
n

NDK: Connection, Message, and NCP Extensions
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
O c t o b e r 1 1 , 2 0 0 6

C O N N E C T I O N , M E S S A G E , A N D N C P ™
E X T E N S I O N S

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 13

1 Connection Concepts 15
1.1 Connection States . 15
1.2 Open/Close Connection Model . 15
1.3 Connection Handles Compared to Connection References . 16
1.4 Connection Management Support Routines . 16
1.5 Open and Close Functions . 16
1.6 Connection Table Functions . 17
1.7 Get Information Functions . 17
1.8 Set Parameter Functions . 18

2 Connection Tasks 19
2.1 Attaching to Servers and Opening Connections . 19
2.2 Getting Connection Status. 19
2.3 Setting Connection Status . 20
2.4 Closing and Clearing Connections . 20
2.5 Listing Connection Handles . 20
2.6 Manipulating Connection Numbers . 21

3 Connection Functions 23
3.1 NWCCA*-NWCCK* Functions . 23

NWCCCloseConn . 24
NWCCGetAllConnInfo . 26
NWCCGetAllConnRefInfo . 28
NWCCGetCLXVersion. 30
NWCCGetConnAddress . 31
NWCCGetConnAddressLength . 33
NWCCGetConnInfo . 35
NWCCGetConnRef . 37
NWCCGetConnRefAddress . 38
NWCCGetConnRefAddressLength . 40
NWCCGetConnRefInfo . 42
NWCCGetNumConns . 44
NWCCGetPrefServerName . 45
NWCCGetPrimConnRef . 46
NWCCGetSecurityFlags . 47

3.2 NWCCL*-NWCCZ* Functions . 48
NWCCLicenseConn. 49
NWCCMakeConnPermanent. 51
NWCCOpenConnByAddr . 53
NWCCOpenConnByName . 55
NWCCOpenConnByPref . 58
NWCCOpenConnByRef . 60
NWCCQueryFeature . 62
NWCCRenegotiateSecurityLevel. 63
NWCCRequest . 65
7

8 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCScanConnInfo . 67
NWCCScanConnRefs . 69
NWCCSetCurrentConnection. 71
NWCCSetPrefServerName . 73
NWCCSetPrimConn . 74
NWCCSetSecurityFlags . 75
NWCCSysCloseConnRef . 77
NWCCUnlicenseConn . 79

3.3 NWCl*-NWGetH* Functions . 80
NWClearConnectionNumber . 81
NWCLXInit . 83
NWCLXTerm . 85
NWFreeConnectionSlot . 86
NWGetConnectionIDFromAddress (obsolete-moved from .h file 11/99) 89
NWGetConnectionIDFromName (obsolete-moved from .h file 11/99) 90
NWGetConnectionInformation . 91
NWGetConnectionStatus (obsolete-moved from .h file 11/99). 94
NWGetConnectionUsageStats (obsolete-moved from .h file 6/99) . 95
NWGetConnListFromObject . 96
NWGetDefaultConnectionID (obsolete-moved from .h file 11/99) . 98
NWGetDefaultConnRef . 99

3.4 NWGetI*-Z* Functions . 100
NWGetInetAddr . 101
NWGetMaximumConnections (obsolete-moved from .h file 11/99) . 103
NWGetNearestDirectoryService (obsolete-moved from .h file 11/99) 104
NWGetNearestDSConnRef . 105
NWGetObjectConnectionNumbers. 107
NWGetTaskInformationByConn . 109
NWRequest . 111
SetConnectionCriticalErrorHandler . 113

4 Connection Structures 115
CONN_TASK . 116
CONN_TASK_INFO . 117
CONN_USE . 120
CONNECT_INFO . 121
NW_FRAGMENT . 124
NWCCConnInfo. 125
NWCCFRAG . 128
NWCCTranAddr . 129
NWCCVersion . 132
NWINET_ADDR . 133

5 Connection Values 135
5.1 Connection Type Values . 135
5.2 Connection State Values . 135
5.3 Feature Code Values . 136
5.4 infoType Parameter Values . 136
5.5 NWCC_INFO_AUTHENT_STATE Values . 137
5.6 NWCC_INFO_BCAST_STATE Values . 137
5.7 NWCC_INFO_LICENSE_STATE Values. 137
5.8 NWCC_INFO_NDS_STATE Values. 138
5.9 Name Format Values . 138
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
5.10 Scan Flag Values. 138
5.11 Security Flag Values . 139
5.12 Transport Type Values . 139

6 Connection Number and Task Management Concepts 141
6.1 Overview . 141
6.2 Remote and Local Connections. 141
6.3 Task Numbers . 143
6.4 NLM Applications and Connections. 143
6.5 Current Connection and Task . 143
6.6 Connection Numbers . 144
6.7 Connection Zero . 144
6.8 Proxy Work . 145
6.9 Multiple Thread Groups on a Single Connection . 145
6.10 Connection Number and Task Management Functions. 146

7 Connection Number and Task Management Tasks 147
7.1 Logging In . 147
7.2 Intervening on an Established Connection . 147
7.3 Doing Work on a Single Connection . 147
7.4 Using the Number of an Already Logged-In Workstation. 147
7.5 Allocating a New Connection Number and Logging In . 148
7.6 Allocating One or More Tasks . 148
7.7 Servicing a Single Connection With Many Users. 149

8 Connection Number and Task Management Functions 151
AllocateBlockOfTasks. 152
CheckIfConnectionActive . 153
DisableConnection . 154
EnableConnection . 156
GetCurrentConnection . 157
GetCurrentFileServerID . 158
GetCurrentTask . 159
LoginObject . 160
LogoutObject . 163
ReturnBlockOfTasks. 164
ReturnConnection. 165
SetCurrentConnection . 166
SetCurrentFileServerID . 168
SetCurrentTask . 169

9 Message Concepts 171
9.1 Message Modes . 171
9.2 Message Size . 171
9.3 Message Functions . 172
9

10 NDK: Conne

novdocx (E
N

U
) 01 February 2006
10 Message Functions 173
NWBroadcastToConsole. 174
NWDisableBroadcasts . 176
NWEnableBroadcasts . 178
NWGetBroadcastMessage . 180
NWSendBroadcastMessage . 182
NWSendConsoleBroadcast. 185
NWSetBroadcastMode . 187

11 NCP Extension Concepts 189
11.1 Client-Server Applications . 189
11.2 IPX/SPX Alternative . 189
11.3 Extension Context . 190
11.4 Extension ID . 190
11.5 Extension Name . 191
11.6 Extension Security . 191
11.7 Extension Views . 192

11.7.1 Client View . 192
11.7.2 Provider View . 192

11.8 Server Components . 193
11.9 Data Transfer . 193
11.10 Reentrancy . 194
11.11 Reply Buffer Manager. 194
11.12 Connection Status . 195
11.13 NCP Extension Functions. 196

12 NCP Extension Tasks 197
12.1 Accessing an NCP Extension from the Client . 197
12.2 Providing an NLM Service as an NCP Extension. 198
12.3 Registering Multiple NCP Extensions. 201
12.4 Allocating Reply Buffers . 202
12.5 Processing an NCP Extension . 203
12.6 Deregistering Before Unloading . 204

13 NCP Extension Functions 205
NWDeRegisterNCPExtension . 206
NWFragNCPExtensionRequest . 207
NWGetNCPExtensionInfo . 209
NWGetNCPExtensionInfo (NLM) . 211
NWGetNCPExtensionInfoByID . 214
NWGetNCPExtensionInfoByName . 217
NWGetNCPExtensionsList . 219
NWGetNumberNCPExtensions. 221
NWNCPExtensionRequest . 223
NWNCPSend . 225
NWRegisterNCPExtension . 226
NWRegisterNCPExtensionByID . 230
NWScanNCPExtensions . 233
NWScanNCPExtensions (NLM) . 235
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWSendNCPExtensionFraggedRequest . 238
NWSendNCPExtensionRequest. 240

14 NCP Extension Structures 243
FragElement . 244
NCPExtensionClient . 245
NCPExtensionMessageFrag . 246

15 Server-Based Connection Concepts 247
15.1 Getting Connection Information . 247
15.2 LoginObject and LoginToFileServer . 247
15.3 Logout and LogoutFromFileServer . 247
15.4 Unexpected Termination . 248
15.5 Getting Information . 248
15.6 Maximum Number of Connections Allowed. 248
15.7 Server-Based Connection Functions . 248

16 Server-Based Connection Functions 251
AttachByAddress . 252
AttachToFileServer . 254
GetConnectionID . 255
GetConnectionInformation . 256
GetConnectionList . 260
GetConnectionNumber. 262
GetDefaultConnectionID. 263
GetDefaultFileServerID . 264
GetFileServerID . 265
GetInternetAddress . 266
GetLANAddress . 268
GetMaximumNumberOfStations. 269
GetObjectConnectionNumbers. 270
GetStationAddress . 272
GetUserNameFromNetAddress . 274
LoginToFileServer . 275
Logout. 277
LogoutFromFileServer . 278
NWGetSecurityLevel . 279
NWSetSecurityLevel. 280

17 Server-Based Message Concepts 281
17.1 Server-Based Message Functions. 281

18 Server-Based Message Functions 283
BroadcastToConsole . 284
DisableStationBroadcasts . 285
EnableStationBroadcasts . 286
GetBroadcastMessage . 287
11

12 NDK: Conne

novdocx (E
N

U
) 01 February 2006
SendBroadcastMessage . 288

A Revision History 291
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
About This Guide

This guide provides information about two kinds of connection services:

• Cross-platform service simply referred to as a connection

This service provides for attached, authenticated, and licensed connection states, and uses a
connection reference as the caller's immediate access to the connection.

• NLM specific service called connection number and task management.
The connections in this service are more directly tied to a specific server, and use connection
numbers that are directly associated with specific slots on the server's connection table. The
model is well designed for NLMs that require direct access to the server. However, NLMs
themselves can also act as clients and use cross-platform connections, provided the NLMs are
properly written for that purpose.

In addition, this guide contains information about the Message functions, which allow your
application to send broadcast messages to other workstations attached to a common NetWare server,
and the NCP Extension functions, which allow you to extend the services provided by the NetWare
OS while maintaining the advantages associated with NCPs.

This guide includes the following functions:

• Chapter 3, “Connection Functions,” on page 23
• Chapter 8, “Connection Number and Task Management Functions,” on page 151
• Chapter 10, “Message Functions,” on page 173
• Chapter 13, “NCP Extension Functions,” on page 205
• Chapter 16, “Server-Based Connection Functions,” on page 251
• Chapter 18, “Server-Based Message Functions,” on page 283

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

• NDK: NLM Development Concepts, Tools, and Functions
• NDK: Program Management
• NDK: NLM Threads Management
• NDK: Multiple and Inter-File Services
13

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm

14 NDK: Conne

novdocx (E
N

U
) 01 February 2006
• NDK: Single and Intra-File Services
• NDK: Volume Management
• NDK: Client Management
• NDK: Network Management
• NDK: Server Management
• NDK: Internationalization
• NDK: Unicode
• NDK: Sample Code
• NDK: Getting Started with NetWare Cross-Platform Libraries for C
• NDK: Bindery Management

For CLib source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C
(including CLIB and XPlat) Developer Support Forums (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat
development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
ction, Message, and NCP Extensions

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

1
novdocx (E

N
U

) 01 February 2006
1Connection Concepts

This documentation describes Connection, its functions, and features.

1.1 Connection States
A workstation can have one of three types of connections to a server:

• Attached
• Authenticated
• Licensed

A workstation that is merely attached to a server is not granted any rights to access server resources.
However, limited access to some things, such as the login directory or the ability to scan for other
server addresses, are available.

After a workstation has attached to a server, it can authenticate the connection for a specific user.
Authentication is the process of securely identifying the user to the server. After authenticating the
connection the user is granted specific user rights to resources on the server. NDS enables certain
aspects of the authentication process to occur without the user’s knowledge.

After the user has an authenticated connection to the Directory tree, authentication can occur to any
server in the tree without requiring a password. This is known as background authentication.

Licensed connections enable the use of mapping, file system and printing functions.

1.2 Open/Close Connection Model
The model used to manage all connections is an open/close model. Many NetWare functions contain
a connection handle parameter. Connection handles should be considered as limited resources: get a
connection handle when you need it and release it when you are done with it.

When you need a connection handle you must open a connection to a server. A connection handle is
returned. The call to open a connection might or might not establish a connection. If there is no
current connection to the server and a connection is established, a connection handle is returned.
However, if a connection to the server already exists, a unique connection handle is returned (and
the client/library notes that two connection handles exist for that server).

NOTE: Do not copy or duplicate connection handles. Also, you cannot compare connection handles
to determine if they are to the same server.

When you are finished using the connection handle, the handle must be closed. Closing the handle
notifies the client/library that this handle is no longer needed. If other connection handles are open
to the same server (either by this application or by another application on the user’s workstation) the
connection is not closed. The client/library notes that one less connection handle is opened to that
server.

Once a connection handle is closed, it is invalid and cannot be reused. If you need a connection to
the same server again, a new connection handle must be obtained by opening the connection and
Connection Concepts 15

16 NDK: Conne

novdocx (E
N

U
) 01 February 2006
getting a new connection handle. This open/close model for connection handles allows the
workstation client to intelligently manage server connections. You can now safely close a
connection without having to worry if another application needs the connection.

When a connection to a server is no longer required by the applications on a user’s workstation, the
connection might not actually be closed. The client/library notes that no application is using the
connection and it is made available for use either to connect to the same server or to another server.

1.3 Connection Handles Compared to
Connection References
Connection references allow you to maintain a reference to a connection without having a
connection handle to the connection. This is useful when you need to open and close connections
frequently. The reference to the connection makes getting the connection much faster. However,
when you do not have a connection handle, the client/library can close the connection without your
knowledge.

References are returned by calling NWCCScanConnRefs (page 69). The reference cannot be used in
place of the connection handle. However, by calling NWCCOpenConnByRef (page 60), a
referenced connection to a server can be opened and a valid connection handle returned. As long as
the client/library does not close the connection, the new connection can be opened more quickly
than by getting a connection without a reference. Given a connection handle, a connection reference
can be obtained by calling NWCCGetConnRef (page 37).

1.4 Connection Management Support Routines
The nwconnec.h header declares a group of functions that perform NETX-style connection
operations. These functions rely on bindery-oriented information (bindery object names and IDs).
Using them assures compatibility with both the NetWare Requester and NETX. The functions do not
support NDS.

1.5 Open and Close Functions
These functions open and close a connection:

Function Description

NWCCCloseConn Closes the specified connection.

NWCCLicenseConn Licenses the specified connection.

NWCCOpenConnByAddr Opens a connection using a network address.

NWCCOpenConnByName Resolves the given name to a network address then creates
a connection to that address.

NWCCOpenConnByPref Opens an initial connection using the configured preferred
settings.

NWCCOpenConnByRef Opens a connection associated with the given connection
reference.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
1.6 Connection Table Functions

The following functions operate on the Connection Table for either the NetWare Requester or
NETX.

1.7 Get Information Functions
These functions get information about a connection:

NWCCSysCloseConnRef Closes and detaches the specified connection, including the
connection reference and all connection handles for this
connection.

 NWCCUnlicenseConn Unlicenses the specified licensed connection.

Function Description

NWClearConnectionNumber Logs out of the specified connection.

NWGetConnectionInformation Returns information about a logged in object.

NWGetConnListFromObject Returns a list of connection numbers a specified object has
on a server.

NWGetInetAddr Returns the network address of the specified connection
connNum on the specified server.

NWGetObjectConnectionNumbers Returns a list of server connection numbers for clients
logged in with the specified object name and type.

Function Description

NWCCGetAllConnInfo Returns all information for the specified connection.

NWCCGetAllConnRefInfo Returns all information for a specified connection reference.

NWCCGetConnAddress Returns the transport address for the specified connection.

NWCCGetConnAddressLength Returns the length of the connection address for the
specified connection.

NWCCGetConnRef Returns the connection reference for the specified
connection.

NWCCGetConnRefAddress Returns the transport address for the specified connection
reference.

NWCCGetConnRefAddressLength Returns the length of the connection address for the
specified connection reference.

 NWCCGetConnRefInfo Returns the specified information for a given connection
reference.

 NWCCGetPrefServerName Returns the name from the PREFERRED SERVER parameter.

 NWCCGetPrimConnRef Returns the primary connection reference.

Function Description
Connection Concepts 17

18 NDK: Conne

novdocx (E
N

U
) 01 February 2006
1.8 Set Parameter Functions
These functions set connection parameters:

 NWCCScanConnRefs Returns a connection reference for each connection on the
workstation.

Function Description

NWCCMakeConnPermanent Keeps the specified connection from being detached until
NWCCSysCloseConnRef is called.

NWCCSetPrefServerName Sets the PREFERRED SERVER parameter of the workstation.

NWCCSetPrimConn Sets the workstation’s primary connection.

Function Description
ction, Message, and NCP Extensions

2
novdocx (E

N
U

) 01 February 2006
2Connection Tasks

This documentation describes common tasks associated with Connection.

2.1 Attaching to Servers and Opening
Connections
You need not be concerned with actually attaching to a given server. The client/library manages
these connections. You must simply open a connection and get a connection handle. The client
makes the attachment if required and maintains a use count on each connection, ensuring that a
connection is not closed if existing connection handles are still active.

The following functions return connection handles:

NWCCOpenConnByAddr creates a service connection using the server address.
NWCCOpenConnByName resolves the server name to an address, then creates a service

connection.
NWCCOpenConnByRef opens a connection using a connection reference.

Each of these functions has an openState parameter to specify if the connection is licensed or
unlicensed (see Section 5.7, “NWCC_INFO_LICENSE_STATE Values,” on page 137).

NOTE: Getting a connection handle does not give you rights to a server as a particular user. You
must authenticate to the server as a user by calling NWLoginToFileServer if logging in to a bindery
or NWDSAuthenticate if logging in to NDS.

See openconn.c (../../../samplecode/clib_sample/connect/openconn/openconn.c.html) for sample
code.

2.2 Getting Connection Status
The following functions get server connection information:

• NWCCGetAllConnInfo (page 26)
• NWCCGetConnAddress (page 31)
• NWCCGetConnRefInfo (page 42)
• NWCCGetAllConnRefInfo (page 28)
• NWCCGetConnRefAddress (page 38)

All existing workstation connections can be scanned, including matching information for all existing
connections. This is done using NWCCScanConnRefs (page 69).

The following functions retrieve connection information:

• NWCCGetPrefServerName (page 45)
• NWCCGetPrimConnRef (page 46)
Connection Tasks 19

../../../samplecode/clib_sample/connect/openconn/openconn.c.html

20 NDK: Conne

novdocx (E
N

U
) 01 February 2006
2.3 Setting Connection Status
If you don’t require a licensed connection, conserve resources by using an unlicensed connection.

The following functions are used to change the state of authenticated connections:

• NWCCLicenseConn (page 49)
• NWCCUnlicenseConn (page 79)

The connection is unlicensed only if there are no open handles that require a licensed
connection. See licconn.c (../../../samplecode/clib_sample/connect/licconn/licconn.c.html) for
sample code.

The following functions set connections to special cases:

• NWCCMakeConnPermanent (page 51)

A permanent connection prohibits the client from terminating this connection even after the
application has terminated. Permanence defined as "not terminating after process is term." can
still be closed but must be accomplished with NWCCSysCloseConnRef (page 77).

• NWCCSetPrefServerName (page 73)
• NWCCSetPrimConn (page 74)

2.4 Closing and Clearing Connections
The client is responsible for detaching connections intelligently. The client can keep a connection
active for use by the same or another application. This eliminates the overhead associated with
making an actual attachment.

However, if additional resources are required to open a connection to another server, the client/
library can determine which connections are no longer needed and which is best to detach. It is very
important that every time a connection is opened, it be closed when no longer needed.

A connection handle can be closed by calling NWCCCloseConn (page 24).

A connection reference is cleared by following these steps:

1. Call NWCCGetConnRef (page 37) to obtain the connection reference to clear.
2. Pass the connection reference returned from NWCCGetConnRef (page 37) to

NWCCSysCloseConnRef (page 77) which will clear the specified connection reference.

NWCCSysCloseConnRef (page 77) forces a server connection detach (used in conjunction with
NWCCMakeConnPermanent (page 51)).

IMPORTANT: Use caution when calling NWCCSysCloseConnRef (page 77) because other
applications on the workstation might be using the connection.

2.5 Listing Connection Handles
You can obtain a list of allocated connection handles by calling NWCCScanConnRefs (page 69)
followed by NWCCOpenConnByRef (page 60). These functions take a buffer and buffer size as
input and returns an array of connection handles. Since the Requester allows users to configure the
ction, Message, and NCP Extensions

../../../samplecode/clib_sample/connect/licconn/licconn.c.html

novdocx (E
N

U
) 01 February 2006
maximum number of connections, the size of this array can vary. Call NWCCGetNumConns
(page 44) to find the maximum number of connections supported.

Other connection handle functions include the following:

• NWCCScanConnRefs (page 69) followed by the NWCCOpenConnByRef (page 60)

NOTE: Use connection handles only as parameters in Connection Services functions. They should
not be used to access the Connection Table directly.

2.6 Manipulating Connection Numbers
The server identifies your connection by a connection number, much the same way the Requester
uses connection handles. The connection number is important to you when you need to view things
from the server.

The following functions operate on connection numbers:

• NWClearConnectionNumber (page 81)
• NWGetObjectConnectionNumbers (page 107)
Connection Tasks 21

22 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

3
novdocx (E

N
U

) 01 February 2006
3Connection Functions

This documentation alphabetically lists the Connection functions and describes their purpose,
syntax, parameters, and return values.

IMPORTANT: You can establish a TCP or UDP connection only on a NetWare 5.x or 6.x server.

3.1 NWCCA*-NWCCK* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “NWCCCloseConn” on page 24
• “NWCCGetAllConnInfo” on page 26
• “NWCCGetAllConnRefInfo” on page 28
• “NWCCGetCLXVersion” on page 30
• “NWCCGetConnAddress” on page 31
• “NWCCGetConnAddressLength” on page 33
• “NWCCGetConnInfo” on page 35
• “NWCCGetConnRef” on page 37
• “NWCCGetConnRefAddress” on page 38
• “NWCCGetConnRefAddressLength” on page 40
• “NWCCGetConnRefInfo” on page 42
• “NWCCGetNumConns” on page 44
• “NWCCGetPrefServerName” on page 45
• “NWCCGetPrimConnRef” on page 46
• “NWCCGetSecurityFlags” on page 47
Connection Functions 23

24 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCCloseConn
Closes the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCCloseConn (
 NWCONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCCloseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE; stdcall;

Parameters
connHandle

(IN) Specifies the connection handle to be closed.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8869 NWE_ACCESS_VIOLATION

0x886C NWE_RESOURCE_LOCK

0x8872 NWE_INVALID_OWNER

0x890A NLM_INVALID_CONNECTION
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
NWCCCloseConn is used to close an open connection handle. Calling NWCCCloseConn has the
opposite effect as the following open functions: NWCCOpenConnByName,
NWCCOpenConnByAddr, NWCCOpenConnByPref, and NWCCOpenConnByRef. After the
connection handle is closed, the handle may not be used again to access the connection.

Under Windows 95, NWCCCloseConn waits approximately 30 seconds to allow the connection to
be unlicensed and then closes the connection.

NWCCCloseConn clears a clients local connection handle while NWClearConnectionNumber
clears a connection from a server connection table.

See Also
NWCCOpenConnByName (page 55), NWCCOpenConnByPref (page 58), NWCCOpenConnByRef
(page 60), NWClearConnectionNumber (page 81)
Connection Functions 25

26 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetAllConnInfo
Returns all information for the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetAllConnInfo (
 NWCONN_HANDLE connHandle,
 nuint connInfoVersion,
 pNWCCConnInfo connInfoBuffer);

Delphi

uses clxwin32

Function NWCCGetAllConnInfo
 (connHandle : NWCONN_HANDLE;
 connInfoVersion : nuint;
 connInfoBuffer : pNWCCConnInfo
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle for which to return information.

connInfoVersion
(IN) Specifies the connection information version (NWCC_INFO_VERSION_1 or higher).

connInfoBuffer
(OUT) Points to the NWCCConnInfo structure containing the returned information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The connInfoVersion parameter specifies which version of the NWCCConnInfo structure will
be used.

If connInfoVersion is set to NWCC_INFO_VERSION_2 or higher, the tranAddr field of
the NWCCConnInfo structure must be set to NULL or initialized.

You must allocate the connInfoBuffer parameter. It will be returned with all the connection
information.

See Also
NWGetConnectionInformation (page 91), NWGetUserInfo (Server Management)

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
Connection Functions 27

28 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetAllConnRefInfo
Returns all information for a specified connection reference

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetAllConnRefInfo (
 nuint32 connRef,
 nuint connInfoVersion,
 pNWCCConnInfo connInfoBuffer);

Delphi

uses clxwin32

Function NWCCGetAllConnRefInfo
 (connRef : nuint32;
 connInfoVersion : nuint;
 connInfoBuffer : pNWCCConnInfo
) : NWRCODE;

Parameters
connRef

(IN) Specifies the connection reference for which information is to be returned.

connInfoVersion
(IN) Specifies the connection information version (NWCC_INFO_VERSION_1 or higher).

connInfoBuffer
(OUT) Points to the NWCCConnInfo structure containing the returned information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The connInfoVersion parameter specifies which version of the NWCCConnInfo structure will
be used.

If the connInfoVersion parameter is set to NWCC_INFO_VERSION_2 or higher, the
tranAddr field of the NWCCConnInfo structure must be set to NULL or initialized.

You must allocate the connInfoBuffer parameter. It will be returned with all the connection
information.

See Also
NWGetConnectionInformation (page 91), NWGetUserInfo (Server Management)

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
Connection Functions 29

30 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetCLXVersion
Returns the version of the current CLX layer

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWCCGetCLXVersion (
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revisionLevel,
 pnuint8 betaReleaseLevel);

Delphi

uses clxwin32

Procedure NWCCGetCLXVersion
 (Var majorVersion : nuint8;
 Var minorVersion : nuint8;
 Var revisionLevel : nuint8;
 Var betaReleaseLevel : nuint8
);

Parameters
majorVersion

(OUT) Points to the current major version number.

minorVersion
(OUT) Points to the current minor version number.

revisionLevel
(OUT) Points to the current revision level.

betaReleaseLevel
(OUT) Points to the current beta release level.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetConnAddress
Returns the transport address for the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnAddress (
 NWCONN_HANDLE connHandle,
 nuint32 bufferLen,
 pNWCCTranAddr tranAddr);

Delphi

uses clxwin32

Function NWCCGetConnAddress
 (connHandle : NWCONN_HANDLE;
 bufferLen : nuint32;
 tranAddr : pNWCCTranAddr
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle for which to return the transport address.

bufferLen
(IN) Specifies the size (in bytes) of the user allocated buffer pointed to by the buffer field in
the NWCCTranAddr structure (see "Remarks" below).

tranAddr
(IN/OUT) Points to an NWCCTranAddr structure that contains the type and length of the
transport address and points to a user allocated buffer for receiving the address on return.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS
Connection Functions 31

32 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
Be sure that the bufferLen parameter is large enough to contain the returned address. Otherwise,
NWCCGetConnAddress will fail and return NWE_INSUFFICIENT_RESOURCES. Call the
NWCCGetConnAddressLength function to determine the address length and then allocate enough
memory in the buffer for the bufferLen parameter.

The len field in the NWCCTranAddr structure will contain the address length upon return.

0x8801 NWE_CONN_INVALID

0x8867 NWE_INSUFFICIENT_RESOURCES

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetConnAddressLength
Returns the length of the connection address for the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnAddressLength (
 NWCONN_HANDLE connHandle,
 pnuint32 addrLen);

Delphi

uses clxwin32

Function NWCCGetConnAddressLength
 (connRef : nuint32;
 addrLen : pnuint32
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection for which to return the connection address length.

addrLen
(OUT) Points to the length of the connection address.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
Connection Functions 33

34 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
NWCCGetConnAddressLength returns the length of the connection address in bytes. The
addrLen parameter should be used to allocate a buffer to pass into the NWGetConnAddress or
NWGetConnRefAddress function.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetConnInfo
Returns information about the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnInfo (
 NWCONN_HANDLE connHandle,
 nuint infoType,
 nuint len,
 nptr buffer);

Delphi

uses clxwin32

Function NWCCGetConnInfo
 (connHandle : NWCONN_HANDLE;
 infoType : nuint;
 len : nuint;
 buffer : nptr
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle for which to return information.

infoType
(IN) Specifies the information to be returned about the connection specified in the
connHandle parameter (see Section 5.4, “infoType Parameter Values,” on page 136). NOTE:
Do not pass NWCC_INFO_RETURN_ALL (see "Remarks" below).

len
(IN) Specifies the length of the information buffer to be returned.

buffer
(OUT) Points to a buffer containing the returned information.
Connection Functions 35

36 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCGetConnInfo returns a single piece of connection information for the specified connection. It
is important that the size of the buffer parameter is large enough to contain the requested
information.

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be returned. If the
infoType parameter is set to NWCC_INFO_TRAN_ADDR, NWCCGetConnInfo will use the
NWCCTranAddr structure (see Section 5.4, “infoType Parameter Values,” on page 136).

NOTE: Do not pass NWCC_INFO_RETURN_ALL for the infoType parameter.
NWCCGetConnInfo fails on that value and returns NWE_INVALID_LEVEL. To obtain all
information about a connection, call NWCCGetAllConnInfo (page 26).

See

• Section 5.5, “NWCC_INFO_AUTHENT_STATE Values,” on page 137
• Section 5.6, “NWCC_INFO_BCAST_STATE Values,” on page 137
• Section 5.7, “NWCC_INFO_LICENSE_STATE Values,” on page 137
• Section 5.8, “NWCC_INFO_NDS_STATE Values,” on page 138.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x886B NWE_INVALID_LEVEL

0x890A NLM_INVALID_CONNECTION
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetConnRef
Returns the connection reference for the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRef (
 NWCONN_HANDLE connHandle,
 pnuint32 connRef);

Delphi

uses clxwin32

Function NWCCGetConnRef
 (connHandle : NWCONN_HANDLE;
 connRef : pnuint32
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle for which to return the reference.

connRef
(OUT) Points to the connection reference associated with the connection specified by
connHandle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS
Connection Functions 37

38 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetConnRefAddress
Returns the transport address for the specified connection reference

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefAddress (
 nuint32 connRef,
 nuint32 bufferLen,
 pNWCCTranAddr tranAddr);

Delphi

uses clxwin32

Function NWCCGetConnRefAddress
 (connRef : nuint32;
 bufferLen : nuint32;
 tranAddr : pNWCCTranAddr
) : NWRCODE;

Parameters
connRef

(IN) Specifies the connection reference for which to return the transport address.

bufferLen
(IN) Specifies the size, in bytes, of the structure field buffer of NWCCTranAddr.

tranAddr
(OUT) Points to the NWCCTranAddr structure containing the address.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
You need to ensure that bufferLen is large enough to contain the returned address; otherwise,
NWCCGetConnAddress will fail and return NWE_INSUFFICIENT_RESOURCES. Call
NWCCGetConnAddressLength to determine the address length and then allocate enough memory
in the buffer for bufferLen.

len in NWCCTranAddr will contain the address length upon return.

0x8867 NWE_INSUFFICIENT_RESOURCES

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x886C NWE_RESOURCE_LOCK

0x8872 NWE_INVALID_OWNER

0x890A NLM_INVALID_CONNECTION
Connection Functions 39

40 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetConnRefAddressLength
Returns the length of the connection address for the specified connection reference

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefAddressLength (
 nuint32 connRef,
 pnuint32 addrLen);

Delphi

uses clxwin32

Function NWCCGetConnRefAddressLength
 (connRef : nuint32;
 Var addrLen : nuint32
) : NWRCODE;

Parameters
connRef

(IN) Specifies the connection reference for which to return the connection address length.

addrLen
(OUT) Points to the length of the connection address.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x880E NWE_BUFFER_OVERFLOW

0x8864 NWE_INVALID_MATCH_DATA

0x8865 NWE_MATCH_FAILED

0x8866 NWE_NO_MORE_ENTRIES
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
NWCCGetConnRefAddressLength returns the length of the connection address in bytes. The
addrLen parameter should be used to allocate a buffer to pass into the NWGetConnAddress or
NWGetConnRefAddress functions.

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be returned. See Section 5.4,
“infoType Parameter Values,” on page 136.

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x886B NWE_INVALID_LEVEL

0x886C NWE_RESOURCE_LOCK

0x890A NLM_INVALID_CONNECTION
Connection Functions 41

42 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetConnRefInfo
Returns the specified information for a given connection reference

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefInfo (
 nuint32 connRef,
 nuint infoType,
 nuint len,
 nptr buffer);

Delphi

uses clxwin32

Function NWCCGetConnRefInfo
 (connRef : nuint32;
 infoType : nuint;
 len : nuint;
 buffer : nptr
) : NWRCODE;

Parameters
connRef

(IN) Specifies the connection reference for which to return the specified information.

infoType
(IN) Specifies the information to be returned about the connection (see Section 5.4, “infoType
Parameter Values,” on page 136).

len
(IN) Specifies the length of the information buffer to be returned.

buffer
(OUT) Points to a buffer containing the returned information.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCGetConnRefInfo returns connection information from the NWCCConnInfo structure
associated with the given connection. NWCCGetConnRefInfo can either be set to return one field of
the structure or the entire structure itself.

buffer must point to a buffer of the type of information being requested. (The return type is noted
below for cache information.)

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be returned. See Section 5.4,
“infoType Parameter Values,” on page 136.

If the infoType parameter is set to NWCC_INFO_TRAN_ADDR, NWCCGetConnRefInfo will
use the NWCCTranAddr (page 129) structure.

See

• Section 5.5, “NWCC_INFO_AUTHENT_STATE Values,” on page 137
• Section 5.6, “NWCC_INFO_BCAST_STATE Values,” on page 137
• Section 5.7, “NWCC_INFO_LICENSE_STATE Values,” on page 137
• Section 5.8, “NWCC_INFO_NDS_STATE Values,” on page 138.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x880E NWE_BUFFER_OVERFLOW

0x8864 NWE_INVALID_MATCH_DATA

0x8865 NWE_MATCH_FAILED

0x8866 NWE_NO_MORE_ENTRIES

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x886B NWE_INVALID_LEVEL

0x886C NWE_RESOURCE_LOCK

0x890A NLM_INVALID_CONNECTION
Connection Functions 43

44 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetNumConns
Returns the current and maximum number of connections for the requester

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetNumConns (
 pnuint maxConns,
 pnuint publicConns,
 pnuint myPrivateConns);

Delphi

uses clxwin32

Function NWCCGetNumConns
(Var maxConns : nuint;
 Var publicConns : nuint;
 Var myPrivateConns : nuint
) : NWRCODE;

Parameters
maxConns

(OUT) Points to the maximum number of connections allowed with the requester (-1 for
requesters with dynamic connection tables).

publicConns
(OUT) Points to the current number of public connections (optional).

myPrivateConns
(OUT) Points to the current number of private connections owned by the calling process
(optional).
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetPrefServerName
Returns the name from the PREFERRED SERVER parameter

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetPrefServerName (
 nuint len,
 pnstr prefServer);

Delphi

uses clxwin32

Function NWCCGetPrefServerName
 (len : nuint;
 prefServer : pnstr
) : NWRCODE;

Parameters
len

(IN) Specifies the length of the preferred server string.

prefServer
(OUT) Points to a string containing the preferred server name.

Return Values
These are common return values; see Return Values for more information.

Remarks
The prefServer parameter is read from the NET.CFG file and is used by the requester to
determine which server to attempt to connect to when no other connections are established, such as
during the load process of the requester.

0x0000 SUCCESS
Connection Functions 45

46 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCGetPrimConnRef
Returns the primary connection reference

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetPrimConnRef (
 pnuint32 connRef);

Delphi

uses clxwin32

Function NWCCGetPrimConnRef
 (connRef : pnuint32
) : NWRCODE;

Parameters
connRef

(OUT) Points to the primary connection reference of the workstation.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The primary connection identifies the server to which the user originally logged in. For NDS, the
primary connection reference is the connection with the writeable replica used during the login
process.

If NWCCGetPrimConnRef is called on the NLM platform, NWE_FUNCTION_INVALID will be
returned.

0x0000 SUCCESS
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCGetSecurityFlags
Returns the configured security flags for the requester

NetWare Server: 4.1x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetSecurityFlags (
 pnuint32 enabSecurityFlags,
 pnuint32 prefSecurityFlags,
 pnuint32 reqSecurityFlags);

Delphi

uses clxwin32

Function NWCCGetSecurityFlags
 (enabSecurityFlags : pnuint32;
 prefSecurityFlags : pnuint32;
 reqSecurityFlags : pnuint32
) : NWRCODE;

Parameters
enabSecurityFlags

(OUT) Points to the security flags which are enabled and supported by the requester and
specifies the maximum level the requester can support (seeSection 5.11, “Security Flag
Values,” on page 139).

prefSecurityFlags
(OUT) Points to the preferred (but not required) security level (seeSection 5.11, “Security Flag
Values,” on page 139).

reqSecurityFlags
(OUT) Points to the required security flags for each connection (see Section 5.11, “Security
Flag Values,” on page 139).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Connection Functions 47

48 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
If a bit is cleared in the enabSecurityFlags parameter bit mask, that same bit cannot be set in
either the prefSecurityFlags or reqSecurityFlags parameter bit masks.

The requester will attempt to establish the level of security defined in the prefSecurityFlags
parameter on each established connection. However, a connection will not fail if the preferred
security level is not supported.

If a server does not support the level of security specified by the reqSecurityFlags parameter,
the authentication of the connection is not allowed by the requester.

See Also
NWCCSetSecurityFlags (page 75)

3.2 NWCCL*-NWCCZ* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “NWCCLicenseConn” on page 49
• “NWCCMakeConnPermanent” on page 51
• “NWCCOpenConnByAddr” on page 53
• “NWCCOpenConnByName” on page 55
• “NWCCOpenConnByPref” on page 58
• “NWCCOpenConnByRef” on page 60
• “NWCCQueryFeature” on page 62
• “NWCCRenegotiateSecurityLevel” on page 63
• “NWCCRequest” on page 65
• “NWCCScanConnInfo” on page 67
• “NWCCScanConnRefs” on page 69
• “NWCCSetCurrentConnection” on page 71
• “NWCCSetPrefServerName” on page 73
• “NWCCSetPrimConn” on page 74
• “NWCCSetSecurityFlags” on page 75
• “NWCCSysCloseConnRef” on page 77
• “NWCCUnlicenseConn” on page 79

0x0000 SUCCESS
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCLicenseConn
Licenses the specified connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCLicenseConn (
 NWCONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCLicenseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters
connHandle

(IN) Specifies an open connection handle in an unlicensed state.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCLicenseConn causes a connection to become licensed. If necessary, the license NCP will be
sent. If the specified handle is already in a licensed state, an error
(NWE_HANDLE_ALREADY_LICENSED) will be returned on most platforms.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8869 NWE_ACCESS_VIOLATION

0x8872 NWE_INVALID_OWNER

0x890A NLM_INVALID_CONNECTION
Connection Functions 49

50 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Windows NT will return SUCCESS if the specified handle is already licensed.

Windows 95 will always return SUCCESS as the requester does not support NWCCLicenseConn.

NWCCLicenseConn is supported under VLMs but not supported on client32 requesters.

If no connection exists, NWCCLicenseConn sets a flag indicating the desire for the connection to be
licensed once it has become authenticated.

See licconn.c (../../../samplecode/clib_sample/connect/licconn/licconn.c.html) for sample code.
ction, Message, and NCP Extensions

../../../samplecode/clib_sample/connect/licconn/licconn.c.html

novdocx (E
N

U
) 01 February 2006
NWCCMakeConnPermanent
Keeps the specified connection from being detached until NWCCSysCloseConnRef is called

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCMakeConnPermanent (
 NWCONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCMakeConnPermanent
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the open connection handle associated with the connection to be made
permanent.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8869 NWE_ACCESS_VIOLATION

0x8872 NWE_INVALID_OWNER

0x890A NLM_INVALID_CONNECTION
Connection Functions 51

52 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
NWCCMakeConnPermanent keeps the connection from becoming detached until the
NWCCSysCloseConnRef function is called and allows the connection to remain intact after the
termination of all processes having that connection open.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCOpenConnByAddr
Opens a connection using a network address

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByAddr (
 const NWCCTranAddr N_FAR *tranAddr,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Delphi

uses clxwin32

Function NWCCOpenConnByAddr
 (tranAddr : pNWCCTranAddr;
 openState : nuint;
 reserved : nuint;
 pConnHandle : pNWCONN_HANDLE
) : NWRCODE;

Parameters
tranAddr

(IN) Points to the NWCCTranAddr structure containing the transport address to open the
connection to (NWCC_TRAN_TYPE_WILD does not apply to NWCCOpenConnByAddr).

openState
(IN) Specifies the state of the connection (see Section 5.2, “Connection State Values,” on
page 135).

reserved
(IN) Reserved for future use (set to NWCC_RESERVED).

pConnHandle
(OUT) Points to the connection handle.
Connection Functions 53

54 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8841 NWE_TRAN_INVALID_TYPE

0x8867 NWE_INSUFFICIENT_RESOURCES

0x8869 NWE_ACCESS_VIOLATION

0x886C NWE_RESOURCE_LOCK

0x8870 NWE_UNSUPPORTED_TRAN_TYPE
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCOpenConnByName
Resolves the given server or tree name to a network address then creates a connection to that address

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByName (
 NWCONN_HANDLE startConnHandle,
 const nstr8 N_FAR *name,
 nuint nameFormat,
 nuint openState,
 nuint tranType,
 pNWCONN_HANDLE pConnHandle);

Delphi

uses clxwin32

Function NWCCOpenConnByName
 (startConnHandle : NWCONN_HANDLE;
 name : pnstr8;
 nameFormat : nuint;
 openState : nuint;
 tranType : nuint;
 Var pConnHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters
startConnHandle

(IN) Specifies the connection to use when resolving the name.

name
(IN) Points to the name of the server or tree to connect to.

nameFormat
(IN) Specifies the format of the server or tree to connect to (see Section 5.9, “Name Format
Values,” on page 138).

openState
Connection Functions 55

56 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the desired open state of the connection (see Section 5.2, “Connection State
Values,” on page 135).

tranType
(IN) Specifies the transport type (see Section 5.12, “Transport Type Values,” on page 139) and
"Remarks" below.

pConnHandle
(OUT) Points to the connection handle to be returned and may be used for all requests directed
to the connection.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
startConnHandle is the connection to use when resolving a name. For instance, if the name is a
bindery name, the requester will scan the bindery of the given connection for the required server
name.

startConnHandle can also be zero if you do not care which connection is used to resolve the
name.

name points to the structure containing the name of the server to which to connect. The format and
length of these strings are defined by nameFormat.

0x0000 SUCCESSFUL

0x8801 NWE_CONN_INVALID

0x8808 NWE_SERVER_NO_SLOTS

0x880A NWE_SERVER_NO_ROUTE

0x883F NWE_CONN_TABLE_FULL

0x8841 NWE_TRAN_INVALID_TYPE

0x8847 NWE_SERVER_NOT_FOUND

0x8867 NWE_INSUFFICIENT_RESOURCES

0x8868 NWE_STRING_TRANSLATION

0x8869 NWE_ACCESS_VIOLATION

0x8870 NWE_UNSUPPORTED_TRAN_TYPE

0x8904 The server name is invalid.

0x890A NLM_INVALID_CONNECTION

0xAF7E The tree and server name combination is invalid.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
For the tranType parameter, Novell recommends passing NWCC_TRAN_TYPE_WILD and
letting the underlying system use the type best suited for the connection it is making. The other type
values remain available, however.

NOTE: Under NETX and VLM, tranType can only be set to either NWCC_TRAN_TYPE_IPX
or NWCC_TRAN_TYPE_WILD. Otherwise, NWCCOpenConnByName will return
NWE_UNSUPPORTED_TRAN_TYPE.

See openconn.c (../../../samplecode/clib_sample/connect/openconn/openconn.c.html) for sample
code.

See Also
NWCCCloseConn (page 24), NWCCOpenConnByPref (page 58), NWCCOpenConnByRef
(page 60)
Connection Functions 57

../../../samplecode/clib_sample/connect/openconn/openconn.c.html

58 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCOpenConnByPref
Opens an initial connection using the configured preferred settings

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByPref (
 nuint tranType,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Delphi

uses clxwin32

Function NWCCOpenConnByPref (
 tranType : nuint;
 openState : nuint;
 reserved : nuint;
 pConnHandle : pNWCONN_HANDLE
) : NWRCODE;

Parameters
tranType

(IN) Specifies the preferred or required transport type to be used (see Section 5.12, “Transport
Type Values,” on page 139).

openState
(IN) Specifies the state of the connection (see Section 5.2, “Connection State Values,” on
page 135).

reserved
(IN/OUT) Reserved for future use (set to NWCC_RESERVED).

pConnHandle
(OUT) Points to the connection handle to be returned.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCOpenConnByPref is similar to NWCCOpenConnByName, which uses the preferred server
or preferred tree name, except that NWCCOpenConnByPref uses the configured preferences of the
requester to establish an initial connection to a server.

NOTE: In the event that a connection to the preferred tree or server cannot be established, another
connection may be returned.

NWCCOpenConnByPref will return NWE_CONN_INVALID if the platform being run is not
Windows 95 since NWCCOpenConnByPref is only successful on Windows 95.

See Also
NWCCCloseConn (page 24), NWCCOpenConnByName (page 55), NWCCOpenConnByRef
(page 60)

0x0000 SUCCESSFUL

0x8801 NWE_CONN_INVALID

0x8808 NWE_SERVER_NO_SLOTS

0x880A NWE_SERVER_NO_ROUTE

0x883F NWE_CONN_TABLE_FULL

0x8847 NWE_SERVER_NOT_FOUND

0x8867 NWE_INSUFFICIENT_RESOURCES

0x8869 NWE_ACCESS_VIOLATION

0x8870 NWE_UNSUPPORTED_TRAN_TYPE

0x890A NLM_INVALID_CONNECTION
Connection Functions 59

60 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCOpenConnByRef
Opens a connection associated with the given connection reference

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByRef (
 nuint32 connRef,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Delphi

uses clxwin32

Function NWCCOpenConnByRef
 (connRef : nuint32;
 openState : nuint;
 reserved : nuint;
 pConnHandle : pNWCONN_HANDLE
) : NWRCODE;

Parameters
connRef

(IN) Specifies a reference, which identifies a valid connection.

openState
(IN) Specifies the state of the connection (see Section 5.2, “Connection State Values,” on
page 135).

reserved
(IN) Reserved for future use (set to NWCC_RESERVED).

pConnHandle
(OUT) Points to the connection handle to be returned.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCScanConnRefs can be called to get the connection reference.

connRef can be used to get information about the connection, but a valid connection handle must
be used to make actual requests to the connection.

See Also
NWCCCloseConn (page 24), NWCCOpenConnByName (page 55), NWCCOpenConnByPref
(page 58)

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8836 INVALID_PARAMETER

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
Connection Functions 61

62 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCQueryFeature
Determines if the Requester supports a given feature

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCQueryFeature (
 nuint featureCode);

Delphi

Function NWCCQueryFeature (
 featureCode : nuint
) : NWRCODE;

Parameters
featureCode

(IN) Specifies the feature being queried (see Section 5.3, “Feature Code Values,” on page 136).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCQueryFeature allows requesters to add incremental support for the NWClient interface
without requiring the larger libraries like NWCalls and NWNet to keep track of requester versions
and whether or not they support a specific feature.

0x0000 SUCCESS

0x88FF NWE_REQUESTER_FAILURE
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCRenegotiateSecurityLevel
Sets a new security level for the specified connection

NetWare Server: 4.1x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCRenegotiateSecurityLevel (
 NWCONN_HANDLE connHandle,
 nuint32 securityFlags);

Delphi

uses clxwin32

Function NWCCRenegotiateSecurityLevel (
 connHandle : NWCONN_HANDLE;
 securityFlags : nuint32
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle.

securityFlags
(IN) Specifies the desired level of security for the specified connection (see Section 5.11,
“Security Flag Values,” on page 139).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8836 NWE_PARAM_INVALID

0x8861 NWE_SIGNATURE_LEVEL_CONFLICT

0x8869 NWE_ACCESS_VIOLATION
Connection Functions 63

64 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
In order to establish a new level of security with a server, the requester must compare the desired
security level with its own supported level and the support level of the server. The actual security
level cannot exceed the supported levels of either the requester or the server.

Any changes in security levels will not actually occur until the next authentication on the
connection.

Before reducing the security level, you must first close the connection by calling the
NWCCSysCloseConnRef function and then reopen the connection by calling one of the
NWCCOpenConnBy* functions.

See Also
NWCCOpenConnByAddr (page 53), NWCCOpenConnByName (page 55),
NWCCOpenConnByPref (page 58), NWCCOpenConnByRef (page 60), NWCCSysCloseConnRef
(page 77)

0x890A NLM_INVALID_CONNECTION
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCRequest
Sends a fragment-based NCP request directly to the specified server.

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax
#include <nwclxcon.h>
or
#include <nwcalls.h>

NWRCODE NWCCRequest (
 NWCONN_HANDLE connHandle,
 nuint function,
 nuint numReqFrags,
 const NWCCFRAG N_FAR *reqFrags,
 nuint numReplyFrags,
 pNWCCFRAG replyFrags,
 pnuint actualReplyLen);

Parameters
connHandle

(IN) Specifies the NetWare server connection handle where the request is being directed.

function
(IN) Specifies the NCP function number being requested.

numReqFrags
(IN) Specifies the number of fragments that make up the request packet pointed to by
reqFrags (maximum is five).

reqFrags
(IN) Points to the array of fragments that make up the request packet.

numReplyFrags
(IN) Specifies the number of fragments that make up the reply packet pointed to by
replyFrags (maximum is five).

replyFrags
(OUT) Points to the array of fragments that make up the reply packet.

actualReplyLen
(OUT) Points to the total size of the reply packet as described in the NCP header after any
heading or trailing information is removed (optional).
Connection Functions 65

66 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCRequest is the simplest and most common method for sending NCP requests to a server.

reqFrags and replyFrags can be NULL if the corresponding numReqFrags and
numReplyFrag parameter is zero.

The request and reply fragment buffers should not overlap.

See Also
NWRequest (page 111)

0x0000 SUCCESSFUL

0x8801 NWE_CONN_INVALID: Bad connection handle

0x8869 NWE_ACCESS_VIOLATION: Connection handle belongs to another process

0x89XX Server error from NCP or Requester
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCScanConnInfo
Returns connection information for multiple connections

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCScanConnInfo (
 pnuint32 scanIterator,
 nuint scanInfoLevel,
 const void N_FAR *scanConnInfo,
 nuint scanFlags,
 nuint connInfoVersion,
 nuint returnInfoLevel,
 nptr returnConnInfo,
 pnuint32 connReference);

Delphi

uses clxwin32

Function NWCCScanConnInfo
(scanIterator : pnuint32;
 scanInfoLevel : nuint;
 scanConnInfo : nptr;
 scanFlags : nuint;
 connInfoVersion : nuint;
 returnInfoLevel : nuint;
 returnConnInfo : nptr;
 Var connReference : nuint32
) : NWRCODE;

Parameters
scanIterator

(IN/OUT) Specifies the iterator handle used. Must be initialized to zero (0) for first scan and to
restart a search. Outputs the next iteration number; do not alter on subsequent scans.

scanInfoLevel
(IN) Specifies the data type of the scanConnInfo parameter (see Section 5.4, “infoType
Parameter Values,” on page 136).
Connection Functions 67

68 NDK: Conne

novdocx (E
N

U
) 01 February 2006
scanConnInfo
(IN) Points to the search data used during the scan.

scanFlags
(IN) Specifies which type of connections (licensed/unlicensed and public/private) to search and
if the data passed into the scanConnInfo parameter needs to match prospective connections
(see Section 5.10, “Scan Flag Values,” on page 138).

connInfoVersion
(IN) Specifies the connection information version. Set to NWCC_INFO_VERSION_1 or
higher.

returnInfoLevel
(IN) Specifies the data type of the returnConnInfo parameter (see Section 5.4, “infoType
Parameter Values,” on page 136).

returnConnInfo
(OUT) Points to the returned information and is of the data type specified in the
returnInfoLevel parameter.

connReference
(OUT) Points to the connection reference associated with the returned information (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Either the entire NWCCConnInfo (page 125) structure or part of the NWCCConnInfo (page 125)
structure can be returned using the returnConnInfo parameter. If the entire NWCCConnInfo
(page 125) structure is being returned (returnInfoLevel =NWCC_INFO_RETURN_ALL),
the returnConnInfo parameter must point to a buffer of type NWCCConnInfo (page 125). If
part of the NWCCConnInfo (page 125) structure is being returned, the returnConnInfo
parameter must point to a buffer of the data type being requested.

If the return value for NWCCScanConnInfo is BUFFER_OVERFLOW when using the
NWCC_INFO_TRAN_ADDR or NWCC_INFO_RETURN_ALL value for the
returnInfoLevel parameter, the len field in the NWCCTranAddr (page 129) structure was
passed an incorrect amount. The NWCCGetConnRefInfo function can be called to retrieve the
transport address.

0x0000 SUCCESS

0x880E NWE_BUFFER_OVERFLOW

0x8864 NWE_INVALID_MATCH_DATA

0x8866 NWE_NO_MORE_ENTRIES

0x8868 NWE_STRING_TRANSLATION

0x886B NWE_INVALID_LEVEL
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCScanConnRefs
Returns a connection reference for each connection on the workstation

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCScanConnRefs (
 pnuint32 scanIterator,
 pnuint32 connRef);

Delphi

uses clxwin32

Function NWCCScanConnRefs
 (scanIterator : pnuint32;
 connRef : pnuint32
) : NWRCODE;

Parameters
scanIterator

(IN/OUT) Points to an iterator (zero on the first scan).

connRef
(OUT) Points to the connection reference for each connection.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x880E NWE_BUFFER_OVERFLOW

0x8864 NWE_INVALID_MATCH_DATA

0x8866 NWE_NO_MORE_ENTRIES

0x8868 NWE_STRING_TRANSLATION

0x886B NWE_INVALID_LEVEL
Connection Functions 69

70 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
The scanIterator parameter must not be altered on subsequent scans.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCSetCurrentConnection
Sets the current connection ID and current connection for the thread group control structure

Local Servers: nonblocking

Local Servers: nonblocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetCurrentConnection (
 CONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCSetCurrentConnection
 (connHandle : CONN_HANDLE
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCSetCurrentConnection is similar to SetCurrentConnection, although
NWCCSetCurrentConnection will accept a connection obtained through the CLX library.

0x0000 SUCCESS

0x890A INVALID_CONNECTION
Connection Functions 71

72 NDK: Conne

novdocx (E
N

U
) 01 February 2006
If you open a connection by calling the NWCCOpenConnByName function, you can call
NWCCSetCurrentConnection and pass the connection handle returned by the
NWCCOpenConnByName function. The fopen function can then be called by specifying a file on
the server for which a connection was recently opened. The connection opened by calling the
NWCCOpenConnByName function will be used.

You can use the old CLIB connection model by calling NWCCSetCurrentConnection followed by
calling the GetCurrentServerID and GetCurrentConnection functions.

NOTE: To bridge from a connection opened by an old NIT connection function such as the
AttachToFileServer function, set your current server ID and pass in the connection allocated by the
AttachToFileServer function as the connection handle parameter for any NWCalls function.

NOTE: If NWCCSetCurrentConnection is called from any platform other than NLM, SUCCESS
will be returned but no action will be performed.

See Also
fopen(Single and Intra-File Services), NWCCOpenConnByName (page 55), SetCurrentConnection
(page 166)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCSetPrefServerName
Sets the prefServer parameter for the workstation

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetPrefServerName (
 const nstr N_FAR *prefServer);

Delphi

uses clxwin32

Function NWCCSetPrefServerName
 (const prefServer : pnstr
) : NWRCODE;

Parameters
prefServer

(IN) Points to the string containing the preferred server name.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The prefServer parameter is read in from the NET.CFG file and is used by the requester and
determines to which server to connect when no other connections are established, such as during the
requester load process.

0x0000 SUCCESS
Connection Functions 73

74 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCSetPrimConn
Sets the primary connection for the workstation

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetPrimConn (
 NWCONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCSetPrimConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters
connHandle

(IN) Specifies the connection handle to make primary.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The primary connection identifies the server to which the user originally logged in. For NDS, the
primary connection is the connection with the writeable replica used during the login process.

0x0000 SUCCESS
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCSetSecurityFlags
Sets the configured security flags for the requester

NetWare Server: 4.1x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetSecurityFlags (
 nuint32 prefSecurityFlags,
 nuint32 reqSecurityFlags);

Delphi

uses clxwin32

Functioin NWCCSetSecurityFlags (
 prefSecurityFlags : nuint32;
 reqSecurityFlags : nuint32
) : NWRCODE;

Parameters
prefSecurityFlags

(IN) Specifies the preferred (but not required) security level.

reqSecurityFlags
(IN) Specifies the required security flags for each connection.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
See Section 5.11, “Security Flag Values,” on page 139.

0x0000 SUCCESS

0x8836 NWE_PARAM_INVALID

0x8861 NWE_SIGNATURE_LEVEL_CONFLICT
Connection Functions 75

76 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWCCGetSecurityFlags (page 47)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCSysCloseConnRef
Closes and detaches the specified connection, including the connection reference and all connection
handles for this connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSysCloseConnRef (
 nuint32 connRef);

Delphi

uses clxwin32

Function NWCCSysCloseConnRef
 (connRef : nuint32
) : NWRCODE;

Parameters
connRef

(IN) Specifies the connection handle to be destroyed.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCCSysCloseConnRef is similar to the NWCCCloseConn function. The exception is that
NWCCSysCloseConnRef forces all of the open handles to the connection to be closed and detaches
the connection.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8869 NWE_ACCESS_VIOLATION

0x890A NLM_INVALID_CONNECTION
Connection Functions 77

78 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCSysCloseConnRef is a system level request that causes all processes that are accessing this
connection to lose access to the resources on the connection.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCUnlicenseConn
Unlicenses the specified licensed connection

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCUnlicenseConn (
 NWCONN_HANDLE connHandle);

Delphi

uses clxwin32

Function NWCCUnlicenseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters
connHandle

(IN) Specifies an open connection handle to be unlicensed.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x8801 NWE_CONN_INVALID

0x8815 NWE_HANDLE_ALREADY_UNLICENSED

0x8869 NWE_ACCESS_VIOLATION

0x8872 NWE_INVALID_OWNER

0x890A NLM_INVALID_CONNECTION
Connection Functions 79

80 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
A licensed connection can be unlicensed by calling NWCCUnlicenseConn. In the requester,
NWCCUnlicenseConn will only unlicense the connection if there are no other open handles to that
connection that need to remain licensed.

See licconn.c (../../../samplecode/clib_sample/connect/licconn/licconn.c.html) for sample code.

3.3 NWCl*-NWGetH* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “NWClearConnectionNumber” on page 81
• “NWCLXInit” on page 83
• “NWCLXTerm” on page 85
• “NWFreeConnectionSlot” on page 86
• “NWGetConnectionIDFromAddress (obsolete-moved from .h file 11/99)” on page 89
• “NWGetConnectionIDFromName (obsolete-moved from .h file 11/99)” on page 90
• “NWGetConnectionInformation” on page 91
• “NWGetConnectionStatus (obsolete-moved from .h file 11/99)” on page 94
• “NWGetConnectionUsageStats (obsolete-moved from .h file 6/99)” on page 95
• “NWGetConnListFromObject” on page 96
• “NWGetDefaultConnectionID (obsolete-moved from .h file 11/99)” on page 98
• “NWGetDefaultConnRef” on page 99
ction, Message, and NCP Extensions

../../../samplecode/clib_sample/connect/licconn/licconn.c.html

novdocx (E
N

U
) 01 February 2006
NWClearConnectionNumber
Logs out the specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWClearConnectionNumber (
 NWCONN_HANDLE connHandle,
 nuint16 connNumber);

Delphi

uses calwin32

Function NWClearConnectionNumber
 (connHandle : NWCONN_HANDLE;
 connNumber : nuint16
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle.

connNumber
(IN) Specifies the connection number to be cleared.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
Connection Functions 81

82 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
You must have SUPERVISOR or equivalent rights to call NWClearConnectionNumber. Otherwise,
NO_CONSOLE_PRIVILEGES will be returned.

NWClearConnectionNumber clears a connection from a server connection table while the
NWCCCloseConn function clears a local connection handle for a client.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 210 Clear Connection Number
0x2222 23 254 Clear Connection Number (3.11+)

See Also
NWCCCloseConn (page 24)

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCLXInit
Initializes the CLX (connection API) library

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY (NWRCODE) NWCLXInit (
 nptr reserved1,
 nptr reserved2);

Delphi

uses clxwin32

Function NWCLXInit (
 reserved1 : nptr;
 reserved2 : nptr
) : NWRCODE;

Parameters
reserved1

(IN) Is reserved for future use (pass in NULL).

reserved2
(IN) Is reserved for future use (pass in NULL).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWCLXInit initializes only the CLX (connection API) libraries. If you are using only the
connection API functions (NWCC . . .), you can initialize the libraries by calling NWCLXInit. You
do not need to call NWCallsInit for these libraries.

0x0000 SUCCESSFUL
Connection Functions 83

84 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Novell recommends you call NWCLXInit before calling any NWCC. . . function.

When you have finished using the CLX libraries after calling NWCLXInit, call NWCLXTerm
(page 85) to terminate the libraries and perform clean up.

See Also
NWCLXTerm (page 85)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCLXTerm
Terminates the CLX library and performs any necessary clean up

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform Client (CLX*.*)

Service: Connection

Syntax

C

#include <nwclxcon.h>

N_EXTERN_LIBRARY (NWRCODE) NWCLXTerm (
 nptr reserved);

Delphi

uses clxwin32

Function NWCLXTerm (
 reserved : nptr
) : NWRCODE;

Parameters
reserved

(IN) Is reserved for future use {pass in NULL).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks

IMPORTANT: Call NWCLXTerm only if you have previously called NWCLXInit.

See Also
NWCLXInit (page 83)

0x0000 SUCCESSFUL
Connection Functions 85

86 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWFreeConnectionSlot
Either removes all task dependencies on a task disconnect or completely tears down the connection
for a system disconnect

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NDS (NET*.*)

Service: Connection

Syntax

C

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWFreeConnectionSlot
 (NWCONN_HANDLE conn,
 nuint8 disconnectType);

Delphi

uses netwin32

Function NWFreeConnectionSlot
 (conn : NWCONN_HANDLE;
 disconnectType : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the connection handle of the desired connection.

disconnectType
(IN) Specifies a system disconnect or a task disconnect.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
A task disconnect keeps track of a connection in use count. When the count sets to zero, the
connection stays valid until its slot is needed for a new connection.

A system disconnect tears down the connection completely. The task disconnect decrements all the
in-use counts to zero.

NETX does not support NWFreeConnectionSlot and will return an error if VLMs are not running.

Under Client32, NWFreeConnectionSlot will return SUCCESSFUL even if the connection being
freed is the monitored connection. NWFreeConnectionSlot makes a copy of the connection handle
from the Client32 requestor. It is this connection handle copy that will be freed even if it is the
monitored connection. However, the original connection handle still exists.

NWFreeConnectionSlot will try to find another server to store the attributes. If the server is not one
of the connections for the client, a connection will be made to the new server that has a writable
replica. This connection will become the monitored connection with the login attributes while the
original monitored connection will be freed.

If NWFreeConnectionSlot cannot find another writeable replica when called to delete the monitored
connection, one of the following two errors will be returned:

ERR_CONTEXT_CREATION
ERR_NO_WRITABLE_REPLICAS

The disconnectType parameter will be one of the following:

SYSTEM_DISCONNECT
TASK_DISCONNECT

ERR_CONTEXT_CREATION is returned sometimes when the unicode tables have not been
initialized.

If ERR_NO_WRITABLE_REPLICAS is returned, the connection cannot be deleted until the
NWDSLogout function has been called since the server has attributes that were created at login
time.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 01 Ping for NDS NCP
0x2222 104 02 Send NDS Fragmented Request/Reply

0x8801 INVALID_CONNECTION

0x8836 INVALID_PARAMETER

0x890A NLM_INVALID_CONNECTION

0xFEA0 ERR_NO_WRITABLE_REPLICAS

0xFEB8 ERR_CONTEXT_CREATION
Connection Functions 87

88 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWCCOpenConnByAddr (page 53), NWCCScanConnRefs (page 69), NWCCOpenConnByRef
(page 60), NWCCLicenseConn (page 49)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetConnectionIDFromAddress (obsolete-moved
from .h file 11/99)
Was last documented in September 1999. Call the NWCCScanConnInfo (page 67),
NWCCOpenConnByRef (page 60), and NWCCLicenseConn (page 49) functions instead.

Connection Functions 89

90 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetConnectionIDFromName (obsolete-moved from
.h file 11/99)
Was last documented in September 1999. Call the NWCCScanConnInfo (page 67),
NWCCOpenConnByRef (page 60), and NWCCLicenseConn (page 49) functions instead.

ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetConnectionInformation
Returns information about a logged in object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionInformation (
 NWCONN_HANDLE connHandle,
 nuint16 connNumber,
 pnstr8 pObjName,
 pnuint16 pObjType,
 pnuint32 pObjID,
 pnuint8 pLoginTime);

Delphi

uses calwin32

Function NWGetConnectionInformation
 (connHandle : NWCONN_HANDLE;
 connNumber : nuint16;
 pObjName : pnstr8;
 pObjType : pnuint16;
 pObjID : pnuint32;
 pLoginTime : pnuint8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the NetWare server connection handle.

connNumber
(IN) Specifies the NetWare server connection number for which the information is being
obtained.
Connection Functions 91

92 NDK: Conne

novdocx (E
N

U
) 01 February 2006
pObjName
(OUT) Points to the name of the object whose connection number is passed in connNumber
(48 bytes, optional).

pObjType
(OUT) Points to the object type of the client (optional).

pObjID
(OUT) Points to the object ID of the client (optional).

pLoginTime
(OUT) Points to the time value when the object logged in at the specified connection number (7
bytes, optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The pObjName, pObjType, pObjID, and pLoginTime parameter are included in the returned
information.

The system time clock is a 7-byte value contained in the pLoginTime parameter and defined in
the following format:

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FB INVALID_PARAMETERS: Connection needs to be authenticated

0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER

0x89FE DIRECTORY_LOCKED

0x89FF HARDWARE_FAILURE

Byte Value Range

1 Year 0 through 179

2 Month 1 through 12

3 Day 1 through 31

4 Hour 0 through 23 (0 = 12 midnight; 23 = 11 PM)

5 Minute 0 through 59
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NOTE: For the year value, 80-99=1980-1999; 100-179=2000-2079. The range 0-79 applies to
1900-1979, but a year in this range should not be necessary since DOS cannot return a year value
previous to 1980.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info

See Also
NWCCGetAllConnInfo (page 26), NWGetUserInfo (Server Management)

6 Second 0 through 59

7 Day of Week 0 through 6, 0=Sunday

Byte Value Range
Connection Functions 93

94 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetConnectionStatus (obsolete-moved from .h file
11/99)
Was last documented in September 1999. Call the NWCCGetConnRefInfo (page 42) and
NWGetConnectionInformation (page 91) functions instead.

ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetConnectionUsageStats (obsolete-moved from .h
file 6/99)
was last documented in Release 15 for NetWare 2.x only.

Connection Functions 95

96 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetConnListFromObject
Returns a list of connection numbers a specified object has on a given server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnListFromObject (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint32 searchConnNum,
 pnuint16 connListLen,
 pnuint32 connList);

Delphi

uses calwin32

Function NWGetConnListFromObject
 (connHandle : NWCONN_HANDLE;
 objID : nuint32;
 searchConnNum : nuint32;
 pConnListLen : pnuint16;
 pConnList : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the server to find connection numbers for.

objID
(IN) Specifies the object ID for which to get a list of connection numbers.

searchConnNum
(IN) Specifies the connection number to start searching from.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
connListLen
(OUT) Points to a return buffer containing the number of connections in the connList
parameter.

connList
(OUT) Points to a return buffer containing up to 125 connection numbers.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 23 31 Get Connection List From Object

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FB INVALID_PARAMETERS
Connection Functions 97

98 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetDefaultConnectionID (obsolete-moved from .h
file 11/99)
Was last documented in September 1999. Call the NWGetDefaultConnRef (page 99) and
NWGetNearestDSConnRef (page 105) functions instead.

ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetDefaultConnRef
Returns the default connection reference of the current session

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetDefaultConnRef (
 pnuint32 pConnReference);

Delphi

uses calwin32

Function NWGetDefaultConnRef (
 Var pConnReference : nuint32
) : NWCCODE;

Parameters
pConnReference

(OUT) Points to the default connection reference.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The NetWare server containing the current directory for the connection is the default NetWare
server.

0x0000 SUCCESSFUL

0x880F NO_CONNECTION_TO_SERVER
Connection Functions 99

100 NDK: Conne

novdocx (E
N

U
) 01 February 2006
The default connection reference corresponds to one of the following.

• If the current drive is a network drive, the default connection reference is the server to which
the drive maps.

• If the current drive is not a network drive, the default connection reference is the server to
which the workstation first logged in (also called primary server).

• If the first and second conditions fail, the default server is the first server in the connection list
for the shell (which occurs if the workstation is logged out of the primary server).

See Also
NWCCGetPrimConnRef (page 46), NWGetDriveStatusConnRef (Multiple and Inter-File Services)

3.4 NWGetI*-Z* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “NWGetInetAddr” on page 101
• “NWGetMaximumConnections (obsolete-moved from .h file 11/99)” on page 103
• “NWGetNearestDirectoryService (obsolete-moved from .h file 11/99)” on page 104
• “NWGetNearestDSConnRef” on page 105
• “NWGetObjectConnectionNumbers” on page 107
• “NWGetTaskInformationByConn” on page 109
• “NWRequest” on page 111
• “SetConnectionCriticalErrorHandler” on page 113
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetInetAddr
Returns the internet address of the connNum parameter on the specified NetWare server for the
specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetInetAddr (
 NWCONN_HANDLE connHandle,
 nuint16 connNum,
 NWINET_ADDR N_FAR *pInetAddr);

Delphi

uses calwin32

Function NWGetInetAddr
 (connHandle : NWCONN_HANDLE;
 connNum : nuint16;
 Var pInetAddr : NWINET_ADDR
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the NetWare server connection handle associated with the connNum parameter.

connNum
(IN) Specifies the connection number of the station whose internetwork address is to be
returned.

pInetAddr
(OUT) Points to the internetwork address of the connNum parameter (10 bytes).
Connection Functions 101

102 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
An internetwork address consists of the networkAddr and netNodeAddr fields. (The
netNodeAddr field is the physical address of the LAN board for the workstation.) The
internetwork address uniquely identifies a workstation throughout an internetwork. The address can
be used to send packets directly to the workstation.

To print the contents of the pInetAddr parameter, swap each byte by calling the NWLongSwap
function on the networkAddr field, the NWWordSwap function on the first 2 bytes of the
netNodeAddr field , and the NWLongSwap function on bytes 2 to 5 of the netNodeAddr field.
Otherwise, the pInetAddr parameter appears in the format other functions expect.

See inetaddr.c (../../../samplecode/clib_sample/connect/inetaddr/inetaddr.c.html) for sample code.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 19 Get Internet Address
0x2222 23 26 Get Internet Address (new)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FF Failure
ction, Message, and NCP Extensions

../../../samplecode/clib_sample/connect/inetaddr/inetaddr.c.html

novdocx (E
N

U
) 01 February 2006
NWGetMaximumConnections (obsolete-moved from .h
file 11/99)
Was last documented in September 1999. Call the NWCCGetNumConns (page 44) function instead.

Connection Functions 103

104 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetNearestDirectoryService (obsolete-moved from
.h file 11/99)
Was last documented in September 1999. Call the NWGetNearestDSConnRef (page 105) and
NWCCOpenConnByRef (page 60) functions instead.

ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNearestDSConnRef
Returns a connection reference to the nearest existing connection for a NDS NetWare server
(distance is determined by clock ticks)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NDS (NET*.*)

Service: Connection

Syntax

C

#include <nwndscon.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetNearestDSConnRef (
 pnuint32 connRef);

Delphi

uses netwin32

Function NWGetNearestDSConnRef
 (connRef : pnuint32
) : NWCCODE;

Parameters
 connRef

(OUT) Points to a connection reference for the nearest NDS server in the connection table.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If no NDS servers are found, NWE_DS_NO_CONN is returned.

0x0000 SUCCESSFUL

0x8846 NWE_DS_NO_CONN
Connection Functions 105

106 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWCCGetAllConnRefInfo (page 28), NWCCGetConnRefInfo (page 42), NWCCOpenConnByRef
(page 60), NWCCScanConnRefs (page 69), NWGetPreferredConnName (NDK: Novell eDirectory
Core Services), NWSetPreferredDSTree (NDK: Novell eDirectory Core Services)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetObjectConnectionNumbers
Returns a list of server connection numbers for clients logged in with the specified object name and
type

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectConnectionNumbers (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *pObjName,
 nuint16 objType,
 pnuint16 numConns,
 NWCONN_NUM N_FAR *connList,
 nuint16 maxConns);

Delphi

uses calwin32

Function NWGetObjectConnectionNumbers
 (connHandle : NWCONN_HANDLE;
 const pObjName : pnstr8;
 objType : nuint16;
 pNumConns : pnuint16;
 pConnHandleList : pNWCONN_NUM;
 maxConns : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

pObjName
Connection Functions 107

108 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(IN) Points to the object name of the object whose network server connection numbers are
being obtained.

objType
(IN) Specifies the object type of the object whose network server connection numbers are being
returned.

numConns
(OUT) Points to the number of server connections for the specified object.

connList
(OUT) Points to an array of the server connection numbers for the specified object.

maxConns
(IN) Specifies the size of the connection list array (maximum length=50).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If no client is logged in using the specified object name and object type, the list length returned by
the server is set to zero.

The numConns parameter value is used to index the array pointed to by the connList parameter.

If an invalid object name or object type is passed on a 3.x or above server,
NWGetObjectConnectionNumbers will return SUCCESS and the numConns parameter will be
zero indicating there are no connections with the server.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 21 Get Object Connection List
0x2222 23 27 Get Object Connection List (if 3.11 server)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FE DIRECTORY_LOCKED

0x89FF HARDWARE_FAILURE
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetTaskInformationByConn
Returns information about the active tasks assigned to the specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetTaskInformationByConn (
 NWCONN_HANDLE conn,
 nuint16 connNum,
 CONN_TASK_INFO N_FAR *taskInfo);

Delphi

uses calwin32

Function NWGetTaskInformationByConn
 (conn : NWCONN_HANDLE;
 connNum : nuint16;
 Var taskInfo : CONN_TASK_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle. NWCONN_HANDLE is equivalent to
nuint16.

connNum
(IN) Specifies the connection number of the logged-in object for which to get task information.
NWCONN_NUM is equivalent to nuint16.

taskInfo
(OUT) Points to the CONN_TASK_INFO structure.
Connection Functions 109

110 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 23 234 Get Connection’s Task Information (3.x-6.x)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FE Unknown Packet Format

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWRequest
Passes an NCP request to the server

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Connection

Syntax

C

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRequest (
 NWCONN_HANDLE conn,
 nuint16 function,
 nuint16 numReqFrags,
 const NW_FRAGMENT N_FAR *reqFrags,
 nuint16 numReplyFrags,
 NW_FRAGMENT N_FAR *replyFrags);

Delphi

uses calwin32

Function NWRequest
 (conn : NWCONN_HANDLE;
 functionID : nuint16;
 numReqFrags : nuint16;
 Var reqFrags : NW_FRAGMENT;
 numReplyFrags : nuint16;
 Var replyFrags : NW_FRAGMENT
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

function
(IN) Points to the NCP function number.

numReqFrags
(IN) Points to the number of fragments pointed to by the reqFrags field (maximum is five).

reqFrags
Connection Functions 111

112 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(IN) Points to the list of request fragments.

numReplyFrags
(IN) Points to the number of fragments pointed to by the replyFrags field (maximum is
five).

replyFrags
(OUT) Points to the NW_FRAGMENT structure containing the list of reply fragments.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The request and reply fragment buffers should not overlap. The total length of the request and reply
fragments should not exceed 576 bytes.

0x0000 SUCCESSFUL

other Error from NCP or Requester
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
SetConnectionCriticalErrorHandler
Specifies a function to handle connection timeout errors

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Connection

Syntax
#include <nwconn.h>

int SetConnectionCriticalErrorHandler (
 int (func) (
 int fileServerID,
 int connection,
 int err));

Parameters
func

(IN) Specifies a custom function for handling connection timeout errors.

Return Values
ESUCCESS or NetWare errors

Remarks
The func parameter is a custom function for handling connection timeout errors. When a timeout
occurs on a connection, SetConnectionCriticalErrorHandler is passed the fileServerID,
connection, and err for the connection that failed. The error handling function should return
the number of times to try to restore the connection.
Connection Functions 113

114 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

4
novdocx (E

N
U

) 01 February 2006
4Connection Structures

This documentation alphabetically lists the Connection structures and describes their purpose,
syntax, and fields.

• “CONN_TASK” on page 116
• “CONN_TASK_INFO” on page 117
• “CONN_USE” on page 120
• “CONNECT_INFO” on page 121
• “NW_FRAGMENT” on page 124
• “NWCCConnInfo” on page 125
• “NWCCFRAG” on page 128
• “NWCCTranAddr” on page 129
• “NWCCVersion” on page 132
• “NWINET_ADDR” on page 133
Connection Structures 115

116 NDK: Conne

novdocx (E
N

U
) 01 February 2006
CONN_TASK

Service: Connection

Defined In: nwmisc.h, calwin32, and nwncpext.txt

Structure
typedef struct {
 nuint16 taskNumber ;
 nuint8 taskState ;
} CONN_TASK;

Delphi Structure
CONN_TASK = packed Record
 taskNumber : nuint16;
 taskState : nuint8
 End;

Fields
taskNumber

Specifies the server task number for which information will be returned.

taskState
Specifies the state of the task at the time of the request.

Remarks
The taskState field can have the following values:

0x00 Normal Task
0x01 TTS explicit transaction in progress
0x02 TTS implicit transaction in progress
0x04 Shared fine set lock in progress
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
CONN_TASK_INFO
Returns information according to the lockState field

Service: Connection

Defined In: nwmisc.h and calwin32

Structure
typedef struct {
 nuint16 serverVersion ;
 nuint8 lockState ;
 nuint16 waitingTaskNumber ;
 nuint32 recordStart ;
 nuint32 recordEnd ;
 nuint8 volNumber ;
 nuint32 dirEntry ;
 nuint8 nameSpace ;
 nuint16 dirID ;
 nstr8 lockedName [256];
 nuint8 taskCount ;
 CONN_TASK tasks [256];
} CONN_TASK_INFO;

Delphi Structure
CONN_TASK_INFO = packed Record
 serverVersion : nuint16;
 lockState : nuint8;
 waitingTaskNumber : nuint16;
 recordStart : nuint32;
 recordEnd : nuint32;
 volNumber : nuint8;
 dirEntry : nuint32;
 nameSpace : nuint8;
 dirID : nuint16;
 lockedName : Array[0..255] Of nstr8;
 taskCount : nuint8;
 tasks : Array[0..255] Of CONN_TASK
 End;

Fields
serverVersion

Specifies the server version (NW_ constants in nwserver.h).

lockState
Specifies one of five lock states that are used internally to determine what information can be
returned.

waitingTaskNumber
Connection Structures 117

118 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Specifies the task number returned when the lockState field has a nonzero value.

recordStart
Specifies the start address of physical record returned when the lockState field has a value
of 1.

recordEnd
Specifies the end address of physical record returned when the lockState field has a value
of 1.

volNumber
Specifies the volume number of physical record or file returned when the lockState field
has a value of 1 or 2.

dirEntry
Specifies the directory entry of physical record or file returned when the lockState field has
a value of 1 or 2 (valid only in 3.11 or higher).

nameSpace
Specifies the name space of locked file (valid only in 3.11 or higher).

dirID
Specifies the ID of the directory (valid only in 2.x).

lockedName
Specifies the name of the locked physical record, file, logical record, or semaphore.

taskCount
Specifies the number of tasks for which the CONN_TASK structure will be returned.

tasks
Specifies the CONN_TASK structure containing information for each task counted in the
taskCount field.

Remarks
The lockState field can have the following values:

0 Normal (connection free to run)
1 Connection waiting on a physical record lock
2 Connection waiting on a file lock
3 Connection waiting on a logical record lock
4 Connection waiting on a semaphore

The nameSpace field can have the following values:

0 NW_NS_DOS
1 NW_NS_MAC
2 NW_NS_NFS
3 NW_NS_FTAM
4 NW_NS_OS2
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
4 NW_NS_LONG
Connection Structures 119

120 NDK: Conne

novdocx (E
N

U
) 01 February 2006
CONN_USE
Returns connection usage statistics

Service: Connection

Defined In: nwconnec.h

Structure
typedef struct {
 nuint32 systemElapsedTime ;
 nuint8 bytesRead [6];
 nuint8 bytesWritten [6];
 nuint32 totalRequestPackets ;
} CONN_USE;

Delphi Structure
 CONN_USE = packed Record
 systemElapsedTime : nuint32;
 bytesRead : Array[0..5] Of nuint8;
 bytesWritten : Array[0..5] Of nuint8;
 totalRequestPackets : nuint32
 End;

Fields
systemElapsedTime

Specifies how long the server has been up. Currently systemElapsedTime is returned in
18.2 ticks/second units. When it reaches 0xFFFFFFFF, systemElapsedTime wraps back to
0.

bytesRead
Specifies the number of bytes the associated connection has read.

bytesWritten
Specifies the number of bytes the associated connection has written.

totalRequestPackets
Specifies the number of requests the associated connection has made.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
CONNECT_INFO
Returns connection status information

Service: Connection

Defined In: nwconnec.h, calwin32

Structure
typedef struct
{
 NWCONN_HANDLE connID ;
 nuint16 connectFlags ;
 nuint16 sessionID ;
 NWCONN_NUM connNumber ;
 nuint8 serverAddr [12];
 nuint16 serverType ;
 nstr8 serverName [C_SNAMESIZE];
 nuint16 clientType ;
 nstr8 clientName [C_SNAMESIZE];
} CONNECT_INFO;

Delphi Structure
Defined in nwconnec.inc

 CONNECT_INFO = packed Record
 connID : NWCONN_HANDLE;
 connectFlags : nuint16;
 sessionID : nuint16;
 connNumber : NWCONN_NUM;
 serverAddr : Array[0..11] Of nuint8;
 serverType : nuint16;
 serverName : Array[0..C_SNAMESIZE-1] Of nstr8;
 clientType : nuint16;
 clientName : Array[0..C_SNAMESIZE-1] Of nstr8
 End;

Fields
connID

Specifies the connection handle associated with the information in this structure.

connectFlags
Specifies the flag whose values are defined in the following table:
Connection Structures 121

122 NDK: Conne

novdocx (E
N

U
) 01 February 2006
sessionID
Specifies the current session ID. sessionID is only valid when VLMs are installed on the
workstation. If NETX.EXE is being used, sessionID is always zero (0).

connNumber
specifies the client’s connection as seen from the NetWare server.

serverAddr
Specifies the Internet address consisting of the network number (first 4 bytes) and the physical
node address (bytes 5-10).

serverType
Specifies the server’s bindery object type.

serverName
Specifies the server’s bindery name.

C Values Delphi
Values Flag Name Description

0x0001 $0001 CONNECTION_AVAILABLE Indicates if the specified
connection handle hasn’t been
allocated to a process at the
workstation.

0x0002 $0002 CONNECTION_PRIVATE

0x0004 $0004 CONNECTION_LOGGED_IN Indicates if the client is logged in
on the connection.

0x0004 $0004 CONNECTION_LICENSED

0x0008 $0008 CONNECTION_BROADCAST_AVAIL
ABLE

Indicates if broadcasts to other
stations are available on the
connection.

0x0010 $0010 CONNECTION_ABORTED Indicates if the connection was
aborted.

0x0020 $0020 CONNECTION_REFUSE_GEN_BRO
ADCAST

Indicates if general broadcasts are
not to be received on the
connection.

0x0040 $0040 CONNECTION_BROADCAST_DISA
BLED

Indicates if no broadcasts will be
received on the connection.

0x0080 $0080 CONNECTION_PRIMARY Indicates if this connection handle
is the workstation’s primary
connection with the network.

0x0100 $0100 CONNECTION_NDS Indicates whether the connection
is a NDS connection.

0x0400 $4000 CONNECTION_PNW

0x8000 $8000 CONNECTION_AUTHENTICATED Indicates if the connection is
authenticated.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
clientType
Specifies the client’ bindery object type.

clientName
Specifies the client’s bindery object name.
Connection Structures 123

124 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NW_FRAGMENT
Fragments the request into the appropriate packet size

Service: Connection

Defined In: nwmisc.h and calwin32

Structure
typedef struct {
 nptr fragAddress ;
 #if defined(N_PLAT_NLM)||defined(WIN32)
 nuint32 fragSize ;
 #else
 nuint16 fragSize ;
 #endif
} NW_FRAGMENT;

Delphi Structure
 NW_FRAGMENT = packed Record
 fragAddress : nptr;
 fragSize : nuint16
 End;

Fields
fragAddress

Points to where the fragment starts.

fragSize
Specifies the size of the fragment (under NLM and Windows platforms, of type nuint32).
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCConnInfo
Returns the specified information for a given connection

Service: Connection

Defined In: nwclxcon.h and clxwin32

Structure
typedef struct
 nuint authenticationState ;
 nuint broadcastState ;
 nuint32 connRef ;
 nstr treeName [NW_MAX_TREE_NAME_LEN];
 nuint connNum ;
 nuint32 userID ;
 nstr serverName [NW_MAX_SERVER_NAME_LEN];
 nuint NDSState ;
 nuint maxPacketSize ;
 nuint licenseState ;
 nuint distance ;
 NWCCVersion serverVersion ;
#ifdef NWCC_INFO_VERSION_2
 pNWCCTranAddr tranAddr ;
#endif
#ifdef NWCC_INFO_VERSION_3
 nuint32 identityHandle;
#endif
} NWCCConnInfo;

Delphi Structure
NWCCConnInfo = packed Record
 authenticationState : nuint;
 broadcastState : nuint;
 connRef : nuint32;
 treeName : Array[0..NW_MAX_TREE_NAME_LEN-1] Of nstr;
 connNum : nuint;
 userID : nuint32;
 serverName : Array[0..NW_MAX_SERVER_NAME_LEN-1] Of nstr;
 NDSState : nuint;
 maxPacketSize : nuint;
 licenseState : nuint;
 distance : nuint;
 serverVersion : NWCCVersion;
 {$IFDEF NWCC_INFO_VERSION_2}
 tranAddr : pNWCCTranAddr;
 {$ENDIF}
 {$IFDEF NWCC_INFO_VERSION_2}
 identityHandle : nuint32;
 {$ENDIF}
 End;
Connection Structures 125

126 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Fields
authenticationState

Specifies the NDS™ authenticated state of the specified connection (see Section 5.5,
“NWCC_INFO_AUTHENT_STATE Values,” on page 137).

broadcastState
Specifies the message broadcast state of the specified connection (see Section 5.6,
“NWCC_INFO_BCAST_STATE Values,” on page 137).

connRef
Specifies the connection reference for the specified connection handle.

treeName
Specifies the tree name of the specified connection if attached to NDS. It has a maximum
length of NW_MAX_TREE_NAME_LEN.

connNum
Specifies the connection number for the specified connection.

userID
Specifies the user for the connection.

serverName
Specifies the name of the server the connection is attached to. It has a maximum length of
NW_MAX_SERVER_NAME_LEN.

NDSState
Specifies if the connection supports NDS (see Section 5.8, “NWCC_INFO_NDS_STATE
Values,” on page 138).

maxPacketSize
Specifies the maximum length of an Internet packet that can be supported by this connection.

licenseState
Specifies if the connection is licensed (see Section 5.7, “NWCC_INFO_LICENSE_STATE
Values,” on page 137).

distance
Specifies distance in milliseconds to the given server (55 milliseconds = 1 tick).

serverVersion
Points to the NWCCVersion structure returning the NetWare version.

tranAddr
Points to the NWCCTranAddr structure returning the type.

identityHandle
Specifies the identity of the connection.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The treeName structure field is used to give the tree name of a particular connection in functions
such as NWCCGetAllConnRefInfo (page 28) and NWCCGetConnRefInfo (page 42). You must
strip off the trailing `_’ characters (that are padding the tree name out to the maximum length) to get
a matching valid tree name. Other functions that depend on a valid tree name already strip the `_’
characters.
Connection Structures 127

128 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCFRAG
Fragments an NCP request into the appropriate packet size.

Service: Connection

Defined In: nwclxcon.h

Structure
typedef struct tagNWCCFrag
{
 nptr address;
 nuint length;
} NWCCFRAG, N_FAR *pNWCCFrag;

Fields
address

Points to the reply buffer.

length
Specifies the size of the buffer.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWCCTranAddr
Defines the transport address for the specified connection

Service: Connection

Defined In: nwclxcon.h and clxwin32

Structure
typedef struct
 nuint32 type ;
 nuint32 len ;
 pnuint8 buffer ;
} NWCCTranAddr;

Delphi Structure
Defined in nwclxcon.inc

NWCCTranAddr = packed Record
 tranType : nuint32;
 len : nuint32;
 buffer : pnuint8
 End;

Fields
type

(IN/OUT) Specifies the type of the transport address (see Section 5.12, “Transport Type
Values,” on page 139).

len
(IN/OUT) Specifies the length of the buffer to hold the transport address upon input. Specifies
the amount of the buffer that was actually used upon output.

buffer
(OUT) Points to a buffer containing the transport address.

Remarks
If the value returned in the len field is greater than the original value passed to the len field, the
returned value specifies the total length of the buffer needed to return all the information.

Addresses using this structure are in printable order, and have a format that is the same as the format
for the NWFSE_NETWORK_ADDRESS (Server Management) structure. The table below
describes the address format:
Connection Structures 129

130 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Table 4-1 Address Format

NOTE: For the NLM platform, specifying the socket after an IP address is allowed but not
necessary. It is recommended that you simply omit the socket value and specify a length of 4.

This information is clearer to understand with the following examples.

Suppose a server has an IPX Internal Network Number of 01012493. The NWCCTranAddr
structure would be filled out as follows (an IP address would be filled out similarly, using the order
from the table above):

NWCCTranAddr tranAddr;
nuint8 networkAddress[12];

tranAddr.type = NWCC_TRAN_TYPE_IPX;
tranAddr.len = 12;
tranAddr.buffer = networkAddress;

networkAddress[0] = 0x01; /* Network Address */
networkAddress[1] = 0x01;
networkAddress[2] = 0x24;
networkAddress[3] = 0x93;
networkAddress[4] = 0x00; /* Node */
networkAddress[5] = 0x00;
networkAddress[6] = 0x00;
networkAddress[7] = 0x00;
networkAddress[8] = 0x00;
networkAddress[9] = 0x01;
networkAddress[10] = 0x04; /* Socket - Always 0x04, 0x51 for IPX */
networkAddress[11] = 0x51;

To connect to a server at the IP address 10.4.3.22, the NWCCTranAddr structure would be filled out
as follows (Windows 95/98):

NWCCTranAddr tranAddr;
nuint8 networkAddress[6];

TranType Length Address Format

IPX 12 bytes Network (4 bytes) - The server’s IPX Internal Network Number
(ServerID)

Node (6 bytes) - 0x00 0x00 0x00 0x00 0x00 0x01

Socket (2 bytes) - 0x04 0x51

TCP or UDP 6 bytes For Windows NT/2000

• Socket (2 bytes) - 0x02 0x0C

• IP Address (4 bytes), network (printable) order

For Windows 95/98 and NLM

• IP Address (4 bytes), network (printable) order

• Socket (2 bytes) - 0x02 0x0C (omit on NLM, see note below)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
tranAddr.tranType = NWCC_TRAN_TYPE_TCP;
tranAddr.len = 6;
tranAddr.buffer = networkAddress;

/* Windows 95/98 Version */
networkAddress[0] = 10; /* Network Address */
networkAddress[1] = 4;
networkAddress[2] = 3;
networkAddress[3] = 22;
networkAddress[4] = 0x02; /* Socket - Always 0x02, 0x0C */
networkAddress[5] = 0x0C;

For NLM, the structure is filled out in the same way, but the length is shortened and the socket is not
specified:

NWCCTranAddr tranAddr;
nuint8 networkAddress[4];

tranAddr.tranType = NWCC_TRAN_TYPE_TCP;
tranAddr.len = 4;
tranAddr.buffer = networkAddress;

/* NLM Version */
networkAddress[0] = 10; /* Network Address */
networkAddress[1] = 4;
networkAddress[2] = 3;
networkAddress[3] = 22;

To connect to a server at the IP address 10.4.3.22, the NWCCTranAddr structure would be filled out
as follows (Windows NT/2000):

NWCCTranAddr tranAddr;
nuint8 networkAddress[6];

tranAddr.tranType = NWCC_TRAN_TYPE_TCP;
tranAddr.len = 6;
tranAddr.buffer = networkAddress;

 /* Windows NT/2000 Version */
networkAddress[0] = 0x02; /* Socket - Always 0x02, 0x0C */
networkAddress[1] = 0x0C;
networkAddress[2] = 10; /* Network Address */
networkAddress[3] = 4;
networkAddress[4] = 3;
networkAddress[5] = 22;
Connection Structures 131

132 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWCCVersion
Defines the NetWare server version of the connection

Service: Connection

Defined In: nwclxcon.h and clxwin32

Structure
typedef struct
 nuint major ;
 nuint minor ;
 nuint revision ;
} NWCCVersion;

Delphi Structure
Defined in nwclxcon.inc

 NWCCVersion = packed Record
 major : nuint;
 minor : nuint;
 revision : nuint
 End;

Fields
major

Specifies the major version of NetWare. For example, major will be 4 for NetWare 4.1.

minor
Specifies the minor version of NetWare. For example, minor will be 12 for NetWare 3.12.

revision
Specifies an interim release number.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWINET_ADDR
Returns the internet address for the specified connection

Service: Connection

Defined In: nwconnec.h and calwin32

Structure
typedef struct
{
 nuint8 networkAddr[4];
 nuint8 netNodeAddr[6];
 nuint16 socket;
 nuint16 connType;
} NWINET_ADDR;

Delphi Structure
 NWINET_ADDR = packed Record
 networkAddr : Array[0..3] Of nuint8;
 netNodeAddr : Array[0..5] Of nuint8;
 socket : nuint16;
 connType : nuint16;
 End;

Fields
networkAddr

Specifies the network address.

netNodeAddr
Specifies the network node address.

socket
Specifies the network socket in HI-LO byte order.

connType
Specifies the connection type used for NetWare 3.11 and above only (see Section 5.1,
“Connection Type Values,” on page 135).

Remarks
On Intel-based platforms, the value in socket needs to be byte swapped from its original HI-LO
order.
Connection Structures 133

134 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

5
novdocx (E

N
U

) 01 February 2006
5Connection Values

This documentation describes the values associated with Connection.

5.1 Connection Type Values
The following values defined in nwsfe.h indicate active connection types. Note that NCP has two
connection types, one for IPX and one for IP.

5.2 Connection State Values
These values indicate the state of the connection and are set in the openState parameter:

Value Connection Type Comment

1 (Reserved for CLIB backward compatability)

2 FSE_NCP_CONNECTION_TYPE NCP connection over IPX

3 FSE_NLM_CONNECTION_TYPE

4 FSE_AFP_CONNECTION_TYPE

5 FSE_FTAM_CONNECTION_TYPE

6 FSE_ANCP_CONNECTION_TYPE

7 FSE_ACP_CONNECTION_TYPE

8 FSE_SMB_CONNECTION_TYPE

9 FSE_WINSOCK_CONNECTION_TYPE

10 FSE_HTTP_CONNECTION_TYPE

11 FSE_UDP_CONNECTION_TYPE NCP connection over IP (NetWare 5.x
or above)

C Value Delphi Value Value Name

0x0001 $0001 NWCC_OPEN_LICENSED

0x0002 $0002 NWCC_OPEN_UNLICENSED

0x0004 $0004 NWCC_OPEN_PRIVATE: For the Windows platform, the requester will
ignore searching the connection table and always create a new
connection. Such a connection can be seen only by the application
that creates the connection. Not supported on NetWare. Using this
value, it is possible to create more than one NCP connection on an
Windows NT machine to the same server (while still being in the same
Windows NT security context). However, you will be creating attached
connections that cannot be used to access, for example, a file system.
Connection Values 135

136 NDK: Conne

novdocx (E
N

U
) 01 February 2006
5.3 Feature Code Values
These are the feature code values:

5.4 infoType Parameter Values
The NWCCGetConnInfo (page 35) and NWCCGetConnRefInfo (page 42) functions use one of the
following flags in the infoType parameter to indicate the type of data to return:

0x0008 $0008 NWCC_OPEN_PUBLIC: For the Windows platform, the requester will
first look for whether the connection to the server that is being
requested is already established. If it is an established connection, the
requester will return the handle to the existing connection; otherwise,
the requester creates a new connection.

0x0010 $0010 NWCC_OPEN_EXISTING_HANDLE

0x0100 $0100 NWCC_OPEN_NEAREST

0x0200 $0200 NWCC_OPEN_IGNORE_CACHE

C Value Name

0x0001 NWCC_FEAT_PRIV_CONN

0x0002 NWCC_FEAT_REQ_AUTH

0x0003 NWCC_FEAT_SECURITY

0x0004 NWCC_FEAT_NDS

0x0005 NWCC_FEAT_NDS_MTREE

0x0006 NWCC_FEAT_PRN_CAPTURE

C Value Value Minimum Buffer Size: Description

0x0000 NWCC_INFO_NONE

0x0001 NWCC_INFO_AUTHENT_STATE nuint: Returns Authentication state

0x0002 NWCC_INFO_BCAST_STATE nuint: Returns Broadcast state

0x0003 NWCC_INFO_CONN_REF nuint32: Returns connection reference

0x0004 NWCC_INFO_TREE_NAME nstr * length of
NW_MAX_TREE_NAME_LEN(33): Returns
NDS tree name

0x0005 NWCC_INFO_CONN_NUMBER nuint: Returns connection number

0x0006 NWCC_INFO_USER_ID nuint32

0x0007 NWCC_INFO_SERVER_NAME nstr * length of
NW_MAX_SERVER_NAME_LEN(49)

0x0008 NWCC_INFO_NDS_STATE nuint

C Value Delphi Value Value Name
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
5.5 NWCC_INFO_AUTHENT_STATE Values
NWCC_INFO_AUTHENT_STATE can return one of the following values:

5.6 NWCC_INFO_BCAST_STATE Values
NWCC_INFO_BCAST_STATE can return one of the following:

5.7 NWCC_INFO_LICENSE_STATE Values
NWCC_INFO_LICENSE_STATE can return one of the following:

0x0009 NWCC_INFO_MAX_PACKET_SIZE nuint

0x000A NWCC_INFO_LICENSE_STATE nuint

0x000B NWCC_INFO_DISTANCE nuint

0x000C NWCC_INFO_SERVER_VERSION sizeof NWCCVersion (page 132)

0x000D NWCC_INFO_TRAN_ADDR sizeof NWCCTranAddr (page 129)

0x000E NWCC_INFO_IDENTITY_HANDLE nuint32

0xFFFF NWCC_INFO_RETURN_ALL Pointer to NWCCConnInfo (page 125)

C Value Delphi Value Value Name: Description

0x0000 $0000 NWCC_AUTHENT_STATE_NONE: Not authenticated

0x0001 $0001 NWCC_AUTHENT_STATE_BIND: Bindery authentication

0x0002 $0002 NWCC_AUTHENT_STATE_NDS: NDS authentication

C Value Delphi Value Value Name: Description

0x0000 $0000 NWCC_BCAST_PERMIT_ALL: Permit all broadcast messages

0x0001 $0001 NWCC_BCAST_PERMIT_SYSTEM: Permit all system broadcast
messages

0x0002 $0002 NWCC_BCAST_PERMIT_NONE: Do not permit any broadcast
messages

0x0003 $0003 NWCC_BCAST_PERMIT_POLL: Permit polling to see if any
broadcast messages are stored on the server

C Value Delphi Value Value Name: Description

0x0000 $0000 NWCC_NOT_LICENSED: Connection is not licensed

0x0001 $0001 NWCC_CONNECTION_LICENSED: Connection is licensed

C Value Value Minimum Buffer Size: Description
Connection Values 137

138 NDK: Conne

novdocx (E
N

U
) 01 February 2006
5.8 NWCC_INFO_NDS_STATE Values
NWCC_INFO_NDS_STATE can return one of the following:

5.9 Name Format Values
These are the name format values:

5.10 Scan Flag Values
These are the scan flag values:

0x0002 $0002 NWCC_HANDLE_LICENSED: Connection is scheduled to be licensed
once it is authenticated

C Value Delphi Value Value Name

0x0000 $0000 NWCC_NDS_NOT_CAPABLE: Server does not support NDS

0x0001 $0001 NWCC_NDS_CAPABLE: Server supports NDS

C Value Delphi Value Value Name

0x0001 $0001 NWCC_NAME_FORMAT_NDS: Used with NWCCOpenConnByName
(page 55) and the Windows NT requester to specify an NDS object
name as an open target

0x0002 $0002 NWCC_NAME_FORMAT_BIND: Used with a server name

0x0008 $0008 NWCC_NAME_FORMAT_NDS_TREE: Used with an NDS tree name

0x8000 $8000 NWCC_NAME_FORMAT_WILD: Used with either a tree or server
name. Allows the system to determine the type of name that is passed
to NWCCOpenConnByName.

C Value Value Name: Description

0x0000 NWCC_MATCH_NOT_EQUALS: Specifies every connection not matching a given
data member should be scanned.

0x0001 NWCC_MATCH_EQUALS: Specifies every connection matching a given data
member should be scanned.

0x0002 NWCC_RETURN_PUBLIC: Specifies all public connections should be considered in
the scan.

0x0004 NWCC_RETURN_PRIVATE: Specifies all private connections should be considered
in the scan.

0x0008 NWCC_RETURN_LICENSED: Specifies that only licensed connections are desired.

0x0010 NWCC_RETURN_UNLICENSED: Specifies that only unlicensed connections are
desired.

C Value Delphi Value Value Name: Description
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NOTE: Note that NWCC_MATCH_NOT_EQUALS and NWCC_MATCH_EQUALS may not be
set simultaneously while all of the other values for the scanFlags parameter may be ORed
together. Also, when the scanInfoLevel parameter is set to NWCC_INFO_NONE,
NWCC_MATCH_NOT_EQUALS and NWCC_MATCH_EQUALS are ignored.

To have all public and private connections considered in a scan, do one of these two:

• Use both NWCC_RETURN_PUBLIC and NWCC_RETURN_PRIVATE.
• Do not use either NWCC_RETURN_PUBLIC or NWCC_RETURN_PRIVATE.

To have all licensed and unlicensed connections considered in a scan, do one of these two:

• Use both NWCC_RETURN_LICENSED and NWCC_RETURN_UNLICENSED.
• Do not use either NWCC_RETURN_LICENSED or NWCC_RETURN_UNLICENSED.

5.11 Security Flag Values
The following values may be ORed together:

NOTE: NWCC_SECUR_SIGNING_NOT_IN_USE and
NWCC_SECURITY_SIGNING_IN_USE are exclusive to each other.

NWCC_SECUR_LEVEL_SIGN_HEADERS and NWCC_SECURITY_LEVEL_SIGN_ALL are
exclusive to each other.

5.12 Transport Type Values
These are the transport type values:

Value Name

0x00000000 NWCC_SECURITY_SIGNING_NOT_IN_USE

0x00000001 NWCC_SECURITY_SIGNING_IN_USE

0x00000100 NWCC_SECURITY_LEVEL_CHECKSUM

0x00000200 NWCC_SECUR_LEVEL_SIGN_HEADERS

0x00000400 NWCC_SECURITY_LEVEL_SIGN_ALL

0x00000800 NWCC_SECURITY_LEVEL_ENCRYPT

C Value Delphi Value Value Name

0x0001 $0001 NWCC_TRAN_TYPE_IPX

0x0003 $0003 NWCC_TRAN_TYPE_DDP

0x0004 $0004 NWCC_TRAN_TYPE_ASP

0x0008 $0008 NWCC_TRAN_TYPE_UDP

0x0009 $0009 NWCC_TRAN_TYPE_TCP
Connection Values 139

140 NDK: Conne

novdocx (E
N

U
) 01 February 2006
0x000A $000A NWCC_TRAN_TYPE_UDP6

0x000B $000B NWCC_TRAN_TYPE_TCP6

0x8000 $8000 NWCC_TRAN_TYPE_WILD

C Value Delphi Value Value Name
ction, Message, and NCP Extensions

6
novdocx (E

N
U

) 01 February 2006
6Connection Number and Task
Management Concepts

This documentation describes Connection Number and Tasks Management, its functions, and
features.

6.1 Overview
A NetWare® server maintains a connection table which contains a series of slots that represent
connection numbers. When a remote client logs in to a server, the server finds the first available slot
and assigns that connection number to the client. That slot then becomes the remote client’s
connection number, which the client uses thereafter to identify itself to the server. The allocated
connection numbers are not necessarily consecutive numbers because a previously allocated
connection number might be freed and available for another remote client.

6.2 Remote and Local Connections
All connections are considered to be remote or local. A workstation connection is always a remote
connection, since the machine it runs on is physically separate from the server. An NLM connection,
on the other hand, can be remote or local. The connection is local when the NLM accesses the server
the NLM is loaded on, but remote when accessing other servers.

By default, NLM applications are automatically allocated connection zero (0). Connection 0 gives
your NLM unlimited access to the local server’s file system. In addition to connection 0, a local
NLM frequently needs to get a connection to the local server, and it always needs to do so to gain
access to a remote server.

The following figure shows a remote connection scenario. Workstations 1 and 48 have established
connections to a server. Workstation 1 has connection number 23, workstation 48 has connection
number 93, and so on. These workstations specify their connection numbers whenever they send a
Connection Number and Task Management Concepts 141

142 NDK: Conne

novdocx (E
N

U
) 01 February 2006
request to the server, which uses the number to verify security and carry out accounting and other
functions.

Figure 6-1 Remote Connections in the Connection Table

The following figure shows NLM applications that have remote and local connections. NLM A is
local to the server and has multiple connections including connection 0. NLM applications B and S
have remote connections to the server and therefore have connections other than 0.

Figure 6-2 Local and Remote Connections in the Connection Table
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
6.3 Task Numbers
In NetWare, a task is a program running on a network workstation or server. NetWare uses a task
number to identify each task.

NetWare assigns task numbers sequentially, beginning with task number one. The combination of
the connection number and the task number yields a unique connection/task number pair. This
connection number/task number is unique only for a given computer.

NetWare uses the connection number/task number to manage network resources. Since NLM
applications can access resources on their own behalf or on behalf of the client, NLM applications
must specify both a connection number and a task number when making a request.

To run more than one session on a single connection, the server allocates task numbers, creating a
connection/task number pair, as shown on Connection 93 in the following figure. Tasks 1, 2, and 3
are all being executed over Connection 93.

Figure 6-3 Running Multiple Sessions on a Connection

6.4 NLM Applications and Connections
An NLM obtains connections to a remote server in the same manner that a workstation does. An
NLM also can get additional connections to its local server (besides connection 0).

To request a connection, an NLM uses the same functions that workstations do,
NWLoginToFileServer (Server Management) or NWAttachToFileServer (Server Management)
(NetWare 3.x and above). The difference between the NLM and the workstation is in the case of a
local connection the NLM request goes through the NetWare API and directly into the NetWare OS.
In the case of a remote connection, it goes out on the wire the same as a workstation request.

6.5 Current Connection and Task
In NLM development, current connections and current tasks are part of a thread group’s context
(information that lets the CPU pick up where it left off when that thread was swapped out). An NLM
has the ability to change the connection or task number of the current thread (the one being
processed by the CPU).
Connection Number and Task Management Concepts 143

144 NDK: Conne

novdocx (E
N

U
) 01 February 2006
For example, if you had an NLM that serves many clients, you might want to use a single thread to
do work for a number of them in succession. After doing some work for one client, your NLM could
call SetCurrentConnection (page 166) to change the connection number of that thread to a different
client’s number. (This would set the current connection for the entire thread group.) Then, after
doing some work for that client, your NLM could set the current connection to that of another client,
and so on through the list of its clients.

You could change task numbers in the same manner with SetCurrentTask (page 169) if you wanted
to serve many or all of your clients on a single connection. You would spawn as many thread groups
as you had clients and then set a different task number for each one. For example, if you had 10
clients and the connection you are using to service them is 52, you would allocate 10 task numbers
for Connection 52. Say the server allocated you tasks 1 to 10. The connection/task number of the
first thread group would be 52/1, the second thread group would be 52/2, and so on.

6.6 Connection Numbers
When making a request, an NLM can specify three types of connection numbers:

• connection 0
• the number of an already logged-in workstation
• a new connection number (obtained from a server)

6.7 Connection Zero
Because NLM applications are loaded into server memory alongside the server, they are granted
special access to the server through connection zero on the file server ID zero. Connection 0 denotes
that the connection is local to the server, as opposed to a connection sending requests from a remote
server or workstation.

The server where the NLM is loaded is file server ID 0. Connection 0 is only valid when the thread
group’s current file server ID is 0.

NOTE: NLM applications using connection 0 create an insecure environment. The server assumes
that, since the request is on connection 0, it need not worry about security. As you can see, NLM
applications are trusted partners working with the NetWare OS.

As trusted partners, NLM applications share in the control of certain operating system resources,
such as the CPU, file system, and connections. This interaction in NLM applications the ability to
manipulate connections and tasks in ways not available to applications running on workstations.

Because connection 0 is server-equivalent (an extension of the server), if an NLM does work for its
clients as connection 0, the server is not able to tell which client it is servicing. For this reason, and
because connection 0 has unrestricted access to services, only NLM applications or their threads that
fit the following profile should do work as connection 0:

• They are not depending on NetWare Accounting to track their users’ consumption of resources.
• Their access to NetWare (trustee rights) never needs to be restricted.

Monitor and control programs fit this profile.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
6.8 Proxy Work
When an NLM does work by proxy, it makes requests to the server under the connection number of
the client on whose behalf it is making the request.

An NLM can do work by proxy in a couple of ways. It can either get a connection and log an object
of its choosing in on that connection, or it can temporarily take over the client’s existing connection
to the local server.

6.9 Multiple Thread Groups on a Single
Connection
You could give multiple thread groups the same connection number with SetCurrentConnection
(page 166). Then, with SetCurrentTask (page 169), you could assign each of them a different task
number and have each of them perform a different task for a single user. Multiple threads working a
single connection can accomplish the work more efficiently than if a single thread were doing every
single task involved. This is because, while a thread is waiting for information (blocking), other
threads are running.

In the following figure, three thread groups-TG 1, TG 2, and TG 3-each have their connection set to
3 and each has a different task number. TG 1 is task 1, TG 2 is task 2, and so on. In this way, each
thread group has a unique connection/task pair that is part of its own context.

Figure 6-4 Thread Groups and Task Numbers

To reduce the danger of duplicating a connection/task pair, call AllocateBlockOfTasks (page 152) to
get a unique set of tasks for that connection. This way you can use the server to keep track of task
numbers.

A single connection works well for control and monitor types of programs, where rights and
accounting are not issues. But, if you want to preserve your client’s rights or track the client’s use of
resources, you will want to do work for them by proxy.
Connection Number and Task Management Concepts 145

146 NDK: Conne

novdocx (E
N

U
) 01 February 2006
6.10 Connection Number and Task Management
Functions
These function descriptions use the terms station, connection, and connection number
interchangeably:

Function Description

AllocateBlockOfTasks Returns a set of unique task numbers for the exclusive use of the
requesting NLM.

CheckIfConnectionActive Checks if the specified connection number is being used by a file
access.

DisableConnection Temporarily prevents the server from servicing any requests (except
requests made by the calling NLM) for the specified connection
number. Be careful when calling this function since the client using the
specified connection is temporarily disabled..

EnableConnection Reverses the effect of DisableConnection.

GetCurrentConnection Returns the calling thread group’s current connection number.

GetCurrentFileServerID Returns the calling thread group’s current file server ID.

GetCurrentTask Returns the calling thread group’s current task number.

LoginObject Logs in the specified object to the specified connection number on the
current file server ID.

LogoutObject Logs out the object logged-in on the specified connection number on
the thread group’s current file server ID.

ReturnBlockOfTasks Frees the block of task numbers allocated with AllocateBlockOfTasks
or SetCurrentTask.

ReturnConnection Frees a connection the NLM had allocated.

SetCurrentConnection For the current thread group, changes the current connection number.
Can also be used to allocate a new connection number.

SetCurrentFileServerID Sets the current file server’s ID.

SetCurrentTask Sets the calling thread group’s current task number, or allocates a new
task by passing in -1.
ction, Message, and NCP Extensions

7
novdocx (E

N
U

) 01 February 2006
7Connection Number and Task
Management Tasks

This documentation describes common tasks associated with Connection Number and Task
Management.

7.1 Logging In
In addition to being able to change your current connection and task number, you can log an object
in on any connection that your NLM has allocated.

Your NLM can get a connection to a server, local or remote, and then log in the client on that
connection with LoginObject (page 160).

DisableConnection (page 154) allows your NLM to disable a connection for any object’s requests
except those originated by your NLM until it is finished using the connection.

7.2 Intervening on an Established Connection
Call DisableConnection (page 154) to prevent the server from filling any requests other than those
your NLM originates until your NLM is finished using a connection. Be careful when calling this
function since the client using the specified connection is temporarily disabled.

7.3 Doing Work on a Single Connection
One advantage of using a single connection is that it does not take up a large number of connections
on a server. A disadvantage is that if all clients are being served on a single connection, there is no
way to determine which client requested the work. Consequently, there is no way to test whether the
client has the trustee rights necessary to perform that request. Nor is there a way to charge the client
for using server resources.

An NLM can use a single connection to do all its work on behalf of all its clients. It could use
connection 0 or it could use a connection that it has obtained by calling NWLoginToFileServer or
NWAttachToFileServer (Server Management).

7.4 Using the Number of an Already Logged-In
Workstation
Your NLM may specify the connection number of a client so that its access is limited to the trustee
rights of the object logged in on that connection.

Most client-server programs that use the client’s connection number conform to a profile opposite
that for connection 0:

• They need charge the client for services consumed by the NLM on the client’s behalf.
• They need to restriction the client’s access to network resources. For example, only the

supervisor has the right to close the Bindery. But if an NLM were doing work for a user that is
Connection Number and Task Management Tasks 147

148 NDK: Conne

novdocx (E
N

U
) 01 February 2006
not supervisor as connection 0, it would execute a request from that user to close the Bindery.
Also, you wouldn’t want all the users of your database NLM to have access to the entire
database.

An NLM that is using a client’s connection number to access the file system should do one of the
following two things to ensure it has a unique connection/task number pair:

1 To avoid accessing the file system at the same time as your client workstation or other NLM
applications, use DisableConnection (page 154) to temporarily reserve the workstation’s
connection number solely for the use of the NLM. Call EnableConnection (page 156) to
reverse the effect of DisableConnection (page 154). Be careful when calling this function since
the client using the specified connection is temporarily disabled.

2 Allocate a new task and set that to be your current task number using SetCurrentTask
(page 169).

7.5 Allocating a New Connection Number and
Logging In
An NLM can allocate a new connection number and then log in one of its users on that connection.
NLM applications that use connections in this way fit the same profile as those that take over a
user’s connection. It is another way that an NLM can do work for a user and charge the user for
resource consumption and preserve the user’s trustee rights.

An NLM can allocate a new connection number with one of the following functions:

• AttachByAddress or AttachToFileServer
• SetCurrentConnection

When an NLM calls one of these functions, it is attached to the server but not authenticated (not
logged-in). Therefore, it has very limited access rights. Your NLM can then log in a user on that
connection by calling LoginObject (page 160), passing it the user’s Directory or Bindery name,
object type, and password. (If you don’t know the password, you can pass in
LOGIN_WITHOUT_PASSWORD.) The access rights of your NLM on that connection are those of
the particular user.

When using SetCurrentConnection, you may set any connection number. However, on remote
servers, you may set only those that your NLM has logged in on with NWLoginToFileServer
(Server Management).

7.6 Allocating One or More Tasks
If you want to specify a task number other than the one your current thread group has, you can do so
with SetCurrentTask (page 169). It sets the current task to the value you pass it as taskNumber.

You can also use SetCurrentTask (page 169) to allocate one new task number for the current thread
group. If you pass -1 as the taskNumber, it allocates a new task number; otherwise, it sets the
current task to the value you pass it.

If you need more than one task number, use AllocateBlockOfTasks (page 152). This function returns
the first task number. If it fails, it returns zero
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
When you are finished using the tasks that were allocated by either AllocateBlockOfTasks or
SetCurrentTask, always call ReturnBlockOfTasks (page 164) to free the task numbers before
unloading.

7.7 Servicing a Single Connection With Many
Users
An NLM can use task numbers to have the server perform tasks for multiple users on a single
connection. For obvious reasons, each connection/task number pair you specify needs to be unique
on that server. To allow your NLM to service multiple users on a single connection, allocate a block
of tasks (AllocateBlockOfTasks) and then assign a different task to each user (SetCurrentTask).
Connection Number and Task Management Tasks 149

150 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

8
novdocx (E

N
U

) 01 February 2006
8Connection Number and Task
Management Functions

This documentation alphabetically lists the Connection Number and Task Management functions
and describes their purpose, syntax, parameters, and return values.

NOTE: Connection Number and Task Management provides connection functions for NLM
development only.

• “AllocateBlockOfTasks” on page 152
• “CheckIfConnectionActive” on page 153
• “DisableConnection” on page 154
• “EnableConnection” on page 156
• “GetCurrentConnection” on page 157
• “GetCurrentFileServerID” on page 158
• “GetCurrentTask” on page 159
• “LoginObject” on page 160
• “LogoutObject” on page 163
• “ReturnBlockOfTasks” on page 164
• “ReturnConnection” on page 165
• “SetCurrentConnection” on page 166
• “SetCurrentFileServerID” on page 168
• “SetCurrentTask” on page 169
Connection Number and Task Management Functions 151

152 NDK: Conne

novdocx (E
N

U
) 01 February 2006
AllocateBlockOfTasks
Returns a unique set of task numbers for the exclusive use of the requesting NLM

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

LONG AllocateBlockOfTasks (
 LONG numberWanted);

Parameters
numberWanted

(IN) Specifies the requested number of tasks in the set.

Return Values
This function returns the first task number in the set. It returns a value of 0 if no task numbers are
available.

Remarks
Several entities can make requests to NetWare® 3.x and above using a given connection number.
Unique task numbers enable the calling NLM to use a connection number without any danger of
conflict with other entities using that same connection. AllocateBlockOfTasks returns a unique set
of task numbers, ensuring that the connection number/task number combination of the NLM is
unique.

AllocateBlockOfTasks allocates the requested number of consecutive task numbers on the current
connection for exclusive use by the NLM. An NLM that meets the following criteria would call this
function:

• Needs more than one task number for a given connection number.
• Uses connection 0 or uses a client’s connection number.

The SetCurrentTask function should be used if the NLM needs only one task.

See Also
ReturnBlockOfTasks (page 164), SetCurrentTask (page 169)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
CheckIfConnectionActive
 Determines whether the specified connection number is processing a file-service request

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

BYTE CheckIfConnectionActive (
 LONG connectionNumber);

Parameters
connectionNumber

(IN) Specifies the connection number being checked.

Return Values
If the connection is active and processing a file service request, the function returns a value of 1.
Otherwise, it returns a value of 0.

Remarks
The CheckIfConnectionActive function determines whether the connection number is being used to
process a file-service request. If the connection is being used for a service other than a file service
request, this function returns 0.
Connection Number and Task Management Functions 153

154 NDK: Conne

novdocx (E
N

U
) 01 February 2006
DisableConnection
Temporarily prevents the server from servicing any requests (except requests made by the calling
NLM) for the specified connection number

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int DisableConnection (
 LONG connection);

Parameters
connection

(IN) Specifies the connection number to disable.

Return Values
The following table lists return values and descriptions.

Remarks
The DisableConnection function reserves the specified connection number solely for the use of the
NLM. It prevents both the workstation and other NLM applications from using the connection
number. However, other NLM applications must cooperate by also calling this function.

While the connection is temporarily disabled, the NLM can perform file service functions without
any conflict from the workstation or other NLM applications. Disable a connection number for only
a short period.

Once the NLM has used the specified connection number, the NLM should call EnableConnection,
allowing the server to again service requests for the specified connection number.

An NLM should check the completion code of this function to make sure another NLM does not
already have the connection disabled, or is otherwise in an incompatible state (such as disconnecting
or processing an NCP request).

Value Hex Name Description

0 (0x00) ESUCCESS Connection was disabled.

-1 EFAILURE Connection is in use or already disabled.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
See Also
CheckIfConnectionActive (page 153),
Connection Number and Task Management Functions 155

156 NDK: Conne

novdocx (E
N

U
) 01 February 2006
EnableConnection
Enables the server to service requests for the specified connection

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int EnableConnection (
 LONG connection);

Parameters
connection

(IN) Specifies the connection number to enable.

Return Values
The following table lists return values and descriptions.

Remarks
This function reverses the effect of the DisableConnection function, allowing the server to again
service requests for the specified connection number.

Call EnableConnection only if you have previously called DisableConnection successfully

See Also
• DisableConnection (page 154)

Value Hex Name Description

0 (0x00) ESUCCESS Connection was enabled.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetCurrentConnection
Returns the current connection on the current server

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

LONG GetCurrentConnection (void);

Return Values
This function returns the current connection number.

Remarks
The current connection number is returned for the calling thread group. For information about
connection numbers, see Section 6.2, “Remote and Local Connections,” on page 141.

See Also
SetCurrentConnection (page 166)
Connection Number and Task Management Functions 157

158 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetCurrentFileServerID
Returns the current file server ID number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

WORD GetCurrentFileServerID (void);

Return Values
Returns the current file server ID.

Remarks
If the file server ID is nonzero, the current server is remote. If the file server ID is zero, the current
server is local.

See Also
SetCurrentFileServerID (page 168)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetCurrentTask
Returns the calling thread group’s current task number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

LONG GetCurrentTask (void);

Return Values
This function returns the current task number.

Remarks
The current task number is returned for the calling thread group.

See Also
SetCurrentTask (page 169)
Connection Number and Task Management Functions 159

160 NDK: Conne

novdocx (E
N

U
) 01 February 2006
LoginObject
Logs in the specified object to the specified connection number on the server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int LoginObject (
 LONG connection,
 char *objectName,
 WORD objectType,
 char *password);

Parameters
connection

(IN) Specifies the connection number the object is to be logged in to.

objectName
(IN) Points to the string containing the name of the object.

objectType
(IN) Specifies the type of the object.

password
(IN) Points to the string containing the object’s password (lowercase passwords can be
specified).

Return Values
The following table lists return values and descriptions.

Value Hex Name and description

0 0x00 ESUCCESS: Logout of object was successful

-1 EFAILURE: Connection number not valid

150 0x96 ERR_SERVER_OUT_OF_MEMORY
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
Call SetCurrentConnection first to select the connection, or call GetCurrentConnection to obtain the
current connection. The current file server ID does not change.

The objectType parameter classifies an object as a user, user group, server, and so on. The
following is a list of well-known object types:

Table 8-1 Well-Known Object Types

An NLM typically uses object type 1 (user) or a type that the developer has requested from Novell®.

LoginObject logs in the object on the specified connection on the local server with the specified
object name and type and with the specified password.

To log in as an object on a remote server, you must specify the object’s password for the password
parameter. On the local server, an NLM application can log in as an object without specifying the
object’s password. This is done by specifying LOGIN_WITHOUT_PASSWORD for the
password parameter. If your application uses LOGIN_WITHOUT_PASSWORD, it must ensure
that NetWare security is not breached.

Value Object Type

0xFFFF Wild

0x0000 Unknown

0x0001 User

0x0002 User Group

0x0003 Print Queue

0x0004 File Server

0x0005 Job Server

0x0006 Gateway

0x0007 Print Server

0x0008 Archive Queue

0x0009 Archive Server

0x000A Job Queue

0x000B Administration

0x0024 Remote Bridge Server

0x0047 Advertising Print Server

0x004C NetWare SQL

0x8000 Reserved up to
Connection Number and Task Management Functions 161

162 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWLoginToFileServer (Server Management), LogoutObject (page 163)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
LogoutObject
Logs out the logged-in object on the specified connection on the current server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int LogoutObject (
 LONG connection);

Parameters
connection

(IN) Specifies the connection number from which the object is to be logged out.

Return Values
The following table lists return values and descriptions.

Remarks
LogoutObject only logs out connections on the current server (currently selected file server ID).

LogoutObject destroys your connection to a remote server. Therefore, if your current connection is
to that server, your current connection is changed. On a local server, this function does not destroy
your connection.

See Also
LoginObject (page 160)

Value Hex Name Description

0 (0x00) ESUCCESS Logout of object was successful.

-1 EFAILURE Invalid connection number or NLM
has not logged in to the specified
connection.

150 (0x96) ERR_SERVER_OUT_OF_MEMORY
Connection Number and Task Management Functions 163

164 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ReturnBlockOfTasks
Frees a block of task numbers

Local Servers: blocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int ReturnBlockOfTasks (
 LONG startingTask,
 LONG numberOfTasks);

Parameters
startingTask

(IN) Specifies the first task number in the set.

numberOfTasks
(IN) Specifies the number of task numbers in the set.

Return Values
The following table lists return values and descriptions.

Remarks
The ReturnBlockOfTasks function frees one or more task numbers the NLM previously allocated
with the SetCurrentTask or AllocateBlockOfTasks function. An NLM should call the
ReturnBlockOfTasks function to return the allocated task numbers before unloading.

See Also
AllocateBlockOfTasks (page 152), SetCurrentTask (page 169)

Value Hex Name Description

0 (0x00) ESUCCESS Block of task numbers are freed.

NetWare Error Not successful.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
ReturnConnection
Returns a connection number the NLM previously allocated

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

int ReturnConnection (
 LONG connectionNumber);

Parameters
connectionNumber

(IN) Specifies the connection number obtained with SetCurrentConnection.

Return Values
The following table lists return values and descriptions.

Remarks
ReturnConnection returns a connection number previously allocated by SetCurrentConnection,
LoginObject, NWAttachToFileServer, or LoginToFileServer.

See Also
NWAttachToFileServer (Server Management), LoginObject (page 160), NWLoginToFileServer
(Server Management), SetCurrentConnection (page 166)

Value Hex Name Description

0 (0x00) ESUCCESS Connection number returned.
Connection Number and Task Management Functions 165

166 NDK: Conne

novdocx (E
N

U
) 01 February 2006
SetCurrentConnection
Changes the current connection number for the current thread group or allocates a new connection
number

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

LONG SetCurrentConnection (
 LONG connectionNumber);

Parameters
connectionNumber

(IN) Specifies the connection number to set.

Return Values
If successful, this function returns the connection number that was current when you changed it so
that you can change back to it if you want to. If not successful, this function returns EFAILURE (-1).

Remarks
The SetCurrentConnection function sets the current connection number for the current thread group.
You can either pass -1 or a connection number. If you pass -1, you allocate a new connection number
for the exclusive use of your NLM, which is made the thread group’s current connection. If you pass
any other value, you change the thread group’s current connection to that value.

For example, if you have four connections, 1 through 4, and the current connection is 2, you can
change the current connection to 4 by passing 4. If you get back 2, you know you have successfully
changed the current connection to 4. On the other hand, if you want to allocate a new connection,
you pass -1. If successful, you still get back 2, and your current connection is an unknown number,
which you can identify by calling GetCurrentConnection (or by calling SetCurrentConnection again
to see what it returns).

When setting connections on the local server, you can set any available connection number;
however, when setting connection numbers on a remote server, you can set only those that your
NLM has logged in on.

See Also
GetCurrentConnection (page 157), ReturnConnection (page 165)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Example
#include <stdio.h>
#include <stdlib.h>
#include <nwcntask.h>
#include <errno.h>

main()
{
 int rc;
 rc = SetCurrentConnection (-1);
 printf ("SetCurrentConnection rc = %d\n", rc);
 if (rc == EFAILURE) return 1;
 printf("SetCurrentTask return value:%d\r\n",
 SetCurrentTask(5));
 printf("GetCurrentConnection %d\r\n",
 GetCurrentConnection());
 printf("GetCurrentTask (should be 5):%d\r\n",
 GetCurrentTask());
 getch();
}
Connection Number and Task Management Functions 167

168 NDK: Conne

novdocx (E
N

U
) 01 February 2006
SetCurrentFileServerID
Sets the current connection ID (server ID)

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

WORD SetCurrentFileServerID (
 WORD fileServerID);

Parameters
fileServerID

(IN) Specifies the file server ID to set.

Return Values
This function returns the old file server ID if successful. Otherwise, it returns EFAILURE.

Remarks
If the file server ID is nonzero (remote server), a login operation must have previously been
performed on that server or SetCurrentFileServerID returns an error.

After calling SetCurrentFileServerID, call SetCurrentConnection to set the correct connection.

When changing to a remote server, the current connection is set to the first connection number in the
connection list for that server. SetCurrentConnection can then be used to specify some other
connection.

When changing to a local server (zero), the current connection is set to the first connection number
in the local connection list. If no local logins have been performed, the current connection is set to
zero.

See Also
GetCurrentFileServerID (page 158)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
SetCurrentTask
Sets the calling thread group’s current task number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Connection Number and Task Management

Syntax
#include <nwcntask.h>

LONG SetCurrentTask (
 LONG taskNumber);

Parameters
taskNumber

(IN) Specifies the task number to set.

Return Values
This function returns the old current task number if successful. Otherwise, it returns EFAILURE.

Remarks
This function sets the current task number for the thread group. If the taskNumber parameter is -
1, a new task number is allocated. If the taskNumber parameter is not -1, the current task is set to
that value.

Call SetCurrentTask if the NLM needs to allocate only one task number for the current connection
number. If more than one task number is needed, call AllocateBlockOfTasks.

See Also
AllocateBlockOfTasks (page 152), GetCurrentTask (page 159), ReturnBlockOfTasks (page 164)
Connection Number and Task Management Functions 169

170 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

9
novdocx (E

N
U

) 01 February 2006
9Message Concepts

This documentation describes Message, its functions, and features.

9.1 Message Modes
A workstation has a configurable message mode on the NetWare server to which it’s connected. The
message mode enables and disables the reception of messages, and lets the workstation discriminate
between messages from other users and messages from the server console.

The mode also lets you control the notification feature that causes the workstation software to
retrieve a message automatically. If notification is disabled, your application must poll the server for
current messages. The following table shows possible values for the message mode. The default
value is 0, enabling all broadcasts.

Table 9-1 Message Modes

9.2 Message Size
All broadcast messages should be NULL-terminated. The message size and the number of
connections to which you can send messages depends on the version of the server.

• For NetWare 3.11b and below, a message can be from 1 to 58 bytes long including the null
terminator and can be sent to between 1 and the maximum number of possible connections
(configurable up to 256).

• For NetWare 3.11c and above, the message can be 1 to 254 bytes long including a null
terminator and be sent to as many as 62 connections.

When retrieving a message on networks running NetWare 3.11c and above, allocate a buffer at least
254 bytes in length.

You can also send messages to the NetWare server console. The message is displayed in a single line
on the console screen after the colon (:) prompt. The NetWare SEND, CASTON, and CASTOFF
utilities are examples of how to apply these functions. (CASTON and CASTOFF are NetWare 3.11
utilities.)

Mode Value Comment

Enable all 0 Receive all broadcasts.

Server only 1 Receive only server broadcasts. Discard user broadcasts.

Disable all 2 Disable all broadcasts. Discard user broadcasts. Store server
broadcast but don’t notify.

Disable notify 3 Store both user and server broadcasts but don’t notify.
Message Concepts 171

172 NDK: Conne

novdocx (E
N

U
) 01 February 2006
9.3 Message Functions
These functions send and receive broadcast messages. They are declared in nwmsg.h. It is possible
only a subset of these functions are supported by a specific client.

Function Description

 NWBroadcastToConsole Sends a message to the default NetWare server’s system console.

 NWDisableBroadcasts Informs the server that a client doesn’t want to receive messages
from other clients.

 NWEnableBroadcasts Allows a client to receive broadcast messages after broadcasts
have been disabled.

 NWGetBroadcastMessage Returns a message from the specified NetWare server. (Not
supported on Unix.)

 NWSendBroadcastMessage Sends a message to the specified logical connections on the
specified NetWare server.

 NWSendConsoleBroadcast Sends a console message to the specified logical connection. The
functions requires operator rights.

NWSetBroadcastMode Sets the message mode for the workstation on the specified
NetWare server.
ction, Message, and NCP Extensions

10
novdocx (E

N
U

) 01 February 2006
10Message Functions

This documentation alphabetically lists the Message functions and describes their purpose, syntax,
parameters, and return values.

• “NWBroadcastToConsole” on page 174
• “NWDisableBroadcasts” on page 176
• “NWEnableBroadcasts” on page 178
• “NWGetBroadcastMessage” on page 180
• “NWSendBroadcastMessage” on page 182
• “NWSendConsoleBroadcast” on page 185
• “NWSetBroadcastMode” on page 187
Message Functions 173

174 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWBroadcastToConsole
Sends a message to the default server’s system console

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWBroadcastToConsole (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *message);

Delphi

uses calwin32

Function NWBroadcastToConsole
 (conn : NWCONN_HANDLE;
 const message : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

message
(IN) Points to the NULL-terminated message to be sent.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
Under NETX, if an invalid connection handle is passed to conn, NWBroadcastToConsole will
return 0x0000. NETX will pick a default connection handle if the connection handle cannot be
resolved.

The message is displayed in a single line on the console screen after the colon (:) prompt. Messages
longer than 58 bytes are truncated without notifying the broadcasting workstation. New messages
overwrite previous messages at the console.

NCP Calls
0x2222 21 9 Broadcast To Console

0x890A NLM_INVALID_CONNECTION
Message Functions 175

176 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWDisableBroadcasts
Informs the server a client does not want to receive messages from other client

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableBroadcasts (
 NWCONN_HANDLE conn);

Delphi

uses calwin32

Function NWDisableBroadcasts
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x89FF Broadcast Disabled
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
After calling NWDisableBroadcasts, the server does not allow other clients to log messages for
forwarding to this client. If another client attempts to broadcast to a client with broadcast disabled,
0x89FF (failed) is returned. NWDisableBroadcasts can be used by any client.

NCP Calls
0x2222 21 2 Disable Broadcasts

See Also
NWEnableBroadcasts (page 178)
Message Functions 177

178 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWEnableBroadcasts
Allows a client to enable message reception after broadcast reception has been disabled by calling
NWDisableBroadcasts

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableBroadcasts (
 NWCONN_HANDLE conn);

Delphi

uses calwin32

Function NWEnableBroadcasts
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Messages are enabled by default when the connection is first established. NWEnableBroadcasts can
be called by any client.

0x0000 SUCCESSFUL
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 21 3 Enable Broadcasts

See Also
NWDisableBroadcasts (page 176)
Message Functions 179

180 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetBroadcastMessage
Returns a message from the specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetBroadcastMessage (
 NWCONN_HANDLE conn,
 pnstr8 message);

Delphi

uses calwin32

Function NWGetBroadcastMessage
 (conn : NWCONN_HANDLE;
 message : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

message
(OUT) Points to the message buffer where the message will be stored.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x89FD BAD_STATION_NUMBER
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
Because some servers support 256-byte messages, the message buffer passed in should be large
enough to contain messages of this size.

NCP Calls
0x2222 21 01 Get Broadcast Message
0x2222 21 11 Get Broadcast Message (new)
0x2222 23 17 Get File Server Information
Message Functions 181

182 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWSendBroadcastMessage
Allows a client to send a broadcast message to the specified logical connections on the specified
NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSendBroadcastMessage (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *message,
 nuint16 connCount,
 const nuint16 N_FAR *connList,
 pnuint8 resultList);

Delphi

uses calwin32

Function NWSendBroadcastMessage
 (conn : NWCONN_HANDLE;
 message : pnstr8;
 connCount : nuint16;
 connList : pnuint16;
 resultList : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

message
(IN) Points to the NULL-terminated message being sent.

connCount
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the number of connections in the connection list.

connList
(IN) Points to an array containing the connection numbers of all stations scheduled to receive
the message.

resultList
(OUT) Points to an array containing result codes for all stations being sent the broadcast.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWSendBroadcastMessage can be used by any client. The specified NetWare server attempts to
store the broadcast message in the message buffer of each target connection. A result code for each
target is returned by NWSendBroadcastMessage in resultList. Valid result codes are listed
below:

These result codes indicate whether the NetWare server has successfully placed the message in the
message buffer of the target connection. The NetWare server notifies the connection when a
message arrives. However, placing the message in the message buffer and notifying the connection

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FB INVALID_PARAMETERS

0x89FC MESSAGE_QUEUE_FULL

0x89FD BAD_STATION_NUMBER

Result code Description

0x0000 Successful. NetWare server stored the message in the target connection’s message
buffer.

0x0001 (4.0 only) Illegal station number-station number (conn) is invalid

0x0002 (4.0 only) Client not logged in-intended recipient of the message is not currently
logged in to the default server, even though the client may be logged in to the network.

0x0003 (4.0 only) Client not accepting message-intended recipient of message not accepting
incoming messages

0x0004 (4.0 only) Client already has message-server already has a message stored for
intended recipient and cannot accept another message until that recipient clears the
message from their screen

0x0096 (4.0 only) No allocation of space for the message on the server-message cannot be
sent
Message Functions 183

184 NDK: Conne

novdocx (E
N

U
) 01 February 2006
does not guarantee that the target station received the message. It is the target’s responsibility to
retrieve and display the message, depending on the broadcast mode of the connection.

A broadcast message can have the following sizes:

before 3.11 1-58 bytes
3.11 and later 1-250 bytes

A broadcast can be sent to the following maximum number of configured connections:

before 3.11 1-200
3.11 and later 1-62

Messages longer than the appropriate buffer size are truncated. The broadcasting workstation does
not receive a message regarding truncated broadcasts.

NCP Calls
0x2222 21 00 Send Personal Message (3.11a or below)
0x2222 21 10 Send Personal Message (3.11b or above)
0x2222 23 17 Get File Server Information
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWSendConsoleBroadcast
Broadcasts a message to the specified logical connections on the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSendConsoleBroadcast (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *message,
 nuint16 connCount,
 pnuint16 connList);

Delphi

uses calwin32

Function NWSendConsoleBroadcast
 (conn : NWCONN_HANDLE;
 message : pnstr8;
 connCount : nuint16;
 connList : pnuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

message
(IN) Points to the NULL-terminated message being broadcast.

connCount
(IN) Specifies the number of connections in the connection list.

connList
Message Functions 185

186 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(IN) Points to an array containing the connection number of all stations scheduled to receive
the message.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The requesting client must have operator rights to call NWSendConsoleBroadcast.

Messages are not received by workstations that have disabled broadcasts or workstations that are not
logged in. If connCount is set to 0, the message is sent to all connections.

Try these steps:

1 Connect to Server (use NWCCOpenConnByName()).
2 Map Objectname to ID (use NWDSMapNameToID()).
3 Get Connection-ID List from Object-ID (use NWGetConnListFromObject()).
4 Send the Message (usw NWSendBroadcastMessage()).
5 Close the Connection (usw NWCCCloseConn()).

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 209 Send Console Broadcast
0x2222 23 253 Send Console Broadcast

See Also
NWSetBroadcastMode (page 187)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWSetBroadcastMode
Sets the message mode of the requesting workstation

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Message

Syntax

C

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetBroadcastMode (
 NWCONN_HANDLE conn,
 nuint16 mode);

Delphi

uses calwin32

Function NWSetBroadcastMode
 (conn : NWCONN_HANDLE;
 mode : nuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

mode
(IN) Specifies the broadcast mode to be set.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8836 INVALID_PARAMETER
Message Functions 187

188 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
NWSetBroadcastMode can be used by any client.

When a broadcast message is sent, the NetWare server attempts to store the message in the message
buffer of each target connection. The result of this action depends on the broadcast mode of the
target station. The default mode is 0x00, receive all broadcasts. However, broadcast modes can be
set to any one of the following by calling NWSetBroadcastMode :

NOTE: When using NETX, NWCONN_HANDLE is ignored and NWBROADCAST_MODE is
set for all logged-in connections.

NCP Calls
0x2222 21 02 Disable Broadcasts
0x2222 21 03 Enable Broadcasts

See Also
NWSendConsoleBroadcast (page 185)

Broadcast Mode Description

0x0000 Receive all broadcasts (default mode).

0x0001 Receive only server broadcasts. User messages are not stored.

0x0002 Disable all broadcasts. User messages are not stored. Server messages are
stored but notification is not given to the workstation.

0x0003 Both user and server messages are stored but message notification is not sent to
the workstation. The client can poll for messages.
ction, Message, and NCP Extensions

11
novdocx (E

N
U

) 01 February 2006
11NCP Extension Concepts

This documentation describes NCP Extension, its functions, and features.

With NCP Extension, the client can be either a workstation application or an NLM acting as a client.
The server is an NLM running on a NetWare server.

The fundamental NetWare® services are provided by a set of functions implemented by the
NetWare Core Protocol (NCP) software. Each routine is referred to as an NCP. Many of the NLM C
Interface functions call the NCP routines.

NetWare allows you to register the services of an NLM as an NCP Extension, allowing you to
extend the services provided by the NetWare OS while maintaining the advantages associated with
NCPs. The main advantages of NCP Extension follow:

• Easy to use.
• Use an existing connection with a server (eliminating the need to establish a separate

communications session with the server).
• Allow use of arbitrary message sizes

There are two sides to NLM Extensions:

• The service-providing side runs as an NLM on a server and registers its service as an NCP
Extension. The NLM must be loaded on each server that provides the NCP Extension. An
NLM that is loaded on one server cannot register an NCP Extension on a remote server.

• The client side uses the service of the NLM by calling the NCP Extension. The client can be an
NLM acting as a client, or it can be an application running on a workstation.

NCP Extension is a client-server paradigm, where the following events occur:

• The client sends an NCP request to the server.
• The NCP Extension on the server processes the request.
• The server sends the results back to the client.

11.1 Client-Server Applications
NCP Extension is an excellent use for client-server applications, which allow the service-providing
NLMW-close to the resource-to do the work for the client. For example, with a database, the client
could send a request to the NCP Extension to search the database for a certain record. The function
registered as the NCP Extension handler would interpret the request, process the search, and return
the related information to the client

11.2 IPX/SPX Alternative
While NCP Extension does not replace every need for IPX and SPX, there are some cases where
NCP Extension can simplify the communication between the client and the server. The advantage of
an NCP Extension is it uses the existing connection of the client, freeing you from needing to set up
communication sockets. You can use NCP Extension in many of the cases where you are currently
using IPX or SPX.
NCP Extension Concepts 189

190 NDK: Conne

novdocx (E
N

U
) 01 February 2006
The disadvantage is that NCP Extension takes a connection. If your application isn’t already
establishing a NetWare connection, and you don’t want to establish one, you may choose to use IPX
and SPX instead.

Another disadvantage to NCP Extension is that communication must always be initiated by the
client. With IPX and SPX the client and/or the server can initiate communication.

11.3 Extension Context
The NCPExtensionHandler, ConnectionEventHandler, and ReplyBufferManager
parameters of NWRegisterNCPExtension are registered as callbacks. These callbacks run as OS
threads and are not able to call most of the NetWare API functions, unless they are given CLIB
context. If context is not given to these callbacks and they call functions that need context, the server
abends.

With the NetWare 4.x and above OS, threads have been given a context specifier that determines
what CLIB context is given to the callbacks they register. You can determine the existing setting of
the registering thread’s context specifier by calling GetThreadContextSpecifier. Call
SetThreadContextSpecifier to set the registering thread’s context specifier to one of the following
options:

• NO_CONTEXT-Callbacks registered by threads with this option set are not given CLIB
context. The advantage here is that you avoid the overhead needed for setting up CLIB context.
The disadvantage is that without the context, the callback is not able to use NetWare API
functions that require thread group level context.

• USE_CURRENT_CONTEXT-Callbacks registered with a thread that has its context specifier
set to USE_CURRENT_CONTEXT have the thread group context of the registering thread.
This is the default setting for threads that are started with BeginThread, BeginThreadGroup, or
ScheduleWorkToDo.

• A valid thread group ID-This is to be used when you want the callbacks to have a different
thread group context than the thread that schedules them.

Although CLIB context can be given to these callbacks automatically (with the NetWare 4.x and
above OS) by setting the registering thread’s context specifier to USE_CURRENT_CONTEXT,
your NCP Extension processes faster if you set the context specifier to NO_CONTEXT and then
manually establish the context inside your callback by calling SetThreadGroupID, and passing in the
ID of a valid thread group. (Note: This behavior is peculiar to the NCP Extension-handling code,
and does not apply to callbacks in general.)

NLM applications that run on the NetWare 3.11 OS must manually set the thread-group syntax
within the callbacks, by calling SetThreadGroupID and passing in a valid thread group ID.

For more information on using CLIB context, see Context Problems with OS Threads (NDK: NLM
Threads Management).

11.4 Extension ID
After an NCP Extension is registered with the OS, it is available to service requests from clients.
Before using an NCP Extension, the clients must verify that an NCP Extension is active for the
service they want to use. An NCP Extension is identified by name or by ID.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
An ID is also used to identify an NCP Extension. The following rules apply to an NCP Extension
ID.

• They are unique.
• They are dynamically assigned by the OS when an NLM registers an NCP Extension with

NWRegisterNCPExtension. These dynamic ID’s are determined by the OS on a first-come,
first-served basis, and they can be different each time an NCP Extension is registered.
If an NCP Extension that is using dynamic IDs is deregistered and then registered again, it has
a different ID. NCP Extension IDs increase in a monotonic manner. For example, if IDs 1
through 5 are used and the NCP Extension with an ID of 3 is deregistered and then reregistered,
it will have an ID greater than 5. The ID 3 is not used again until the server is brought down and
restarted.

• They can be "well known" IDs that NLM applications use to identify an NCP Extension when
they register the Extensions with NWRegisterNCPExtensionByID. These IDs are the same
each time an NCP Extension is registered, so they can be used to identify a specific NCP
Extension.

NOTE: Well known IDs are assigned by Developer Support to guarantee uniqueness and that the
IDs are in a valid range. Dynamically assigned IDs are not assigned by Developer Support since
these IDs are not attached to a specific NCP Extension.

11.5 Extension Name
Every NCP Extension must have an identifying name. The following rules apply for naming an NCP
Extension:

• Case-sensitive.
• Any text character string up to 32 bytes long, not counting the NULL terminator.
• Unique. It should be cleared through Developer Support to guarantee uniqueness.

NOTE: Problems can occur if two service providing NLM applications use the same name for each
NCP Extension. The clients accessing the extensions by calling NWGetNCPExtensionInfo and
NWScanNCPExtensions would not know if the extension they see registered is the one they want.
To avoid duplicate names, you should clear your NCP Extension name through Developer Support.

11.6 Extension Security
IMPORTANT: You must make sure that your NCP Extension does not violate the security of the
network.

Your service-providing NLM may have supervisor access to the server it is running on. If your NCP
Extension handler provides a service that is sensitive to NetWare security issues (accesses requires
NetWare security controls), it should take over the client’s connection and make its requests using
the client’s connection. This helps ensure that the request is processed with the client’s rights.

The following code fragment shows how to take over a client’s connection:

// The current connection ID is assumed to be set to the local server.
oldConnection = SetCurrentConnection(clientsConnection);
NCP Extension Concepts 191

192 NDK: Conne

novdocx (E
N

U
) 01 February 2006
// Server requests are made on behalf of the client, using his
// connection’s security restrictions.
setCurrentConnection(oldConnection);

11.7 Extension Views
There are two views for NCP Extension: the client view and the server view.

11.7.1 Client View
The view from the client is different than that from the NCP Extension. The client sends requests
and receives replies. It does not need to know the details of how the NCP Extension works; it only
needs to know the protocol for the communication between them.

The client accesses the services of an NCP Extension in the following ways:

• Checks to see if the NCP Extension has been registered. A client cannot use an NCP Extension
until it has been registered. The client can use NWGetNCPExtensionInfo or
NWScanNCPExtensions to obtain the NCP Extension IDs of extensions that have been
registered. If the NCP Extension ID is a well known ID it is not necessary to scan or get
extension information because attempting to use the ID will return a failure if the extension is
not registered.

• Sends a request to the NCP Extension with NWSendNCPExtensionRequest or
NWSendNCPExtensionFraggedRequest and use the information that was returned.

• Asks for the information in an NCP Extension’s query data buffer by calling
NWGetNCPExtensionInfo or NWScanNCPExtensions and uses the query data that is returned.

11.7.2 Provider View
The NCP Extension does not need to know what the client process looks like; it only needs to know
the format of the request coming from the client and how to format the reply.

The NCP Extension does the following:

• Registers the NCP Extension with the NCP Extension handler, the reply buffer manager, the
connection event handler, and query data buffer.

• When the NCP Extension handler is called, it finds the request in a buffer that the OS allocated
when the request was received. The NCP Extension handler processes the request and places
the reply in another buffer(s) that the OS will use when sending the reply to the requester.

• If a reply buffer manager is used, it is called after the data in the reply buffer(s) has been sent to
the client. When the OS calls the reply buffer manager the reply buffer address is passed to it
and the reply buffer manager determines what to do with the buffer(s) where the reply is stored.

• When the connection event handler is called, it determines if the event affects the NCP
Extension, and takes appropriate action.

• Updates the information in the query data buffer if there is a need..
• Deregisters the NCP Extension handler when it no longer wants to provide the service or when

the service-providing NLM is unloaded.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
11.8 Server Components
The NCP Extension server resides on a NetWare server and consists of the following components:

• NCP Extension handler (optional)
• Reply buffer manager (optional)
• Connection event handler (optional)
• Query data buffer

The NCP Extension handler is a routine that runs on the server and is called by the NetWare API
whenever the client calls NWSendNCPExtensionRequest, or
NWSendNCPExtensionFraggedRequest. The NCP Extension handler interprets the message sent by
the client, processes the request, and sends a reply to the client.

A reply buffer manager is useful when the data to be transferred is already gathered or if the data
should be kept in a specific memory location. The reply buffer manager is a routine that determines
what to do with the reply buffer after the information in the buffer has been sent to the client. The
OS calls this routine after it has sent the information in the buffer. Whether to use a reply buffer
manager or not is a question of performance and function. The reply buffer manager might do things
such as free the reply buffer, return it to a free list of buffers or unlock the data; the implementation
is determined by the NCP Extension handler and the reply buffer manager.

The connection event handler is a routine that the server calls when any connection on the server is
freed, killed, logged out, or restarted. One of the parameters to this routine is the connection that the
event is happening on, and the other parameter is the event type. The connection event handler can
use this information to determine if the connection belongs to a client that is being serviced by the
NCP Extension handler, and if so, what action to take to clean up that connection’s state.

The query data buffer is a 32-byte buffer that can be used to return information when
NWGetNCPExtensionInfo or NWScanNCPExtensions is called. Calling these functions returns the
contents of the update buffer to the client, which provides a one-way, passive information passing
scheme.

NOTE: The query data buffer becomes the sole communication mechanism if an NCP Extension
handler is not registered.

11.9 Data Transfer
The data that is used by the client and the server is stored in buffers as it moves through the process.
For example, the client can store its information in one location or in up to four locations. The data
stored in multiple locations is known as fragmented data.

If the client wants to send data that is stored in one buffer, it sends the request by calling
NWSendNCPExtensionRequest. If the client wants to send fragmented data, it sends the request by
calling NWSendNCPExtensionFraggedRequest.

NWSendNCPExtensionFraggedRequest gathers the data from the multiple locations and sends it as
a stream of bytes to the server, just as if the data had come from one location.

Once the server has received all the data, the NetWare API calls the NCP Extension handler, giving
the handler the address of the request buffer where the client’s request is stored. The client’s request
is stored in one buffer, even if the client’s request has come from multiple locations on the client.
NCP Extension Concepts 193

194 NDK: Conne

novdocx (E
N

U
) 01 February 2006
After the NCP Extension handler has serviced the request, it can return the reply from one buffer or
from multiple buffers (fragmented data as with the client). In either case, the reply is sent as a stream
of bytes to the client.

When the reply returns to the client, the client’s code is still within the
NWSendNCPExtensionRequest or within the NWSendNCPExtensionFraggedRequest function.
These functions place the data in the buffer(s) specified as parameters to the functions.
NWSendNCPExtensionRequest places the reply in one buffer. NWSendNCPExtensionFragged
Request can place the reply in one buffer, or it can separate the reply, placing it in multiple buffers.

11.10 Reentrancy
You must make sure your NCP Extension handler is reentrant. You cannot be assured that your NCP
Extension handler runs to completion before it is called again by another client. Because more than
one request can be accessing the same code, you need to code with reentrancy in mind. Similar
issues are of concern exist for the reply buffer manager and the connection event handler as well.
For more information about reentrancy, see Shared Memory (NDK: NLM Threads Management).

11.11 Reply Buffer Manager
The reply buffer manager is a routine that is called after the NCP Extension handler’s reply to the
client is sent. If you are going to use a reply buffer manager, you specify it when you register the
NCP Extension with the OS.

If you specify that your NCP Extension uses a reply buffer manager, the NetWare API does not
allocate reply buffers for your NCP Extension. In this case, the creation of the buffers is the
responsibility of the NCP Extension handler.

The reply buffer manager does not allocate reply buffers. However, it can free the buffers that the
NCP Extension handler allocates or manipulate data which controls access to those buffers.

The main reason for using a reply buffer manager is to avoid needless copying of reply data, thereby
speeding up your application. It also minimizes possible failures due to Alloc Memory failures for
copying data into another buffer when the data already exists in memory.

For example, if your NCP Extension handler maintains a buffer itself, it can save a copy cycle by
returning a pointer to its buffer, rather than copying the buffer’s contents into a buffer created by the
NetWare API. If your NCP Extension is a game that maintains a screen buffer and returns the
updated screen to the client after its player is moved, it would be best to send the screen data directly
from the buffer it is maintained in.

Another example is with an NCP Extension that returns fragmented data. In this case the NCP
Extension could have a routine that is constantly polling the server and placing information into
various buffers. When the NCP Extension is called, the NCP Extension handler simply returns a
structure that has fields pointing to the buffers where the information is located. This avoids copying
the data from various locations and placing it in a single buffer.

Another reason for using a reply buffer manager is that, in some ways, it can be thought of as the
second part of the NCP Extension handler. With the example in the previous paragraph, the NCP
Extension handler could set a semaphore to stop the update routine from updating the buffers. Then,
after the information in the buffers has been sent to the client, and the reply buffer manager is called,
the reply buffer manager can reset the semaphore, allowing the update routine to continue with
updating the buffers.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
A common issue when using the reply buffer management scheme presented above is that of
associating the call to the reply buffer manager with the associated call to the extension handler. The
parameters to each callback are helpful in this regard. Even though the reply buffer address passed
between calls is the same, this is sometimes insufficient. The connection number and task number
are the same between calls, but this knowledge alone may require an additional private tracking
mechanism to correctly associate the two callbacks.

To help eliminate the problem the NCPExtensionClient parameter has been constructed so that the
same address is passed to both callbacks and the same contents are passed to both callbacks. In
conjunction with this your extension handler can overwrite the two LONG members of the
NCPExtension client structure with any values you like. These same values will then be returned to
your reply buffer manager handler in the NCPExtension client parameter. This should be sufficient
to allow you to accurately and efficiently coordinate the reply buffer between the extension handler
and the reply buffer manager callbacks.

One other tip is that the reply buffer manager will not be called if the extension handler returns a
nonzero return code. It will also not be called if no data was returned and
REPLY_BUFFER_IS_FRAGGED was not used.

11.12 Connection Status
Your connectionEventHandler can keep track of when connections are freed, killed, logged
out, or restarted. If keeping track of connection status is not important to you, you can pass NULL
for the ConnectionEventHandler when you register the NCP Extension.

In some cases, this information is important; in other cases, it is not. A service that has a limit on the
number of users would be interested in knowing when a connection was terminated, so it could
allow another user to have access to the service. A service that allows unlimited access may not be
concerned with who is using it.

IMPORTANT: If you are using a reply buffer manager, you should use a connection event handler.
This is because the reply buffer manager is never called if the current client’s connection goes down
while the reply buffer is being sent to the client. Instead of calling the reply buffer manager, the OS
eventually calls the connection event handler for that connection. It is then the responsibility of the
connection event handler to recognize that the client has gone away and to free its resources
accordingly.

Your connection event handler is called when a connection is freed, killed, logged out, or restarted.
For the NetWare 3.12 OS and above, this information in received in the eventType parameter.
This parameter may be tested for the following values:

• CONNECTION_BEING_FREED-This is returned when the client calls a function to return its
connection, or an NLM is unloaded without returning its connection, or an attempt to create a
connection fails.

• CONNECTION_BEING_KILLED-This means that someone has asked to kill the connection
either explicitly or via a call to bring down the server.

• CONNECTION_BEING_LOGGED_OUT-The client has made a call to log out.
• CONNECTION_BEING_RESTARTED-This is returned when the client is making a call to

create a connection when it has not already freed the connection. This can happen when the
client station locks up and is rebooted. When the client tries to log in to the server, the server
sees that the client is trying to allocate a connection when it already has a connection. The
NCP Extension Concepts 195

196 NDK: Conne

novdocx (E
N

U
) 01 February 2006
server issues a notice of CONNECTION_BEING_RESTARTED, then a notice for
CONNECTION_BEING_LOGGED_OUT. If the logout fails, the server issues a
CONNECTION_BEING_FREED notice.

NOTE: The eventType parameter is not used for the NetWare 3.11 OS and previous versions. The
prototype for the ConnectionEventHandler does not include this parameter. Do not attempt to
interpret the eventType value if running on those versions of the OS.

11.13 NCP Extension Functions
Table 11-1 NLM Service Provider Functions

Table 11-2 NLM Client Functions

Function Description

NWDeRegisterNCPExtension Remove an NCP Extension from the OS.

NWRegisterNCPExtension Using a specific name, register an NCP Extension with the
OS

NWRegisterNCPExtensionByID Using a specific ID and name, register an NCP Extension
with the OS.

Function Description

NWGetNCPExtensionInfo Return information about the NCP Extension
associated with a specific name.

NWGetNCPExtensionInfoByID Return information about the NCP Extension
associated with a specific ID.

NWScanNCPExtensions List all registered NCP Extensions.

NWSendNCPExtensionRequest Send a request to an NCP Extension. Have this
function send the data from one location and place the
reply in another.

NWSendNCPExtensionFraggedRequest Send a request to an NCP Extension. Have this
function gather the data from multiple addresses and
place the reply in more than one address.
ction, Message, and NCP Extensions

12
novdocx (E

N
U

) 01 February 2006
12NCP Extension Tasks

This documentation describes common tasks associated with NCP Extension.

12.1 Accessing an NCP Extension from the
Client
The client takes the following steps when accessing an NCP Extension:

1 Establish a connection with the server that has the NCP Extension registered.

 char serverUserCombo[96];
printf("\nEnter login [fileserver/]username to access echo
server:");
scanf("%s", serverUserCombo);
LoginToFileServer(serverUserCombo, 1, "");

NCP Extension works through existing connections. This connection can be an attachment as
well as a logged-in connection.

Some of the functions that can be used to establish connections are:
• AttachByAddress
• AttachToFileServer
• LoginToFileServer

2 Query to see if the desired NCP Extension has been registered.
 struct queryDataStruct {
 LONG CharsEchoed;
 LONG unused[7];
 } queryData;

 LONG NCPExtID;
 NWGetNCPExtensionInfo("ECHO SERVER", &NCPExtID, NULL, NULL,
NULL,
 &queryData);
 /* you should check the return value to see if the service
exists. */
 printf("ECHO SERVER reports %ld characters echoed so
far.\nKeystrokes"
 "will be echoed on the ECHO SERVER’s screen, and echoed
locally\n"
 "after they are returned from the ECHO SERVER\n(Enter ctrl-z
to"
 "quit)\n",queryData.CharsEchoed);
 ...
}

Before you can use the NCP Extension, it must be registered. To see if the extension has been
registered, call NWGetNCPExtensionInfo, passing in the name of the NCP Extension you are
looking for, such as ECHO SERVER. This function returns SUCCESSFUL if the NCP
NCP Extension Tasks 197

198 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Extension is registered and gives you an ID to use when accessing the NCP Extension. This ID
is valid until the NCP Extension is deregistered. If no extension within a given ID is found then
ERR_NO_ITEMS_FOUND will be returned. It may not be necessary to query in this fashion at
all if a well known ID is being used.
The example above not only checks to see if the NCP Extension is registered, but it also uses
the queryData pointer to receive information about how many characters the ECHO SERVER
has echoed back to clients.

3 Access the NCP Extension.
main()
{
 LONG NCPExtID;
 char chr, rtnChr;
 LONG rtnSize;

 struct queryDataStruct {
 LONG CharsEchoed;
 LONG unused[7];
 } queryData;

 ...
 /* A connection would be established before making the following
call. */
 NWGetNCPExtensionInfo("ECHO SERVER", &NCPExtID, NULL, NULL,
NULL,
 &queryData);
 ...
 rtnSize = 1;
 while((chr = getch()) != CTRL_Z) /* checking for ctrl-z to exit
*/
 {
 NWSendNCPExtensionRequest(NCPExtID, &chr, sizeof(chr),
&rtnChr,
 &rtnSize);
 putchar(rtnChr);
 }
}

Your client can access an NCP Extension by first setting its thread group’s current connection
to the server with the NCP Extension, and then calling the NWSendNCPExtensionRequest,
with the NCP Extension ID as one of the parameters. The example sends a request buffer with
one character to the NCP Extension and receives a character in its reply buffer.

12.2 Providing an NLM Service as an NCP
Extension
You must take the following steps to provide your NLM service as an NCP Extension.

1 Create your NCP Extension handler, connection event handler, and reply buffer manager
functions, as well as a queryData update routine as needed (remember all the routines are
optional).
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
BYTE EchoServer(NCPExtensionClient *client, BYTE *requestData,
 LONG requestDataLen, BYTE *replyData, LONG *replyDataLen)
{
 int savedThreadGroupID;
 savedThreadGroupID = GetThreadGroupID();
 SetThreadGroupID(myThreadGroupID);

 /* echo character */
 putchar(*(char *)requestData);
 *replyDataLen = 1;

 /* return echoed character */
 *replyData = *requestData;
 queryData->CharsEchoed++;
 SetThreadGroupID(savedThreadGroupID);
 return 0;
}
void EchoServerConnEventHandler(LONG connection, LONG eventType)
{
 ConsolePrintf("\nECHO SERVER notified of connection %d
 logged out or returned\n", connection);
}
/* A buffer manager is not used in this example. */

In the example code above, EchoServer is the function that serves as the NCP Extension
handler, and EchoServerConnDownHandler is called when certain connection events occurs.
This example does not use a buffer manager.

You do not need to supply all of the routines. This example has a NCP Extension handler, a
connection event handler, and a queryData update routine, but it does not use a reply buffer
manager.

2 If needed, store the thread group ID so that it can be used for establishing CLIB context within
your registered functions.
int myThreadGroupID;
main()
{
 myThreadGroupID = GetThreadGroupID();
 SetThreadContextSpecifier(GetThreadID(), NO_CONTEXT);
 ...
}

The functions registered for NCP Extension run as callbacks which run as OS threads. If these
threads are going to call the NetWare API functions, you should manually give them CLIB
context.
For the NetWare 4.x, 5.x, and 6.x OS, callback threads can be automatically given thread group
context when they are registered. The context they are given is determined by the value of the
registering thread’s context specifier when the callbacks are registered. The context specifier
can be set to give callbacks the thread group context of the calling thread, the thread group
context of another thread group, or no context at all. When registering your callbacks for NCP
Extension, it is recommended that you call SetThreadContextSpecifier with NO_CONTEXT as
the contextSpecifier parameter so that the callbacks are not be automatically given
context when they are registered. Then within your handler you would call
NCP Extension Tasks 199

200 NDK: Conne

novdocx (E
N

U
) 01 February 2006
getThreadGroupID() with the appropriate thread group ID. This is recommended for
performance and compatibility reasons.
For the NetWare 3.11 OS, threads do not have a context specifier, so you must manually set the
context within each callback handler.

3 Register your NLM service as an NCP Extension.
struct queryDataStruct{
 LONG CharsEchoed;
 LONG unused[7];
} *queryData;
void main(void)
{
 ...
 NWRegisterNCPExtension("ECHO SERVER", EchoServer,\
 EchoServerConnDownHandler,NULL, 1, 0, 0, &queryData);
 queryData->CharsEchoed = 0;
 printf("Press any key to unload echo server.\n");
 getch();
 ...
}

An NLM can provide a service through NCP Extension by registering its service with the OS in
one of the following ways:

• Calling NWRegisterNCPExtension to register the NCP Extension by using the name of
the NCP Extension. This method returns a dynamic ID that is valid until the service
providing NLM is unloaded.

• Calling NWRegisterNCPExtensionByID to register the NCP Extension using a well
known ID that always associated with the NLM applications service.

After an NCP Extension has been registered, clients can access the NCP Extension. The
Extension remains valid until the service-providing NLM deregisters the NCP Extension.
In this example, the NLM’s service is registered with the server by calling
NWRegisterNCPExtension.
The example above registers an extension handler with the name of "ECHO SERVER."
EchoServer is the NCPExtensionHandler, EchoServerConnEventHandler is the
ConnectionEventHandler, and NULL is passed in for ReplyBufferManager,
meaning a reply buffer manager is not used. The queryData pointer becomes the handle to
the NCP Extension.

4 Provide the service when your NCP Extension is accessed.
When the client requests service from your NCP Extension, the NetWare API first calls the
function you registered in Step 3 as NCPExtensionHandler. This function is the
workhorse that processes the request and fills a reply buffer that the NetWare API sends back to
the client. After the buffer has been sent to the client, the NetWare API calls the function
registered with ReplyBufferManager, if you have registered one. Remember if
programming an NLM you must establish CLIB context as needed within all handlers.
The ConnectionEventHandler is called whenever a connection event occurs. Currently,
notification occurs when connections are freed, killed, logged out, or restarted. This
information is helpful for NCP Extensions that need to know when connection events occur.
(These event types are discussed in Section 11.12, “Connection Status,” on page 195.)

5 Deregister the NCP Extension.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
struct queryDataStruct{
 LONG CharsEchoed;
 LONG unused[7];
} *queryData;

main()
{
 ...
 NWRegisterNCPExtension("ECHO SERVER", EchoServer,\
 EchoServerConnEventHandler,NULL, 1, 0, 0, &queryData);
 ...
 NWDeRegisterNCPExtension(queryData);
}

In most cases, you will choose to have your NLM provide its services as long as it is loaded.
Before your NLM unloads, it must call NWDeRegisterNCPExtension to remove its NCP
Extension from the list of NCP Extensions. If a NLM has more than one NCP Extension
registered, it must call NWDeRegisterNCPExtension for each extension that it has registered.

NOTE: You cannot guarantee that outstanding NCP Extension requests complete successfully
after NWDeRegisterNCPExtension is called.

If a client makes a call to an NCP Extension after the Extension has been deregistered, the
client’s call fails, returning ERR_NO_ITEMS_FOUND.

12.3 Registering Multiple NCP Extensions
There might be times when your service-providing NLM offers more than one service. If your NLM
is a database, you may have the following services:

• Open the database
• Add a record
• Delete a record
• Search for a record
• Close the database

In the above case, you would have to make a decision: do you register five NCP Extensions to
handle the requests, or do you register one NCP Extension that decodes a sub-function field within
the request messages? If you choose to register five NCP Extensions, you must create five names for
them. If you choose to use one NCP Extension, you only need to create one name (most NCPs
operate this way).

If you choose to use a single NCP extension, your code might look like the following (see
ncpscan.c.html (../../../samplecode/clib_sample/nlm/ncpe/ncpscan.c.html)):

typedef MyStruct MyStruct;
struct requestDataStruct{
 int operation;
 char data[1000];
}MyStruct;
BYTE DataBaseControl(NCPExtensionClient *client,MyStruct *requestData,
 LONG requestDataLen, BYTE replyData, LONG *replyDataLen)
{
NCP Extension Tasks 201

../../../samplecode/clib_sample/nlm/ncpe/ncpscan.c.html

202 NDK: Conne

novdocx (E
N

U
) 01 February 2006
 switch(requestData->operation)
 {
 case OPEN_DATABASE:
 OpenDatabase(requestData->data);
 break;
 case ADD_RECORD:
 AddRecord(requestData->data);
 break;
 case DELETE_RECORD:
 DELETE_RECORD(requestData->data);
 break;
 case SEARCH_FOR_RECORD:
 SearchForRecord(requestData->data);
 break;
 case CLOSE_DATABASE:
 CloseDatabase(requestData->data);
 }
}

12.4 Allocating Reply Buffers
Reply buffers are allocated in the following ways:

• When a reply buffer manager is not used the NetWare API creates a single reply buffer and
passes its address to the NCP Extension handler.

• The NCP Extension handler allocates a single reply buffer and returns a pointer to this buffer.
• The NCP Extension handler allocates multiple reply buffers and returns a pointer to a NCP

extension message fragment structure that has pointers to the reply buffers.

NetWare API Allocation of a Single Reply Buffer: If your NCP Extension does not use a reply buffer
manager, the NetWare API allocates a reply buffer that is the size specified by the client. The
NetWare API then passes a pointer to the allocated buffer as a parameter into your NCP Extension
handler. Your NCP Extension handler places its reply into the buffer, and the NetWare API sends the
data in the buffer to the client.

NCP Extension Handler Allocation of a Single Reply Buffer: If your NCP Extension uses a reply
buffer manager, the NetWare API does not allocate a reply buffer. In this case, it is the responsibility
of the NCP Extension handler to provide the buffer. The NCP Extension handler places its data in
the buffer it has allocated and then returns a pointer to the buffer. The NetWare API then sends the
data in that buffer to the client.

NCP Extension Handler Allocation of Multiple Reply Buffers: If you wish to reply with data from
multiple buffers, you may do so using a reply buffer manager.. In this case, the NCP Extension
handler sets its replyData parameter to point to a structure containing pointers to multiple
fragments. The NCP Extension handler also sets its replyDataLen parameter to
REPLY_BUFFER_IS_FRAGGED. The NetWare API then sends the information from the multiple
buffers.

The structure that you use to point to the fragmented data must be similar to the
NCPExtensionMessageFrag structure that is documented in the reference for
NWSendNCPExtensionFraggedRequest (page 238). The difference is that the structure your NCP
Extension handler returns can have more than four elements in its fragList. (The client is limited
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
to four fragments, but there is no limit to the number of fragments that the NCP Extension handler
can return.)

12.5 Processing an NCP Extension
When you register an NCP Extension with NWRegisterNCPExtension, three of the parameters are
functions that may be called as part of the service. These parameters are
NCPExtensionHandler, ConnectionEventHandler, and ReplyBufferManager.
When the client calls the NCP Extension, the order of processing is in the following manner.

1 The client sends an NCP Extension request.

If the client sends an NCP Extension request with NWSendNCPExtensionRequest the clients
request must be contained in one buffer. If the client sends a request with
NWSendNCPExtensionFraggedRequest, the client’s request can be placed in one buffer or in
multiple buffers depending on the client’s architecture. Either way, the data is sent across the
wire as a stream of bytes.

2 The NetWare API creates the needed buffer(s) on the server that is providing the NCP
Extension.
If a reply buffer manager has not been specified, the NetWare API creates two buffers on the
server; the size of these buffers are the size of the client’s request and reply buffers respectively.
If a buffer manager has been specified, the NetWare API creates only one buffer the size of the
client’s request buffer. The creation of the reply buffer is the responsibility of the function
registered as NCPExtensionHandler.
If the request buffer is large, it is be sent in fragments to the server. The server reassembles the
fragments, making the fragmentation transparent to your program.

3 The NetWare API calls the NCPExtensionHandler function.
This workhorse function interprets the data in the request buffer and processes the request.
If a reply buffer manager is not being used, this function places its reply data in the buffer that
the NetWare API created. If a reply buffer manager is being used, this function returns a pointer
to a buffer where it has stored the reply data.

4 The NetWare API sends the reply information to the client.
5 If the reply data is large, the NetWare API sends it across the wire in fragments. The client’s

NWSendNCPExtensionRequest or NWSendNCPExtensionFraggedRequest function
reassembles the packet, making the fragmentation transparent to the user.

NOTE: The data in the reply buffer is sent to the client only if the NCPExtensionHandler
function returns SUCCESSFUL.

6 If a buffer manager was specified, the NetWare API calls the BufferManager.
The buffer manager is called after that reply data has been sent to the client.
In some ways, the reply buffer manager can be thought of as a second part of the NCP
Extension handler. The reply buffer manager can free buffers and reset counters and
semaphores that the NCP Extension handler has set. For example, if the NCP Extension
handler has set a semaphore for a buffer, the buffer manager can signal or free the semaphore.

7 The NetWare API frees the buffers it has created.
NCP Extension Tasks 203

204 NDK: Conne

novdocx (E
N

U
) 01 February 2006
When the NCP Extension request is completed, the NetWare API frees the buffers it has
allocated for the request and reply data. When new requests come in, the NetWare API
allocates new buffers.

NOTE: The ConnectionEventHandler is currently only called when a connection is
freed, killed, logged out, or restarted.

12.6 Deregistering Before Unloading
Before an NLM unloads, it must deregister all NCP Extensions that it has registered. Failure to
deregister before unloading can cause the server to abend.

When an NCP Extension is deregistered, all new requests return with ERR_NO_ITEMS_FOUND,
and existing requests may or may not be completed. Those that don’t complete also return with the
value of ERR_NO_ITEMS_FOUND.

If you need to be assured that all of your current requests are completed, you can set a counter telling
how many requests are outstanding. Outstanding requests are requests being processed by the
extension handler or the reply buffer manager. You decrement the counter when a request has
completed. Before deregistering the NCP Extension, you return a failure return code immediately
for all new requests and continue servicing the current requests. When the counter is set to zero, you
call NWDeRegisterNCPExtension, then continue letting your NLM unload.

See ncpscan.c.html (../../../samplecode/clib_sample/nlm/ncpe/ncpscan.c.html).
ction, Message, and NCP Extensions

../../../samplecode/clib_sample/nlm/ncpe/ncpscan.c.html

13
novdocx (E

N
U

) 01 February 2006
13NCP Extension Functions

This documentation alphabetically lists the NCP Extension functions and describes their purpose,
syntax, parameters, and return values.

• “NWDeRegisterNCPExtension” on page 206
• “NWFragNCPExtensionRequest” on page 207
• “NWGetNCPExtensionInfo” on page 209
• “NWGetNCPExtensionInfo (NLM)” on page 211
• “NWGetNCPExtensionInfoByID” on page 214
• “NWGetNCPExtensionInfoByName” on page 217
• “NWGetNCPExtensionsList” on page 219
• “NWGetNumberNCPExtensions” on page 221
• “NWNCPExtensionRequest” on page 223
• “NWNCPSend” on page 225
• “NWRegisterNCPExtension” on page 226
• “NWRegisterNCPExtensionByID” on page 230
• “NWScanNCPExtensions” on page 233
• “NWScanNCPExtensions (NLM)” on page 235
• “NWSendNCPExtensionFraggedRequest” on page 238
• “NWSendNCPExtensionRequest” on page 240
NCP Extension Functions 205

206 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWDeRegisterNCPExtension
Deregisters an NCP Extension

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWDeRegisterNCPExtension (
 void *queryData);

Parameters
queryData

(IN) Points to the extension handle received from the NWRegisterNCPExtension function.

Return Values
The following table lists return values and descriptions.

Remarks
NWDeRegisterNCPExtension is called by the service-providing NLM applications in conjunction
with the NWRegisterNCPExtension function.

When an NCP Extension is registered with the NWRegisterNCPExtension function, the address of
the queryData parameter is passed as one of the parameters. The pointer is then initialized to
point to a 32-byte area of memory in which the service provider can place data. The queryData
parameter is also used as a handle for deregistering the NCP Extension.

See Also
NWGetNCPExtensionInfo (NLM) (page 211), NWRegisterNCPExtension (page 226),
NWScanNCPExtensions (page 233), NWSendNCPExtensionRequest (page 240)

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was deregistered

255 0xFF ERR_NO_ITEMS_FOUND The extension has already been
deregistered
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWFragNCPExtensionRequest
Sends and receives information from an NCP extension handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWFragNCPExtensionRequest (
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 nuint16 reqFragCount,
 NW_FRAGMENT N_FAR *reqFragList,
 nuint16 replyFragCount,
 NW_FRAGMENT N_FAR *replyFragList);

Delphi Syntax
uses calwin32

Function NWFragNCPExtensionRequest
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 reqFragCount : nuint16;
 Var reqFragList : NW_FRAGMENT;
 replyFragCount : nuint16;
 Var replyFragList : NW_FRAGMENT
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NCPExtensionID
(IN) Specifies the ID of the NCP extension handler to use for the request.

reqFragCount
NCP Extension Functions 207

208 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the number of request fragments.

reqFragList
(IN) Points to the NW_FRAGMENT structure.

replyFragCount
(IN) Specifies the number of reply fragments.

replyFragList
(IN/OUT) Points to the NW_FRAGMENT structure.

Remarks
The fragment based protocol allows data up to 64K (a server imposed limitation) to be transferred to
and from the NCP extension handler.

To increase packet efficiency, NWFragNCPExtensionRequest packs as many fragments as possible
into a send buffer.

The reply data will be returned in the NW_FRAGMENT structure pointed to by the
replyFragList parameter. The fragSize field of the NW_FRAGMENT structure will be
updated to reflect the number of bytes copied into the buffer pointed to by the fragAddress field.

NCP Calls
0x2222 23 17 Get File Server Information
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNCPExtensionInfo
Returns information about the specified NCP extension handler

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionInfo (
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 pnstr8 NCPExtensionName,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Delphi Syntax
uses calwin32

Function NWGetNCPExtensionInfo
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 NCPExtensionName : pnstr8;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NCPExtensionID
(IN) Specifies the ID of the NCP extension handler for which to get information.

NCPExtensionName
(OUT) Points to a buffer to receive NCP extension name (33 bytes, optional).
NCP Extension Functions 209

210 NDK: Conne

novdocx (E
N

U
) 01 February 2006
majorVersion
(OUT) Points to the major version number of the NCP extension handler (optional).

minorVersion
(OUT) Points to the minor version number of the NCP extension handler (optional).

revision
(OUT) Points to the revision number of the NCP extension handler (optional).

queryData
(OUT) Points to a 32-byte buffer of custom information that the NCP extension handler can use
(optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If an NCP extension with an ID higher than the one submitted was found, and its data was returned,
NWGetNCPExtensionInfo returns 0x89FE.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 36 00 Scan NCP Extensions
0x2222 36 02 Scan Loaded Extensions By Name
0x2222 36 05 Get NCP Extension Info

See Also
NWNCPExtensionRequest (page 223), NWFragNCPExtensionRequest (page 207),
NWScanNCPExtensions (page 233), NWGetNCPExtensionInfoByName (page 217),
NWGetNCPExtensionsList (page 219), NWGetNumberNCPExtensions (page 221)

0x0000 SUCCESSFUL The extension was found, and the non-null output parameters were
filled.

0x89FE Extension ID not found
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNCPExtensionInfo (NLM)
Returns information about an NCP Extension specified by name

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWGetNCPExtensionInfo (
 const char *NCPExtensionName,
 LONG *NCPExtensionID,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters
NCPExtensionName

(IN) Points to the name of the desired NCP Extension.

NCPExtensionID
(OUT) Points to the ID of the desired NCP Extension (optional).

majorVersion
(OUT) Points to the major version number of the NCP Extension provider (optional).

minorVersion
(OUT) Points to the minor version number of the NCP Extension provider (optional).

revision
(OUT) Points to the revision number of the NCP Extension provider (optional).

queryData
(OUT) Points to 32 bytes of information from the NCP Extension (optional).

Return Values
The following table lists return values and descriptions.
NCP Extension Functions 211

212 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks
NWGetNCPExtensionInfo (NLM), the NWScanNCPExtensions (NLM) function, and the
NWSendNCPExtensionRequest function access NCP Extensions. For example, if you know the
name of the NCP Extension you want to access, such as "ECHO SERVER," you can call
NWGetNCPExtensionInfo (NLM) for the following purposes:

• To see if the NCP Extension is registered.
• To check the version of the NCP Extension.
• To get the NCP Extension ID number used when calling the NWSendNCPExtensionRequest

function.
• To receive 32 bytes of information from the NCP Extension without calling the

NWSendNCPExtensionRequest function.

Before a client can access an NCP Extension, NWGetNCPExtensionInfo (NLM) must be called to
see if the Extension has been registered followed by calling the NWScanNCPExtensions (NLM)
function to receive the Extension ID needed to call the NCP Extension. If the NCP Extension has
been registered, NWGetNCPExtensionInfo (NLM) returns SUCCESSFUL; otherwise, it returns
ERR_NO_ITEMS_FOUND. The NWScanNCPExtensions (NLM) function returns the same
information but must be called iteratively until the NCP Extension name is found.

The NCPExtensionName parameter can be any character string, up to 32 bytes plus a NULL
terminator. The NCP Extension names are case sensitive and must be unique for each NCP
Extension. One suggestion is to name the NCP Extension the same as your NLM. To avoid naming
conflicts, you should clear your NCP Extension’s name through Developer Support.

You provide the majorVersion, minorVersion, and revision parameters when you call
the NWRegisterNCPExtension function. If you have different versions or revisions of the NCP
Extension, the client can use these parameters to verify that the extension is the correct version. If
you do not want to use any of these parameters, pass NULL.

The server side and the client side of NCP Extensions should be implemented as matched sets so the
client side knows what the server side is expecting and what it can return. The client side also needs
to know the name of the NCP Extension.

There are some cases where NWGetNCPExtensionInfo (NLM) can return all of the information
your client needs, eliminating the need to call the NWSendNCPExtensionRequest function or to
have an NCP Extension handler. This information is placed in the client’s queryData buffer,
whose address is passed as a parameter to NWGetNCPExtensionInfo (NLM).

Use this method if the service-providing NLM is periodically updating its queryData buffer (with
32 bytes or less of information) and the buffer address was returned to the NLM when it called the
NWRegisterNCPExtension function. If the information you want is in the NLM’s queryData

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

255 0xFF ERR_NO_ITEMS_FOUND The extension name was not found.

1-16 A communications error occurred. (See nwncpext.h.)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
buffer, call NWGetNCPExtensionInfo (NLM) to copy the contents of the queryData buffer for
the service-providing NLM into the queryData buffer for the client. This method is useful only if
a one-way server-to-client message is sufficient.

If you are using the queryData buffer, pass NULL to the queryData parameter.

NOTE: If an NLM is unloaded, all NCP Extensions associated with it are deregistered. If the NLM
is reloaded, its NCP Extensions do not have the same NCP Extension IDs, even though they have
the same names.

If any of the client (NLM or workstation) NCP Extension functions return
ERR_NO_ITEMS_FOUND (or ERR_NCPEXT_NO_HANDLER after previously working
properly), call the NCPGetExtensionInfo function again. The NCPGetExtensionInfo function will
return the new NCPExtensionID parameter if the NCP Extension has been deregistered and then
reregistered.

See Also
NWDeRegisterNCPExtension (page 206), NWGetNCPExtensionInfoByID (page 214),
NWRegisterNCPExtension (page 226), NWScanNCPExtensions (NLM) (page 235),
NWSendNCPExtensionRequest (page 240)
NCP Extension Functions 213

214 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWGetNCPExtensionInfoByID
Returns information about an NCP Extension specified by ID

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWGetNCPExtensionInfoByID (
 LONG NCPExtensionID,
 char *NCPExtensionName,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters
NCPExtensionID

(IN) Specifies the ID of the desired NCP Extension.

NCPExtensionName
(OUT) Points to the name of NCP Extension associated with the ID passed in the
NCPExtensionID parameter (optional).

majorVersion
(OUT) Points to the major version number of the NCP Extension provider (optional).

minorVersion
(OUT) Points to the minor version number of the NCP Extension provider (optional).

revision
(OUT) Points to the revision number of the NCP Extension provider (optional).

queryData
(OUT) Points to 32 bytes of information from the NCP Extension (optional).

Return Values
The following table lists return values and descriptions.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The NWGetNCPExtensionInfo (NLM), NWGetNCPExtensionInfoByID, NWScanNCPExtensions
(NLM), NWSendNCPExtensionFraggedRequest, and NWSendNCPExtensionRequest functions
access NCP Extensions.

If you know the ID of the NCP Extension, you can call NWGetNCPExtensionInfoByID for the
following purposes:

• To see if the NCP Extension is registered.
• To verify the name of the NCP Extension.
• To check the version of the NCP Extension handler.
• To receive 32 bytes of information from the NCP Extension without calling the

NWSendNCPExtensionRequest function.

Before a client can access an NCP Extension, call either the NWGetNCPExtensionInfo (NLM),
NWGetNCPExtensionInfoByID, or NWScanNCPExtensions (NLM) function to see if the extension
has been registered. If the NCP Extension has been registered, NWGetNCPExtensionInfoByID
returns SUCCESSFUL; otherwise, it returns ERR_NO_ITEMS_FOUND. The
NWGetNCPExtensionInfo (NLM) and NWScanNCPExtensions (NLM) functions return the same
information but they use the name of the NCP Extension, rather than the ID.

The NCPExtensionID parameter can be a dynamic ID returned from the
NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM) function, or it can be a static
ID assigned by Developer Support.

If you are using a static ID, check the name pointed to by the NCPExtensionName parameter (on
the first call) to verify that the name returned is the same as the name of your NCP Extension.

The majorVersion, minorVersion, and revision parameters are those you provide when
you call the NWRegisterNCPExtension or NWRegisterNCPExtensionByID function. If you have
different versions or revisions of the NCP Extension service providers, the client can use these
parameters to verify that the service provider is the correct version. If you do not want to use any of
these parameters, pass NULL.

There are some cases where NWGetNCPExtensionInfoByID can return all of the information your
client needs, eliminating the need to call the NWSendNCPExtensionRequest function or to have an
NCP Extension handler. This information is placed in the client’s queryData buffer, whose
address is passed as a parameter to NWGetNCPExtensionInfoByID.

Use this method if the service-providing NLM is periodically updating its queryData buffer (with
32 bytes or less of information) and whose address was returned to the NLM when it called
NWRegisterNCPExtension or NWRegisterNCPExtensionByID. If the information you want is in

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

255 0xFF ERR_NO_ITEMS_FOUND The extension name was not found.

1-16 A communications error occurred. (See niterror.h.)
NCP Extension Functions 215

216 NDK: Conne

novdocx (E
N

U
) 01 February 2006
the NLM’s queryData buffer, you can use NWGetNCPExtensionInfoByID to copy the contents
of the queryData buffer for the service-providing NLM into the queryData buffer for the
client. This method is useful only if a one-way server-to-client message is sufficient.

If you are using the queryData buffer, pass NULL to the queryData parameter.

NOTE: If an NLM is unloaded, all NCP Extensions associated with it are deregistered. If the NLM
is reloaded, and it registers its NCP Extensions by calling NWRegisterNCPExtensionByID, the IDs
for the extensions are the same.

If the NLM is reloaded, and it registers its NCP Extensions by name by calling the
NWRegisterNCPExtension function, the NCP Extensions do not have the same NCP Extension IDs,
even though they have the same names.

If any of the client (NLM or workstation) NCP Extension functions return
ERR_NO_ITEMS_FOUND (or ERR_NCPEXT_NO_HANDLER after previously working
properly), call the NWGetNCPExtensionInfo (NLM) function. The NWGetNCPExtensionInfo
(NLM) function will return the new NCPExtensionID parameter if the NCP Extension has been
deregistered and then reregistered.

See Also
NWDeRegisterNCPExtension (page 206), NWGetNCPExtensionInfo (NLM) (page 211),
NWRegisterNCPExtension (page 226), NWScanNCPExtensions (NLM) (page 235),
NWSendNCPExtensionRequest (page 240)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNCPExtensionInfoByName
Returns information for the specified NCP extension handler

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionInfoByName (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *NCPExtensionName,
 pnuint32 NCPExtensionID,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Delphi Syntax
uses calwin32

Function NWGetNCPExtensionInfoByName
 (conn : NWCONN_HANDLE;
 NCPExtensionName : pnstr8;
 NCPExtensionID : pnuint32;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NCPExtensionName
(IN) Points to a buffer containing the NCP extension name (33 bytes) for which to get
information (optional).
NCP Extension Functions 217

218 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NCPExtensionID
(OUT) Points to the ID of the NCP extension handler.

majorVersion
(OUT) Points to the major version number of the NCP extension handler (optional).

minorVersion
(OUT) Points to the minor version number of the NCP extension handler (optional).

revision
(OUT) Points to the revision number of the NCP extension handler (optional).

queryData
(OUT) Points to a 32-byte buffer of custom information the NCP extension handler can
optionally use (optional).

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 36 00 Scan NCP Extensions
0x2222 36 02 Scan Currently Loaded NCP Extensions By Name

See Also
NWGetNCPExtensionInfo (page 209), NWNCPExtensionRequest (page 223),
NWFragNCPExtensionRequest (page 207), NWScanNCPExtensions (page 233),
NWGetNCPExtensionsList (page 219), NWGetNumberNCPExtensions (page 221)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNCPExtensionsList
Returns a list of NCP extension handlers loaded on the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionsList (
 NWCONN_HANDLE conn,
 pnuint32 startNCPExtensionID,
 pnuint16 itemsInList,
 pnuint32 NCPExtensionIDList);

Delphi Syntax
uses calwin32

Function NWGetNCPExtensionsList
 (conn : NWCONN_HANDLE;
 startNCPExtensionID : pnuint32;
 itemsInList : pnuint16;
 NCPExtensionIDList : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNCPExtensionID
(IN/OUT) Points to the next extension ID to use to obtain a list.

itemsInList
(OUT) Points to the number of NCP extension handler IDs.

NCPExtensionIDList
NCP Extension Functions 219

220 NDK: Conne

novdocx (E
N

U
) 01 February 2006
(OUT) Points to a buffer to receive list of NCP extension handler IDs (512 bytes or 4 times the
number of NCP extension IDs, whichever is less).

Remarks
If there are more than 128 extension handlers loaded, call NWGetNCPExtensionsList multiple
times.

Set startNCPExtensionID to 0 for the first iteration. NWGetNCPExtensionsList returns the
next value to use.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 36 0 Scan Loaded NCP Extensions
0x2222 36 04 Get NCP Extension Loaded List

See Also
NWGetNCPExtensionInfo (page 209), NWNCPExtensionRequest (page 223),
NWFragNCPExtensionRequest (page 207), NWScanNCPExtensions (page 233),
NWGetNCPExtensionInfoByName (page 217), NWGetNumberNCPExtensions (page 221)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetNumberNCPExtensions
Returns the number of NCP extension handlers loaded on the specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNumberNCPExtensions (
 NWCONN_HANDLE conn,
 pnuint32 numNCPExtensions);

Delphi Syntax
uses calwin32

Function NWGetNumberNCPExtensions
 (conn : NWCONN_HANDLE;
 numNCPExtensions : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

numNCPExtensions
(OUT) Points to the number of NCP extension handlers installed on the server.

NCP Calls
0x2222 23 17 Get Server Info
0x2222 36 0 Scan Loaded NCP Extensions
 0x2222 36 3 Get Number Of Loaded NCP Extensions
NCP Extension Functions 221

222 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWGetNCPExtensionInfo (page 209), NWNCPExtensionRequest (page 223),
NWFragNCPExtensionRequest (page 207), NWScanNCPExtensions (page 233),
NWGetNCPExtensionInfoByName (page 217), NWGetNCPExtensionsList (page 219)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWNCPExtensionRequest
Sends and receives small data from an NCP extension handler

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWNCPExtensionRequest (
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 const void N_FAR *requestData,
 nuint16 requestDataLen,
 void N_FAR *replyData,
 pnuint16 replyDataLen);

Delphi Syntax
uses calwin32

Function NWNCPExtensionRequest
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 const requestData : nptr;
 requestDataLen : nuint16;
 replyData : nptr;
 replyDataLen : pnuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NCPExtensionID
(IN) Specifies the ID of the NCP extension handler to use for the request.

requestData
(IN) Points to a buffer containing request data.
NCP Extension Functions 223

224 NDK: Conne

novdocx (E
N

U
) 01 February 2006
requestDataLen
(IN) Specifies the length of request data.

replyData
(OUT) Points to a buffer to receive reply data (can be the same buffer as request data; optional
if no reply data is expected).

replyDataLen
(IN/OUT) Points to amount of data expected and how much data was returned (optional if no
reply data is expected).

Remarks
NWNCPExtensionRequest will take any size data buffer and send it to the server. Requests larger
than 500 bytes will be processed by calling NWFragNCPExtensionRequest which breaks up the
data and sends it in multiple packets.

NCP Calls
0x2222 23 17 Get File Server Information

See Also
NWGetNCPExtensionInfo (page 209), NWFragNCPExtensionRequest (page 207),
NWScanNCPExtensions (page 233), NWGetNCPExtensionInfoByName (page 217),
NWGetNCPExtensionsList (page 219), NWGetNumberNCPExtensions (page 221)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWNCPSend
Sends an NCP request to a currently connected server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwconn.h>

int NWNCPSend (
 BYTE functionCode,
 const void *sendPacket,
 WORD sendLen,
 void *replyBuf,
 WORD replyLen);

Parameters
functionCode

(IN) Specifies the NCP function code.

sendPacket
(IN) Points to the input buffer for the NCP.

sendLen
(IN) Specifies the length of the sendPacket parameter.

replyBuf
(IN/OUT) Points to the reply buffer for the NCP.

replyLen
(IN/OUT) Specifies the length of the replyBuf parameter.

Return Values
ESUCCESS or NetWare errors.

Remarks
An NCP request consists of function code and a request buffer that contains input information
needed to process the request.
NCP Extension Functions 225

226 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWRegisterNCPExtension
Registers a service to be provided as an NCP extension

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWRegisterNCPExtension (
 const char *NCPExtensionName,
 BYTE (*NCPExtensionHandler)(
 NCPExtensionClient *client,
 void * requestData,
 LONG requestDataLen,
 void * replyData,
 LONG *replyDataLen),
 void (*ConnectionEventHandler)(
 LONG connection,
 LONG eventType)
 void (*ReplyBufferManager)(
 NCPExtensionClient *client,
 void * replyBuffer),
 BYTE majorVersion,
 BYTE minorVersion,
 BYTE revision,
 void **queryData);

Parameters
NCPExtensionName

(IN) Points to the name of an NCP Extension.

NCPExtensionHandler
(IN) Points to the function to be called when the NCP Extension calls the
NWSendNCPExtensionRequest function (optional).

ConnectionEventHandler
(IN) Points to the function to be called and action to follow when a connection is freed, killed,
logged out, or restarted (optional).

ReplyBufferManager
(IN) Points to a buffer manager function used to reply to NCP Extension requests (optional).
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
majorVersion
(IN) Specifies the major version number of the service provider.

minorVersion
(IN) Specifies the minor version number of the service provider.

revision
(IN) Specifies the revision number of the service provider.

queryData
(OUT) Points to a 32-byte area that NetWare has allocated.

Return Values
The following table lists return values and descriptions.

Remarks
NWRegisterNCPExtension is called by the service-providing NLM applications in conjunction with
the NWDeRegisterNCPExtension function.

NCP extension names are case sensitive and must be unique. They have a maximum length of 32
bytes plus a NULL terminator.

The queryData parameter can be used by the service provider to return up to 32 bytes of
information to the client and is aligned on a DWORD (32-bit) boundary. This information can then
be retrieved by calling the NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM)
function. The queryData parameter is also used by the registering NLM as the NCP extension
handle when the NWDeRegisterNCPExtension function is called.

NOTE: The NCPExtensionHandler parameter returns a BYTE representing the value returned
when the NWSendNCPExtensionRequest function is called. The extension handler can return any
value other than those used by the lower-level NCP-transport services (see niterror.h). However,
information is placed into the replyData parameter after the NCPExtensionHandler
parameter returns SUCCESSFUL.

Other status information can be returned to the client with the extension handler. However, do not
return any values (other than SUCCESSFUL) that NWRegisterNCPExtension can return.
Otherwise, future versions of the OS might return values you have defined and confuse their

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

5 0x05 ENOMEM Not enough memory was available on the server to register
the service.

166 0xA6 ERR_ALREADY_IN_USE The NCP Extension name is already
registered. Your service is not registered.

255 0xFF ERR_BAD_PARAMETER The NCPExtensionName parameter is
longer than the 32-byte limit.
NCP Extension Functions 227

228 NDK: Conne

novdocx (E
N

U
) 01 February 2006
meaning. If the extension handler always returns SUCCESSFUL and then uses a "status" field in the
replyData parameter to return status information, the meaning of each return value will be clear.

If you can provide all needed information by updating the 32-byte queryData buffer, pass NULL
to the NCPExtensionHandler parameter. Then call either the NWGetNCPExtensionInfo
(NLM) or NWScanNCPExtensions (NLM) function to obtain information in the queryData
buffer. This is a passive method of passing information. The NCP extension will not be notified that
the queryData parameter was accessed.

NOTE: The NCPExtensionHandler, ConnectionEventHandler, and
ReplyBufferManager parameters are function callbacks that run as OS threads. They need to
have CLIB context if they are going to make calls into CLIB that need context.

The function pointed to by the NCPExtensionHandler parameter has the following parameters:

client
(IN) Points to the NCPExtensionClient (page 245) structure containing the connection and task
of the calling client (also used by the ReplyBufferManager parameter to associate the
request with the reply notification it receives).

requestData
(IN) Points to a buffer, which might be DWORD aligned, to hold the request information.

requestDataLen
(IN) Specifies the size (in bytes) of the data in the requestData parameter.

replyData
(OUT) Points to a buffer to store the response data from the service routine if the
ReplyBufferManager parameter is NULL. Otherwise, points to the address of a valid
buffer, which might be DWORD aligned, that the NCP extension handler created.

replyDataLen
(IN/OUT) Inputs the maximum size (in bytes) of information that can be stored in the reply
buffer. Outputs the actual number of bytes that the NCPExtensionHandler parameter
stored in the reply buffer.

The function pointed to by the ConnectionEventHandler parameter has the following
parameters:

connection
(IN) Specifies the connection number for any connection (NCP extension clients and others)
that was logged out or cleared (optional).

eventType
(IN) Specifies the type of event that is being reported for NetWare 3.12 and higher (optional):

CONNECTION_BEING_FREED
CONNECTION_BEING_KILLED
CONNECTION_BEING_LOGGED_OUT
CONNECTION_BEING_FREED
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
You must decide if it is important for your service to be aware of when clients (particularly the NCP
extension clients) log out or terminate a connection.

The ConnectionEventHandler parameter does not return a value.

The function pointed to by the ReplyBufferManager parameter has the following parameters:

client
(IN) Points to the NCPExtensionClient (page 245) structure containing the connection and task
of the calling client.

replyBuffer
(IN) Points to a buffer whose information has been returned to the client (optional).

See Also
GetThreadContextSpecifier (NDK: NLM Threads Management), NWDeRegisterNCPExtension
(page 206), NWGetNCPExtensionInfo (NLM) (page 211), NWScanNCPExtensions (NLM)
(page 235), NWSendNCPExtensionRequest (page 240), NWRegisterNCPExtensionByID
(page 230), SetThreadContextSpecifier (NDK: NLM Threads Management)
NCP Extension Functions 229

230 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWRegisterNCPExtensionByID
Registers a service to be provided as an NCP Extension and assigns the NCP Extension a specific ID

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWRegisterNCPExtensionByID (
 LONG NCPExtensionID,
 const char *NCPExtensionName,
 BYTE (*NCPExtensionHandler)(
 NCPExtensionClient *NCPExtensionClient,
 void * requestData,
 LONG requestDataLen,
 void * replyData,
 LONG *replyDataLen),
 void (*ConnectionEventHandler)(
 LONG connection,
 LONG eventType)
 void (*ReplyBufferManager)(
 NCPExtensionClient *NCPExtensionClient,
 void * replyBuffer),
 BYTE majorVersion,
 BYTE minorVersion,
 BYTE revision,
 void **queryData);

Parameters
NCPExtensionID

(IN) Specifies the unique ID to be associated with your service for the NCP Extension
(assigned by Developer Support).

NCPExtensionName
(IN) Points to the name to identify the NCP Extension.

NCPExtensionHandler
(IN) Points to the function to be called when the NCP Extension calls the
NWSendNCPExtensionRequest or NWSendNCPExtensionFraggedRequest function
(optional).

ConnectionEventHandler
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
(IN) Points to the function to be called and steps to follow when a connection is freed, killed,
logged out, or restarted (optional).

ReplyBufferManager
(IN) Points to a buffer manager function used to reply to NCP Extension requests (optional).

majorVersion
(IN) Specifies the major version number of the service provider.

minorVersion
(IN) Specifies the minor version number of the service provider.

revision
(IN) Specifies the revision number of the service provider.

queryData
(OUT) Points to a 32-byte area that NetWare has allocated.

Return Values
The following table lists return values and descriptions.

Remarks
NWRegisterNCPExtensionByID is called by the service-providing NLM applications in
conjunction with NWDeRegisterNCPExtension and NWRegisterNCPExtension.

NCP extension names are case sensitive and must be unique. They have a maximum length of 32
bytes plus a NULL terminator.

For an explanation of the NCPExtensionHandler, ConnectionEventHandler, and
ReplyBufferManager parameters, see the Remarks section for NWRegisterNCPExtension
(page 226).

The queryData parameter can be used by the service provider to return up to 32 bytes of
information to the client and is aligned on a DWORD (32-bit) boundary. This information can then
be retrieved by calling NWGetNCPExtensionInfo (NLM), NWGetNCPExtensionInfoByID, or

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

5 0x05 ENOMEM Not enough memory was available on the server to register
the service.

166 0xA6 ERR_ALREADY_IN_USE The NCP Extension name is already
registered. Your service is not registered.

251 0xFB ERR_UNKNOWN_REQUEST The server version does not support
this request.

255 0xFF ERR_BAD_PARAMETER The NCPExtensionName parameter is
longer than the 32-byte limit.
NCP Extension Functions 231

232 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWScanNCPExtensions (NLM). The queryData parameter is also used by the registering NLM
as the NCP extension handle when NWDeRegisterNCPExtension is called.

NOTE: The NCPExtensionHandler, ConnectionEventHandler, and
ReplyBufferManager parameters are function callbacks that run as OS threads. They need to
have CLIB context if they are going to make calls into CLIB that need context.

See Also
GetThreadContextSpecifier (NDK: NLM Threads Management), NWDeRegisterNCPExtension
(page 206), NWRegisterNCPExtension (page 226), SetThreadContextSpecifier (NDK: NLM
Threads Management)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWScanNCPExtensions
Scans the server for NCP extension handlers

NetWare Server: 4.x, 5.x, 6.x

Platform: Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: NCP Extension

Syntax
#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanNCPExtensions (
 NWCONN_HANDLE conn,
 pnuint32 NCPExtensionID,
 pnstr8 NCPExtensionName,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Delphi Syntax
uses calwin32

Function NWScanNCPExtensions
 (conn : NWCONN_HANDLE;
 NCPExtensionID : pnuint32;
 NCPExtensionName : pnstr8;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NCPExtensionID
(IN/OUT) Points to the ID of the NCP extension handler for which to get information (set to -1
initially).

NCPExtensionName
(OUT) Points to the 32-byte buffer to receive the NCP extension name (optional).
NCP Extension Functions 233

234 NDK: Conne

novdocx (E
N

U
) 01 February 2006
majorVersion
(OUT) Points to the major version number of the NCP extension handler (optional).

minorVersion
(OUT) Points to the minor version number of the NCP extension handler (optional).

revision
(OUT) Points to the revision number of the NCP extension handler (optional).

queryData
(OUT) Points to the 32-byte buffer of custom information the NCP extension handler can use
(optional).

NCP Calls
0x2222 36 00 Scan Currently Loaded NCP Extensions

See Also
NWGetNCPExtensionInfo (page 209), NWNCPExtensionRequest (page 223),
NWFragNCPExtensionRequest (page 207), NWGetNCPExtensionInfoByName (page 217),
NWGetNCPExtensionsList (page 219), NWGetNumberNCPExtensions (page 221)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWScanNCPExtensions (NLM)
Iteratively returns information about all registered NCP extensions

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWScanNCPExtensions (
 LONG *NCPExtensionID,
 char *NCPExtensionName,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters
NCPExtensionID

(IN/OUT) Points to the ID of the desired NCP Extension.

NCPExtensionName
(OUT) Points to the name of the NCP Extension that was found.

majorVersion
(OUT) Points to the major version number of the NCP Extension provider (optional).

minorVersion
(OUT) Points to the minor version number of the NCP Extension provider (optional).

revision
(OUT) Points to the revision number of the NCP Extension provider (optional).

queryData
(OUT) Points to 32 bytes of information from the NCP Extension service provider and
allocated when the NLM calls the NWRegisterNCPExtension function (optional).

Return Values
The following table lists return values and descriptions.
NCP Extension Functions 235

236 NDK: Conne

novdocx (E
N

U
) 01 February 2006
Remarks

NWScanNCPExtensions (NLM) can be used iteratively to return the names of all the NCP
Extensions registered on the server being queried. To scan the complete list of NCP Extensions, set
the NCPExtensionID parameter to BEGIN_SCAN_NCP_EXTENSIONS. When
NWScanNCPExtensions (NLM) returns, the NCPExtensionID parameter will be set to the ID of
the first NCP Extension in the list and will return SUCCESSFUL. Use the ID in the
NCPExtensionID parameter as a seed value to find the next NCP Extension ID. Continue calling
NWScanNCPExtensions (NLM), using the new IDs returned in the NCPExtensionID parameter,
until you find the information you want or until -1 is returned.

Call NWScanNCPExtensions (NLM) when you want to list the names of the NCP Extensions but
are not looking for the name of a specific extension. If you know the name of your NCP Extension,
such as "My NCP Extension," you should call NWGetNCPExtensionInfo (NLM) to see if the
extension is registered because NWGetNCPExtensionInfo (NLM) needs to be called only once.

Call NWScanNCPExtensions (NLM) to do the following:

• See if the NCP Extension is registered.
• Check the version of the NCP Extension.
• Get the NCP Extension ID number to call NWSendNCPExtensionRequest.
• Receive 32 bytes of information from the NCP Extension without calling the

NWSendNCPExtensionRequest function.

The NCPExtensionName parameter should be set to a buffer that is
MAX_NCP_EXTENSION_NAME_BYTES (33) bytes long. The returned name is case sensitive
and unique for each NCP Extension.

NOTE: The IDs of NCP Extensions are not always consecutive numbers. Therefore, you should not
assume that if you increment the value in the NCPExtensionID parameter by one that it is a valid
NCP Extension ID.

The majorVersion, minorVersion, and revision parameters are assigned by the
registering NLM when it calls NWRegisterNCPExtension. If you have different versions or
revisions of the NCP Extension, use these fields to verify that the extension is of the correct version.
If you do not want any of this information, pass NULL.

NWScanNCPExtensionInfo can return all of the information you need, eliminating the need to call
NWSendNCPExtensionRequest. If all your information can be returned in the queryData
parameter, obtain the buffer contents by calling NWGetNCPExtensionInfo (NLM). Receiving
information this way does not call the NCP Extension handler and is useful only if a one-way server-
to-client message is sufficient. If you do not need the information that is returned in the buffer, pass
NULL.

0 SUCCESSFUL: Extension was found and non-NULL output parameters were filled

-1 No more NCP Extensions were found

1-16 An NCP error occurred (see niterror.h)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
See Also
NWDeRegisterNCPExtension (page 206), NWGetNCPExtensionInfo (NLM) (page 211),
NWRegisterNCPExtension (page 226), NWSendNCPExtensionRequest (page 240)
NCP Extension Functions 237

238 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWSendNCPExtensionFraggedRequest
Sends a request to the specified NCP extension and allows data to be retrieved from and stored in
noncontiguous memory locations

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWSendNCPExtensionFraggedRequest (
 LONG NCPExtensionID,
 const struct NCPExtensionMessageFrag
 *requestFrag,
 struct NCPExtensionMessageFrag
 * replyFrag);

Parameters
NCPExtensionID

(IN) Specifies the ID of the NCP Extension to process the request.

requestFrag
(IN) Points to the NCPExtensionMessageFrag structure containing information about the
lengths and locations of the fragmented data for the NCP Extension handler to process
(optional).

replyFrag
(IN/OUT) Points to the NCPExtensionMessageFrag structure. Inputs the maximum length of
the data to return and where to place the data. Outputs the length of all returned data and where
the data is stored (optional).

Return Values
The following table lists return values and descriptions.

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

126 0x7E ERR_NCPEXT_TRANSPORT_PROTOCOL_VIOLATION The
message transport mechanism entered a bad state in the protocol.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
Call NWSendNCPExtensionFraggedRequest when you want to send your NCP Extension handler
information stored at various locations which will avoid copying the information into a single buffer
before sending it to your NCP Extension.

NWSendNCPExtensionFraggedRequest can also place the reply data into up to four specific
locations, eliminating the need for you to copy the data from a reply buffer.

If your NCP Extension uses a single input buffer and/or a single output buffer, call
NWSendNCPExtensionRequest instead of NWSendNCPExtensionFraggedRequest.

If your NLM registers its NCP Extension by a specific ID, use that ID when calling
NWSendNCPExtensionFraggedRequest. If your NLM registers its NCP Extension by name, call
NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM) to obtain the ID before
calling NWSendNCPExtensionFraggedRequest.

NWSendNCPExtensionFraggedRequest copies the number of bytes from the server (indicated in the
totalMessageSize field of the NCPExtensionMessageFrag structure), places them into
memory locations (specified in the fragList field of the NCPExtensionMessageFrag structure),
and sets a value to reflect the actual number of bytes transferred (indicated by the
totalMessageSize field of the NCPExtensionMessageFrag structure).

NOTE: The information in the replyFrag parameter is valid only if
NWSendNCPExtensionFraggedRequest returns SUCCESSFUL.

The request and reply buffers of the client must be reproduced on the server, so the maximum size of
the buffers depends upon the memory available on the server that registers the NCP Extension.
When NWSendNCPExtensionFraggedRequest is called, it attempts to allocate server memory for
two message buffers. If it cannot allocate enough space, ERR_NO_ALLOC_SPACE will be
returned. However, the request should be retried several times since server memory use is dynamic.

See Also
NWSendNCPExtensionRequest (page 240)

150 0x96 ERR_NO_ALLOC_SPACE There was not enough memory available
on the server to allocate space for the message.

252 0xFC ERR_NCPEXT_SERVICE_PROTOCOL_VIOLATION The service
provider tried to return more data than the reply buffer could hold.

254 0xFE ERR_NCPEXT_NO_HANDLER The NCP exception handler could not
be found.

1-16 A communications error has occurred. (See niterror.h.)

Value Hex Name and description
NCP Extension Functions 239

240 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWSendNCPExtensionRequest
Sends a request to the specified NCP extension

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM

Service: NCP Extension

Syntax
#include <nlm\nwncpx.h>

int NWSendNCPExtensionRequest (
 LONG NCPExtensionID,
 const void *requestData,
 LONG requestDataLen,
 void *replyData,
 LONG *replyDataLen);

Parameters
NCPExtensionID

(IN) Specifies the ID of the NCP Extension to process your request (obtained by calling the
NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM) function.

requestData
(IN) Points to information for the NCP Extension handler to process (optional).

requestDataLen
(IN) Specifies the length (in bytes) of the input request buffer that is being sent to the NCP
Extension (optional).

replyData
(OUT) Points to the information returned by the NCP Extension (optional).

replyDataLen
(IN/OUT) Points to the length (in bytes) of the replyData parameter. Outputs a pointer to
the actual number of bytes placed into the buffer (optional).

Return Values
The following table lists return values and descriptions.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
NWSendNCPExtensionRequest sends the number of bytes specified by the requestDataLen
parameter to the server.

If the requestData or requestDataLen parameter is set to NULL or zero respectively, no
request data is sent.

NWSendNCPExtensionFraggedRequest copies the number of bytes from the server (indicated in the
totalMessageSize field of the NCPExtensionMessageFrag structure), places them into
memory locations (specified in the fragList field of the NCPExtensionMessageFrag structure),
and sets a value to reflect the actual number of bytes transferred (indicated by the
totalMessageSize field of the NCPExtensionMessageFrag structure).

NWSendNCPExtensionRequest copies the number of bytes from the server (specified in the
replyDataLen parameter), places them into memory (specified in the replyData parameter),
and sets a value to reflect the actual number of bytes transferred (specified by the replyDataLen
parameter.

If the replyData or replyDataLen parameter is set to NULL or zero respectively, no reply
data is returned.

NOTE: The information in the replyData parameter is valid only if
NWSendNCPExtensionRequest returns SUCCESSFUL.

The request and reply buffers of the client must be reproduced on the server, so the maximum size of
the buffers depends upon the memory available on the server that registers the NCP Extension.
When NWSendNCPExtension is called, it attempts to allocate server memory for two message
buffers. If it cannot allocate enough space, ERR_NO_ALLOC_SPACE will be returned. However,
the request should be retried several times since server memory use is dynamic.

Value Hex Name and description

0 0x00 SUCCESSFUL The extension was found, and the non-null output
parameters were filled.

126 0x7E ERR_NCPEXT_TRANSPORT_PROTOCOL_VIOLATION The
message transport mechanism entered a bad state in the protocol.

150 0x96 ERR_NO_ALLOC_SPACE There was not enough memory available
on the server to allocate space for the message.

252 0xFC ERR_NCPEXT_SERVICE_PROTOCOL_VIOLATION The service
provider tried to return more data than the reply buffer could hold.

254 0xFE ERR_NCPEXT_NO_HANDLER The NCP exception handler could not
be found.

1-16 A communications error has occurred. (See niterror.h.)
NCP Extension Functions 241

242 NDK: Conne

novdocx (E
N

U
) 01 February 2006
See Also
NWDeRegisterNCPExtension (page 206), NWGetNCPExtensionInfo (NLM) (page 211),
NWScanNCPExtensions (NLM) (page 235), NWSendNCPExtensionFraggedRequest (page 238),
NWRegisterNCPExtension (page 226)
ction, Message, and NCP Extensions

14
novdocx (E

N
U

) 01 February 2006
14NCP Extension Structures

This documentation alphabetically lists the NCP Extension structures and describes their purpose,
syntax, and fields.

• “FragElement” on page 244
• “NCPExtensionClient” on page 245
• “NCPExtensionMessageFrag” on page 246
NCP Extension Structures 243

244 NDK: Conne

novdocx (E
N

U
) 01 February 2006
FragElement
Defines a fragment of a fragmented NCP extension request

Service: NCP Extension

Defined In: nwncpx.h

Structure
struct FragElement {
 void *ptr ;
 LONG size ;
};

Fields
ptr

Points to the fragment data.

size
Specifies the number of bytes that can be placed in the ptr field.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NCPExtensionClient
Defines an NCP extension client

Service: NCP Extension

Defined In: nwncpx.h

Structure
struct NCPExtensionClient {
 LONG connection ;
 LONG task ;
};

Fields
connection

Specifies the connection number of the client.

task
Specifies the task number of the client.
NCP Extension Structures 245

246 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NCPExtensionMessageFrag
Defines a fragmented NCP extension request

Service: NCP Extension

Defined In: nwncpx.h

Structure
struct NCPExtensionMessageFrag {
 LONG totalMessageSize ;
 LONG fragCount ;
 struct FragElement fragList [4];
};

Fields
totalMessageSize

Specifies the limit (in bytes) for the returned data.

fragCount
Specifies the number of FragElement structures stored in the fragList field.

fragList
Specifies an array of up to four FragElement structures.
ction, Message, and NCP Extensions

15
novdocx (E

N
U

) 01 February 2006
15Server-Based Connection
Concepts

This documentation describes Server-Based Connection, its functions, and features.

NOTE: Two service groups address connection issues: this one and Connection Number and Task
Management Services. The functions in this group are mainly for obtaining connections to a server
in the traditional way, by attaching or logging in and freeing them by logging out. The functions in
the Connection Number and Task Management Services group are basically for switching between
connections and task management. Both service groups have functions for getting information about
connections and the objects currently using them.

An NLM application can work with connections in ways that are not available to workstation
applications. By virtue of being loaded into the same server memory as the server, your NLM takes
connection zero (0) and is granted automatic supervisory rights on the local server. Connection 0
gives your NLM unlimited access to the local servers file system. In addition to connection 0, a local
NLM frequently needs to get a connection to the local server, and it always needs to do so in order to
gain access to a remote server. The Server-Based Connection functions allow an NLM to get a
connection to a local or remote server.

15.1 Getting Connection Information
When an NLM calls LoginToFileServer, the server allocates the NLM a single connection by
placing its object ID into one of the consecutively numbered slots in its connection table. That slot
becomes the current thread groups connection number.

Many functions require you to specify a connection number, which you can get by calling either
GetConnectionNumber or GetCurrentConnection.

15.2 LoginObject and LoginToFileServer
The difference between LoginToFileServer and LoginObject, a related function in the Connection
Number and Task Management Services group, is that LoginObject requires a connection number
and LoginToFileServer does not. So you would use LoginToFileServer when you want a new
connection and LoginObject when you already have a connection.

15.3 Logout and LogoutFromFileServer
An NLM can log out from a server by calling any of the following functions:

• LogoutFromFileServer logs the NLM out of all connections to a specified server that the NLM
is currently logged in to.

• Logout logs the NLM out of all connections on all the servers that the NLM is currently logged
in to.

LogoutObject (Connection Number and Task Management Services) logs out the object logged in
on the specified connection number on the current server (currently selected file server ID).
Server-Based Connection Concepts 247

248 NDK: Conne

novdocx (E
N

U
) 01 February 2006
15.4 Unexpected Termination
Whenever a connection is terminated unexpectedly all server operations associated with that
particular connection are cleaned up. Files and transactions are closed, locks are aborted, and
network semaphores are freed. Hence, operations that were underway at the time of the unexpected
termination must be restarted.

15.5 Getting Information
The functions in this group are for returning connection-related information, for example:

• the current connection number
• the current servers ID
• the specified servers ID
• all connection numbers in use on a specified server
• information about the object logged in on a particular connection, including its name and type
• an objects internet address
• the maximum number of connections
• the time an object logged in

15.6 Maximum Number of Connections Allowed
An NLM should always determine the maximum number of logical connections that are actually
allowed on a server. Otherwise, it runs the risk of consuming too many connections, making it
difficult for other objects on the network to obtain one.

The maximum number of connections allowed varies from server to server according to two factors:
the servers version and the number of connections the particular site has purchased. For all practical
purposes, NetWare 4.x has no limit on the number of connections available for use by NLM
applications that are attached to the server. If on the other hand, the NLM logs into the server, the
number of connections is restricted by the number purchased by the site. Unlike NetWare 4.x,
NetWare 3.x provides 100 NLM connection numbers in all number-of-user versions of NetWare.

You can find out the maximum number of connections allowed by calling GetFileServerInformation
(File Server Environment Services).

15.7 Server-Based Connection Functions
The descriptions of these functions use the terms station, connection, and connection number
interchangeably:

Function Description

AttachByAddress Attaches an NLM (does not log it in) to the server specified by
its addressing information

AttachToFileServer Attaches an NLM (does not log it in) to the server specified by
name
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
An NLM can establish a connection to a server by logging in with LoginToFileServer, or by
attaching with AttachToFileServer or AttachByAddress. These connections are terminated by
calling Logout, LogoutFromFileServer, LogoutObject, LogoutFromFileServer or ReturnConnection
(in Connection Number and Task Management Services).

GetConnectionInformation Returns information about the object logged in on the specified
connection number

GetConnectionNumber Returns the current connection number for the running process
thread group

GetDefaultFileServerID Returns the current file server ID for the running process thread
group

GetFileServerID Returns the file server ID of the specified server

GetInternetAddress Returns a connections internet address (network number and
node address)

GetLANAddress Returns the 6-byte node address of a LAN board installed in a
server

GetMaximumNumberOfStations Returns the highest number of connections that have been
allocated at any given time by a specified server

GetObjectConnectionNumbers Returns a list of connection numbers that indicate how many
times, and as what connection numbers, a Bindery object is
logged in to the server

GetStationAddress Returns the physical node address

GetUserNameFromNetAddress Gets a user name (object ID) from an internet address

LoginToFileServer Logs an object into the specified server and sets the current
connection and current file server ID for the running processs
thread group

Logout Logs out all local and remote connections

LogoutFromFileServer Logs out all connections to the specified server and sets the
current connection and current file server ID to zero for the
thread group that the running thread belongs to

Function Description
Server-Based Connection Concepts 249

250 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

16
novdocx (E

N
U

) 01 February 2006
16Server-Based Connection
Functions

This documentation alphabetically lists the Server-Based Connection functions and describes their
purpose, syntax, parameters, and return values.

• “AttachByAddress” on page 252
• “AttachToFileServer” on page 254
• “GetConnectionID” on page 255
• “GetConnectionInformation” on page 256
• “GetConnectionList” on page 260
• “GetConnectionNumber” on page 262
• “GetDefaultConnectionID” on page 263
• “GetDefaultFileServerID” on page 264
• “GetFileServerID” on page 265
• “GetInternetAddress” on page 266
• “GetLANAddress” on page 268
• “GetMaximumNumberOfStations” on page 269
• “GetObjectConnectionNumbers” on page 270
• “GetStationAddress” on page 272
• “GetUserNameFromNetAddress” on page 274
• “LoginToFileServer” on page 275
• “Logout” on page 277
• “LogoutFromFileServer” on page 278
• “NWGetSecurityLevel” on page 279
• “NWSetSecurityLevel” on page 280
Server-Based Connection Functions 251

252 NDK: Conne

novdocx (E
N

U
) 01 February 2006
AttachByAddress
Attaches (but does not log in) an NLM application to the server whose address is specified

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int AttachByAddress (
 int transType,
 LONG transLen,
 BYTE *transBuf,
 WORD *fileServerID);

Parameters
transType

(IN) Specifies the transport type, such as the IPX™ protocol.

transLen
(IN) Specifies the length of the transport buffer in bytes.

transBuf
(IN) Points to the transport buffer.

fileServerID
(OUT) Receives the file server ID of the newly attached server.

Return Values
If successful, this function returns zero. Otherwise, NetWareErrno is set.

Remarks
AttachByAddress attaches the NLM to the address described by the transType, transLen, and
transBuf parameters. In addition AttachByAddress also sets the current connection of the calling
thread (and of all threads in the same thread group) to be the new connection obtained by this
function.

The file server ID of the attached server is returned in the fileServerID parameter.

The transport buffer contains different data depending on the transport type.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
See Also
AttachToFileServer (page 254)
Server-Based Connection Functions 253

254 NDK: Conne

novdocx (E
N

U
) 01 February 2006
AttachToFileServer
Attaches (but does not log in) an NLM to the specified server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int AttachToFileServer (
 char *fileServerName,
 WORD *fileServerID);

Parameters
fileServerName

(IN) Specifies a string containing the name of the server to which the NLM is to be attached.

fileServerID
(OUT) Receives the file server ID of the newly attached server.

Return Values
If successful, this function returns 0. Otherwise, NetWareErrno is set.

Remarks
AttachToFileServer attaches the NLM to the server specified by the fileServerName parameter.
AttachToFileServer also sets the current connection of the calling thread (and of all threads in the
same thread group) to be the new connection obtained by this function.

The fileServerName parameter is a string of no more than 48 characters, including the NULL
terminator. The fileServerID parameter receives the file server ID of the attached server.

See Also
AttachByAddress (page 252)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetConnectionID
See GetFileServerID (page 265)

Server-Based Connection Functions 255

256 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetConnectionInformation
Returns information about the object logged in as the specified connection number

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetConnectionInformation (
 WORD connectionNumber,
 char *objectName,
 WORD *objectType,
 long *objectID,
 BYTE *loginTime);

Parameters
connectionNumber

(IN) Specifies the server connection number for which information is to be returned (0 to
maximum connection number).

objectName
(OUT) Receives a string containing the name of the object logged in at the connection number
(maximum 48 characters, including the NULL terminator).

objectType
(OUT) Receives the type of the object that is logged in at the connection number (OT_USER,
OT_USER_GROUP, OT_PRINT_SERVER).

objectID
(OUT) Receives the unique ID of the object that is logged in at the connection number (0 =
unused logical connection number).

loginTime
(OUT) Receives the date and time that the object logged in at the connection number (7 bytes).

Return Values
The following table lists return values and descriptions.

Value Hex Name

0 (0x00) ESUCCESS
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The connectionNumber is the position in the File Server Connection Table. A connection
number of 0 is a special case. When 0 is specified, objectName returns the server name,
objectType returns OT_FILE_SERVER, objectID is the supervisor’s object ID, and
loginTime is all zeros.

The objectName is an ASCIIZ string from 1 to 47 characters long.

The objectType identifies the object as an OT_USER (0x0001), OT_USER_GROUP (0x0002),
OT_PRINT_SERVER (0x0007), and so on.

The objectID is the unique identification number of the object that is logged in at the logical
connection number. (An object ID number of 0 means that an object is not logged in on the specified
logical connection number.) This number uniquely identifies the object within the NetWare®
Directory.

The loginTime is the date and time at which the object logged in. The 7 bytes contain the
following information:

See Also
GetConnectionList (page 260), GetConnectionNumber (page 262), GetInternetAddress (page 266),
GetMaximumNumberOfStations (page 269), GetObjectConnectionNumbers (page 270),
GetStationAddress (page 272)

GetConnectionInformation Example
#include <stdio.h>
#include <nwconn.h>

main()
{
 int completionCode;
 WORD objType, conn_no;
 char objName[48];
 long objID;

Byte Contents

0 Year (0 to 99, where a value of 80 = 1980, 81 = 1981, etc.; however, if the
value is less than 80, the year is considered to be in the twenty-first
century.)

1 Month (1 to 12)

2 Day (1 to 31)

3 Hour (0 to 23)

4 Minute (0 to 59)

5 Second (0 to 59)

6 Day (0 to 6, where a value of 0 = Sunday, 1 = Monday, etc.)
Server-Based Connection Functions 257

258 NDK: Conne

novdocx (E
N

U
) 01 February 2006
 BYTE loginTime[7];

 printf ("Enter connection number: ");
 scanf ("%u", &conn_no);
 completionCode = GetConnectionInformation (conn_no, objName,
&objType,
 &objID, loginTime);
 if (completionCode != 0)
 printf ("Error %d in GetConnectionInformation\n",
completionCode);
 else
 {
 printf ("Connection Number... %d\n", conn_no);
 printf ("Object Name... %s\n", objName);
 printf ("Object Type... %u\n", objType);
 printf ("Object ID... %ld\n", objID);
 printf ("Login Date... %d/%d/%d\n",
 loginTime[1],
 loginTime[2],
 loginTime[0]);
 printf ("Login Time... %d:%d:%d\n",
 loginTime[3],
 loginTime[4],
 loginTime[5]);
 switch (loginTime[6])
 {
 case 0:
 printf ("Login Day... Sunday\n");
 break;

 case 1:
 printf ("Login Day... Monday\n");
 break;

 case 2:
 printf ("Login Day... Tuesday\n");
 break;

 case 3:
 printf ("Login Day... Wednesday\n");
 break;

 case 4:
 printf ("Login Day... Thursday\n");
 break;

 case 5:
 printf ("Login Day... Friday\n");
 break;

 case 6:
 printf ("Login Day... Saturday\n");
 break;

ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
 default:
 printf ("Invalid day\n");
 break;
 }
 }
}
Server-Based Connection Functions 259

260 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetConnectionList
Returns a list of connections for a given object

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetConnectionList (
 LONG objectID,
 LONG lastConnection,
 LONG *numberOfConnections,
 LONG *connectionList,
 LONG connectionSize);

Parameters
objectID

(IN) Specifies the object for which to return connection information.

lastConnection
(IN) Specifies the connection number to start with (0 for the first call to this function).

numberOfConnections
(OUT) Receives the number of connections in connectionList.

connectionList
(OUT) Points to an array of connection numbers for the specified object.

connectionSize
(IN) Specifies the maximum size allowed for connectionList.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns an array of connection numbers (connectionList) for the object specified
by objectID. The numberOfConnections parameter indicates the number of connection
numbers in connectionList. The connectionSize parameter specifies the maximum size
for connectionList.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Since the entire list of connections for an object might not be returned by one call, this function can
be called iteratively to retrieve the entire list. For the first call, lastConnection should be 0. On
subsequent calls, lastConnection should be given the last connection number in
connectionList. When all connections have been retrieved, connectionList is not be
completely filled.

See Also
GetConnectionNumber (page 262), GetConnectionInformation (page 256)
Server-Based Connection Functions 261

262 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetConnectionNumber
Returns the current connection number for the thread group that the running process belongs to

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

WORD GetConnectionNumber (void);

Return Values
This function returns a connection number (0 to maximum connection number).

Remarks
This function is provided primarily for compatibility with the NetWare workstation APIs. In the
NLM environment, this function returns the current connection number.

When the server allocates a connection number, it assigns the first unused connection number. When
logging out, the server marks the connection number as unused but reserved in anticipation of
reattachment. A reserved logical connection number is not reassigned until it becomes the first
unused connection number and the attaching object has no connection number reserved.

Use GetFileServerInformation (File Server Environment Services) to find out how many logical
connections a server can support.

See Also
GetConnectionList (page 260)

GetConnectionNumber Example
#include <nwconn.h>
WORD connectionNumber;
connectionNumber = GetConnectionNumber ();
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetDefaultConnectionID
See GetDefaultFileServerID (page 264).

Server-Based Connection Functions 263

264 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetDefaultFileServerID
Returns the current file server ID for the thread group to which the running process belongs

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetDefaultFileServerID (void);

Return Values
This function returns the current file server ID.

Remarks
This function returns the current file server ID as an int.

See Also
GetFileServerID (page 265)

GetDefaultFileServerID Example
#include <nwconn.h>
int fileServerID;
fileServerID = GetDefaultFileServerID ();
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetFileServerID
Returns the server ID of the specified server

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetFileServerID (
 char *fileServerName,
 WORD *fileServerID);

Parameters
fileServerName

(IN) Specifies the name of the server (maximum 48 characters) for which fileServerID is
returned.

fileServerID
(OUT) Receives the server number.

Return Values
The following table lists return values and descriptions.

Remarks
The GetFileServerID function returns the file server ID of a server by passing the
fileServerName, a NULL-terminated string.

If the NLM is not logged in to the named server, fileServerID receives a value of -1.

See Also
GetDefaultFileServerID (page 264)

Value Hex Name Description

0 ESUCCESS

252 (0xFC) UNKNOWN_FILE_SERVER Not attached to the specified server
(it is not necessary to be logged
in).
Server-Based Connection Functions 265

266 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetInternetAddress
Returns a connection’s Internet address

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetInternetAddress (
 WORD connectionNumber,
 char *networkNumber,
 char *nodeAddress);

Parameters
connectionNumber

(IN) Specifies the connection number of the workstation or NLM for which an internetwork
address is requested (1 to maximum number of connections).

networkNumber
(OUT) Receives the network number (4 bytes).

nodeAddress
(OUT) Receives the physical node address (6 bytes).

Return Values
The following table lists return values and descriptions.

Remarks
The internetwork address is comprised of the networkNumber and the nodeAddress and
uniquely identifies an object. The networkNumber is the address of the network to which the
object is attached. This is the same type of address as is displayed when the NetWare console
command DISPLAY NETWORKS is issued.

Value Hex Name Description

0 (0x00) ESUCCESS

-1 EFAILURE No network address is using that connection number.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
The nodeAddress is the address of the object on the network that is returned in the
networkNumber parameter. Use this address to send packets directly to the object with IPX/
SPX™.

Print the networkNumber and the nodeAddress using the following format:

 printf ("%08lx", LongSwap (* (long *) networkNumber));
 printf ("%08lx%04x", LongSwap (* (long *) nodeAddress),
 IntSwap (* (int *) nodeAddress + 4));

See Also
GetConnectionInformation (page 256), GetConnectionNumber (page 262),
GetMaximumNumberOfStations (page 269), GetObjectConnectionNumbers (page 270),
GetStationAddress (page 272), IntSwap, LongSwap

GetInternetAddress Example
#include <nwconn.h>

int completionCode;
char networkNumber[4];
char nodeAddress[6];

/* return the internet address of the current connection.*/
completionCode = GetInternetAddress (GetConnectionNumber(),
networkNumber,
 nodeAddress);
Server-Based Connection Functions 267

268 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetLANAddress
Returns the 6-byte node address of a LAN board installed in a server

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetLANAddress (
 LONG boardNumber,
 BYTE *nodeAddress);

Parameters
boardNumber

(IN) Specifies the number of the LAN board for which the node address is desired. LAN board
numbering begins with 1.

nodeAddress
(OUT) Receives the 6-byte node address of the selected LAN board.

Return Values
This function returns a value of 0 if successful. Otherwise, it returns a nonzero value.

Remarks
This function returns the 6-byte LAN address for the selected board for the current connection ID
(current server).

See Also
GetInternetAddress (page 266), IpxGetInternetworkAddress (NLM)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetMaximumNumberOfStations
(NetWare 4.x) returns the maximum number of connections that were allocated at any one time on
the current server since it was last brought up; (NetWare 3.12 and earlier) returns the maximum
number of connections licensed for that version of NetWare at that particular site

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetMaximumNumberOfStations (void);

Return Values
For NetWare 4.x, this function returns the maximum number of connections allocated at one time on
the current server since it was last brought into service. Therefore, as more connections are made to
the current server, the number returned by GetMaximumNumberOfStations increases. So if 10
connections have been allocated since the server was brought up, but 8 of those connections have
logged out, making the number of current connections only 2, this function would return the number
10.

For NetWare 3.12 and earlier, this function returns the maximum number of connections allowed by
the site license for the current server.

GetMaximumNumberOfStations Example
#include <nwconn.h>
int maximumNumberOfStations;
maximumNumberOfStations = GetMaximumNumberOfStations ();
Server-Based Connection Functions 269

270 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetObjectConnectionNumbers
Returns a list of connection numbers that indicates how many times an object is logged in to the
server and the connection number used for each login

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetObjectConnectionNumbers (
 char *objectName,
 WORD objectType,
 WORD *numberOfConnections,
 WORD *connectionList,
 WORD maxConnections);

Parameters
objectName

(IN) Specifies the name of the object for which connection numbers are to be returned
(maximum 48 characters, including the NULL terminator).

objectType
(IN) Specifies the type of the object for which connection numbers are returned (OT_USER,
OT_USER_GROUP, OT_PRINT_SERVER).

numberOfConnections
(OUT) Receives the number of connections under which the object is logged in (0 to maximum
number of connections). Zero indicates the given objectName/ objectType is not
connected.

connectionList
(OUT) Receives a list of connection numbers under which the object is logged in.

maxConnections
(IN) Contains the maximum number of connection numbers to return in the
connectionList parameter.

Return Values
The following table lists return values and descriptions.
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks

This function passes the objectName, objectType, and maxConnections parameters and
returns the numberOfConnections and connectionList parameters.

When an object is logged in to a server from a workstation, NLM, or other program, the server
places the object’s ID number in a table. If an object logs in from three workstations and two NLM
applications, its object ID number appears in the table five times.

The position of the workstation or NLM address in the table is a connection number. Each server can
have a maximum number of connections. This function call returns a count and a list of the
connection numbers under which the object is logged in.

If an NLM is logged in, its address is always the same as that of the server it is running on.

See Also
GetConnectionInformation (page 256), GetConnectionNumber (page 262), GetInternetAddress
(page 266), GetMaximumNumberOfStations (page 269), GetStationAddress (page 272)

Value Hex Name

0 (0x00) ESUCCESS

NetWare Error EFAILURE
Server-Based Connection Functions 271

272 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetStationAddress
Returns the physical node address

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

void GetStationAddress (
 BYTE *nodeAddress);

Parameters
nodeAddress

(OUT) Receives the node address (6 bytes).

Remarks
GetStationAddress always returns the node address as 0x000000000001. The reason for this is that
the NetWare 3.x and 4.x OS uses an internal network number, and the server is node number 1 on
the internal network.

In general, the nodeAddress uniquely identifies an object on a network. The internetwork
address (network number and physical node address) uniquely identifies an object throughout an
internetwork.

This function does not return the 4-byte networkNumber, which is also needed to send packets on
the internet. The complete address of a station can be obtained by calling GetConnectionNumber
and then calling GetInternetAddress.

See Also
GetConnectionNumber (page 262), GetInternetAddress (page 266)

GetStationAddress Example
#include <stdio.h>
#include <stdlib.h>
#include <nwconn.h>

main()
{
 int ccode;
 BYTE nodeAddress[6];
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
 GetStationAddress (nodeAddress);
 printf ("Station Address: %02X%02X%02X%02X%02X%02X",
 nodeAddress[0],
 nodeAddress[1],
 nodeAddress[2],
 nodeAddress[3],
 nodeAddress[4],
 nodeAddress[5]);
}
Server-Based Connection Functions 273

274 NDK: Conne

novdocx (E
N

U
) 01 February 2006
GetUserNameFromNetAddress
Gets a user name (object ID) from an internet address

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int GetUserNameFromNetAddress (
 BYTE * internetAddress,
 int sequenceNumber,
 struct UserNameStruct * userNameP);

Parameters
internetAddress

(IN) Specifies a 10-byte internet address.

sequenceNumber
(IN) Specifies the number of users to skip.

userNameP
(OUT) Points to a structure of type UserNameStructure, which includes user name and object
ID information.

Return Values
This function returns the next sequence number if successful. Otherwise, it returns a value of 0 if
there are no more users with the specified address.

Remarks
The net address is a 10-byte address that specifies which users are to be returned. If all users are
desired, the sequence number should initially be set to zero. The next sequence number to be used is
then returned by the function until all users have been found. The returned userNameP parameter
points to a structure of type UserNameStruct with the following fields:

 BYTE UserName[48]
 LONG ObjectID

See Also
GetInternetAddress (page 266), IpxGetInternetworkAddress (NLM)
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
LoginToFileServer
Logs an object in to the server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int LoginToFileServer (
 char *objectName,
 WORD objectType,
 char *objectPassword);

Parameters
objectName

(IN) Specifies the string containing the Bindery name of the object to be logged in (maximum
48 characters, including the NULL terminator).
A server name can be supplied as part of the objectName: serverName/ objectName

objectType
(IN) Specifies the Bindery type of the object to be logged in (OT_USER, OT_USER_GROUP,
OT_PRINT_SERVER)

objectPassword
(IN) Specifies the string containing the object’s password (maximum 128 characters, including
the NULL terminator).

Return Values
The following table lists return values and descriptions.

Remarks
If a server name is supplied as part of the objectName, an attempt is made to log in to the
specified server. If successful, the new server is assigned a file server ID. The file server ID is made
the current file server number, and the connection number on the new server is made the current

Value Hex Name

0 (0x00) SUCCESSFUL

NetWare Error EFAILURE
Server-Based Connection Functions 275

276 NDK: Conne

novdocx (E
N

U
) 01 February 2006
connection. Any logins using LoginToFileServer without specifying a new server name result in a
login to the current server. If the login is not to the current server, the current working volume and
current working path are set to the root.

To determine the connection number assigned to the NLM as a result of calling the
LoginToFileServer function, an NLM can call GetCurrentConnection (defined in nwcntask.h) or
GetConnectionNumber.

NOTE: LoginToFileServer establishes a single connection to the specified server. However,
LogoutFromFileServer logs out all the connections to the specified server. You can use
LogoutObject to log out a single connection.

See Also
LoginObject, Logout (page 277), LogoutFromFileServer (page 278), LogoutObject

LoginToFileServer Example
#include <stdio.h>
#include <stdlib.h>
#include <nwconn.h>

main()
{
 int c;
 if(LoginToFileServer("supervisor",OT_USER,""))
 {
 printf("could not login\r\n");
 getch();
 return 1;
 }
 c = GetCurrentConnection();
 printf("current connection: %d\r\n",c);
 getch();
 LogoutObject(c);
 printf("logout performed\r\n");
 getch();
 ReturnConnection(c); /* Only need to return connection
 if logged into local server */
 printf("connection returned\r\n");
}
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Logout
Logs out all local and remote connections

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

void Logout (void);

Remarks
All connections on all servers are logged out. The current connection is set to 0 and the current
working directory is set to the root of the SYS: volume.

NOTE: If you are using multiple threads, Logout logs out all other thread group and thread
connections.

See Also
LoginToFileServer (page 275), LogoutFromFileServer (page 278), LogoutObject
Server-Based Connection Functions 277

278 NDK: Conne

novdocx (E
N

U
) 01 February 2006
LogoutFromFileServer
Logs out all connections on the specified server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

void LogoutFromFileServer (
 WORD fileServerID);

Parameters
fileServerID

(IN) File server ID of the server whose connections are to be logged out.

Remarks
All connections on the specified file server ID (server number) are logged out. If logging out from
the current server, the local server becomes the new current server. The current working volume and
current working path are set to the root.

NOTE: If you are using multiple threads, Logout logs out all other thread group and thread
connections.

See Also
LoginToFileServer (page 275), Logout (page 277), LogoutObject
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
NWGetSecurityLevel
Returns the current level of security the current NLM has for sending NCP packets

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

 int NWGetSecurityLevel (
 void);

Return Values
NWGetSecurityLevel returns the current value the NLM has as its NCP packet signature option.

Remarks
The value returned by NWGetSecurityLevel corresponds with the values shown on the system
console set command for NCPs, "NCP Packet Signature Option."

See Also
NWSetSecurityLevel (page 280)
Server-Based Connection Functions 279

280 NDK: Conne

novdocx (E
N

U
) 01 February 2006
NWSetSecurityLevel
Sets the current level of security the current NLM has for sending NCP packets

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Connection

Syntax
#include <nwconn.h>

int NWSetSecurityLevel (
 int SecurityLevel);

Parameters
SecurityLevel

(IN) Specifies the new security level to be set.

Return Values
NWSetSecurityLevel returns the current NLMs most recent security level.

Remarks
The SecurityLevel parameter and the return value correspond with the values shown on the
system console set command for NCPs, "NCP Packet Signature Option."

See Also
NWGetSecurityLevel (page 279)
ction, Message, and NCP Extensions

17
novdocx (E

N
U

) 01 February 2006
17Server-Based Message Concepts

This documentation describes Server-Based Message, its functions, and features.

Message functions enable applications to send broadcast messages (1 to 58 bytes) to specified target
connections (workstations 1 to 250). The sending connection and the target connection must be
attached to the same server. Broadcast messages use server processing time. For true peer-to-peer
communication between programs across the network, applications can use Novell® IPX (
Internetwork Packet Exchange) or SPX (Sequenced Packet Exchange) protocols, or NetBIOS.
These protocols do not use server processing time and therefore promote better performance and
greater flexibility (not limited to 55 bytes per message).

For broadcast messages, each connection on a server has a 58-byte message buffer associated with
it.

Normally, when one connection sends a broadcast message to another connection, the server places
the message in the target connections message buffer or pipe queue, and informs the target
connection that a message has arrived.

17.1 Server-Based Message Functions

Function Description

BroadcastToConsole Broadcasts a message to the servers system console

DisableStationBroadcasts Disables message reception

EnableStationBroadcasts Enables message reception

GetBroadcastMessage Returns a broadcast message from the current connection on the
current server

SendBroadcastMessage Sends a broadcast message to the specified connections on the
current server
Server-Based Message Concepts 281

282 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

18
novdocx (E

N
U

) 01 February 2006
18Server-Based Message Functions

This documentation alphabetically lists the Server-Based Message functions and describes their
purpose, syntax, parameters, and return values.

• “BroadcastToConsole” on page 284
• “DisableStationBroadcasts” on page 285
• “EnableStationBroadcasts” on page 286
• “GetBroadcastMessage” on page 287
• “SendBroadcastMessage” on page 288
Server-Based Message Functions 283

284 NDK: Conne

novdocx (E
N

U
) 01 February 2006
BroadcastToConsole
Broadcasts a message to the server’s system console (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWBroadcastToConsole (page 174))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Message

Syntax
#include <\nlm\nit\nwmsg.h>

int BroadcastToConsole (
 char *message);

Parameters
message

(IN) String containing the message to send (maximum 80 characters, including the NULL
terminator).

Return Values
The following table lists return values and descriptions.

Remarks
The application must check that the message does not exceed 80 bytes and that it does not contain
characters with ASCII values less than 0x20 or greater than 0x7E.

The server console displays a colon prompt followed by the message on a single line.

See Also
SendBroadcastMessage (page 288)

Value Hex Name Description

0 (0x00) ESUCCESS

252 (0xFC) ERR_MESSAGE_QUEUE_FULL

254 (0xFE) ERR_IO_FAILURE Lack of Dynamic Workspace
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
DisableStationBroadcasts
Disables message reception (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDisableBroadcasts (page 176))

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Message

Syntax
#include <\nlm\nit\nwmsg.h>

int DisableStationBroadcasts (void);

Return Values
The following table lists return values and descriptions.

Remarks
This function disables a connection from receiving broadcast messages from other connections.

See Also
EnableStationBroadcasts (page 286)

Value Hex Name

0 (0x00) ESUCCESS

NetWare Error UNSUCCESSFUL
Server-Based Message Functions 285

286 NDK: Conne

novdocx (E
N

U
) 01 February 2006
EnableStationBroadcasts
Enables message reception (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWEnableBroadcasts (page 178))

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Message

Syntax
#include <\nlm\nit\nwmsg.h>

int EnableStationBroadcasts (void);

Return Values
The following table lists return values and descriptions.

Remarks
This function allows a connection or server console to receive broadcast messages from other
connections.

See Also
DisableStationBroadcasts (page 285)

Value Hex Name

0 (0x00) ESUCCESS

NetWare Error UNSUCCESSFUL
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
GetBroadcastMessage
Returns a broadcast message from the current connection on the server (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call NWGetBroadcastMessage (page 180))

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Message

Syntax
#include <\nlm\nit\nwmsg.h>

int GetBroadcastMessage (
 char *messageBuffer);

Parameters
messageBuffer

(OUT) Returns a string containing the message (58 characters, including the NULL
terminator).

Return Values
The following table lists return values and descriptions.

Remarks
If no message is pending, messageBuffer[0] contains a NULL. Only one message can be
stored. GetBroadcastMessage cannot be called iteratively to poll messages.

Only two broadcast modes are possible: enabled and disabled.

See Also
SendBroadcastMessage (page 288)

Value Hex Name Description

0 (0x00) ESUCCESS

253 (0xFC) ERR_MESSAGE_QUEUE_FULL

254 (0xFE) ERR_IO_FAILURE Lack of Dynamic Workspace
Server-Based Message Functions 287

288 NDK: Conne

novdocx (E
N

U
) 01 February 2006
SendBroadcastMessage
Sends a broadcast message to the specified logical connections on the server (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call NWSendBroadcastMessage (page 182))

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Message

Syntax
#include <\nlm\nit\nwmsg.h>

int SendBroadcastMessage (
 char *message,
 WORD *connectionList,
 BYTE *resultList,
 WORD connectionCount);

Parameters
message

(IN) String containing the message to be sent (58 characters, including the NULL terminator).

connectionList
(IN) List of connection numbers to which the message is to be broadcast.

resultList
(OUT) Receives a result (status) code for each connection number contained in
connectionList.

connectionCount
(IN) Maximum number of connections to which the requesting workstation wants to send the
message.

Return Values
The following table lists return values and descriptions.

Value Hex Name Description

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

254 (0xFE) ERR_IO_FAILURE Lack of Dynamic Workspace
ction, Message, and NCP Extensions

novdocx (E
N

U
) 01 February 2006
Remarks
The application must check that the message does not exceed 58 characters and that it does not
contain characters with ASCII values less than 0x20 or greater than 0x7E.

The connectionList parameter specifies the connection number of each station. Each byte in
the connectionList field has a corresponding byte in resultList.

The resultList parameter returns a result code for each connection number contained in the
connectionList field. The following result codes are defined:

See Also
GetBroadcastMessage (page 287), GetConnectionInformation (page 256), GetConnectionNumber
(page 262)

Code Description

0x00 Successful. The server stored the message in the target connection’s message buffer.
(It is the target connection’s responsibility to retrieve and display the message.)

0xFC Rejected. The target connection’s message buffer is already holding a message.

0xFD Invalid Connection Number. The specified connection number is unknown.

0xFF Blocked. The target connection’s message mode is set to block messages, or the
target connection is not in use.
Server-Based Message Functions 289

290 NDK: Conne

novdocx (E
N

U
) 01 February 2006
ction, Message, and NCP Extensions

A
novdocx (E

N
U

) 01 February 2006
ARevision History

The following table outlines all the changes that have been made to the Connection, Message, and
NCP Extensions documentation (in reverse chronological order):

Release Date Revision Description

October 11, 2006 Minor changes.

March 1, 2006 Added a link from GetCurrentConnection (page 157) to information about
connection numbers.

October 5, 2005 Transitioned to revised Novell documentation standards.

March 2, 2005 Fixed legal information.

October 6, 2004 Added new error code values to the NWCCOpenConnByName (page 55)
function.

June 9, 2004 Updated the front material.

June 2003 Updated the Remarks section for the NWRegisterNCPExtension (page 226) and
NWRegisterNCPExtensionByID (page 230) functions. Changed all Pascal
references to Delphi references. Added a new field to the NWCCConnInfo
(page 125) structure and a infoType flag to retrieve the identityHandle.

October 2002 Updated the Pascal syntax for the structures.

May 2002 Updated the example of using an IPX Internal Network Number in
NWCCTranAddr (page 129).

Removed the IPX only statements from AttachByAddress (page 252).

Fixed minor punctuation issues.

February 2002 Updated links and Pascal syntaxes.

September 2001 Added support for NetWare 6.0 to documentation.

June 2001 Made changes to improve document accessibility.

Added links to table in Section 9.3, “Message Functions,” on page 172.

Added links to table in Section 11.13, “NCP Extension Functions,” on page 196.

May 2001 Replaced references to ncpext.h with nwncpx.h in FragElement (page 244),
NCPExtensionClient (page 245), and NCPExtensionMessageFrag (page 246).

Added NWCC_NAME_FORMAT_NDS to Section 5.9, “Name Format Values,” on
page 138.

Added several values to Section 5.2, “Connection State Values,” on page 135.
Revision History 291

292 NDK: Conne

novdocx (E
N

U
) 01 February 2006
February 2001 Changed NWGetNCPExtensionInfo (NLM) (page 211) so that the second
parameter is a LONG * instead of a LONG, as per include\nlm\nwncpx.h.

Changed the Pascal syntaxes of NWCCOpenConnByAddr (page 53),
NWCCOpenConnByPref (page 58), and NWCCOpenConnByRef (page 60).

Went through the syntaxes of all NCP Extension functions and changed any
inaccurate include statements (especially among NLM only functions).

Changed "bindery object" to "object" references since these references can also
apply to NDS objects.

July 2000 Added information about IP address formats in NWCCTranAddr (page 129)
structure.

Noted that NWCC_INFO_RETURN_ALL is not a valid value for the infoType
parameter of the NWCCGetConnInfo (page 35) function.

May 2000 Added this revision history

Release Date Revision Description
ction, Message, and NCP Extensions

	NDK: Connection, Message, and NCP Extensions
	About This Guide
	1 Connection Concepts
	1.1 Connection States
	1.2 Open/Close Connection Model
	1.3 Connection Handles Compared to Connection References
	1.4 Connection Management Support Routines
	1.5 Open and Close Functions
	1.6 Connection Table Functions
	1.7 Get Information Functions
	1.8 Set Parameter Functions

	2 Connection Tasks
	2.1 Attaching to Servers and Opening Connections
	2.2 Getting Connection Status
	2.3 Setting Connection Status
	2.4 Closing and Clearing Connections
	2.5 Listing Connection Handles
	2.6 Manipulating Connection Numbers

	3 Connection Functions
	3.1 NWCCA*-NWCCK* Functions
	NWCCCloseConn
	NWCCGetAllConnInfo
	NWCCGetAllConnRefInfo
	NWCCGetCLXVersion
	NWCCGetConnAddress
	NWCCGetConnAddressLength
	NWCCGetConnInfo
	NWCCGetConnRef
	NWCCGetConnRefAddress
	NWCCGetConnRefAddressLength
	NWCCGetConnRefInfo
	NWCCGetNumConns
	NWCCGetPrefServerName
	NWCCGetPrimConnRef
	NWCCGetSecurityFlags

	3.2 NWCCL*-NWCCZ* Functions
	NWCCLicenseConn
	NWCCMakeConnPermanent
	NWCCOpenConnByAddr
	NWCCOpenConnByName
	NWCCOpenConnByPref
	NWCCOpenConnByRef
	NWCCQueryFeature
	NWCCRenegotiateSecurityLevel
	NWCCRequest
	NWCCScanConnInfo
	NWCCScanConnRefs
	NWCCSetCurrentConnection
	NWCCSetPrefServerName
	NWCCSetPrimConn
	NWCCSetSecurityFlags
	NWCCSysCloseConnRef
	NWCCUnlicenseConn

	3.3 NWCl*-NWGetH* Functions
	NWClearConnectionNumber
	NWCLXInit
	NWCLXTerm
	NWFreeConnectionSlot
	NWGetConnectionIDFromAddress (obsolete-moved from .h file 11/99)
	NWGetConnectionIDFromName (obsolete-moved from .h file 11/99)
	NWGetConnectionInformation
	NWGetConnectionStatus (obsolete-moved from .h file 11/99)
	NWGetConnectionUsageStats (obsolete-moved from .h file 6/99)
	NWGetConnListFromObject
	NWGetDefaultConnectionID (obsolete-moved from .h file 11/99)
	NWGetDefaultConnRef

	3.4 NWGetI*-Z* Functions
	NWGetInetAddr
	NWGetMaximumConnections (obsolete-moved from .h file 11/99)
	NWGetNearestDirectoryService (obsolete-moved from .h file 11/99)
	NWGetNearestDSConnRef
	NWGetObjectConnectionNumbers
	NWGetTaskInformationByConn
	NWRequest
	SetConnectionCriticalErrorHandler

	4 Connection Structures
	CONN_TASK
	CONN_TASK_INFO
	CONN_USE
	CONNECT_INFO
	NW_FRAGMENT
	NWCCConnInfo
	NWCCFRAG
	NWCCTranAddr
	NWCCVersion
	NWINET_ADDR

	5 Connection Values
	5.1 Connection Type Values
	5.2 Connection State Values
	5.3 Feature Code Values
	5.4 infoType Parameter Values
	5.5 NWCC_INFO_AUTHENT_STATE Values
	5.6 NWCC_INFO_BCAST_STATE Values
	5.7 NWCC_INFO_LICENSE_STATE Values
	5.8 NWCC_INFO_NDS_STATE Values
	5.9 Name Format Values
	5.10 Scan Flag Values
	5.11 Security Flag Values
	5.12 Transport Type Values

	6 Connection Number and Task Management Concepts
	6.1 Overview
	6.2 Remote and Local Connections
	6.3 Task Numbers
	6.4 NLM Applications and Connections
	6.5 Current Connection and Task
	6.6 Connection Numbers
	6.7 Connection Zero
	6.8 Proxy Work
	6.9 Multiple Thread Groups on a Single Connection
	6.10 Connection Number and Task Management Functions

	7 Connection Number and Task Management Tasks
	7.1 Logging In
	7.2 Intervening on an Established Connection
	7.3 Doing Work on a Single Connection
	7.4 Using the Number of an Already Logged-In Workstation
	7.5 Allocating a New Connection Number and Logging In
	7.6 Allocating One or More Tasks
	7.7 Servicing a Single Connection With Many Users

	8 Connection Number and Task Management Functions
	AllocateBlockOfTasks
	CheckIfConnectionActive
	DisableConnection
	EnableConnection
	GetCurrentConnection
	GetCurrentFileServerID
	GetCurrentTask
	LoginObject
	LogoutObject
	ReturnBlockOfTasks
	ReturnConnection
	SetCurrentConnection
	SetCurrentFileServerID
	SetCurrentTask

	9 Message Concepts
	9.1 Message Modes
	9.2 Message Size
	9.3 Message Functions

	10 Message Functions
	NWBroadcastToConsole
	NWDisableBroadcasts
	NWEnableBroadcasts
	NWGetBroadcastMessage
	NWSendBroadcastMessage
	NWSendConsoleBroadcast
	NWSetBroadcastMode

	11 NCP Extension Concepts
	11.1 Client-Server Applications
	11.2 IPX/SPX Alternative
	11.3 Extension Context
	11.4 Extension ID
	11.5 Extension Name
	11.6 Extension Security
	11.7 Extension Views
	11.7.1 Client View
	11.7.2 Provider View

	11.8 Server Components
	11.9 Data Transfer
	11.10 Reentrancy
	11.11 Reply Buffer Manager
	11.12 Connection Status
	11.13 NCP Extension Functions

	12 NCP Extension Tasks
	12.1 Accessing an NCP Extension from the Client
	12.2 Providing an NLM Service as an NCP Extension
	12.3 Registering Multiple NCP Extensions
	12.4 Allocating Reply Buffers
	12.5 Processing an NCP Extension
	12.6 Deregistering Before Unloading

	13 NCP Extension Functions
	NWDeRegisterNCPExtension
	NWFragNCPExtensionRequest
	NWGetNCPExtensionInfo
	NWGetNCPExtensionInfo (NLM)
	NWGetNCPExtensionInfoByID
	NWGetNCPExtensionInfoByName
	NWGetNCPExtensionsList
	NWGetNumberNCPExtensions
	NWNCPExtensionRequest
	NWNCPSend
	NWRegisterNCPExtension
	NWRegisterNCPExtensionByID
	NWScanNCPExtensions
	NWScanNCPExtensions (NLM)
	NWSendNCPExtensionFraggedRequest
	NWSendNCPExtensionRequest

	14 NCP Extension Structures
	FragElement
	NCPExtensionClient
	NCPExtensionMessageFrag

	15 Server-Based Connection Concepts
	15.1 Getting Connection Information
	15.2 LoginObject and LoginToFileServer
	15.3 Logout and LogoutFromFileServer
	15.4 Unexpected Termination
	15.5 Getting Information
	15.6 Maximum Number of Connections Allowed
	15.7 Server-Based Connection Functions

	16 Server-Based Connection Functions
	AttachByAddress
	AttachToFileServer
	GetConnectionID
	GetConnectionInformation
	GetConnectionList
	GetConnectionNumber
	GetDefaultConnectionID
	GetDefaultFileServerID
	GetFileServerID
	GetInternetAddress
	GetLANAddress
	GetMaximumNumberOfStations
	GetObjectConnectionNumbers
	GetStationAddress
	GetUserNameFromNetAddress
	LoginToFileServer
	Logout
	LogoutFromFileServer
	NWGetSecurityLevel
	NWSetSecurityLevel

	17 Server-Based Message Concepts
	17.1 Server-Based Message Functions

	18 Server-Based Message Functions
	BroadcastToConsole
	DisableStationBroadcasts
	EnableStationBroadcasts
	GetBroadcastMessage
	SendBroadcastMessage

	A Revision History

