
n

NDK: NLM Development Concepts, Tools, and Functions
Novell

ovdocx (en) 11 D
ecem

ber 2007
w w w . n o v e l l . c o m

Developer Kit
F e b r u a r y 2 0 0 8

N L M ™ D E V E L O P M E N T C O N C E P T S ,
T O O L S , A N D F U N C T I O N S

novdocx (en) 11 D
ecem

ber 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (en) 11 D
ecem

ber 2007
Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (en) 11 D
ecem

ber 2007

Contents

novdocx (en) 11 D
ecem

ber 2007
About This Guide 11

1 Getting Started 13
1.1 Requirements . 13
1.2 Installing the CLib SDK . 13
1.3 Selecting a Compiler . 14

1.3.1 Metrowerks CodeWarrior for NetWare . 14
1.3.2 Open Watcom Compiler . 14
1.3.3 GNU and Other Compilers . 15

1.4 Setting Up a Compiler . 15
1.4.1 Setting Up CodeWarrior for NLM Development . 15
1.4.2 Setting Up Open Watcom with Borland C++ Builder . 17
1.4.3 Using the WATCOM IDE. 18

1.5 Using a Linker . 21
1.5.1 Specifying a Linker Definition File . 22
1.5.2 Linker Commands . 23

1.6 Writing a Basic NLM . 32
1.7 Installing the CLib Files on a NetWare Server . 32

2 Basic NLM Concepts 35
2.1 What NLMs Are . 35
2.2 What NLMs Do . 35
2.3 Misconceptions About NLMs . 35

2.3.1 NLMs Are Not Hard to Develop. 35
2.3.2 NLMs Are Not Dead . 36

2.4 Developing NLMs . 36
2.5 Loading and Unloading NLMs . 36

2.5.1 Using Search Paths. 37
2.5.2 How NLMs Are Loaded . 37
2.5.3 Using the LOAD Command. 38
2.5.4 Setting Environment Variables . 41
2.5.5 Autoloading Prerequisite NLMs. 41
2.5.6 Loading Multiple NLMs . 41
2.5.7 Importing and Exporting NLMs . 41
2.5.8 Unloading NLMs . 42

2.6 Introduction to CLIB . 42
2.6.1 Cross Platform NLM Libraries . 43
2.6.2 Prelude Object Files . 43
2.6.3 CLIB Manuals . 44

2.7 OS-Related Issues. 45
2.7.1 Preemptive and Nonpreemptive Environment. 45
2.7.2 Current Working Directory. 46
2.7.3 Connection Numbers and Task Numbers . 46
2.7.4 Screens and the NetWare OS. 46
2.7.5 Screen Types . 47

2.8 Structure of an NLM. 47
2.9 NLM Startup. 48

2.9.1 Reentrant NLMs . 48
Contents 5

6 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
2.10 NLM Termination . 51
2.10.1 NLM Unload Process . 51
2.10.2 NLM Self-Termination Process . 52
2.10.3 NLM Abnormal Exit Process . 53
2.10.4 Following Exit Steps. 54
2.10.5 CHECK Function . 54
2.10.6 Signal Handling . 56
2.10.7 AtUnload and atexit Functions . 57
2.10.8 Freeing Resources upon Exit . 59

3 More Advanced NLM Concepts 61
3.1 Data and Parameters in NLMs . 61

3.1.1 Data Alignment. 61
3.1.2 C Parameter Ordering . 64

3.2 Threads, Multithreaded Programming, and Context. 65
3.3 Screen Handling . 65

3.3.1 Screen Creation . 65
3.3.2 Screen Deletion . 65
3.3.3 Input and Output Cursors. 66

3.4 NLM Synchronization . 66
3.4.1 Locking. 66
3.4.2 Semaphores. 66

3.5 Cross-Platform Functions for NLM Development . 67
3.5.1 Differences in Assumptions . 67
3.5.2 Differences in Connection Models . 68

3.6 Communicating with Other NLMs. 68
3.7 Introduction to Remote Server Support . 69

3.7.1 Accessing Remote Servers . 69
3.7.2 Changing the Current Server . 69
3.7.3 Logging Out from Remote Servers . 70
3.7.4 Remote and Local Server Operations . 70

4 Advanced NLM Tasks 71
4.1 Developing Multithreaded NLMs . 71
4.2 Terminating an NLM . 71

4.2.1 Clean Up All Resources Allocated Anywhere in an NLM. 71
4.2.2 Implement a Signal Handler (SIGTERM) . 72
4.2.3 Provide CLIB Context for the SIGTERM Handler if Needed 72
4.2.4 Allow for Blocked or Suspended Code at UNLOAD. 73
4.2.5 Allow for Child Threads and Call-backs . 74
4.2.6 Allow for Normal NLM Termination . 74
4.2.7 Protect Against CTRL-C. 75

4.3 Designing Client-Server NLMs . 76
4.4 Developing NLMs with Cross-Platform Functions . 76

5 NLM Development Tool Concepts 79
5.1 NLM Make Utilities . 79

5.1.1 QMK386.EXE. 79
5.2 Debuggers for NLMs . 82

5.2.1 Linking Debug Information with WLINK . 83
5.2.2 NetWare Internal Debugger . 83

5.3 NLM Compression Tools . 93
5.4 MPKXDC . 93
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
5.4.1 Traditional NetWare and Multithreading . 94
5.4.2 NetWare 4.11 SMP . 94
5.4.3 NetWare MPK and Funneling . 95

6 NLM Development Tool Tasks 97
6.1 Using MAKEINIT.EXE . 97
6.2 Building a Symbol File for Novell Remote Debugger. 97
6.3 Building HELLO.NLM with WATCOM WMAKE . 97
6.4 Using MPKXDC . 98

7 Memory Protection Concepts 101
7.1 NetWare Memory Protection . 101

7.1.1 OS Address Space . 102
7.1.2 Protected Address Spaces . 102
7.1.3 System Call Interface . 105
7.1.4 Memory Protection set Parameters. 106

8 Memory Protection Tasks 107
8.1 Loading an NLM into OS Address Space . 107
8.2 Loading an NLM into a Protected Address Space. 107
8.3 Unloading NLMs Protected Address Spaces. 108
8.4 Using the protection Command . 108

8.4.1 Checking Protection Status . 108
8.4.2 Enabling/Disabling the Restart Feature. 108

8.5 Finding Out What is Running in a Protected Address Space . 108
8.6 Setting a Protected Address Space to Restart after a Fault . 109
8.7 Setting a Server to Abend for Memory Faults . 109
8.8 Loading Memory Fault Isolation. 110
8.9 Pinpointing Memory Overflows . 110
8.10 Accessing On-Line Help for Memory Protection . 110

9 Advanced NLM Function Concepts 111
9.1 Advanced Function List . 111
9.2 Functions to Handle Dynamic Arrays. 112
9.3 Dynamic Array Terminology. 112
9.4 Dynamic Linkage of Exported Symbols . 113
9.5 Event Reporting and Management Functions . 114
9.6 File I/O Functions. 114

10 Advanced Tasks 115
10.1 Using Dynamic Array Functions. 115
10.2 Generating Dynamic Array Indexes. 115

11 Advanced Functions 117
AllocateDynArrayEntry . 118
AllocateGivenDynArrayEntry . 120
AllocateResourceTag . 122
AsyncRead . 124
Contents 7

8 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AsyncRelease . 126
CancelNoSleepAESProcessEvent . 127
CancelSleepAESProcessEvent. 128
DeallocateDynArrayEntry . 129
GetFileHoleMap . 130
GetSetableParameterValue . 132
GetThreadDataAreaPtr . 133
gwrite. 134
ImportSymbol . 136
NWAddSearchPathAtEnd . 137
NWDeleteSearchPath . 138
NWGarbageCollect . 139
NWGetSearchPathElement. 140
NWInsertSearchPath. 141
qread . 142
qwrite. 144
RegisterConsoleCommand . 146
RegisterForEvent . 148
SaveThreadDataAreaPtr . 153
ScanSetableParameters . 154
ScheduleNoSleepAESProcessEvent . 158
ScheduleSleepAESProcessEvent. 160
SetSetableParameterValue. 162
SynchronizeStart . 163
UnimportSymbol . 164
UnRegisterConsoleCommand. 165
UnregisterForEvent . 166

12 Advanced Structures 167
AESProcessStructure . 168
commandParserStructure . 169
EventCloseFileInfo . 170
EventDateMigrationInfo. 171
EventModifyDirEntryStruct . 172
EventNetwareAlertStruct . 173
EventTrusteeChangeStruct . 175
T_cacheBufferStructure . 176
T_DYNARRAY_BLOCK . 177
T_mwriteBufferStructure . 178

13 Advanced Values 179
13.1 Alert Class Values . 179
13.2 Alert Flag Values . 179
13.3 Alert ID Values . 180
13.4 Alert Location Values . 181
13.5 Alert Severity Values . 182
13.6 Target Notification Bit Values . 182
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
14 Debug Functions 183
assert . 184
EnterDebugger . 185
NWClearBreakpoint . 186
NWSetBreakpoint . 187
perror . 189

15 Device I/O Functions 191
cgets . 192
cprintf . 194
cputs . 196
cscanf . 197
_disable (obsolete) . 199
_enable (obsolete) . 200
getch. 201
getche. 202
inp. 203
inpd. 204
inpw . 205
kbhit . 206
NWcprintf . 207
outp. 209
outpd. 210
outpw . 212
putch. 214
ungetch. 215
vcprintf . 217
vcscanf . 219

16 Screen Handling Concepts 221
16.1 Screen Types. 221
16.2 Creating Screens . 221

16.2.1 Screen Names. 222
16.2.2 Screen Attributes. 222
16.2.3 Initial Screen Attribute Settings . 223
16.2.4 Changing Screen Attributes . 224
16.2.5 Type-Ahead and Command History Buffers . 224

16.3 Performing Screen I/O . 224
16.3.1 Keyboard Input . 224
16.3.2 Screen Output . 224

16.4 Destroying Screens . 225
16.5 Screen Handling Function List . 225

17 Screen Handling Functions 227
CheckIfScreenDisplayed . 229
clrscr . 231
ConsolePrintf . 232
CopyFromScreenMemory. 233
CopyToScreenMemory. 235
Contents 9

10 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
CreateScreen . 237
DestroyScreen. 239
DisplayInputCursor . 241
DisplayScreen . 242
DropPopUpScreen . 244
GetCurrentScreen . 245
GetCursorCouplingMode. 246
GetCursorShape . 247
GetCursorSize. 248
GetPositionOfOutputCursor . 249
__GetScreenID . 250
GetScreenInfo . 251
GetSizeOfScreen . 253
gotoxy . 254
HideInputCursor . 256
IsColorMonitor . 257
PressAnyKeyToContinue . 258
PressEscapeToQuit . 259
RingTheBell . 260
ScanScreens . 261
ScrollScreenRegionDown . 263
ScrollScreenRegionUp . 264
SetAutoScreenDestructionMode . 265
SetCtrlCharCheckMode . 266
SetCurrentScreen . 267
SetCursorCouplingMode . 268
SetCursorShape . 269
SetInputAtOutputCursorPosition . 270
SetOutputAtInputCursorPosition . 271
SetPositionOfInputCursor . 272
SetScreenAttributes . 273
SetScreenAreaAttribute. 275
SetScreenCharacterAttribute . 277
SetScreenRegionAttribute. 279
wherex. 281
wherey. 282

A Revision History 283
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
About This Guide

NLM Development Concepts, Tools, and Functions provides concept and task information for the
NLM developer. This documentation describes many of the concepts and tasks required for NLM
development in each phase of development:

Chapter 1, “Getting Started,” on page 13
Chapter 2, “Basic NLM Concepts,” on page 35
Chapter 3, “More Advanced NLM Concepts,” on page 61
Chapter 4, “Advanced NLM Tasks,” on page 71
Chapter 5, “NLM Development Tool Concepts,” on page 79
Chapter 6, “NLM Development Tool Tasks,” on page 97
Chapter 7, “Memory Protection Concepts,” on page 101
Chapter 8, “Memory Protection Tasks,” on page 107

In addition, it provides function references and development information for the following services:

Chapter 9, “Advanced NLM Function Concepts,” on page 111
Chapter 10, “Advanced Tasks,” on page 115
Chapter 11, “Advanced Functions,” on page 117
Chapter 12, “Advanced Structures,” on page 167
Chapter 13, “Advanced Values,” on page 179
Chapter 14, “Debug Functions,” on page 183
Chapter 15, “Device I/O Functions,” on page 191
Chapter 16, “Screen Handling Concepts,” on page 221
Chapter 17, “Screen Handling Functions,” on page 227

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

NDK: Program Management
NDK: NLM Threads Management
About This Guide 11

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm

12 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
NDK: Connection, Message, and NCP Extensions
NDK: Multiple and Inter-File Services
NDK: Single and Intra-File Services
NDK: Volume Management
NDK: Server Management
NDK: Client Management
NDK: Network Management
NDK: Internationalization
NDK: Unicode
NDK: Sample Code
NDK: Getting Started with NetWare Cross-Platform Libraries for C
NDK: Bindery Management

For CLib and XPlat source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C
(including CLIB and XPlat) Developer Support Forums (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows
XPlat development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
evelopment Concepts, Tools, and Functions

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

1
novdocx (en) 11 D

ecem
ber 2007
1Getting Started

CLib is a C-language library that runs on a NetWare server. It is a legacy library that has been
replaced by LibC (http://developer.novell.com/ndk/libc.htm). For new development, you should use
LibC unless your application has the following requirements:

Must run on NetWare 4.x as well as the later versions of NetWare.
Uses functionality not yet available in LibC.

This getting started section explains how to develop a NetWare server application, an NetWare
Loadable Module (NLM). The CLib SDK also contains NetWare client libraries. For information on
how to get started with these libraries, see Cross-Platform Libraries.

This documentation describes common tasks associated with writing an NLM:

Requirements (page 13)
Installing the CLib SDK (page 13)
Selecting a Compiler (page 14)
Setting Up a Compiler (page 15)
Using a Linker (page 21)
Writing a Basic NLM (page 32)
Installing the CLib Files on a NetWare Server (page 32)

1.1 Requirements
To use CLib, you need the following:

A NetWare server, running NetWare 5.1 or later. Although CLib is available on NetWare 3.x
and NetWare 4.x, these versions of NetWare are no longer supported and no CLib fixes are
being exported to them.
A development workstation with the CLib SDK installed and a network connection to a
NetWare server. You will be copying files from the workstation to the server. NLM
development is done on workstation, and the compiled and linked NLM is copied to the
NetWare server for loading and testing.

1.2 Installing the CLib SDK
The CLib SDK is part of the Novell® Developer Kit (NDK), and it can be downloaded from the the
NDK Web site. The SDK consists of software, sample code, and documentation components, which
can be downloaded together or individually. In addition, the documentation and sample code can be
viewed on line at the NDK site. LibC library files are installed on the NetWare server during
installation and with every support pack.

To install the CLib SDK (http://developer.novell.com/ndk/clib.htm), click the download icon and
follow the instructions. During the installation, you must select the destination where you want to
Getting Started 13

http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/clib.htm

14 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
install the CLib components. By default, the executable installs the SDK components to c:\novell in
the following subdirectories:

Software: c:\novell\ndk\nwsdk
Sample code: c:\novell\ndk\samples\clib_sample
Documentation: c:\novell\ndk\doc\clib

Because CodeWarrior requires you to install the CLib SDK on the C: drive, we recommend that you
install the SDK on that drive.

1.3 Selecting a Compiler
The following compilers are available for developing NLMs:

Metrowerks CodeWarrior for NetWare (page 14)
Open Watcom Compiler (page 14)
GNU and Other Compilers (page 15)

You must link a prelude file into your application. The CLib SDK includes prelude files for the
CodeWarrior, Open Watcom, and GNU C/C++ compilers.

1.3.1 Metrowerks CodeWarrior for NetWare
Metrowerks CodeWarrior for NetWare is an Integrated Development Environment (IDE) in which
you can edit, compile, and debug your code. CodeWarrior for NetWare will soon support C++ NLM
development. It supports the development of server-based applications, such as NLMs. The
CodeWarrior for NetWare linker combines object code into NLMs, drivers, and modules.

CodeWarrior also has a source-level debugger for debugging NLMs from a client workstation.

Certain levels of the DeveloperNet Program include a copy of CodeWarrior or allow you to
purchase one at a reduced price. For details, see the Novell DeveloperNet Program (http://
developer.novell.com/brochure).

1.3.2 Open Watcom Compiler
Open Watcom compiler is a cross-platform compiler that produce object files for multiple operating
systems. It has both command-line and IDE interfaces and generates 32-bit protected mode code. It
has the usual complement of switches to specify such things as

Whether to include debug information in the object file
The name of the object file (if other than the default)
What directory or directories to get include files from
The amount and kind of optimization to perform

Watcom was the first compiler to support NLM development. It supports developing C applications
for NetWare, but does not support C++ applications for NetWare. The Watcom linker does not
support symbol prefixing except through use of the ALIAS link directive. Because “@” is
overloaded in linker syntax, the solution is difficult and requires quoting. Do not attempt to include
Watcom libraries.For more information, see Open Watcom (http://www.openwatcom.org).
evelopment Concepts, Tools, and Functions

http://developer.novell.com/brochure
http://www.openwatcom.org

novdocx (en) 11 D
ecem

ber 2007
1.3.3 GNU and Other Compilers
The GNU C/C++ compiler is used on many UNIX* and Linux* systems, but it also supports NLM
development. For more information, see GNU Compiler Collection (http://gcc.gnu.org).

Other C/C++ compilers such Borland C++ and Microsoft Visual C++ can be used to develop NLMs.
You use them to write and compile the code and then use a linker from another vendor, such as
Open Watcom.

1.4 Setting Up a Compiler
The following sections explain how to set up various compilers for NLM development.

NOTE: If you have instructions for setting up a compiler for NLM development, which is not
included in this section and that you would like to share with other CLib developers, please post
these instructions in the CLib newsgroup (http://developer.novell.com/ndk/devforums.htm).

Currently, we have instructions for the following compilers:

Setting Up CodeWarrior for NLM Development (page 15)
Setting Up Open Watcom with Borland C++ Builder (page 17)
Using the WATCOM IDE (page 18)

1.4.1 Setting Up CodeWarrior for NLM Development
You should install the following items on your development machine in the order listed:

CodeWarrior
NLM and NetWare Libraries for C (including CLIB and XPlat) (http://developer.novell.com/
ndk/clib.htm)
CodeWarrior PDK for NetWare

See the CodeWarrior documentation for workstation requirements and installation instructions for
CodeWarrior and the PDK. The PDK requires a NovellNDK environment variable. For the variable,
enter NovellNDK. For its value, enter the location of the CLib SDK (default is
c:\novell\ndk\nwsdk). You must either install the CLib NDK on the c: drive or modify some hard
coded values in the project's nlm.def file that point to c:\novell\ndk\nwsdk.

The following instructions explain how to create a new stationary project with PDK 4.0 that you can
use to compile the sample code.

1 Start CodeWarrior.
2 Select File > New.
3 From the Project tab, select NetWare Stationary.

NOTE: If you don't select NetWare Stationary, you cannot create a new project.

4 In the Project name box, enter a name for the project, for example, Sample Code. In the
Location box, enter the path where you want to store the project's files, and click OK.

5 In the New Project window, select Server > CLib > Generic NLM C, and then OK.
Getting Started 15

http://gcc.gnu.org
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/clib.htm

16 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
6 Expand NetWare SDK Libraries. If you do not plan to use the CodeWarrior integrated
debugger or C++, delete the mwcrtl.lib and mwcrtld.lib files.

NOTE: The sample code files will not compile without errors when these libraries are
included.

7 Add the clibpre.o file. Right click NetWare SDK Libraries, select Add Files from the drop
down menu, browse to the c:\novell\ndk\nwsdk\imports directory, and select clibpre.o.
If your NLM calls functions in other libraries such as eDirectory functions or Unicode
functions, add these import files.

8 Expand Source. You can compile the default program HelloWorld.c or your can select a
sample code file.
For a sample code file, delete HelloWorld.c. Then right click Source and from the drop down
menu, select Add Files...
Browse to the CLib sample code directory (the default location is
c:\novell\ndk\samples\clib_sample\nlm), and select one of the sample code files to compile, for
example, calendar.c.
Each sample file is designed to be compiled as a separate NLM.

9 Click the Generic C Build Settings... icon.
10 In the Target category, click NLM Target, modify the fields, and click OK.

For each NLM that you compile, you need to fill out the following NLM Target fields:
Output File—determines the name of the NLM.
Screen Name and Initial Screen Name—determines the default screen for the NLM. If the
NLM receives input from a user, select User Specified and enter a name in the Initial
Screen Name field. If the NLM receives no input from a user, you can select either
Console (allows console output of messages) or No Default (prevents console output and
input).
For this sample code project, select User Specified and enter a name that matches the
sample file you selected.
Initial Thread Name—specifies the prefix that is used to provide thread names. The names
appear in the NetWare internal debugger, the CodeWarrior debugger, and the NetWare
Remote Manager.
Stack Size—determines the maximum size of the stack. For the sample code, the default
value of 8192 is adequate.
Copyright—enter your company's copyright string.
Description—supply a description that fits the NLM. This description appears in various
NetWare management utilities.
Version—enter a version for the NLM. You must specify at least a major version number.

11 Click the Make icon.
12 When the compile completes, browse to the location of your project files.
13 Copy the compiled *.nlm file to the sys:\system directory of your NetWare server.

Other locations are possible, but if you create your own directory, you also need to add search
paths or include the path in the load command.

14 At the system console, load the NLM.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
For more information, see the following:

Metrowerks manuals, especially the Targeting the NetWare Operating System PDK 4 manual.
This manual explains all the Generic C Build Settings.

If you prefer a command line interface, the Metrowerks manual explains how to access these
development tools and their online documentation.
Metrowerks newsgroup (http://developer.novell.com/ndk/devforums.htm).

1.4.2 Setting Up Open Watcom with Borland C++ Builder
The following steps explain how to build an NLM by compiling the code with Borland C++ Builder
and by linking with WLINK from Open Watcom.

1 Install Open Watcom 1.0 or later.

Available from http://ww.openwatcom.org
2 Download components from the Novell Developer Kit (cldap_all.exe, clib_all.exe, and

ndslib_all.exe) available from http://developer.novell.com.

3 Install the NDK components in c:\Program Files\NDK (or change the following linker
definition file to match your location).

4 Using Borland C++ Builder, create a file with the following code.
#include <stdio.h>

void main(void)
{
 printf("Hello, world\n");
}

5 In the project options, turn off the “generate underscores” option.
6 Compile the project. Don't build it, because all you need is the object file (hello.obj).
7 Create a linker definition file for the Watcom Linker. It should look similar to the following:
Option OSName = ’Novell NLM’
Format Novell NLM ’Hello World!’

Module CLib
Module Threads

Option CaseExact
Import @C:\Progra~1\NDK\NDK\nwsdk\imports\clib.imp,
@C:\Progra~1\NDK\NDK\nwsdk\imports\threads.imp

Name hello.nlm
LibF C:\Progra~1\NDK\NDK\nwsdk\imports\nwpre.obj
File hello.obj
Option Copyright ’Public domain. Hello World example’
Option Map=hello.map
Option NoDefaultLibs
Option SymFile=hello.sym
Option Version=1.00.00
Getting Started 17

http://developer.novell.com/ndk/devforums.htm

18 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Option Stack=128k
Option ScreenName ’Hello World Example’
Option ThreadName ’HelloWorld_nlm’

8 At a command prompt in the directory of the source code and linker definition file, enter
wlink @link.lnk

You should see the following output from this process:
Open Watcom Linker Version 1.0
Portions Copyright (c) 1985-2002 Sybase, Inc. All Rights Reserved.
Source code is available under the Sybase Open Watcom Public
License.
See http://www.openwatcom.org/ for details.
loading object files
creating map file
creating a Novell NLM executable

9 When the linker is finished, copy the NLM to a NetWare 5.1 server or later and load it.
The NLM creates a console screen, called Hello World Example, and prints “Hello, world” to
this screen.

1.4.3 Using the WATCOM IDE
This section covers the following:

Setting Up Your Environment to Use WATCOM IDE (page 18)
Building HELLO.NLM with WATCOM IDE (page 18)
Installing Watcom v11 Optimized for NLM Development (page 20)

Setting Up Your Environment to Use WATCOM IDE

1 Install the WATCOM development environment. Include Novell NLM as a target platform.
2 Download and install the software for the NLM and NetWare Libraries for C, along with any

other component that your NLM development requires, such as the NDS Libraries for C or the
Novell Protocol Libraries for C. Further instructions assume that you install to the default
location--C:\NOVELL\NDK.

3 Modify your computer’s path statement to include the NDK tools directory (NWSDK/
TOOLS).
This must be done so that

The WATCOM Linker can find the Novell MAKEINIT file.
The Novell NLM tools (such as MSGLIB.EXE) are accessible

4 Create a MAKEINIT configuration file and an ALL.IMP import file by running
MAKEINIT.EXE, located in the NWSDK\TOOLS subdirectory.

Building HELLO.NLM with WATCOM IDE

1 Create a directory for your project. (Example: C:\projects\hello)
2 Activate the WATCOM IDE.
3 From the menu bar, select "File / New Project."
4 Specify the project directory (created in Step 1) and a project name. (Example: HELLO.WPJ)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
5 A "New Target" window appears, allowing you to specify a target name and an image type.
(By default they should be set similar to the following: Target name = "hello", Image type =
"NLM [.nlm]"). Click OK.

6 A "Source Files" window appears, which is initially empty. Press the INSERT key. An "Add
File(s) to..." window appears. Enter the name of the project’s first `C’ source file in the "File
Name" field. (Example: HELLO.C). Add other `C’ source files as needed.

7 Use the "Add File(s) to..." window to specify the location of the Novell prelude object file:
Set the "List Files of Type" field to All Files [*.*]
Set the "Drives" field and "Directories" field to NOVELL\NDK\NWSDK\IMPORTS
Specify the file CLIBPRE.OBJ and add it to the project

Close the "Add File(s) to..." window.
8 From the menu bar, select "Options / Link for NetWare Switches...," then deselect the

"Incremental Linking [op inc]" option. Click OK.

NOTE: In the Watcom 11 IDE, Incremental Linking [op inc] is turned on by default. This
feature has been known to make Watcom’s Linker (WLINK) appear to be in an endless loop,
never completing the link operation.

9 Specify import files as explained in the following paragraphs, then click OK:
From the menu bar select "Options / Link for NetWare Switches..."
From the scroll bar select "2. Import, Export and Library Switches"
Check the box labeled "No default libraries [op nod]"
In the Import files(,):[imp] field, specify.IMP files as needed
For example, to build the "Hello world" NLM, you must specify the following in the
Import files(,):[imp] field):
@$(nlm386imp)\threads.imp @$(nlm386imp)\nlmlib.imp

Instead of specifying individual import files you can use @$(nlm386imp)\all.imp, which
is a compilation of all the import files.

(The macro nlm386imp value is defined in the Novell makeinit file, generated by the
MAKEINIT.EXE file in the NWSDK\TOOLS directory.)

10 From the menu bar select "Options / Link for NetWare Switches...," then from the scroll bar
select "3. Advanced Switches." Check the box labeled "Case sensitive link[op c]."
This option tells the Watcom Linker to consider case when resolving references to global
symbols. For example, this will prevent calling FREE when you wanted to call free.

11 From the menu bar select "Options / C Compiler Switches...." By default, "1. File Option
Switches" is selected on the scroll bar. Set the Include directories:[-i] field to $(nlm386hdr).
An IDE Request window might appear asking "Mark all .c files in ` ...’ for remake?" If it does,
click Yes.

12 From the menu bar select "Options / C Compiler switches...." Select "3. Source Switches."
Click the radio button for 1 byte alignment [-zp1], then click OK. If an IDE Request window
appears asking "Mark all .c files in ’...’ for remake?" click Yes.

IMPORTANT: The Watcom 11 compiler structure alignment has changed from a default of 1
byte alignment [-zp1] (Watcom 10.6), to a default of 4 bytes [-zp4]. To build NLMs in Watcom
11, you must specify the 1 byte alignment option [-zp1].
Getting Started 19

20 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
13 If necessary, edit one or more of the previously specified `C’ files. You can do so by double-
clicking one of the files listed in the Source files: window. Here, for instance, is a simple "Hello
world" example:
#include <stdlib.h>
#include <stdio.h>

void main (void)

{
 printf("Hellp world\n");
 return;
}

14 Add the following function to one of your `C’ source files (for example HELLO.C):
void WATCOM_Prelude(void)

{
 return
}

The Watcom 11 compiler constructs OBJ files from C source files. When the Watcom compiler
is invoked from the IDE, a reference is automatically implied to an external
__WATCOM_Prelude symbol. There is no known method of disabling this behavior from the
IDE (even though the reference is not needed or even referenced in the C source). Therefore,
your application must provide its own reference as a "shim" or "stub." This function will not be
called by the Novell CLIBPRE.OBJ or Dynamic Linked Library NLMs.
The example program HELLO.C now looks something like this:
#include <stdlib.h>
#include <stdio.h>

void WATCOM_Prelude(void)

{
 return
}

void main (void)

{
 printf("Hello world\n");
 return;
}

15 When source code edits are completed, save the file(s). Then from the menu bar select Targets
/ Make.
If all went well, you will find a fully functional NLM in the target directory.

Installing Watcom v11 Optimized for NLM Development

This method is specific to the C language environment. It may seem possible to used the Watcom
environment to write an NLM in C++, but there are known anomalies that cause NLMs written in
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
C++ with Watcom to fail Novell NLM certification tests. If you are using C++ to develop NLMs
consider using Meterowerks Code Warrior.

1 Insert your Watcom 11 CD into your computer's CDROM drive.

Click Start > Run > Browse. Select your CDROM drive, then select Setup.exe and click Open
> OK.

2 Specify the path at which the Watcom compiler will be installed or click OK to accept the
default C:\WATCOM path.

3 Specify the Selective installation type and click OK.
4 Select which components will be installed. Select 32-bit compiler options: (deselect Include

16-bit compilers: if it is selected), uncheck the 32-bit MFC 4.1 support: option and click OK >
Target.

5 The next window lets you specify the target operating system. Deselect everything except
NetWare and click OK > Other.

6 In the Select other options: screen, deselect everything, and click OK > OK.
7 A dialog appears saying "SETUP32 will now copy any selected files." Click OK. The install

program will begin copying files as a bar chart tracks progress.
8 A screen appears indicating that SETUP32 needs to modify the AUTOEXEC.BAT and

CONFIG.SYS files. Confirm the modifications.
If another dialog appears and tells you it will place the original AUTOEXEC.BAT and
CONFIG.SYS files in two identified backup files, click OK.

9 A dialog appears stating that you should reboot your computer so that changes will take effect.
Click OK.

10 Once the computer reboots, seven subdirectories in the specified installation directory are not
needed. If you accepted the default directory, those subdirectories are the following:

\WATCOM\EDDAT
\WATCOM\H
\WATCOM\LIB286
\WATCOM\LIB386
\WATCOM\NLM
\WATCOM\NOVH
\WATCOM\NOVI
Using Windows Explorer or the DOS deltree command, remove all seven. When you are
finished, the following two will remain:

\WATCOM\BINNT
\WATCOM\BINW

1.5 Using a Linker
Linkers are generally supplied with the compiler. CodeWarrior, Watcom, and GNU all supply
linkers. Some linkers allow you to specify options and commands on the command line; some don't.
All, however, support referencing a linker definition file, which contains the options and commands.
Linker commands and options tell the linker how to create your program. For complete information,
consult the documentation that comes with your linker.
Getting Started 21

22 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
1.5.1 Specifying a Linker Definition File
A linker definition file is useful when linker input consists of a large number of object files that you
do not want to manually enter on the command line each time you link your program. Note that a
linker definition file can also include other linker definition files.

The following is a sample linker definition file for the Watcom linker, WLINK:
Format Novell NLM ’$(COMPOSITE_DESCRIPTION)’
Name$(NLM_NAME).NLM
Option Copyright= ’$(COPYRIGHT_STRING)’
Option NLMFlags= $(NLMFLAGS)
Option CaseExact
%if !%defined(OPTIMIZE)
Debug CodeView
Debug Novell
%endif
%foreach FILE in $(SOURCE_OBJECTS)
File$(OBJECT_DIR)\$(FILE)
%endfor
%if %defined(MORE_OBJECTS)
File$(MORE_OBJECTS)
%endif
%if %defined(PROFILE)
File WRuntime.Obj
%endif
Option Start= $(START_FUNC)
Option Exit= $(EXIT_FUNC)
Option Version= $(COMPOSITE_VERSION)
Option Map= $(NLM_NAME).Map
Option SymFile= $(NLM_NAME).Sym
Option NoDefaultLibs
Option Messages= $(MSG_PATH)\$(NLM_NAME).MSG
Import @CLIB.Imp
Export @$(NLM_NAME).Exp
Module $(MODULES)Format Novell NLM $(COMPOSITE_DESCRIPTION)

For information about the prelude object file, see Section 2.9, “NLM Startup,” on page 48.

The IMPORT directive shown in the example above enables your NLM to import (call) functions in
other NLMs. When using the IMPORT directive, you have two choices for specifying the external
functions you want to call:

List each function as an IMPORT entry in the linker definition file.
Place all the function names in an import file (.IMP) and specify that file as the IMPORT entry
in the directive file (as shown with the example above).

For example, part of the NetWare API is CLIB.NLM. It runs in memory, and all the NLMs loaded
on the same server can import its functions. To import a NetWare API function from CLIB.NLM, an
NLM linker definition file can either list each function it wants to import or specify the CLIB.IMP
file, which contains a list of functions exported by CLIB.NLM.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
1.5.2 Linker Commands
The following table lists the NLM commands that can be placed in a linker definition file. Not all
linkers support all of these commands. Some linkers support additional, linker-specific commands.

Linker Command CodeWarrior Syntax Open Watcom Syntax GNU Syntax

AUTOUNLOAD AUTOUNLOAD OPTION AUTOUNLOAD AUTOUNLOAD

CHECK CHECK
checkProcedure

OPTION
CHECK=symbol_name

CHECK< procedure
name>

CODESTART Not supported Not supported CODESTART <map file
code start offset (decimal
or Xhex)>

COPYRIGHT COPYRIGHT ["String"] OPTION COPYRIGHT
'string'

COPYRIGHT ["String"]

CUSTOM Not supported OPTION
CUSTOM=file_name

CUSTOM <custom data
file path>

DATASTART Not supported Not supported DATASTART <map file
data start offset (decimal
or Xhex)>

DATE DATE month, day, 4-
digit year

Not supported DATE month day 4-digit
year

DEBUG DEBUG DEBUG NOVELL DEBUG

DESCRIPTION DESCRIPTION "String" FORMAT NOVELL
'description'

DESCRIPTION "String"

EXIT EXIT exitProcedure OPTION
EXIT=symbol_name

EXIT <exit procedure
name>

EXPORT EXPORT symbolList |
@symbolListFile

EXPORT entry_name
{,entry_name} |
@symbolListFile

EXPORT <symbol list> |
@<symbol list file>

FLAG OFF FLAG OFF value Not supported FLAG OFF <decimal
value>

FLAG ON FLAG ON value

Flags can be specified
one at a time.

OPTION NLMFLAGS=value

All flags must be specified in
one NLMFLAGS command.

FLAG ON <decimal
value>

HELP HELP filePath OPTION HELP=help_file HELP <help file path>

HIDESYM Not supported Not supported HIDESYM <symbol list> |
@<symbol list file>

IMPORT IMPORT symbolList |
@symbolListFile

IMPORT external_name
{,external_name}

IMPORT <symbol list> |
@<symbol list file>

INPUT Supported only by the
command line

FILE obj_file{,obj_file} INPUT <obj list> | @<obj
list file>

LINKORDER LINKORDER
symbolList

Not supported Not supported
Getting Started 23

24 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AUTOUNLOAD

Specifies that the NetWare operating system should unload the NLM when none of its entry points
is in use.

MAP Supported only by the
command line.

OPTION MAP[=map_file] MAP [map file name]

MESSAGES MESSAGES filePath OPTION
MESSAGES=msg_file

MESSAGES <file path>

MODULE MODULE NLMList |
@NLMList

MODULE module_name{,
module_name}

MODULE <NLM list>

MULTIPLE MULTIPLE OPTION MULTILOAD MULTIPLE

NAMLEN Not supported OPTION NAMELEN=value NAMELEN value

OS_DOMAIN OS_DOMAIN OPTION OSDOMAIN OS_DOMAIN

OUTPUT Not supported NAME exe_file OUTPUT <target file
path>

PATH Not supported PATH
path_name{;path_name}

PATH [search path; . . .]

PSEUDOPREEMPT
ION

PSEUDOPREEMPTIO
N

OPTION
PSEUDOPREEMPTION

PSEUDOPREEMPTION

REENTRANT REENTRANT OPTION REENTRANT REENTRANT

SCREENNAME SCREENNAME "name" OPTION SCREENNAME
'name'

SCREENNAME "name"

STACK STACK stackSize OPTION STACK=n STACK <stack size>

STACKSIZE STACKSIZE stackSize Not supported STACKSIZE <stack
size>

STAMPEDDATA Not supported Not supported STAMPEDDATA
"Stamp" <data file path>

START START startProcedure OPTION
START=symbol_name

START <procedure
name>

SYNCHRONIZE SYNCHRONIZE OPTION SYNCHRONIZE SYNCHRONIZE

THREADNAME THREADNAME
threadName

OPTION THREADNAME
'thread_name'

THREADNAME <name>

TYPE TYPE typeNumer FORMAT NOVELL [number] TYPE <number>

VERBOSE Not supported OPTION VERBOSE] Not supported

VERSION VERSION majorVersion
minorVersion [revision]

OPTION
VERSION=major[.minor
[.revision]]

VERSION <major
version>, <minor
version> [, <revision>]

XDCDATA XDCDATA rpcFilePath OPTION XDCDATA=rpc_file XDCDATA <file path>

Linker Command CodeWarrior Syntax Open Watcom Syntax GNU Syntax
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CHECK

Specifies the name of a function in the NLM to be executed when the console operator attempts to
unload the NLM using the UNLOAD console command.

CODESTART

Specifies an offset to be added to each code symbol offset in the map file. This directive allows a
developer to create a map file that compares closely to the values displayed by the NetWare internal
debugger.

COPYRIGHT

Provides the copyright string that is displayed on the console screen when the NLM is loaded. If this
option is not used, no copyright information is displayed.

The string must be enclosed in double quotation marks (") for CodeWarrior and GNU, but in single
quotation marks (') for Open Watcom.

CUSTOM

Allows you to specify the path to a custom data file for use in the NLM. The size and offset of this
file are recorded in the NLM header.

DATASTART

Specifies an offset to be added to the data offset in the map file. This directive allows a developer to
create a map file that compares closely to the values displayed by the NetWare internal debugger.

DATE

Provides a timestamp for the NLM. The month must be a value between 1 and 12, the day between 1
and 31, and the year 4-digits between 1900 and 3000.

For GNU, the default value is today. GNU uses whitespace (space, tabs, or carriage returns) to
separate the month, day, and year parameters. CodeWarrior uses whitespace or commas to separate
the parameters.

DEBUG

Instructs the linker to generate debugging information in the executable file. DEBUG affects only
files listed in the linker file after this directive.

The NetWare internal debugger uses this debug information. Other debuggers, such as the
CodeWarrior debugger, do not use this information.

The Open Watcom linker allows you do specify two options:
 db_option ::= ONLYEXPORTS | REFERENCED

DESCRIPTION

Provides the description that is displayed on the console screen when the NLM is loaded. The string
must be enclosed in double quotation marks (") for CodeWarrior and GNU. For Open Watcom, the
string is enclosed in single quotation marks (').
Getting Started 25

26 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The description can be no longer than 127 characters.

EXIT

Specifies the name of a symbol in the NLM where execution should stop. This procedure makes
sure that all resources have been released and all threads have terminated before the NLM unloads.
For CLIB NLMs, this should be the _Stop routine from the libcpre.o file.

EXPORT

Specifies a list of symbolic names for all variables and functions the NLM is making available to
other NLMs. CodeWarrior and GNU allow the EXPORT directive to be followed by either a list of
symbols or the name of a file. Open Watcom accepts only a list of symbols.

When followed by a list for CodeWarrior and GNU, each symbol must be separated by a
comma or a whitespace character (tab, space, or carriage return). Each symbol that appears on a
new line must be indented by whitespace. Open Watcom expects symbols to be separated by
commas.
When followed by the name of a file, the filename must be preceded by the at (@) character.
The file uses the same format as a symbol list.

FLAG OFF

Specifies how the NLM is loaded by clearing the specified bits in the NLM header. For a list of
arguments, see “FLAG ON and FLAG OFF Parameters” on page 30.

FLAG ON

Specifies how the NLM is loaded by setting the specified bits in the NLM header. For a list of
arguments, see “FLAG ON and FLAG OFF Parameters” on page 30.

HELP

Specifies the path to an internationalized help file that contains the default help screens for the
NLM. The path must end with filename with a .HLP extension.

HIDESYM

Specifies a list of symbols to hide.

IMPORT

Specifies a list of symbolic names for variables and functions that other NLMs have defined and
your NLM uses. The IMPORT command can be followed by either a list of symbols or the name of
a file. CodeWarrior and GNU allow the IMPORT command to be followed by either a list of
symbols or the name of a file. Open Watcom accepts only a list of symbols.

When followed by a list, each symbol must be separated by a comma or a whitespace character
(tab, space, or carriage return). Each symbol that appears on a new line must be indented by
whitespace. Open Watcom expects symbols to be separated by commas.
When followed by the name of a file, the filename must be preceded by the at (@) character.
The file uses the same format as a symbol list.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
INPUT

Specifies the object files that are to be linked. If no file extension is specified, a file extension of
either .obj is assumed or the default for the environment. The INPUT command can be followed by
either a list of symbols (supported by GNU and Open Watcom) or the name of a file (supported by
GNU).

When followed by a list, each object file must be separated by a comma or a whitespace
character (tab, space, or carriage return). Each file that appears on a new line must be indented
by whitespace. Open Watcom expects file to be separated by commas.
When followed by the name of a file, the filename must be preceded by the at (@) character.
The file uses the same format as a object file list.

LINKORDER

Specifies the functions and variables that the linker should link first. You do not need to list all the
symbols in your program. Each symbol must be separated by a comma or whitespace character (tab,
space, or carriage return).

MAP

Indicates that the linker should create a map file with the specified name. If no filename is specified,
the name defaults to the name of the executable and a .map extension.

MESSAGES

Specifies the file path to an internationalized message file that contains the default messages for the
NLM. The path must end with a filename with a .MSG extension.

MODULE

Specifies the NLMs that must be loaded before this NLM is loaded. These modules are loaded
automatically when this NLM is loaded. An NLM that exports symbols that another NLM requires
must be loaded before the dependent NLM is loaded.

Each NLM in the list must be separated by a comma or whitespace character (tab, space, or carriage
return). Each NLM name that appears on a new line must be indented by whitespace. Open Watcom
supports only a comma as a separator.

CodeWarrior also supports listing the modules in a file. When filename follows the MODULE
command, the filename must be preceded by the at (@) character. The file uses the same format as a
module list

MULTIPLE

Sets a flag in the NLM header indicating that this NLM can be loaded multiple times. If this flag is
not set, the NLM cannot be loaded more than once.

NAMLEN

Specifies the maximum characters required to uniquely identify a symbol name. If any symbol fails
to meet this condition, the symbol is treated as if it had been defined more than once.

GNU Note: Default is 31. Zero is no limit.
Getting Started 27

28 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
OS_DOMAIN

Sets a flag in the NLM header indicating that this NLM must be loaded in the memory space of the
operating system. This prevent the NLM from being loaded into a protected address space.

OUTPUT

Provides the name of the output file for the linker. If no extension is specified, the linker creates an
extension according to the NLM type that is specified with the TYPE command.

PATH

Specifies a search path for files used with the directives that take a path and a filename, such as
CUSTOM (page 25), EXPORT (page 26), HELP (page 26), IMPORT (page 26), INPUT (page 27),
MESSAGES (page 27), and XDCDATA (page 30). The parameter is a string that can be prepended
to a filename to create a complete DOS path to the file. Therefore, the sting must end with a
backslash (\). The current directory is not searched unless specified. The directories are searched in
the order listed. For example:
 PATH .\;..\obj\;
or
 PATH ; ..\obj\;

Both of these commands search the current directory and the obj directory which is one level up.

PSEUDOPREEMPTION

Sets a flag in the NLM header indicating that the NetWare operating system can forced the NLM to
relinquish control if it does not do so on its own often enough.

The amount of time that is allowed to pass before the NLM is forced to relinquish control is set by
the console command Set Pseudo Preemption Count. When the time limit is exceeded, the NLM is
forced to relinquish control on the next file read or write system call.

REENTRANT

Sets a flag in the flags field of the NLM header indicating that this NLM is reentrant. If an NLM is
reentrant, when it is loaded by the LOAD command more than once, the NLM is not loaded again,
but the NLM can now be executed concurrently by multiple threads. In this case, only one copy of
the NLM is in memory.

SCREENNAME

Specifies the name of the first screen of an NLM, which is created when the NLM is loaded and to
which stdin, stdout, and stderr are wired. The screen name is displayed at the top of the console
when Alt is pressed, and displayed in the list of current screens when Alt+Esc is pressed.

The screen name must be 71 characters or less.

If this directive is not used, or if NONE is specified, there is no initial screen. In this case, the
developer must call CreateScreen (page 237) to create a screen for the NLM. However, stdin, stdout,
and stderr are not wired to this screen.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
STACK

Specifies the stack size for the NLM in bytes. The minimum stack size is 2 KB. Over 32 KB is
recommended. If no size is specified, the default is 16 KB.

NOTE: Many of the communications libraries require that the NLM threads stack size be increased
beyond the 16 KB default to 32 KB or more. Consider increasing stack size if you encounter
stack overflow abends.

This command is equivalent to the STACKSIZE command.

STACKSIZE

Specifies the stack size for the NLM in bytes. The minimum stack size is 2 KB. Over 32 KB is
recommended. If no size is specified, the default is 16 KB.

NOTE: Many of the communications libraries require that the NLM threads stack size be increased
beyond the 16 KB default to 32 KB or more. Consider increasing stack size if you encounter
stack overflow abends.

This command is equivalent to the STACK command.

STAMPEDDATA

Causes the linker to create a custom data structure, which is named by the stamp parameter and
filled by the data file.

START

Specifies the name of a symbol in the NLM where execution should start. This procedure tracks the
state of the NLM and helps with the final cleanup function. For CLIB NLMs, this should always be
_Prelude from the libcpre.o file.

SYNCHRONIZE

Sets a flag in the flags field of the NLM header indicating that when this NLM is loaded, the load
process goes to sleep until the NLM calls SynchronizeStart (page 163). This prevents other console
commands (particularly LOAD) from being processed while the NLM is loading.

THREADNAME

Specifies a prefix for NetWare to use to name the threads of the NLM. For example, if the prefix
was Process, then threads created in the NLM would be named “Process1,” “Process2,” “Process3,”
and so on. Thread names can be displayed in the CodeWarrior debugger and by using the .P option
in the NetWare internal debugger.

The thread prefix should be 12 characters or less.

TYPE

Specifies the kind of service the NLM provides. For a list of supported values, see “NLM Types” on
page 31.
Getting Started 29

30 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
VERBOSE

Causes the linker to produce additional information while linking.

VERSION

Specifies the version of the NLM. The version information is displayed on the console screen when
the NLM loads. The major version and minor version numbers are required; the revision is optional.

The major version can be any number. The minor version can be 0 - 99. The revision can be 0 - 26,
representing a - z. If the revision is greater than 26, it is set to 0.

XDCDATA

Specifies a path to a file containing Remote Procedure Call (RPC) descriptions for functions in the
NLM. XDC data can be used to create an MT-safe NLM, funnel functions to processor 0, declare an
NLM as MT unsafe, and mark an NLM as preemptible. You must use the mpkxdc tool to generate
the XDC data file used by this command. For more information, see Section 6.4, “Using
MPKXDC,” on page 98.

FLAG ON and FLAG OFF Parameters

The following parameters can be ORed together. Some linkers allow the linker definition file to
have multiple FLAG commands. Some of the FLAG parameters are the same as commands, for
example: FLAG ON 0x00000001 is equivalent to REENTRANT. If you have duplicate or
conflicting commands in the definition file, the last command entered is used to configure the NLM.

Value Description

0x00000001 Specifies whether an NLM is reentrant. If this flag is set, more than one thread
can execute the code of an NLM at the same time. It is equivalent to the
REENTRANT linker command.

0x00000002 Specifies whether the NLM can be loaded multiple times. If set, more than one
copy of the NLM can be loaded. It is equivalent to the MULTIPLE linker
command.

0x00000004 Specifies whether the console command processor sleeps while this NLM loads.
If this flag is set, the load process sleeps until the NLM calls the SynchronizeStart
function. Besides the load console command, any other console commands are
not processed while this NLM loads.

This flag is equivalent to the SYNCHRONIZE linker command.

0x00000008 Sets a flag in the NLM header indicating whether the NetWare operating system
can forced the NLM to relinquish control if it does not do so on its own often
enough. If set, the OS can force the NLM to relinquish control. If not set, the NLM
must relinquish control or cause a CPU Hog abend.

This flag is equivalent to the PSEUDOPREEMPTION linker command.

0x00000010 Specifies whether the NLM is forced to load into the memory space of the
operating system (ring 0). If set, the NLM cannot be loaded into protected
address space.

This flag is equivalent to the OS_DOMAIN linker command.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NLM Types

The following values can be used with the TYPE linker command to specify the type of service the
NLM provides. Use one of the following for the number argument:

0x00000020 Specifies whether the NLM can share code. If set, the NLM cannot share code
with any other NLM.

0x00000040 Specifies whether the NLM is automatically unloaded when none of its entry
points are in use.

This flag is equivalent to the AUTOUNLOAD linker command.

0x00000080 Specifies whether the NLM is hidden. If set, the NLM does not appear in module
lists, such as those generated with the MODULES console command????

0x00000100 Specifies whether the NLM is digitally signed.

0x00000200 Specifies whether the NLM is forced to load into protected address space. If set,
the NLM cannot be loaded into the memory space of the operating system (ring
0). It will only load in protected address space (ring 3), and no other command
line parameters are needed to make it load protected.

0x00000400 Specifies whether the NLM is a shared library.

0x00000800 Specifies whether the NLM is can be restarted.

0x01000000 Specifies whether main can end and the NLM still stay resident in memory.

Value Description

0 Generic module (the default and the most common designation)

1 LAN driver

2 Disk driver

3 Name space module

4 NLM utility application

5 Mirror server link module

6 OS module

7 Paged high OS module

8 Host adapter module

9 Custom device module

10 File system module

11 Real mode module

12 Ghost module

13 Normal SMP module

14 NIOS module

Value Description
Getting Started 31

32 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
1.6 Writing a Basic NLM
The following steps are basic to NLM development, and will produce an NLM that runs on the
server. (Code development can become considerably more complex with the increasing complexity
of an NLM's functionality.)

1 Set up the development environment you will use to build, run, and debug the NLM:
For CodeWarrior, see “Setting Up CodeWarrior for NLM Development” on page 15.
For Open Watcom with Borland C++ Builder, see “Setting Up Open Watcom with
Borland C++ Builder” on page 17.
For Watcom users, see “Setting Up Your Environment to Use WATCOM IDE” on
page 18.

2 Create a subdirectory for the new NLM you are creating.
3 Write the code for the NLM.

For a starting NLM, it may be best to use standard ANSI functions so you can get a feel for the
core NLM development process without the complications of the NetWare CLIB server API
set. When you are ready to move on to multithreaded NLMs with fuller functionality that use a
variety of functions in the CLIB family of server-based APIs, see Section 4.1, “Developing
Multithreaded NLMs,” on page 71.
Bear in mind at this point that when you are developing more complex NLMs that allocate
resources to CLIB threads and require CLIB context to free those resources, it will be
extremely important to write the code required to allow the NLM to terminate gracefully with
resources properly freed. To review that process, see Section 4.2, “Terminating an NLM,” on
page 71.

4 Compile and debug your source code.
5 Compile and debug the source code as an NLM.
6 Copy the NLM onto the server and load it to see how well it runs. For fully functional NLMs,

make sure this step is done on a server used for development rather than a production server.
7 Although it is probably not needed with a simple NLM such as this one, time should be

allocated at this point for testing. That time will much more than pay for itself.

1.7 Installing the CLib Files on a NetWare Server
Support packs for NetWare 5.1 and NetWare 6 install newer versions of CLib. However, the NDK
often has a newer version than the current support pack. If you need to test with this newest version,
complete the following steps to install the CLib files on a test server.

WARNING: NDK versions of CLib should never be used in a production environment. You should
always use a support pack to install newer versions of CLib into a production environment.

15 CIOS CAD module

16 CIOS CLS module

20 - 32 NICI (Novell International Cryptographic Infrastructure) modules

Value Description
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
The following instructions assume that you installed CLib SDK in the c:\Novell\ndk\nwsdk
directory and that you installed server.exe into the c:\nwserver directory on your NetWare server.

To install the CLib files for NLMs:

1 Back up the following files in the c:\nwserver directory:

2 Copy from the following files from the c:\novell\ndk\nwsdk\lib\nlm directory on your
workstation to the c:\nwserver directory on your server:

3 (Optional) Copy the message files from the c:\novell\ndk\nwsdk\lib\ nlm\msg directory on
your workstation to the c:\nwserver\nls\4 directory on your server.
This is optional, because if you compare file dates, you'll discover these files are seldom
updated.

4 Reboot your server.

clib.nlm nit.nlm requestr.nlm

lib0.nlm nlmlib.nlm threads.nlm

clib.nlm nit.nlm requestr.nlm

lib0.nlm nlmlib.nlm threads.nlm
Getting Started 33

34 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

2
novdocx (en) 11 D

ecem
ber 2007
2Basic NLM Concepts

This section covers basic NLM concepts such as basic NLM functionality and how to develop an
NLM.

2.1 What NLMs Are
NetWare Loadable Modules (NLMs) are the building blocks used to customize the NetWare®
operating system. NLMs are built to run in server memory with the NetWare operating system
(starting with NetWare 5.0, they can be loaded into either operating system or protected address
space).

You can load or unload NLMs to or from server memory while the server is running. Once loaded
on a server, an NLM becomes part of the OS. As such, it can directly access NetWare services
provided by that server without using a service protocol such as the Novell NCP service. NLMs can
also call functions that use NCP services for access to remote servers.

The server functions that NLMs can access are collectively called the NetWare API. A fundamental
part of the NetWare API is a core set of APIs that provide a direct programming link into the
services of the NetWare operating system.

2.2 What NLMs Do
NLMs add openness, modularity, and flexibility to the NetWare operating system:

They can be loaded and unloaded as needed.
They can allocate and deallocate memory as needed.
They can link with and access the NetWare operating system and other NLMs.

NLMs, such as print and communication servers and server-based utilities, enable NetWare
administrators to extend the flexibility and capability of their networks.

2.3 Misconceptions About NLMs
As NLM development has been discussed over time, two misconceptions have worked their way
into rumors:

NLMs are hard to develop.
NLMs have no future—they are basically dead.

The following information is a more accurate picture for both of these ideas:

2.3.1 NLMs Are Not Hard to Develop
NLMs can be written with nothing but standard ANSI C, although nearly all NLMs are written as
extensions of the NetWare operating system and therefore require use of at least parts of the
NetWare API sets.
Basic NLM Concepts 35

36 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Every development environment has its challenges, however, and NLMs are no exception. The
following are the major challenges, each of which can be fairly readily met:

Learning the NetWare API set—however, mastering the APIs is part of learning to program to
any platform.
Learning to unload an NLM gracefully—a well-tested method for doing that is documented in
this NDK.
Mastering the NLM development environment—compiling, linking, using NetWare dynamic
link libraries, etc. This problem is also fairly easy to overcome.

2.3.2 NLMs Are Not Dead
NLMs are the executables for the NetWare environment, and NetWare sales continue to be strong.
This means that the need for new NLMs will continue well into the future.

As 64-bit solutions are being developed by all major software vendors including Novell,a substantial
market space serviced by NetWare 5.x and 6.x will exist for years to come, and many of those
systems will need NLM solutions. The need for NLMs inside a company and the market for NLMs
to outside companies is still strong.

2.4 Developing NLMs
NLM development can become quite complex, as is true of all environments. However, as
Section 2.3, “Misconceptions About NLMs,” on page 35 explains, it is possible to write a simple
NLM using only ANSI standard functions and to have it running on the server within minutes of
setting up the development environment. If you haven't written an NLM and would like to produce
one quickly, primarily to learn the process, Section 1.6, “Writing a Basic NLM,” on page 32
explains how to do that.

With experience, practice, and communication with other NLM developers, you can develop NLMs
that use not only ANSI C functions, but the rich set of APIs that ship with this NDK. Your NLMs
can make use of services that do everything from allocating memory to monitoring and reacting to
various file system events. When you learn the connection models of NetWare servers and clients,
you can use cross-platform as well as server-specific functions. It's even possible now to write DLLs
that run on a NetWare server.

2.5 Loading and Unloading NLMs
NLMs can be loaded and unloaded from the server while the server is running. You can load NLMs
from the console screen with the NetWare console command LOAD or with the spawnlp and
spawnvp functions that are included in the NetWare API. The NetWare API can be passed
parameters (and can pass parameters to an NLM) whenever a NetWare API application is loaded.

This section covers the following topics:

“Using Search Paths” on page 37
“How NLMs Are Loaded” on page 37
“Using the LOAD Command” on page 38
“Setting Environment Variables” on page 41
“Autoloading Prerequisite NLMs” on page 41
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
“Loading Multiple NLMs” on page 41
“Importing and Exporting NLMs” on page 41
“Unloading NLMs” on page 42

2.5.1 Using Search Paths
Before loading NLMs, you can specify a search path using the NetWare console command
SEARCH. For example:
SEARCH ADD C:\SERVER

To restrict the loading of NLMs, use the SECURE CONSOLE command. This command prevents
anyone from loading unauthorized NLMs. After the console is secured, you can load only NLMs
that reside in any search path.

Regardless of how an NLM is loaded, there are certain rules that the NetWare operating system
follows to find the NLM:

If you specified an absolute path, then the search path is not used. An absolute path must
contain a NetWare volume name or a drive letter. Absolute paths are not allowed if the console
is secured.
If you specified a relative path, it is appended to each of the entries in the search path until the
NLM is found or all of the entries have been tried.

The operating system must be able to find the NLMs when a LOAD command is issued. You can
load NLMs from a floppy diskette on the server, from the DOS partition of a hard disk on the server,
from the server’s SYS:SYSTEM directory, or from other locations.

For example, to load a utility module named TEST.NLM, you can use the LOAD command at the
server console in any of the following ways (on NetWare 5.x and 6.x servers, it's not necessary enter
the command word "load"):

To load from the current working directory (CWD) on disk drive A:, enter the following:
LOAD A:TEST

To load from the CWD on the DOS partition of the hard disk, enter the following:
LOAD C:TEST

To load from the root directory on the SYS: volume on the server, enter the following:
LOAD SYS:TEST

To load from a search path (as specified by the SEARCH command) on the server, enter the
following:
LOAD TEST

2.5.2 How NLMs Are Loaded
The executable file that first establishes the NetWare operating system is SERVER.EXE. This file
contains two parts: a loader and SERVER.NLM. When you start a NetWare server by running
SERVER.EXE, the loader is put into memory first. It then loads SERVER.NLM, which contains the
NetWare OS kernel.

Both the loader and SERVER.NLM must be in memory before you can load NLMs. The loader
knows how to load NLMs, but it cannot do so without allocating memory for them. Because
Basic NLM Concepts 37

38 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SERVER.NLM maintains the list of available memory, the loader and SERVER.NLM must work
together to load NLMs.

All NLMs consist of a header and the code and data. The header component of an NLM contains the
following three lists:

Autoload list
Includes the prerequisite modules that must be loaded before a given NLM can function.

Import list
Includes the names of services and data that the NLM needs to use in order to function.

Export list
Includes the names of services and data that the NLM provides for use by other modules.

When you load an NLM with the LOAD command, the loader first processes the NLM header,
which includes the autoload, import, and export lists. Then the loader loads the actual code and data
of the NLM.

As NetWare loads the NLM into the server’s memory, it resolves all unresolved externals and
initializes the module. The basic steps in loading an NLM are as outlined here:

1. The loader processes the NLM header.
2. The loader loads the code and data of the NLM by requesting memory from SERVER.NLM

and loading the code and data at the memory addresses allocated. (If the NLM has been
compressed with NLMPACK, the loader unpacks the NLM as it is loaded.)

3. The loader maintains a master list of available services and their addresses. (The loader builds
this list by processing the export lists of NLMs as it loads them.) The loader resolves the names
in the imported lists of the NLM (that is, substitutes the service’s address in memory for its
name throughout the NLM code). This process allows NLMs to call services directly by calling
their code.

2.5.3 Using the LOAD Command
The NetWare API can be passed parameters whenever a NetWare API application is loaded. The
LOAD command can include:

Command line parameters that are passed to the NLM
NetWare API runtime parameters

The syntax for the LOAD command is as follows:
LOAD loadable-module-name [parameter1 parameter2 ...]
[(CLIB_OPT)/CLIB-parameter1/CLIB-parameter2 ...]

The following summarizes parameters used with the LOAD command.

loadable-module-name
(Required) The name of the module to load can be specified with or without a filename
extension.
The path information precedes the loadable module name. If you specify an absolute path, then
it must begin with a DOS drive letter or a NetWare volume name. If you do not specify path
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
information, then the server assumes that the loadable module is located in the server’s search
path.

parameter1 parameter2 . . .
(Optional) You can pass one or more parameters to the module.

WARNING: Once you pass a redirection command (such as <SYS:/file.ext), you cannot pass
any other parameters. All parameters must precede the redirection command.

(CLIB_OPT)/ CLIB- parameter1 / CLIB-parameter2 ...
(Optional)You can specify one or more NetWare API runtime parameters (see below).

NOTE: The (CLIB_OPT) parameters must not have any embedded blanks.

CLIB_OPT parameters include the following:

/Pcwd
Specifies the initial CWD. This allows you to specify an initial CWD other than the root for
this execution of the NLM.
LOAD TESTER (CLIB_OPT)/PVOL1:PDEMO

/> filepath
Redirects the second-level output, stdout, to the specified file path.
The following example executes an NLM called BINDDUMP whose second-level output is to
be written to SYS:TEMP\BINDERY.LST.
LOAD BINDDUMP (CLIB_OPT)/>SYS:TEMP\BINDERY.LST

When specifying paths, use "\" as the path delimiter because "/" is interpreted as a new option.
(You can also use redirection in ways similar to how it is done in DOS and UNIX.)

WARNING: Once you pass a redirection command, you cannot pass any other parameters. All
parameters must precede the redirection command.

/< filepath
Redirects the second-level input, stdin, from the specified file path as in this example:
LOAD TESTER (CLIB_OPT)/<SYS:TEST\TEST1.SCR

When specifying paths, use "\" as the path delimiter because "/" is interpreted as a new option.

WARNING: Once you pass a redirection command, you cannot pass any other parameters. All
parameters must precede the redirection command.

See Stream I/O Concepts (Single and Intra-File Services) for more information about second-
level I/O. (You can also you redirection in ways similar to how it is done in DOS and UNIX.)

/E filepath
Redirects the second-level error stream, stderr, to the specified path. (You can also you
redirection in ways similar to how it is done in DOS and UNIX.)

/L
There are two /L parameters that can be used when loading an NLM. The command
LOAD /L loadable_module
Basic NLM Concepts 39

40 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
loads your NLM code into the data segment. This option is used when the compiler places
character constants in your code segment.
The second /L parameter is as follows:
LOAD loadable_module [optional parameters] (CLIB_OPT)/L<number>

where number is the packet signature level as specified by the NCP Packet Signature security
enhancement, which protects servers and clients using the NCP by preventing packet forgery.
Packet signature level options are:

0-CLIB does not sign packets
1-CLIB signs packets only if the server requests it (server option is 2 or higher)
2-CLIB signs packets if the server is capable of signing (server option is 1 or higher)
3-CLIB signs packets and requires the server to sign packets (or logging in will fail).
The default NCP packet signature level is 1 for clients and 2 for servers. The default level for
CLIB is 1.
To change the default packet signature level for all NLMs that use CLIB, use the following
command format when you load CLIB:
LOAD CLIB/L<number>

where number is the signature level.
To change the packet signature level for a single NLM, use the following command format
when you load the NLM:
LOAD loadable_module [optional parameters] (CLIB_OPT)/L<number>

/N
Specifies the initial name space. The optional name space specifications are as follows:
/N[DOS|MAC|UNIX|FTAM|OS2|LONG]

(Internally OS2 and LONG are defined as the same value.)
A load command with the initial name space specified might appear thus:
LOAD TESTNLM (CLIB_OPT)/NLONG

/S
Specifies a remote server login, as shown here:
/S servername\userID [\password]

/Y
This option is used when you receive the console error message "An NLM has been loaded that
does not allow low priority threads to be run. Set `Upgrade Low Priority Threads’ to ON or
unload the NLM." This condition occurs when an NLM that does busy waiting or spin locks
with ThreadSwitch (instead of with ThreadSwitchWithDelay) is loaded on a NetWare server.
For NLMs that were developed using the NetWare API, you should use the /Y option if you
receive the above error message. This option causes the NLM to use the handicapped CPU-
yielding functions.
See Relinquishing Control (NDK: NLM Threads Management) for information on how to write
NLMs that do not create this problem.

Multiple options can be used together as show in the following example:
LOAD TESTER (CLIB_OPT)/>SYS:OUT/PSYS:SYSTEM
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
2.5.4 Setting Environment Variables
You can set environment variables from the command line by typing the "setenv" command,
followed by the name of your variable and an equals sign (=), followed by the value for the variable.

The following example sets a path environment variable:
setenv PATH = C:\windows\

To clear an environment variable, type the "setenv" command, followed by the name of your
variable and an equals sign (=), followed by nothing, as in the following example:
setenv PATH =

2.5.5 Autoloading Prerequisite NLMs
You can specify more than one prerequisite NLM by including the MODULE command in a linker
definition file. You can separate the NLM names with commas or use multiple MODULE
commands on separate lines.

If different NLMs can satisfy the same requirements, you can specify those modules by separating
their names with a vertical bar (|). The OS searches for these modules in the order specified, loading
the first one that it finds.

The list of NLMs that need to be autoloaded are specified with the linker command MODULE as
follows:
MODULE module_name1, module_name2,..

module_name1 and module_name2 are the filenames of the NLMs to be autoloaded.

An NLM fails to load if the loader cannot find any of the modules listed in the autoload list of the
NLM, or if there is not enough memory to load them.

2.5.6 Loading Multiple NLMs
The NetWare API allows multiple NLMs to run simultaneously. Most NLMs rely on services that
other modules provide. This interdependence is why many NLMs must be loaded in a certain order.
If an NLM requires services provided by other modules, it must be loaded last. For example,
STREAMS.NLM must be loaded before loading CLIB.NLM as follows:
LOAD STREAMS
LOAD CLIB

Or, because CLIB.NLM autoloads STREAMS.NLM, you could simply enter the following:
LOAD CLIB

If you try to load an NLM that depends on the services of another NLM that is not present, unless
the dependent NLM autoloads the provider NLM, the dependent NLM will not load.

2.5.7 Importing and Exporting NLMs
After processing the autoload list, the loader processes the import list and then the export list. The
loader checks the import list of the NLM, name by name, to verify that it can resolve the name of
each service. An NLM fails to load if the loader cannot resolve one or more of the names in the
import list. (Any names that cannot be resolved are displayed on the system console screen.)
Basic NLM Concepts 41

42 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Once the import list of the NLM has been processed successfully, the loader processes the export list
(the list of services that the NLM provides). The loader adds each name in the export list to its
master table of available services.

2.5.8 Unloading NLMs
NLMs can be unloaded while the server is running. When an NLM is unloaded, it must return all the
memory and resources that the server previously allocated to it. The operating system generates a
warning for each resource that has not been explicitly released.

You can unload NLMs manually by means of the console command UNLOAD entered at the
command line, or they can unload themselves. When an NLM exits by means of UNLOAD, a signal
is sent to the signal SIGTERM handler if one is registered (it should be for nearly all NLMs). The
signal handler, if properly written, directs all threads in the NLM to free all resources they hold and
to terminate themselves, with the exception of the main thread, which returns. A function can be
registered with AtUnload to be called, but all resources should have been freed with the signal
handler first. The functions registered with atexit can be called as well.

NOTE: A detailed explanation of the unload process is presented in “NLM Unload Process” on
page 51.

You can use the UNLOAD command to unload programs. The syntax for the UNLOAD command
is as follows:
UNLOAD loadable-module-name

where loadable-module-name is the name of the NLM you want to unload.

2.6 Introduction to CLIB
CLIB is a collection of libraries that provide core server-side functions.

These libraries load automatically when the server is started. You can also load them manually by
typing load clib at the command prompt (simply clib for NetWare 5.x or 6.x servers).

When CLIB.NLM is loaded, its dependency NLM libraries, as listed below, also load automatically
unless they are already loaded:

THREADS.NLM—Support for NetWare threads
REQUESTR.NLM—NetWare Requester support
NLMLIB.NLM—POSIX and NetWare support
NIT.NLM—Various NetWare server functions, many of which are also offered in cross-platform

libraries through CAL32NLM.NLM.

These modules collectively contain NetWare server API functions. Your NLMs can call these
functions to perform a wide variety of services, including the following:

Network security, management, and accounting
High- and low-level I/O
String and file manipulations
Memory allocation
Thread control, synchronization, and communication
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Data conversion
Mathematical calculations
Screen management

In addition, the library contains a set of Advanced Services that include functions for dynamic
arrays, event reporting and management, extended attributes, complex memory allocation, and
console command registration.

2.6.1 Cross Platform NLM Libraries
In addition to the CLib modules, the CLib SDK also includes cross platform (XPlat) libraries for
NLM development. They are called XPlat because these libraries also are available for Windows
client development. These library modules include the following:

AUDNLM32.NLM
CALNLM32.NLM
CLNNLM32.NLM
CLXNLM32.NLM
DSAPI.NLM
DSEVENT.NLM
LOCNLM32.NLM
NCPNLM32.NLM
NETNLM32.NLM
UNICODE.NLM

2.6.2 Prelude Object Files
The CLib imports directory contains the following prelude files.

Basically, clibpre.obj is nwpre.obj with a call to the following functions that vendor runtime
libraries implement to perform their C++ initialization and clean-up.
int __init_environment(void *reserved)
{
 return 0;
}

File Compiler Description

clibpre.gcc.o GNU C/C++ Prelude object file

clibpre.o Metrowerks CodeWarrior Prelude object file

clibpre.obj Watcom Newest version of the prelude object file. NLMs
linked with this file and loaded on versions of
NetWare prior to NetWare 5.1 SP4 (including
NetWare 4.x) must also be linked to a vendor-
specific runtime library.

nwpre.obj Watcom Older version of the prelude object file.

prelude.obj Watcom Oldest version of the prelude object file. For new
NLM developement, do not link to this file.
Basic NLM Concepts 43

44 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
int __deinit_environment(void *reserved)
{
 return 0;
}

2.6.3 CLIB Manuals
Since the CLIB libraries allow for development of a cross-platform NLM, cross-platform Windows
application, and server-only NLM development, the information about these libraries has been
divided into the following manuals:

Manual Cross-Platform NLM-Only

NLM Development Concepts,
Tools, and Functions

None. NetWare operating system
functions for events, resource
tags, symbols, screen handling,
debugging, settable parameters,
etc.

Getting Started with NetWare
Cross-Platform Libraries for C

Information about using the
Cross-Platform libraries for client
and server development.

None.

NLM and NetWare C Program
Management

A few date/time and data
manipulation functions.

Bit, character type, data
manipulation, library, math,
memory, string, and time
functions.

NLM Threads Management None. Thread, semaphore, and process
(such as abort and system)
functions.

Connection, Message, and NCP
Extension

Connection, message, and NCP
extension functions.

Connection and message
functions.

Multiple and Inter-File
Management

Data migration, deleted file, file
system manipulation, file system
monitoring, name space, path
and drive functions.

File engine (FE*) I/O functions,
file system manipulation
functions, name space functions,
path and drive functions, and NIT
functions for data migration and
file system manipulation.

Single and Intra-File
Management

AFP, file locking, semaphores,
and extended attribute functions.

Direct file system functions, DOS
partition functions, file I/O
functions, stream I/O functions,
and NIT functions for file locking,
semaphores, and extended
attributes.

Volume Management Volume information functions for
name, number, statistics, and
restrictions.

Volume information functions for
name, number, and statistics.

Client Management Requester version and NWCalls
management functions.

None.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Even though the software for the Novell eDirectory functions is included with the CLIB SDK, the
documentation for these functions is in the eDirectory Libraries for C (http://developer.novell.com/
ndk/ndslib.htm).

2.7 OS-Related Issues
Some services are available to the programmer because of the design of the OS. The following
topics discuss the OS features that are significant for NLM developers.

2.7.1 Preemptive and Nonpreemptive Environment
The NetWare operating system was originally designed without time slicing (preemption). All
NLMs had to relinquish control of the CPU by blocking or by explicitly yielding control. Beginning
with NetWare 5, the scheduler performs preemption, but only for NLMs that are linked with XDC
data. NLMs not linked for preemption are required to relinquish control to the operating system.

For NetWare 5 and later, you can design your application to run with or without preemption. If you
select nonpreemption, your threads will run until they knowingly call a function that blocks
(relinquishes control to the operating system). Because the operating system waits for threads to
block, nonpreemptive NLMs are expected to govern their use of the CPU time so as not to take
control of the CPU for indefinite periods of time.

NLM applications must either quickly complete the request, do things to regularly relinquish control
(such as I/O requests), or explicitly relinquish control by calling a function such as ThreadSwitch. In
general, the NLM should run for about .1 millisecond on a 1.6 GHZ processor and then relinquish
control.

Network Management Accounting functions, auditing
functions, and name retrieval
functions (for servers and trees).

Accounting and auditing
functions.

Server Management Server information functions
including statistics, console
privileges, version.

Management functions for logins,
set commands, NCF files,
loading/unloading NLMs,
mounting/dismounting volumes,
and TTS.

NIT functions for server
information and management.
Most NIT functions have an
equivalent Cross-Platform
function.

Internationalization Locale and multi-byte functions. Locale functions.

Unicode Unicode functions. None.

Bindery Bindery functions NIT bindery functions

Sample Code Examples of creating CLIB NLMs, with only a few cross-platform
examples. Many of these examples are no longer available in the
...\ndk\samples\clib_sample directory. To see what is available as
sample code and to access more cross-platform examples, see NLM
and NetWare Libraries for C (http://developer.novell.com/ndk/doc/
samplecode/clib_sample/index.htm).

Manual Cross-Platform NLM-Only
Basic NLM Concepts 45

http://developer.novell.com/ndk/doc/samplecode/clib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/clib_sample/index.htm
http://developer.novell.com/ndk/ndslib.htm

46 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
If you select preemption, you must still design your application so that it relinquishes control. You
cannot completely rely on XDC data and the preemption process to prevent your application from
taking control of the CPU for too long of an interval and thus precipitating a CPU hog abend.

2.7.2 Current Working Directory
In the NLM environment, each thread group has its own current working directory (CWD), as well
as a current working volume and a current server ID. However, there is no notion of "drive" in this
environment when you are referring to the NetWare file system.

CWDs for NLMs can be used by almost all NetWare API functions that take a pathname as an input
parameter. Any time a server and volume are specified in a pathname, the pathname is absolute. On
the other hand, if the pathname does not contain a server or volume, the path is considered relative to
the CWD.

2.7.3 Connection Numbers and Task Numbers
Connection and task numbers are important NLM programming considerations. For information see
Connection Numbers and Task Numbers in Connection Number and Task Management Concepts
(NDK: Connection, Message, and NCP Extensions).

2.7.4 Screens and the NetWare OS
The main screen for the server is the console screen. This screen allows the operator to issue
commands directly to the OS. This is also the screen where NLMs are loaded.

NLMs can have zero, one, or multiple screens. These screens display on the same monitor as the
console screen. The OS switches between screens when the following happens:

The operator presses Ctrl+Esc
This displays a menu of the names of the currently open screens. The operator then enters the
number of the screen to switch to.

The operator presses Alt+Esc
This switches the current screen to the next screen in the list of open screens. This allows the
operator to cycle quickly between screens.

A running thread changes the active screen
This is done when a thread calls DisplayScreen (page 242).

The NLM that owns the current screen terminates
When an NLM terminates, its screens are destroyed and the console screen becomes the current
screen.

NOTE: Keystrokes are accepted only for the currently displayed screen. An NLM that is waiting for
input does not receive it until the operator switches to its screen and enters the needed keystrokes.

For an example of creating and using multiple screens, see Multithreaded Programming (NDK:
NLM Threads Management).
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
2.7.5 Screen Types
NetWare 5.x and 6.x servers have the following types of screens:

System Console Screen
Server console commands are entered at the command line of the System Console Screen. This
screen is always present. On NetWare 5.x servers, NLMs can write to this screen and receive
input from its keyboard. On NetWare 6.x servers, NLMs cannot write to this screen or receive
input for it. They can write only to the System Logger Screen or to their application-owned
screen.

System Logger Screen
This screen is only present on NetWare 6.x servers. This screen logs all system messages as
well as the output from NLMs that write to the system console. NLMs cannot get characters
from this screen's keyboard because the screen accepts only a few commands related to
scrolling and other such activities.

Debug Screen
The Debug Screen is accessed from within an assembly or C program or through a special key
sequence. This screen is hidden unless the server is at a breakpoint.

Router Screen
This screen displays whenever the TRACK ON console command is executed.

Application Screens
An NLM can have zero or more application screens which are regular or popup. Popup screens,
used to present instructional or error messages, are overlaid on regular screens. In some cases,
an NLM might not require a screen (a library NLM, for example). An NLM might also write to
the System Console Screen (NetWare 5.x), System Logger Screen (NetWare 6.x), or to the
screen of another NLM (if the other NLM cooperates).
On NetWare 6.x servers, NLMs can receive input only from an application-owned screen. On
NetWare 5.x servers, NLMs can receive input from the System Console Screen or from an
application-owned screen.

2.8 Structure of an NLM
An NLM must have initialization code, a main body of code, and termination code. The following
figure shows the structure of an NLM.
Basic NLM Concepts 47

48 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Figure 2-1 NLM Structure

2.9 NLM Startup
When the NLM first loads, an initialization function (_Prelude) performs the following tasks:

Establishes the context of the NLM for the NetWare API.
Establishes a default thread group
Creates a new thread, belonging to the default thread group, and starts the thread executing at
the main function.

_Prelude is part of the prelude object file. If the environment is set up correctly, linking in the object
file and calling the _Prelude function are both automatic and transparent. For more information
about prelude object files, see “Prelude Object Files” on page 43.

2.9.1 Reentrant NLMs
A reentrant NLM can be loaded multiple times, but the server keeps only a single image of the NLM
code in memory, rather than a code instance for each load.

Nonreentrant NLMs call the startup function _Prelude each time they are loaded. Reentrant NLMs,
on the other hand, call _Prelude only on their initial load. They do not call _Prelude on reentrant
loads.

To write a reentrant NLM, create a startup function that checks to see if the NLM has previously
been loaded. On the initial load of the NLM, have your startup routine call _Prelude, passing
_Prelude the parameters that the OS passed into your startup function. (_Prelude calls the main
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
function of your NLM.) On subsequent loads of the NLM, do not have your startup routine call
_Prelude ; instead, have it handle the reentrant setup and then call the main function of the NLM
itself.

In the following sample, the startup function is called MultipleLoadFilter. This function uses a flag
called gAlreadyLoaded to indicate whether the current load of the NLM is the first load or a
subsequent load.

Reentrant NLM
typedef struct resource_list
{
 struct resource_list *next;
 int screenHandle;
} ResourceList;

int gAlreadyLoaded = 0;
int gMainThreadGroupID;
ResourceList *gResList = (ResourceList *) NULL;
typedef void (*PVF) (void *);

LONG MultipleLoadFilter (
 LoadDefStructPtr NLMHandle,
 ScreenStructPtr initErrorScreenID,
 BYTE *cmdLineP,
 BYTE *loadDirPath,
 LONG uninitDataLen,
 LONG NLMFileHandle,
 LONG cdecl (*readFunc)())
{
 int myThreadGroupID;
 if (!gAlreadyLoaded) /* first time through!!!!! */
 return _Prelude(NLMHandle, initErrorScreenID, cmdLineP,
 loadDirPath,uninitDataLen, NLMFileHandle, readFunc);
 /* subsequent times through...*/
 myThreadGroupID = SetThreadGroupID(gMainThreadGroupID);
 BeginThreadGroup((PVF) main, NULL, NULL, cmdLineP);
 SetThreadGroupID(myThreadGroupID);
 return 0L;
}

void main(int argc,char *argv[])
{
 int myThreadGroupID;
 ...
 char **argV;
 if (!gAlreadyLoaded)
 {
 gMainThreadGroupID = GetThreadGroupID();
 RenameThread(gMainThreadGroupID, "Sample-main");
 gAlreadyLoaded = 1;
 firstTime = TRUE;
 argV = argv;
 AtUnload(Cleanup);
Basic NLM Concepts 49

50 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
 }
 else
 {
 char threadName[17+1+13];
 sprintf(threadName, "Sample-#%d", gAlreadyLoaded);
 myThreadGroupID = GetThreadGroupID();
 RenameThread(myThreadGroupID, threadName);
 gAlreadyLoaded++;
 firstTime = FALSE;
 argV = args;
 }
 scrH = CreateScreen("Sample Reentrant NLM", 0);
 if (!scrH)
 {
 ConsolePrintf("\nUnable to create screen...");
 goto NoScreenExit;
 }
 LogScreenHandle(scrH);
 SetCurrentScreen(scrH);
 printf("\nSample Reentrant NLM: %d\n", gAlreadyLoaded);
...
}

Your startup function must return zero. If it does not, the operating system displays the message
"Attempt to reinitialize reentrant module FAILED" even if the NLM successfully loads.

When an NLM is loaded, its startup thread is an operating system thread, which usually doesn’t have
CLIB context until _Prelude is called. In the example code above, the startup function
MultipleLoadFilter calls _Prelude the first time the NLM is loaded, and _Prelude gives the thread
CLIB context and creates a default thread group ID. In the example, main saves the default thread
group ID in gMainThreadGroupID the first time the NLM is loaded. On subsequent loads of the
NLM, MultipleLoadFilter gives the operating system thread CLIB context by setting the thread
group ID using the ID stored in gMainThreadGroupID.

You specify that an NLM is reentrant when you link its object modules. In the linker definition file,
use the REENTRANT option to specify that the NLM is reentrant. Use the START option to specify
the function you want to use as the startup function. The following is an example of a WLINK
definition file:
form novell nlm ’Reentrant NLM’
name rentrant
option reentrant
option start = MultipleLoadFilter
option case,nodefaultlibs
file prelude
file rentrant
import @clib.imp

The REENTRANT option specifies that the NLM is reentrant. The START option specifies the
name of the function to call when reentering the NLM. Directive files are discussed in “Specifying a
Linker Definition File” on page 22.

For each instance that you use a reentrant NLM, you must load the NLM with the LOAD command.
However, every instance of the reentrant NLM is unloaded with a single UNLOAD command. For
this reason you must keep track of all of the resources that are used by all instances of the NLM and
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
free all of them when the NLM is unloaded. (RENTRANT.C shows this by keeping a list of
screens.)

2.10 NLM Termination
Using functions from the NetWare API, an NLM can control the termination process. An NLM
should include mechanisms to handle the following:

Unload, such as when the NLM is unloaded at the system console command line, before the
NLM exits on its own.
Self-termination, such as when the NLM exits on its own.
Abnormal exit, such as when an error causes unexpected shutdown, such as when abort and
raise are called.

For information about terminating an NLM gracefully see Section 4.2, “Terminating an NLM,” on
page 71.

2.10.1 NLM Unload Process
The NLM unload process, as shown in the following figure, occurs only when an NLM is unloaded
from the system console command line. The NLM unload process is a sequence of steps, some
performed by the NLM, and others performed by the NetWare OS or by the NetWare API.
Basic NLM Concepts 51

52 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Figure 2-2 NLM Unload Process

2.10.2 NLM Self-Termination Process
The NLM self-termination process, as shown in the following figure, occurs when an NLM calls
exit or ExitThread or when all threads in an NLM terminate. The NLM self-termination process
consists of two phases, with the first phase performed by the thread that caused the termination and
the second phase performed by an OS thread.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Figure 2-3 NLM Self-Termination Process

2.10.3 NLM Abnormal Exit Process
The NLM abnormal exit process, as shown in the following figure, occurs only when the NLM calls
the _exit or abort function. The NLM abnormal exit process is a sequence of steps, some performed
by the NLM, and others performed by the NetWare OS or by the NetWare API.
Basic NLM Concepts 53

54 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Figure 2-4 NLM Abnormal Abort Process

2.10.4 Following Exit Steps
The registered function calls and signal raising shown in the figures that show exit steps occur only
if the NLM has specified them, using signal, AtUnload, and atexit (NDK: NLM Threads
Management). If no registered functions or signal handling exists in the NLM, the associated step is
skipped.

If a signal handler is implemented properly, use of AtUnload and atexit might not be needed at all
(see Section 4.2, “Terminating an NLM,” on page 71).

2.10.5 CHECK Function
In the first step of the unload process, the NLM calls the CHECK function, but only if it has been
specified. NLMs specify CHECK functions in the linking phase using directives. For example, if
CheckFunction were the name of the function to be called as the CHECK function, the WLINK
directive would be as follows:
option check = CheckFunction
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
The purpose of the CHECK function is to determine if the NLM is in a state in which it can unload
safely. If so, the function should return zero, indicating that the unload process can continue
normally.

If the function determines that the NLM cannot be unloaded safely, it should display a warning
message on the system console screen and return a nonzero value. If the NetWare operating system
receives a nonzero return value from the CHECK function, it issues the following message:
Unload module anyway? n

If the above message appears, the system console operator can abort the termination process and
allow the NLM to continue its normal operation.

NLM termination code should not be placed in the CHECK function.

IMPORTANT: The CHECK function is run by an operating system thread that by default does not
have CLIB context in any NetWare version. If your CHECK function calls any NetWare API
functions that need CLIB context, you must give the calling thread CLIB context by calling
SetThreadGroupID (NDK: NLM Threads Management).

The following is a sample CHECK function:
int CheckFunction()
{
 /* If you need context information, put it here */
 if(NLMIsBusyRightNow)
 {
 ConsolePrintf(
 "That NLM is currently in use.\r\n");
 return 1;
 }
 return 0;
}

Given the sample CHECK function above, if the operator attempted to unload HELLO.NLM while
it is busy, the following would be the command and output on the console:
:unload hello
That NLM is currently in use.
Unload module anyway? n
:

This method does not prevent an operator from continuing with the unload process. It merely
provides a meaningful message that the operator can use in deciding whether to continue the unload.

In most situations, you would want to allow the NLM to be unloaded. However, there might be a
reason that you do not want anyone to unload the NLM without shutting the server down. In this
case, you need to ungetch (page 215) an `n’ to the system console. This can be done with the
following code:

Causing the Server to Shut Down When an NLM is Unloaded
#include <stdio.h>
#include <conio.h>
#include <process.h>

int sysThreadGroupID
Basic NLM Concepts 55

56 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
main()
{
 sysThreadGroupID = GetThreadGroupID();
 ...
}

int NWNoUnload()
{
 LONG OldScrID;
 LONG NewScrID;
 int TGID;

 // give the OS thread CLIB context
 TGID = SetThreadGroupID(sysThreadGroupID);

 OldScrID = GetCurrentSceen
 NewScrID = CreateScreen("System Console",0);
 If(OldScrID != NewScrID)
 SetCurrentScreen(NewScrId);
 ungetch(’n’);
 if(OldScrID != NewScrID)
 {
 SetCurrentScreen(OldScrID);
 DestroyScreen(NewScrID);
 }

 SetThreadGroupID(TGID)
 return -1;
}

You can use SetNLMDontUnloadFlag to set an NLM so it cannot be unloaded even if the console
operator says it is OK to unload the NLM. Use ClearNLMDontUnloadFlag to allow the NLM to be
unloaded after its don’t unload flag has been set (NDK: NLM Threads Management).

2.10.6 Signal Handling
In general, a signal is raised by the NetWare API when a particular program condition occurs.
However, the NLM itself can raise a signal by calling raise (NDK: NLM Threads Management).

Signal handling allows previously registered functions to gain control of critical shutdown
processes. The following are typical signals your NLM might handle:

SIGTERM
This ANSI standard signal is the most frequently used signal, and is raised when the NLM is
unloaded from the console command line. Because the NetWare API raises the SIGTERM
signal only when the NLM is unloaded, you must raise the signal yourself when exiting with
ExitThread or exit. You can raise the signal using raise (NDK: NLM Threads Management).

SIGABRT
This signal is raised only during abnormal exit of the NLM, such as stack overflow. In
abnormal exit, the NLM calls abort, which raises the SIGABRT signal (NDK: NLM Threads
Management).
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SIGINT
This signal is raised when the operator presses Ctrl+C during screen output and if the NLM
screen’s CtrlCharCheckMode is set to TRUE (default). This does not affect an NLM if the
current screen is the System Console screen.

In all cases of the termination process, threads are ended before the functions registered with
AtUnload and atexit are called. Without signal handling, resources allocated on a local stack, such as
local semiphores, cannot be released because thread stacks are freed before the functions registered
with AtUnload and atexit are called. (If you want to keep track of these resources after the treads are
terminated, you could store them in global or static variables.)

NLMs usually define signal handlers during initialization by calling a function such as the
following:
signal(SIGTERM,MySignalHandler);

The following is a sample signal handler:

NLM Signal Handler
int ThreadCounter;/* counts the number of threads running */
int ShutDownFlag; /* the signal handler sets this to TRUE */
#pragma off(unreferenced);
void MySignalHandler(int sigtype) /* sigtype is SIGTERM */
#pragma on(unreferenced);
{
 ShutDownFlag = TRUE;
 printf("Inside signal handler.
 Waiting for threads to stop ...\n");
 while(ThreadCounter > 0)
 {
 delay(500); /* wait half a second */
 }
 printf("Inside signal handler. Threads have
 stopped.\n");
}

By writing a signal handler function that defines a global flag, you can manage resources that are
allocated from a local stack. When the signal is raised, it can set a global flag that each thread in the
NLM reads. Those threads then can return their own resources and exit.

Whether you require the use of a signal handler depends primarily on whether you have local
resources that can be freed only by the thread of execution that allocated them. If your NLM uses
any stack-based resources, a signal handler is necessary for proper NLM shutdown.

2.10.7 AtUnload and atexit Functions

IMPORTANT: By the time the AtUnload and atexit functions are called, all NLM thread groups
have been destroyed. These threads therefore cannot be given thread group contex. You cannot use
any of the NetWare API functions that need context (for example, printf in Single and Intra-File
Services) while in the AtUnload and atexit routines. If you do, the server abends.
Basic NLM Concepts 57

58 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
To ensure that resources owned by NLM threads are properly freed, we highly recommend that you
implement a SIGTERM signal handler as explained in Section 4.2, “Terminating an NLM,” on
page 71.

During unloading, the AtUnload and the ANSI standard atexit functions are executed if they have
been defined. During self-termination, only the atexit functions are executed if they have been
defined.

The AtUnload and atexit functions can perform resource cleanup such as freeing memory, closing
semaphores, and so on. Each NLM can have a single AtUnload function and up to 32 atexit
functions.

NLMs can define the AtUnload function with a call such as the following:
AtUnload(NLMUnloadFunction);

The following example uses the AtUnload function:
char *myMemPtr; /* the pointer for this NLM’s memory */

main()
{
 AtUnload(NLMUnloadFunction);
 /* other NLM code would go here */
 printf("You may unload this NLM.\n");
}
void NLMUnloadFunction()
{
 if(myMemPtr != NULL) free (myMemPtr);
}

The AtUnload function calls one function only. Therefore, the called function should perform all the
necessary functions you want implemented at unload time.

NLMs usually specify their atexit functions with calls such as the following:
atexit(CloseMyFile);
atexit(CloseMySemaphore);
atexit(FreeMyMemory);

Successive calls to the atexit function create a list of functions to be executed on a last-in, first-out
basis.

The following example uses the atexit function:
FILE *myOpenFile; /* the file this NLM will open */
LONG mySemaphore; /* the semaphore this NLM will use */
char *myMemPtr; /* memory this NLM will allocate */

main()
{
 atexit(CloseMyFile);
 atexit(CloseMySemaphore);
 atexit(FreeMyMemory);
 /* other NLM code would go here */
 printf("You may unload this NLM.\n");
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
void CloseMyFile()
{
 // still have NLM level context
 if(myOpenFile != NULL)
 fclose (myOpenFile);
}

void CloseMySemaphore()
{
 if(mySemaphore != NULL)
 CloseLocalSemaphore(mySemaphore);
}

void FreeMyMemory()
{
 if(myMemPtr != NULL)
 free(myMemPtr);
}

If you do not handle cleanup through signal handling, you can use the atexit functions to clean up if
any of the following conditions are met:

The NLM calls exit.
The last thread in the NLM returns from its original function.
The NLM calls ExitThread with EXIT_NLM as the action code parameter, which causes
NetWare to unload the NLM. (If only one thread is running, calling ExitThread with
EXIT_THREAD as the action code parameter also terminates the NLM.)
The NLM is unloaded with the UNLOAD command.

If the NLM never self-terminates, then the only function that needs to be defined is AtUnload or a
SIGTERM signal handler. These functions gain control when the operator issues the UNLOAD
command.

2.10.8 Freeing Resources upon Exit
NLMs are responsible for freeing the resources they allocate, such as memory, sockets, screens,
devices, semaphores, and so on. NLMs should return all allocated resources to the OS during the
termination process. If an NLM has not freed all its resources upon program termination, NetWare
issues a warning message such as the following:
5/24/93 3:30pm: Module did not release 500 resources.
Module: Hello
Resource: Small memory allocations
Description: Alloc Short Term Memory

During NLM termination, NetWare and the NetWare API attempt to free all resources that the NLM
allocated. Local semaphores are the only resource that cannot be freed; they must be freed with calls
to CloseLocalSemaphore. If an NLM does not close all allocated local semaphores upon
termination, the server abends.

To avoid these problems, we strongly suggest that you use a signal handler. Most frequently, the
NLM is unloaded from the console command line with the unload command, and the SIGTERM
signal handler is appropriate (see Section 4.2, “Terminating an NLM,” on page 71).
Basic NLM Concepts 59

60 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

3
novdocx (en) 11 D

ecem
ber 2007
3More Advanced NLM Concepts

Besides the issues of the NetWare operating system, you need to understand the structure of NLMs
as well as services that are provided by the NetWare API. The following topics give an overview of
the features that should be used when writing code for an NLM.

This section covers the following topics:

Section 3.1, “Data and Parameters in NLMs,” on page 61
Section 3.2, “Threads, Multithreaded Programming, and Context,” on page 65
Section 3.3, “Screen Handling,” on page 65
Section 3.4, “NLM Synchronization,” on page 66
Section 3.5, “Cross-Platform Functions for NLM Development,” on page 67
Section 3.6, “Communicating with Other NLMs,” on page 68
Section 3.7, “Introduction to Remote Server Support,” on page 69

You should also understand the following concepts which are described in other sections of this
manual or in other CLib manuals.

Threads (NDK: NLM Threads Management)
Context and Thread Groups (NDK: NLM Threads Management)
Multithreaded Programming (NDK: NLM Threads Management)
Context (NDK: NLM Threads Management)
“Structure of an NLM” on page 47
“NLM Startup” on page 48
Relinquishing Control (NDK: NLM Threads Management)
Shared Memory (NDK: NLM Threads Management)
“NLM Termination” on page 51

3.1 Data and Parameters in NLMs
The following information describes alignment of data and passing C parameters.

3.1.1 Data Alignment
Data alignment describes data that is within the boundaries that are associated with each data type.
Each data type, BYTE, WORD, LONG, and DOUBLE have rules where their starting addresses
should begin. These rules are summarized in the following table.

Data Type Starting Address Boundary

BYTE Addresses that are multiples of one. No alignment issues.

WORD Addresses that are multiples of two.
More Advanced NLM Concepts 61

62 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
A variable that does not fit in these boundaries is not aligned. For example, a LONG is four bytes,
and should start on an address that is a multiple of four. If it does not start on the correct boundary, it
spans boundaries, as shown in the following figure.

Figure 3-1 Aligned vs. Unaligned Data

One place where alignment problems are common is in structure definitions. For example, the
structure
struct {
 LONG A,
 BYTE B,
 WORD C,
 LONG D
} BadStruct;

is a poorly-designed structure because the placement of B in the structure causes C and D to cross
long boundaries (they are not long-aligned). This is shown in the following figure.

LONG Addresses that are multiples of four.

DOUBLE Addresses that are multiples of eight.

Data Type Starting Address Boundary
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Figure 3-2 Poorly Aligned Structure

To solve the alignment problem (and to speed up the NLM), you can arrange the structure fields as
follows:
struct {
 LONG A,
 LONG D,
 WORD C,
 BYTE B,
} GoodStruct;

As shown in the following figure, this is a well-designed structure because it does not have
alignment problems. The fact that B is not on a long boundary is not an issue; BYTEs do not need to
be long aligned because a byte can never cross a boundary as a WORD or a LONG can.
More Advanced NLM Concepts 63

64 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Figure 3-3 Well-Aligned Structure

3.1.2 C Parameter Ordering
When C calls a function, it places the function parameters on the stack in the reverse order that they
appear in the call. (The rightmost parameter is the first parameter that C pushes on the stack.) For
example, when C issues the call
MyFunc(A, B, C);

it places the parameters on the stack in the order of C, B, and A, as shown in the following figure.

Figure 3-4 Parameter Ordering
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
3.2 Threads, Multithreaded Programming, and
Context
The NetWare operating system supports multiple threads running concurrently and has made
extensive use of threads. Although it is possible to write a simple NLM that uses only a single
thread, an understanding of threads, thread groups, and context is key to successfully creating NLMs
that are complex enough to provide very useful services.

Much more complete information about threads, multithreaded programming, and context can be
found in Context and Thread Groups and Context in the Threads Concepts chapter of NDK: NLM
Threads Management.

NOTE: Developers of drivers, stacks, and other low-level code, please refer to Context and
Development of Drivers, Stacks, etc. in the same documentation.

3.3 Screen Handling
You can create, switch, and destroy screens from within server-based applications. A single NLM
can have multiple screens, one screen, or no screens.

3.3.1 Screen Creation
Screens are created using CreateScreen (page 237), which returns a handle to the new screen, but it
does not switch to the new screen. You switch to a screen by passing a screen handle into
SetCurrentScreen (page 267). Once the current screen has been set, all output for functions such as
printf go to that screen.

The following function shows the creation of a new screen, which is then switched to be the current
screen. A new thread is created from within ThreadTwo, so the new thread belongs to the same
thread group as ThreadTwo. Therefore, its output goes to the new screen.
void ThreadTwo()
{
 int screenHandle;
 int oldScreen;

 screenHandle = CreateScreen("Second Screen", 0);
 oldScreen=SetCurrentScreen(screenHandle);
 BeginThread(ThreadThree, NULL, NULL, "THREAD THREE ");
 printf("This is printing on the second screen\n");
}

NOTE: Setting the current screen changes the current screen for all of the threads within the thread
group.

3.3.2 Screen Deletion
By default, NLM screens do not close automatically when the NLM terminates. Instead, the
following message is displayed at the bottom line of the monitor console when an NLM terminates:
<Press any key to close screen>
More Advanced NLM Concepts 65

66 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
This occurs because some preexisting applications that are being ported to the NetWare
environment might have been designed to write out a closing message to the screen and then
terminate their execution. The auto-closing feature would immediately destroy the screen, possibly
causing the operator to miss an important status message. If an application requires auto-closing,
you can turn off the default <Press any key to close screen> screen-closing mode by using
SetAutoScreenDestructionMode (page 265). Screens can also be closed within the NLM by calling
DestroyScreen (page 239).

For more information about screens and how to write to them, see “Screen Handling Concepts” on
page 221.

3.3.3 Input and Output Cursors
An NLM screen has two cursors associated with it: an input cursor and an output cursor. It is
possible to position both an input cursor and an output cursor on the NLM screens, giving your
application the ability to accept input at one location on the screen and write output at a different
location. If you want to mimic the DOS cursor, you can couple the two cursors, causing them to
always act as one cursor. (The default setting is to have the cursors coupled.) The cursor coupling is
set using SetCursorCouplingMode (page 268).

3.4 NLM Synchronization
The Synchronization Services functions, part of the NetWare API, enable applications to coordinate
access to network files and other resources. These services are divided into two categories: locking
and semaphores.

3.4.1 Locking
Locking enables a thread to gain exclusive access to a file-related resource, such as a file, physical
record, or logical record. Threads lock resources by entering the filename or record location and the
size into a log table, then issuing a single call to lock every resource listed in the table. Normally, a
thread logs a group of records and then locks them as a set. However, a thread can lock a single
record when it is placed in the log table.

This technique of logging files and records as a set and locking them all at once ensures that either
all files and records are locked or none are locked. Thus, the developer can prevent deadlock, in
which two or more applications reach a stalemate trying to access resources locked by the other
application.

IMPORTANT: Don’t use locking when you are using connection 0 because locking temporarily
disables the connection. This disables connection 0 for all modules using the connection. If you are
going to use locking, acquire a connection using LoginToFileServer.

3.4.2 Semaphores
Locking allows only one thread to access a file-related resource, but semaphores limit the threads
that can access network resources to a configurable number. You can also use semaphores to limit
the number of users of a particular resource.

Semaphores can be associated with resources, such as files, structures, and devices. There are two
types of semaphores:
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Network semaphores
These apply to resources available to servers and workstations on the network. For more
information on network semaphores, see Synchronization Concepts (Single and Intra-File
Services).

Local semaphores
These apply to resources available only to a single server. For more information on local
semaphores, see Interprocess Synchronization (NDK: NLM Threads Management).

If your NLM uses resources that could be used by a thread running on another workstation or server
on the network, you might use network semaphores.

You can use local semaphores among multiple NLMs; however, an NLM must either pass its
semaphore handles to other modules or export a function that returns the semaphore handles to other
modules.

If you are using semaphores to communicate between threads in the same NLM, you might use local
semaphores. Local semaphores are faster than network semaphores because they are simpler and
easier for the NLM to find and implement.

IMPORTANT: Don’t use network semaphores when you are using connection 0 because locking
temporarily disables the connection. This disables connection 0 for all NLM applications using the
connection. If you are going to use network semaphores, acquire a connection using
LoginToFileServer.

3.5 Cross-Platform Functions for NLM
Development
All cross-platform functions have now been ported to run on the NLM platform through the library
CALNLM32.NLM, also included in this NDK.

These functions provide a rich API set for developing NLMs, especially for applications designed as
utilities. Such applications can take advantage both of the rich and varied function set provided in
the cross-platform libraries and of the speed and server-centric functionality of CLIB.

This module provides the conceptual information necessary to understand NLM development with
cross-platform functions. For general development instructions, see Section 4.4, “Developing NLMs
with Cross-Platform Functions,” on page 76.

Central to understanding the cross-platform world in NLM development are two key concepts:

Differences in assumptions between cross-platform functions and CLIB functions
Differences in the connection model between these two environments

3.5.1 Differences in Assumptions
The cross-platform functions are developed under the assumption that a client needs access to
services provided by the network, rather than services provided by a specific server. Ultimately, of
course, all services are provided by one server or another, but it is entirely possible to be connected
to the network, receive the needed services, and not know which server is providing those services.
This development assumption is necessary for technologies such as NDS® to be implemented. NDS
More Advanced NLM Concepts 67

68 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
provides services through replicas that reside on servers, but the emphasis is on the NDS tree, not on
the server on which the replica of that tree resides. This assumption provides for a wide array of
services with the capability of enterprise level management and functionality.

In contrast, CLIB has always been designed to provide services on a specific server, often the server
on which the NLM is loaded. Because of this emphasis, CLIB does not have the concept of a
directory (other than a file system directory). All requests are directed to a specified server, and all
communication is server-centric. This assumption provides for very fast, very efficient access to
services on a server. It also allows for operations that deal specifically with files and directories
residing on a specific server.

3.5.2 Differences in Connection Models
Understanding these differences in connection model is central to successful development of NLMs
with cross-platform functions.

Cross-platform functions use a connection handle.
CLIB functions use a connection ID.
Connection handles are valid only for cross-platform functions, and connection IDs are valid
only for CLIB functions.

Connection Handles

A connection handle is a number returned from any of a number of cross-platform functions that
make an initial connection, such as NWCCOpenConnByName. A connection handle ultimately
resolves to a connection on a specific server, but it is possible to make such a connection and not
know which server the handle specifies. That would be the case if a connection were opened with
NWCCOpenConnByPref, which makes a connection with a preferred transport type and returns a
connection handle. However, it does not identify the server to which that connection is made.

IMPORTANT: You need a connection handle to call virtually every cross-platform function, but
never attempt to pass a connection handle to a CLIB function as a connection ID.

Connection IDs

A connection ID is a number that refers to a connection on a specific server. A connection ID is
returned from any CLIB function that make a connection, such as LoginToFileServer. A connection
ID can refer to a connection to the server on which the NLM is loaded or to a connection to a remote
server. This model incorporates the concept of a current connection, which remains in force until
some function changes the connection to specify a different server, which then becomes the current
connection.

IMPORTANT: Before a CLIB function that uses the services on or makes changes to the system of
a particular server can be called, a connection ID must be returned by calling a function such as
GetCurrentConnection.

3.6 Communicating with Other NLMs
A loaded NLM can call any function in any NLM that exports symbols. To use a function exported
by another NLM, the current NLM must include an IMPORT statement in its directive file. In
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
addition, the NLM that contains the function must include an EXPORT statement in its directive
file. For a discussion of directive files, see “Specifying a Linker Definition File” on page 22.

3.7 Introduction to Remote Server Support
Remote server support provides an NLM with the ability to access other servers on the network
through the functions in the NetWare API. A local server can be defined as the server on which the
NLM is loaded. Any other server on the internetwork to which an NLM can attach and log in to is
considered a remote server.

Servers are identified by a server ID number.

Do not confuse the server ID with the connection number. The server ID identifies a particular
server, whereas the connection number indicates a particular connection on a particular server.

NLM and thread group context play an important role in remote server support. Server IDs are
placed at the NLM level of context. At this level, all connections are accessible by any threads
running within the NLM. If any thread does a logout, all connections for all threads are cleared.

The current server, which is the server to which all calls are being directed, is maintained at the
thread group level. Any thread within a thread group can directly affect the current server of all
threads within that group.

To see if an NLM provides remote support, see the "Remote Servers" notation on its function
description.

3.7.1 Accessing Remote Servers
A remote server is accessed by calling LoginToFileServer with a server name attached to the object
name (server/object). If the specified server is found, it is assigned the next available server ID and
this number is added to a remote session table maintained by the NetWare API. This remote server
then has the same server ID for the life of the NLM even if all connections to it are logged out.
However, if the NLM terminates and is loaded again, the same server might not have the same
server ID.

Server IDs are assigned in the order in which logins are performed to remote servers. If an NLM
logs in to server A and then to server B, server A has server ID 1 and server B has server ID 2 for the
life of the NLM. If the NLM terminates and is loaded again but first logs in to server B, then server
B is assigned server ID 1. The local server (the one that is actually running the NLM) is always
assigned server ID 0, even if no login is performed to the local server.

Functions that use a pathname (such as chdir in Multiple and Inter-File Services) and close and open
in Single and Intra-File Services) now accept a server name as part of the path (server/volume:path).
If no server name is given, the path is assumed to be on the current server.

3.7.2 Changing the Current Server
The current server can be changed by calling SetCurrentFileServerID or chdir (Multiple and Inter-
File Services). chdir allows a server name as part of the path. If the specified server is found in the
remote session list, the current server ID is set to the specified server.
More Advanced NLM Concepts 69

70 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
3.7.3 Logging Out from Remote Servers
An NLM can break connections to remote servers by calling any of the following functions:

NWDSLogout--Logs an object out of the network leaving all server attachments and other
session connections intact.
Logout--Breaks all connections to all remote servers. This function does not allow an NLM to
selectively maintain groups of connections. (Requires bindery context.)
LogoutFromFileServer--Breaks all connections between a server and all logged objects from
the NLM. This function allows an NLM to specifically target those connections that it no
longer needs. (Requires bindery context.)
LogoutObject--Allows an NLM that logged in multiple times to selectively break a connection
between a particular logged-in object and a server. (Requires bindery context.)

3.7.4 Remote and Local Server Operations
Not all functions in the NetWare API work on remote servers.

The function descriptions include paragraphs that indicate whether the function supports only
remote server or local server operations, or both.

The paragraphs are labelled Local Server and Remote Server. N/A in this paragraph indicates that the
function does not support operation on the indicated type of server.

Additionally, for the type of server operations that the function supports, each function is further
identified as nonblocking or blocking.

Nonblocking functions do not cause the caller to lose its thread of execution (do not relinquish
control).
Functions that can block might cause the caller to relinquish control.
For example, a function that is blocking on a remote server would read "Remote Server:
blocking."
Finally, some functions can be either blocking or nonblocking depending on the circumstances
of the call. These functions are identified as "either blocking or nonblocking." When this is the
case, a note is included in the Remarks section to explain the circumstances under which the
function blocks.
evelopment Concepts, Tools, and Functions

4
novdocx (en) 11 D

ecem
ber 2007
4Advanced NLM Tasks

This describes common tasks associated with writing NLMs that make use of the CLIB function
libraries, that use multiple threads, and that directly or indirectly allocate memory and other
resources for threads owned by the NLM.

4.1 Developing Multithreaded NLMs
1 Set up the development environment as with Section 1.6, “Writing a Basic NLM,” on page 32.
2 Plan the threads of execution your NLM will run.

All NLMs have at least one thread contained in one thread group to accommodate the main
function. You can set up other threads to accomplish different tasks. For example, you might
set up a thread for each incoming client request.

NOTE: Threads and thread groups are discussed in Section 3.2, “Threads, Multithreaded
Programming, and Context,” on page 65.

3 Organize the threads into groups.
For example, you can place threads that use the same current screen and current working
directory in the same thread group.

4 Write the NLM source code as a server program, using the rules for NLMs in the
nonpreemptive environment (see “Preemptive and Nonpreemptive Environment” on page 45).
The NetWare API contains functions you can use in writing your NLM.

5 Compile, link, and debug the NLM using the procedures discussed in “NLM Development
Tool Concepts” on page 79.

4.2 Terminating an NLM
An NLM is not properly finished until it terminates successfully. Most NLMs ordered to termination
by entry of the UNLOAD command from the console. The following guidelines provide the
principles for bringing an NLM to a clean, complete conclusion.

4.2.1 Clean Up All Resources Allocated Anywhere in an NLM
Not only must an NLM free all resources it has allocated, but each thread created by an NLM must
also free any resources it has allocated.

Some NLM developers attempt to write an all-purpose cleanup procedure. However, such
procedures are difficult to write successfully because they must free resources they did not allocate.
Instead, write the NLM in such a way that every thread frees each resource it allocates when the
resource is no longer needed. This method is much more effective, and it ensures that the complete
NLM will not leave unfreed resources at termination.
Advanced NLM Tasks 71

72 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
4.2.2 Implement a Signal Handler (SIGTERM)
The advantage of using a SIGTERM handler instead of calling AtUnload or atexit is cleanup—when
NetWare executes the handler for these functions, all of the NLM threads have been summarily
terminated whether or not they have freed resources they allocated.

1 Using the signal function write a SIGTERM handler. Do not allow the handler to return until
your main thread and all other NLM threads have freed allocated resources and terminated.

2 As one method of SIGTERM handler implementation, create two global integer variables:
NLM_exiting, initially set to FALSE (0)
NLM_threadCnt, initially set to zero (0)

3 For the first statement in the NLM main function, increment NLM_threadCnt.
4 For the last statement in the NLM main function, decrement NLM_threadCnt.
5 In the course of running, ensure that all loops within the NLM monitor the NLM_exiting

variable. If NLM_exiting is ever set to TRUE, have all threads free any allocated resources and
self terminate.

The following code illustrates one signal handler implementation:
void NLM_SignalHandler (int sig)
 {
 switch (sig)
 {
 case SIGTERM:
 NLM_exiting = TRUE;
 while (NLM_threadCnt != 0)
 ThreadSwitchWithDelay()
 break;
 }
 return;
 }

4.2.3 Provide CLIB Context for the SIGTERM Handler if Needed
The SIGTERM handler is executed by an OS thread-the Console prompt thread. (Operating system
threads cannot take advantage of most functions offered in the NetWare SDK) While the SIGTERM
handler has control over this operating system thread, it accepts and executes commands from the
server console screen. That fact makes two things very important to understand:

The console command prompt will not be available until the signal handler releases it.
Your SIGTERM signal handler must not destroy the thread executing it because that would
destroy the command prompt. Therefore, do not call exit from your SIGTERM handler.

Under some circumstances, your SIGTERM handler might need to call NetWare SDK functions that
require full CLIB context. It is possible to borrow a CLIB context, effectively converting the
operating system thread to a CLIB thread. The following instructions explain how to do this:

1 Select an active thread in your NLM that already has CLIB context. The NLM main function is
generally suitable for this purpose.

2 Call GetThreadGroupID and store the ID of the main function into a global variable such as
NLM_mainThreadGroupID.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
3 Call GetThreadGroupID again and store the existing operating system context of the
SIGTERM handler thread.

4 Call SetThreadGroupID and assign the borrowed CLIB context stored in
NLM_mainThreadGroupID to the SIGTERM handler operating system thread.

5 When operations requiring CLIB context are completed, call SetThreadGroupID again to set
the SIGTERM handler thread back to its original context.

4.2.4 Allow for Blocked or Suspended Code at UNLOAD
1 Recognize a possible deadlock if an UNLOAD command is issued while a function is blocked.

In the code below, assume that the body of main includes a function such as getch that blocks
(or suspends) thread execution until a character is received from the keyboard. The console
operator will likely attempt an UNLOAD routine at some time when the NLM is waiting for
keyboard input. In this condition, the SIGTERM handler waits for main to decrement the
NLM_threadCnt value to zero before proceeding. However, main does not decrement the value
until it receives a character. As a result, the system console screen appears to be hung and the
NLM does not unload as requested.

2 If a function is blocked when an UNLOAD command is issued, call a function that can allow
processing to continue.
The SIGTERM handler is responsible for waking up any blocked or suspended threads so that
they can become aware of the NLM_exiting value. (In turn, each thread is responsible for
checking the NLM_exiting value as often as appropriate.) The SIGTERM handler can help
wake up a thread blocked on the getch function by calling the ungetch function and stuffing a
character into the keyboard buffer. This character is then read out of the keyboard buffer by the
blocked getch and execution can proceed. Other blocking functions to watch out for include
gets, t_snd, NWSList, NWSMenu, SuspendThread, and delay.

int NLM_mainThreadGroupID;
int NLM_threadCnt = 0;
int NLM_exiting = FALSE;

void NLM_SignalHandler(int sig)
 {
 int handlerThreadGroupID;
 switch(sig)
 { case SIGTERM:
 NLM_exiting = TRUE;
 handlerThreadGroupID = GetThreadGroupID();
 SetThreadGroupID(NLM_mainThreadGroupID);

 /* NLM SDK functions may be called here */

 while(NLM_threadCnt != 0) ThreadSwitchWithDelay();
 SetThreadGroupID(handlerThreadGroupID);
 break;
 }
 return;
 }
void main(void)
 {
 ++NLM_threadCnt;
Advanced NLM Tasks 73

74 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007

 NLM_mainThreadGroupID = GetThreadGroupID();
 signal(SIGTERM, NLM_SignalHandler);

 /* Body of main continues here... */

 -–NLM_threadCnt;
 return;
 }

4.2.5 Allow for Child Threads and Call-backs
The main function, all child threads, and any call-back routines should use the NLM_threadCnt
variable to keep make sure resources are cleaned up for NLM termination.

1 As shown in the above sample, write main to increment the NLM_threadCnt as its first action
and to decrement NLM_threadCnt as its last.

2 If your NLM calls BeginThread or any similar function, ensure that the spawned thread
increments and decrements the NLM_threadCnt in the same way that main does.

3 If your NLM sets up call-back routines, ensure that each of those routines increments and
decrements the NLM_threadCnt as does main.
Call-back routines might include functions such as NWAddFSMonitorHook,
NWRegisterNSPExtension, and RegisterForEvent.

4.2.6 Allow for Normal NLM Termination
When it is appropriate, allow your NLM to terminate normally. The steps below can safeguard
against premature termination:

1 Ensure that your NLM does not terminate until the NLM_threadCnt is decremented to 0.
2 Ensure that your main thread never terminates until the NLM_threadCnt has a value of 1,

indicating that only main is still running.

Implementing these safeguards allows any thread in your application to shut down the NLM by
setting NLM_exiting to TRUE, but it also forces main to stay alive until all other NLM threads have
terminated. The following code sample illustrates this:
void main(void)
 {
 ++NLM_threadCnt;

 NLM_mainThreadGroupID = GetThreadGroupID();
 signal(SIGTERM, NLM_SignalHandler);

 /* Body of main continues here... */

 while(NLM_threadCnt != 1)
 ThreadSwitchWihDelay();

 -–NLM_threadCnt;
 return;
 }
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
4.2.7 Protect Against CTRL-C
Users can break out of your NLM using CTRL-C. You can avoid this in either of two ways:

Disable CTRL-C functionality by calling SetCtrlCharCheckMode.
Register a SIGINT signal handler that causes your NLM to ignore CTRL-C, as illustrated in the
code example below.
Notice that the SIGINT signal handler must be reregistered each time a CTRL-C event occurs.

int NLM_mainThreadGroupID;
int NLM_threadCnt = 0;
int NLM_exiting = FALSE;

void NLM_SignalHandler(int sig)
 { int handlerThreadGroupID;
 switch(sig)
 { case SIGTERM:
 NLM_exiting = TRUE;
 handlerThreadGroupID = GetThreadGroupID();
 SetThreadGroupID(NLM_mainThreadGroupID);

 /* NLM SDK functions may be called here */

 while(NLM_threadCnt != 0)
 ThreadSwitchWithDelay();

 SetThreadGroupID(handlerThreadGroupID);
 break;

 case SIGINT:
 signal(SIGINT, NLM_SignalHandler);
 break;
 }
 return;
 }

void main(void)
 {
 ++NLM_threadCnt;

 NLM_mainThreadGroupID = GetThreadGroupID();
 signal(SIGTERM, NLM_SignalHandler);
 signal(SIGINT, NLM_SignalHandler);

 /* Body of main continues here... */

 -–NLM_threadCnt;
 return;
 }
Advanced NLM Tasks 75

76 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
4.3 Designing Client-Server NLMs
When designing a client-server NLM, you should consider several issues, such as division of
workload and communication methods. In general, follow these steps to design a client-server
NLM:

1 Divide the modules of the program into client-based tasks and server-based tasks.

Place tasks on the computer that can most efficiently process them. For instance, some I/O
operations should be placed on the client because the data or resource is on the client.

Consider all possibilities in dividing the program, such as all processes on the server or all
processes on the client, to help you reach a division of tasks that provides the most computing
power for the least computing effort.

Consider scalability. For example, if you overload the server with CPU-intensive operations,
your application might work well for 10 users, but not for 1,000.

Try to balance processing loads between the client and server, so that neither is overburdened.
However, for scalability, the client should take on a slightly larger share of the processing.

2 Choose both an interface and a protocol for communication between client and server
programs.
Choose the lowest-level interface possible without significantly compromising the level of
effort required to implement it.
Consider portability issues. For example, WinSock 32 offers a wide range of portability. Using
TLI eases supporting multiple client platforms, whereas IPX™ and SPX™ limit those choices.

3 Determine the maximum number of clients to accept.
Consider the following:

Memory--If the tasks your clients request of the server require large amounts of memory,
you might want to limit the number of clients to avoid running out of memory.
Performance--The more efficient the server is, the more clients it can support. On the
other hand, if the tasks your clients request of the server reduce the performance of the
server as a whole, you might want to limit the number of clients.
Connection considerations--The number of clients your NLM can accept is limited by the
number of connections the server computer accepts. For example, if clients communicate
with the server by modem and the server has four modems, your NLM can accept no more
than four clients at one time.

4.4 Developing NLMs with Cross-Platform
Functions
This general methodology for developing NLMs with cross-platform functions assumes
understanding of key concepts, especially the differences between a connection handle and a
connection ID. See Section 3.5, “Cross-Platform Functions for NLM Development,” on page 67 for
an explanation of those differences.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
WARNING: Never attempt to use connection zero in an NLM that uses cross-platform functions.
The results would be a broken application, a major security breach, or both.

1 Ensure that library NLMs needed for cross-platform are loaded in the correct order:
If your NLM includes calls to the cross-platform libraries, CALNLM32.NLM must be the
first NLM loaded. It automatically loads modules on which it has dependencies, including
CLIB.NLM and its associated modules.
If your NLM does not include calls to the cross-platform libraries, load CLIB.NLM first.
Its associated modules will also load automatically.

2 Set up the correct include order for header files.
If an NLM makes calls to CALNLM32.NLM, specify the following include order in the
make file or in a SET command:
NWSDK\INCLUDE
NWSDK\INCLUDE\NLM

If an NLM makes calls to only to CLIB functions, specify the following include order in
the make file or in a SET command:
NWSDK\INCLUDE\NLM
NWSDK\INCLUDE

NOTE: Some header files in the NWSDK\INCLUDE directory have the same names as files in
the NWSDK\INCLUDE\NLM directory, but the contents of such files are not identical.

3 Keep track of the connection handle and connection ID for each server from which your
application requires services.
One simple way of obtaining both numbers is as follows:

Call the cross-platform function NWCCOpenConnByName and save the returned
connection handle to a variable or to a table.
Immediately call the CLIB function GetCurrentConnection and save the returned
connection ID to another variable or table entry.

4 Pass in the appropriate connection handle for each cross-platform function called, and the
appropriate connection ID for each CLIB function called.

IMPORTANT: Do not pass a connection handle to a CLIB function or a connection ID to a
cross-platform function.

5 Before calling a CLIB run-time function that does not take a connection ID parameter, such as
ParsePath or chdir (Multiple and Inter-File Services), make sure the current connection is set to
the server on which the operation is being performed.
If there is any question about what the current connection is, do one of the following:

If you know the CLIB connection ID, call SetCurrentConnection and specify the ID for
the appropriate server.
If you know only collection handles, call NWCCSetCurrentConnection and pass in the
handle for the server on which the operation is to be performed. Then call
GetCurrentConnection and use the returned connection handle for subsequent calls to
CLIB functions.
Advanced NLM Tasks 77

78 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

5
novdocx (en) 11 D

ecem
ber 2007
5NLM Development Tool Concepts

This section provides an overview of the following tools for NLM development:

NLM Make Utilities (page 79)
Debuggers for NLMs (page 82)
NLM Compression Tools (page 93)
MPKXDC (page 93)

For information on compilers, linkers, and test tools, see “Getting Started” on page 13.

5.1 NLM Make Utilities
The WATCOM make utility is WMAKE. The makefiles associated with the examples that ship with
this NDK are written to be used by WMAKE. To compile an example, you simply move to the
directory where the example is located and type:
WMAKE

To assist you in creating WMAKE-style makefiles for your programs, this NDK ships with the
QMK386 utility. QMK386 generates makefiles for WMAKE based on user input and entries in the
MAKEINIT file generated by the MAKEINIT.EXE file. You can customize the makefiles after
QMK386 creates them. QMK386 is located in the TOOLS directory.

5.1.1 QMK386.EXE
Information about this utility consists of the following sections:

“Syntax for QMK386.EXE” on page 79
“Options for QMK386.EXE” on page 79
“Environment Variables for QMK386.EXE” on page 81
“Examples for Using QMK386.EXE” on page 81
“Notes for Using QMK386.EXE” on page 82

Syntax for QMK386.EXE
[d:][path]QMK386 <progname> [/options]

[d:][path] specifies the drive and path containing the QMK386 command file.

<progname> specifies the name of the modules whose makefile is being created. If this parameter is
not set, the default name is "NONAME."

[/options] See Options for QMK386.EXE

Options for QMK386.EXE

To display the QMK386 options, type:
QMK386 ?
NLM Development Tool Concepts 79

80 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Option To

/? Display help screens.

/c<x> Specify additional objects, imports, exports and modules:

e<spec> - Export file

i<file> - Import file

l<spec> - Library file

m<spec> - Module dependency

s<file> - Source file

/f<name> Specify name of output file. Default: MAKEFILE

/h<dir> Specify additional INC386 directories.

/i<x> Include import statement for ...

a - AIO symbols

c - CALNLM32 (cross-platform NWCalls symbols)

d - NETNLM32 (cross-platform NDS symbols)

e - DSEvent symbolsf - Floating point support symbols

h - Threads symbolsI - NIT NLM symbols

l - AFP symbolsn - NLM-specific symbols (NLMLIB)

o - SOCKLIB symbolsp - Print symbols

r - Requester symbolss - Streams symbols

t - TLI symbolsu - Unicode symbols

v - 3.x Print Services symbols

w - NWSNUT symbols

x - CLXNLM32 (cross-platform NWClient symbols)

y - AUDNLM32 (cross-platform Auditing symbols)

z - LOCNLM32 (cross-platform NWLocale symbols)

NOTE: The recommended method is to use the ALL.IMP file to load all symbols. The /i
option cannot be used with the ALL.IMP file.

/l<dir> Specify additional LIB386 directories.

/n<x> NLM option ...

m - Load Multiple

p - PseudoPreemption

r - ReEntrant

s - Synchronize
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Environment Variables for QMK386.EXE

The following environment variables may be used with QMK386:

SWITCHAR sets the character that QMK386 uses as the delimiter for parameters. By default, the
forward slash `/’ is used.

QMK386 can be used to set options that are commonly used. For example, if you commonly use /Z
and /IDT, set the environment variables as follows to avoid entering these options at the command
line:
SET QMK386=/z /idt

SILENT places the SILENT directive in the makefile when set.

QMKVER allows you to specify the default way to build an application. If QMKVER is not
specified, it will default to `d’, which uses DEBUG compile switches, and includes debug
information in the output file.

CCF386 specifies the command line switches to be used when rebuilding an application.

Examples for Using QMK386.EXE

This section contains some examples of common build options used with QMK386. The parameters
can appear in any order, and no spaces are required between options unless the options require a
directory path or function name.

To create a WLINK style makefile for a program called HELLO, with an 8K stack, importing from
CLIB.IMP, THREADS.IMP and NLMLIB.IMP:
F:\> qmk386 hello /ih /in

/o<x> Other option ...

b<path> - shareliB path

c<api> - Check function

d<path> - xDc data path

h<file> - Help file

m<file> - Message file

s<api> - Start function

u<file> - cUstom file

x<api> - eXit function

/p

Run NLMPack after linking.

/s# Set stack size to `#’ KBytes.

/x No default screen for NLM

/z Generate an NLMLINK-style linker definition file.

Option To
NLM Development Tool Concepts 81

82 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
TIP: Import files can be included individually with the /i option (for example, /oh includes the
THREADS.IMP file). To inlcude the ALL.IMP file (which includes all the import files), do not use
the /i option (ALL.IMP is the default setting).

Using the ALL.IMP file might require more memory than is available in your environment.

To create a WLINK style makefile for a program called TEST1, with a 12K stack, importing from
CLIB.IMP and TLI.IMP:
F:\> qmk386 /s12 /it test1

To create an NLMLINK style makefile for the example above:
F:\> qmk386 /s12 /it test1 /z

To create an NLMLINK style makefile, and run the NLMPACK utility:
F:\> qmk386 /s12 /it test1 /z /p

The /CS option allows you to specify source files. You can specify multiple /C<x> options, as well
as use wildcards. This allows you to specify multiple dependencies for the first target. For example,
to create a MAKEFILE for an NLM called MYNLM, made up of all the .C files in the current
directory, importing a file called EXLIB.IMP and specifying a NetWare Loader module dependency
on EXLIB.NLM:
F:\SRC> qmk386 mynlm /CS*.c /CIexlib /Cmexlib

Notes for Using QMK386.EXE

QMK386 MAKEFILEs define the following macros for your .C programs:

t vMAJ - Major version number
t vMIN - Minor version number
t vREV - Revision number

The WMAKE macros which define the values of these are pvmaj, pvmin and pvrev. They are
defined at the top of your MAKEFILE, and if you change the values, they are reflected in both the C
macros as well as the version number passed to the linker. One way to create a version string in your
NLM might be:
#define VERSION "Widget Monitor NLM v"vMAJ"."vMIN

This would expand to:
#define VERSION "Widget Monitor NLM v1.00"

if the default values were used.

5.2 Debuggers for NLMs
Sometime during your code development, you will need to use a debugger. The following
debugging tools are available to facilitate your development of high-quality software:

The CodeWarrior debugger allows you to debug NLMs remotely.
The internal command line debugger that performs symbolic debugging, built into the NetWare
operating system (see “NetWare Internal Debugger” on page 83).
The WATCOM linker (WLINK) can be used to include debugging information in an
executable file (see “Linking Debug Information with WLINK” on page 83).
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Additionally, the linkers can be used to generate a map file, which is a memory map of your
program.

5.2.1 Linking Debug Information with WLINK
You can specify the DEBUG directive in a linker directive file to generate debugging information in
the executable file. The following options can be specified with the DEBUG directive to generate
the following types of debugging information:

DEBUG ALL
Generates all types of debugging information (global symbol, line numbering, local symbol,
and typing).

DEBUG NOVELL
Generates global symbol debugging information that can be processed only by the NetWare
Internal Debugger

DEBUG NOVELL ONLYEXPORTS
Generates NetWare global symbol information for exported symbols only.

DEBUG ONLYEXPORTS
Generates WVIDEO global symbol information for exported symbols only.

5.2.2 NetWare Internal Debugger
The NetWare internal debugger is an assembly language debugger that is built into the NetWare
operating system. This debugger is a command-line debugger that does not display source code. To
use the internal debugger, you should have some knowledge of 80386 assembly language and stack-
based parameter passing.

The internal debugger was designed specifically to debug NLMs. It includes a set of supplementary
commands that are customized for NLMs, such as .A (display abend or break reason) and .P (display
all process names and addresses). These are not part of a typical debugger. The internal debugger
allows resident debugging, in which the debugger and the test application run on the same server. In
addition, the internal debugger provides a way to debug multiple NLMs concurrently.

NOTE: The NDK includes debug versions of the libraries. Debug records are linked in with each of
these NLMs, allowing better visibility to developers using the internal debugger.

You can access the NetWare Internal Debugger in any of the following ways:

At the server console, simultaneously press the following keys: Left-shift+Right-
shift+Alt+Esc.

NOTE: If the SECURE CONSOLE command is in effect, you cannot access the NetWare
Internal Debugger from the keyboard.

From a C language program, call Breakpoint.
From an assembly language program, issue an INT 3 instruction.
NLM Development Tool Concepts 83

84 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
You can then set execution breakpoints, single-step through program execution, examine the
contents of memory, and so on.

Some points to be aware of when using the internal debugger are:

NetWare runs in the 386 protected mode, using a flat memory model. In a flat memory model,
the values in the segment registers do not change once they are initialized by the NetWare
operating system. Since they do not change, the internal debugger does not display them.
The internal debugger supports program global symbolic information; it does not support local
symbolic information. Any symbols that you want to reference from the internal debugger must
be system-wide globals. To access symbolic information, the program must be linked with the
DEBUG option.
The internal debugger is case-sensitive to symbols.
All numbers are entered and displayed in hexadecimal format.
Bytes, words, double-words, and pointers are pushed onto the stack as 4-byte parameters.

For more specific information on the debugger, see the following:

“Debugger Commands” on page 84
“Setting Breakpoints” on page 90
“Specifying Expressions” on page 90

Debugger Commands

You can recall commands from the NetWare Internal Debugger’s command line buffer by pressing
the Up-arrow key. After recalling a command from the command-line buffer, you can edit it. The
Right- and Left-arrow keys move the cursor. Insert toggles overwrite. Some of the commands can be
repeated by pressing the Enter ; these cases are noted in the command descriptions.

NOTE: If you decide to cancel a command, the Esc key acts like the Enter key. You must use the
Delete or Backspace key to erase the command line.

There are four types of help commands in the NetWare Internal Debugger:

HE-Help on expressions
HB-Help on breakpoints
H-General Help
.H-Help with the supplementary commands

In the command summaries, a pair of square brackets in the Command indicates an optional
parameter. The following categories of commands are available:

“Supplementary Commands” on page 84
“Breakpoint Commands” on page 86
“General Debugger Commands” on page 86
“SFT III Debugger Commands” on page 89

Supplementary Commands

The following table lists supplementary commands.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Command Description

.a Displays the abend or break reason.

.c Does a diagnostic core dump to diskette (this can take a great number
of diskettes).

.d [address] If no address is specified, displays a page directory map for the current
debugger domain.

When address is specified, displays page entry map for the current
debugger domain.

.h Displays help information about the supplementary commands.

.l offset [offset] Displays linear address given page map offsets.

.lx address Displays page offsets and values used for translations.

.m Displays the names and addresses of the loaded modules.

.p [address] If no address is specified, displays process (thread) names and
addresses.

If address is specified, displays address as a process (thread) control
block.

You can use this command to determine what a particular thread is
doing. For example, you can examine the values on the stack, which
contain return addresses for called functions, to determine what an
inactive task is doing (waiting on a semaphore, waiting on keyboard
input, and so on). That is, you can construct a "trail" of functions that
have been called.

This command now displays the semaphore address when listing
processes waiting on a semaphore.

.r Displays running process (thread) control block. This command
displays information about the running thread in the same format as
the .p address command.

.s [address] If address is not specified, displays all screen names and their
addresses.

If address is specified, displays the specified address as a screen
structure.

A pointer value obtained by the .s command is used as the address
parameter. The command .s address is another way to get information
about the current activity of a sleeping thread.

.sem [semaphore address] If an address is not specified, lists all semaphores that have processes
waiting on them.

If a semaphore address is specified, displays detailed information
about the semaphore.

.t Toggles the "developer option" on or off.

.v Displays server version.
NLM Development Tool Concepts 85

86 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Breakpoint Commands

The following lists breakpoint commands.

b
Displays all current breakpoints.

bc number
Clears the specified breakpoint.

bca
Clears all breakpoints.

b = address [(condition)]
Sets an execution breakpoint at address.
Example : Breakpoint if MyFunction is called and the first parameter on the stack is equal to 0:
b = MyFunction [desp+4] == 0

br = address [(condition)]
Sets a read or write breakpoint at address.
Example : To check if the code (in the range 14500 to 15500) ever reads or writes to memory
location 160FE:
br = 160FE EIP >= 14500 && eip <= 15500

bw = address [(condition)]
Sets a write breakpoint at address.
Example : To check if the code (in the range 14500 to 15500) ever writes to memory location
160FE:
bw = 160FE EIP >= 14500 && eip <= 15500

General Debugger Commands

The following lists the general debugger commands.

c address
Interactively changes memory.

c address=numbers
Changes memory, starting at address, to numbers.
Example : Change byte values starting at 10DFAB to FF, FE, 22.
c 10DFAB = FF,FE,22

c address = "text"
This command is currently not supported.

d address [length]
Dumps length bytes of memory starting at the address. If length is not specified, 256 (decimal)
bytes are dumped.
Example : Dump 16 (decimal) bytes at address 00088F20.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
d 88F20 10

This command can be repeated by pressing Enter. You can visually scan for a string in the
ASCII portion of the dump display by dumping a memory location and then repeatedly
pressing Enter to display contiguous blocks of memory.

dl[+ linkOffset] addr [length]
Traverses a linked list. If length is not specified, 256 (decimal) bytes are dumped.
Example : Suppose the first node in a linked list starts at 50 and the offset of the address of the
next node is at offset 4.
To traverse the linked list, displaying 16 (decimal) bytes each time, enter the following
command.
dl+4 50 10

To display each successive node in the list, press Enter.
The default link offset is 0, which indicates the end of the list. Thus, dl 50 10 uses a link offset
of 0.
This command can be repeated by pressing Enter. You can dump the first node in a linked list
and then dump each successive node by pressing Enter. A NULL link marks the end of the list.

f flag=value
Changes the specified flag. value can be 0 or 1.
Example : To change the specified flag to the new value (0 or 1), where flag is CF, AF, ZF, SF,
IF, TF, PF, DF, or OF:
f CF = 0

g
Specifies a "Go" instruction, starting from the current EIP.

g [break_addresses]
Specifies a "Go" instruction, starting at the current EIP and ending at the break address or
addresses.
Example : Suppose a code breakpoint has just occurred at the start of a C function. To resume
execution until the function returns to its caller, use the following command:
g [desp]

h
Displays general help.

hb
Displays breakpoint help.

he
Displays expressions help.

i[b,w,d] port
Inputs a byte, word, or double-word from the specified port. The default is a byte.
Example : To input the value at port 2F0:
i 2F0
NLM Development Tool Concepts 87

88 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
m start [L length] pattern
Memory search is currently not supported.

n
Lists all symbol names, also displaying the NLMs defined them.

n symbolname value
Defines a new symbol name at an address.
Example : To give the value 2D46A5 the name x:
n x 2D46A5

Now x can be referenced with other commands, such as:
b=x, b=x+5, u x.

By default, the value is 10. Symbols can be defined with the n command. The y option when
the server is started is used to override the default.

n-symbolname
Removes a user-defined symbol name.

n-
Removes all user-defined symbol names.

o[b,w,d] port = value
Outputs byte, word, or double-word to the specified port.
Example : To output 10h to port 320h:
o 320=10

p
Single-steps through the program code; proceeds past calls. (See the s command for stepping
into calls.)
This command can be repeated by pressing Enter. A common usage for this command is to run
until you hit a breakpoint, and then single-step by entering the p command and then pressing
Enter repeatedly to continue single-stepping. By holding down Enter, you can quickly single-
step through the program code.

q
Quits to DOS.

r
Displays the registers and flags.

REG = value
Changes the register to the specified value. The registers are EAX, EBX, ECX, EDX, ESI, EDI,
EBP, EIP, and EFL.

s
Single-steps through the program code; steps into a call. (See the p command for stepping past
calls.)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
This command can be repeated by pressing Enter. You can hit a breakpoint and single-step by
entering the s command and then pressing Enter repeatedly to continue single-stepping. By
holding down Enter, you can quickly single-step through the program code.

t
Same as s.

u address [count]
Disassembles count instructions. If you type u by itself and press Enter, the starting address is
assumed to be the contents of EIP, and 16 (decimal) bytes will be disassembled.
Example : Disassemble 16 (decimal) bytes prior to the current instruction.
u eip-10

NOTE: A command such as this might not cause the disassembly to fall on an instruction
boundary.

This command can be repeated by pressing Enter. You can disassemble starting at any memory
location by initially entering the u command and then pressing Enter to continue the contiguous
disassembly.

v
Displays the server’s screen(s) for viewing. Each time a key is pressed, the next screen is
displayed. See the .s command.

x
Exchanges processor stack frames.

z expression
Evaluates the expression.
Example: To display the value at the address computed by adding EBP to EBX shifted right 16
(decimal) times.
z [d EBP + (EBX >> 10)]

? [address]
Displays nearest symbols to address. If address is not given, EIP is used.
Example : To determine the NLM and function owning the current instruction, type the
following:
?

SFT III Debugger Commands

The following table lists the debugger commands that are available for the SFT III™ OS only.

Command Description

.? Display server state.

DQ Dump level 3 queue pointers.

DQ address Dump level 3 queue elements.
NLM Development Tool Concepts 89

90 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Setting Breakpoints

With the NetWare Internal Debugger, you can set execute, write, or read/write breakpoints.

There are four breakpoint registers, allowing a maximum of four simultaneous breakpoints.
Breakpoints can be permanent or temporary:

To set permanent breakpoints, use the b, br, and bw commands. For permanent breakpoints,
you can attach a condition that specifies whether to take the breakpoint. If the condition is true,
a breakpoint is taken. If it is false, execution continues without stopping.
To set temporary breakpoints, use the g command. For example, a "go" to a specific address is
a temporary breakpoint. The p command can also set a temporary breakpoint if the current
instruction cannot be single-stepped.
If you use all four breakpoints and issue a g [desp] command, the following is displayed:
 Go out of breakpoints

If you use all four breakpoints and attempt to proceed past a function call using the p command,
the following is displayed:
 Breakpoint not available for proceed

The assembly repeat instructions (such as REPE), the LOOP instruction, and the CALL
instruction also require p to set a temporary breakpoint.

Specifying Expressions

The NetWare Internal Debugger determines the order of execution of an expression in accordance
with the following:

Precedence of grouping operators
Precedence of unary, binary, and ternary operators
Common algebraic ordering

The following sections explain the various types of operators:

“Grouping Operators” on page 90
“Unary Operators” on page 91
“Binary Operators” on page 91
“Ternary Operators” on page 92
“Registers and Flags” on page 92

Grouping Operators

The grouping operators (), [], and { } indicate to the debugger the desired grouping of operations.
These operators have the highest precedence (0).

()
(expression)
The terms inside the parentheses are evaluated first. In the case of parenthetical expressions
that are nested, evaluation begins with the innermost parenthetical expression.

[]
[size expression]
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
expression is evaluated first and then used as a memory address. The size specifier can be B,W,
or D. The expression evaluates to byte, word, or double-word at the specified address.
For example: Suppose the data at memory location 178D10 is the following byte sequence in
Intel storage format 38 F9 99 88. Then, using the z command, which evaluates expressions:

{ }
{size expression}
expression is evaluated first and then used as a port address. The size specifier can be B,W, or
D. The expression evaluates to byte, word, or double-word from the port.

Unary Operators

The unary operators have precedence 1.

Binary Operators

The binary operators in the following table are ordered from lowest to highest precedence.

Z [D 178D10] evaluates to 8899F938

Z [W 178D10] evaluates to F938

Z [B 178D10] evaluates to 38

Symbol Description

! Logical not

- 2’s complement

~ 1’s complement

Symbol Description Precedence

* Multiply 2

/ Divide 2

% Mod 2

+ Add 3

- Subtract 3

>> Bit shift right 4

<< Bit shift left 4

> Greater than 5

< Less than 5

>= Greater than or equal to 5

<= Less than or equal to 5

== Equal to 6
NLM Development Tool Concepts 91

92 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Ternary Operators

If expression1 is true, the result is the value of expression2; otherwise, the result is the value of
expression3.
 expression1 ? expression2 , expression3

In the following example, a break is taken on
 myFunction(char *myData)

if the carry flag (FLCF) is true and EAX contains 9C, or if the carry flag is false and the first byte of
myData is 0:
 b = myFunction (FLCF ? eax == 9c, [b [desp+4]] == 0)

Registers and Flags

The 80386 registers, which can be used in expressions, are referenced by the names listed in the
following table.

The flags register is a 32-bit register that contains a number of status bits. This register is sometimes
referred to as the status register. The following table lists the flags register bits.

!= Not equal to 6

& Bitwise AND 7

^ Bitwise XOR 8

| Bitwise OR 9

&& Logical AND 10

|| Logical OR 11

Register Name

EAX Accumulator register

EBX Base register

ECX Count register

EDX Data register

ESI and EDI Index registers

ESP and EBP Base and stack pointer registers

EIP Instruction pointer register

Flag Bit Name

FLCF Carry flag

FLAF Auxiliary carry flag

FLZF Zero flag

Symbol Description Precedence
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
5.3 NLM Compression Tools
NLMPACK is an NLM compression utility that you can use to reduce the disk storage size of your
NLM files. NLMPACK can be used for NLMs that run on the NetWare 4.x or later. When the
NetWare operating system loads an NLM, it checks to see if the NLM is in compressed format. If
the NLM has been compressed, the operating system automatically decompresses it as the operating
system loads the NLM into memory.

NLMPACK comes in two versions. NLMPACKP runs in protected mode and NLMPACK runs in
real mode. For convenience consider references to NLMPACK to apply to NLMPACKP also.

UNPACK is a utility that unpacks NLMs that were packed using NLMPACK. There are two
versions of this utility. UNPACK runs in real mode and UNPACKP runs in protected mode.

NLMPACK and UNPACK Syntax

Usage of NLMPACK is as follows:
NLMPACK <source name> <target name>

source name is the name of the NLM that is to be compressed.

target name is the name of the file that the compressed NLM is to be placed in.

NOTE: target name can be the same as source name.

Usage of UNPACK can be seen by entering "UNPACK" with no parameters at the command line.
The usage is as follows:
UNPACK <source name> <target name>

source name is the name of the packed NLM that your want to unpack.

target name is the destination file name for the unpacked NLM.

WARNING: target name cannot be the same as source name.

5.4 MPKXDC
MPKXDC.EXE is a tool that enables the threads within an NLM to be identified as to whether or
not they can safely take advantage of multiple processors on the same machine. MPKXDC.EXE is
provided in the \TOOLS\ directory of this NDK.

FLSF Sign flag

FLIF Interrupt flag

FLTF Trap flag

FLPF Parity flag

FLDF Direction flag

FLOF Overflow flag

Flag Bit Name
NLM Development Tool Concepts 93

94 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
For more specific information, see the following sections:

“Traditional NetWare and Multithreading” on page 94
“NetWare 4.11 SMP” on page 94
“NetWare MPK and Funneling” on page 95

5.4.1 Traditional NetWare and Multithreading
Multithreading (MT) allows an application to do multiple tasks concurrently and is an ideal
paradigm for programming to symmetric multiprocessing (SMP) machines. By design the threads
model shields the programmer from concerns with the details of parallelism. Moreover, if an MT
application is written to correctly to run on a uniprocessor system, it will run correctly on an MP
system.

From one viewpoint, all NLMs can be considered multithreaded. However, historically NLMs could
not take advantage of multiple processors. Although NetWare has always run fast, the basic
architecture was uniprocessor and nonpre-emptive.

In a traditional NetWare, a FIFO scheduling policy does not support priorities or time slicing,
Traditional NetWare threads are allowed to run until they block or voluntarily yield the processor—
a thread is not be pre-empted (that is, time sliced) under any circumstance. Explicit synchronization
with other threads are not needed in this uniprocessor environment because a running thread has
exclusive access to the processor. Execution order becomes the synchronizing principle. However,
because a traditional NLM depends on execution order to run successfully, unmodified traditional
NLMs cannot automatically exploit multiple processors.

Thus, traditional NetWare is a multithreaded environment that supports concurrency but not
parallelism.

5.4.2 NetWare 4.11 SMP
NetWare 4.11 SMP was the first attempt by Novell to add symmetric multiprocessing support to
NetWare through the addition of an NLM-SMP.NLM. Although this enviornment provided SMP
support to NetWare, it remained nonpreemptive. It also provided backward compatibility to NLMs
that could not handle multiple processors because of the traditional assumptions about execution
order.

NetWare 4.11 SMP introduced the concept of NetWare threads, which operated on traitional
assumptions and had to run on Processor 0, and MP threads, which were capable of exploiting
parallelism by running on any available processor. By default, all threads created as NetWare
threads. NetWare threads had to explicitly call an API function to become an MP threads, and MP
threads had to call corresponding migration functions to become NetWare threads.

Using the SMPRPC tool at link time, an NLM developer could declare functions in an NLM to be
MT (and thus MP) safe, thus certifing that they could run on any processor. Function not so
identified were funneled--put to sleep, migrated to Processor 0, awakened and run with traditional
assumptions about execution order, put back to sleep, and migrated to the processor from which they
were called. Although funneling acts as a kind of synchronization device, it does not enable
execution on any processor. Such enabling requires devices that specifically prevent global variables
from being written to by more than one thread at a time or being modified as they are being read.
Mutexes are examples of true synchronization devices.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
5.4.3 NetWare MPK and Funneling
The NetWare 5.x and later operating system used an approach to multiprocessing that was
completely different from NetWare 4.11 SMP—the Multiprocessing Kernel (MPK). Although MPK
supports traditional uniprocessor NLMs, MPK was conceived, designed, and built for
multiprocessing.

With MPK, the concept of a NetWare thread is replaced by the concept of a Common NetWare
Binding (CNB). In the CNB, a thread runs only on Processor 0 using traditional execution order
assumptions.Unless otherwise provided for, all threads are created in the CNB. However, it is
possible to create threads that have all the synchronization needed for execution on any processor.

If a thread depends on execution order for the successful operatoin, its work obviously cannot be
divided among available processors because the order of execution cannot be predicted. Such a
thread (or such a function) is called MP unsafe. On the other hand, if a thread succcessfully employs
synchronization mechanisms such as mutexes, semaphores, and condition variables, An NLM that
exports and uses only threads thus enabled does not need to have its functions funneled to processor
0--because they are properly synchronized through the use of synchronization functions like those
provided in the NKS API, such threads can run in parallel on any processor.

The MPKXDC.EXE tool allows the functions in an NLM to be declared MT safe or MT unsafe at
link time. For instructions, see Section 6.4, “Using MPKXDC,” on page 98.
NLM Development Tool Concepts 95

96 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

6
novdocx (en) 11 D

ecem
ber 2007
6NLM Development Tool Tasks

This describes common tasks associated with tools used to develop NLMs.

6.1 Using MAKEINIT.EXE
MAKEINIT.EXE is a tool supplied by Novell and used for producing a makeinit file and a
comprehensive import file. This tool installs into the .../ndk/nwsdk/tools subdirectory, which should
be added to your path setting.

1 Enter makeinit.
2 At the first prompt, enter the path from the root of the appropriate drive to the Watcom

compiler, for example, c:\watcom\.
3 At the second prompt, enter the path to the directory that contains subdirectories for import

files, include files, tools, etc., for example, c:\novell\ndk\nwsdk\.
4 At the third prompt ("Change input?"), enter Y if you want to change what you entered at the

first two prompts, and N if you are satisfied with what you entered.

The utility will create a file simply called makeinit in the ../tools subdirectory. That makeinit file is
later referenced as the qmk386.exe utility creates a make file for NLM production

6.2 Building a Symbol File for Novell Remote
Debugger
This task is optional.

1 From the menu bar select "Options / Link for NetWare Switches...." Check the Debug
Codeview [d codeview opt cvp] box.

2 In Options / Link for NetWare Switches..., select 3 Advanced Switches. Make sure the Produce
symbol file[op symf] box is checked.

3 From the menu bar select Options / C Compiler switches..., then select 6 Debugging Switches.
Click the CodeView debugging format [-hc] radio button.
If an IDE Request window appears asking Mark all .c files in ’...’ for remake? click Yes.
Click OK.

4 Replace CVPACK.EXE found in the WACOM\BINNT directory with CVPACK.EXE version
4.26 from Microsoft (CVPACK /? for version confirmation).

IMPORTANT: The Watcom CVPACK has problems that cause it to fail, so use the Miicrosoft
CVPACK version 4.26.

6.3 Building HELLO.NLM with WATCOM WMAKE
1 Add the NWSDK tools directory to your search path. This path will depend on where you

installed your copy of the NDK.
NLM Development Tool Tasks 97

98 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The following command works if the NDK components were installed in C:\NOVELL\NDK:
SET PATH=%PATH%;C:\NOVELL\NDK\NWSDK\TOOLS

This command allows the WATCOM compiler to find the MAKEINIT file. It also allows you
to invoke QMK386.EXE (page 79) from the different example directories. These files could
just as easily have been copied to another directory already in your search path (C:\DOS, for
instance), but NWSDK\TOOLS directory also contains other tools you may eventually need.

IMPORTANT: This step assumes that you have already run the
NWSDK\TOOLS\MAKEINIT.EXE utility which generates the MAKEINIT and ALL.IMP
files.

2 Change your current directory to NWSDK\EXAMPLES\NLM\HELLO.
3 Invoke QMK386 to build a makefile for HELLO.C by entering the following command at the

DOS prompt:
qmk386 hello

This command tells QMK386 to build a makefile for the program called "hello". The following
message appears after the makefile is created:
Creating Wlink-style MAKEFILE for hello ... done!

A makefile called MAKEFILE is created in the current directory.
These steps demonstrate how to build HELLO.NLM using Novell’s libraries (CLIB) and
startup files (CLIBPPRE.OBJ).

4 Build HELLO.NLM by entering the following command:
wmake

At this point you should have a file called HELLO.NLM in the current directory.This file is
ready to load and run on a NetWare server.

6.4 Using MPKXDC
MPKXDC.EXE creates an XDC file referenced by the loader in a NetWare 5.x or 6.x server. As an
NLM loads, the XDC file specifies four designations for an NLM and its exported API functions:

NLM is MP safe and can run on any processor.
Designated functions are MP safe, but all others must be funneled to P0.
NLM is generally MP unsafe and is limited directly to P0.
NLM is pre-emptable (caution--all functions become potentially blocking).

(For more information on funneling and exported API functions, see “NetWare MPK and
Funneling” on page 95.)

To use MPKXDC, do the following:

1 If some but not all exported API functions in an NLM are MP safe (can be run on any
processor), create an APILIST.API file that lists either the API functions that are MP safe or
those that are not MP safe.

This file contains a list of API functions, one per line without leading or trailing white spaces or
trailing commas. Lines beginning with # are ignored as comments. Blank lines or lines with
leading white spaces are also ignored.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
2 Prior to compiling, run MPKXDC.EXE using the following syntax:
MPKXDC [option] [APILIST.API] FILENAME.XDC

The table following these steps explains available choices for [option].
FILENAME is your name for the file to which MPKXDC.EXE outputs XDC data for reference
by your NLM at load time.

3 For the WATCOM WLINK linker, include the following line in the linker directive file used in
generating an NLM:
OPTION XDCDATA=<FILENAME.XDC>

The following options can be specified with the MPKXDC tool.

Option Explanation

-n Generates XDC data declaring an entire NLM to be MT safe. Threads created for
an NLM thus marked do not start in the CNB and can run on any available
processor automatically. All routines and exported API functions are also
considered MT safe. All new NLMs should be written for this option. This option is
not backward compatible with any NetWare version prior to 5.0.

Usage: MPKXDC -n FILENAME.XDC

-f Generates XDC data declaring only a specified set of API functions in an NLM to be
MT unsafe. Thus with this option, only API functions listed are funneled, and all
other exported API functions are considered MT safe. This option is not backward
compatible with any NetWare version prior to 5.0.

Usage: MPKXDC -f APILIST.API FILENAME.XDC

-u Generates XDC data declaring the NLM to be MT unsafe in general, although it has
the effect of declaring that the NLM will deal with multithreading/multiprocessing
issues itself. This option is solely for performance needs and is discouraged
because it carries many risks. Although using this option and declaring some of the
exported functions to be MT unsafe are not mutually exclusive, such a combination
can have serious implications for the following reason:

Even though a given NLM has -u XDC data, a thread executing in that NLM can be
outside the CNB. The thread might have entered the NLM through an exported MT
safe API function or might have exited the CNB within that NLM. While outside the
CNB, if such a thread were to call an MT unsafe function, results would be
unpredictable--for performance reasons, the kernel attempts to short circuit the
funneling wrapper while resolving the imports of an NLM that has -u XDC data.

In most cases, the -u flag is used to simply indicate that the NLM is legacy and does
not contain any MT safe code. With very careful scrutiny, some NLMs may be found
to benefit from having some of their exports marked MT safe, if performance
considerations demand and sufficient examination reveals that the above listed
caveats have been carefully considered.

This option is not compatible with -n or -p.

Usage: MPKXDC -u FILENAME.XDC

-p Generates XDC data declaring the NLM as being pre-emptible. This means that
any thread executing in the code section of the NLM can be pre-empted (assuming
the thread has not programmatically entered a critical section). This has to be used
carefully--a nonblocking API function in the NLM may become blocking because a
thread executing it can be pre-empted.
NLM Development Tool Tasks 99

100 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
-h Displays a help screen for the mpkxdc tool.

Option Explanation
evelopment Concepts, Tools, and Functions

7
novdocx (en) 11 D

ecem
ber 2007
7Memory Protection Concepts

This documentation provides an overview of memory protection in NetWare and explains its use in
NLM development.

7.1 NetWare Memory Protection
Memory protection is an integral feature of NetWare 5.x and later that allows an NLM to run in a
protected environment. This environment isolates the NLM's memory errors from the operating
system and from other running applications. NetWare memory protection can also be used as a
valuable development tool.

The foundation of NetWare memory protection is a separation between operating system address
space and protected address space. The following illustration represents this separation of memory
spaces, although it does not denote the address space locations:

Figure 7-1 Separation of Protected and OS Memory

Memory in both the OS address space and in protected address spaces use logical mappings. In
addition, NLMs running in protected memory are backed by virtual memory-swapping to and from
disk with the appearance of remaining in RAM. (Virtual memory makes the possibility of running
out of server memory very unlikely.) Both OS and protected memory also use an improved memory
management mechanism that has the effect of defragmenting memory as processes run.

The following is a list of basic features that NetWare memory protection provides:

Separation of OS address space (running in ring 0) and protected address spaces (running in
ring 3)
Protection of the OS and its resources from NLMs in a protected address space
Creation of multiple protected address spaces
Protection of NLMs in one protected address space from NLMs in another
Checking of all parameters accessing OS resources through a NetWare SDK function
Fault isolation to one protected address space
Automatic removal of a protected application (and associated protected address space) that
causes a memory fault
Memory Protection Concepts 101

102 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Optional setting to make the server abend when a faulty parameter is passed to the OS, making
debugging more precise

7.1.1 OS Address Space
The OS, hardware device drivers, LAN drivers, and trusted NLM applications run in this space.
Applications in OS space have little or no protection from each other.

The NetWare OS has a number of improvements over previous versions, such as a multi-processor
aware kernel and native use of IP. However, with regard to memory protection, the OS address
space is essentially unchanged, as illustrated:

Figure 7-2 Classical NetWare Executing Environment

Regarding memory protection, the OS address space has the following fundamental characteristics:

Components running in the OS address space are not protected from each other
Memory has improved logical mapping management and is backed with physical memory
NLM applications load into this space in the same way as in previous releases
The environment is still optimized for fast and efficient multi-threaded program execution

7.1.2 Protected Address Spaces
This address space is used for NLMs that are being tested by developers or that have not run in a
stable condition for long enough to be completely trusted by system administrators. Multiple
protected address spaces can be created, but only one protected address space can have access to OS
functionality at one time.

Protected address spaces are new with NetWare, and have the following basic features:

A protected address space is an insulated functional unit. If a process in one protected address
space causes a memory fault, processes in the OS address space and other protected address
spaces continue to run normally
Multiple protected address spaces can be created, but only one protected address space can
actively have control of a processor at one time. However, on an multiprocessor machine
processes running on different CPUs can be running in different address spaces.
Applications in a protected space have immediate access to all services provided directly by
libraries loaded in that protected address space, including CLIB and other shared libraries.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NLM applications in a protected address space can have indirect access to functions in the OS
address space through use of functions in the NetWare SDK.
All access from a protected space to the OS is through a system call interface. This interface
verifies the validity of function parameters through marshaling code written for each currently
supported NetWare API function.
Because of marshaling, NLMs running in protected address space do not run as fast as NLMs
running in the OS address space. The percentage of performance loss depends on the number
and kind of OS functions called.
Virtual Memory technology provides greatly expanded total server memory.

The following illustration represents the basic relationship between protected address spaces and the
OS address space:

Figure 7-3 The Relationship between Protected Address Spaces and the OS Address Space

Multiple Protected Address Spaces

NetWare memory protection allows for an indefinite number of protected address spaces. This is
possible because the NetWare OS uses logical memory mappings and provides access to Virtual
Memory.

Physically, all protected address spaces occupy the same location on the server. In addition, logical
mappings of all protected spaces occupy the same address ranges, as illustrated below:
Memory Protection Concepts 103

104 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Figure 7-4 Location of Protected Address Spaces on the Server

When an application in a protected address space calls a function in a shared library, the library is
loaded into the protected address area on the server, and the calling protected address space is
mapped to the library. That same range of protected memory is reserved on all other protected
address spaces. However, that space is mapped and thus active only in the protected address space
that called the library function. Libraries are set up in other protected address spaces as they make
calls to library functions.

Likewise, when an NLM application is loaded into a protected address space, the calling address
space is mapped to the NLM. The memory range in which the NLM is running is also reserved in all
protected address spaces. However, other protected address spaces get access to the loaded NLM
only by loading it explicitly, rather than by merely calling one of its functions as with a shared
library. Each protected address space that loads the NLM is mapped to the memory range in which
the NLM is running.

The following illustration represents two protected address spaces using a variety of NLM libraries
and applications. Both are mapped to the libraries CLIB, NLMLIB, and REQUESTR. Only
USER_ADDRESS_SPACE1 is mapped NLM B and NLM C. Only USER_ADDRESS_SPACE2 is
mapped to NLM A and NLM F. Both are mapped to NLM D, and neither is mapped to an implied
NLM E. (NLM E is mapped to USER_ADDRESS_SPACE3.)

Figure 7-5 Mappings of Protected Address Spaces

What Loads Automatically into NetWare Protected Address Space

When an address spaces is created by the NetWare 5.x or 6.x OS, a library called userlib.nlm is
automatically load into (are mapped to) that space. This library contains some of the OS functions
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
that are most commonly used, such as those to compare strings. Having those functions readily
accessible saves on the overhead of crossing the boundary between a protected address space and
the OS address space.

In addition, the CLIB family of libraries loads into protected address space when an NLM loads.
After CLIB has loaded into protected space, there are two copies running-one in the OS address
space and another in the protected address space. All protected address spaces have access to the
same copy of CLIB through protected address space mappings.

NLMs can also be loaded into one or more protected address spaces, but they must be loaded
explicitly.

What Applications Can Run in NetWare Protected Space?

Access to functions in the OS address space is provided to NLM applications in the protected
address space through the libraries of functions in the NetWare API functions in the NDK. Use only
functions provided through those libraries for OS space functionality. OS functions are subject to
change without notice or publication, and SDK functions are updated to adapt to changes in the OS.
NLMs that are written with functions the NetWare SKD and that follow specifications published
with the SDK can be loaded with confidence into protected address space.

This includes NLMs written with functions provided through the CLIB family of libraries,
automatically loaded with CLIB.NLM. It also includes NLMs written with the multi-platform
functions ported to the NLM platform through CALNLM32.NLM.

7.1.3 System Call Interface
The system call interface is a gate that verifies the validity of parameters into the OS address space.
If an invalid parameter is passed, the passing NLM is unloaded without terminating normally, its
associated protected address space is deleted, and the memory that the address space occupied is
released.

The verification takes place through marshaling code that validates parameters of each fully released
NetWare API function, based on two criteria:

Memory accessed
Values passed

Addressed memory is verified for validity and length. For example, if an input parameter points to
an array of structures, the interface verifies that the starting address is valid and that enough memory
is allocated for the array.

Values passed are also verified for validity. For example, if a function needs to write the contents of
a buffer to a screen, the interface verifies that the specified screen is on the list of valid screens and
that the calling NLM application has access to that screen.

In addition, the interface also verifies the validity of values resulting from operations. For example,
if a process were to attempt to divide by zero, the parameter value would be declared invalid.
Memory Protection Concepts 105

106 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
7.1.4 Memory Protection set Parameters
You can use the following set parameters to control the behavior of memory protection in a 5.x or
6.x server:

set memory protection fault cleanup

This parameter allows for cleanup after at attempt to violate memory protection. If set to ON,
on an attempt to violate memory protection, the offending protected address space and its
loaded NLMs are removed from protected memory and their resource are freed and returned to
the system. If set to OFF, no effort is made to handle the fault, and the situation is left to the
abend recovery mechanism.
set memory protection no restart interval
This parameter prevents a protected address space from restarting if it faults more than once
during a specified number of minutes. If set to 0, this parameter is itself disabled. If set to a
whole number from 1 to 60, on a fault the offending protected address space is removed along
with any loaded NLMs, and the resources associated with that address space are returned to the
system. Then a new protected address space with the same name is created, and the same
NLMs are loaded into the new space. Thereafter, if the protected address space is restarted
more recently than the set number of minutes, the restart feature is disabled.
set auto restart after abend
Controls server behavior following and abend. Values are as follows (configure restart times
for options 1 and 2 with set auto restart after abend delay time:

0-do not attempt to recover from abend
1-(default) For software abends, NMIs, and machine check exceptions - attempt to recover
from the problem, down the server in the configured amount of time, then restart the OS.
For other exceptions abends - suspend the faulting process and leave the server up.
2-For all software and hardware abends, attempt to recover from the problem, down the
server in the configured amount of time, then restart the OS.
3-For all software and hardware abends, do an immediate restart of the server. (Detailed
information about server abends is logged to the abend.log file in the sys:system directory.
Note that an abend indicates that the server is not in a valid state, and recovery is not
always possible. This option is disabled when the developer option settable parameter is
set to ON.)
evelopment Concepts, Tools, and Functions

8
novdocx (en) 11 D

ecem
ber 2007
8Memory Protection Tasks

This documentation explains how to perform some fundamental tasks to use NetWare 5.x or later
memory protection as aids in NLM development.

8.1 Loading an NLM into OS Address Space
Loading NLMs into OS address space does not change with the NetWare 5.x or 6.x OS. The OS
address space is the default load location.

1 To load an NLM into OS address space, at the server prompt or in a .ncf file enter the following
command:
load nlm_a

where nlm_a is the correct name of the NLM you are loading.

When this command executes, the specified NLM loads in the OS address space and has direct
access to the OS. OS memory has little or no protection from NLMs running in the OS address
space.

8.2 Loading an NLM into a Protected Address
Space
You can load an NLM into protected a address space by using the system default or by loading into
an explicitly named protected address space.

1 To load nlm_a.nlm into a default protected address space, at the server console type
load protected nlm_a

where nlm_a is the correct NLM name.

The NetWare 5.x or 6.x OS automatically creates USER_ADDRESS_SPACEX. (X is incremented
as spaces are created. The first default protected address space created is
USER_ADDRESS_SPACE1, the second is USER_ADDRESS_SPACE2, and so forth.)

You can override the system default naming scheme and load an NLM into an explicitly named
protected address space.

1 To load nlm_a.nlm into a protected address space space_a, at the server console type
load address space = space_a nlm_a

where space_a and nlm_a are the correct protected address space and NLM names.

With a protected address space name set in the command, the system automatically loads the NLM
into protected memory. If protected address space space_a does not currently exists, the system
creates it and loads nlm_a.nlm into it. If space_a exists, the system loads nlm_a.nlm into that space.
Memory Protection Tasks 107

108 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
8.3 Unloading NLMs Protected Address Spaces
The unload command unlinks a loadable module previously linked to the OS with the load
command. In the NetWare 5.x or 6.x OS unload also allows you to unload an NLM from a specific
protected address space or to unload the entire protected address space.

To unload an NLM, at the server prompt type
unload nlm_a

where nlm_a is the correct NLM name.
To unload an NLM from a specific protected address space, at the server prompt type
unload address space = space_a nlm_a

where space_a and nlm_a are the correct protected address space and NLM names.
To unload a protected address space (and all NLMs and libraries running in that protected
address space), at the server prompt type
unload address space = space_a

where space_a is the correct protected address space name.

8.4 Using the protection Command
The protection command allows you to check the protection status of any or all protected address
spaces, including all applications loaded into that space and any protection options currently set. It
also allows you to enable or disable the restart feature for a protected address space.

8.4.1 Checking Protection Status
1 To check the protection status of any or all protected address spaces, type one of the following

at the server console:
protection

(Displays protection status for all protected address spaces)
protection space_a

(Displays protection status only for protected address space "space_a" and creates that
protected address space if it does not already exist)

8.4.2 Enabling/Disabling the Restart Feature
1 To enable or disable the restart feature for a protected address space, type one of the following

at the server console:
protection restart space_a
protection no restart space_a

8.5 Finding Out What is Running in a Protected
Address Space

1 Use the protection command as described in the first section of Section 8.4, “Using the
protection Command,” on page 108
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
8.6 Setting a Protected Address Space to Restart
after a Fault
By default, when a memory fault occurs, the server removes the NLM that caused the fault, deletes
the protected address space (and all its contents), and releases the memory used by the protected
address space. However, the server can be set to restart the protected address space after a fault
occurs. This setting can be chosen when the NLM is loaded, when a protected address space is
created explicitly, or when processes in a protected address space are running.

To flag a default protected address space as restartable at load time, at the console type
load restart nlm_a

where nlm_a is the correct NLM name.

The system creates a new protected address space with the next number in the default naming
scheme and loads nlm_a.nlm into it.
To flag an explicitly named protected address space as restartable when you are loading an
NLM into it, at the console type
load address space = space_a restart nlm_a

where space_a and nlm_a are the correct protected address space and NLM names.
If protected address space "space_a" exists, the system loads nlm_a.nlm into it and flags the
protected address space as restartable. Otherwise, the system creates protected address space
"space_a," loads nlm_a.nlm into it, and flags the address space as restartable.
To flag an existing protected address space as restartable as processes are running or to create a
restartable new address space, at the console type
protection restart space_a

where space_a is the correct protected address space name.)
If protected address space "space_a" exists, the system flags it as restartable. Otherwise, the
system creates protected address space "space_a" and flags it as restartable.
To flag an existing protected address space as nonrestartable as processes are running or to
create a restartable new address space, at the console type
protection no restart space_a

where space_a is the correct protected address space name.
Type help protection at the console screen for more information.

8.7 Setting a Server to Abend for Memory Faults
1 To set the server to abend on a memory fault, at the server prompt or in a .ncf file enter the

following commands:
set Memory Protection Fault Cleanup = off
set Auto Restart After Abend = 0

By default, when a memory fault occurs in a protected address space, a NetWare server shuts down
the calling NLM and protected address space without normal termination, releases the memory held
by the protected address space, and continues other operations. However, you can set the server to
abend immediately at a memory fault. Such an abend allows immediate inspection of the running
server, and can thus help greatly with debugging.
Memory Protection Tasks 109

110 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
To restore the memory fault recovery feature, set Memory Protection Fault Cleanup back to on and
set Auto Restart After Abend to 2.

8.8 Loading Memory Fault Isolation
1 At the server console prompt type the following (where someNLM is the NLM you are

loading):

LOAD -m someNLM

The -m loader option is a new development tool with NetWare 5, and can be extremely useful in
tracking down causes of memory corruption. The option results in each memory allocation being put
onto one or more full pages with a guard page at the border of the upper address of the allocated
memory. If the memory is overrun and touches the guard page, a page fault occurs, causing a server
abend on the instruction that overran the memory.

NOTE: In order for the server to abend while an NLM is running in a protected memory space,
system fault protection must be turned off. See Section 8.7, “Setting a Server to Abend for Memory
Faults,” on page 109.

8.9 Pinpointing Memory Overflows
NetWare memory protection offers two debug options that greatly reduce the time and effort
required to find the cause of a memory violation. Both provide a mechanism that causes a server
abend precisely at the instruction on which the initial memory violation occurs. This can save hours
of searching for something that might have happened five seconds, five minutes, or five hours
before the corruption would otherwise become apparent because an abend.

NetWare memory protection provides the options for the following important memory violation
problems:

Most server memory problems occur within the normal operation of an NLM, although the violation
might not be apparent until an unrelated operation tries to access the corrupted memory considerably
after the corruption took place. For instructions on setting the server to abend when normal allocated
memory in a specified NLM is overrun, see Section 8.8, “Loading Memory Fault Isolation,” on
page 110.

8.10 Accessing On-Line Help for Memory
Protection

1 To access on-line help for command options and syntaxes, type help followed by the relevant
command. For example:
help protection
help load
help unload
evelopment Concepts, Tools, and Functions

9
novdocx (en) 11 D

ecem
ber 2007
9Advanced NLM Function
Concepts

This documentation describes Advanced Services, its functions, and features.

9.1 Advanced Function List

Function Description

AllocateDynArrayEntry (page 118) Allocates an entry in a dynamic array.

AllocateGivenDynArrayEntry (page 120) Allocates an entry in a dynamic array at a given element
index.

AllocateResourceTag (page 122) Allocates a resource tag for a particular resource.

AsyncRead (page 124) Allows a file to be read directly from cache memory.

AsyncRelease (page 126) Releases the cache buffer memory allocated by a call to
AsyncRead.

CancelNoSleepAESProcessEvent
(page 127)

Cancels a scheduled AES (Asynchronous Event
Scheduler) event.

CancelSleepAESProcessEvent
(page 128)

Cancels a scheduled AES event.

DeallocateDynArrayEntry (page 129) Frees the dynamic array entry at a specified index.

GetFileHoleMap (page 130) Returns a block allocation map for a file.

GetSetableParameterValue (page 132) Obtains the value of a server parameter.

GetThreadDataAreaPtr (page 133) Returns the thread switch data area pointer for the current
thread.

gwrite (page 134) Writes multiple buffers to a file.

ImportSymbol (page 136) Returns a pointer to an exported symbol.

NWAddSearchPathAtEnd (page 137) Adds a search path to the end of the search path list that
the OS uses to determine the location of NLM
applications.

NWGarbageCollect (page 139) Unfragments freed server memory.

NWDeleteSearchPath (page 138) Deletes a search path from the search path list that the OS
uses to determine the location of NLM applications.

NWGetSearchPathElement (page 140) Returns a search paath from the search path list that the
OS uses to determine the location of NLM applications.

NWInsertSearchPath (page 141) Inserts a search path into the search path list that the OS
uses to determine the location of NLM applications.

qread (page 142) Performs a low-overhead read operation.
Advanced NLM Function Concepts 111

112 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
9.2 Functions to Handle Dynamic Arrays
The dynamic array functions, listed below, assist the developer in handling arrays that grow
dynamically.

AllocateDynArrayEntry (page 118)
AllocateGivenDynArrayEntry (page 120)
DeallocateDynArrayEntry (page 129)

These functions perform some of the housework necessary when expanding in-memory tables.

For example, a database server NLM might maintain a connection table where each entry contains
information about one of the server’s clients. To avoid limiting the database server to an arbitrary
maximum number of clients it can service, this connection table expands whenever new clients are
added. Dynamic array functions perform some of the housework for this expansion.

9.3 Dynamic Array Terminology
Dynamic array terms are defined as follows:

entry
Refers to an element in the dynamic array. For example, consider a dynamic array consisting of
20 bytes. If the element size is 4 bytes, then there are 5 entries in the array. Element and entry
are used interchangeably. Entries may or may not be in use.

qwrite (page 144) Performs a low-overhead write operation.

RegisterConsoleCommand (page 146) Registers a console command parsing function.

RegisterForEvent (page 148) Registers to be notified when a particular event occurs.

SaveThreadDataAreaPtr (page 153) Sets the thread switch data area pointer for the current
thread.

ScanSetableParameters (page 154) Returns information about server parameters.

ScheduleNoSleepAESProcessEvent
(page 158)

Defines a procedure to be called by the asynchronous
event scheduler (AES) after a specified delay.

ScheduleSleepAESProcessEvent
(page 160)

Defines a procedure to be called by the AES after a
specified delay.

SetSetableParameterValue (page 162) Sets the value of a server parameter.

SynchronizeStart (page 163) Restarts the NLM start-up process when using
synchronization mode.

UnimportSymbol (page 164) Eliminates the dependency of an NLM on a specified
external symbol.

UnRegisterConsoleCommand (page 165) Cancels a registered console command parsing function.

UnregisterForEvent (page 166) Cancels a registration for event notification.

Function Description
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
dynamic array
An array whose number of enties can be increased dynamically by the user as needed at run
time.

DAB (dynamic array block)
A structure used to control a dynamic array. Every dynamic array must have a DAB associated
with it.

grow amount
The user specifies the number of elements to add to the dynamic array when
AllocateDynArrayEntry (page 118) is invoked and there are no unused array elements. For
example, if the grow amount is 5, the first call to AllocateDynArrayEntry produces an array of
5 elements. The next call increases the number of elements to 10 only if there are no unused
array elements in the first 5. The grow amount is not used with AllocateGivenDynArrayEntry
(page 120).

reallocation function
This function is used to reallocate memory for use by the dynamic array, and must allow
resizing. Currently, only realloc allows resizing. However, users can write their own resizing
memory allocation function, as long as the number and definition of parameters is the same as
for realloc.

9.4 Dynamic Linkage of Exported Symbols
ImportSymbol (page 136) and UnimportSymbol (page 164) allow you to link and unlink exported
module symbols dynamically. Any symbol exported by an NLM may be imported dynamically by
another NLM by calling ImportSymbol. This function is especially useful for creating an NLM that
doesn’t fully rely on a symbol or set of symbols, but can have enhanced functionality if those
symbols are present. It is also useful for creating NLM applications that can load on multiple
versions of the server, and can take advantage of features that are present in one version but not the
other.

The function uses the "handle" of the NLM importing the symbol, and the name (ASCIIZ string) of
the symbol being imported. If successful, the function returns the address of the symbol. The
module dependency list maintained by the OS reflects the NLM depencency on that symbol. If the
symbol is not available for import, the function returns NULL.

Once the symbol is imported, the NLM may freely call or access the symbol as if it had been
statically imported at load time. Symbols may be imported from the OS itself or from other NLM
applications that have exported symbols.

The reverse of importing symbols is also possible. UnimportSymbol tells the OS that the NLM no
longer needs the specified symbol. If UnimportSymbol is successful, the OS removes the NLM
depencency on that symbol. This allows the NLM from which the symbol was dynamically
imported to unload, providing no other dependencies exist on either the NLM as a whole or any
other symbols it exports.

NOTE: If a symbol is un-imported, it must not be accessed.
Advanced NLM Function Concepts 113

114 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The return type of ImportSymbol is a void pointer. Generally, you can assign the return value of data
symbols to any pointer to object type, although you should be careful to access the data object in
ways that are consistent with the type it really is.

It is not as generally acceptable in STD C to typecast a void pointer as a function pointer, and you
should be careful about this operation in your source code.

9.5 Event Reporting and Management Functions
Use the event reporting functions to obtain and set the thread data area pointer for the current thread,
to perform and cancel event notification, and to restart the NLM startup process when using
synchronization mode. These functions are listed below:

GetThreadDataAreaPtr (page 133)
RegisterConsoleCommand (page 146)
SaveThreadDataAreaPtr (page 153)
SynchronizeStart (page 163)
UnRegisterConsoleCommand (page 165)

NLM applications that manage events can use event management functions to allocate resource tags
and process events. Event management functions are listed below:

AllocateResourceTag (page 122)
CancelNoSleepAESProcessEvent (page 127)
CancelSleepAESProcessEvent (page 128)
ScheduleNoSleepAESProcessEvent (page 158)
ScheduleSleepAESProcessEvent (page 160)

9.6 File I/O Functions
NLM applications that need faster access to files and information about sparse files can use File I/O
functions.

AsyncRead (page 124)
AsyncRelease (page 126)
GetFileHoleMap (page 130)
gwrite (page 134)
qread (page 142)
qwrite (page 144)
evelopment Concepts, Tools, and Functions

10
novdocx (en) 11 D

ecem
ber 2007
10Advanced Tasks

This documentation describes common tasks associated with Dynamic Array functions in the
Advanced function group.

10.1 Using Dynamic Array Functions
When using dynamic array functions, do the following:

1 Create a data structure called a dynamic array block (DAB).

This structure describes information table, such as entry types and expansion parameters.
2 Use the DAB as an input parameter to one of two functions called whenever the table must

expand.
Which function is used depends on how the indexes to entries in the dynamic array are
generated. Initially a dynamic array has no entries. In the database server example, the dynamic
array would expand every time a new client requests service.

3 Call another function when a dynamic array entry is no longer being used, so that entry can be
reused.

10.2 Generating Dynamic Array Indexes
1 Generate indexes in one of the two following ways:

Call AllocateDynArrayEntry (page 118), which generates the index for a new entry.
Call AllocateGivenDynArrayEntry (page 120) to specify which index to use when
allocating a new entry in a dynamic array.
Advanced Tasks 115

116 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

11
novdocx (en) 11 D

ecem
ber 2007
11Advanced Functions

This documentation alphabetically lists the advanced functions and describes their purpose, syntax,
parameters, and return values.

“AllocateDynArrayEntry” on page 118
“AllocateGivenDynArrayEntry” on page 120
“AllocateResourceTag” on page 122
“AsyncRead” on page 124
“AsyncRelease” on page 126
“CancelNoSleepAESProcessEvent” on page 127
“CancelSleepAESProcessEvent” on page 128
“DeallocateDynArrayEntry” on page 129
“GetFileHoleMap” on page 130
“GetSetableParameterValue” on page 132
“GetThreadDataAreaPtr” on page 133
“gwrite” on page 134
“ImportSymbol” on page 136
“NWAddSearchPathAtEnd” on page 137
“NWDeleteSearchPath” on page 138
“NWGarbageCollect” on page 139
“NWGetSearchPathElement” on page 140
“NWInsertSearchPath” on page 141
“qread” on page 142
“qwrite” on page 144
“RegisterConsoleCommand” on page 146
“RegisterForEvent” on page 148
“SaveThreadDataAreaPtr” on page 153
“ScanSetableParameters” on page 154
“ScheduleNoSleepAESProcessEvent” on page 158
“ScheduleSleepAESProcessEvent” on page 160
“SetSetableParameterValue” on page 162
“SynchronizeStart” on page 163
“UnimportSymbol” on page 164
“UnRegisterConsoleCommand” on page 165
“UnregisterForEvent” on page 166
Advanced Functions 117

118 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AllocateDynArrayEntry
Allocates an entry in a dynamic array

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwdynarr.h>

int AllocateDynArrayEntry (
 T_DYNARRAY_BLOCK * dabP);

Parameters
dabP

(IN) Points to the T_DYNARRAY_BLOCK structure containing the Dynamic Array Block
(DAB).

Return Values
This function returns the index of the entry (a value of 0 or greater) if successful. Otherwise, it
returns an error code:

Remarks
Call the AllocateDynArrayEntry function to allocate additional entries in the dynamic array. The
dynamic array can be increased in size, but not decreased.

DABarrayP is the pointer to the dynamic array. It is referenced as varName.DABarrayP. To
reference an entry of the dynamic array, the expression, varName. DABarrayP [index] is used. If
the entry is a structure, one of its fields can be referenced as varName. DABarrayP [index].
field.

DABrealloc is the address of the desired memory allocation function which must allow resizing.
This function is normally realloc, but it can be a developer-defined function.

DABgrowAmount is the number of elements by which to increase the dynamic array when more
elements are needed.

The DAB structure can be declared and initialized by standard C methods, or the following macro
can be used:
GEN_DYNARRAY_BLOCK(elementType, varName, defDec)

-1 EFAILURE
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Where elementType is the C type of the element, such as int, struct, and so on. varName is the
name of the variable declared as a dynamic array. defDec can be DECLARE, DEFINE, or INIT, as
follows:

DELARE
Declares the varName as the type of DAB specified. Generates the following:
struct varName##Struct varName

DEFINE (realloc , growAmount)
Defines and initializes varName as the type of DAB specified. Generates the following:
struct varName##Struct
{
 elementType *DABarrayP;
 int DABnumSlots;
 int DABelementSize;
 void *(*DABrealloc) (void *, size_t);
 int DABgrowAmount;
 int DABnumEntries;
} varName = {NULL, 0, elementSize, realloc, growAmount, 0}

INIT (realloc , growAmount)
Initializes an already-defined DAB. Generates the following:
struct varName##Struct varName =
 {NULL, 0, elementSize, realloc, growAmount, 0}

The parameters for DEFINE and INIT are as follows:

realloc
Specifies the reallocation function to use when expanding the dynamic array. Normally, this
would be realloc.

growAmount
Specifies the amount to expand the dynamic array by if AllocateDynArrayEntry expands the
array.

See Also
AllocateGivenDynArrayEntry (page 120), DeallocateDynArrayEntry (page 129)
Advanced Functions 119

120 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AllocateGivenDynArrayEntry
Allocates an entry in a dynamic array at a given element index

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwdynarr.h>

int AllocateGivenDynArrayEntry (
 T_DYNARRAY_BLOCK *dabP,
 int ndx);

Parameters
dabP

(IN) Points to a pointer to the Dynamic Array Block (DAB).

ndx
(IN) Specifies the desired 0-based element index into the dynamic array.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code:

Remarks
Use the AllocateGivenDynArrayEntry function to allocate additional entries in the dynamic array.

The array can be increased in size, but not decreased.
If the index goes beyond the number of elements in the array, the array is expanded to
accommodate it. All intermediate entries are allocated and marked as available.
If an in-use memory block already exists at the specified index, it is overwritten, and 0 is
returned.

DAB is a structure with the following elements:
elementType *DABarrayP;
 /* elementType = int,struct,typedef,..*/
int DABnumSlots;
int DABelementSize; /* user-supplied */

Value Name Description

5 ENOMEM Not enough memory.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
void *(*DABrealloc) (void *, size_t); /* user-supplied */
int DABgrowAmount; /* user-supplied */
int DABnumEntries;

DABarrayP is the pointer to the dynamic array. It is referenced as varName.DABarrayP. To
reference an entry of the dynamic array, the expression, varName.DABarrayP[index] is used. If the
entry is a structure, one of its fields can be referenced as varName.DABarrayP[index].field.

DABrealloc is the address of the desired memory allocation function which must allow resizing.
This function is normally realloc, but it can be a user-defined function.

DABgrowAmount is ignored for this function.

This structure can declared and initialized by standard C methods, or the following macro can be
used:
GEN_DYNARRAY_BLOCK(elementType, varName, defDec)

See AllocateDynArrayEntry (page 118) for more detailed information about this macro.

See Also
AllocateDynArrayEntry (page 118), DeallocateDynArrayEntry (page 129)
Advanced Functions 121

122 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AllocateResourceTag
Allocates a resource tag for a particular resource

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG AllocateResourceTag (
 LONG NLMHandle,
 BYTE *descriptionString,
 LONG resourceType);

Parameters
NLMHandle

(IN) Specifies the handle of the NLM™ application for which a resource tag is desired; the
NLM handle is obtained by calling GetNLMHandle.

descriptionString
(IN) Points to a string describing the resource tag.

resourceType
(IN) Specifies the type of resource tag desired.

Return Values
This function returns a resource tag if successful or a value of 0 if not successful.

Remarks
The resource tag is used as a parameter to other function calls which allocate resources, and in turn,
used by the NetWare® Resource Management System. A list of resource types or resource tag
signatures can be found in nwadv.h:

Resource Type For Use With

AESProcessSignature ScheduleNoSleepAESProcessEvent

ScheduleSleepAESProcessEvent

ConsoleCommandSignature RegisterConsoleCommand
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
See Also
alloca, __qmalloc (NDK: Program Management), GetNLMHandle (NDK: NLM Threads
Management)
Advanced Functions 123

124 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AsyncRead
Reads a file directly from cache memory

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwfileio.h>

int AsyncRead (
 int handle,
 LONG startingOffset,
 LONG numberOfBytesToRead,
 LONG *numberOfBytesActuallyRead,
 LONG localSemaphoreHandle,
 T_cacheBufferStructure **cacheBufferInformation,
 LONG *numberOfCacheBuffers);

Parameters
handle

(IN) Specifies a handle of the file from which data is to be read.

startingOffset
(IN) Specifies the offset in the file from which the first byte is to be read.

numberOfBytesToRead
(IN) Specifies the number of bytes to read from the file.

numberOfBytesActuallyRead
(OUT) Points to the number of bytes actually read from the file.

localSemaphoreHandle
(IN) Specifies this is used by the AsyncRead Event Service Routine (ESR) to signal completion
of all of the requested cache reads for a particular call to AsyncRead. A local semaphore handle
is obtained by calling OpenLocalSemaphore. Either WaitOnLocalSemaphore or
ExamineLocalSemaphore should be used to determine when the ESR has signalled the
semaphore.

cacheBufferInformation
(OUT) Points to an array of structures which contain the cache buffer pointers, lengths, and
completion codes.

numberOfCacheBuffers
(OUT) Points to the number of cache buffers required to perform the file read.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code (nonzero value).

NOTE: If this function returns an error, do not wait on the local semaphore passed. AsyncRead does
not signal the semaphore when the function fails.

Remarks
This function reads data from a file and returns pointers to the cache buffers which contain the
requested data. The requested data can then be read directly from the cache buffers.

AsyncRead now reads only 64K at a time.

The cache buffer structure has the following form:
typedef struct cacheBufferStructure
 {
 char *cacheBufferPointer;
 LONG cacheBufferLength;
 int completionCode;
 } T_cacheBufferStructure;

The cacheBufferPointer field is the address of the first character for that particular cache
buffer. The cacheBufferLength field is the number of bytes to be used from that cache buffer.
The completionCode field is the NetWare error code for that particular cache buffer read
operation.

AsyncRelease must be called to release the memory allocated by AsyncRead.

See Also
AsyncRelease (page 126), GetNLMHandle, OpenLocalSemaphore, WaitOnLocalSemaphore (NDK:
NLM Threads Management)
Advanced Functions 125

126 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AsyncRelease
Releases the cache buffer memory allocated by a previous call to AsyncRead

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwfileio.h>

void AsyncRelease (
 T_cacheBufferStructure *cacheBufferInformation);

Parameters
cacheBufferInformation

(IN) Points to the address of the start of a cache buffer list returned by a call to AsyncRead.

Remarks
It is the responsibility of the user to free the cache memory created by an AsyncRead call if an NLM
should terminate before AsyncRelease is called. The atexit, AtUnload, and signal functions can be
used to handle this situation. Note that _exit, by definition, does not call atexit, although exit does
call atexit.

See Also
AsyncRead (page 124), atexit, AtUnload, signal (NDK: NLM Threads Management)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CancelNoSleepAESProcessEvent
Cancels a previously scheduled event

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwthread.h>

extern void CancelNoSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters
EventNode

(IN) Points to an AESProcessStructure which describes the event to be cancelled.

Remarks
The EventNode should have been used in a previous call to ScheduleNoSleepAESProcessEvent.

See Also
CancelSleepAESProcessEvent (page 128), ScheduleNoSleepAESProcessEvent (page 158)
Advanced Functions 127

128 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
CancelSleepAESProcessEvent
Cancels a previously scheduled event

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwthread.h>

extern void CancelSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters
EventNode

(IN) Points to an AESProcessStructure which describes the event to be cancelled.

Remarks
The EventNode should have been used in a previous call to ScheduleSleepAESProcessEvent.

See Also
CancelNoSleepAESProcessEvent (page 127)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
DeallocateDynArrayEntry
Frees the dynamic array entry at the specified index

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwdynarr.h>

int DeallocateDynArrayEntry (
 T_DYNARRAY_BLOCK *dabP,
 int ndx);

Parameters
dabP

(IN) Points to a Dynamic Array Block (DAB), as described for the function
AllocateDynArrayEntry.

ndx
(IN) Specifies the desired 0-based element index into the dynamic array.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns:

Remarks
The specified element’s space is not freed; it is just marked as available.

See Also
AllocateDynArrayEntry (page 118), AllocateGivenDynArrayEntry (page 120)

Value Name Description

-1 EFAILURE Index exceeds limit or element is already deallocated.
Advanced Functions 129

130 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
GetFileHoleMap
Returns a block allocation map for a file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int GetFileHoleMap (
 int handle,
 LONG startingPosition,
 LONG numberOfBlocks,
 BYTE *replyBitMapP,
 LONG *allocationUnitSizeP);

Parameters
handle

(IN) Specifies the pertinent file handle.

startingPosition
(IN) Specifies the 0-based byte offset into the file.

numberOfBlocks
(IN) Specifies the number of file blocks required for a given file. This indirectly specifies the
size in bytes of replyBitMapP. This can be computed by knowing the file size and the size
of a block:
numberOfBlocks = (file-size) / (bytes-per-block) bytes-per-block = 8 x (sectors-per-block)
Use filelength and GetVolumeInformation to get the information to compute the number of
blocks and round up, if necessary. The number specified must be in 4-byte increments: 4, 8, 12,
etc.

replyBitMapP
(OUT) Points to a block of memory that should be considered as a bit-stream. If the bit is set,
then the file block is allocated. If it is cleared, then the file block is not allocated.

allocationUnitSizeP
(OUT) Points to the size of each block in bytes.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code (nonzero value).
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Remarks
The startingPosition and numberOfBlocks specify which part of the file to return
information about.
Advanced Functions 131

132 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
GetSetableParameterValue
Obtains the value of a NetWare server console parameter

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG GetSetableParameterValue (
 LONG connectionNumber,
 BYTE *setableParameterString,
 void *returnValue);

Parameters
connectionNumber

(IN) Specifies the connection number of the user who wants to obtain information about server
console parameters.

setableParameterString
(IN) Points to a NULL-terminated ASCIIZ string representing the name of the server console
parameter.

returnValue
(OUT) Points to the value of the server console parameter.

Return Values
Returns 0 if successful, or -1 if an invalid setable parameter string was specified.

Remarks
A setable parameter is a NetWare OS parameter that can be set using the SET console command
(see the Utilities Reference included with the NetWare 5 release).

The value returned in the returnValue parameter depends upon the server console parameter
passed into the setableParameterString parameter. Enough space should be set aside for
the return value to be copied to the destination address pointed to by the returnValue parameter.
The maximum size of a server console parameter is 512 bytes.

See Also
ScanSetableParameters (page 154), SetSetableParameterValue (page 162)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetThreadDataAreaPtr
Gets the thread switch Data Area Pointer for the current thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

void *GetThreadDataAreaPtr (void);

Return Values
This function returns the thread switch pointer for the current thread.

Remarks
When thread-switch event reporting has been registered, the Data Area Pointer is passed as the
parameter to the report routine when a thread switch occurs.

The pointer can point to any user-defined data structure.

See Also
SaveThreadDataAreaPtr (page 153), RegisterForEvent (page 148)
Advanced Functions 133

134 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
gwrite
Writes multiple buffers to a file with a single call

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwfileio.h>

int gwrite (
 int fildes,
 T_mwriteBufferStructure *bufferP,
 LONG numberOfBuffers,
 LONG *numberOfBuffersWritten);

Parameters
handle

(IN) Specifies the handle of the file to which data is to be written.

bufferP
(IN) Points to an array of structures of type T_mwriteBufferStructure. Each structure contains a
pointer to the buffer to be written and the number of bytes to be written.

numberOfBuffers
(IN) Specifies the number of structures in bufferP.

numberOfBuffersWritten
(OUT) Points to the number of buffers actually written.

Return Values
On success, returns the number of bytes written. On failure, returns EFAILURE and sets errno and
NWErrno to EBADF for a bad file handle or to other error codes as appropriate.

Remarks
The bufferP structure is defined in nwadv.h as:
char *mwriteBufferPointer
LONG mwriteBufferLength
int reserved
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
See Also
qwrite (page 144)
Advanced Functions 135

136 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ImportSymbol
Returns a pointer to an exported symbol

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

void *ImportSymbol (
 int NLMHandle,
 char *symbolName);

Parameters
NLMHandle

(IN) Specifies the handle of the NLM that requires the symbol.

symbolName
(IN) Points to the symbol to import.

Return Values
Returns a pointer to the function associated with the symbol upon success. Otherwise, it returns 0.

Remarks
ImportSymbol is useful for resolving external symbol references that do not exist when the NLM
requiring those symbols loads. For example, if an NLM calls Network Management functions, that
NLM can test whether the needed Network Management symbols are available.

The NLMHandle parameter can be obtained by calling GetNLMHandle.

See impsymbl.c (../../../samplecode/clib_sample/nlm/impsymbl/impsymbl.c.html).

See Also
GetNLMHandle (NDK: NLM Threads Management), UnimportSymbol (page 164)
evelopment Concepts, Tools, and Functions

../../../samplecode/clib_sample/nlm/impsymbl/impsymbl.c.html

novdocx (en) 11 D
ecem

ber 2007
NWAddSearchPathAtEnd
Adds a search path to the end of the search path list that the OS uses to determine from where it
loads NLM applications

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int NWAddSearchPathAtEnd (
 BYTE *searchPath,
 LONG *number);

Parameters
searchPath

(IN) Points to a new path to be added at the end of the search path list.

number
(OUT) Points to a number defining where the new search path falls in the list.

Return Values
The following table lists return values and descriptions.

Remarks
The number parameter may be used to delete the search path.

The number of search paths is equivalent to the number listed when the NetWare server console
`search’ is entered.

See Also
NWDeleteSearchPath (page 138)

0 Success

-1 Failure
Advanced Functions 137

138 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
NWDeleteSearchPath
Deletes a search path from the search path list the OS uses to determine from where it loads NLM
applications

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int NWDeleteSearchPath (
 LONG searchPathNumber);

Parameters
searchPathNumber

(IN) Specifies the search path number to be deleted.

Return Values
The following table lists return values and descriptions.

Remarks
The number of search paths is equivalent to the number listed when the NetWare server console
`search’ is entered.

See Also
NWAddSearchPathAtEnd (page 137)

0 Success

-1 Failure
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NWGarbageCollect
Unfragments freed server memory

Local Servers: either blocking or nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwmalloc.h>

void NWGarbageCollect (
 LONG NLMHandle ;

Parameters
NLMHandle

(IN) Specifies an NLM handle through which freed server memory will be unfragmented.

Remarks
NWGarbageCollect provides a programmatic way to unfragment server memory before that
memory is unfragmented automatically by the OS. If a large number of calls have been made to
allocate memory, especially in small pieces, the NetWare 4.x, 5.x, and 6.x OS often fragments
server memory, causing subsequent memory allocation calls to fail. A call to NWGarbageCollect
with a valid NLM handle unfragments all server memory.

For the NLMHandle parameter, pass in the handle returned by a call to GetNLMHandle.

Blocking Information: Although NWGarbageCollect can block in some instances, it does not
always do so.

See Also
FindNLMHandle, GetNLMHandle, MapNLMIDToHandle (NDK: NLM Threads Management)
Advanced Functions 139

140 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
NWGetSearchPathElement
Returns a search path from the search path list the OS uses to determine from where it loads NLMs

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int NWGetSearchPathElement (
 LONG searchPathNumber,
 LONG *isDOSSearchPath,
 BYTE *searchPath);

Parameters
searchPathNumber

(IN) Specifies the search path number to be returned.

isDOSSearchPath
(OUT) Points to a flag indicating whether the search path is for the DOS partition.

searchPath
(OUT) Points to a search path corresponding with searchPathNumber.

Return Values
The following table lists return values and descriptions.

Remarks
The number of search paths is equivalent to the number listed when the NetWare server console
`search’ is entered.

0 Success

-1 Failure
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NWInsertSearchPath
Inserts a search path into the search path list the OS uses to determine from where it loads NLM
applications

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int NWInsertSearchPath (
 LONG searchPathNumber,
 BYTE *searchPath);

Parameters
searchPathNumber

(IN) Specifies the search path number to be entered.

searchPath
(IN) Points to a new search path to be added to the search path list.

Return Values
The following table lists return values and descriptions.

Remarks
The number of search paths is equivalent to the number listed when the NetWare server console
`search’ is entered.

0 Success

-1 Failure
Advanced Functions 141

142 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
qread
Performs a low-overhead read operation

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwfileio.h>

int qread (
 int fildes,
 void *buffer,
 LONG len,
 LONG position);

Parameters
handle

(IN) Specifies the pertinent file handle.

buffer
(OUT) Points to a buffer where the data is to be received.

len
(IN) Specifies the number of bytes to read.

position
(IN) Specifies the byte offset in the file at which to start reading.

Return Values
If successful, this function returns the number of bytes read. If an error occurs, it returns -1
(EFAILURE) and errno and/or NWErrno can be set to:

Value Name Description

4 EBADF Bad file number.

 Other error codes as appropriate
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Remarks
The qread function does not:

Perform parameter/context validation.
Maintain file position.

This function does not support:

Standard I/O
Semaphore use of the handle
Streams
BSD Sockets

See Also
qwrite (page 144)
Advanced Functions 143

144 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
qwrite
Performs a low-overhead write operation

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwfileio.h>

int qwrite (
 int fildes,
 void *buffer,
 LONG len,
 LONG position);

Parameters
handle

(IN) Specifies the pertinent file handle.

buffer
(IN) Points to a buffer which contains the data.

len
(IN) Specifies the number of bytes to write.

position
(IN) Specifies the byte offset at which to start writing.

Return Values
If successful, this function returns the number of bytes written. If an error occurs, it returns -1
(EFAILURE) and errno and/or NWErrno can be set to:

Value Name Description

4 EBADF Bad file number.

 Other error codes as appropriate
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Remarks
The qwrite function does not:

Perform parameter/context validation.
Maintain file position.

This function does not support:

O_APPEND
Standard I/O
Semaphore use of the handle
Streams
BSD Sockets

See Also
qread (page 142)
Advanced Functions 145

146 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
RegisterConsoleCommand
Registers a console command parsing function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG RegisterConsoleCommand (
 struct commandParserStructure *newCommandParser);

Parameters
newCommandParser

(IN) Points to a command parsing function.

Return Values
If RegisterConsoleCommand is successful, it returns 0. Otherwise, it returns 0xFFFFFFFF.

newCommandParser.parseRoutine returns the following values:

Remarks
The command parsing function is called by the operating system whenever an unrecognized console
command is entered. The parsing function is called with two parameters: a screen ID and a
pointer to the complete console command line (an ASCIIZ string).

The commandParserStructure can be found in the nwadv.h header file and has the following
definition:
struct commandParserStructure
 {
 struct commandParserStructure *Link;
 /* Set by RegisterConsoleCommand */
 LONG (*parseRoutine) (/* Parsing routine (user-defined) */
 LONG screenID,
 BYTE *commandLine);

0 The command was handled and does not allow any subsequently registered command
parser to be envoked.

Nonzero The command was not handled. The console command thread looks for other command
parsers to handle the command. If none does, NetWare displays "??? Unknown
Command ???"
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
 struct ResourceTagStructure *RTag;/* Set to resource tag */
 };

The required resource tag is obtained with a call to AllocateResourceTag using the
ConsoleCommandSignature constant (defined in nwadv.h) as the signature value.

The function registered by RegisterConsoleCommand runs as a callback (an OS Thread), which is
not able to call most of the NetWare API functions, unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group context in your command
parser, by calling SetThreadGroupID and passing a valid thread group ID. Before this thread returns,
it should reset its context to its original context, by setting the thread group ID back to its original
value.

For 4.x, 5.x, and 6.x NLM applications, the context that is given to the callbacks when they are
registered is determined by the value in the registering thread’s context specifier. You can set the
context specifier to one of the following options:

NO_CONTEXT-Callbacks registered with this option are not given CLIB context. The
advantage here is that you avoid the overhead needed for setting up CLIB context. The
disadvantage is that without the context the callback is only able to call NetWare API functions
that manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback thread CLIB context by
calling SetThreadGroupID and passing in a valid thread group ID. If you manually set up your
context, you need to reset its context to its original context, by setting the thread group ID back
to its original value.
USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread.
A valid thread group ID-This is to be used when you want the callbacks to have a different
thread group context than the thread that schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or ScheduleWorkToDo, its
context specifier is set to USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread’s context specifier by calling
GetThreadContextSpecifier. Use SetThreadContextSpecifier to set the registering thread’s context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with OS Threads (NDK: NLM
Threads Management).

See Also
AllocateResourceTag (page 122), UnRegisterConsoleCommand (page 165)
Advanced Functions 147

148 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
RegisterForEvent
Registers an operation to be called when the specified event occurs

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

extern LONG RegisterForEvent (
 LONG eventType,
 void (*reportProcedure)
 (
 LONG parameter,
 LONG userParameter
),
 LONG (*warnProcedure)
 (
 void (*OutputRoutine)
 (
 void *controlString, ...
),
 LONG parameter,
 LONG userParameter)
));

Parameters
eventType

(IN) Specifies an event type.

reportProcedure
(IN) Points to the events that occurred.

warnProcedure
(IN) Points to a warn procedure (optional).

Return Values
RegisterForEvent returns a nonzero event handle if successful. Otherwise, it returns EFAILURE (-
1).
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Remarks
The warning procedure pointed to by warnProcedure returns zero or nonzero. If nonzero, you
are given a choice to unload.

The function registered by RegisterForEvent runs as a callback-an OS Thread-and is not able to call
most of the NetWare APIs (unless it is given a CLIB context).

For 3.11 NLM applications, you must manually create the thread group context in your command
parser by calling SetThreadGroupID and passing a valid thread group ID. Before this thread returns,
you should reset its context to its original context, by setting the thread group ID back to its original
value.

For 4.x, 5.x, and 6.x NLM applications, the context that is given to the callbacks when they are
registered is determined by the value in the registering thread’s context specifier:

NO_CONTEXT The registered callback function is not given a CLIB context. Without a CLIB
context, the callback function is able only to call NetWare APIs that manipulate data or manage
local semaphores.
USE_CURRENT_CONTEXT The registered callback function have the thread group context
of the registering thread.
A valid thread group ID is used when you want the callbacks to have a different thread group
context than the thread that schedules them.

When a new thread is started by calling BeginThread, BeginThreadGroup or ScheduleWorkToDo,
its context specifier is set to USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread’s context specifier by calling
GetThreadContextSpecifier. Call SetThreadContextSpecifier to set the registering thread’s context
specifier to one of the above options.

What parameter is set to, whether the event calls a warn routine, whether or not the event can
sleep, and each event's description follow:

Event: Description Warn
routine Sleep

0 EVENT_VOL_SYS_MOUNT: parameter is undefined. Report Routine is
called immediately after the SYS: volume has been mounted.

No Yes

1 EVENT_VOL_SYS_DISMOUNT: parameter is undefined. Warn Routine
and Report Routine are called before the SYS:volume is dismounted.

Yes Yes

2 EVENT_ANY_VOL_MOUNT: parameter is a volume number. Report
Routine is called immediately after any volume is mounted.

No Yes

3 EVENT_ANY_VOL_DISMOUNT: parameter is a volume number. Warn
Routine and Report Routine are called before any volume is dismounted.

Yes Yes

4 EVENT_DOWN_SERVER: parameter is undefined. Warn Routine and
Report Routine are called before the server is shut down.

Yes Yes

7 EVENT_EXIT_TO_DOS: parameter is undefined. Report Routine is
called before the server exits to DOS (NetWare 4.x, 5.x, and 6.x only).

No Yes
Advanced Functions 149

150 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
8 EVENT_MODULE_UNLOAD: parameter is a module handle. Warn
Routine and Report Routine are called when a module is unloaded from the
console command line. Only Report Routine is called when a module
unloads itself (see Using the MODULE_UNLOAD Event: Example (NDK:
Sample Code)).

Yes Yes

9 EVENT_CLEAR_CONNECTION: parameter is a connection number.
Report Routine is called before the connection is cleared.

No Yes

10 EVENT_LOGIN_USER: parameter is a connection number. Report
Routine is called after the connection has been allocated.

No Yes

11 EVENT_CREATE_BINDERY_OBJ: parameter is an object ID. Report
Routine is called after the object is created and entered in the bindery.

No No

12 EVENT_DELETE_BINDERY_OBJ: parameter is an object ID. Report
Routine is called before the object is removed from the bindery.

No No

13 EVENT_CHANGE_SECURITY: parameter is a pointer to
EventSecurityChangeStruct. Report Routine is called after a security
equivalence change has occurred.

No No

14 EVENT_ACTIVATE_SCREEN: parameter is a screen ID. Report routine
is called after the screen becomes the active screen (NetWare 4.x, 5.x, 6.x
only).

No No

15 EVENT_UPDATE_SCREEN: parameter is a screen ID. Report routine is
called after a change is made to the screen image (NetWare 4.x, 5.x, and
6.x only).

No No

16 EVENT_UPDATE_CURSOR: parameter is a screen ID. Report routine is
called after a change to the cursor position or state occurs (NetWare 4.x,
5.x, and 6.x only).

No No

17 EVENT_KEY_WAS_PRESSED: parameter is undefined. Report routine
is called at interrupt time whenever a key on the keyboard is pressed
(including shift/alt/control).

No No

18 EVENT_DEACTIVATE_SCREEN: parameter is a screen ID. Report
routine is called when the screen becomes inactive (NetWare 4.x, 5.x, and
6.x only).

No No

19 EVENT_TRUSTEE_CHANGE: parameter is a pointer to
EventTrusteeChangeStruct (page 175). Report Routine is called everytime
there is a change to a trustee in the file system.

No No

20 EVENT_OPEN_SCREEN: parameter is the screen ID for the newly
created screen. Report Routine is called after the screen is created
(NetWare 4.x, 5.x, and 6.x only).

No Yes

21 EVENT_CLOSE_SCREEN: parameter is the screen ID for the screen
that is to be closed. Report Routine is called before the screen is closed
(NetWare 4.x, 5.x, and 6.x only).

No Yes

22 EVENT_MODIFY_DIR_ENTRY: parameter is a pointer to
EventModifyDirEntryStruct (page 172) which contains the modify
information. Report Routine is called right after the entry is changed and
before the directory entry is unlocked.

No No

Event: Description Warn
routine Sleep
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
23 EVENT_NO_RELINQUISH_CONTROL: parameter is the running
process. Report Routine is called when the timer detects that a process is
hogging the processor (NetWare 4.x, 5.x, and 6.x only).

No No

25 EVENT_THREAD_SWITCH: parameter is the thread's ID that was
executing when the thread switch occurred. Report Routine is called when
the new thread begins executing (applies only to threads in the calling
NLM).

No No

27 EVENT_MODULE_LOAD: parameter is module handle. Report Routine
is called after a module has loaded (NetWare 4.x, 5.x, and 6.x only).

No Yes

28 EVENT_CREATE_PROCESS: parameter is the PID of the process being
created. Report Routine is called after the process is created (NetWare 4.x,
5.x, and 6.x only).

No No

29 EVENT_DESTROY_PROCESS: parameter is the PID of the process
being destroyed. Report Routine is called before the process is actually
destroyed (NetWare 4.x, 5.x, and 6.x only).

No No

32 EVENT_NEW_PUBLIC: parameter is a pointer to a length preceded
string containg the name of the new public entry point (NetWare 4.x, 5.x,
and 6.x only).

No No

33 EVENT_PROTOCOL_BIND: parameter is a pointer to
EventProtocolBindStruct. This event is generated every time a board is
bound to a protocol (NetWare 4.x, 5.x, and 6.x only).

No Yes

34 EVENT_PROTOCOL_UNBIND: parameter is a pointer to
EventProtocolBindStruct. This event is generated every time a board is
unbound from a protocol (NetWare 4.x, 5.x, and 6.x only).

No Yes

37 EVENT_ALLOCATE_CONNECTION: parameter is a connection number.
Report Routine is called after the connection is allocated (NetWare 4.x, 5.x,
and 6.x only).

No Yes

38 EVENT_LOGOUT_CONNECTION: parameter is a connection number.
After NetWare 5.1, any NLM that is registered for
EVENT_LOGOUT_CONNECTION will still be called; but the connection
will be logged out at that point.

No Yes

39 EVENT_MLID_REGISTER: parameter is a board number. Report
Routine is called after the MLID software is registered (NetWare 4.x, 5.x,
and 6.x only).

No No

40 EVENT_MLID_DEREGISTER: parameter is a board number. Report
Routine is called before the MLID is deregistered (NetWare 4.x, 5.x, and
6.x only).

No No

41 EVENT_DATA_MIGRATION: parameter is a pointer to
EventDateMigrationInfo (page 171). This event is generated when a file’s
data has been migrated (NetWare 4.x, 5.x, and 6.x only).

No No

42 EVENT_DATA_DEMIGRATION: parameter is a pointer to
EventDateMigrationInfo (page 171). This event is generated when a file’s
data has been de-migrated (NetWare 4.x, 5.x, and 6.x only).

No No

Event: Description Warn
routine Sleep
Advanced Functions 151

152 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Use event 44, EVENT_NETWARE_ALERT, in place of event 24, EVENT_SYS_ALERT.

To register for NDS events, call NWDSERegisterForEvent (NDK: eDirectory Event Services).

See Also
UnregisterForEvent (page 166), NWDSEUnRegisterForEvent (NDK: eDirectory Event Services)

43 EVENT_QUEUE_ACTION: parameter is a pointer to EventQueueNote.
This event is generated when a queue is activated, deactivated, created, or
deleted (NetWare 4.x, 5.x, and 6.x only).

No No

44 EVENT_NETWARE_ALERT: parameter is a pointer to
EventNetwareAlertStruct (page 173). SystemAlert, QueueSystemAlert,
INWSystemAlert, and INWQueueSystemAlert (all NetWare 3.x only) call
NetWareAlert which generates this NetWare 4.x, 5.x, and 6.x event.

No Yes

50 EVENT_CLOSE_FILE: parameter is a pointer to EventCloseFileInfo
(page 170) (NetWare 4.x, 5.x, and 6.x only).

No No

51 EVENT_CHANGE_TIME No No

56 EVENT_MODULE_UNLOADED No Yes

57 EVENT_REMOVE_PUBLIC No Yes

60 EVENT_SFT3_SERVER_STATE No No

61 EVENT_SFT3_IMAGE_STATE No No

62 EVENT_SFT3_PRESYNC_STATE No Yes

Event: Description Warn
routine Sleep
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SaveThreadDataAreaPtr
Sets the thread switch Data Area Pointer for the current thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

void SaveThreadDataAreaPtr (
 void *threadDataAreaPtr);

Parameters
threadDataAreaPtr

(IN) Points to the user-defined thread switch Data Area Pointer.

Return Values
This function does not return a value.

Remarks
When thread switch event reporting has been registered, the Data Area Pointer is passed as the
parameter to the report routine when a thread switch occurs.

The pointer can point to any user-defined data structure.

See Also
GetThreadDataAreaPtr (page 133), RegisterForEvent (page 148)
Advanced Functions 153

154 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ScanSetableParameters
Returns information about NetWare server console parameters

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG ScanSetableParameters (
 LONG scanCategory,
 LONG *scanSequence,
 BYTE *rParameterName,
 LONG *rType,
 LONG *rFlags,
 LONG *rCategory,
 void *rParameterDescription,
 void *rCurrentValue,
 LONG *rLowerLimit,
 LONG *rUpperLimit);

Parameters
scanCategory

(IN) Specifies the category for which to return setable parameter information.

scanSequence
(IN/OUT) Points to this parameter is used for calling this function iteratively. On the first call,
this parameter should be set to 0. On subsequent calls, use the value returned in this parameter.
When all information has been returned, this function returns -1 (unsuccessful).

rParameterName
(IN/OUT) Points to or receives the name of a setable parameter (an ASCIIZ string). (Input if
scanCategory is -2 or -5.)

rType
(OUT) Points to the type of the setable parameter.

rFlags
(OUT) Points to the setable parameter flags.

rCategory
(OUT) Points to the setable parameter category.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
rParameterDescription
(OUT) Points to the description of a setable parameter (an ASCIIZ string).

rCurrentValue
(OUT) Points to the value (a number or string, depending on rType) to which the setable
parameter is currently set. Receives the size of the current value, rather than the value itself if
scanCategory is set to -2.

rLowerLimit
(OUT) Points to the lower limit of the setable parameter.

rUpperLimit
(IN/OUT) Points to the upper limit of the setable parameter. (Input if scanCategory is -4 or
-5; must be at least 512 bytes.)

Return Values
This function returns 0 if successful, or a negative value if unsuccessful.

Remarks
This function returns information about setable parameters. A setable parameter is a NetWare OS
parameter that can be set using the SET console command.

The scanCategory parameter defines what information the function returns. This parameter can
have one of the following values:

If scanCategory is -4 or -5, this function returns information into a buffer pointed to by
rCurrentValue. The buffer must be at least 512 bytes. Novell does not provide a parser for this
buffer, which is filled in the following order:
long paramType
long category
long flags

Value Description

0 Scan category by number. Replace 0 with a category number, for example 2 for FILE CACHE.
To scan all parameters in a category, set scanSequence to 0 on the first call.

-1 Scan all categories. To scan all parameters in all categories, set scanSequence to 0 on the
first call.

-2 Selected set parameter (rParameterName is input and points to a parameter name string)

-3 Return category names (the scanSequence parameter is input and points to a value of a
category name for which the name string is returned in the rParameterName pointer.)

-4 Fill a buffer pointed to by rCurrentValue with information about the next parameter by
sequence number as pointed to by scanSequence. To return information iteratively about all
parameters, set scanSequence to 0 on the first call. (See below for explanation of the buffer.)

-5 Fill a buffer pointed to by rCurrentValue with information about a parameter as specified by
name with the rParmaterName pointer. (See below for explanation of the buffer.)
Advanced Functions 155

156 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
string parameterName /* Null terminated string */
string/long parameterValue /*Either long or null-terminated string */

The paramType segment contains a value that corresponds to those of the rType parameter,
explained below.

The category segment contains a value that corresponds to those of the rCategory parameter,
explained below.

The flags segment contains a value that corresponds to those of the rFlags parameter, explained
below.

The parameterName segment contains a string that names the parameter, as explained about the
rParameterName parameter below.

The parameterValue segment contains either a long or a string, depending upon the parameter
type as returned in the paramType segment.

The rParameterName parameter is the name of the setable parameter, such as "Cache Buffer
Size".

The rType parameter receives the type of the setable parameter:

The "trigger" type is a level at which an event would happen. The "Minimum File Cache Buffer
Report Threshold" is an example of a trigger type.

The rFlags parameter defines properties of the parameter, such as when it can be set:

The rCategory parameter can be one of the following categories:

0 number

1 boolean

2 time ticks

3 block shift

4 offset

5 string

6 trigger

7 boolean with a uint32 data type

0x0001 startup only

0x0004 advanced parameter

0x0008 startup or later

0x0010 not secured console-that is, the parameter cannot be set if the console is secured

0 COMMUNICATIONS

1 MEMORY
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
See Also
GetSetableParameterValue (page 132), SetSetableParameterValue (page 162), "SET" in
Supervising the Network

2 FILE CACHE

3 DIR CACHE

4 FILE SYSTEM

5 LOCKING

6 TTS

7 DISK

8 TIME

9 NCP

10 MISCELLANEOUS
Advanced Functions 157

158 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ScheduleNoSleepAESProcessEvent
Defines a procedure that is to be called by the Asynchronous Scheduler (AES) after a specified
delay

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwthread.h>

extern void ScheduleNoSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters
EventNode

(IN) Points to a structure that defines the event.

Remarks
The defined procedure must not go to sleep when it runs. An abend results if the procedure sleeps.
The event is called at process time.

The AESProcessStructure is defined as follows:
struct AESProcessStructure
 {
 struct AESProcessStructure *ALink; /*Set by AES*/
 LONG AWakeUpDelayAmount; /*Set to # ticks to
 wait*/
 LONG AWakeUpTime; /*Set by AES*/
 void (*AProcessToCall) (void *); /*Set to function to
 call*/
 LONG ARTag; /*Set to resource tag */
 LONG AOldLink; /*Set to NULL*/
 }

Fields that are not set by AES must be set by the user as specified in the above structure definition.

When the defined procedure is called, the AESProcessStructure pointer is passed to it as the only
parameter. By adding fields to the end of the structure, the user can pass information to the
procedure.

If the event procedure reschedules itself, the function can be made to execute periodically. The
scheduled event can be cancelled before time is up by calling CancelNoSleepAESProcessEvent.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
The procedure registered by ScheduleNoSleepAESProcessEvent runs as a callback (an OS Thread),
which is not able to call most of the NetWare API functions, unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group context in your procedure,
by calling SetThreadGroupID and passing a valid thread group ID. Before this thread returns, it
should reset its context to its original context, by setting the thread group ID back to its original
value.

For 4.x, 5.x, and 6.x NLM applications, the context that is given to the callbacks when they are
registered is determined by the value in the registering thread’s context specifier. You can set the
context specifier to one of the following options:

NO_CONTEXT-Callbacks registered with this option are not given CLIB context. The
advantage here is that you avoid the overhead needed for setting up CLIB context. The
disadvantage is that without the context the callback is only able to call NetWare API functions
that manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback thread CLIB context by
calling SetThreadGroupID and passing in a valid thread group ID. If you manually set up your
context, you need to reset its context to its original context, by setting the thread group ID back
to its original value.
USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread.
A valid thread group ID-This is to be used when you want the callbacks to have a different
thread group context than the thread that schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or ScheduleWorkToDo, its
context specifier is set to USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread’s context specifier by calling
GetThreadContextSpecifier. You use SetThreadContextSpecifier to set the registering thread’s
context specifier to one of the above options.

For more information on using CLIB context, see Context Problems with OS Threads (NDK: NLM
Threads Management).

See Also
AllocateResourceTag (page 122), CancelNoSleepAESProcessEvent (page 127),
ScheduleSleepAESProcessEvent (page 160)
Advanced Functions 159

160 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ScheduleSleepAESProcessEvent
Defines a procedure that is to be called by the Asynchronous Scheduler (AES) after a specified
delay

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwthread.h>

extern void ScheduleSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters
EventNode

(IN) Points to the AESProcessStructure, which defines the event.

Remarks
The defined procedure can go to sleep when it runs. The event is called at process time.

The AESProcessStructure is defined as follows:
struct AESProcessStructure
 {
 struct AESProcessStructure *ALink; /*Set by AES*/
 LONG AWakeUpDelayAmount; /*Set to # ticks to
 wait*/
 LONG AWakeUpTime; /*Set by AES*/
 void (*AProcessToCall) (void *); /*Set to function to
 call*/
 LONG ARTag; /*Set to resource tag */
 LONG AOldLink; /*Set to NULL*/
 }

Fields that are not set by AES must be set by the user as specified in the above structure definition.

When the defined procedure is called, the AESProcessStructure pointer is passed to it as the only
parameter. By adding fields to the end of the structure, the user can pass information to the
procedure.

If the event procedure reschedules itself, the function can be made to execute periodically. The
scheduled event can be cancelled before time is up by calling CancelSleepAESProcessEvent.

The procedure registered by ScheduleSleepAESProcessEvent runs as a callback (an OS Thread),
which is not able to call most of the NetWare API functions, unless it is given CLIB context.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
For 3.11 NLM applications, you must manually create the thread group context in your procedure,
by calling SetThreadGroupID and passing a valid thread group ID. Before this thread returns, it
should reset its context to its original context, by setting the thread group ID back to its original
value.

For 4.x, 5.x, and 6.x NLM applications, the context that is given to the callbacks when they are
registered is determined by the value in the registering thread’s context specifier. You can set the
context specifier to one of the following options:

NO_CONTEXT-Callbacks registered with this option are not given CLIB context. The
advantage here is that you avoid the overhead needed for setting up CLIB context. The
disadvantage is that without the context the callback is only able to call NetWare API functions
that manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback thread CLIB context by
calling SetThreadGroupID and passing in a valid thread group ID. If you manually set up your
context, you need to reset its context to its original context, by setting the thread group ID back
to its original value.
USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread.
A valid thread group ID-This is to be used when you want the callbacks to have a different
thread group context than the thread that schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or ScheduleWorkToDo, its
context specifier is set to USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread’s context specifier by calling
GetThreadContextSpecifier. Use SetThreadContextSpecifier to set the registering thread’s context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with OS Threads (NDK: NLM
Threads Management).

See Also
AllocateResourceTag (page 122), CancelSleepAESProcessEvent (page 128),
ScheduleNoSleepAESProcessEvent (page 158)
Advanced Functions 161

162 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetSetableParameterValue
Sets the value of a NetWare server console parameter

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG SetSetableParameterValue (
 LONG connectionNumber,
 BYTE *setableParameterString,
 void *newValue);

Parameters
connectionNumber

(IN) Specifies the connection number of the user who wants to modify server console
parameters.

setableParameterString
(IN) Points to a NULL-terminated ASCIIZ string representing the name of the server console
parameter.

newValue
(IN) Points to the new value of the server console parameter.

Return Values
Returns 0 if successful, or -1 if an invalid setable parameter string was specified.

Remarks
A setable parameter is a NetWare OS parameter that can be set using the SET console command
(see the Utilities Reference included with the NetWare 5 release).

The value returned in the newValue parameter depends upon the server console parameter passed
into the setableParameterString parameter.

See Also
GetSetableParameterValue (page 132), ScanSetableParameters (page 154)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SynchronizeStart
Restarts the NLM startup process when using synchronization mode

Local Servers: blocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

void SynchronizeStart (void);

Remarks
This function is used in synchronization mode to restart the startup process, which is put to sleep to
make sure that another NLM is not loaded before the current NLM application’s mainline is
reached. Synchronization mode is selected at link time by using the SYNCHRONIZE keyword in
the link directive file.

NOTE: If an NLM is using synchronization mode, it should include a call to SynchronizeStart as
early in the code as possible. Synchronize mode causes the console command process to go to sleep
until SynchronizeStart is called.

If you specify the SYNCHRONIZE keyword, the loader does not proceed until your NLM calls
SynchronizeStart. Without SYNCHRONIZE, the previously loaded NLM might not have executed
any of its code before the loader executes the next command in the AUTOEXEC.NCF file. Use this
technique if you have an NLM that must establish some conditions to be used by some subsequent
command or NLM in your AUTOEXEC.NCF file. It prevents the loader from proceeding until after
you have called SynchronizeStart.

See syncstrt.c (../../../samplecode/clib_sample/nlm/syncstrt/syncstrt.c.html).
Advanced Functions 163

../../../samplecode/clib_sample/nlm/syncstrt/syncstrt.c.html

164 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
UnimportSymbol
Eliminates dependency of an NLM on the specified external symbol

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int UnimportSymbol (
 int NLMHandle,
 char *symbolName);

Parameters
NLMHandle

(IN) Specifies the handle of the NLM for which to unimport the symbol.

symbolName
(IN) Points to the symbol to unimport.

Return Values
This function returns 0 if successful. Otherwise, it returns an error code.

Remarks
UnimportSymbol reverses the effect of ImportSymbol, ending your the dependency of your NLM
on the NLM that exports the symbol specified by symbolName. The NLMHandle parameter can
be obtained by calling FindNLMHandle or GetNLMHandle.

See Also
ImportSymbol (page 136)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
UnRegisterConsoleCommand
Unregisters a console command parsing function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

LONG UnRegisterConsoleCommand (
 struct commandParserStructure *commandParser);

Parameters
commandParser

(IN) Points to the command parsing function that is to be unregistered.

Return Values
This function returns a value of 0 if successful. If the specified command parsing function is not
found (has not been registered), it returns a value of -1.

Remarks
This function should be called to unregister a command parsing function previously defined with
RegisterConsoleCommand.

See Also
RegisterConsoleCommand (page 146)
Advanced Functions 165

166 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
UnregisterForEvent
Cancels a previous registration for event notification

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Advanced

Syntax
#include <nwadv.h>

int UnregisterForEvent (
 LONG eventHandle);

Parameters
eventHandle

(IN) Specifies the event handle that was returned by RegisterForEvent.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns an error code (nonzero value).

See Also
RegisterForEvent (page 148)
evelopment Concepts, Tools, and Functions

12
novdocx (en) 11 D

ecem
ber 2007
12Advanced Structures

This documentation alphabetically lists the Advanced structures and describes their purpose, syntax,
and fields.
Advanced Structures 167

168 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
AESProcessStructure
Defines a process to be called by the Asynchronous Scheduler (AES)

Service: Advanced

Defined In: nwadv.h

Structure
struct AESProcessStructure {
 struct AESProcessStructure *ALink ;
 LONG AWakeUpDelayAmount ;
 LONG AWakeUpTime ;
 void (*AProcessToCall) (void *);
 LONG ARTag ;
 LONG AOldLink ;
}

Fields
Alink

Points to set by AES.

AWakeUpDelayAmount
Specifies the number of ticks to wait (developer-defined).

AWakeUpTime
Specifies set by AES.

AProcessToCall
Points to the function to call (developer-defined).

ARTag
Specifies the resource tag (developer-defined).

AOldLink
Specifies set this field to NULL.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
commandParserStructure
Contains information about a developer-defined console command parsing function

Service: Advanced

Defined In: nwadv.h

Structure
struct commandParserStructure
{
 struct commandParserStructure *Link ;
 LONG (*parseRoutine) (
 LONG screenID,
 BYTE *commandLine);
 LONG RTag ;
};

Fields
Link

Points to set by RegisterConsoleCommand.

parseRoutine
Points to a developer-defined parsing routine

RTag
Specifies a resource tag (developer-defined).
Advanced Structures 169

170 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
EventCloseFileInfo
Returns when a file is closed

Service: Advanced

Defined In: nwadv.h

Structure
struct EventCloseFileInfo {
 LONG fileHandle;
 LONG station;
 LONG task;
 LONG fileHandleFlags;
 LONG completionCode;
};

Fields
fileHandle

Specifies the handle of the file that was closed.

station
Specifies the connection number that closed the file.

task
Specifies the task number of the connection that closed the file.

fileHandleFlags
Specifies the attributes of the file handle. See fileHandleFlags in nwadv.h for a list of the
flags.

completionCode
Specifies the outcome of the close file operation.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
EventDateMigrationInfo
Returns for EVEBT_DATA_MIGRATION and DEMIGRATION

Service: Advanced

Defined In: nwadv.h

Structure
struct EventDateMigrationInfo {
 LONG FileSystemTypeID;
 LONG Volume;
 LONG DOSDirEntry;
 LONG OwnerDirEntry;
 LONG OwnerNameSpace;
 BYTE OwnerFileName[256];
};

Fields
FileSystemTypeID

Specifies the file system type (NETWARE386FILESYSTEM,
NETWARENFSFILESYSTEM, NETWARECDROMFILESYSTEM,
IBM_SMB_LAN_SERV_FS-see nwadv.h).

Volume
Specifies on which volume the entry is located.

DOSDirEntry
Specifies the directory number of the entry in the DOS name space.

OwnerDirEntry
Specifies the directory number of the entry in an other than DOS name space (if applicable).

OwnerNameSpace
Specifies the name space number of this entry (see Name Space Flag Values in Multiple and
Inter-File Services).

OwnerFileName
Specifies the name of entry in the OwnerNameSpace name space (255 + 1 len byte).
Advanced Structures 171

172 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
EventModifyDirEntryStruct
Returns for EVEBT_MODIFY_DIR_ENTRY

Service: Advanced

Defined In: nwadv.h

Structure
struct EventModifyDirEntryStruct {
 LONG primaryDirectoryEntry;
 LONG nameSpace;
 LONG modifyBits;
 struct ModifyStructure *modifyVector;
 LONG volumeNumber;
 void *reserved;
};

Fields
primaryDirectoryEntry

Specifies the directory number of the entry being modified.

nameSpace
Specifies the name space in which the modification is occurring (see Name Space Flag Values
in Multiple and Inter-File Services).

modifyBits
Specifies the fields of the directory entry that are being changed (see nwdir.h).

modifyVector
Points to the structure that contains the updated fields of the directory entry (see nwdir.h).

volumeNumber
Specifies on which volume the entry is located.

reserved
Reserved.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
EventNetwareAlertStruct
Contains information about an alert event.

Syntax
struct EventNetwareAlertStruct {
 LONG alertFlags;
 LONG alertId;
 LONG alertLocus;
 LONG alertClass;
 LONG alertSeverity;
 LONG targetStationCount;
 LONG targetStationList[32];
 LONG targetNotificationBits;
 LONG alertParmCount;
 void *alertDataPtr;
 void *NetWorkManagementAttributePointer;
 LONG alertUnused[2];
 LONG alertControlStringMessageNumber;
 BYTE alertControlString[256];
 BYTE alertParameters[256+256];
 BYTE alertModuleName[36];
 LONG alertModuleMajorVersion;
 LONG alertModuleMinorVersion;
 LONG alertModuleRevision;
};

Fields
alertFlags

Specifies the flags set at the time of the event (see Section 13.2, “Alert Flag Values,” on
page 179).

alertId
Specifies the ID of the alert (see Section 13.3, “Alert ID Values,” on page 180).

alertLocus
Specifies the location of the alert (see Section 13.4, “Alert Location Values,” on page 181).

alertClass
Specifies the class of the alert (see Section 13.1, “Alert Class Values,” on page 179).

alertSeverity
Specifies the severity of the alert (see Section 13.5, “Alert Severity Values,” on page 182).

targetStationCount
Specifies the number of valid entries in targetStationList.

targetStationList
Specifies the first 32 stations that were notified of the event.
Advanced Structures 173

174 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
targetNotificationBits
Specifies the notifications that are generated by the alert (see Section 13.6, “Target Notification
Bit Values,” on page 182).

alertParmCount
Is not implemented currently.

alertDataPtr
Is not implemented currently.

NetWorkManagementAttributePointer
Is reserved.

alertUnused
Is not implemented currently.

alertControlStringMessageNumber
Is not implemented currently.

alertControlString
Is not implemented currently.

alertParameters
Is not implemented currently.

alertModuleName
Specifies the name of the NLM that generated the alert.

alertModuleMajorVersion
Specifies the major version of the module that generated the alert.

alertModuleMinorVersion
Specifies the minor version of the module that generated the alert.

alertModuleRevision
Specifies the revision number of the module that generated the alert.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
EventTrusteeChangeStruct
Returns for EVENT_TRUSTEE_CHANGE

Service: Advanced

Defined In: nwadv.h

Structure
struct EventTrusteeChangeStruct {
 LONG objectID ;
 LONG entryID ;
 LONG volumeNumber ;
 LONG changeFlags ;
 LONG newRights ;
};

Fields
objectID

Specifies the bindery object ID of the trustee being changed.

entryID
Specifies the directory number of the file or directory that is having the trustee changed.

volumeNumber
Specifies on which volume the entry is located.

changeFlags
Specifies the type of change:

1 EVENT_NEW_TRUSTEE
2 EVENT_REMOVE_TRUSTEE
4 EVENT_TRUSTEE_RIGHTS_MODIFIED

newRights
Specifies the new trustee’s rights.
Advanced Structures 175

176 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
T_cacheBufferStructure
Contains cache buffer information returned by an asynchronous read

Service: Advanced

Defined In: nwadv.h

Structure
typedef struct cacheBufferStructure
{
 char *cacheBufferPointer ;
 LONG cacheBufferLength ;
 int completionCode ;
} T_cacheBufferStructure;

Fields
cacheBufferPointer

Points to the address of the first character for the cache buffer.

cacheBufferLength
Specifies the number of bytes to be used from the cache buffer.

completionCode
Specifies the NetWare® error code for the buffer read operation.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
T_DYNARRAY_BLOCK
Defines a dynamic array block (DAB)

Service: Advanced

Defined In: nwdnarr.h

Structure
typedef struct tagT_DYNARRAY_BLOCK
{
 void *DABarrayP ;
 int DABnumSlots ;
 int DABelementSize ;
 void *(*DABrealloc) (void *, size_t);
 int DABgrowAmount ;
 int DABnumEntries ;
} T_DYNARRAY_BLOCK;

Fields
DABarrayP

Points to the dynamic array.

DABnumSlots
Specifies the initial number of elements in the dynamic array

DABelementSize
Specifies the size (in bytes) of each element in the dynamic array

DABrealloc
Points to a memory allocation function. This function is normally realloc, but you can define
your own function.

DABgrowAmount
Specifies the number of elements by which to increase the dynamic array when more elements
are needed.

DABnumEntries
Specifies the number of entries in the dynamic array.
Advanced Structures 177

178 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
T_mwriteBufferStructure
Contains information about a buffer to be used by gwrite (page 134)

Service: Advanced

Defined In: nwfileio.h

Structure
typedef struct mwriteBufferStructure
{
 char *mwriteBufferPointer;
 LONG mwriteBufferLength;
 int reserved;
} T_mwriteBufferStructure;

Fields
mwriteBufferPointer

Points to a buffer.

mwriteBufferLength
Specifies the size of the buffer.
evelopment Concepts, Tools, and Functions

13
novdocx (en) 11 D

ecem
ber 2007
13Advanced Values

This documentation describes values associated with Advanced.

13.1 Alert Class Values
alertClass can have the following values:

13.2 Alert Flag Values
alertFlags can have the following values:

Value Name

0 CLASS_UNKNOWN

1 CLASS_OUT_OF_RESOURCE

2 CLASS_TEMP_SITUATION

3 CLASS_AUTHORIZATION_FAILURE

4 CLASS_INTERNAL_ERROR

5 CLASS_HARDWARE_FAILURE

6 CLASS_SYSTEM_FAILURE

7 CLASS_REQUEST_ERROR

8 CLASS_NOT_FOUND

9 CLASS_BAD_FORMAT

10 CLASS_LOCKED

11 CLASS_MEDIA_FAILURE

12 CLASS_ITEM_EXISTS

13 CLASS_STATION_FAILURE

14 CLASS_LIMIT_EXCEEDED

15 CLASS_CONFIGURATION_ERROR

16 CLASS_LIMIT_ALMOST_EXCEEDED

17 CLASS_SECURITY_AUDIT_INFO

18 CLASS_DISK_INFORMATION

19 CLASS_GENERAL_INFORMATION

20 CLASS_FILE_COMPRESSION

21 CLASS_PROTECTION_VIOLATION
Advanced Values 179

180 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
13.3 Alert ID Values
AlertIDs for NetWare have been organized to a two-fold ID:

Upper 16 bits contain the value (MASK) for an NLM or a product as assigned by Novell
Lower 16 bits contain the values 0x80000000-0xFFFF0000 that uniquely identify each MASK.

alertId can have the following MASK values:

Value Name

0x00000001 QueueThisAlertMask

0x00000002 AlertIDValidMask

0x00000004 AlertLocusValidMask

0x00000008 AlertEventNotifyOnlyMask

0x00000010 AlertNoEventNotifyMask

0x00010000 AlertMessageNumberValid

0x00400000 AlertNoRingBell

0x00800000 AlertIDNotUniqueBit

0x01000000 OldStyleSystemAlertMask

0x02000000 OldStyleINWSystemAlertMask

0x10000000 NoDisplayLocusBit

0x20000000 NoDisplayAlertIDBit

0x40000000 OverrideNotificationBits

0x80000000 TargetStationIsAPointer

AlertLocusValidMask OR QueueThisAlertMask
OR NoDisplayAlertIDBit OR AlertIDValidMask

QAlert320Mask

AlertLocusValidMask OR NoDisplayAlertIDBit OR
AlertIDValidMask

Alert320Mask

NOTIFY_ERROR_LOG_BITOR
NOTIFY_CONSOLE_BIT

StandardNotify

Value Name

0x01020000 ALERT_BINDERY

0x01030000 ALERT_OS

0x01040000 ALERT_LLC

0x01050000 ALERT_SDLC

0x01060000 ALERT_REMOTE
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
13.4 Alert Location Values
alertLocus can have the following values:

0x01070000 ALERT_MLID

0x01080000 ALERT_QLLC

0x01090000 ALERT_UPS

0x010A0000 ALERT_DS

0x010B0000 ALERT_DOMAIN

0x010C0000 ALERT_RSPX

0x010D0000 ALERT_R232

Value Name

0 LOCUS_UNKNOWN

1 LOCUS_MEMORY

2 LOCUS_FILESYSTEM

3 LOCUS_DISKS

4 LOCUS_LANBOARDS

5 LOCUS_COMSTACKS

7 LOCUS_TTS

8 LOCUS_BINDERY

9 LOCUS_STATION

10 LOCUS_ROUTER

11 LOCUS_LOCKS

12 LOCUS_KERNEL

13 LOCUS_UPS

14 LOCUS_SERVICE_PROTOCOL

15 LOCUS_SFT_III

16 LOCUS_RESOURCE_TRACKING

17 LOCUS_NLM

18 LOCUS_OS_INFORMATION

19 LOCUS_CACHE

20 LOCUS_DOMAIN

Value Name
Advanced Values 181

182 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
13.5 Alert Severity Values
alertSeverity can have the following values:

13.6 Target Notification Bit Values
targetNotificationBits can have the following values:

Value Name

0 SEVERITY_INFORMATIONAL: Counters or Gauges reached the thresholds.

1 SEVERITY_WARNING: Configuration errors, etc. exist. No damage was done.

2 SEVERITY_RECOVERABLE: Hot Fix disk, etc. exist. A workaround was made.

3 SEVERITY_CRITICAL: Disk Mirror failed, etc. A fix up was attempted.

4 SEVERITY_FATAL: Resource was fatally affected. Shut down your process.

5 SEVERITY_OPERATION_ABORTED: The operation cannot complete. The effects
are unknown.

6 SEVERITY_NONOS_UNRECOVERABLE: The oepration cannot complete. This will
not affect the OS.

Value Name

0x00000001 NOTIFY_CONNECTION_BIT

0x00000002 NOTIFY_EVERYONE_BIT

0x00000004 NOTIFY_ERROR_LOG_BIT

0x00000008 NOTIFY_CONSOLE_BIT

0x10000000 NOTIFY_QUEUE_MESSAGE

0x80000000 DONT_NOTIFY_NMAGENT
evelopment Concepts, Tools, and Functions

14
novdocx (en) 11 D

ecem
ber 2007
14Debug Functions

This documentation alphabetically lists the Debug functions and describes their purpose, syntax,
parameters, and return values.

“assert” on page 184
“EnterDebugger” on page 185
“NWClearBreakpoint” on page 186
“NWSetBreakpoint” on page 187
“perror” on page 189
Debug Functions 183

184 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
assert
Identifies program logic errors

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

Service: Debug

Syntax
#include <assert.h>

void assert (
 int expression);

Parameters
expression

(IN) Specifies an expression to test assertion.

Return Values
assert returns no values. Because assert uses the printf function to display errors, errno can be set
when an output occurs.

Remarks
assert prints a diagnostic message upon the stderr stream and terminates the program if
expression is FALSE (0). The diagnostic message has the following form:
 Assertion failed: expression, file filename, line
 linenumber

The filename and linenumber variables are defined as follows:

The filename and linenumber values are the values of the preprocessing macros __FILE__ and
__LINE__, respectively. No action is taken if expression is TRUE (nonzero).

The given expression should be chosen so that it is true when the program is functioning as
intended. After the program has been debugged, the special "no debug" identifier NDEBUG can be
used to remove assert functions from the program when it is recompiled. If NDEBUG is defined
(with any value) with a -d command line option or with a #define directive, the C preprocessor
ignores all assert functions in the program source.

filename Specifies the name of the source file.

linenumber Specifies the line number of the assertion that failed in the source file.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
EnterDebugger
Enters system debugger

Local Servers: N/A

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Debug

Syntax
#include <nwdebug.h>

void EnterDebugger (void);

Remarks
For information concering the NetWare internal debugger, see “NetWare Internal Debugger” on
page 83.

See Also
Breakpoint
Debug Functions 185

186 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
NWClearBreakpoint
Dynamically clears the breakpoint set with NWSetBreakpoint

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Debug

Syntax
#include <nwdebug.h>

void NWClearBreakpoint (
 int breakpoint);

Parameters
breakpoint

(IN) Specifies the breakpoint to clear.

Remarks
NWClearBreakpoint clears the breakpoint set with NWSetBreakpoint. The value for the
breakpoint parameter is the return value from successful completion of NWSetBreakpoint.

See Also
NWSetBreakpoint (page 187)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NWSetBreakpoint
Sets a breakpoint programmatically

Local Servers: nonblocking

Local Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Debug

Syntax
#include <nwdebug.h>

int NWSetBreakpoint (
 LONG address,
 int breakType ;

Parameters
address

(IN) Specifies the location of the breakpoint to set.

breakType
(IN) Specifies the breakpoint type.

Return Values
0-3 indicate success.

-1 indicates failure.

Remarks
NWSetBreakpoint provides a programmatic way to set a breakpoint dynamically.

For the address parameter, pass in a pointer to data if you are setting a write or a read/write
breakpoint. Pass in a pointer to code if you are setting an execution breakpoint.

For the breakType parameter, pass in one of the following three constants, according to the type
of breakpoint you are setting:

Constant Name Defined Value

EXECUTION_BREAKPOINT 0

WRITE_BREAKPOINT 1

READ_WRITE_BREAKPOINT 3
Debug Functions 187

188 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
If fewer than four breakpoints are set, NWSetBreakpoint returns the next higher zero-based count of
breakpoints and sets the requested breakpoint. If all four breakpoints are already set when you call
NWSetBreakpoint, the function fails and returns -1.

See Also
NWClearBreakpoint (page 186)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
perror
Prints an error message

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

Service: Debug

Syntax
#include <stdio.h>

void perror (
 const char *prefix);

Parameters
prefix

(IN) Points to the error message to print.

Return Values
perror returns no values. Because perror uses the fprintf function, errno can be set when an error is
detected during the execution of the function.

Remarks
The perror function prints, on the file designated by stderr, the error message corresponding to
the error number contained in errno.

See Also
strerror (NDK: Program Management)
Debug Functions 189

190 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
evelopment Concepts, Tools, and Functions

15
novdocx (en) 11 D

ecem
ber 2007
15Device I/O Functions

This documentation alphabetically lists the device I/O functions and describes their purpose, syntax,
parameters, and return values.

“cgets” on page 192
“cprintf” on page 194
“cputs” on page 196
“cscanf” on page 197
“_disable (obsolete)” on page 199
“_enable (obsolete)” on page 200
“getch” on page 201
“getche” on page 202
“inp” on page 203
“inpd” on page 204
“inpw” on page 205
“kbhit” on page 206
“NWcprintf” on page 207
“outp” on page 209
“outpd” on page 210
“outpw” on page 212
“putch” on page 214
“ungetch” on page 215
“vcprintf” on page 217
“vcscanf” on page 219
Device I/O Functions 191

192 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
cgets
Gets a string of characters directly from the current screen and stores the string and its length in an
array

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

char *cgets (
 char *buf);

Parameters
buf

(IN) Points to the array.

Return Values
cgets returns a pointer to the start of the string, which is at buf [2].

Remarks
The first element of the array buf [0] must contain the maximum length in characters of the string
to be read. The array must be big enough to hold the string, a terminating null character, and two
additional bytes.

The cgets function reads characters until a carriage-return/line-feed combination is read, or until the
specified number of characters is read. The string is stored in the array starting at buf [2]. The
carriage-return/line-feed combination, if read, is replaced by a null character. The actual length of
the string read is placed in buf [1].

See Also
getch (page 201), getche (page 202), gets (Single and Intra-File Services)

Example
#include <nwconio.h>
#include <stdio.h>

main ()
{
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
 char buffer[82];
 buffer[0]=80;
 cgets (buffer);
 cprintf ("%s\r\n", &buffer[2]);
}

Device I/O Functions 193

194 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
cprintf
Writes output directly to the current application screen under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int cprintf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format specification string.

Return Values
Returns the number of characters written.

Remarks
The cprintf function outputs the formatted data directly to the console screen.

See Also
NWcprintf (page 207) and printf and vfprintf in Single and Intra-File Services

Example
#include <nwconio.h>
#include <stdio.h>

main ()
{
 char *weekday, *month;
 int day, year;
 weekday="Saturday";
 month="April";
 day=18;
 year=1991;
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
 cprintf ("%s, %s %d, %d\n", weekday, month, day, year);
}

produces the following:
Saturday, April 18, 1991
Device I/O Functions 195

196 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
cputs
Writes a specified character string directly to the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int cputs (
 const char *buf);

Parameters
buf

(IN) Points to a character string.

Return Values
cputs returns a nonzero value if an error occurs. Otherwise, it returns a value of 0. When an error has
occurred, errno is set.

Remarks
The carriage-return and line-feed characters are not appended to the string. The terminating NULL
character is not written.

See Also
fputs (Single and Intra-File Services), putch (page 214)

Example
#include <nwconio.h>

main ()
{
 char buffer[82];
 buffer[0]=80;
 cgets (buffer);
 cputs (&buffer[2]);
 putch (’\r’);
 putch (’\n’);
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
cscanf
Scans input from the current screen under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int cscanf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format specification string.

Return Values
cscanf returns EOF when the scanning is terminated by reaching the end of the input screen.
Otherwise, the number of input arguments for which values have been successfully scanned and
stored is returned. When a file input error occurs, errno is set.

Remarks
Following the format string is a list of addresses to receive values. The scanf function uses the
function getche to read characters from the console.

See Also
fscanf and scanf (Single and Intra-File Services)

Example
To scan a date in the form "Saturday, April 18 1990":
#include <nwconio.h>

main ()
{
 int day, year;
 char weekday[10], month[12];
Device I/O Functions 197

198 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
 cscanf ("%s %s %d %d", weekday, month, &day, &year);
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
_disable (obsolete)
Removed from the documentation because, in order for the NetWare® API to be SFTIII™
compliant, this function will not be supported in the future
Device I/O Functions 199

200 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
_enable (obsolete)
Removed from the documentation because, in order for the NetWare API to be SFTIII compliant,
this function will not be supported in the future
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
getch
Obtains the next available keystroke from the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int getch (void);

Return Values
This function returns a value of EOF when an error is detected. Otherwise, the getch function returns
the value of the keystroke (or character).

When the keystroke represents an extended key (for example, a function key, a cursor-movement
key, or the Alt key with a letter or a digit), a value of 0 is returned, and the next call to getch returns
a value for the extended function. When an error occurs, errno is set.

Remarks
The getch function reads from the current screen. Nothing is echoed on the screen (getche echoes
the keystroke, if possible). When no keystroke is available, the function waits until a key is
depressed.

Use the kbhit function to determine if a keystroke is available.

See Also
getche (page 202), kbhit (page 206)

Example
#include <nwconio.h>
main ()
{
 int keyStroke;
 keyStroke = getch ();
}

Device I/O Functions 201

202 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
getche
Obtains the next available keystroke from the current screen and echoes the keystroke on the screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int getche (void);

Return Values
getche returns a value of EOF when an error is detected. Otherwise, the getche function returns the
value of the keystroke (or character).

When the keystroke represents an extended key (for example, a function key, a cursor-movement
key, or the Alt key with a letter or a digit), a value of 0 is returned, and the next call to getche returns
a value for the extended function. When an error occurs, errno is set.

Remarks
The getche function reads from the current screen. The function waits until a keystroke is available.
That character is echoed on the screen at the position of the cursor. Use the getch function when it is
not desired to echo the keystroke.

Use the kbhit function to determine if a keystroke is available.

See Also
getch (page 201), kbhit (page 206), ungetch (page 215)

Example
#include <stdlib.h>
#include <nwconio.h>

main ()
{
 int keyStroke;
 while((keyStroke = getche()) != ’0’)
 printf ("%d\r\n",keyStroke);
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
inp
Reads 1 byte from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned int inp (
 int port);

Parameters
port

(IN) Specifies the hardware port.

Return Values
The value returned is the byte that was read.

Remarks
The inp function reads 1 byte from the hardware port whose number is given by port.

A hardware port is used to communicate with a device. One byte can be read and/ or written from
each port, depending on the hardware. Consult the technical documentation for your computer in
order to determine the port numbers for a device and the expected usage of each port for a device.

See Also
inpd (page 204), inpw (page 205), outp (page 209), outpd (page 210), outpw (page 212)

Example
#include <nwconio.h>

main ()
{
 /* turn off speaker */
 outp (0x61,inp (0x61) & 0xFC);
}

Device I/O Functions 203

204 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
inpd
Reads a double word (4 bytes) from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned int inpd (
 int port);

Parameters
port

(IN) Specifies the hardware port.

Return Values
The value returned is the double word that was read.

Remarks
The inpd function reads a double word (4 bytes) from the hardware port whose number is given by
port.

A hardware port is used to communicate with a device. One to 4 bytes can be read and/or written
from each port, depending on the hardware. Consult the technical documentation for your computer
in order to determine the port numbers for a device and the expected usage of each port for a device.

See Also
inp (page 203), outp (page 209), outpd (page 210), outpw (page 212)

Example
#include <nwconio.h>
#define DEVICE 34

main ()
{
 unsigned int transmitted;
 transmitted=inpd (DEVICE);
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
inpw
Reads a word (2 bytes) from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned int inpw (
 int port);

Parameters
port

(IN) Specifies the hardware port.

Return Values
The value returned is the word that was read.

Remarks
The inpw function reads a word (2 bytes) from the hardware port whose number is given by port.

A hardware port is used to communicate with a device. One or 2 bytes can be read and/or written
from each port, depending on the hardware. Consult the technical documentation for your computer
in order to determine the port numbers for a device and the expected usage of each port for a device.

See Also
inp (page 203), inpd (page 204), outp (page 209), outpd (page 210), outpw (page 212)

Example
#include <nwconio.h>
#define DEVICE 34

main ()
{
 unsigned int transmitted;
 transmitted=inpw (DEVICE);
}

Device I/O Functions 205

206 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
kbhit
Tests whether a keystroke is currently available

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int kbhit (void);

Return Values
kbhit returns TRUE or FALSE, depending on availability of keystrokes. When a keystroke is
available, TRUE is returned. If an error is detected or if no keystrokes are available, FALSE (0) is
returned. When an error occurs, errno is set.

Remarks
When a keystroke is available, you can call getch or getche to obtain the keystroke. With a stand-
alone program, you can call kbhit continuously until a keystroke is available.

See Also
getch (page 201), getche (page 202), putch (page 214), ungetch (page 215)

Example
#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>

main ()
{
 while(!kbhit());
 printf ("the character is ");
 getche ();
 getch ();
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
NWcprintf
Writes output directly to the current application screen under format control; enabled for
internationalization

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int NWcprintf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format specification string.

Return Values
NWcprintf returns the number of characters written.

Remarks
The NWcprintf function is identical to the cprintf function, except that NWcprintf is enabled for
internationalization.

See Also
printf and vprintf in Single and Intra-File Services, cprintf (page 194)

Example
#include <nwconio.h>
#include <stdio.h>

main ()
{
 char *weekday, *month;
 int day, year;
 weekday="Saturday";
 month="April";
 day=18;
Device I/O Functions 207

208 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
 year=1991;
 cprintf ("%s, %s %d, %d\n", weekday, month, day, year);
}

produces the following:
Saturday, April 18, 1991
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
outp
Writes 1 byte, determined by value , to the hardware port whose number is given by port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned char outp (
 int port,
 unsighned char value);

Parameters
port

(IN) Specifies the hardware port.

value
(IN) Specifies the character to write.

Return Values
The value transmitted is returned.

Remarks
A hardware port is used to communicate with a device. One byte can be read and/ or written from
each port, depending upon the hardware. Consult the technical documentation for your computer in
order to determine the port numbers for a device and the expected usage of each port for a device.

See Also
inp (page 203), inpd (page 204), inpw (page 205), outpd (page 210), outpw (page 212)

Example
#include <nwconio.h

main ()
{
 /* turn off speaker */
 outp (0x61,inp (0x61) & 0xFC);
}

Device I/O Functions 209

210 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
outpd
Writes a double word (4 bytes), determined by value , to the hardware port whose number is given
by port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned int outpd (
 int port,
 unsigned int value);

Parameters
port

(IN) Specifies the hardware port.

value
(IN) Specifies the double word to write.

Return Values
The value transmitted is returned.

Remarks
A hardware port is used to communicate with a device. One to 4 bytes can be read and/or written
from each port, depending upon the hardware. Consult the technical documentation for your
computer in order to determine the port numbers for a device and the expected usage of each port for
a device.

See Also
inp (page 203), inpw (page 205), outp (page 209)

Example
#include <nwconio.h>
#define DEVICE 34

main ()
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
{
 outpd (DEVICE, 0x1234);
}

Device I/O Functions 211

212 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
outpw
Writes a word (2 bytes), determined by value, to the hardware port whose number is given by
port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Device I/O

Syntax
#include <nwconio.h>

unsigned short outpw (
 int port,
 unsigned short value);

Parameters
port

(IN) Specifies the hardware port.

value
(IN) Specifies the word to write.

Return Values
The value transmitted is returned.

Remarks
A hardware port is used to communicate with a device. One or 2 bytes can be read and/or written
from each port, depending upon the hardware. Consult the technical documentation for your
computer in order to determine the port numbers for a device and the expected usage of each port for
a device.

See Also
inp (page 203), inpd (page 204), inpw (page 205), outp (page 209), outpd (page 210)

Example
#include <nwconio.h>
#define DEVICE 34

main ()
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
{
 outpw (DEVICE, 0x1234);
}

Device I/O Functions 213

214 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
putch
Writes a specified character to the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int putch (
 int charToOutput);

Parameters
charToOutput

(IN) Specifies the character to be written.

Return Values
If successful, putch returns the character written. If a write error occurs, the error indicator is set and
putch returns EOF.

Remarks
The putch function writes the character specified by the charToOutput parameter to the current
screen.

putch becomes a blocking function if the character to be written out is the newline character

See Also
getch (page 201), getche (page 202), ungetch (page 215)

Example
#include <stdlib.h>
#include <nwconio.h>

main ()
{
 putch (’a’);
 putchar (’b’);
 getch ();
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
ungetch
Pushes a specified character back onto the input stream for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <nwconio.h>

int ungetch (
 int charToPushBack);

Parameters
charToPushBack

(IN) Specifies the character to be pushed back to the console.

Return Values
ungetch returns the character pushed back to the console if successful.

Remarks
ungetch pushes the character specified by the charToPushBack parameter onto the input stream
for the current screen. This character is returned by the next read from the console (by the getch or
getche functions) and is detected by the kbhit function. Only the last character returned in this way is
remembered.

ungetch clears the end-of-file indicator, unless the value of the charToPushBack parameter is
EOF.

ungetch also pushes extended keystrokes. The following table lists extended keys and their "
ungetch " values:

Key Value

F1 0x3B00

F2 0x3C00

F3 0x3D00

F4 0x3E00

F5 0x3F00

F6 0x4000
Device I/O Functions 215

216 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
See scrhand.c (../../../samplecode/clib_sample/nlm/screen/scrhand.c.html).

See Also
getch (page 201), getche (page 202)

F7 0x4100

F8 0x4200

F9 0x4300

F10 0x4400

HOME 0x4700

UP 0x4800

PGUP 0x4900

LEFT 0x4B00

RIGHT 0x4D00

END 0x4F00

DOWN 0x5000

PGDOWN 0x5100

INSERT 0x5200

DELETE 0x5300

Key Value
evelopment Concepts, Tools, and Functions

../../../samplecode/clib_sample/nlm/screen/scrhand.c.html

novdocx (en) 11 D
ecem

ber 2007
vcprintf
Writes output to the console under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <stdarg.h>
#include <stdio.h>

int vcprintf (
 const char *format,
 va_list arg);

Parameters
format

(IN) Points to the format control string.

arg
(IN) Specifies a variable argument.

Return Values
The vcprintf function returns the number of characters written, or a negative value if an output error
occurred. If an error occurs, errno is set.

Remarks
The vcprintf function writes output to the console under control of the argument format. The
format string is described under the description for printf. The vcprintf function is similar to printf,
with the variable argument list replaced with arg, which has been initialized by the va_start macro.

See Also
fprintf and printf (Single and Intra-File Services), sprintf, va_arg, va_end, va_start (NLM and
NetWare: Program Management), vprintf (Single and Intra-File Services)

Example
The following example shows the use of vcprintf in a general error message routine.
#include <stdarg.h>
#include <stdio.h>
Device I/O Functions 217

218 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007

void errmsg (char *format, ...)
{
 va_list arglist;
 ConsolePrintf ("Error: ");
 va_start (arglist, format);
 vcprintf (format, arglist);
 va_end (arglist);
}

evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
vcscanf
Scans input from the console under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

Service: Device I/O

Syntax
#include <stdarg.h>
#include <stdio.h>

int vcscanf (
 const char *format,
 va_list arg);

Parameters
format

(IN) Points to the format control string.

arg
(IN) Specifies the variable argument.

Return Values
The vsscanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned.

Remarks
The vsscanf function scans input from the console under control of the argument format. The
format list is described with the scanf function.

The vcscanf function is similar to the scanf function, with a variable argument list replaced with
arg, which has been initialized using the va_start macro.

See Also
fscanf, scanf (Single and Intra-File Services), va_arg, va_end, va_start (NLM and NetWare:
Program Management), vscanf (Single and Intra-File Services)
Device I/O Functions 219

220 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Example
#include <stdio.h>
#include <stdarg.h>

void find (char *format, char *arg, ...)
{
 va_list arglist;
 va_start (arglist, arg);
 vcscanf (format, arglist);
 va_end (arglist);
}

evelopment Concepts, Tools, and Functions

16
novdocx (en) 11 D

ecem
ber 2007
16Screen Handling Concepts

This documentation describes Screen Handling, its functions, and features.

16.1 Screen Types
Multiple screens can exist on a server running NetWare®. The screen types are described below:

System Console Screen
Server console commands are entered at the command line of the System Console Screen. This
screen is always present. On NetWare 5.x servers, NLMs can write to this screen and receive
input from its keyboard. On NetWare 6.x servers, NLMs cannot write to this screen or receive
input for it. They can write only to the System Logger Screen or to their application-owned
screen.

System Logger Screen
This screen is only present on NetWare 6.x servers. This screen logs all system messages as
well as the output from NLMs that write to the system console. NLMs cannot get characters
from this screen's keyboard because the screen accepts only a few commands related to
scrolling and other such activities.

Debug Screen
The Debug Screen is accessed from within an assembly or C program or through a special key
sequence. This screen is hidden unless the server is at a breakpoint.

Router Screen
This screen displays whenever the TRACK ON console command is executed.

NLM Screens
An NLM can have zero or more regular or popup screens. Popup screens, used to present
instructional or error messages, are overlaid on regular screens. In some cases, an NLM may
not require a screen (a library NLM, for example). An NLM may also write to the System
Console Screen or to the screen of another NLM (if the other NLM cooperates).

Switch between these screens in the following ways:

Use Alt+Esc to switch from one screen to another.
Use Ctrl+Esc to display a menu of screens from which a screen can be selected.

16.2 Creating Screens
CreateScreen (page 237) creates a screen. In addition to the screen’s actual contents (display), a
screen is composed of a screen name, a set of screen attributes (characteristics), a command history
buffer, and a type-ahead buffer.
Screen Handling Concepts 221

222 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
16.2.1 Screen Names
Screen names can be specified with the linker directive SCREENNAME or by CreateScreen. The
SCREENNAME directive can be used to specify the "initial" screen name, the name of the first
screen that is automatically created when the NLM is loaded. If no screen name is specified, then the
NLM description specified by the linker directive FORMAT is used. If the NLM creates other
screens, the names of these screens are specified in the CreateScreen function using the
screenName parameter.

A set of screen names that have special meanings can be used with the SCREENNAME directive
and in the CreateScreen function.

The following screen names are special only if used with the SCREENNAME directive:

None - (Case insensitive)
If the SCREENNAME directive specifies "None," the NLM has no screens when it is started.

Default - (Case insensitive)
If the SCREENNAME directive specifies "Default," the initial screen of the NLM is the one
that was current when the NLM was started. If the NLM is started from the system console,
then the System Console Screen is considered current. If the NLM is spawned from another
NLM, the current screen of the spawning NLM is used.

Other screen names are special when used either with the SCREENNAME directive or with the
CreateScreen function. These include:

System Console - (Case sensitive)
If "System Console" is specified, the System Console Screen is used.

Screen names that start with two underscores (_ _)
These screen names are reserved.

16.2.2 Screen Attributes
Each screen has a set of attributes that specify the screen’s behavior. The supported screen attributes
are as follows:

AUTO_DESTROY_SCREEN (see “Automatic Screen Destruction” on page 222)
DONT_CHECK_CTRL_CHARS (see “Control-Character Checking” on page 222)
POP_UP_SCREEN (see “Popup Screens” on page 223)
UNCOUPLED_CURSORS (see “Cursor Coupling” on page 223)

Automatic Screen Destruction

If AUTO_DESTROY_SCREEN is set, the screen is destroyed when the NLM terminates. If this
attribute is not set, the screen is not destroyed when the NLM terminates until the "Press any key to
close screen" message is responded to.

Control-Character Checking

If DONT_CHECK_CTRL_CHARS is set, control characters <Ctrl><C> and <Ctrl><S> are not
checked for. <Ctrl><C> terminates an NLM abnormally (using the abort function), and <Ctrl><S>
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
pauses output (output can be resumed by pressing any key). The following control characters are
recognized whether or not control-character checking is enabled:

Tab
Carriage return
Linefeed
Backspace
Bell

Popup Screens

If POP_UP_SCREEN is set, the screen is a popup screen. (A popup screen automatically overlays
the current screen.) If the popup screen is still displayed when DestroyScreen or DropPopUpScreen
is called, then the screen that was overlayed is redisplayed.

Cursor Coupling

If UNCOUPLED_CURSORS is set, cursor coupling is disabled. The input and output cursors for
the specified screen occupy separate positions on the screen. The position of the input cursor
indicates the starting column and row position on the screen where the blinking cursor is located
when a function that takes input from the keyboard is called. The output cursor indicates the starting
column and row position on the screen where the output goes when a function that writes to the
screen is called. When the cursors are uncoupled, the position of one cursor can be changed without
affecting the other cursor’s position.

When cursor coupling is enabled, the input and output cursors for the specified screen always
occupy the same position. In effect, there is only one cursor for the screen.

16.2.3 Initial Screen Attribute Settings
By default, an NLM has one screen for its exclusive use when it begins. This screen, if it exists, is
called the initial screen. The initial attribute settings for the initial screen are as follows:

The screen is not destroyed when the NLM terminates until a key is pressed.
Control-character checking is enabled.
The screen is not a popup screen.
Cursor coupling is enabled.

If the SCREENNAME directive specifies "System Console" or "Default," the initial screen can be
the System Console Screen. The initial attribute settings for the System Console Screen are as
follows:

The screen is not destroyed when the NLM terminates.
Control-character checking is disabled.
The screen is not a popup screen.
Cursor coupling is enabled.

Any input attempted from the System Console Screen causes an error. If the NLM calls any screen
input function while the System Console Screen is the current screen, the function returns an error (-
1).
Screen Handling Concepts 223

224 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
An NLM can call the CreateScreen function to create other screens. If a screen is created with
CreateScreen, then the attributes are specified by the attributes parameter.

16.2.4 Changing Screen Attributes
A screen’s attributes can be changed with the following functions:

SetAutoScreenDestructionMode
SetCtrlCharCheckMode
SetCursorCouplingMode

The POP_UP_SCREEN attribute cannot be changed.

16.2.5 Type-Ahead and Command History Buffers
Each screen has its own type-ahead buffer and command history buffer.

The type-ahead buffer holds input from the keyboard before it is processed by the NLM.
The command history buffer saves strings entered from the keyboard. (The string-oriented
input functions support this feature.) Previously entered strings can be retrieved using the Up-
and Down-arrow keys and then can be edited.

16.3 Performing Screen I/O
In the NetWare environment, most functions that deal with a screen implicitly specify a target
screen, although a few functions explicitly specify the screen.

When a screen is implicitly specified, the current screen is the target screen. Functions
involving screen operations process I/O to and from the current screen.

All threads in a thread group have the same screen context. That is, all screens within a thread
group access the current screen.
A screen handle is used when explicitly specifying a target screen.

Any I/O done by a thread causes an implicit thread switch. The thread switch occurs before the
actual I/O is processed. To ensure that the I/O from a thread that is part of a thread group goes to the
correct screen, all I/O should be performed in critical sections of code. Critical code (bracketed
between the EnterCritSec and ExitCritSec functions) prevents implicit thread switching from taking
place.

16.3.1 Keyboard Input
For each screen, only one thread can wait on keyboard input from a given screen at a time. Any
other thread that attempts input is blocked until the keyboard is free.

16.3.2 Screen Output
Any number of threads can do output to a single screen at a time. All output functions in the
NetWare API usually complete their output before an output function called from another thread is
allowed to write to the screen. The exception to this is a single call to a Stream I/O function (such as
printf) that causes more data to be output to the screen than can fit in a Streams buffer: (default
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
buffer size: 512 bytes). This means that, in general, output from multiple threads is not scrambled
together.

16.4 Destroying Screens
All of the NLM screens (except the System Console Screen or a screen inherited from another
NLM) are destroyed when the NLM terminates. An NLM can call DestroyScreen to dispose of a
screen at any time.

16.5 Screen Handling Function List
CheckIfScreenDisplayed (page 229)
clrscr (page 231)
ConsolePrintf (page 232)
CopyFromScreenMemory (page 233)
CopyToScreenMemory (page 235)
CreateScreen (page 237)
DestroyScreen (page 239)
DisplayInputCursor (page 241)
DisplayScreen (page 242)
DropPopUpScreen (page 244)
GetCurrentScreen (page 245)
GetCursorCouplingMode (page 246)
GetCursorShape (page 247)
GetCursorSize (page 248)
GetPositionOfOutputCursor (page 249)
__GetScreenID (page 250)
GetScreenInfo (page 251)
GetSizeOfScreen (page 253)
gotoxy (page 254)
HideInputCursor (page 256)
IsColorMonitor (page 257)
PressAnyKeyToContinue (page 258)
PressEscapeToQuit (page 259)
ScanScreens (page 261)
ScrollScreenRegionDown (page 263)
ScrollScreenRegionUp (page 264)
SetAutoScreenDestructionMode (page 265)
SetCtrlCharCheckMode (page 266)
SetCurrentScreen (page 267)
SetCursorCouplingMode (page 268)
SetCursorShape (page 269)
SetInputAtOutputCursorPosition (page 270)
SetOutputAtInputCursorPosition (page 271)
SetPositionOfInputCursor (page 272)
Screen Handling Concepts 225

226 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetScreenRegionAttribute (page 279)
wherex (page 281)
wherey (page 282)
evelopment Concepts, Tools, and Functions

17
novdocx (en) 11 D

ecem
ber 2007
17Screen Handling Functions

This documentation alphabetically lists the screen handling functions and describes their purpose,
syntax, parameters, and return values.

“CheckIfScreenDisplayed” on page 229
“clrscr” on page 231
“ConsolePrintf” on page 232
“CopyFromScreenMemory” on page 233
“CopyToScreenMemory” on page 235
“CreateScreen” on page 237
“DestroyScreen” on page 239
“DisplayInputCursor” on page 241
“DisplayScreen” on page 242
“DropPopUpScreen” on page 244
“GetCurrentScreen” on page 245
“GetCursorCouplingMode” on page 246
“GetCursorShape” on page 247
“GetCursorSize” on page 248
“GetPositionOfOutputCursor” on page 249
“__GetScreenID” on page 250
“GetScreenInfo” on page 251
“GetSizeOfScreen” on page 253
“gotoxy” on page 254
“HideInputCursor” on page 256
“IsColorMonitor” on page 257
“PressAnyKeyToContinue” on page 258
“PressEscapeToQuit” on page 259
“RingTheBell” on page 260
“ScanScreens” on page 261
“ScrollScreenRegionDown” on page 263
“ScrollScreenRegionUp” on page 264
“SetAutoScreenDestructionMode” on page 265
“SetCtrlCharCheckMode” on page 266
“SetCurrentScreen” on page 267
“SetCursorCouplingMode” on page 268
“SetCursorShape” on page 269
“SetInputAtOutputCursorPosition” on page 270
Screen Handling Functions 227

228 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
“SetOutputAtInputCursorPosition” on page 271
“SetPositionOfInputCursor” on page 272
“SetScreenAttributes” on page 273
“SetScreenAreaAttribute” on page 275
“SetScreenCharacterAttribute” on page 277
“SetScreenRegionAttribute” on page 279
“wherex” on page 281
“wherey” on page 282
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CheckIfScreenDisplayed
Checks whether a screen is active

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int CheckIfScreenDisplayed (
 int screenHandle,
 long waitFlag);

Parameters
screenHandle

(IN) Specifies the screen handle of the screen to check if active.

waitFlag
(IN) Specifies whether to wait for the screen to become active (displayed).

Return Values
When waitFlag = TRUE (1):

0 = Thread did not sleep.
1 = Thread did sleep.

When waitFlag = FALSE (0):

0 = Screen is not active.
1 = Screen is active.

If an error occurs, this function returns a value of -1 and errno is set to:

Remarks
The active screen is the screen currently being displayed on the server monitor.

Value Hex Name Description

22 (0x16) EBADHNDL Bad screen handle was passed in.
Screen Handling Functions 229

230 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The CheckIfScreenDisplayed function serves one of the following two purposes based on the value
of the waitFlag parameter:

When waitFlag is TRUE, this function suspends the calling thread until the screen specified
by screenHandle is active (displayed). In this case, it returns TRUE if the calling thread
slept and FALSE if the calling thread did not sleep (the screen was already active).
When waitFlag is FALSE, this function merely checks to see if the screen specified by
screenHandle is active.

Blocking Information This function is nonblocking unless waitFlag is set to TRUE.

See Also
DisplayScreen (page 242), GetCurrentScreen (page 245)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
clrscr
Disables the cursor and clears the current screen (implemented for NetWare ® 3.0 and above)

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

Service: Screen Handling

Syntax
#include <nwconio.h>

void clrscr (void);

Return Values
None

If an error occurs, errno is set to:

Remarks
The clrscr function clears the current screen and places the cursor (invisibly) in the upper left-hand
corner (at position 0,0).

See Also
DisplayInputCursor (page 241)

Example
#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>
main()
{
 printf("type any character...");
 getch();
 clrscr();
 printf("this should be on a clear screen\r\n");
 getch(); /* getch will reenable cursor */
}

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 231

232 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ConsolePrintf
Writes a message to a console screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void ConsolePrintf (
 const char *format,
 ...);

Parameters
format

(IN) Points to the format control string.

Remarks
The ConsolePrintf function writes output under control of the argument format. The format string
is described under the description of the printf function.

However, the format string has several limitations from that described under printf. The limitations
are:

Asterisk (*) is not allowed for the width or precision specification.
No type length specifiers are allowed.
The only format control flag allowed is "-", and the following conversions are not allowed:

The \n character only performs a line-feed (with printf, \n performs carriage-return/line-feed.

On NetWare 5.x and earlier, the ConsolePrintf function writes output to the System Console Screen.
On NetWare 6.0 and later, it writes output to the Logger Screen.

See Also
printf (Single and Intra-File Services)

e E f F g G i n p X
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CopyFromScreenMemory
Copies a rectangular region from screen memory

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void CopyFromScreenMemory (
 WORD height,
 WORD width,
 BYTE *Rect,
 WORD beg_x,
 WORD beg_y);

Parameters
height

(IN) Specifies the number of rows in the rectangular region.

width
(IN) Specifies the number of columns in the rectangular region.

Rect
(OUT) Points to the screen memory data.

beg_x
(IN) Specifies the starting column in the rectangular region.

beg_y
(IN) Specifies the starting row in the rectangular region.

Remarks
The CopyFromScreenMemory function copies a rectangular region, whose size is specified by
width and height, from screen memory, starting from column beg_x and row beg_y.

Ensure that:

beg_x + width is less than or equal to the number of columns on the screen (currently
always 80).
beg_y + height is less than or equal to the number of rows on the screen (currently always
25).
Screen Handling Functions 233

234 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The rectangle is clipped to the screen’s borders if it is too big.

If either beg_x or beg_y is greater than either SCREEN_COLUMNS or SCREEN_ROWS, the
function returns without writing anything to the array Rect.

The size of the array Rect must be:
(2 * width * height)

The array Rect is an array of char attribute pairs:
 struct cell
 {
 char charValue;
 char attribute;
 };

See Also
CopyToScreenMemory (page 235)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CopyToScreenMemory
Copies a rectangular region into screen memory

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void CopyToScreenMemory (
 WORD height,
 WORD width,
 BYTE *Rect,
 WORD beg_x,
 WORD beg_y);

Parameters
height

(IN) Specifies the number of rows in the rectangular region.

width
(IN) Specifies the number of columns in the rectangular region.

Rect
(IN) Points to the data to be copied into screen memory.

beg_x
(IN) Specifies the starting column in the rectangular region.

beg_y
(IN) Specifies the starting row in the rectangular region.

Remarks
The CopyToScreenMemory function copies a rectangular region, whose size is specified by width
and height, into screen memory, starting from column beg_x and row beg_y.

Ensure that:

beg_x + width is less than or equal to the number of columns on the screen (currently
always 80).
beg_y + height is less than or equal to the number of rows on the screen (currently always
25).
Screen Handling Functions 235

236 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The rectangle is clipped to the screen’s borders if it is too big.

If either beg_x or beg_y is greater than either SCREEN_COLUMNS or SCREEN_ROWS, the
function returns without doing anything to the screen.

The size of the array Rect must be:
(2 * width * height)

The array Rect is an array of char attribute pairs:
 struct cell {
 char charValue;
 char attribute;
 };

See Also
CopyFromScreenMemory (page 233)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
CreateScreen
Creates a new screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int CreateScreen (
 char *screenName,
 BYTE attributes);

Parameters
screenName

(IN) Points to the name of the new screen.

attributes
(IN) Specifies the screen attributes.

Return Values
Returns the screen handle if successful or EFAILURE if an error occurs. If a NULL value is
returned, the screen handle cannot be returned and errno is set to ENOMEM.

Remarks
A new screen is created for use by the NLM™ application. The new screen is displayed and made
the current screen only if no other screens exist for the NLM when this call is made; otherwise, the
current and displayed screens remain unchanged.

If a screen has the DONT_AUTO_ACTIVATE attribute set, it is not automatically displayed when
it is created, even if it is the only screen for the NLM.

The supported screen attributes are:

Attribute Description

DONT_AUTO_ACTIVATE Prevents auto activation when screens are created and no
other screens exist.

DONT_CHECK_CTRL_CHARS Turns off Ctrl-C and Ctrl-S processing.

AUTO_DESTROY_SCREEN Prevents the "Press any key to close" message.
Screen Handling Functions 237

238 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
A popup screen automatically overlays the currently displayed screen. If the popup screen is still
displayed when the DestroyScreen function or DropPopUpScreen (for the popup screen) function is
called, the screen that was overlayed is redisplayed.

If screenName is "System Console" (case sensitive), a new screen is not created, rather the
returned screen handle refers to the System Console Screen. In this case, the attributes should be set
to zero. Input is not allowed from the System Console Screen. (All the input functions return
EFAILURE with errno set to EWRNGKND.)

NOTE: If you pass a valid OS screen ID (usually obtained by other functions in this module) in the
screenName parameter, CreateScreen creates a C Library screen handle from the given screen ID.

See scrhand.c (../../../samplecode/clib_sample/nlm/screen/scrhand.c.html).

See Also
DestroyScreen (page 239), DisplayScreen (page 242), GetCurrentScreen (page 245),
__GetScreenID (page 250), GetScreenInfo (page 251), ScanScreens (page 261), SetCurrentScreen
(page 267)

Example
#include <nwconio.h>
char screenName[] = "NLM x New Screen";
int screenHandle;
BYTE attributes = 0;
screenHandle = CreateScreen(screenName, attributes);

POP_UP_SCREEN Makes the screen a pop up screen.

UNCOUPLED_CURSORS Sets distinct input and output cursors.

Attribute Description
evelopment Concepts, Tools, and Functions

../../../samplecode/clib_sample/nlm/screen/scrhand.c.html

novdocx (en) 11 D
ecem

ber 2007
DestroyScreen
Closes a screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int DestroyScreen (
 int screenHandle);

Parameters
screenHandle

(IN) Specifies the screen handle of the screen being closed.

Return Values
The following table lists return values and descriptions.

Remarks
DestroyScreen closes the screen specified by the screenHandle parameter. The following
conditions determine which screen is displayed next:

If the screenHandle parameter specifies the current screen, then a new current screen is set
if the NLM has any screens left.
If the screenHandle parameter specifies the screen that is displayed, then another one of the
screens of the NLM is displayed if any are left. Otherwise, the System Console Screen is
displayed.
If the screenHandle parameter specifies a popup screen that is displayed, the screen that
was covered by the popup screen is redisplayed if it still exists. Otherwise, the System Console
Screen is displayed.

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

22 (0x16) EBADHNDL Bad screen handle was passed in.
Screen Handling Functions 239

240 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
See Also
CreateScreen (page 237)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
DisplayInputCursor
Enables the input cursor for the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int DisplayInputCursor (void);

Return Values
The following table lists return values and descriptions.

Remarks
This function makes the input cursor of the current screen visible when the screen is next displayed.
If another thread is waiting on the keyboard, this function waits until the keyboard is free.

See Also
HideInputCursor (page 256)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

19 (0x13) EWRKGKND Current screen is the System Console Screen. Input is not
allowed.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 241

242 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
DisplayScreen
Displays the specified screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int DisplayScreen (
 int screenHandle);

Parameters
screenHandle

(IN) Specifies the screen handle of the screen to display; if NULL is specified and the current
screen is a popup screen, then a DropPopUpScreen is done on the current screen.

Return Values
The following table lists return values and descriptions.

WARNING: An invalid screen handle is not guaranteed to return EBADHNDL; it can also cause
the server to abend. Always pass a handle returned from CreateScreen or GetScreenInfo.

Remarks
In addition to displaying the specified screen, this function also makes the specified screen the
current screen.

If the screenHandle parameter specifies a popup screen:

The specified popup screen is displayed over the currently displayed screen (original screen).
When the DropPopUpScreen or DestroyScreen function is called for the popup screen, and the
popup screen is displayed, the original screen, if it still exists, is redisplayed. Otherwise, the
System Console Screen is displayed.

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

22 (0x16) EBADHNDL Bad screen handle was passed in.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
See Also
CheckIfScreenDisplayed (page 229), DestroyScreen (page 239)
Screen Handling Functions 243

244 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
DropPopUpScreen
Redisplays the screen that the popup screen covered

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int DropPopUpScreen (
 int screenHandle);

Parameters
screenHandle

(IN) Specifies the screen handle of the popup screen.

Return Values
The following table lists return values and descriptions.

WARNING: An invalid screen handle is not guaranteed to return EBADHANDLE; it can also
cause the server to abend. Always pass a handle returned from CreateScreen or GetScreenInfo.

Remarks
This function redisplays the screen the popup screen covered if the popup screen is the displayed
screen when this function is called and the covered screen still exists. In addition, the screen that was
covered is made current if it is a screen owned by the calling NLM.

See Also
DestroyScreen (page 239), DisplayScreen (page 242)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

22 (0x16) EBADHNDL Bad screen handle was passed in.

105 (0x69) ERR_NOT_A_POPUP_SCREEN
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetCurrentScreen
Returns the screen handle of the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int GetCurrentScreen (void);

Return Values
This function returns the screen handle of the current screen if successful.

If an error occurs this function returns NULL, and errno is set to:

Remarks
GetCurrentScreen returns the handle of the current screen.

NOTE: The handle returned pertains only to the current screen of the current NLM. It is not
necessarily the handle of the screen displayed on the console.

See Also
SetCurrentScreen (page 267)

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 245

246 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
GetCursorCouplingMode
Returns whether cursor coupling is enabled or disabled for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

BYTE GetCursorCouplingMode (void);

Return Values
This function returns the cursor coupling mode if successful; otherwise, it returns EFAILURE.

If an error occurs, errno is set to:

Remarks
This function returns TRUE if cursor coupling is enabled, and FALSE if cursor coupling is disabled
for the current screen.

See Also
SetCursorCouplingMode (page 268)

Example
#include <nwconio.h>
BYTE newMode;
newMode = GetCursorCouplingMode();

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetCursorShape
Returns the start and end scan line for the cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

WORD GetCursorShape (
 BYTE *startline,
 BYTE *endline);

Parameters
startline

(OUT) Points to the first cursor scan line.

endline
(OUT) Points to the last cursor scan line.

Return Values
This function returns the scan line for the cursor.

Remarks
The GetCursorSize function returns the cursor shape as specified by the startline and
endline parameters.

See Also
GetCursorSize (page 248), SetCursorShape (page 269)

Example
#include <nwconio.h>
WORD scanline;
BYTE startline;
BYTE endline;
scanline = GetCursorShape (&startline, & endline);
Screen Handling Functions 247

248 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
GetCursorSize
Returns the cursor size

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

WORD GetCursorSize (
 BYTE *firstline,
 BYTE *lastline);

Parameters
firstline

(OUT) Receives the first cursor scan line.

lastline
(OUT) Receives the last cursor scan line.

Return Values
This function returns the cursor size.

Remarks
The GetCursorSize function returns the maximum (lastline) and minimum (firstline)
values that the cursor scan lines can be set to.

See Also
SetCursorShape (page 269)

Example
#include <nwconio.h>
WORD scanline;
BYTE firstline;
BYTE lastline;
scanline = GetCursorSize (&firstline, & lastline);
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetPositionOfOutputCursor
Returns the output cursor’s current row and column position for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int GetPositionOfOutputCursor (
 WORD *row,
 WORD *column);

Parameters
row

(OUT) Points to the row on which the cursor is positioned (first row is 0).

column
(OUT) Points to the column on which the cursor is positioned (first column is 0).

Return Values
The following table lists return values and descriptions.

Remarks
This function returns the output cursor’s position on the current screen; it also returns the input
cursor’s position if cursor coupling is enabled for the current screen.

See Also
gotoxy (page 254)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

23 (0x17) ENO_SCRNS No screens were open.
Screen Handling Functions 249

250 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
__GetScreenID
Returns the screen ID for a screen handle

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int _ _GetScreenID (
 int screenHandle);

Parameters
screenHandle

(IN) Specifies a handle of a C Library Open Screen Structure.

Return Values
The function returns the OS screen ID related to the C Library screen.

Remarks
The value returned by this function can be passed to functions that take a screen ID.

See Also
CreateScreen (page 237), GetScreenInfo (page 251), ScanScreens (page 261)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetScreenInfo
Returns the screen handle associated with the specified screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int GetScreenInfo (
 int screenID,
 char *name,
 LONG *attrib);

Parameters
screenID

(IN) Specifies a screen ID (an OS structure).

name
(OUT) Points to the name of the screen. Names of nonC Library screens are also returned (for
example, MONITOR.NLM’s screen).

attrib
(OUT) Points to the attributes of a given screen ID. If there is a valid C Library screen handle
associated with this screen ID, then the screen handle’s attributes are returned as well.

Return Values
This function returns the screen handle associated with the specified screen. If the screen handle is
nonzero, then it can be passed to functions that take a C Library screen handle. If the function
returns a NULL value, there is no C Library equivalent of the specified screen. That is, the screen
was not opened by CreateScreen.

A return value of -1 indicates the screen ID was not a valid OS screen ID, and errno is set to
EBADHNDL.

WARNING: An invalid screen ID is not guaranteed to return EBADHANDLE; it can also cause the
server to abend.

Remarks
You can pass NULL values in any parameter.
Screen Handling Functions 251

252 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
The following are C Library settable attribute bits. These can be returned for C Library screens.

The following attribute can be set bit if there is a related C Library screen:

HAS_A_CLIB_HANDLE

The following are OS attribute bits. These cannot be set using C Library APIs.

_KEYBOARD_INPUT_ACTIVE
_PROCESS_BLOCKED_ON_KEYBOARD
_PROCESS_BLOCKED_ON_SCREEN
_INPUT_CURSOR_DISABLED
_SCREEN_HAS_TITLE_BAR
_NON_SWITCHABLE_SCREEN

See Also
CreateScreen (page 237), __GetScreenID (page 250), ScanScreens (page 261)

Attribute Description

DONT_CHECK_CTRL_CHARS Overrides the control characters (Ctrl+C, Ctrl +S) and tab
processing.

AUTO_DESTROY_SCREEN Causes the <Press any key to close> message.

POP_UP_SCREEN Sets screen to be a popup screen.

UNCOUPLED_CURSORS Sets distinct and separate input and output cursors.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
GetSizeOfScreen
Returns the number of rows and columns of the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int GetSizeOfScreen (
 WORD *height,
 WORD *width);

Parameters
height

(OUT) Points to the number of rows in the screen (first column is 0)

width
(OUT) Points to the number of columns in the screen (first column is 0)

Return Values

Remarks
This function returns the size of the current screen. Currently all screens are 25x80.

See Also
DisplayScreen (page 242)

Value Hex Name

0 (0x00) ESUCCESS
Screen Handling Functions 253

254 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
gotoxy
Positions the output cursor on the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void gotoxy (
 WORD column,
 WORD row);

Parameters
column

(IN) Specifies the column on which to position the cursor.

row
(IN) Specifies the row on which to position the cursor.

Return Values
This function returns no value.

If an error occurs, errno is set to:

Remarks
The output cursor is positioned on the current screen. If cursor coupling is enabled for the current
screen, the input cursor is also positioned.

NOTE: The order of the row and column parameters is different from all the other functions that
take row and column arguments.

See Also
SetOutputAtInputCursorPosition (page 271), SetPositionOfInputCursor (page 272)

Value Hex Name Description

23 (0x17) ENO_SCRNS No screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
Example
#include <stdlib.h>
#include <nwconio.h>
main()
{
 gotoxy(10,10);
 printf("A");
 gotoxy(50,10);
 printf("B");
 getch();
}
Screen Handling Functions 255

256 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
HideInputCursor
Disables the input cursor for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int HideInputCursor (void);

Return Values
The following table lists return values and descriptions.

Remarks
This function causes the input cursor to be invisible when the current screen is displayed.

See Also
DisplayInputCursor (page 241), GetPositionOfOutputCursor (page 249), SetPositionOfInputCursor
(page 272)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

19 (0x13) EWRNGKND Input to System Console was attempted.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
IsColorMonitor
Determines whether a color monitor is being used

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void IsColorMonitor (void);

Return Values
This function returns a value of 1 if the machine is using a color monitor; otherwise, it returns a
value of 0.
Screen Handling Functions 257

258 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
PressAnyKeyToContinue
Writes the message <Press any key to continue> to the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int PressAnyKeyToContinue (void);

Return Values
The following table lists return values and descriptions.

Remarks
When a key is pressed, the <Press any key to continue> message is cleared and normal screen
activity resumes. The thread is blocked until a key is pressed.

NOTE: If another thread causes the screen to scroll before a key is pressed, the <Press any key to
continue> message might not be properly erased.

See Also
getch (page 201), PressEscapeToQuit (page 259)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

19 (0x13) EWRNGKND Input to System Console was attempted.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
PressEscapeToQuit
Writes the message <Press Escape to quit or any key to continue> to the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int PressEscapeToQuit (void);

Return Values
The following table lists return values and descriptions.

Remarks
Pressing the Escape key clears the <Press Escape to quit or any key to continue> message and the
user can terminate the NLM depending on the return value.

See Also
getch (page 201), PressAnyKeyToContinue (page 258)

Value Hex Name Description

0 (0x00) ESUCCESS Any key other than Escape was pressed.

1 Escape was pressed.

19 (0x13) EWRNGKND Input to System Console was attempted.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 259

260 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
RingTheBell
Causes the console speaker to beep

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12 and above, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

void RingTheBell (void);

Return Values
This function does not return a value.

Remarks
This function can be repeated several times in a row, to increase the duration of the beep.

Example
#include <stdio.h>
#include <nwconio.h>
main()
{
 printf("\nError\n");
 RingTheBell();
}
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
ScanScreens
Returns a screen ID (a pointer to an OS screen structure) associated with the specified screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int ScanScreens (
 int LastScreenID,
 char *name,
 LONG *attrib);

Parameters
LastScreenID

(IN) Specifies a screen ID obtained by a previous ScanScreens call (or NULL to get the first
screen ID).

name
(OUT) Points to the name of the screen.

attrib
(OUT) Points to the attributes of the given screen ID.

Return Values
This function returns the screen ID of the next screen on the list. If it returns a NULL value, there are
no more screen IDs, or an invalid screen ID has been passed to the function, and errno is set to
EBADHNDL.

Remarks
This function is used to get the next member on the list of the OS screen IDs.

When calling this function, pass a NULL value to obtain the first screen ID on the list. (Currently, it
is always the system console’s ID. However, this might change in the future.)

You can also pass NULL values in the name and attrib parameters.

See Also
CreateScreen (page 237)
Screen Handling Functions 261

262 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Example
/*
 This example demonstrates using the Screen ID/Screen Handle
 Conversion APIs. This program looks for all the screens
 in the system and then prints on those screens their
 names and attributes.
*/

#include <errno.h>
#include <nwtypes.h>
#include <nwconio.h>
#include <stdio.h>
#include <nwthread.h>
#define property (x) if (att & x) printf ("%-40s\n", #x)
main ()
{
 int sID;
 int sh;
 char buf[80];
 LONG attr;
 for (sID = NULL; sID = ScanScreens (sID, buf, &attr);)
 {
 sh = GetScreenInfo (sID, NULL, NULL);
 /* there is no CLIB equivalent? */
 if (!sh)
 sh = CreateScreen ((char*) sID, 0);
 /* let’s create one */
 if (!sh)
 {
 ConsolePrintf ("errno: %d\n", errno);
 abort();
 }
 SetCurrentScreen (sh);
 gotoxy (1,1);
 printf ("This screen is %s with these attributes:\n\r", buf);
 property(HAS_A_CLIB_HANDLE);
 property(_KEYBOARD_INPUT_ACTIVE);
 property(_PROCESS_BLOCKED_ON_KEYBOARD);
 property(_PROCESS_BLOCKED_ON_SCREEN);
 property(_INPUT_CURSOR_DISABLED);
 property(_SCREEN_HAS_TITLE_BAR);
 property(_NON_SWITCHABLE_SCREEN);
 property(DONT_CHECK_CTRL_CHARS);
 property(AUTO_DESTROY_SCREEN);
 property(POP_UP_SCREEN);
 property(UNCOUPLED_CURSORS);
 DestroyScreen (sh);
 }
/*
getchar(); It abends if another process is doing input on this screen.
*/
}
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
ScrollScreenRegionDown
Scrolls down a portion of the current screen (a set of contiguous rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int ScrollScreenRegionDown (
 int firstLine,
 int numberOfLines);

Parameters
firstLine

(IN) Specifies the row number of the first row in the set. The top row of the screen is 0 (zero).

numberOfLines
(IN) Specifies the number of rows in the region (in set).

Return Values
The following table lists return values and descriptions.

Remarks
This function scrolls a portion of the screen down. (The bottom line of the region is replaced by the
next-to-the-bottom line. The next-to-the-bottom line is replaced by the line above it, and so on.
Finally, the first line of the region is cleared.) All of the lines on the screen that are not in the defined
region are not affected.

See Also
CopyToScreenMemory (page 235), SetScreenRegionAttribute (page 279)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 263

264 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
ScrollScreenRegionUp
Scrolls up a portion of the current screen (a set of contiguous rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int ScrollScreenRegionUp (
 int firstLine,
 int numberOfLines);

Parameters
firstLine

(IN) Specifies the row number of the first row in the set. The top row of the screen is 0.

numberOfLines
(IN) Specifies the number of rows in region (in set).

Return Values
The following table lists return values and descriptions.

Remarks
This function scrolls a portion of the screen up. (The top line of the region is replaced by the next-to-
the-top line. The next-to-the-top line is replaced by the line below it, and so on. Finally, the bottom
line of the region is cleared.) All of the lines on the screen that are not in the defined region are not
affected.

See Also
CopyToScreenMemory (page 235), SetScreenRegionAttribute (page 279)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetAutoScreenDestructionMode
Enables or disables auto-screen destruction for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

BYTE SetAutoScreenDestructionMode (
 BYTE newMode);

Parameters
newMode

(IN) Specifies TRUE = Enable auto-screen destruction. FALSE = Disable auto-screen
destruction.

Return Values
This function returns the value of the old auto-screen destruction mode setting.

If an error occurs, the function returns a value of -1, and errno is set to:

Remarks
If auto-screen destruction is disabled for a particular screen while the NLM is terminating, that
screen remains open with the message <Press any key to close screen >. The screen does not close
and the NLM does not continue with its termination until a key is pressed on that screen.

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 265

266 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetCtrlCharCheckMode
Enables or disables control-character checking for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

BYTE SetCtrlCharCheckMode (
 BYTE newMode);

Parameters
newMode

(IN) Specifies TRUE = Enable control-character checking. FALSE = Disable control-character
checking.

Return Values
This function returns the value of the old control-character check mode setting.

If an error occurs, the function returns -1 and errno is set to:

Remarks
Set the newMode parameter to TRUE if control characters are to be checked for, and FALSE
otherwise. The control characters to check for are Ctrl+C and Ctrl+S.

Ctrl+C terminates the NLM abnormally (via the abort function).
Ctrl+S pauses output (pressing any key resumes output).

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetCurrentScreen
Sets the current screen of the thread group belonging to the running thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetCurrentScreen (
 int screenHandle);

Parameters
screenHandle

(IN) Specifies the screen handle of the screen to make current.

Return Values
The following table lists return values and descriptions.

Remarks
This function sets the screen specified by the screenHandle parameter as the target of screen I/O
functions. It does not change the displayed screen.

See scrhand.c (../../../samplecode/clib_sample/nlm/screen/scrhand.c.html).

See Also
CreateScreen (page 237), DestroyScreen (page 239), DisplayScreen (page 242)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

22 (0x16) EBANHNDL Bad screen handle was passed in.
Screen Handling Functions 267

../../../samplecode/clib_sample/nlm/screen/scrhand.c.html

268 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetCursorCouplingMode
Enables or disables input and output cursor coupling for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

BYTE SetCursorCouplingMode (
 BYTE newMode);

Parameters
newMode

(IN) Specifies TRUE = Enable cursor coupling. FALSE = Disable cursor coupling.

Return Values
This function returns the value of the old cursor-coupling mode setting.

If an error occurs, the function returns a value of -1, and errno is set to:

Remarks
When cursor coupling is disabled, the input and output cursors for the specified screen occupy
separate positions on the screen. The position of the input cursor indicates the starting column/row
position on the screen where the blinking cursor is located when a function that takes input from the
keyboard is called. The output cursor indicates the starting column/row position on the screen where
the output goes when a function that writes to the screen is called. The position of one cursor can be
changed without affecting the other cursor’s position.

When cursor coupling is enabled, the input and output cursors for the specified screen always
occupy the same position. In effect, there is only one cursor for the screen.

See Also
GetCursorCouplingMode (page 246)

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetCursorShape
Sets the cursor shape

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

WORD SetCursorShape (
 BYTE startline,
 BYTE endline);

Parameters
startline

(IN) Specifies the first cursor scan line.

endline
(IN) Specifies the last cursor scan line.

Return Values
This function returns the old cursor shape.

Remarks
The SetCursorShape function sets the cursor shape as specified by the startline and endline
parameters.

See Also
GetCursorShape (page 247)
Screen Handling Functions 269

270 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetInputAtOutputCursorPosition
Sets the input cursor position to the output cursor position

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetInputAtOutputCursorPosition (void);

Return Values
The following table lists return values and descriptions.

Remarks
The input cursor position is set to the output cursor position on the current screen. If another thread
is waiting on the keyboard, the current thread waits until the keyboard is free.

See Also
DisplayInputCursor (page 241), GetPositionOfOutputCursor (page 249), gotoxy (page 254),
HideInputCursor (page 256), SetOutputAtInputCursorPosition (page 271), wherex (page 281),
wherey (page 282)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

19 (0x13) EWRNGKND Input from the System Console was attempted.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetOutputAtInputCursorPosition
Sets the output cursor position to the input cursor position

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetOutputAtInputCursorPosition (void);

Return Values
The following table lists return values and descriptions.

Remarks
The output cursor position is set to the input cursor position on the current screen.

See Also
GetPositionOfOutputCursor (page 249), gotoxy (page 254), SetInputAtOutputCursorPosition
(page 270), wherex (page 281), wherey (page 282)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 271

272 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetPositionOfInputCursor
Sets the position of the input cursor on the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetPositionOfInputCursor (
 WORD row,
 WORD column);

Parameters
row

(IN) Specifies the row number on which to position the cursor (top row is 0).

column
(IN) Specifies the column number on which to position the cursor (leftmost column is 0).

Return Values
The following table lists return values and descriptions.

Remarks
The application must check that the row and column positions are within the current screen size.

The SetPositionOfInputCursor function positions the input cursor on the current screen. It also
positions the output cursor if cursor coupling for the current screen is enabled. If another thread is
waiting on the keyboard, the calling thread is blocked until the keyboard is free.

See Also
DisplayInputCursor (page 241), HideInputCursor (page 256)

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

19 (0x13) EWRNGKND Input to System Console was attempted.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetScreenAttributes
Sets the display attribute bytes for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetScreenAttributes (
 LONG mask,
 LONG attr);

Parameters
mask

(IN) Specifies the attributes you want to set or clear:

attr
(IN) Specifies the attributes to set, using the same values as the mask parameter. To set an
attribute, it must be specified in both the mask and attr parameters. To clear an attribute, it
must be specified in only the mask paramter.

Return Values
Returns a value of ESUCCESS (0) if successful. Otherwise, it returns a nonzero value.

Remarks
SetScreenAttributes sets and clears various bit flags. For example:

Value Bit Name Description

0x01 Bit 1 DONT_AUTO_ACTIVATE Avoids autoactivation when screens are
created, but no other screens exist.

0x02 Bit 2 DONT_SWITCH_SCREEN Avoids screen being switched. Converted
to _NON_SWITCHABLE_SCREEN.

0x10 Bit 4 DONT_CHECK_CTRL_CHARS Turns off ^C and ^S processing.

0x20 Bit 5 AUTO_DESTROY_SCREEN Avoids "Press any key to close screen."

0x80 Bit 7 UNCOUPLED_CURSORS Displays distinct input and output
cursors.
Screen Handling Functions 273

274 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
SetScreenAttributes(DONT_SWITCH_SCREEN|AUTO_DESTROY_SCREEN,
DONT_SWITCH_SCREEN);

This sets the DONT_SWITCH_SCREEN attribute and clears the AUTO_DESTROY_SCREEN
attribute. Bit attributes that are not specified in mask are not affected.

Before setting the DONT_SWITCH_SCREEN bit, you need to know if the screen is a popup screen
(use GetScreenInfo). If the screen is a popup screen, you need to call DropPopUpScreen one or
more times. Each call to DropPopUpScreen decrements the popup screen in-use count. When the in-
use count reaches 0, the function sets the DONT_SWITCH_SCREEN bit on the popup screen.

See Also
SetScreenAreaAttribute (page 275), SetScreenCharacterAttribute (page 277),
SetScreenRegionAttribute (page 279)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetScreenAreaAttribute
Sets the display adapter attribute bytes for an area of the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

Long SetScreenAreaAttribute (
 LONG line,
 LONG column,
 LONG numLines,
 LONG numColumns,
 LONG attribute);

Parameters
line

(IN) Specifies the row number of the top line in the screen area.

column
(IN) Specifies the column number of the left column in the screen area.

numLines
(IN) Specifies the number of rows to be included in the screen area.

numColumns
(IN) Specifies the number of columns to be included in the screen area.

attribute
(IN) Specifies the value of the attribute to be set. This value depends upon the type of monitor
present.

Return Values
This function returns a value of ESUCCESS (0) if successful. Otherwise, it returns a nonzero value.

Remarks
This function changes the attribute for characters that have been sent to the specified area of the
screen. Whenever you send a character to a screen, the output is written with a white-on-black
attribute (0x07). If you want to change the attribute for the characters in that area, you must call this
function after you write the characters to the screen.
Screen Handling Functions 275

276 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
See Also
SetScreenCharacterAttribute (page 277), SetScreenRegionAttribute (page 279)

Example
#include <stdio.h>
#include <stdlib.h>
#include <nwconio.h>
#include <nwthread.h>
main()
{
 int i;
 for (i = 0; i < 14;i++)
 {
 gotoxy(i, i);
 printf("COLOR TEST");
 SetScreenCharacterAttribute(i, i, i);
 SetScreenAreaAttribute(0, 64, i, 14-i, i*16);
 getch() /* to create a pause between colors */
 }
}
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetScreenCharacterAttribute
Sets the display adapter attribute bytes for a character on the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

Long SetScreenCharacterAttribute (
 LONG line,
 LONG column,
 LONG attribute);

Parameters
line

(IN) Specifies the row number of the character’s position.

column
(IN) Specifies the column number of the character’s position.

attribute
(IN) Specifies the value of the attribute to be set. This value depends upon the type of monitor
present.

Return Values
This function returns a value of ESUCCESS (0) if successful. Otherwise, it returns a nonzero value.

Remarks
This function changes the attribute for a character that has been sent to the screen. Whenever you
send a character to a screen, the output is written with a white-on-black attribute (0x07). If you want
to change the attribute for the character, you must call this function after you write the character to
the screen.

See Also
SetScreenAreaAttribute (page 275), SetScreenRegionAttribute (page 279)
Screen Handling Functions 277

278 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
Example
#include <stdio.h>
#include <stdlib.h>
#include <nwconio.h>
#include <nwthread.h>
main()
{
 int i;
 for (i = 0; i < 14;i++)
 {
 gotoxy(i, i);
 printf("COLOR TEST");
 getch(); /* to create a pause between colors */
 SetScreenCharacterAttribute(i, i, i);
 }
}
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
SetScreenRegionAttribute
Sets the display adapter attribute bytes for a region of the current screen (contiguous set of rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

int SetScreenRegionAttribute (
 int firstLine,
 int numberOfLines,
 BYTE attribute);

Parameters
firstLine

(IN) Specifies the row number of the first row in the set. The top row of the screen is 0 (zero).

numberOfLines
(IN) Specifies the number of rows in region (in set).

attribute
(IN) Specifies the value of attribute to set; value depends on the type of monitor that is present
(see the IBM Technical Reference for the Personal Computer XT).

Return Values
The following table lists return values and descriptions.

Remarks
Whenever output to a screen is performed, the output is written with white-on-black attribute
(0x07). This nullifies the effect of this function. Therefore, this function should be called after the
screen is written to.

Value Hex Name Description

0 (0x00) ESUCCESS Successful.

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 279

280 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
See Also
ScrollScreenRegionDown (page 263)
evelopment Concepts, Tools, and Functions

novdocx (en) 11 D
ecem

ber 2007
wherex
Returns the horizontal position of the input cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

WORD wherex (void);

Return Values
This function returns the current column of the input cursor if successful. If an error occurs, it
returns EFAILURE.

If an error occurs, errno is set to:

Remarks
The wherex function returns the x coordinate of the current input cursor position (within the current
screen). It also returns the output cursor’s position if cursor coupling for the current screen is
enabled.

See Also
SetPositionOfInputCursor (page 272), wherey (page 282)

Example
#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>

main()
{
 printf("%d,%d\r\n",wherex(),wherey());
 getch();
}

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
Screen Handling Functions 281

282 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
wherey
Returns the vertical position of the input cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Screen Handling

Syntax
#include <nwconio.h>

WORD wherey (void);

Return Values
This function returns the current row of the input cursor if successful. If an error occurs, it returns
EFAILURE.

If an error occurs, errno is set to:

Remarks
The wherey function returns the y coordinate of the current input cursor position (within the current
screen). It also returns the output cursor’s position if cursor coupling for the current screen is
enabled.

See Also
SetPositionOfInputCursor (page 272), wherex (page 281)

Example
#include <stdlib.h>
#include <nwconio.h>

main()
{
 printf("%d,%d\r\n",wherex(),wherey());
 getch();
}

Value Hex Name Description

23 (0x17) ENO_SCRNS Screen I/O was attempted when no screens were open.
evelopment Concepts, Tools, and Functions

A
novdocx (en) 11 D

ecem
ber 2007
ARevision History

The following table outlines all the changes that have been made to the NLM Development
Concepts, Tools, and Functions documentation (in reverse chronological order):

Release Date Revision Description

February 2008 Removed the section for registering an NLM prefix.

October 11, 2006 Removed link to Software Test Tools.

March 1, 2006 Updated format.

October 5, 2005 Transitioned to revised Novell documentation standards.

March 2, 2005 Modified the documentation for the SetScreenAttributes (page 273) function.

October 6, 2004 Removed the documentation for the assert_action function, because CLib does
not support it.

Removed documentation for the server -o option, because this parameter is no
longer used by the NetWare operating system.

Added information to the ScanSetableParameters (page 154) function.

June 9, 2004 Added a description for the 0x01000000 linker flag. See “FLAG ON and FLAG
OFF Parameters” on page 30.

Modified the installation instructions to remove references to LibC (see
Section 1.7, “Installing the CLib Files on a NetWare Server,” on page 32). CLib
and LibC releases are now independent of each other.

October 8, 2003 Made technical corrections to “Prelude Object Files” on page 43.

July 30, 2003 Added information to ConsolePrintf (page 232), indicating that on NetWare 6 and
later, this function prints to the System Logger Screen.

Restructured the compiler, linker, and testing information to create a Getting
Started section.

Added a description of the CLIB manuals to Section 2.6, “Introduction to CLIB,”
on page 42, indicating which manuals contain documentation for cross-platform
functions and NLM-only functions.

June 2003 Removed references to the NetWare Remote Debugger because it is no longer
supported and is now located in the NDK Graveyard. Added information about
CodeWarrior (see “Setting Up CodeWarrior for NLM Development” on page 15).

March 2003 Added information to the GetFileHoleMap (page 130) function and the
SetScreenAttributes (page 273) function.

September 2002 Added information to Section 13.3, “Alert ID Values,” on page 180.

May 2002 Updated the examples in Step 14 of “Using the WATCOM IDE” on page 18.

Added links to all subsections.
Revision History 283

284 NDK: NLM D

novdocx (en) 11 D
ecem

ber 2007
February 2002 Removed the "NLM Message Tools for Internationalization" section from “Basic
NLM Concepts” on page 35.

Updated links.

October 2001 Removed references to nwsmp.h—an obsolete header file.

September 2001 Added text alternatives to figures.

Added NetWare 6.x support in documentation.

Added “Setting Environment Variables” on page 41 section.

Changed the description of EVENT_LOGOUT_CONNECTION (#38) in
RegisterForEvent (page 148).

Removed Marshaling Functions since they were never fully implemented.

June 2001 Added explanation of the mask and attribute parameters to SetScreenAttributes
(page 273).

Changed the description of EVENT_LOGOUT_CONNECTION (#38) in
RegisterForEvent (page 148).

Added introductory text to Chapter 2, “Basic NLM Concepts,” on page 35.

Made changes to improve document accessibility.

February 2001 Added documentation for assert_action and Chapter 17, “Screen Handling
Functions,” on page 227.

Deleted obsolete information.

Added descriptions for two fields of T_DYNARRAY_BLOCK (page 177).

Corrected the syntax of outp (page 209) and outpw (page 212).

May 2000 Added revision history.

Release Date Revision Description
evelopment Concepts, Tools, and Functions

	NDK: NLM Development Concepts, Tools, and Functions
	About This Guide
	1 Getting Started
	1.1 Requirements
	1.2 Installing the CLib SDK
	1.3 Selecting a Compiler
	1.3.1 Metrowerks CodeWarrior for NetWare
	1.3.2 Open Watcom Compiler
	1.3.3 GNU and Other Compilers

	1.4 Setting Up a Compiler
	1.4.1 Setting Up CodeWarrior for NLM Development
	1.4.2 Setting Up Open Watcom with Borland C++ Builder
	1.4.3 Using the WATCOM IDE

	1.5 Using a Linker
	1.5.1 Specifying a Linker Definition File
	1.5.2 Linker Commands

	1.6 Writing a Basic NLM
	1.7 Installing the CLib Files on a NetWare Server

	2 Basic NLM Concepts
	2.1 What NLMs Are
	2.2 What NLMs Do
	2.3 Misconceptions About NLMs
	2.3.1 NLMs Are Not Hard to Develop
	2.3.2 NLMs Are Not Dead

	2.4 Developing NLMs
	2.5 Loading and Unloading NLMs
	2.5.1 Using Search Paths
	2.5.2 How NLMs Are Loaded
	2.5.3 Using the LOAD Command
	2.5.4 Setting Environment Variables
	2.5.5 Autoloading Prerequisite NLMs
	2.5.6 Loading Multiple NLMs
	2.5.7 Importing and Exporting NLMs
	2.5.8 Unloading NLMs

	2.6 Introduction to CLIB
	2.6.1 Cross Platform NLM Libraries
	2.6.2 Prelude Object Files
	2.6.3 CLIB Manuals

	2.7 OS-Related Issues
	2.7.1 Preemptive and Nonpreemptive Environment
	2.7.2 Current Working Directory
	2.7.3 Connection Numbers and Task Numbers
	2.7.4 Screens and the NetWare OS
	2.7.5 Screen Types

	2.8 Structure of an NLM
	2.9 NLM Startup
	2.9.1 Reentrant NLMs

	2.10 NLM Termination
	2.10.1 NLM Unload Process
	2.10.2 NLM Self-Termination Process
	2.10.3 NLM Abnormal Exit Process
	2.10.4 Following Exit Steps
	2.10.5 CHECK Function
	2.10.6 Signal Handling
	2.10.7 AtUnload and atexit Functions
	2.10.8 Freeing Resources upon Exit

	3 More Advanced NLM Concepts
	3.1 Data and Parameters in NLMs
	3.1.1 Data Alignment
	3.1.2 C Parameter Ordering

	3.2 Threads, Multithreaded Programming, and Context
	3.3 Screen Handling
	3.3.1 Screen Creation
	3.3.2 Screen Deletion
	3.3.3 Input and Output Cursors

	3.4 NLM Synchronization
	3.4.1 Locking
	3.4.2 Semaphores

	3.5 Cross-Platform Functions for NLM Development
	3.5.1 Differences in Assumptions
	3.5.2 Differences in Connection Models

	3.6 Communicating with Other NLMs
	3.7 Introduction to Remote Server Support
	3.7.1 Accessing Remote Servers
	3.7.2 Changing the Current Server
	3.7.3 Logging Out from Remote Servers
	3.7.4 Remote and Local Server Operations

	4 Advanced NLM Tasks
	4.1 Developing Multithreaded NLMs
	4.2 Terminating an NLM
	4.2.1 Clean Up All Resources Allocated Anywhere in an NLM
	4.2.2 Implement a Signal Handler (SIGTERM)
	4.2.3 Provide CLIB Context for the SIGTERM Handler if Needed
	4.2.4 Allow for Blocked or Suspended Code at UNLOAD
	4.2.5 Allow for Child Threads and Call-backs
	4.2.6 Allow for Normal NLM Termination
	4.2.7 Protect Against CTRL-C

	4.3 Designing Client-Server NLMs
	4.4 Developing NLMs with Cross-Platform Functions

	5 NLM Development Tool Concepts
	5.1 NLM Make Utilities
	5.1.1 QMK386.EXE

	5.2 Debuggers for NLMs
	5.2.1 Linking Debug Information with WLINK
	5.2.2 NetWare Internal Debugger

	5.3 NLM Compression Tools
	5.4 MPKXDC
	5.4.1 Traditional NetWare and Multithreading
	5.4.2 NetWare 4.11 SMP
	5.4.3 NetWare MPK and Funneling

	6 NLM Development Tool Tasks
	6.1 Using MAKEINIT.EXE
	6.2 Building a Symbol File for Novell Remote Debugger
	6.3 Building HELLO.NLM with WATCOM WMAKE
	6.4 Using MPKXDC

	7 Memory Protection Concepts
	7.1 NetWare Memory Protection
	7.1.1 OS Address Space
	7.1.2 Protected Address Spaces
	7.1.3 System Call Interface
	7.1.4 Memory Protection set Parameters

	8 Memory Protection Tasks
	8.1 Loading an NLM into OS Address Space
	8.2 Loading an NLM into a Protected Address Space
	8.3 Unloading NLMs Protected Address Spaces
	8.4 Using the protection Command
	8.4.1 Checking Protection Status
	8.4.2 Enabling/Disabling the Restart Feature

	8.5 Finding Out What is Running in a Protected Address Space
	8.6 Setting a Protected Address Space to Restart after a Fault
	8.7 Setting a Server to Abend for Memory Faults
	8.8 Loading Memory Fault Isolation
	8.9 Pinpointing Memory Overflows
	8.10 Accessing On-Line Help for Memory Protection

	9 Advanced NLM Function Concepts
	9.1 Advanced Function List
	9.2 Functions to Handle Dynamic Arrays
	9.3 Dynamic Array Terminology
	9.4 Dynamic Linkage of Exported Symbols
	9.5 Event Reporting and Management Functions
	9.6 File I/O Functions

	10 Advanced Tasks
	10.1 Using Dynamic Array Functions
	10.2 Generating Dynamic Array Indexes

	11 Advanced Functions
	AllocateDynArrayEntryAllocates an entry in a dynamic array
	AllocateGivenDynArrayEntryAllocates an entry in a dynamic array at a given element index
	AllocateResourceTagAllocates a resource tag for a particular resource
	AsyncReadReads a file directly from cache memory
	AsyncReleaseReleases the cache buffer memory allocated by a previous call to AsyncRead
	CancelNoSleepAESProcessEventCancels a previously scheduled event
	CancelSleepAESProcessEventCancels a previously scheduled event
	DeallocateDynArrayEntryFrees the dynamic array entry at the specified index
	GetFileHoleMapReturns a block allocation map for a file
	GetSetableParameterValueObtains the value of a NetWare server console parameter
	GetThreadDataAreaPtrGets the thread switch Data Area Pointer for the current thread
	gwriteWrites multiple buffers to a file with a single call
	ImportSymbolReturns a pointer to an exported symbol
	NWAddSearchPathAtEndAdds a search path to the end of the search path list that the OS uses to determine from where it loads NLM applications
	NWDeleteSearchPathDeletes a search path from the search path list the OS uses to determine from where it loads NLM applications
	NWGarbageCollectUnfragments freed server memory
	NWGetSearchPathElementReturns a search path from the search path list the OS uses to determine from where it loads NLMs
	NWInsertSearchPathInserts a search path into the search path list the OS uses to determine from where it loads NLM applications
	qreadPerforms a low-overhead read operation
	qwritePerforms a low-overhead write operation
	RegisterConsoleCommandRegisters a console command parsing function
	RegisterForEventRegisters an operation to be called when the specified event occurs
	SaveThreadDataAreaPtrSets the thread switch Data Area Pointer for the current thread
	ScanSetableParametersReturns information about NetWare server console parameters
	ScheduleNoSleepAESProcessEventDefines a procedure that is to be called by the Asynchronous Scheduler (AES) after a specified delay
	ScheduleSleepAESProcessEventDefines a procedure that is to be called by the Asynchronous Scheduler (AES) after a specified delay
	SetSetableParameterValueSets the value of a NetWare server console parameter
	SynchronizeStartRestarts the NLM startup process when using synchronization mode
	UnimportSymbolEliminates dependency of an NLM on the specified external symbol
	UnRegisterConsoleCommandUnregisters a console command parsing function
	UnregisterForEventCancels a previous registration for event notification

	12 Advanced Structures
	AESProcessStructureDefines a process to be called by the Asynchronous Scheduler (AES)
	commandParserStructureContains information about a developer-defined console command parsing function
	EventCloseFileInfoReturns when a file is closed
	EventDateMigrationInfoReturns for EVEBT_DATA_MIGRATION and DEMIGRATION
	EventModifyDirEntryStructReturns for EVEBT_MODIFY_DIR_ENTRY
	EventNetwareAlertStructContains information about an alert event.
	EventTrusteeChangeStructReturns for EVENT_TRUSTEE_CHANGE
	T_cacheBufferStructureContains cache buffer information returned by an asynchronous read
	T_DYNARRAY_BLOCKDefines a dynamic array block (DAB)
	T_mwriteBufferStructure

	13 Advanced Values
	13.1 Alert Class Values
	13.2 Alert Flag Values
	13.3 Alert ID Values
	13.4 Alert Location Values
	13.5 Alert Severity Values
	13.6 Target Notification Bit Values

	14 Debug Functions
	assertIdentifies program logic errors
	EnterDebuggerEnters system debugger
	NWClearBreakpointDynamically clears the breakpoint set with NWSetBreakpoint
	NWSetBreakpointSets a breakpoint programmatically
	perrorPrints an error message

	15 Device I/O Functions
	cgetsGets a string of characters directly from the current screen and stores the string and its length in an array
	cprintfWrites output directly to the current application screen under format control
	cputsWrites a specified character string directly to the current screen
	cscanfScans input from the current screen under format control
	_disable (obsolete)Removed from the documentation because, in order for the NetWare® API to be SFTIII™ compliant, this function will not be supported in the future
	_enable (obsolete)Removed from the documentation because, in order for the NetWare API to be SFTIII compliant, this function will not be supported in the future
	getchObtains the next available keystroke from the current screen
	getcheObtains the next available keystroke from the current screen and echoes the keystroke on the screen
	inpReads 1 byte from the specified hardware port
	inpdReads a double word (4 bytes) from the specified hardware port
	inpwReads a word (2 bytes) from the specified hardware port
	kbhitTests whether a keystroke is currently available
	NWcprintfWrites output directly to the current application screen under format control; enabled for internationalization
	outp
	outpd
	outpw
	putchWrites a specified character to the current screen
	ungetchPushes a specified character back onto the input stream for the current screen
	vcprintfWrites output to the console under format control
	vcscanfScans input from the console under format control

	16 Screen Handling Concepts
	16.1 Screen Types
	16.2 Creating Screens
	16.2.1 Screen Names
	16.2.2 Screen Attributes
	16.2.3 Initial Screen Attribute Settings
	16.2.4 Changing Screen Attributes
	16.2.5 Type-Ahead and Command History Buffers

	16.3 Performing Screen I/O
	16.3.1 Keyboard Input
	16.3.2 Screen Output

	16.4 Destroying Screens
	16.5 Screen Handling Function List

	17 Screen Handling Functions
	CheckIfScreenDisplayedChecks whether a screen is active
	clrscrDisables the cursor and clears the current screen (implemented for NetWare ® 3.0 and above)
	ConsolePrintfWrites a message to a console screen
	CopyFromScreenMemoryCopies a rectangular region from screen memory
	CopyToScreenMemoryCopies a rectangular region into screen memory
	CreateScreenCreates a new screen
	DestroyScreenCloses a screen
	DisplayInputCursorEnables the input cursor for the current screen
	DisplayScreenDisplays the specified screen
	DropPopUpScreenRedisplays the screen that the popup screen covered
	GetCurrentScreenReturns the screen handle of the current screen
	GetCursorCouplingModeReturns whether cursor coupling is enabled or disabled for the current screen
	GetCursorShapeReturns the start and end scan line for the cursor
	GetCursorSizeReturns the cursor size
	GetPositionOfOutputCursorReturns the output cursor’s current row and column position for the current screen
	__GetScreenIDReturns the screen ID for a screen handle
	GetScreenInfoReturns the screen handle associated with the specified screen
	GetSizeOfScreenReturns the number of rows and columns of the current screen
	gotoxyPositions the output cursor on the current screen
	HideInputCursorDisables the input cursor for the current screen
	IsColorMonitorDetermines whether a color monitor is being used
	PressAnyKeyToContinueWrites the message <Press any key to continue> to the current screen
	PressEscapeToQuitWrites the message <Press Escape to quit or any key to continue> to the current screen
	RingTheBellCauses the console speaker to beep
	ScanScreensReturns a screen ID (a pointer to an OS screen structure) associated with the specified screen
	ScrollScreenRegionDownScrolls down a portion of the current screen (a set of contiguous rows)
	ScrollScreenRegionUpScrolls up a portion of the current screen (a set of contiguous rows)
	SetAutoScreenDestructionModeEnables or disables auto-screen destruction for the current screen
	SetCtrlCharCheckModeEnables or disables control-character checking for the current screen
	SetCurrentScreenSets the current screen of the thread group belonging to the running thread
	SetCursorCouplingModeEnables or disables input and output cursor coupling for the current screen
	SetCursorShapeSets the cursor shape
	SetInputAtOutputCursorPositionSets the input cursor position to the output cursor position
	SetOutputAtInputCursorPositionSets the output cursor position to the input cursor position
	SetPositionOfInputCursorSets the position of the input cursor on the current screen
	SetScreenAttributesSets the display attribute bytes for the current screen
	SetScreenAreaAttributeSets the display adapter attribute bytes for an area of the current screen
	SetScreenCharacterAttributeSets the display adapter attribute bytes for a character on the current screen
	SetScreenRegionAttributeSets the display adapter attribute bytes for a region of the current screen (contiguous set of rows)
	wherexReturns the horizontal position of the input cursor
	whereyReturns the vertical position of the input cursor

	A Revision History

