenon called deadlock or deadly embrace.

Deadlock occurs when two or more applications attempt to lock the same files. For example, if
application_1 locks file AAA and attempts to lock file BBB and simultaneously, application_2 locks
BBB and attempts to lock AAA, a deadlock occurs. In this situation, both applications wait
indefinitely for the other application to release the needed file. Neither application releases the file it
has already locked. Thus, the applications wait in a deadly embrace until the server is rebooted.

Applications can specify a time-out value when making a call to lock a set of files or records. The
time-out value is counted in units of approximately 1/18 of a second. If one or more files or records
are unavailable at the time the application makes the locking call, the time-out count allows the
program to wait for a second or two in case a locked file or record becomes available. This reduces
retries and, ultimately, network traffic.

Unlike a physical record lock, a logical record lock does not actually lock bytes. Instead, a logical
record lock acts somewhat like a semaphore. Applications cooperatively define a logical record
name that represents a group of files, records, structures, and so on. When an application locks a
logical record, it only locks the logical record name, and not the group of files, records, or structures
the name represents. Any uncooperative application can ignore a lock on the logical record name
and directly lock the physical files or records. Therefore, applications using logical record locks
should not use other locking techniques simultaneously on the same data.
Server-Based Synchronization Concepts 443

444 NDK: Single

novdocx (E
N

U
) 01 February 2006
The release functions are used to unlock a record (or set of records). The clear functions are used to
unlock and remove a record (or set of records) from the log table.

27.2 Semaphores
NetWare provides calls that enable applications to create, open, examine, and close semaphores.
Applications can also use semaphore functions to increment and decrement the value associated
with a semaphore. Like a logical record lock, a semaphore is a name associated with network
resources such as files, records, structures, and so on.

Both logical record locks and semaphores limit the number of applications that can access network
resources at one time:

• “Limiting the Number of Users” on page 444
• “Restricting Access to Resources” on page 445

Logical record locks allow only one application to access a network resource at any one time.
Semaphores, however, allow a configurable number of applications (1 to 127) to access a network
resource at one time.

The number of semaphores that can be opened corresponds directly to the number of locks that the
server can handle for a workstation (connection). The default is 500. If more semaphores are
required, the number of locks must be increased using the SET console command.

When an application creates a semaphore, the application assigns a value to the semaphore (for
example, 4). The value indicates how many applications can access the resource associated with the
semaphore at one time. In the example, four applications can access the resource at one time (1 to 4).

After opening an existing semaphore, an application first checks the value. If the value is greater
than or equal to zero, the application may check the value by calling ExamineSemaphore or
ExamineLocalSemaphore. If the value is greater than zero, the application can access the associated
network resource. The application decrements the value by calling WaitOnSemaphore and then
accesses the resource. After accessing the resource, the application increments the semaphore value
by calling SignalSemaphore, and then closes the semaphore.

If an application opens a semaphore and discovers that the value is negative, it cannot access the
resource immediately. The application can either wait a specified time-out interval until the resource
becomes accessible, or the application can retry later.

In the NetWare environment, semaphores can be used to limit the number of users of a particular
resource and to restrict access to a particular resource.

27.2.1 Limiting the Number of Users
To use semaphores to limit the number of users of a resource, use the OpenSemaphore and
CloseSemaphore functions only. When OpenSemaphore is called, one of the values returned is the
number of processes that have the semaphore open. The program can check the value against a
predefined user limit and take appropriate action.

In cases where at most n users are allowed to use n resources simultaneously, if more than n users
attempt to use the resource, the excess users are not to be put in a queue to wait for the resources to
become free. For example, semaphores can be used to limit the number of users of a program
(software licensing).
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
27.2.2 Restricting Access to Resources
Semaphores can be used to restrict access to resources, allowing only serial access. To request
access to a resource, a process opens a semaphore associated with the resource and, through that
semaphore, sees whether it is permissible to access the resource. If the resource is unavailable, the
calling process is placed on a wait queue; it then waits its turn to access the resource. If the calling
process is allowed access to the resource, it signals the semaphore when it is done using the
resource. If there are processes waiting for the resource (in the semaphores queue), the first process
in the queue is allowed first access to the resource. Typically, in a client-server relationship, servers
wait and clients signal.

Restricting access to a resource does not necessarily mean that only one process can access a
resource at a time. For example, if the resource being restricted is a modem pool with four modems,
the program (semaphore) would allow simultaneous access to the modem pool by four users, but
deny access to subsequent requesters.

27.3 Server-Based Synchronization Functions

ClearFile Unlocks and removes a file from the log table

ClearFileSet Unlocks and removes all files from the log table

ClearLogicalRecord Unlocks and removes a logical record from the log table

ClearLogicalRecordSet Unlocks and removes all logical records from the log table

ClearPhysicalRecord Unlocks and removes a physical record from the log table

ClearPhysicalRecordSet Unlocks and removes all physical records from the log table

CloseSemaphore Decrements a semaphores open count

ExamineSemaphore Returns the current value and open count of a semaphore

LockFileSet Attempts to lock all files logged in the log table

LockLogicalRecordSet Attempts to lock all logical records logged in the log table

LockPhysicalRecordSet Attempts to lock all physical records logged in the log table

LogFile Places a file into the log table and optionally locks the file

LogLogicalRecord Places a logical record string into the log table and optionally
locks the record

LogPhysicalRecord Places a physical record into the log table and optionally locks
the record

OpenSemaphore Opens the specified semaphore, or creates it if it does not exist

ReleaseFile Unlocks a currently locked file but does not remove it from the
log table

ReleaseFileSet Unlocks all currently locked files but does not remove them from
the log table

ReleaseLogicalRecord Unlocks a currently locked logical record but does not remove it
from the log table
Server-Based Synchronization Concepts 445

446 NDK: Single

novdocx (E
N

U
) 01 February 2006
ReleaseLogicalRecordSet Unlocks all currently locked logical records but does not remove
them from the log table

ReleasePhysicalRecord Unlocks a currently locked physical record but does not remove
it from the log table

ReleasePhysicalRecordSet Unlocks all currently locked physical records but does not
remove them from the log table

SignalSemaphore Increments the semaphore value of the specified semaphore

WaitOnSemaphore Decrements a semaphore value
 and Intra-File Services

28
novdocx (E

N
U

) 01 February 2006
28Server-Based Synchronization
Functions

This documentation alphabetically lists the Server-Based Synchronization functions and describes
their purpose, syntax, parameters, and return values.

• “ClearFile” on page 448
• “ClearFileSet” on page 449
• “ClearLogicalRecord” on page 450
• “ClearLogicalRecordSet” on page 451
• “ClearPhysicalRecord” on page 452
• “ClearPhysicalRecordSet” on page 454
• “CloseSemaphore” on page 455
• “ExamineSemaphore” on page 456
• “LockFileSet” on page 458
• “LockLogicalRecordSet” on page 459
• “LockPhysicalRecordSet” on page 461
• “LogFile” on page 463
• “LogLogicalRecord” on page 465
• “LogPhysicalRecord” on page 467
• “OpenSemaphore” on page 469
• “ReleaseFile” on page 471
• “ReleaseFileSet” on page 472
• “ReleaseLogicalRecord” on page 473
• “ReleaseLogicalRecordSet” on page 474
• “ReleasePhysicalRecord” on page 475
• “ReleasePhysicalRecordSet” on page 477
• “SignalSemaphore” on page 478
• “WaitOnSemaphore” on page 479

For cross-platform functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM
Development Concepts, Tools, and Functions), use the CALNLM32.NLM library, and call the
alternative function listed with each NLM function.
Server-Based Synchronization Functions 447

448 NDK: Single

novdocx (E
N

U
) 01 February 2006
ClearFile
Unlocks the specified file and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ClearFile (
 char *fileName);

Parameters
fileName

(IN) Specifies the string containing the filename with optional full path specification
(maximum 255 characters, including the NULL terminator).

Return Values

Remarks
For cross-platform functionality, call NWClearFileLock2 (page 340).

The fileName parameter can specify either a file’s complete path name or a path relative to the
current working directory (CWD).

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

See Also
ClearFileSet (page 449), LockFileSet (page 458), LogFile (page 463), ReleaseFile (page 471),
ReleaseFileSet (page 472)

Decimal Hex Constant Description

0 (0x00) ESUCCESS

255 (0xFF) ERR_DOS_FILE_NOT_FOUND No logged file found with the
specified filename.
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ClearFileSet
Unlocks and removes all files in the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ClearFileSet (void);

Remarks
For cross-platform functionality, call NWClearFileLockSet (page 342).

Any open files that are in the NLM log table are closed. This function is ignored if there are no
logged files.

See Also
ClearFile (page 448), LockFileSet (page 458), LogFile (page 463), ReleaseFile (page 471),
ReleaseFileSet (page 472)
Server-Based Synchronization Functions 449

450 NDK: Single

novdocx (E
N

U
) 01 February 2006
ClearLogicalRecord
Unlocks a logical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ClearLogicalRecord (
 char *logicalRecordName);

Parameters
logicalRecordName

(IN) Specifies the string containing the record name (maximum 100 characters, including the
NULL terminator).

Return Values

Remarks
For cross-platform functionality, call ClearLogicalRecord (page 450).

The log table resides on the server and is associated exclusively with the requesting task.

Applications define logical record names. A logical record name represents a group of files, physical
records, structures, and so on. When LogLogicalRecord or LockLogicalRecordSet locks one or
more logical record names, it does not lock the actual files, physical records, structures, and so on
associated with each logical record name. It just locks the logical record name. Any uncooperative
application can ignore a lock on the logical record name and directly lock or access physical files or
records. Therefore, applications using logical record locks must not use other locking techniques
simultaneously.

See Also
ClearLogicalRecordSet (page 451), LockLogicalRecordSet (page 459), LogLogicalRecord
(page 465), ReleaseLogicalRecord (page 473), ReleaseLogicalRecordSet (page 474)

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_NO_RECORD_FOUND
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ClearLogicalRecordSet
Unlocks all logical records and removes them from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ClearLogicalRecordSet (void);

Remarks
For cross-platform functionality, call NWClearLogicalRecordSet (page 346).

If there are no logged logical records, this function is ignored.

See Also
ClearLogicalRecord (page 450), LockLogicalRecordSet (page 459), LogLogicalRecord (page 465),
ReleaseLogicalRecord (page 473), ReleaseLogicalRecordSet (page 474)
Server-Based Synchronization Functions 451

452 NDK: Single

novdocx (E
N

U
) 01 February 2006
ClearPhysicalRecord
Unlocks a physical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ClearPhysicalRecord (
 int fileHandle,
 long recordStartOffset,
 long recordLength);

Parameters
fileHandle

(IN) Specifies the handle of the file containing the record to be cleared.

recordStartOffset
(IN) Specifies the offset within the file where the record begins.

recordLength
(IN) Specifies the length of record in bytes.

Return Values

Remarks
For cross-platform functionality, call NWClearPhysicalRecord (page 348).

The log table resides on the server and is associated exclusively with the requesting task.

The fileHandle value is returned by a previous call to open, sopen, creat, or fileno.

The application locates the beginning of the physical record within the specified file by passing an
offset in recordStartOffset. The application specifies the length of a physical record by
passing a length value in recordLength.

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_NO_RECORD_FOUND
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
See Also
ClearPhysicalRecordSet (page 454), LockPhysicalRecordSet (page 461), LogPhysicalRecord
(page 467), ReleasePhysicalRecord (page 475), ReleasePhysicalRecordSet (page 477)
Server-Based Synchronization Functions 453

454 NDK: Single

novdocx (E
N

U
) 01 February 2006
ClearPhysicalRecordSet
Unlocks all physical records and removes them from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ClearPhysicalRecordSet (void);

Remarks
For cross-platform functionality, call ClearPhysicalRecordSet (page 454).

This function is ignored if there are no logged physical records.

See Also
ClearPhysicalRecord (page 452), LockPhysicalRecordSet (page 461), LogPhysicalRecord
(page 467), ReleasePhysicalRecord (page 475), ReleasePhysicalRecordSet (page 477)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
CloseSemaphore
Decrements a semaphore’s open count

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int CloseSemaphore (
 long semaphoreHandle);

Parameters
semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

Remarks
For cross-platform functionality, call NWCloseSemaphore (page 352).

This function decrements the open count of the semaphore, indicating that one less process is
holding the semaphore open. If the requesting process is the last process to have this semaphore
open, the semaphore is deleted. An application can obtain a semaphore handle by calling
OpenSemaphore.

See Also
ExamineSemaphore (page 456), OpenSemaphore (page 469), SignalSemaphore (page 478),
WaitOnSemaphore (page 479)

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_INVALID_SEMAPHORE_HANDLE
Server-Based Synchronization Functions 455

456 NDK: Single

novdocx (E
N

U
) 01 February 2006
ExamineSemaphore
Returns the current value and open count of a local semaphore

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ExamineSemaphore (
 long semaphoreHandle,
 int *semaphoreValue,
 WORD *openCount);

Parameters
semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

semaphoreValue
(OUT) Receives current semaphore value (-127 to 127).

openCount
(OUT) Receives the number of processes that currently have the semaphore opened.

Return Values

Remarks
For cross-platform functionality, call NWExamineSemaphore (page 354).

The semaphoreValue is decremented for each WaitOnSemaphore and incremented for each
SignalSemaphore. A positive semaphoreValue indicates that the application can access the
associated network resource. If semaphoreValue is zero or negative, the application must either
enter a waiting queue by calling the function WaitOnSemaphore, or temporarily abandon its attempt
to access the network resource.

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_INVALID_SEMAPHORE_HANDLE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
The openCount indicates the number of processes holding the semaphore open. OpenSemaphore
increments this value. CloseSemaphore decrements this value.

See Also
CloseSemaphore (page 455), OpenSemaphore (page 469), SignalSemaphore (page 478),
WaitOnSemaphore (page 479)
Server-Based Synchronization Functions 457

458 NDK: Single

novdocx (E
N

U
) 01 February 2006
LockFileSet
Attempts to lock all files in the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LockFileSet (
 WORD timeoutLimit);

Parameters
timeoutLimit

(IN) Specifies the timeout value.

Return Values

Remarks
For cross-platform functionality, call NWLockFileLockSet (page 356).

The timeoutLimit parameter indicates how long the server should wait if it cannot lock all files
immediately. The timeoutLimit is specified in units of 1/18 of a second (0 means no wait). This
function cannot lock a file that is already exclusively locked by another application. Therefore, if
one or more files identified in the log table are already exclusively locked, the attempt fails.

See Also
ClearFile (page 448), ClearFileSet (page 449), LogFile (page 463), ReleaseFile (page 471),
ReleaseFileSet (page 472)

Decimal Hex Constant Description

0 (0x00) ESUCCESS

254 (0xFE) ERR_TIMEOUT_FAILURE Timeout limit was reached before all files
were available for locking.)

255 (0xFF) ERR_FAILURE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LockLogicalRecordSet
Attempts to lock all the logical records in the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LockLogicalRecordSet (
 WORD timeoutLimit);

Parameters
timeoutLimit

(IN) Specifies the timeout value.

Return Values

Remarks
For cross-platform functionality, call NWLockLogicalRecordSet (page 358).

Applications define logical record names. A logical record name represents a group of files, physical
records, structures, and so on. When LogLogicalRecord or LockLogicalRecordSet locks one or
more logical record names, it does not lock the actual files, physical records, structures, and so on
associated with each logical record name. It just locks the logical record name. Any uncooperative
application can ignore a lock on or can access the logical record name and directly lock or access
physical files or records. Therefore, applications using logical record locks must not use other
locking techniques simultaneously.

The timeoutLimit parameter indicates how long the server should wait if it cannot lock all the
records immediately. The timeoutLimit is specified in units of 1/18 of a second (0 means no
wait).

Decimal Hex Constant

0 (0x00) ESUCCESS

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before all records were available for locking.

255 (0xFF) ERR_FAILURE
Server-Based Synchronization Functions 459

460 NDK: Single

novdocx (E
N

U
) 01 February 2006
The function cannot lock a logical record that is already exclusively locked by another application.
Therefore, if one or more logical records identified in the log table are already exclusively locked by
another application, the attempt fails.

See Also
ClearLogicalRecord (page 450), ClearLogicalRecordSet (page 451), LogLogicalRecord (page 465),
ReleaseLogicalRecord (page 473), ReleaseLogicalRecordSet (page 474)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LockPhysicalRecordSet
Attempts to lock all physical records in the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LockPhysicalRecordSet (
 BYTE lockDirective,
 WORD timeoutLimit);

Parameters
lockDirective

(IN) 0 = Lock records with exclusive locks 1 = Lock records with sharable read-only locks

timeoutLimit
(IN) Specifies the timeout value.

Return Values

Remarks
For cross-platform functionality, call NWLockPhysicalRecordSet (page 360).

The timeoutLimit parameter indicates how long the server should wait if it cannot lock all the
records immediately. The timeoutLimit is specified in units of 1/18 of a second (0 means no
wait).

The function cannot lock a record that is already exclusively locked by another application. If one or
more records identified in the log table are already exclusively locked by another application, the
attempt fails.

Decimal Hex Constant

0 (0x00) ESUCCESS

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before all records were available for locking.

255 (0xFF) ERR_FAILURE
Server-Based Synchronization Functions 461

462 NDK: Single

novdocx (E
N

U
) 01 February 2006
See Also
ClearPhysicalRecord (page 452), ClearPhysicalRecordSet (page 454), LogPhysicalRecord
(page 467), ReleasePhysicalRecord (page 475), ReleasePhysicalRecordSet (page 477)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LogFile
Logs a file into the log table and optionally locks the file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LogFile (
 char *fileName,
 BYTE lockDirective,
 WORD timeoutLimit);

Parameters
fileName

(IN) Specifies the string containing filename with optional full path specification of the file to
be logged (maximum 255 characters, including the NULL terminator).

lockDirective
(IN) Indicates if and how the file should be locked: 0x00 = Log file 0x01 = Log and lock file
0x03 = Log and lock sharable

timeoutLimit
(IN) Specifies the timeout value (valid only if lockDirective is not 0).

Return Values

Remarks
For cross-platform functionality, call NWLogFileLock2 (page 362).

Decimal Hex Constant

0 (0x00) ESUCCESS

150 (0x96) SERVER_OUT_OF_MEMORY

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before file was available for locking.

255 (0xFF) ERR_FAILURE
Server-Based Synchronization Functions 463

464 NDK: Single

novdocx (E
N

U
) 01 February 2006
A log table contains data-locking information used by a server. The server tracks this information.
Whenever a file, logical record, or physical record is logged, information identifying the data being
logged is placed in the log table. Normally a set of files or records are logged and then locked as a
set. However, a single file or record can also be locked when it is placed in the log table.

When using log tables, an application first logs all files or records to complete a transaction. The
application then attempts to lock the logged set of files or records. If some of the logged resources
cannot be locked, the lock fails and none of the resources are locked. Therefore, either all of the
resources needed to complete a transaction are locked or none of the resources are locked. This
function cannot lock files that are exclusively locked by other applications.

When the lockDirective parameter specifies that the file should be locked when it is logged,
the timeoutLimit parameter indicates how long the server should wait if it cannot lock the file
immediately. The timeoutLimit parameter is specified in units of 1/18 of a second (0 means no
wait).

The release functions are used to unlock a file (or set of files). The clear functions are used to unlock
and remove a file (or set of files) from the log table.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

See Also
ClearFile (page 448), ClearFileSet (page 449), LockFileSet (page 458), ReleaseFile (page 471)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LogLogicalRecord
Logs a logical record into the log table and optionally locks the record

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LogLogicalRecord (
 char *logicalRecordName,
 BYTE lockDirective,
 WORD timeoutLimit);

Parameters
logicalRecordName

(IN) NULL-terminated string containing the record name. (_MAX_LOGREC_NAME, defined
in NWSYNC.H, is 128 characters, including the NULL terminator).

lockDirective
(IN) Indicates if and how the record should be locked:

0x00 = Log record.
0x01 = Log and lock record with an exclusive lock.
0x03 = Log and lock record with a sharable read-only lock.

timeoutLimit
(IN) Timeout value (valid only if lockDirective is not 0).

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before record was available for locking.

255 (0xFF) ERR_FAILURE
Server-Based Synchronization Functions 465

466 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks
For cross-platform functionality, call NWLogLogicalRecord (page 365).

A log table contains data-locking information used by a server. The server tracks this information.
Whenever a logical record is logged, information identifying the data being logged is placed in the
log table. Normally, a set of files or records are logged and then locked as a set. However, a record
can also be locked when it is placed in the log table.

When using log tables, an application first logs all records to complete a transaction. The application
then attempts to lock the logged set of records. If some of the logged resources cannot be locked, the
lock fails and none of the resources are locked. Therefore, either all of the resources needed to
complete a transaction are locked or none of the resources are locked. This function cannot lock
logical records that are exclusively locked by other applications.

Applications define logical record names. A logical record name represents a group of files, physical
records, structures, and so on. When LogLogicalRecord or LockLogicalRecordSet locks one or
more logical record names, it does not lock the actual files, physical records, structures, and so on,
associated with each logical record name. It just locks the logical record name. Any uncooperative
application can ignore a lock on the logical record name and directly lock or access physical files or
records. Therefore, applications using logical record locks must not use other locking techniques
simultaneously.

When the lockDirective parameter specifies that the record should be locked when it is logged,
the timeoutLimit parameter indicates how long the server should wait if it cannot lock the
record immediately. The timeoutLimit parameter is specified in units of 1/18 of a second (0
means no wait).

See Also
ClearLogicalRecord (page 450), ClearLogicalRecordSet (page 451), LockLogicalRecordSet
(page 459), ReleaseLogicalRecord (page 473), ReleaseLogicalRecordSet (page 474)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
LogPhysicalRecord
Logs a physical record into the log table and optionally locks the record

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int LogPhysicalRecord (
 int fileHandle,
 long recordStartOffset,
 long recordLength,
 BYTE lockDirective,
 WORD timeoutLimit);

Parameters
fileHandle

(IN) Specifies the handle of the file containing the record to be logged.

recordStartOffset
(IN) Specifies the offset within the file where the record begins.

recordLength
(IN) Specifies the length of the record in bytes.

lockDirective
(IN) Indicates if and how the record should be locked:

0x00 = Log record.
0x01 = Log and lock record with an exclusive lock.
0x03 = Log and lock record with a sharable read-only lock.

timeoutLimit
(IN) Specifies the timeout value (valid only if lockDirective is not 0).

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY
Server-Based Synchronization Functions 467

468 NDK: Single

novdocx (E
N

U
) 01 February 2006
Remarks

For cross-platform functionality, call NWLogPhysicalRecord (page 368).

A log table contains data-locking information used by a server. The server tracks this information.
Whenever a physical record is logged, information identifying the data being logged is placed in the
log table. Normally, a set of records are logged and then locked as a set. However, a single record
can also be locked when it is placed in the log table.

When using log tables, an application first logs all records to complete a transaction. The application
then attempts to lock the logged set of records. If some of the logged resources cannot be locked, the
lock fails and none of the resources are locked. Therefore, either all of the resources needed to
complete a transaction are locked, or none of the resources are locked. This function cannot lock
physical records that are exclusively locked by other applications.

The fileHandle is a valid file handle returned by a previous call to open, sopen, creat, or fileno.

When the lockDirective parameter specifies that the physical record should be locked when it
is logged, the timeoutLimit parameter indicates how long the server should wait if it cannot
lock the record immediately. The timeoutLimit parameter is specified in units of 1/18 of a
second (0 means no wait).

See Also
ClearPhysicalRecord (page 452), ClearPhysicalRecordSet (page 454), LockPhysicalRecordSet
(page 461), ReleasePhysicalRecord (page 475), ReleasePhysicalRecordSet (page 477)

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before record was available for locking.

255 (0xFF) ERR_FAILURE

Decimal Hex Constant
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
OpenSemaphore
Opens the specified semaphore or creates it if it does not exist

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int OpenSemaphore (
 char *semaphoreName,
 int initialValue,
 long *semaphoreHandle,
 WORD *openCount);

Parameters
semaphoreName

(IN) Specifies the string containing the name of the semaphore.
(_MAX_SEMAPHORE_VALUE, defined in NWSYNC.H, is 128 characters, including the
NULL terminator).

initialValue
(IN) If semaphore does not yet exist, it is assigned this value (1 to 127).

semaphoreHandle
(OUT) Receives semaphore handle.

openCount
(OUT) Receives the number of processes that have the semaphore open.

Return Values

Remarks
For cross-platform functionality, call NWOpenSemaphore (page 371).

Decimal Hex Constant

0 (0x00) ESUCCESS

254 (0xFE) ERR_INVALID_SEMAPHORE_NAME_LENGTH

255 (0xFF) ERR_INVALID_INITIAL_SEMAPHORE_VALUE
Server-Based Synchronization Functions 469

470 NDK: Single

novdocx (E
N

U
) 01 February 2006
The semaphoreValue is ignored unless this call creates the semaphore (because it did not
already exist). The value can range from 1 to 127, indicating that only 1 to 127 processes can access
the network resource at a time. A call to SignalSemaphore increments this value. A call to
WaitOnSemaphore decrements this value.

The openCount indicates the number of processes holding the semaphore open. A call to
OpenSemaphore increments this value. A call to CloseSemaphore decrements this value.

The value returned in the semaphoreHandle parameter is the semaphore handle. The application
must pass this value in calls to all other semaphore functions.

The application must pass either the name of an existing semaphore or the name of the new
semaphore in the semaphoreName parameter. A semaphore name is an ASCIIZ string from 1 to
127 bytes long.

If the specified semaphore does not exist, this function creates and initializes the semaphore to
initialValue.

The openCount parameter indicates the number of processes using the semaphore.

See Also
CloseSemaphore (page 455), ExamineSemaphore (page 456), SignalSemaphore (page 478),
WaitOnSemaphore (page 479)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ReleaseFile
Unlocks the specified file in the log table but does not remove the file from the table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ReleaseFile (
 char *fileName);

Parameters
fileName

(IN) Specifies the string containing filename with optional full path specification of the file to
be unlocked (maximum 255 characters, including the NULL terminator).

Return Values

Remarks
For cross-platform functionality, call NWReleaseFileLock2 (page 373).

This function allows the application to release files without corrupting the integrity of the personal
file table.

The fileName parameter can specify either a file’s complete pathname or a path relative to the
current working directory (CWD).

SetCurrentNameSpace sets the name space that is used for parsing the path input to this function.

See Also
ClearFile (page 448), ClearFileSet (page 449), LockFileSet (page 458), LogFile (page 463),
ReleaseFileSet (page 472)

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_DOS_FILE_NOT_FOUND
Server-Based Synchronization Functions 471

472 NDK: Single

novdocx (E
N

U
) 01 February 2006
ReleaseFileSet
Unlocks all files currently locked in the log table, but it does not remove them from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ReleaseFileSet (void);

Remarks
For cross-platform functionality, call NWReleaseFileLockSet (page 375).

The files are not removed from the log table; therefore, the application can relock the files without
relogging them.

This function is ignored if there are no locked files.

See Also
ClearFile (page 448), ClearFileSet (page 449), LockFileSet (page 458), LogFile (page 463),
ReleaseFile (page 471)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ReleaseLogicalRecord
Unlocks a logical record in the log table but does not remove the record from the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ReleaseLogicalRecord (
 char *logicalRecordName);

Parameters
logicalRecordName

(IN) Specifies the string containing the record name of the record to be unlocked.
(_MAX_LOGREC_NAME, defined in NWSYNC.H, is 128 characters, including the NULL
terminator).

Return Values

Remarks
For cross-platform functionality, call NWReleaseLogicalRecord (page 377).

A log table contains data-locking information used by a server. The server tracks this information.
Whenever a logical record is logged, information identifying the data being logged is placed in the
log table. Normally, a set of records are logged and then locked as a set. However, a record can also
be locked when it is placed in the log table.

See Also
ClearLogicalRecord (page 450), ClearLogicalRecordSet (page 451), LockLogicalRecordSet
(page 459), LogLogicalRecord (page 465), ReleaseLogicalRecordSet (page 474)

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_NO_RECORD_FOUND
Server-Based Synchronization Functions 473

474 NDK: Single

novdocx (E
N

U
) 01 February 2006
ReleaseLogicalRecordSet
Unlocks all logical records that are currently locked in the log table but does not remove them from
the table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ReleaseLogicalRecordSet (void);

Remarks
For cross-platform functionality, call NWReleaseLogicalRecordSet (page 379).

The log table resides on the server and is associated exclusively with the requesting task.
Consequently, the application can relock the logical record names without relogging them.

This function is ignored if there are no locked logical records.

See Also
ClearLogicalRecord (page 450), ClearLogicalRecordSet (page 451), LockLogicalRecordSet
(page 459), LogLogicalRecord (page 465), ReleaseLogicalRecord (page 473)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ReleasePhysicalRecord
Unlocks the specified physical record currently locked in the log table but does not remove it from
the log table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int ReleasePhysicalRecord (
 int fileHandle,
 long recordStartOffset,
 long recordLength);

Parameters
fileHandle

(IN) Specifies the handle of the file containing the record to be unlocked.

recordStartOffset
(IN) Specifies the offset within the file where the record begins.

recordLength
(IN) Specifies the length of the record in bytes.

Return Values

Remarks
For cross-platform functionality, call NWReleasePhysicalRecord (page 381).

The log table resides on the server and is associated exclusively with the requesting task. Since the
function does not remove the physical record from the log table, the application can relock the
physical record without relogging it.

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) ERR_NO_RECORD_FOUND

No logged record was found with the specified description.
Server-Based Synchronization Functions 475

476 NDK: Single

novdocx (E
N

U
) 01 February 2006
The fileHandle value is returned by a previous open, sopen, creat, or fileno call.

See Also
ClearPhysicalRecord (page 452), ClearPhysicalRecordSet (page 454), LockPhysicalRecordSet
(page 461), LogPhysicalRecord (page 467), ReleasePhysicalRecordSet (page 477)
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
ReleasePhysicalRecordSet
Unlocks all physical records currently locked in the log table but does not remove them from the log
table

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

void ReleasePhysicalRecordSet (void);

Remarks
For cross-platform functionality, call NWReleasePhysicalRecordSet (page 383).

The log table resides on the server and is associated exclusively with the requesting task. Since the
function does not remove the physical records from the log table, the application can relock the
physical records without relogging them.

This function is ignored if there are no locked physical records.

See Also
ClearPhysicalRecord (page 452), ClearPhysicalRecordSet (page 454), LockPhysicalRecordSet
(page 461), LogPhysicalRecord (page 467), ReleasePhysicalRecord (page 475)
Server-Based Synchronization Functions 477

478 NDK: Single

novdocx (E
N

U
) 01 February 2006
SignalSemaphore
Increments the value of the specified semaphore

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int SignalSemaphore (
 long semaphoreHandle);

Parameters
semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

Remarks
For cross-platform functionality, call NWSignalSemaphore (page 399).

An application must call this function when finished accessing the network resource associated with
the semaphore. If there are processes waiting to use the semaphore (the semaphore value is
negative), the first process in the queue is released (signaled).

An application should obtain a semaphore handle by calling OpenSemaphore.

See Also
CloseSemaphore (page 455), ExamineSemaphore (page 456), OpenSemaphore (page 469),
WaitOnSemaphore (page 479)

Decimal Hex Constant

0 (0x00) ESUCCESS

1 (0x01) ERR_INSUFFICIENT_SPACE

255 (0xFF) ERR_INVALID_SEMAPHORE_HANDLE
 and Intra-File Services

novdocx (E
N

U
) 01 February 2006
WaitOnSemaphore
Decrements a semaphore value

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Synchronization

Syntax
#include <\nlm\nit\nwsync.h>

int WaitOnSemaphore (
 long semaphoreHandle,
 WORD timeoutLimit);

Parameters
semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

timeoutLimit
(IN) Specifies the timeout value.

Return Values

Remarks
For cross-platform functionality, call NWWaitOnSemaphore (page 401).

An application must call this function before accessing the network resource associated with the
semaphore.

If the semaphore value is still greater than or equal to zero after the function decrements it, the
application can access the associated resource. If the value is less than zero, the function queues the

Decimal Hex Constant

0 (0x00) ESUCCESS

1 (0x01) SEMAPHORE_OVERFLOW

Semaphore value was reached.

254 (0xFE) ERR_TIMEOUT_FAILURE

Timeout limit was reached before the semaphore was available.

255 (0xFF) ERR_INVALID_SEMAPHORE_HANDLE
Server-Based Synchronization Functions 479

480 NDK: Single

novdocx (E
N

U
) 01 February 2006
application for the time interval specified in the timeoutLimit parameter. If the semaphore is
incremented n + 1 times (where n is the negation of the semaphore value before the process called
WaitOnSempahore), the process is restarted and WaitOnSempahore returns a value of 0. Otherwise,
the process is restarted when the timeout expires and a value of 254 is returned.

An application can obtain a semaphore handle by calling OpenSemaphore.

The timeoutLimit indicates how long the server should wait if the semaphore value is negative.
The timeoutLimit is specified in units of 1/18 of a second (0 means no wait).

WaitOnSemaphore temporarily disables the current connection number on which it is issued. This
can pose a problem if the NLM thread group has set its current connection to that of a client before
making the call. If this happens, the client is blocked out from getting file service requests until the
unblock (that is, WaitOnSemaphore returns) occurs. If the delay is substantial, the client encounters
the "Error sending/receiving on network" critical error.

To avoid this problem, an NLM should allocate connection numbers of its own when doing any
network semaphore activity. A separate connection should be used for each thread group that uses
network semaphores. Be cautious of using connection 0 for network semaphores. If a semaphore
blocks, all other NLM applications in the system are prevented from doing any type of function that
requires an enabled connection number.

See Also
CloseSemaphore (page 455), ExamineSemaphore (page 456), OpenSemaphore (page 469),
SignalSemaphore (page 478)
 and Intra-File Services

A
novdocx (E

N
U

) 01 February 2006
ARevision History

The following table outlines all the changes that have been made to the Single and Intra-File
Management documentation (in reverse chronological order):

October 11, 2006 Updated ioctl (page 219) and pipe (page 232).

March 1, 2006 Updated format.

October 5, 2005 Transitioned to revised Novell documentation standards.

June 1, 2005 Modified the sample code for the fopen (page 274) function.

March 2, 2005 Modified the documentation for the flushall (page 273) function.

June 9, 2004 Added documentation for the Extended Attribute functions, which now accept
UTF-8 strings. See NWOpenEAExt (page 172), NWReadEAExt (page 177),
etc.

February 18, 2004 Added NetWare 6.5 information to DOSPresent (page 133).

July 30, 2003 Fixed typos.

June 2003 Fixed a typo in fgets. Changed all Pascal references to Delphi references.

October 2002 Fixed the Pascal syntax of the structures. Updated the documentation for
sopen (page 238)

May 2002 Added descriptions of subfunctions to ioctl (page 219).

February 2002 Added another string example to printf (page 302) in the Remarks section.

Updated the parameter descriptions of DOSChangeFileMode (page 124).

Updated links.

October 2001 Updated Pascal syntaxes for PHYSICAL_LOCK (page 416) and
PHYSICAL_LOCKS (page 418).

September 2001 Added support for NetWare 6.x to documentation.

Added descriptions to graphics.

June 2001 Updated tables.

Added 0x0001 as a Return Value for NWReadEA (page 174) and updated the
Remarks section as to the significance of various return values.

February 2001 Added documentation for cancel (page 202) and setvbuf (page 321).

September 2000 Corrected the type for the size field in find_t (page 148).

Created Chapter 26, “Server-Based Extended Attribute Structures,” on
page 439 and moved server-based EA structure definitions to that chapter.

Removed a link to an irrelevant example from Chapter 12, “Extended Attribute
Concepts,” on page 149.

July 2000 Corrected sopen (page 238) to reflect the correct syntax and updated the
Remarks section.
Revision History 481

482 NDK: Single

novdocx (E
N

U
) 01 February 2006
May 2000 Added documentation for DOSChangeFileMode (page 124), DOSRename
(page 137), and DOSShutOffFloppyDrive (page 140).

Added const to the parameters of several function definitions.

March 2000 Changed DFSSetDataSize (page 103) to be 5.x function. Also updated
Remarks section to indicate this function works only on the Novell Storage
System file system.

Removed tmpfile example because it was inaccurate and misleading.

November 1999 Added descriptions for all structure fields in Synchronization Structures.

Updated Remarks section of OpenEA (page 432) and added a NetWare 3.12
and 4.1 section that explains the possible return values if a bad server name
or bad volume name are passed into this function.

Changed nwshare.h to nwfattr.h in sopen (page 238).

Added library information for each function.

September 1999 Added documentation for pipe (page 232).
 and Intra-File Services

	NDK: Single and Intra-File Services
	About This Guide
	1 AFP Concepts
	1.1 File Name and Path Conventions
	1.2 Data and Resource Forks
	1.3 Entry IDs
	1.4 File Information
	1.5 Mac OS Finder Information

	2 AFP Tasks
	2.1 Checking for AFP Support
	2.2 Operating on AFP Directory Entries

	3 AFP Functions
	NWAFPAllocTemporaryDirHandle
	NWAFPASCIIZToLenStr
	NWAFPCreateDirectory
	NWAFPCreateFile
	NWAFPDelete
	NWAFPDirectoryEntry
	NWAFPGetEntryIDFromHandle
	NWAFPGetEntryIDFromName
	NWAFPGetEntryIDFromPathName
	NWAFPGetFileInformation
	NWAFPOpenFileFork
	NWAFPRename
	NWAFPScanFileInformation
	NWAFPSetFileInformation
	NWAFPSupported

	4 AFP Structures
	NW_AFP_FILE_INFO
	NW_AFP_SET_INFO
	RECPKT_AFPFILEINFO

	5 Direct File System Concepts
	5.1 File Allocation
	5.1.1 Impact of Striping
	5.1.2 Setting the File Size and Zero-Filling with DFS

	5.2 File Locks
	5.2.1 Input and Output

	5.3 File Structures
	5.4 Volume Structures
	5.5 Return Values
	5.6 Direct File System Functions

	6 Direct File System Tasks
	6.1 Creating a File
	6.2 Extending Files Using Allocation
	6.3 Extending Files Using Specific Allocation

	7 Direct File System Functions
	DFSclose
	DFScreat
	DFSExpandFile
	DFSFreeLimboVolumeSpace
	DFSRead
	DFSReadNoWait
	DFSReturnFileMappingInformation
	DFSReturnVolumeBlockInformation
	DFSReturnVolumeMappingInformation
	DFSSetDataSize
	DFSSetEndOfFile
	DFSsopen
	DFSWrite
	DFSWriteNoWait

	8 Direct File System Structures
	DFSCallBackParameters
	FileMapStructure
	VolumeInformationStructure

	9 DOS Partition Concepts
	9.1 DOS Partition Functions

	10 DOS Partition Functions
	DOSChangeFileMode
	DOSClose
	DOSCopy
	DOSCreate
	DOSFindFirstFile
	DOSFindNextFile
	DOSMkdir
	DOSOpen
	DOSPresent
	DOSRead
	DOSRemove
	DOSRename
	DOSRmdir
	DOSSetDateAndTime
	DOSShutOffFloppyDrive
	DOSsopen
	DOSUnlink
	DOSWrite

	11 DOS Partition Structures
	find_t

	12 Extended Attribute Concepts
	12.1 Extended Attribute Functions

	13 Extended Attribute Tasks
	13.1 Scanning for Extended Attributes
	13.2 Accessing Extended Attributes
	13.3 Accessing Attribute Selections
	13.4 Closing Extended Attributes

	14 Extended Attribute Functions
	NWCloseEA
	NWCloseEAExt
	NWFindFirstEA
	NWFindFirstEAExt
	NWFindNextEA
	NWFindNextEAExt
	NWGetEAHandleStruct
	NWGetEAHandleStructExt
	NWOpenEA
	NWOpenEAExt
	NWReadEA
	NWReadEAExt
	NWWriteEA
	NWWriteEAExt

	15 Extended Attribute Structures
	NW_EA_FF_STRUCT
	NW_EA_FF_STRUCT_EXT
	NW_EA_HANDLE
	NW_EA_HANDLE_EXT

	16 Operating System I/O Concepts
	16.1 File Permission Conversion
	16.2 File Paths
	16.3 Operating System I/O Functions

	17 Operating System I/O Functions
	cancel
	chsize
	close
	creat
	dup
	dup2
	eof
	fcntl
	filelength
	fstat
	ioctl
	isatty
	lock
	lseek
	open
	pipe
	read
	setmode
	sopen
	tell
	unlock
	write

	18 Stream I/O Concepts
	18.1 Stream I/O Functions

	19 Stream I/O Functions
	clearerr
	fclose
	fcloseall
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetchar
	fgetpos
	fgets
	fileno
	flushall
	fopen
	fprintf
	fputc
	fputs
	fread
	freopen
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	getc
	getchar
	gets
	printf
	putc
	putchar
	puts
	rewind
	scanf
	setbuf
	setvbuf
	tmpfile
	ungetc
	vfprintf
	vfscanf
	vprintf
	vscanf

	20 Synchronization Concepts
	20.1 Data Locks
	20.1.1 File Locks
	20.1.2 File Locking Functions
	20.1.3 Physical Record Locks
	20.1.4 Physical Record Locking Functions
	20.1.5 Logical Record Locks
	20.1.6 Logical Record Locking Functions

	20.2 Semaphores
	20.2.1 Semaphore Functions

	20.3 Synchronization Scan Functions

	21 Synchronization Tasks
	21.1 Logging Files
	21.2 Clearing Logged Files
	21.3 Locking Data and Files
	21.4 Locking Files
	21.5 Releasing Locked Files

	22 Synchronization Functions
	NWClearFileLock2
	NWClearFileLockSet
	NWClearLogicalRecord
	NWClearLogicalRecordSet
	NWClearPhysicalRecord
	NWClearPhysicalRecordSet
	NWCloseSemaphore
	NWExamineSemaphore
	NWLockFileLockSet
	NWLockLogicalRecordSet
	NWLockPhysicalRecordSet
	NWLogFileLock2
	NWLogLogicalRecord
	NWLogPhysicalRecord
	NWOpenSemaphore
	NWReleaseFileLock2
	NWReleaseFileLockSet
	NWReleaseLogicalRecord
	NWReleaseLogicalRecordSet
	NWReleasePhysicalRecord
	NWReleasePhysicalRecordSet
	NWScanLogicalLocksByConn
	NWScanLogicalLocksByName
	NWScanPhysicalLocksByConnFile
	NWScanPhysicalLocksByFile
	NWScanSemaphoresByConn
	NWScanSemaphoresByName
	NWSignalSemaphore
	NWWaitOnSemaphore

	23 Synchronization Structures
	CONN_LOGICAL_LOCK
	CONN_LOGICAL_LOCKS
	CONN_PHYSICAL_LOCK
	CONN_PHYSICAL_LOCKS
	CONN_SEMAPHORE
	CONN_SEMAPHORES
	LOGICAL_LOCK
	LOGICAL_LOCKS
	PHYSICAL_LOCK
	PHYSICAL_LOCKS
	SEMAPHORE
	SEMAPHORES

	24 Server-Based AFP Concepts
	24.1 File-Naming Conventions
	24.2 Server-Based AFP Functions

	25 Server-Based Extended Attribute Functions
	CloseEA
	CopyEA
	EnumerateEA
	GetEAInfo
	OpenEA
	ReadEA
	WriteEA

	26 Server-Based Extended Attribute Structures
	T_enumerateEAnoKey
	T_enumerateEAwithKey

	27 Server-Based Synchronization Concepts
	27.1 Locking
	27.2 Semaphores
	27.2.1 Limiting the Number of Users
	27.2.2 Restricting Access to Resources

	27.3 Server-Based Synchronization Functions

	28 Server-Based Synchronization Functions
	ClearFile
	ClearFileSet
	ClearLogicalRecord
	ClearLogicalRecordSet
	ClearPhysicalRecord
	ClearPhysicalRecordSet
	CloseSemaphore
	ExamineSemaphore
	LockFileSet
	LockLogicalRecordSet
	LockPhysicalRecordSet
	LogFile
	LogLogicalRecord
	LogPhysicalRecord
	OpenSemaphore
	ReleaseFile
	ReleaseFileSet
	ReleaseLogicalRecord
	ReleaseLogicalRecordSet
	ReleasePhysicalRecord
	ReleasePhysicalRecordSet
	SignalSemaphore
	WaitOnSemaphore

	A Revision History

