
n

NDK: Bindery Management
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
O c t o b e r 1 1 , 2 0 0 6

B I N D E R Y M A N A G E M E N T

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 11

1 Bindery Concepts 13
1.1 Bindery vs. NDS . 13
1.2 Bindery Files . 13

1.2.1 Activity Coordination . 13
1.3 Bindery Objects . 14

1.3.1 Object ID . 14
1.3.2 Object Type . 14
1.3.3 Object Name . 15
1.3.4 Object Flags . 15
1.3.5 Object Security . 15
1.3.6 Has-Properties Flag . 16

1.4 Bindery Object Properties . 16
1.4.1 Property Name . 16
1.4.2 Property Flags . 16
1.4.3 Property Security. 17

1.5 Standard Bindery Properties . 17
1.6 Bindery Properties Associated with NetWare Security . 18

1.6.1 USER_DEFAULTS and LOGIN_CONTROL Properties . 19
1.6.2 OLD_PASSWORDS Property . 20
1.6.3 NODE_CONTROL Property . 20
1.6.4 ACCT_LOCKOUT Property. 20

1.7 Types of Bindery Functions . 20
1.7.1 Bindery Status Functions . 21
1.7.2 Bindery Object Functions . 21
1.7.3 Bindery Object Information Functions . 21
1.7.4 Bindery Property Functions . 21
1.7.5 Bindery Password Functions. 22

2 Bindery Tasks 23
2.1 Creating a Bindery Object . 23
2.2 Scanning for Bindery Objects . 23
2.3 Scanning Bindery Properties . 23
2.4 Reading the Value of a Bindery Property . 24
2.5 Checking for a Member of a Set Property . 24
2.6 Setting Bindery Emulation . 24

3 Bindery Functions 27
NWAddObjectToSet . 28
NWChangeObjectPassword. 31
NWChangeObjectSecurity . 33
NWChangePropertySecurity. 35
NWCloseBindery . 38
NWCreateObject . 40
NWCreateProperty . 43
NWDeleteObject . 46
7

8 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWDeleteObjectFromSet . 48
NWDeleteProperty . 50
NWDisallowObjectPassword. 52
NWGetBinderyAccessLevel . 54
NWGetObjectDiskSpaceLeft . 56
NWGetObjectID. 58
NWGetObjectEffectiveRights . 60
NWGetObjectEffectiveRightsExt . 63
NWGetObjectName. 65
NWIsObjectInSet . 67
NWOpenBindery . 70
NWReadPropertyValue . 72
NWRenameObject . 75
NWScanObject . 77
NWScanObjectTrusteePaths . 80
NWScanObjectTrusteePathsExt . 83
NWScanProperty. 85
NWVerifyObjectPassword . 88
NWWritePropertyValue . 90

4 Bindery Values 93
4.1 Extended Object Type Values . 93
4.2 Maximum Rights Mask Values . 93
4.3 Security Rights Mask Values . 93

5 Server-Based Bindery Concepts 95
5.1 Objects . 95
5.2 Properties and Values . 97
5.3 Workgroup Managers . 100
5.4 Server-Based Bindery Functions . 101

6 Server-Based Bindery Functions 103
AddBinderyObjectToSet . 104
ChangeBinderyObjectPassword . 108
ChangeBinderyObjectSecurity . 110
ChangePropertySecurity . 113
CloseBindery . 116
CreateBinderyObject . 118
CreateProperty . 121
DeleteBinderyObject . 125
DeleteBinderyObjectFromSet . 127
DeleteProperty . 130
GetBinderyAccessLevel . 133
GetBinderyObjectID . 135
GetBinderyObjectName . 137
IsBinderyObjectInSet. 139
OpenBindery . 142
ReadPropertyValue . 144
RenameBinderyObject . 148
ry Management

novdocx (E
N

U
) 01 February 2006
ScanBinderyObject . 151
ScanBinderyObjectTrusteePaths . 154
ScanProperty . 158
VerifyBinderyObjectPassword . 162
WritePropertyValue . 164

A Revision History 169
9

10 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ry Management

novdocx (E
N

U
) 01 February 2006
About This Guide

NetWare® 3.x servers use the bindery database to identify and store information about network
objects. Bindery allows applications to read and modify standard information stored in the bindery
and to create and manage their own object data. This guide is divided into the following sections:

• Chapter 1, “Bindery Concepts,” on page 13
• Chapter 2, “Bindery Tasks,” on page 23
• Chapter 3, “Bindery Functions,” on page 27
• Chapter 4, “Bindery Values,” on page 93
• Chapter 5, “Server-Based Bindery Concepts,” on page 95
• Chapter 6, “Server-Based Bindery Functions,” on page 103

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

• NDK: NLM Development Concepts, Tools, and Functions
• NDK: Program Management
• NDK: NLM Threads Management
• NDK: Connection, Message, and NCP Extensions
• NDK: Multiple and Inter-File Services
• NDK: Single and Intra-File Services
• NDK: Volume Management
• NDK: Client Management
• NDK: Network Management
• NDK: Server Management
• NDK: Internationalization
• NDK: Unicode
• NDK: Sample Code
• NDK: Getting Started with NetWare Cross-Platform Libraries for C

For CLib source code projects, visit Forge (http://forge.novell.com).
11

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm
http://forge.novell.com

12 NDK: Binde

novdocx (E
N

U
) 01 February 2006
For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C
(including CLIB and XPlat) Developer Support Forums (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat
development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
ry Management

http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

1
novdocx (E

N
U

) 01 February 2006
1Bindery Concepts

This documentation describes Bindery, its functions, and features.

The bindery serves many purposes. It is the basis for identifying users of the file system, both
through login control and file trustee rights. Users, user groups, print servers, and other objects that
require access to the NetWare file system must be represented in the bindery.

Another use of the bindery is network advertising. The bindery advertises services and circulates
their network addresses to NetWare servers and other network services.

A third role for the bindery is storing application-specific data. For example, applications often use
the bindery to maintain lists of users that can access the application services.

1.1 Bindery vs. NDS
The NetWare® 4.x OS replaced the bindery with NDS® (an object database). NDS offers many
advantages over the bindery, including a hierarchical structure and global naming.

However, to maintain compatibility with bindery-based servers and to work effectively with such
NetWare features as file trustee rights, NDS provides built-in bindery context. This is provided by a
bindery-like database maintained by NDS for objects contained in the local directory partitions of a
server.

NDS generates object IDs and makes them available to bindery clients using the local file system,
queue management system, and other bindery-oriented services. These values, however, are
dynamic, not remaining consistent over time. NDS object IDs and the object IDs returned by
Bindery are the same.

1.2 Bindery Files
Each NetWare 3.x server maintains a bindery database. One server cannot coordinate its bindery
data with other servers on the network. For NetWare 3.11, the bindery consists of three files:

• net$obj.sys
• net$prop.sys
• net$val.sys

Bindery files are hidden in the SYS:SYSTEM directory.

Bindery allows applications to open and close the bindery so that these files can be archived, but an
application must have supervisor equivalence to open and close the bindery. When the files are
closed, many server operations become disabled so take precautions. In NetWare 4.x, 5.x, and 6.x,
the bindery, which is a bindery emulation service, cannot be opened or closed.

1.2.1 Activity Coordination
Bindery makes no attempt to coordinate activities among multiple stations that concurrently read or
write data to a single property. One workstation might read a partially updated property and get
inconsistent data if the data of the property extends across multiple segments. Coordination on
Bindery Concepts 13

14 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Reads and Writes must be handled by application programs. Logical record locks can be used to
coordinate activities among applications.

1.3 Bindery Objects
All bindery objects must be assigned the following information:

• Object ID
• Object Type
• Object Name
• Object Flags
• Object Security
• Has-Properties Flag

1.3.1 Object ID
The objectID parameter is a 4-byte number uniquely identifying the object within a particular
server bindery and is not recognized by other servers. The NetWare OS (not the application) assigns
this number.

1.3.2 Object Type
The objectType parameter is a 2-byte number classifying the object. Do not swap the following
values since they are defined the way they are expected by various functions:

Table 1-1 Standard Object Types

C Pascal Name

0xFFFF $FFFF OT_WILD

0x0000 $0000 OT_UNKNOWN

0x0100 $0100 OT_USER

0x0200 $0200 OT_USER_GROUP

0x0300 $0300 OT_PRINT_QUEUE

0x0400 $0400 OT_FILE_SERVER

0x0500 $0500 OT_JOB_SERVER

0x0600 $0600 OT_GATEWAY

0x0700 $0700 OT_PRINT_SERVER

0x0800 $0800 OT_ARCHIVE_QUEUE

0x0900 $0900 OT_ARCHIVE_SERVER

0x0A00 $0A00 OT_JOB_QUEUE

0x0B00 $0B00 OT_ADMINISTRATION
ry Management

novdocx (E
N

U
) 01 February 2006
1.3.3 Object Name

The objectName parameter is a 48-byte string (including a NULL terminator) containing the
name of the object. The name consists of only printable characters and cannot include spaces or any
of the following characters:

/ slash
\ backslash
: colon
; semicolon
, comma
* asterisk
? question mark

IMPORTANT: Object names are recorded in uppercase in the bindery.

1.3.4 Object Flags
The objectFlags parameter is a single-byte flag specifying whether the object is static:

00h Static
01h Dynamic

A static object exists in a bindery until an application intentionally deletes it. A dynamic object
disappears from a server bindery when the server is rebooted.

Objects placed in the bindery by SAP are dynamic. The server closely monitors such objects. The
service provider must advertise periodically or the server deletes the object.

1.3.5 Object Security
The object security parameter is a single-byte flag that determines object access. The low-
order nibble determines who can read (scan for and find) the object. The high-order nibble
determines who can write to the object (add or delete properties). The table below shows the values
defined for each nibble.

Table 1-2 Bindery Object Security Levels

0x2100 $2100 OT_NAS_SNA_GATEWAY

0x2600 $2600 OT_REMOTE_BRIDGE_SERVER

0x2700 $2700 OT_TCPIP_GATEWAY

Bit Security Level Description

0x00 BS_ANY_READ Anyone can read the object, even users who aren’t logged in.

0x01 BS_LOGGED_READ Only clients logged in to the server can read the object.

C Pascal Name
Bindery Concepts 15

16 NDK: Binde

novdocx (E
N

U
) 01 February 2006
1.3.6 Has-Properties Flag
The hasPropertiesFlag parameter is a single-byte flag indicating whether any properties are
associated with the object:

00h No properties
FFh 1 or more properties

1.4 Bindery Object Properties
Each bindery object can be assigned one or more properties. Properties identify categories of
information associated with an object. For example, a user object has a GROUPS_I’M_IN property,
an ACCOUNT_BALANCE property, and a PASSWORD property. Each property provides storage
space appropriate to the associated values. All properties are assigned the following information:

• Property Name
• Property Flags
• Property Security

1.4.1 Property Name
The propertyName parameter is a 15-byte string (including a NULL terminator) containing the
name of the property.

IMPORTANT: Property names are recorded in uppercase in the bindery.

1.4.2 Property Flags
The propertyFlags parameter is a single-byte flag with bits 0 and 1 defined. Bit 0 is the static/
dynamic toggle flag, and bit 1 is the item/set toggle flag. The flags are combined so that both set and
item properties can be static or dynamic. The bits are defined as follows:

• Bit 0:

0x02 BS_OBJECT_READ Only clients logged in to the server with this object’s name, type,
and password can read the object.

0x03 BS_SUPER_READ Only clients with supervisor equivalence can read the object.

0x04 BS_BINDERY_READ Only the NetWare operating system can read the object.

0x00 BS_ANY_WRITE Anyone can modify the object, even users who aren’t logged in.

0x10 BS_LOGGED_WRITE Only clients logged in to the server can modify the object.

0x20 BS_OBJECT_WRITE Only clients logged in to the server with this object’s name, type,
and password can modify the object.

0x30 BS_SUPER_WRITE Only clients with supervisor equivalence can modify the object.

0x40 BS_BINDERY_WRITE Only the NetWare operating system can modify the object.

Bit Security Level Description
ry Management

novdocx (E
N

U
) 01 February 2006
0 Static
1 Dynamic

• Bit 1:

0 Item
1 Set

Static and Dynamic Properties

The Static property is recorded in server memory and remains a part of the bindery until the property
is explicitly deleted.

In contrast, the Dynamic property is created during the course of a bindery session and is deleted
from the bindery of a network server when the server is rebooted.

Item Property

The item property parameter is a 128-byte string and can take up as much of this space as
necessary. For example, the property ACCOUNT_BALANCE is an item property that contains a
monetary balance in the first few bytes. The remainder of the 128 bytes is zeroed out and must be
interpreted by the application.

Set Property

The setProperty parameter contains a list of 1 to 32 object IDs in a 128-byte segment. Each
object ID is 4 bytes. The property GROUPS_I’M_IN is an example of a Set property. This property
contains the object IDs (from 1 to 32) of user groups to which the user belongs. The values of a Set
property are always object IDs grouped into one or more 128-byte segments.

1.4.3 Property Security
The property security parameter is a single-byte flag that determines who can access the
property. The low-order nibble determines who can scan for and find the property (read security).
The high-order nibble determines who can add values to the property (write security). Possible
values for this flag correspond to those defined for the object security field. See the table in “Object
Security” on page 15.

1.5 Standard Bindery Properties
The standard properties defined by NetWare for managing user and group access to the NetWare
server are defined as follows:

Table 1-3 Standard Bindery Properties

Hex Name Flags Object Type: Description

0x32 ACCOUNT_BALANCE static/item user

0x32 ACCOUNT_HOLDS dynamic/item user

0x31 ACCOUNT_SERVERS static/set server
Bindery Concepts 17

18 NDK: Binde

novdocx (E
N

U
) 01 February 2006
1.6 Bindery Properties Associated with NetWare
Security
The following properties are associated with NetWare security:

• LOGIN_CONTROL
• OLD_PASSWORDS
• NODE_CONTROL
• ACCT_LOCKOUT

0x33 ACCT_LOCKOUT static/item server

0x31 BLOCKS_READ static/item server

0x31 BLOCKS_WRITTEN static/item server

0x31 CONNECT_TIME static/item server

0x31 DISK_STORAGE static/item server

0x31 GROUP_MEMBERS static/set user group: List of users that are members of
a user group

0x31 GROUPS_I’M_IN static/set user: List of user groups of which a user is a
member

0x31 IDENTIFICATION static/item user: User of users group full name

0x32 LOGIN_CONTROL static/item user

0x40 NET_ADDRESS dynamic/item server

0x32 NODE_CONTROL static/item user

0x33 OLD_PASSWORDS static/item user

0x33 OPERATORS static/set server: List of objects that are console
operators

0x44 PASSWORD static/item user: Encrypted password of an object

0x33 Q_DIRECTORY static/item queue

0x31 Q_OPERATORS static/set queue

0x31 Q_SERVERS static/set queue

0x31 Q_USERS static/set queue

0x31 REQUESTS_MADE static/item server

0x32 SECURITY_EQUALS static/set user: List of objects that are equivalent to the
associated object

0x31 USER_DEFAULTS static/item supervisor

Hex Name Flags Object Type: Description
ry Management

novdocx (E
N

U
) 01 February 2006
1.6.1 USER_DEFAULTS and LOGIN_CONTROL Properties
The USER_DEFAULTS property is used by system utilities to initialize the LOGIN_CONTROL
property.

The LOGIN_CONTROL property tracks the current state of security for the associated account and
contains the following fields:

Size Field: Description

0 nuint8[3] account expiration date: Date the account expires

3 nuint8 account disabled flag: Whether the account is enabled (0x00) or disabled
(0xFF). NetWare checks the value every half hour. If set to 0xFF since a
user logged into an account, NetWare asks the user to log out. Within five
minutes, NetWare will clear the connection.

4 nuint8[3] password expiration date: Date the password expires

7 nuint8 grace logins remaining: Number of times a user can log in using an expired
password. If set to 0xFF, it is not decremented. Otherwise, it is decremented
each time the user logs in after the password expired. If set to 0, the user
cannot log in.

8 nuint16 password expiration interval: Number of days between password expiration
dates. In 4.x, 5.x, and 6.x, it must be nonzero to check the old password list
when changing a password.

10 nuint8 grace login reset value: Reset value for the grace logins remaining field
after a password change

11 nuint8 minimum password length: Minimum length permitted for a password. If 0,
no password is needed. In 4.x, 5.x, and 6.x, it must be nonzero to check the
old password list when changing a password.

12 nuint16 maximum concurrent connections: Maximum concurrent connections
allowed per user. If 0, the limit is the maximum supported by the server.

14 nuint8[42] allowed login time bit map: 336 half-hour periods during a week when a user
can login to the server. Bit 1 of byte 0 represents 12:00 to 12:29 am Sunday.
Bit 2 of byte 0 is 12:30 to 12:59 am Sunday. Setting the bit permits logins
during the corresponding period.

56 nuint[6] last login date and time: Most recent time the user logged in

62 nuint8 restriction flags: Who is allowed to change the password on the account:
0x00 Anyone, 0x01 Supervisor. 0x02 is set if the OLD_PASSWORDS
property exists for the account. In 3.x, 4.x, 5.x, and 6.x, it must be 0x02 to
keep an old passwords list.

63 nuint8 reserved

64 nuint32 maximum disk usage (in blocks): Number of 4K disk blocks that may be
used by the account. If 0x7FFFFFFF, there is no limit.

68 nuint16 bad login count: Number of bad login attempts since the last reset time.
(Intruder detection is active only if the ACCT_LOCKOUT property is
assigned to the file server object). The field is reset when a successful login
occurs or the number of minutes in the reset minutes parameter of
ACCT_LOCKOUT expires. If the account is locked because of intruder
detection, it is set to 0xFFFF.
Bindery Concepts 19

20 NDK: Binde

novdocx (E
N

U
) 01 February 2006
For all 3-byte date values, the first byte contains the year (0=1900, 1=1901, 2=1902, etc.), the
second byte contains the month, and the third byte contains the day. No date is defined if all three
bytes are 0.

1.6.2 OLD_PASSWORDS Property
The OLD_PASSWORDS property is a list of 8 previous passwords. The list is stored in the first data
segment.

1.6.3 NODE_CONTROL Property
The NODE_CONTROL property is a list of network addresses from which the account can login.
The addresses are 10 bytes each (a 4-byte network address and 6-byte node address). Each data
segment holds up to 12 addresses. (The last 8 bytes of each segment are not used.) The list
terminates with a zero address or with the last data segment. If a node address is set to
0xFFFFFFFFFF, the account can log in from any station.

1.6.4 ACCT_LOCKOUT Property
ACCT_LOCKOUT specifies intruder lockout values. Intruder detection is active only if this
property is assigned to the server object and is in the following format:

1.7 Types of Bindery Functions
The types of Bindery Functions follow:

• Bindery Status Functions
• Bindery Object Functions
• Bindery Object Information Functions
• Bindery Property Functions
• Bindery Password Functions

70 nuint32 next reset time: Time when the bad login count should be set to 0

74 nuint8[12] bad login address: Address of the station making the last bad login attempt
or provoked an account lockout

Size Field: Description

0 nuint16 allowed login attempts: Maximum number of incorrect login attempts before
intruder detection is in effect. 0 causes intruder detection on the first bad
login attempt.

2 nuint16 reset minutes: Number of minutes that must pass without a bad login
attempt before the bad login attempts field in the LOGIN_CONTROL
property is reset to 0

4 nuint16 lockout minutes: Number of minutes an account should remain locked if an
intruder is detected. Nonzero indicates the account is locked.

Size Field: Description
ry Management

novdocx (E
N

U
) 01 February 2006
Note that Bindery parameters accept wildcard characters. The asterisk matches 0 or more characters
while the question mark matches exactly one character, as illustrated in the following table:

1.7.1 Bindery Status Functions
Bindery Status Functions open and close the bindery files on a specified server and are not
supported by NetWare 4.x, 5.x, and 6.x bindery emulation services:

NWCloseBindery (page 38)
NWOpenBindery (page 70)

1.7.2 Bindery Object Functions
These functions perform operations on bindery objects:

NWChangeObjectSecurity (page 33)
NWCreateObject (page 40)
NWDeleteObject (page 46)
NWRenameObject (page 75)
NWScanObject (page 77)

1.7.3 Bindery Object Information Functions
These functions return information related to bindery objects:

NWGetBinderyAccessLevel (page 54)
NWGetObjectDiskSpaceLeft (page 56)
NWGetObjectEffectiveRights (page 60)
NWGetObjectID (page 58)
NWGetObjectName (page 65)
NWScanObjectTrusteePaths (page 80)

1.7.4 Bindery Property Functions
These functions operate on bindery properties:

NWAddObjectToSet (page 28)
NWChangePropertySecurity (page 35)
NWCreateProperty (page 43)
NWDeleteObjectFromSet (page 48)
NWDeleteProperty (page 50)
NWIsObjectInSet (page 67)
NWReadPropertyValue (page 72)

"*" Matches any characters in a string (such as an object name)

"S*" Matches any characters in a string beginning with S (such as a property name)

"??" Matches any two characters
Bindery Concepts 21

22 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWScanProperty (page 85)
NWWritePropertyValue (page 90)

1.7.5 Bindery Password Functions
These functions perform operations on object passwords:

NWChangeObjectPassword (page 31)
NWDisallowObjectPassword (page 52)
NWVerifyObjectPassword (page 88)
ry Management

2
novdocx (E

N
U

) 01 February 2006
2Bindery Tasks

This documentation describes common tasks associated with Bindery.

2.1 Creating a Bindery Object
When creating a bindery object, the client application is responsible not only for creating the object
itself, but also for adding any associated properties and defining their values. The bindery does not
check the state of the object or verify that it has the necessary property values.

To create an object:

1 Call the NWCreateObject function.
2 Call the NWCreateProperty function.
3 Call the NWWritePropertyValue function.

The NWCreateObject function assigns the object its name, type, object flags, and object security.
The NWCreateProperty function adds associated properties to the object. As with the object
definition, you must specify the name, flags, and security for each object. The
NWWritePropertyValue function assigns specific values to the object.

2.2 Scanning for Bindery Objects
The NWScanObject function lets you scan the bindery of a server for objects matching a specified
name and type. For each match, the NWScanObject function returns the has-properties flag, object
flags, and object security field for the object. It also returns the name and type of the next matching
object.

The name can be expressed using the asterisk (*) and question mark (?) as wild characters. The
asterisk matches 0 or more characters. The question mark matches exactly one character. Below are
some matching examples:

"*" Matches any object name.
"S*" Matches any object name beginning with S.
"??" Matches any two-character object name.

The type can be any object type including the wild type, 0xFFFF.

To scan the bindery for multiple objects, call the NWScanObject function iteratively until it returns
NO_SUCH_OBJECT. This error indicates no more objects matching the specified name and type
exist in the bindery.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

2.3 Scanning Bindery Properties
To find the properties of an object or to verify that a particular property is assigned to an object, call
the NWScanProperty function which allows you to match property names with wild characters.
Bindery Tasks 23

../../../samplecode/clib_sample/bindery/binscan/binscan.c.html

24 NDK: Binde

novdocx (E
N

U
) 01 February 2006
To get information about all properties assigned to an object, call the NWScanProperty function
iteratively:

1 On the initial call, set the object name and type appropriately, and set the search property name
to the asterisk wild card.

2 On the initial call, also set the iterHandle parameter to –1.
3 When the function returns, check the moreFlag parameter.

• If the moreFlag parameter is set to 0xFF, there are more properties. The iterHandle
parameter will be set in preparation for the next call to the NWScanProperty function.

• If there are no more properties, the moreFlag parameter is set to 0.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

2.4 Reading the Value of a Bindery Property
To read a property, call the NWReadPropertyValue function (no wild characters are allowed). Set
properties are assumed to be arrays of bindery object IDs and are returned accordingly. No
assumptions are made about item properties. If a property value exceeds 128 bytes, you must call the
NWReadPropertyValue function iteratively and read the value in 128-byte segments.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

2.5 Checking for a Member of a Set Property
The NWIsObjectInSet function provides a simple method for determining whether an object is a
member of a set property without your having to read the property value. Specify the object name,
type, and property to be searched and the name and type of the member object. The object is a
member if the NWIsObjectInSet function returns successfully.

2.6 Setting Bindery Emulation
For bindery emulation to be operative, two conditions must be met:

• Bindery emulation must be set
• The server must have a valid replica of the organization to be emulated in bindery (flat) mode

To set bindery emulation, include the following line in the autoexec.ncf file:

set Bindery Context = o = MyOrg

(where "MyOrg" is a organization having a valid replica on the server being set).

Bindery context can also be set from the server command line with the same command, but
including the command in the autoexec.ncf file is preferred.

NOTE: It is possible to enter the command with an invalid organization. The command returns a
message that bindery context is set to the invalid organization, but only the bindery string is set-
bindery emulation remains unset. Any calls to bindery functions then fail and return errors.

To verify that bindery emulation is actually set, at the server command prompt, type config. The
displayed configuration includes a report of all valid bindery emulation settings.
ry Management

../../../samplecode/clib_sample/bindery/binscan/binscan.c.html
../../../samplecode/clib_sample/bindery/binscan/binscan.c.html

novdocx (E
N

U
) 01 February 2006
For further information on bindery emulation setting, consult the NetWare® server documentation.
Bindery Tasks 25

26 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ry Management

3
novdocx (E

N
U

) 01 February 2006
3Bindery Functions

This documentation alphabetically lists the Bindery functions and describes their purpose, syntax,
parameters, and return values.

• “NWAddObjectToSet” on page 28
• “NWChangeObjectPassword” on page 31
• “NWChangeObjectSecurity” on page 33
• “NWChangePropertySecurity” on page 35
• “NWCloseBindery” on page 38
• “NWCreateObject” on page 40
• “NWCreateProperty” on page 43
• “NWDeleteObject” on page 46
• “NWDeleteObjectFromSet” on page 48
• “NWDeleteProperty” on page 50
• “NWDisallowObjectPassword” on page 52
• “NWGetBinderyAccessLevel” on page 54
• “NWGetObjectDiskSpaceLeft” on page 56
• “NWGetObjectID” on page 58
• “NWGetObjectEffectiveRights” on page 60
• “NWGetObjectEffectiveRightsExt” on page 63
• “NWGetObjectName” on page 65
• “NWIsObjectInSet” on page 67
• “NWOpenBindery” on page 70
• “NWReadPropertyValue” on page 72
• “NWRenameObject” on page 75
• “NWScanObject” on page 77
• “NWScanObjectTrusteePaths” on page 80
• “NWScanObjectTrusteePathsExt” on page 83
• “NWScanProperty” on page 85
• “NWVerifyObjectPassword” on page 88
• “NWWritePropertyValue” on page 90
Bindery Functions 27

28 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWAddObjectToSet
Adds a member to a bindery property of type SET

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAddObjectToSet (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *propertyName,
 const nstr8 N_FAR *memberName,
 nuint16 memberType);

Pascal

uses calwin32

Function NWAddObjectToSet
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 const memberName : pnstr8;
 memberType : nuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare® server connection handle.

objName
(IN) Points to the new SET object name.
ry Management

novdocx (E
N

U
) 01 February 2006
objType
(IN) Specifies the SET object type.

propertyName
(IN) Points to the property name of the set.

memberName
(IN) Points to the name of the bindery object being added to the set.

memberType
(IN) Specifies the bindery object type of the member being added.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
A client must have write access to the SET property to call NWAddObjectToSet.

The objName, objType, propertyName, memberName, and memberType parameters must
uniquely identify the property and cannot contain wildcard characters.

NWAddObjectToSet searches consecutive segments of the property value for an open slot where it
can record the unique bindery object identification of the new member and records the bindery
object identification in the first available slot. If NWAddObjectToSet finds no available slot, a new
segment is created, the new unique bindery object identification of the member is written into the
first slot of the new segment, and the rest of the segment is filled with zeros.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E8 WRITE_PROPERTY_TO_GROUP

0x89E9 MEMBER_ALREADY_EXISTS

0x89EA NO_SUCH_MEMBERS

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F8 NO_PROPERTY_WRITE_PRIVILEGE

0x89FB NO_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 29

30 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 65 Add Bindery Object To Set

See Also
NWDeleteObjectFromSet (page 48), NWIsObjectInSet (page 67)
ry Management

novdocx (E
N

U
) 01 February 2006
NWChangeObjectPassword
Changes the specified password of an object to a new password

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeObjectPassword (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *oldPassword,
 const nstr8 N_FAR *newPassword);

Pascal

uses calwin32

Function NWChangeObjectPassword
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const oldPassword : pnstr8;
 const newPassword : pnstr8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle corresponding to the server to receive the
change.

objName
(IN) Points to the name of the object whose password is to be changed.

objType
Bindery Functions 31

32 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the type of the object.

oldPassword
(IN) Points to the old password.

newPassword
(IN) Points to the new password.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWChangeObjectPassword does not require the old password to be known.

For NWChangeObjectPassword to work properly, LOGIN_CONTROL must be set appropriately.

NWChangeObjectPassword attempts to change the password by using encryption. If the server does
not support encryption, NWChangeObjectPassword attempts to change the password without using
encryption.

Clients can change their own password. To change the password for other bindery objects, the client
must be a SUPERVISOR or SUPERVISOR equivalent.

See “Object Type” on page 14.

NCP Calls
0x2222 23 23 Get Login Key
0x2222 23 53 Get Bindery Object ID
0x2222 23 75 Keyed Change Password

See Also
NWCreateObject (page 40), NWCreateProperty (page 43)

0x0000 SUCCESSFUL

0x89D7 PASSWORD_NOT_UNIQUE

0x89D8 PASSWORD_TOO_SHORT

0x89DC ACCOUNT_DISABLED

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FB INVALID_PARAMETER

0x89FF NO_SUCH_OBJECT_OR_BAD_PASSWORD
ry Management

novdocx (E
N

U
) 01 February 2006
NWChangeObjectSecurity
Changes the security access mask of a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeObjectSecurity (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 nuint8 newObjSecurity);

Pascal

uses calwin32

Function NWChangeObjectSecurity
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 newObjSecurity : nuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to a string containing the name of the object whose security is to be changed.

objType
(IN) Specifies the bindery object type.

newObjSecurity
Bindery Functions 33

34 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the new security access mask for the specified object.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcard characters.

NWChangeObjectSecurity cannot set or clear bindery Read or Write security. Only SUPERVISOR
or a bindery object that is security equivalent to SUPERVISOR can change security for a bindery
object.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

See Section 4.1, “Extended Object Type Values,” on page 93.

NCP Calls
0x2222 23 56 Change Bindery Object Security

See Also
NWGetObjectID (page 58)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89F5 NO_OBJECT_CREATE_PRIVILEGE

0x89FC NO_SUCH_OBJECT

0x98FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
NWChangePropertySecurity
Changes the security access mask of a property in a bindery object on the NetWare server associated
with the given connection identification

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangePropertySecurity (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *propertyName,
 nuint8 newPropertySecurity);

Pascal

uses calwin32

Function NWChangePropertySecurity
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 newPropertySecurity : nuint8
) : NWCCODE; stdcall;

Parameters

conn
(IN) Specifies the NetWare server connection handle on which the security property should be
changed.

objName
(IN) Points to the name of the bindery object associated with the property whose security is
being changed.
Bindery Functions 35

36 NDK: Binde

novdocx (E
N

U
) 01 February 2006
objType
(IN) Specifies the type of the object described by the objName parameter.

propertyName
(IN) Points to the name of the affected property.

newPropertySecurity
(IN) Specifies the new security access mask for the property.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWChangePropertySecurity requires Write access to the bindery object and Read and Write access
to the property.

The objName, objType, and propertyName parameters must uniquely identify the property
and cannot contain wildcards.

NWChangePropertySecurity cannot set or clear bindery Read or Write security. The requesting
process cannot change the security of a property to a level greater than the property access of the
process.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

See Section 4.1, “Extended Object Type Values,” on page 93.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89F2 NO_OBJECT_READ_PRIVILEGE

0x89F5 NO_OBJECT_CREATE_PRIVILEGE

0x89F6 NO_PROPERTY_DELETE_PRIVILEGE

0x89FC NO_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x98FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 59 Change Property Security

See Also
NWChangeObjectSecurity (page 33)
Bindery Functions 37

38 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWCloseBindery
Closes the bindery

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCloseBindery (
 NWCONN_HANDLE conn);

Pascal

uses calwin32

Function NWCloseBindery
 (conn : NWCONN_HANDLE
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values. See Return Values (Return Values for C).

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
NWCloseBindery allows the SUPERVISOR to close and unlock the bindery. The bindery can then
be archived.

NWCloseBindery is not supported on NetWare 4.x and above since 4.x and above supports only
bindery emulation. Direct access of the bindery is not possible on NetWare 4.x. and above.

Because the bindery files contain all the information about the NetWare clients for a server, the
bindery should be archived on a regular basis. For bindery files to be archived, the bindery must be
closed by calling NWCloseBindery since the NetWare server keeps bindery files opened and locked
at all times so that they cannot be accessed directly.

After the bindery files have been archived, calling the NWOpenBindery function returns control of
the bindery files to the NetWare server. While the bindery is closed, much of the functionality of the
network is disabled.

NCP Calls
0x2222 23 68 Close Bindery

See Also
NWOpenBindery (page 70)
Bindery Functions 39

40 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWCreateObject
Creates a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateObject (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 nuint8 objFlags,
 nuint8 objSecurity);

Pascal

uses calwin32

Function NWCreateObject
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 objFlags : nuint8;
 objSecurity : nuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the string containing the new object name.

objType
(IN) Specifies the bindery type of the new object.
ry Management

novdocx (E
N

U
) 01 February 2006
objFlags
(IN) Specifies whether the new object is dynamic:

BF_DYNAMIC
BF_STATIC

objSecurity
(IN) Specifies the access rights mask of the new object.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWCreateObject requires SUPERVISOR or equivalent rights.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcards.

The bindery object must have a PASSNWOBJ_TYPE to log in to a NetWare server.
PASSNWOBJ_TYPE is created by calling the NWChangeObjectPassword function.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

NCP Calls
0x2222 23 50 Create Bindery Object

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89E7 E_NO_MORE_USERS

0x89EE OBJECT_ALREADY_EXISTS

0x89EF INVALID_NAME

0x89F1 INVALID_BINDERY_SECURITY

0x89F5 NO_OBJECT_CREATE_PRIVILEGE

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 41

42 NDK: Binde

novdocx (E
N

U
) 01 February 2006
See Also
NWChangeObjectPassword (page 31), NWCreateProperty (page 43)
ry Management

novdocx (E
N

U
) 01 February 2006
NWCreateProperty
Adds a property to a bindery object on the NetWare server associated with the given connection
handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateProperty (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *propertyName,
 nuint8 propertyFlags,
 nuint8 propertySecurity);

Pascal

uses calwin32

Function NWCreateProperty
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 propertyFlags : nuint8;
 propertySecurity : nuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the object name receiving the new property.
Bindery Functions 43

44 NDK: Binde

novdocx (E
N

U
) 01 February 2006
objType
(IN) Specifies the type of the affected bindery object.

propertyName
(IN) Points to the name of the property being created.

propertyFlags
(IN) Specifies the bindery flags of the new property (ORed with BF_ITEM or BF_SET):

BF_DYNAMIC
BF_STATIC

propertySecurity
(IN) Specifies the security access mask of the new property.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWCreateProperty requires Write access to the bindery object.

The requesting process cannot create properties having a greater security level than the access level
of the process.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89ED PROPERTY_ALREADY_EXISTS

0x89EF INVALID_NAME

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89F2 NO_OBJECT_READ_PRIVILEGE

0x89F6 NO_PROPERTY_DELETE_PRIVILEGE

0x89F7 NO_PROPERTY_CREATE_PRIVILEGE

0x89FB N0_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
The PASSNWOBJ_TYPE property is created by calling the NWChangeObjectPassword function,
rather than by calling NWCreateProperty.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

NCP Calls
0x2222 23 57 Create Property

See Also
NWChangeObjectPassword (page 31), NWCreateObject (page 40)
Bindery Functions 45

46 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWDeleteObject
Deletes a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteObject (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType);

Pascal

uses calwin32

Function NWDeleteObject
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the object name being deleted.

objType
(IN) Specifies the type of the object being deleted.
ry Management

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWDeleteObject requires SUPERVISOR or equivalent rights.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcard characters.

See “Object Type” on page 14.

NCP Calls
0x2222 23 51 Delete Bindery Object

See Also
NWDeleteObjectFromSet (page 48)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F4 NO_OBJECT_DELETE_PRIVILEGE

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 47

48 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWDeleteObjectFromSet
Deletes a member from a bindery property of type SET on the NetWare server associated with the
given connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteObjectFromSet (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objectName,
 nuint16 objectTpe,
 pnstr8 propertyName,
 pnstr8 memberName,
 nuint16 memberType);

Pascal

uses calwin32

Function NWDeleteObjectFromSet
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 memberName : pnstr8;
 memberType : nuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objectName
(IN) Points to the name of the bindery object whose set is being affected.
ry Management

novdocx (E
N

U
) 01 February 2006
objectType
(IN) Specifies the object type of the bindery object whose set is being affected.

propertyName
(IN) Points to the name of the property (of type SET) from which the member is being deleted.

memberName
(IN) Points to the name of the bindery object being deleted from the set.

memberType
(IN) Specifies the object type of the member being deleted.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
See “Object Type” on page 14.

NCP Calls
0x2222 23 66 Delete Bindery Object From Set

See Also
NWDeleteObject (page 46), NWDeleteProperty (page 50)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F4 NO_OBJECT_DELETE_PRIVILEGE

0x89F8 NO_PROPERTY_WRITE_PRIVILEGE

0x89FB N0_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 49

50 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWDeleteProperty
Removes a property from a bindery object associated with the specified connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteProperty (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objectName,
 nuint16 objectType,
 const nstr8 N_FAR *propertyName);

Pascal

uses calwin32

Function NWDeleteProperty
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objectName
(IN) Points to the name of the object whose property is being deleted.

objectType
(IN) Specifies the type of the object whose property is being deleted.

propertyName
ry Management

novdocx (E
N

U
) 01 February 2006
(IN) Points to the property name to be deleted.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWDeleteProperty requires Write access to the bindery object and the property.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcard characters.

All matching properties of the bindery object are deleted when the propertyName parameter
contains wildcard characters.

See “Object Type” on page 14.

NCP Calls
0x2222 23 58 Delete Property

See Also
NWDeleteObjectFromSet (page 48), NWDeleteObject (page 46)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89F6 NO_PROPERTY_DELETE_PRIVILEGE

0x89FB NO_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 51

52 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWDisallowObjectPassword
Prevents use of the specified password by the specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWDisallowObjectPassword (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *disallowedPassword);

Pascal

uses calwin32

Function NWDisallowObjectPassword
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const disallowedPassword : pnstr8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the name of the object whose password is being disallowed.

objType
(IN) Specifies the type of the object whose password is being disallowed.

disallowedPassword
ry Management

novdocx (E
N

U
) 01 February 2006
(IN) Points to the password that is being disallowed.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
The objName and objType parameters must be specific and cannot contain wildcards.

For NWDisallowObjectPassword to work properly, LOGIN_CONTROL must be set appropriately.

NWDisallowObjectPassword adds an encrypted password to the list of old passwords maintained in
the OLD_PASSWORDS property. If the OLD_PASSWORDS property does not exist,
NWDisallowObjectPassword will check UNIQUE_PASSWORDS of the restriction flags in the
LOGIN_CONTROL property. If the UNIQUE_PASSWORDS is set, the OLD_PASSWORDS
property will be created. Otherwise, a BINDERY_FAILURE error code will be returned.

See “Object Type” on page 14.

NCP Calls
0x2222 23 53 Get Bindery Object ID
0x2222 23 57 Create Property
0x2222 23 61 Read Property Value
0x2222 23 62 Write Property Value

See Also
NWChangeObjectPassword (page 31), NWLoginToFileServer (Server Management)

0x0000 SUCCESSFUL

0x00FF BINDERY_FAILURE

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FB INVALID_PARAMETERS

0x89FC NO_SUCH_OBJECT

0x89FF HARDWARE_FAILURE
Bindery Functions 53

54 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWGetBinderyAccessLevel
Returns the access level of the current logged-in entity based on the specified connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetBinderyAccessLevel (
 NWCONN_HANDLE conn,
 pnuint8 accessLevel,
 pnuint32 objID);

Pascal

uses calwin32

Function NWGetBinderyAccessLevel
 (conn : NWCONN_HANDLE;
 accessLevel : pnuint8;
 objID : pnuint32
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

accessLevel
(OUT) Points to the current security access mask for the given connection (optional).

objID
(OUT) Points to the object ID of the current logged in entity (optional).
ry Management

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
The access level of a process determines which bindery objects and properties the process can find
and manipulate.

See Section 4.3, “Security Rights Mask Values,” on page 93.

NCP Calls
0x2222 23 70 Get Bindery Access Level

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
Bindery Functions 55

56 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWGetObjectDiskSpaceLeft
Returns the remaining disk space for a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectDiskSpaceLeft (
 NWCONN_HANDLE conn,
 nuint32 objID,
 pnuint32 systemElapsedTime,
 pnuint32 unusedDiskBlocks,
 pnuint8 restrictionEnforced);

Pascal

uses calwin32

Function NWGetObjectDiskSpaceLeft
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 systemElapsedTime : pnuint32;
 unusedDiskBlocks : pnuint32;
 restrictionEnforced : pnuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the ID of the object in question.

systemElapsedTime
(OUT) Points to the time the NetWare server has been up.
ry Management

novdocx (E
N

U
) 01 February 2006
unusedDiskBlocks
(OUT) Points to the number of blocks the NetWare server must allocate to a bindery object.

restrictionEnforced
(OUT) Points to a flag indicating whether the NetWare server operating system can limit disk
resources:

0x0000 Enforced
0x00FF Not enforced

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWGetObjectDiskSpaceLeft returns the systemElapsedTime parameter in approximately 1/18
second units and determines the amount of elapsed time between consecutive calls. When the
systemElapsedTime parameter reaches 0xFFFF, it resets to zero.

NCP Calls
0x2222 23 230 Get Object’s Remaining Disk Space

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FC NO_SUCH_OBJECT
Bindery Functions 57

58 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWGetObjectID
Looks up an object ID in the bindery on the network server associated with the given connection
handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectID (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 pnuint32 objID);

Pascal

uses calwin32

Function NWGetObjectID
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 objID : pnuint32
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the name of the object in the search.

objType
(IN) Specifies the type of the object in the search.
ry Management

novdocx (E
N

U
) 01 February 2006
objID
(OUT) Points to the ID of the found object.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
Since each network server contains its own bindery, object IDs are not consistent across network
servers.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcard characters.

The requesting process must be logged in to the network server and have Read access to the bindery
object for NWGetObjectID to be successful.

NWGetObjectID can be called even if a connection is not authenticated.

See “Object Type” on page 14.

NCP Calls
0x2222 23 53 Get Bindery Object ID

See Also
NWChangeObjectSecurity (page 33), NWCreateObject (page 40)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 59

60 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWGetObjectEffectiveRights
Returns the effective rights of an object in the specified directory or file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectEffectiveRights (
 NWCONN_HANDLE conn,
 nuint32 objID,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 pnuint16 rightsMask);

Pascal

uses calwin32

Function NWGetObjectEffectiveRights
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 dirHandle : NWDIR_HANDLE;
 const path : pnstr8;
 rightsMask : pnuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the ID of the object in the specified directory or file.

dirHandle
ry Management

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the NetWare directory handle associated with the directory path for which the
effective rights are desired.

path
(IN) Points to the absolute path (or a path relative to the dirhandle parameter) of the
directory or file whose effective rights mask is being reported.

rightsMask
(OUT) Points to the rights mask.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
To determine the effective rights of the requesting workstation, NWGetObjectEffectiveRights
performs a logical AND between the maximum rights mask of the directory and the current trustee
rights of the workstation.

The current trustee rights of the workstation are obtained by performing a logical OR between a
trustee access mask of the workstation and the trustee access mask of any object to which the
process is security equivalent. The current trustee rights of the workstation may be explicitly listed
in the directory or inherited from the parent directory. The maximum rights masks of parent
directories do not affect inherited trustee rights.

The rightsMask parameter returned to the client indicates which of the eight possible directory
rights the client has in the targeted directory. If the rightsMask parameter is zero, the client has
no rights in the target directory.

See Section 4.2, “Maximum Rights Mask Values,” on page 93.

NCP Calls
0x2222 22 50 Get Object Effective Rights For Directory Entry

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A8 ERR_ACCESS_DENIED

0x89FB INVALID_PARAMETERS

0x89FC NO_SUCH_OBJECT
Bindery Functions 61

62 NDK: Binde

novdocx (E
N

U
) 01 February 2006
See Also
NWGetEffectiveRights (Multiple and Inter-File Management)
ry Management

novdocx (E
N

U
) 01 February 2006
NWGetObjectEffectiveRightsExt
Returns the effective rights of an object to the specified directory or file, using UTF-8 strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax
#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectEffectiveRightsExt (
 NWCONN_HANDLE conn,
 nuint32 objID,
 NWDIR_HANDLE dirHandle,
 const nstr8 N_FAR *path,
 nuint8 buNameSpace,
 pnuint16 rightsMask);

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the ID of the object of the user.

dirHandle
(IN) Specifies the NetWare directory handle associated with the directory path for which the
effective rights are desired.

path
(IN) Points to the absolute path (or a path relative to the dirhandle parameter) of the
directory or file whose effective rights mask is being reported. The characters in the string must
be UTF-8.

buNameSpace
(IN) Specifies the name space of the specified path. See Name Space Flag Values in Multiple
and Inter-File Services.
Bindery Functions 63

64 NDK: Binde

novdocx (E
N

U
) 01 February 2006
rightsMask
(OUT) Points to the rights mask. See Inherited Rights Mask Values. If the rightsMask
parameter is zero, the client has no rights in the target directory.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
To determine the effective rights of the requesting client, NWGetObjectEffectiveRightsExt performs
a logical AND between the maximum rights mask of the directory and the current trustee rights of
the client.

The current trustee rights of the client are obtained by performing a logical OR between a trustee
access mask of the client and the trustee access mask of any object to which the process is security
equivalent. The current trustee rights of the client can be explicitly listed in the directory or inherited
from the parent directory. The maximum rights masks of parent directories do not affect inherited
trustee rights.

NOTE: For information about the requirments for using the NWGetObjectEffectiveRightsExt
function, see UTF-8 Path and Filenames in Multiple and Inter-File Services.

NCP Calls
0x2222 22 50 Get Object Effective Rights For Directory Entry
0x2222 89 50 Enhanced Get Object Effective Rights

See Also
NWGetEffectiveRightsExt (Multiple and Inter-File Management)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88F0 UTF8_CONVERSION_FAILED

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A8 ERR_ACCESS_DENIED

0x89FB INVALID_PARAMETERS

0x89FC NO_SUCH_OBJECT
ry Management

novdocx (E
N

U
) 01 February 2006
NWGetObjectName
Returns the name and object type of a bindery object on the network server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectName (
 NWCONN_HANDLE conn,
 nuint32 objID,
 pnstr8 objName,
 pnuint16 objType);

Pascal

uses calwin32

Function NWGetObjectName
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 objName : pnstr8;
 objType : pnuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the object ID.

objName
(OUT) Points to the object name (minimum buffer size=48).

objType
Bindery Functions 65

66 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the object type (optional).

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
For NWGetObjectName to be successful, the requesting process must be logged in to the network
server and have Read access to the bindery object.

All parameter positions must be filled.

See “Object Type” on page 14.

NCP Calls
0x2222 23 54 Get Bindery Object Name

See Also
NWChangeObjectSecurity (page 33), NWCreateObject (page 40), NWGetObjectID (page 58)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F1 INVALID_BINDERY_SECURITY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
NWIsObjectInSet
Searches a property of type SET for a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsObjectInSet (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR * propertyName,
 const nstr8 N_FAR *memberName,
 nuint16 memberType);

Pascal

uses calwin32

Function NWIsObjectInSet
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 const memberName : pnstr8;
 memberType : nuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the name of the object containing the property being searched.
Bindery Functions 67

68 NDK: Binde

novdocx (E
N

U
) 01 February 2006
objType
(IN) Specifies the type of the object containing the property being searched.

propertyName
(IN) Points to the property name of the set being searched.

memberName
(IN) Points to the name of the bindery object being searched.

memberType
(IN) Specifies the bindery type of the member being searched.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWIsObjectInSet requires Read access to the SET property.

The objName, objType, propertyName, memberName, and memberType parameters must
uniquely identify the property and cannot contain wildcard characters.

NWIsObjectInSet does not expand members of type GROUP in an attempt to locate a specific
member; objects must be explicitly in the group. For example, assume the following bindery objects
and properties exist:

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FB N0_SUCH_PROPERTY

Object Property Property Value

JOAN

SECRETARIES GROUP_MEMBERS The object ID of JOAN

EMPLOYEES GROUP_MEMBERS The object ID of SECRETARIES
ry Management

novdocx (E
N

U
) 01 February 2006
JOAN is not considered a member of EMPLOYEES; she is not explicitly listed in
GROUP_MEMBERS of EMPLOYEES. The bindery does not check for recursive (direct or
indirect) membership definitions.

See “Object Type” on page 14.

NCP Calls
0x2222 23 67 Is Bindery Object In Set

See Also
NWAddObjectToSet (page 28), NWDeleteObjectFromSet (page 48)
Bindery Functions 69

70 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWOpenBindery
Reopens a NetWare server bindery closed by calling the NWCloseBindery function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWOpenBindery (
 NWCONN_HANDLE conn);

Pascal

uses calwin32

Function NWOpenBindery
 (conn : NWCONN_HANDLE
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values. See Return Values (Return Values for C).

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
NWOpenBindery is not supported on NetWare 4.x and above since 4.x and above supports only
bindery emulation. Direct access of the bindery is not possible on NetWare 4.x and above.

The bindery files are normally kept open and locked. Calling NWOpenBindery is required only after
calling the NWCloseBindery function.

Only SUPERVISOR or a bindery object with SUPERVISOR security equivalence can open the
bindery.

NCP Calls
0x2222 23 69 Open Bindery
Bindery Functions 71

72 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWReadPropertyValue
Reads the property value of a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadPropertyValue (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *propertyName,
 nuint8 segmentNum,
 pnuint8 segmentData,
 pnuint8 moreSegments,
 pnuint8 flags);

Pascal

uses calwin32

Function NWReadPropertyValue
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 segmentNum : nuint8;
 segmentData : pnuint8;
 moreSegments : pnuint8;
 flags : pnuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.
ry Management

novdocx (E
N

U
) 01 February 2006
objName
(IN) Points to the object name containing the property.

objType
(IN) Specifies the type of the object containing the property.

propertyName
(IN) Points to the name of the property whose information is being retrieved.

segmentNum
(IN) Specifies the segment number of the data (128-byte blocks) to be read (set to 1 initially).

segmentData
(OUT) Points to the 128-byte buffer receiving the property data.

moreSegments
(OUT) Points to a flag indicating if there are more segments to be returned:

0x00 No more segments to be read
0xFF More segments to be read

flags
(OUT) Points to the property type (optional):

BF_ITEM
BF_SET

Return Values
These are common return values. See Return Values (Return Values for C).

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x89EC NO_SUCH_SEGMENT

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F1 INVALID_BINDERY_SECURITY

0x89F9 NO_PROPERTY_READ_PRIVILEGES

0x89FB N0_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED
Bindery Functions 73

74 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
Read access to the property is required to successfully call NWReadPropertyValue.

On the first call to NWReadPropertyValue set the segmentNum parameter to 1. For each subsequet
call, increment segmentNum until the moreSegments parameter is set to 0 or until
NWReadPropertyValue returns NO_SUCH_SEGMENT.

The objName, objType, and propertyName parameters must uniquely identify the property
and cannot contain wildcard characters.

If the property is of type SET, the data returned in the segmentData parameter is an array of
bindery object IDs. The bindery attaches no significance to the contents of a property value if the
property is of type ITEM.

See “Object Type” on page 14.

See “Activity Coordination” on page 13.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

NCP Calls
0x2222 23 61 Read Property Value

See Also
NWWritePropertyValue (page 90)

0x89FF HARDWARE_FAILURE
ry Management

../../../samplecode/clib_sample/bindery/binscan/binscan.c.html

novdocx (E
N

U
) 01 February 2006
NWRenameObject
Renames an object in the bindery on the server associated with the connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRenameObject (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *oldObjName,
 const nstr8 N_FAR *newObjName,
 nuint16 objType);

Pascal

uses calwin32

Function NWRenameObject
 (conn : NWCONN_HANDLE;
 const oldObjName : pnstr8;
 const newObjName : pnstr8;
 objType : nuint16
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

oldObjName
(IN) Points to the name of the currently defined object in the bindery.

newObjName
(IN) Points to the new object name.

objType
Bindery Functions 75

76 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the type of the object.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
The oldObjName, newObjName, and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters. WILD_CARD_NOT_ALLOWED will be returned if
the name field strings are not recognized.

Only SUPERVISOR or a bindery object security equivalent to SUPERVISOR can rename bindery
objects.

See “Object Type” on page 14.

NCP Calls
0x2222 23 52 Rename Object

See Also
NWScanObject (page 77)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89EE OBJECT_ALREADY_EXISTS

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F3 NO_OBJECT_RENAME_PRIVILEGE

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
NWScanObject
Searches for a bindery object name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanObject (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *searchName,
 nuint16 searchType,
 pnuint32 objID,
 pnstr8 objName,
 pnuint16 objType,
 pnuint8 hasPropertiesFlag,
 pnuint8 objFlags,
 pnuint8 objSecurity);

Pascal

uses calwin32

Function NWScanObject
 (conn : NWCONN_HANDLE;
 const searchName : pnstr8;
 searchType : nuint16;
 objID : pnuint32;
 objName : pnstr8;
 objType : pnuint16;
 hasPropertiesFlag : pnuint8;
 objFlags : pnuint8;
 objSecurity : pnuint8
) : NWCCODE; stdcall;

Parameters
conn
Bindery Functions 77

78 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the NetWare server connection handle.

searchName
(IN) Points to the object name for which to search (wildcards are allowed).

searchType
(IN) Specifies the object type used in the search (wildcards are allowed).

objID
(IN/OUT) Points to the last object ID (-1 is assumed if no value is specified).

objName
(OUT) Points to the name of the next matching object (optional).

objType
(OUT) Points to the 2-byte type of the next matching object (optional).

hasPropertiesFlag
(OUT) Points to the properties flag (optional):

0x00 Matching object has no properties
0xFF Matching object has properties

objFlags
(OUT) Points to the object flag byte (optional):

BF_STATIC
BF_DYNAMIC

objSecurity
(OUT) Points to the security mask of the matching object (optional).

Return Values
These are common return values. See Return Values (Return Values for C).

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89EF INVALID_NAME

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
NWScanObject iteratively scans the bindery for all objects matching both the objName and
objType parameters.

Upon return, the objID parameter receives a number to be used as the object identification for the
next call.

The requesting process must be logged in to the NetWare server and have Read access to the bindery
object.

All parameter positions must be filled.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

NCP Calls
0x2222 23 55 Scan Bindery Object
Bindery Functions 79

../../../samplecode/clib_sample/bindery/binscan/binscan.c.html

80 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWScanObjectTrusteePaths
Returns the directory paths to which an object has trustee rights

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanObjectTrusteePaths (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint16 volNum,
 pnuint16 iterHandle,
 pnuint8 accessRights,
 pnstr8 dirPath);

Pascal

uses calwin32

Function NWScanObjectTrusteePaths
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 volNum : nuint16;
 iterHandle : pnuint16;
 accessRights : pnuint8;
 dirPath : pnstr8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the object ID of the user or group for which the trustee information is to be
found.
ry Management

novdocx (E
N

U
) 01 February 2006
volNum
(IN) Specifies the volume number of the volume being searched.

iterHandle
(IN/OUT) Points to the sequence number (set to -1 initially).

accessRights
(OUT) Points to the access mask of the trustee.

dirPath
(OUT) Points to the directory path name in the DOS name space. This buffer should be at least
270 bytes.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWScanObjectTrusteePaths iteratively determines all of the directory paths of the bindery object
trustee and corresponding access masks.

Upon return, the iterHandle parameter is automatically incremented to point to the next
directory path. When all valid directory paths have been returned, SUCCESS is returned and the
first character of the dirPath parameter is set to zero.

To use the DOS path returned by the dirPath parameter in subsequent calls, you might have to
convert the DOS path to the default name space compatible path.

Only SUPERVISOR, the object, or a bindery object with SUPERVISOR security equivalence can
scan the directory paths of an object trustee.

NWScanObjectTrusteePaths was originally written for the 2.x platform and does not handle 3.x, 4.x,
5.x, and 6.x rights perfectly. For example, NWScanObjectTrusteePaths does not return the 2.x
"Supervisory" right. To retrieve the correct trustee rights on the 3.x, 4.x, 5.x, and 6.x platforms, call
NWScanObjectTrusteePaths to obtain a path. Then call the NWIntScanForTrustees function to
return the rights of the object to the path.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C NO_MORE_TRUSTEES

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F2 NO_OBJECT_READ_PRIVILEGE

0x89FC NO_SUCH_OBJECT
Bindery Functions 81

82 NDK: Binde

novdocx (E
N

U
) 01 February 2006
See Section 4.2, “Maximum Rights Mask Values,” on page 93.

NCP Calls
0x2222 23 71 Scan Bindery Object Trustee Paths

See Also
NWIntScanForTrustees (Multiple and Inter-File Management)
ry Management

novdocx (E
N

U
) 01 February 2006
NWScanObjectTrusteePathsExt
Returns the directory paths to which an object has trustee rights, using UTF-8 strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax
#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanObjectTrusteePathsExt (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint16 volNum,
 pnuint16 iterHandle,
 pnuint8 accessRights,
 pnstr8 dirPath1506);

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objID
(IN) Specifies the object ID of the user or group for which the trustee information is to be
found.

volNum
(IN) Specifies the volume number of the volume being searched.

iterHandle
(IN/OUT) Points to the sequence number (set to -1 initially).

accessRights
(OUT) Points to the access mask of the trustee.

dirPath1506
(OUT) Points to the directory path name in the DOS name space. This buffer should be at least
1506 bytes.
Bindery Functions 83

84 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
NWScanObjectTrusteePathsExt iteratively determines all of the directory paths of the object trustee
and corresponding access masks.

NOTE: For information about the requirments for using the NWScanObjectTrusteePathsExt
function, see UTF-8 Path and Filenames in Multiple and Inter-File Services.

Upon return, the iterHandle parameter is automatically incremented to point to the next
directory path. When all valid directory paths have been returned, SUCCESS is returned and the
first character of the dirPath parameter is set to zero.

To use the DOS path returned by the dirPath parameter in subsequent calls, you might have to
convert the DOS path to the default name space compatible path.

Only SUPERVISOR, the object, or a bindery object with SUPERVISOR security equivalence can
scan the directory paths of an object trustee.

NWScanObjectTrusteePathsExt does not handle 6.x rights perfectly. To retrieve the correct trustee
rights on the 6.x platforms, call NWScanObjectTrusteePathsExt to obtain a path. Then call the
NWIntScanForTrusteesExt function in Multiple and Inter-File Services to return the rights of the
object to the path.

NCP Calls
0x2222 23 71 Scan Bindery Object Trustee Paths
0x2222 89 71 Enhanced Scan Volume Trustee Object Paths

See Also
NWIntScanForTrusteesExt (Multiple and Inter-File Management)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88F0 UTF8_CONVERSION_FAILED

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C NO_MORE_TRUSTEES

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F2 NO_OBJECT_READ_PRIVILEGE

0x89FC NO_SUCH_OBJECT
ry Management

novdocx (E
N

U
) 01 February 2006
NWScanProperty
Scans the given bindery object for properties matching the property name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanProperty (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 pnstr8 searchPropertyName,
 pnuint32 iterHandle,
 pnstr8 propertyName,
 pnuint8 propertyFlags,
 pnuint8 propertySecurity,
 pnuint8 valueAvailable,
 pnuint8 moreFlag);

Pascal

uses calwin32

Function NWScanProperty
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 searchPropertyName : pnstr8;
 iterHandle : pnuint32;
 propertyName : pnstr8;
 propertyFlags : pnuint8;
 propertySecurity : pnuint8;
 valueAvailable : pnuint8;
 moreFlag : pnuint8
) : NWCCODE; stdcall;
Bindery Functions 85

86 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the object name of the set.

objType
(IN) Specifies the object type of the set.

searchPropertyName
(IN) Points to the property name for which to search (wildcards are allowed).

iterHandle
(IN/OUT) Points to the iteration handle to use when making repeated calls (if not specified, –1
is assumed).

propertyName
(OUT) Points to the name of the next matching property (up to 15 characters including the
NULL terminator or NULL).

propertyFlags
(OUT) Points to the status flag (optional):

0x00 BF_STATIC
0x00 BF_ITEM
0x01 BF_DYNAMIC
0x02 BF_SET

propertySecurity
(OUT) Points to the security mask (optional).

valueAvailable
(OUT) Points to a flag indicating whether the property has value (optional):

0x00 Property has no value
0xFF Property has value

moreFlag
(OUT) Points to the more properties flag (optional):

0x00 No more properties exist for object
0xFF More properties exist

Return Values
These are common return values. See Return Values (Return Values for C).

0x0000 SUCCESSFUL
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
Upon return, the moreFlag parameter contains 0xFF if the matched property is not the last
property, and the iterHandle parameter contains the number to use in the next call.

NWScanProperty requires Read access to the bindery object as well as the property.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcard characters.

For parameters not desired in the return, NULL can be substituted. All parameter positions must be
filled.

See Section 4.3, “Security Rights Mask Values,” on page 93.

See “Object Type” on page 14.

See binscan.c (../../../samplecode/clib_sample/bindery/binscan/binscan.c.html) for sample code.

NCP Calls
0x2222 23 60 Scan Property

See Also
NWReadPropertyValue (page 72), NWWritePropertyValue (page 90)

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FB NO_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 87

../../../samplecode/clib_sample/bindery/binscan/binscan.c.html

88 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWVerifyObjectPassword
Verifies the password of a bindery object on the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWVerifyObjectPassword (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *password);

Pascal

uses calwin32

Function NWVerifyObjectPassword
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const password : pnstr8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle whose password is to be verified.

objName
(IN) Points to the name of the object whose password is to be verified.

objType
(IN) Specifies the type of object (see “Object Type” on page 14 for type values).

password
ry Management

novdocx (E
N

U
) 01 February 2006
(IN) Points to the password to be verified.

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
The requesting workstation does not have to be logged in to the NetWare server to call
NWVerifyObjectPassword.

If the server supports encrypted passwords, the password is encrypted. If the server does not support
encryption, password verification is attempted without encryption.

The objName and objType parameters must uniquely identify the bindery object and cannot
contain wildcards.

A bindery object without a PASSWORD is different from a bindery object with a PASSWORD
having no value. A workstation is not allowed to log in to a NetWare server as a bindery object that
does not have a PASSWORD. A workstation can log in without a password if the bindery object has
been given a PASSWORD containing no value.

NCP Calls
0x2222 23 23 Get Login Key
0x2222 23 53 Get Bindery Object ID
0x2222 23 74 Keyed Verify Password

See Also
NWLoginToFileServer (Server Management)

0x0000 SUCCESSFUL

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FB INVALID_PARAMETERS

0x89FC NO_SUCH_OBJECT

0x89FF NO_SUCH_OBJECT_OR_BAD_PASSWORD
Bindery Functions 89

90 NDK: Binde

novdocx (E
N

U
) 01 February 2006
NWWritePropertyValue
Writes the property data of a bindery object on the NetWare server associated with the given
connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Bindery

Syntax

C

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWWritePropertyValue (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *propertyName,
 nuint8 segmentNum,
 const nuint8 N_FAR *segmentData,
 nuint8 moreSegments);

Pascal

uses calwin32

Function NWWritePropertyValue
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const propertyName : pnstr8;
 segmentNum : nuint8;
 const segmentData : pnuint8;
 moreSegments : nuint8
) : NWCCODE; stdcall;

Parameters
conn

(IN) Specifies the NetWare server connection handle.
ry Management

novdocx (E
N

U
) 01 February 2006
objName
(IN) Points to the name of the object.

objType
(IN) Specifies the type of the object.

propertyName
(IN) Points to the property name of the object.

segmentNum
(IN) Specifies the segment number of the 128-byte data blocks (set to 1 initially).

segmentData
(IN) Points to the 128-byte buffer containing the data.

moreSegments
(IN) Specifies whether more segments are being written:

0xFF More segments are being written
0x00 The last segment is being written

Return Values
These are common return values. See Return Values (Return Values for C).

Remarks
A client must have Write access to the property to call NWWritePropertyValue.

When NWWritePropertyValue returns, any remaining segments are truncated and the extra
segments discarded.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89E8 WRITE_PROPERTY_TO_GROUP

0x89EC NO_SUCH_SEGMENT

0x89F0 WILD_CARD_NOT_ALLOWED

0x89F8 NO_PROPERTY_WRITE_PRIVILEGE

0x89FB N0_SUCH_PROPERTY

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE
Bindery Functions 91

92 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Create property value segments sequentially. Before segment N can be created, all segments from 1
to N–1 must be created. However, once all segments of a property value have been established,
segments can be written at random. If the segment data is longer than 128 bytes, it is truncated and
the 128th byte is NULL.

NOTE: Keep property values to a single segment (128 bytes) to improve bindery efficiency.

The objName, objType, and propertyName parameters must uniquely identify the property
and cannot contain wildcard characters.

See “Object Type” on page 14.

See “Activity Coordination” on page 13.

NCP Calls
0x2222 23 62 Write Property Value

See Also
NWReadPropertyValue (page 72)
ry Management

4
novdocx (E

N
U

) 01 February 2006
4Bindery Values

This documentation lists defined values associated with Bindery.

4.1 Extended Object Type Values
Use the Wild object type (0xFFFF) when scanning the bindery.

4.2 Maximum Rights Mask Values
TA_OPEN is obsolete in 3.x and above.

4.3 Security Rights Mask Values

C Pascal Values

0x2D00 $2D00 OT_TIME_SYNCHRONIZATION_SERVER

0x2E00 $2E00 OT_ARCHIVE_SERVER_DYNAMIC_SAP

0x4700 $4700 OT_ADVERTISING_PRINT_SERVER

0x5000 $5000 OT_BTRIEVE_VAP

0x5300 $5300 OT_PRINT_QUEUE_USER

Hex Bit

0x00 TA_NONE

0x01 TA_READ

0x02 TA_WRITE

0x04 TA_OPEN

0x08 TA_CREATE

0x10 TA_DELETE

0x20 TA_OWNERSHIP

0x40 TA_SEARCH

0x80 TA_MODIFY

0xFB TA_ALL

Read Value Write Value Access: Description

BS_ANY_READ BS_ANY_WRITE Anyone: Access allowed to all clients, even if
the client has not logged in to the server
Bindery Values 93

94 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Values can be ORed together. A bindery object with BS_SUPER_WRITE ORed with
BS_LOGGED_READ indicates any user logged in to the NetWare server can view an object or
property, but only the SUPERVISOR can add or change a property.

The newPropertySecurity, accessLevel, propertySecurity, objSecurity, and
newObjSecurity parameters are bytes in which the low nibble controls Read security and the
high nibble controls Write security.

BS_LOGGED_READ BS_LOGGED_WRITE Logged: Access allowed to all clients logged
in to the server

BS_OBJECT_READ BS_OBJECT_WRITE Object: Access allowed only to clients who
have logged in to the server with the name,
type, and password of the object

BS_SUPER_READ BS_SUPER_WRITE SUPERVISOR: Access allowed only to
clients who have logged in to the server as
SUPERVISOR, or as a bindery object that is
security-equivalent to SUPERVISOR

BS_BINDERY_READ BS_BINDERY_WRITE NetWare: Access allowed only to NetWare

Read Value Write Value Access: Description
ry Management

5
novdocx (E

N
U

) 01 February 2006
5Server-Based Bindery Concepts

This documentation describes Server-Based Bindery, its functions, and features.

Each NetWare® 3.x server includes a database, called the bindery, which is currently implemented
as three hidden files (NET$OBJ.SYS, NET$PROP.SYS, and NET$VAL.SYS) located in the
SYS:SYSTEM directory. The NetWare OS maintains a list in the bindery files of all objects
(entities) allowed to access the server. NetWare also records information about each object in the
bindery.

NOTE: For NetWare 4.x, the bindery has been replaced by the Directory. However, the Directory
can simulate the bindery if bindery context is set.

5.1 Objects
A bindery object can be a user, user group, server, print server, or any other named entity that might
gain access to a server. Each bindery object consists of the following components: object ID, object
type, object name, object flag, object security, and properties flag.

The NetWare operating system (not the programmer) assigns a 4-byte object ID to an object. This
number uniquely identifies the object within a particular servers bindery. An object type classifies an
object as a user, user group, server, and so on.

The object name is a 48-byte, NULL-terminated string. The name itself can be 1 to 47 characters
long. Only printable characters can be used. An object name cannot include spaces or the following
characters:

Table 5-1 Invalid Characters for Object Names

The object flag specifies whether the object is Static (0x00) or Dynamic (0x01). A Static object
exists in a bindery until an application intentionally deletes it with DeleteBinderyObject. A Dynamic
object disappears from a servers bindery when the server is rebooted or when it is specifically
deleted. (In the case of an object that is a service-advertising server, the object disappears from a
bindery when the server ceases to advertise.)

/ Slash

\ Backslash

: Colon

; Semicolon

, Comma

* Asterisk

? Question mark
Server-Based Bindery Concepts 95

96 NDK: Binde

novdocx (E
N

U
) 01 February 2006
The object security determines who can access the object. The low-order nibble determines who can
read (scan for and find) the object. The high-order nibble determines who can write to (add
properties to or delete properties from) the object.

NOTE: Security from NLM applications is derived from the current connection number.

The following table lists defined (well-known) object types:

Table 5-2 Well-Known Object Types

The following table lists values defined for each nibble:

0xFFFF (-1) OT_WILD

0x0000 OT_UNKNOWN

0x0001 OT_USER

0x0002 OT_USER_GROUP

0x0003 OT_PRINT_QUEUE

0x0004 OT_FILE_SERVER

0x0005 OT_JOB_SERVER

0x0006 OT_GATEWAY

0x0007 OT_PRINT_SERVER

0x0008 OT_ARCHIVE_QUEUE

0x0009 OT_ARCHIVE_SERVER

0x000A OT_JOB_QUEUE

0x000B OT_ADMINISTRATION

0x0024 OT_REMOTE_BRIDGE_SERVER

0x0047 OT_ADVERTISING_PRINT_SERVER

0x004C OT_NETWARE_SQL

0x8000 Reserved up to

Hex Binary Access Level Description

0 0 0 0 0 Anyone Access allowed to all clients, even if the client has not
logged in to the server

1 0 0 0 1 Logged Access allowed only to clients who have logged in to
the server

2 0 0 1 0 Object Access allowed only to clients who have logged in to
the server with the objects name, type, and password

3 0 0 1 1 Supervisor Access allowed only to clients who have logged in to
the server as the Supervisor or as a bindery object that
is security equivalent to the Supervisor
ry Management

novdocx (E
N

U
) 01 February 2006
For example, 0x31 indicates that any user logged in to the server can find the object, but only the
Supervisor can add a property to the object.

The properties flag indicates whether one or more properties are associated with the object. A value
of 0x00 indicates that no properties are associated with the object. A value of 0xFF indicates that
one or more properties are associated with the object.

All of these six components (object ID, object type, object name, object flag, object security, and
properties flag) are essential elements of a bindery object.

5.2 Properties and Values
Each bindery object can have one or more properties associated with it. For example, the object
DAN, a user, (object type 0x01) might have associated with it the properties GROUPS_IM_IN,
ACCOUNT_BALANCE, and PASSWORD. Note that GROUPS_IM_IN is not the name of a user
group to which the object belongs. It is only the name of one category of information associated
with that object. In the same way, ACCOUNT_BALANCE is not an actual numerical balance, and
PASSWORD is not an actual password. Properties only identify categories of information
associated with the object.

Each property has a value associated with it. For example, a value associated with the property
GROUPS_IM_IN must be the object ID of a user group to which DAN belongs. The value of the
property ACCOUNT_BALANCE must be DAN's current balance. The value of the property
PASSWORD must be DAN's login password (for example, COMPILE). Although a property has
one value, the value can contain multiple segments, each being 128 bytes long.

Properties fall into one of two categories: Item properties or Set properties. An Item property has
associated with it one or more 128-byte segments. For example, the property
ACCOUNT_BALANCE is an Item property with an associated value that contains a monetary
balance in the first few bytes of a 128-byte string and zeros in the remaining bytes.

A Set property has associated with it a list of 1 to 32 object IDs contained in a 128-byte segment.
Each object ID is a long integer (4 bytes). The property GROUPS_IM_IN is a Set property. The
128-byte segment associated with GROUPS_IM_IN contains the object IDs of 1 to 32 user groups
to which (in our example) DAN belongs. The values of Set properties are always object IDs grouped
into one or more 128-byte segments.

Each property consists of the following components: property name, property flags, property
security, and values flag.

The property name can be 1 to 15 characters long. Only printable characters can be used. A property
name cannot include spaces or the following characters:

Table 5-3 Invalid Characters for Property Names

4 0 1 0 0 NetWare Access allowed only to the NetWare operating system

/ Slash

\ Backslash

Hex Binary Access Level Description
Server-Based Bindery Concepts 97

98 NDK: Binde

novdocx (E
N

U
) 01 February 2006
A list of defined (well-known) properties appears at the end of this section.

The property flags field is a 1-byte field with two bits defined. Bit 0 is the Static/Dynamic flag
defined as shown in the following figure:

Figure 5-1 Static and DynamicFlag

A Static property exists until it is deleted with the DeleteProperty function, or until the object is
deleted. A Dynamic property is deleted from the servers bindery when the server is rebooted.

Bit 1 is the Item/Set flag defined as shown in the following figure:

Figure 5-2 Item and Set Flag

The values of Item properties are defined and interpreted by applications or by APIs. The bindery
process interprets the value of a Set property as a series of object ID numbers, each 4 bytes long.

For example, the bit combination shown in the following figure indicates a Static property of type
Set:

Figure 5-3 A Static Set

The property security determines who can access the property. The low-order nibble determines who
can scan for and find the property. The high-order nibble determines who can add value(s) to the
property.

For example, 0x31 indicates that any user logged in to the server can find the property, but only the
Supervisor can add value(s) to the property.

: Colon

; Semicolon

, Comma

* Asterisk

? Question mark
ry Management

novdocx (E
N

U
) 01 February 2006
NOTE: Security from NLM applications is derived from the current connection number.

The values flag indicates whether the property has a value associated with it. The following table
lists defined (well-known) properties:

Table 5-4 Well-Known Properties

Property Name Object Type

Property Flags: Security

API
Static/
Dynamic Item/ Set Write Read

ACCOUNT_BALANCE User Static Item 3 2 Accounting

ACCOUNT_HOLDS User Dynamic Item 3 2 Accounting

ACCOUNT_SERVERS File Server Static Set 3 1 Accounting

ACCT_LOCKOUT File Server Static Item 3 3 Bindery

BLOCKS_READ File Server Static Item 3 1 Accounting

BLOCKS_WRITTEN File Server Static Item 3 1 Accounting

CONNECT_TIME File Server Static Item 3 1 Accounting

DISK_STORAGE File Server Static Item 3 1 Accounting

GROUP_MEMBERS User Group Static Set 3 1 Bindery

GROUPS_IM_IN User Static Set 3 1 Bindery

IDENTIFICATION User Static Item 3 1 Bindery

LOGIN_CONTROL User Static Item 3 2 Bindery

NET_ADDRESS File Server Dynamic Item 4 0 Service Adv.

NODE_CONTROL User Static Item 3 2 Bindery

OLD_PASSWORDS User Static Item 3 3 Bindery

OPERATORS File Server Static Set 3 3 Bindery

PASSWORD User Static Item 4 4 Bindery

Q_DIRECTORY Print Queue Static Item 3 3 Queue Man.

Q_OPERATORS Print Queue Static Set 3 1 Queue Man.

Q_SERVERS Print Queue Static Set 3 1 Queue Man.

Q_USERS Print Queue Static Set 3 1 Queue Man.

REQUESTS_MADE File Server Static Item 3 1 Accounting

SECURITY_EQUALS User Static Set 3 2 Bindery

USER_DEFAULTS Supervisor Static Item 3 1 Bindery
Server-Based Bindery Concepts 99

100 NDK: Binde

novdocx (E
N

U
) 01 February 2006
5.3 Workgroup Managers
NetWare versions 3.x and higher support the concept of a workgroup manager (property type
MANAGERS). Large organizations may need workgroup managers where several groups that share
a single server want autonomous control over their own users and data.

The workgroup manager has duties similar to those of the network Supervisor (with some
limitations). A workgroup manager can create and delete users and groups, In addition, a workgroup
manager can administer data resources, but only for part of the users in the bindery, and only for part
of the logical file system.

The MANAGERS Set property can be added to the SUPERVISOR object. Any object that has
security rights equivalent to an object listed in the MANAGERS property is considered to be a
workgroup manager. The MANAGERS property is read-Supervisor and write-Supervisor. If the
MANAGERS property does not exist, no objects are considered to be workgroup managers.

Workgroup managers, like the network Supervisor, are allowed to create objects in the bindery. All
newly-created objects have a set property called OBJ_SUPERVISORS. This property is read-object
and write-Supervisor, and is initialized to contain a single element: the object ID of the workgroup
manager who created the object. If an object does not have the OBJ_SUPERVISORS property, the
object is assumed to have been created by the Supervisor.

The meaning of Supervisor access changes in relation to bindery object access. A caller is
considered to be the Supervisor of a target object if that caller is security-equivalent to any other
object that appears in the target objects OBJ_SUPERVISORS property. An objects Supervisor can
do anything to the object that the network Supervisor can do, including reading and modifying
Supervisor-level properties, deleting the object, and so on.

Workgroup managers have rights and abilities beyond those of normal users: they can create new
objects in the bindery, and they can control login restriction properties of the users that they create
(such as login times, password length, and account balances). However, workgroup managers
cannot control these parameters for their own account unless they are included in the
OBJ_SUPERVISORS property of their own user object.

Workgroup managers have no extra rights in regard to directory access rights; they must be granted
rights in the standard manner by an entity (usually the Supervisor) who has sufficient rights to grant
access rights to the appropriate directories. And, as is the case with any user, workgroup managers
must have parental rights to a directory before they can grant access rights to that directory to other
users (including any users that the workgroup manager created).

A user is considered to be a workgroup manager if that user is security-equivalent to any user listed
in the MANAGERS property of the Supervisor. A user has Supervisor rights over a specific object if
the user is security-equivalent to anything listed in the objects OBJ_SUPERVISORS property.
Therefore, a user can implicitly become a specific objects Supervisor without actually becoming a
workgroup manager.

The workgroup manager concept is two-tiered: The network Supervisor creates workgroup
managers, and workgroup managers create and manage users. Workgroup managers cannot create
other workgroup managers; the relationship is not hierarchical. The bindery treats workgroup
managers as peers. More complex relationships can be created by controlling the places in the
directory tree where workgroup managers are given rights, effectively creating hierarchical
relationships in the data that they control.
ry Management

novdocx (E
N

U
) 01 February 2006
Workgroup managers supplement, but do not replace, the network Supervisor. The network
Supervisor maintains absolute control over the network. The network Supervisor and all objects that
are security-equivalent to the Supervisor can still make all the calls that they could before NetWare
provided workgroup manager support.

A workgroup manager cannot add an object to a group that is write-Supervisor unless that manager
is the Supervisor of both the group and the object. This restriction ensures that a workgroup manager
cannot create a new user and then make that user security-equivalent to the system Supervisor.

Workgroup managers can perform the following tasks:

• Clear another station if the object logged into the target station is one of his supervised objects.
• Create new queues and destroy queues that they have created.
• Add users (objects) to a queue only if they are object Supervisors of both the queue and the

target user.
• Request certain statistical information about any supervised object (such as the number of

directories owned, the number of files owned, and the number of disk blocks used).
• Change the Supervisor-controlled field in files owned by supervised objects. These fields

include the file attributes flags, the extended attributes (including read-audit and write-audit
bits), the 64-byte extended directory information area, and the file owner (if the new target
owner is also supervised by the caller).

• Change the owner of a directory if they supervise both the old directory owner and the
proposed new directory owner.

5.4 Server-Based Bindery Functions

Function Description

AddBinderyObjectToSet Adds a bindery object to a property of type Set

ChangeBinderyObjectPassword Changes the password of a bindery object

ChangeBinderyObjectSecurity Changes the security of a bindery object

ChangePropertySecurity Changes the security of a bindery objects property

CloseBindery Closes the bindery

CreateBinderyObject Creates a bindery object

CreateProperty Creates a property for a bindery object

DeleteBinderyObject Deletes a bindery object

DeleteBinderyObjectFromSet Deletes a bindery object from a property of type Set

DeleteProperty Deletes properties from a bindery object

GetBinderyAccessLevel Returns the name and type of a bindery object

GetBinderyObjectID Returns a bindery objects identification number

GetBinderyObjectName Returns the name and type of a bindery object
Server-Based Bindery Concepts 101

102 NDK: Binde

novdocx (E
N

U
) 01 February 2006
IsBinderyObjectInSet Determines if a bindery object is a member of a property of
type Set

OpenBindery Opens the bindery

ReadPropertyValue Returns the value of a bindery objects property

RenameBinderyObject Renames a bindery object

ScanBinderyObject Scans the bindery for an object

ScanBinderyObjectTrusteePaths Returns the paths to which an object has trustee rights

ScanProperty Scans the bindery for an objects properties

VerifyBinderyObjectPassword Verifies that the password of a bindery object is valid

WritePropertyValue Writes a value to a property of type item

Function Description
ry Management

6
novdocx (E

N
U

) 01 February 2006
6Server-Based Bindery Functions

This documentation alphabetically lists the Server-Based Bindery functions and describes their
purpose, syntax, parameters, and return values.

• “AddBinderyObjectToSet” on page 104
• “ChangeBinderyObjectPassword” on page 108
• “ChangeBinderyObjectSecurity” on page 110
• “ChangePropertySecurity” on page 113
• “CloseBindery” on page 116
• “CreateBinderyObject” on page 118
• “CreateProperty” on page 121
• “DeleteBinderyObject” on page 125
• “DeleteBinderyObjectFromSet” on page 127
• “DeleteProperty” on page 130
• “GetBinderyAccessLevel” on page 133
• “GetBinderyObjectID” on page 135
• “GetBinderyObjectName” on page 137
• “IsBinderyObjectInSet” on page 139
• “OpenBindery” on page 142
• “ReadPropertyValue” on page 144
• “RenameBinderyObject” on page 148
• “ScanBinderyObject” on page 151
• “ScanBinderyObjectTrusteePaths” on page 154
• “ScanProperty” on page 158
• “VerifyBinderyObjectPassword” on page 162
• “WritePropertyValue” on page 164
Server-Based Bindery Functions 103

104 NDK: Binde

novdocx (E
N

U
) 01 February 2006
AddBinderyObjectToSet
Adds a bindery object to a property of type Set (For cross-platform functionality, see Developing
NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions)
and call NWAddObjectToSet (page 28))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int AddBinderyObjectToSet (
 char *objectName,
 WORD objectType,
 char *propertyName,
 char *memberName,
 WORD memberType);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object to which a new member is to
be added (maximum 48 characters, including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object to which a new member is to be added
(OT_USER, OT_GROUP, OT_PRINT_SERVER, and so on).

propertyName
(IN) Specifies the string containing the name of the property to which the member is to be
added (maximum 16 characters, including the NULL terminator).

memberName
(IN) Specifies the string containing the name of the bindery object to be added to the property
(maximum 48 characters, including the NULL terminator).

memberType
(IN) Specifies the type of the bindery object to be added (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

Return Values

0 (0x00) ESUCCESS
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName, objectType, and propertyName parameters must uniquely identify a
bindery object’s property. These parameters must not contain wildcard characters. The property
must be of type Set. The objectName can be from 1 to 48 characters long, including the NULL
terminator. The propertyName can be from 1 to 16 characters long, including the NULL
terminator. Only printable characters can be used. Slashes, backslashes, colons, semicolons,
commas, asterisks, and question marks are prohibited.

The memberName and memberType parameters must uniquely identify the bindery object to be
added and must not contain wildcard characters.

This function searches consecutive segments of the property’s value for an open slot where it can
record the unique bindery object ID of the new member. The new member is inserted into the first
available slot. If an open slot is not found, a new segment is created and the new member’s unique
bindery object ID is written to the first slot in the segment. The rest of the segment is filled with
zeros.

This function requires write access to the property.

For example, to add user BILL’s object ID to group STAFF’s GROUP_MEMBERS Set property, a
programmer passes BILL’s object type (OT_USER) and object name (BILL) to the server with a call
to AddBinderyObjectToSet. The server uses BILL’s object type and object name to locate BILL’s
object ID. The server then searches all value segments associated with STAFF’s
GROUP_MEMBERS Set property until it finds an available slot. Finally, it inserts BILL’s object ID
number into the empty slot.

See Also
DeleteBinderyObjectFromSet (page 127), IsBinderyObjectInSet (page 139), WritePropertyValue
(page 164)

AddBinderyObjectToSet Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

233 (0xE9) ERR_MEMBER_ALREADY_EXISTS

235 (0xEB) ERR_NOT_SET_PROPERTY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

248 (0xF8) ERR_NO_PROPERTY_WRITE_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 105

106 NDK: Binde

novdocx (E
N

U
) 01 February 2006
main()
{
 int completionCode;
 char objectName[48], propertyName[16], memberName[48];
 WORD objectType, memberType;

 /* Fill in the name of the object that is being added to */
 strcpy (objectName, "STAFF");

 /* Fill in the type of object that is being added to */
 objectType = OT_GROUP;

 /* Fill in the property name that is being added to */
 strcpy (propertyName, "GROUP_MEMBERS");

 /* Fill in the member name to be added */
 strcpy (memberName, "BILL");

 /* Fill in the member type to be added */
 memberType = OT_USER;
 completionCode = AddBinderyObjectToSet (objectName, objectType,
 propertyName, memberName, memberType);
 printf ("\n\n\n");
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n");
 break;

 case 233:
 printf ("MEMBER ALREADY EXISTS\n");
 break;

 case 235:
 printf ("NOT GROUP PROPERTY\n");
 break;

 case 240:
 printf ("WILDCARD NOT ALLOWED\n");
 break;

 case 248:
 printf ("NO PROPERTY WRITE PRIVILEGE\n");
 break;

 case 251:
 printf ("NO SUCH PROPERTY\n");
 break;

 case 252:
 printf ("NO SUCH OBJECT\n");
 break;

ry Management

novdocx (E
N

U
) 01 February 2006
 case 254:
 printf ("SERVER BINDERY LOCKED\n");
 break;

 case 255:
 printf ("BINDERY FAILURE\n");
 break;

 case default:
 printf ("completionCode = %d\n", completionCode);
 break;
 }
 else
 printf (" SUCCESSFULLY added member %s\n", memberName);
}
Server-Based Bindery Functions 107

108 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ChangeBinderyObjectPassword
Changes the password of a bindery object (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWChangeObjectPassword (page 31))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ChangeBinderyObjectPassword (
 char *objectName,
 WORD objectType,
 char *oldPassword,
 char *newPassword);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

oldPassword
(IN) Specifies the string containing the current password to be checked for validity (maximum
128 characters; NULL string = no password).

newPassword
(IN) Specifies the string containing the new password to be assigned to the bindery object
(maximum 128 characters; NULL string = no password).

Return Values

 0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

251 (0xFB) ERR_NO_SUCH_PROPERTY
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain any wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

This function creates a property PASSWORD if the bindery object does not have one. It also assigns
the property security (0x44) to the property PASSWORD. (Only the NetWare® OS can find the
property or add value to the property.) The PASSWORD property is created with an associated
bindery read and write access level, and the password property value is assigned the
newPassword. A password can be from 1 to 128 characters long, including the NULL terminator.

Passwords are case sensitive. You can create passwords in lowercase or uppercase characters. When
logging in, however, they must be entered exactly as when they were created.

There is a distinction between a bindery object without a password property and a bindery object
with a password property that has no value. An entity is not allowed to log in to a server as a bindery
object that does not have a password property. However, an entity is allowed to log in to a server as
a bindery object that has a password property with no value. This function does not require that the
requesting entity be logged in to the server.

This function requires read and write access to the bindery object.

See Also
VerifyBinderyObjectPassword (page 162)

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_NO_SUCH_OBJECT_OR_BAD_PASSWORD
Server-Based Bindery Functions 109

110 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ChangeBinderyObjectSecurity
Changes the security of a bindery object (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWChangeObjectSecurity (page 33))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ChangeBinderyObjectSecurity (
 char *objectName,
 WORD objectType,
 BYTE newObjectSecurity);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

newObjectSecurity
(IN) Indicates the read/write access to the bindery object.

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

The newObjectSecurity parameter is actually two nibbles. The low-order nibble determines
who can scan for and find the object. The high-order nibble determines who can add properties to
the object. The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

See Also
ChangePropertySecurity (page 113)

ChangeBinderyObjectSecurity Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
 int completionCode;
 char objName[48];
 WORD objType;
 BYTE newObjSecurity;
 printf ("\n\n");
 printf ("Enter Name of Object —> ");
 scanf ("%s", objName);
 printf ("\nEnter Specifies the type of Object —> ");
 scanf ("%d", &objType);
 printf ("\nEnter the new READ/WRITE access —> ");
 scanf ("%2x", &newObjSecurity);
 completionCode = ChangeBinderyObjectSecurity (objName,
 objType, newObjSecurity);
 if (completionCode)
 {
 printf ("\n\n\n");
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n\n");
 if (completionCode == 240)

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
Server-Based Bindery Functions 111

112 NDK: Binde

novdocx (E
N

U
) 01 February 2006
 printf ("WILDCARD NOT ALLOWED\n\n");
 if (completionCode == 241)
 printf ("INVALID BINDERY SECURITY\n\n");
 if (completionCode == 251)
 printf ("NO SUCH PROPERTY\n\n");
 if (completionCode == 252)
 printf ("NO SUCH OBJECT\n\n");
 if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n\n");
 if (completionCode == 255)
 printf ("BINDERY FAILURE\n\n");
 }
 else if (completionCode == 0)
 printf ("\n\n\nObject Security of %s is %d\n", objName,
 newObjSecurity);
 else
 printf ("completionCode = %d\n", completionCode);
}
ry Management

novdocx (E
N

U
) 01 February 2006
ChangePropertySecurity
Changes the security of a bindery object’s property (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWChangePropertySecurity (page 35))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ChangePropertySecurity (
 char *objectName,
 WORD objectType,
 char *propertyName,
 BYTE newPropertySecurity);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the property whose security is to be changed
(maximum16 characters, including the NULL terminator).

newPropertySecurity
(IN) Indicates the read/write access of others to the property.

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

251 (0xFB) ERR_NO_SUCH_PROPERTY
Server-Based Bindery Functions 113

114 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName, objectType, and propertyName parameters must uniquely identify the
property and must not contain wildcard characters. The objectName can be from 1 to 48
characters long, including the NULL terminator. The propertyName can be from 1 to 15
characters long. Only printable characters can be used. Slashes, backslashes, colons, semicolons,
commas, asterisks, and question marks are prohibited.

The newPropertySecurity parameter is actually two nibbles. The low-order nibble
determines who can scan for and find the object. The high-order nibble determines who can add
properties to the object. The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

See Also
ChangeBinderyObjectSecurity (page 110)

ChangePropertySecurity Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
 int completionCode;
 char objectName[48];
 int objectType;
 char propertyName[16];
 BYTE newAccessFlags;
 strcpy (objectName, "JDOE");
 objectType = OT_USER;
 strcpy (propertyName, "GROUP_MEMBERS");
 newAccessFlags = 0x31;
 completionCode =ChangePropertySecurity (objectName, objectType,
 propertyName, newAccessFlags);

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
ry Management

novdocx (E
N

U
) 01 February 2006
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n\n");
 break;

 case 240:
 printf ("WILDCARD NOT ALLOWED\n\n");
 break;

 case 241:
 printf ("INVALID BINDERY SECURITY\n\n");
 break;

 case 251:
 printf ("NO SUCH PROPERTY\n\n");
 break;

 case 252:
 printf ("NO SUCH OBJECT\n\n");
 break;

 case 254:
 printf ("SERVER BINDERY LOCKED\n\n");
 break;

 case 255:
 printf ("BINDERY FAILURE\n\n");
 break;

 case default:
 printf ("completionCode=%d\n", completionCode);
 break;
 }
 else
 printf ("Access flags for %s is %2X\n",
 propertyName,
 newAccessFlags);
}
Server-Based Bindery Functions 115

116 NDK: Binde

novdocx (E
N

U
) 01 February 2006
CloseBindery
Closes the bindery (For cross-platform functionality, see Developing NLMs with Cross-Platform
Functions (NDK: NLM Development Concepts, Tools, and Functions) and call NWCloseBindery
(page 38))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int CloseBindery (void);

Return Values

Remarks
The bindery files are normally kept open and locked so that they cannot be directly accessed.
bindery files need to be closed when archiving or restoring.

While the bindery is closed, most functions of the network are disabled. Therefore, the time that the
bindery is closed should be kept to a minimum.

Only the supervisor or a bindery object that is security-equivalent to the supervisor can close the
bindery.

If an application closes the bindery, an open bindery needs to follow before an end-of-job (EOJ)
occurs. This is because most functions of the network are disabled after a bindery is closed and that
can include being able to run another application to reopen the bindery.

See Also
OpenBindery (page 142)

CloseBindery Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()

0 (0x00) ESUCCESS

(0xFF) FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
{
 int completionCode;
/*
 NOTE: When the bindery is closed, most network functions
 are disabled. Use the CloseBindery function with care.
 Also, be sure to call OpenBindery before an endofjob
 (EOJ) occurs.
*/
 completionCode = CloseBindery ();
 printf ("completionCode = %d\n", completionCode);
/*
 At this point, perform the steps you need (such as backing
 up a networked system); then reopen the bindery before an
 endofjob (EOJ) occurs.
*/
 completionCode = OpenBindery ();
 printf ("completionCode from Open bindery = %d\n", completionCode);
}
Server-Based Bindery Functions 117

118 NDK: Binde

novdocx (E
N

U
) 01 February 2006
CreateBinderyObject
Creates a bindery object (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWCreateObject (page 40))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int CreateBinderyObject (
 char *objectName,
 WORD objectType,
 BYTE objectFlag,
 BYTE objectSecurity);

Parameters
objectName

(IN) Specifies the string containing the name of the new bindery object (maximum 48
characters, including the NULL terminator).

objectType
(IN) Specifies the type of the new bindery object (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

objectFlag
(IN) Indicates whether the new bindery object is Dynamic or Static (BF_DYNAMIC or
BF_STATIC).

objectSecurity
(IN) Indicates the read/write access of others to the new bindery object.

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

238 (0xEE) ERR_OBJECT_ALREADY_EXISTS

239 (0xEF) ERR_INVALID_NAME

241 (0xF1) ERR_INVALID_BINDERY_SECURITY
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

The objectFlag parameter is a one-byte parameter which indicates whether the object is
Dynamic (0x01) or Static (0x00). A dynamic object is an object that is created and deleted
frequently. Dynamic objects are deleted from the bindery when the server is initialized or when the
object is specifically deleted. Static objects remain in the bindery until deleted with
DeleteBinderyObject.

The objectSecurity parameter is actually two nibbles. The low-order nibble determines who
can scan for and find the object. The high-order nibble determines who can add properties to the
object. The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

The bindery object must have a password property to log in to a server. The
ChangeBinderyObjectPassword and CreateProperty functions add the property PASSWORD to an
object.

See Also
ChangeBinderyObjectPassword (page 108), CreateProperty (page 121), DeleteBinderyObject
(page 125), RenameBinderyObject (page 148), ScanBinderyObject (page 151)

CreateBinderyObject Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
 int completionCode;
 char objectName[48];

245 (0xF5) ERR_NO_OBJECT_CREATE_PRIVILEGE

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
Server-Based Bindery Functions 119

120 NDK: Binde

novdocx (E
N

U
) 01 February 2006
 WORD ;
 BYTE objectFlag;
 BYTE objectSecurity;
 strcpy (objectName, "JDOE");
 objectType = 1;
 objectFlag = BF_STATIC;
 objectSecurity = 0x31;
 completionCode = CreateBinderyObject (objectName, objectType,
 objectFlag, objectSecurity);
 if (completionCode == 0)
 printf ("Successfully created object %s of type %d\n",
 objectName, objectType);
 else
 printf ("Error %d in CreateBinderyObject\n",
 completionCode);
}
ry Management

novdocx (E
N

U
) 01 February 2006
CreateProperty
Creates a property for a bindery object (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWCreateProperty (page 43))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int CreateProperty (
 char *objectName,
 WORD objectType,
 char *propertyName,
 BYTE propertyFlags,
 BYTE propertySecurity);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the property to be created (maximum 16
characters, including the NULL terminator).

propertyFlags
(IN) Indicates whether the new property is Dynamic or Static and whether it is of type Item or
Set: BF_DYNAMIC or BF_STATIC is logically ORed with BF_ITEM or BF_SET
(BF_STATIC | BF_ITEM, and so on).

propertySecurity
(IN) Indicates the read/write access of others to the new property.

Return Values

0 (0x00) ESUCCESS
Server-Based Bindery Functions 121

122 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. The propertyName can be from 1 to 16 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

The propertyFlags parameter indicates whether the property is Dynamic or Static and whether
it is of type Set or Item. A dynamic property is created and deleted frequently. Dynamic properties
are deleted from the bindery when the server is initialized. Static properties remain in the bindery
until deleted with DeleteProperty.

The property type indicates the type of data stored in the value of a property. The value of a Set
property contains a series of bindery object IDs. Each object ID is 4 bytes long. The value of an Item
property contains segments of 128-byte strings.

The propertySecurity parameter is actually two nibbles. The low-order nibble determines
who can scan for and find the object. The high-order nibble determines who can add properties to
the object. The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the property, but only the
supervisor can add a value to the property.

The requesting workstation cannot create properties that have security greater than the workstation’s
access to the bindery object. The password property can also be created with
ChangeBinderyObjectPassword. CreateProperty can also be used to create the password property.

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

237 (0xED) ERR_PROPERTY_ALREADY_EXISTS

239 (0xEF) ERR_INVALID_NAME

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

247 (0xF7) ERR_NO_PROPERTY_CREATE_PRIVILEGE

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
ry Management

novdocx (E
N

U
) 01 February 2006
See Also
ChangeBinderyObjectPassword (page 108), DeleteProperty (page 130)

CreateProperty Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
 int completionCode;
 char objectName[48];
 char propertyName[16];
 WORD objectType;
 BYTE propertyFlags;
 BYTE propertySecurity;

 strcpy (objectName, "BRUTH");
 objectType = OT_USER;
 strcpy (propertyName, "BASEBALL_TEAM");
 propertyFlags = BF_STATIC | BF_SET;
 propertySecurity = 0x31;
 completionCode = CreateProperty (objectName, objectType,
 propertyName, propertyFlags, propertySecurity);
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n");
 break;

 case 237:
 printf ("PROPERTY ALREADY EXISTS\n");
 break;

 case 239:
 printf ("INVALID NAME\n");
 break;

 case 240:
 printf ("WILDCARD NOT ALLOWED\n");
 break;

 case 241:
 printf ("INVALID BINDERY SECURITY\n");
 break;

 case 247:
 printf ("NO PROPERTY CREATE PRIVILEGE\n");
 break;

 case 252:
Server-Based Bindery Functions 123

124 NDK: Binde

novdocx (E
N

U
) 01 February 2006
 printf ("NO SUCH OBJECT\n");
 break;

 case 254:
 printf ("SERVER BINDERY LOCKED\n");
 break;

 case 255:
 printf ("BINDERY FAILURE\n");
 break;

 case default:
 printf ("completionCode = %d\n", completionCode);
 break;
 }
 else
 printf ("SUCCESSFULLY created property %s\n",
 propertyName);
}
ry Management

novdocx (E
N

U
) 01 February 2006
DeleteBinderyObject
Deletes a bindery object (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDeleteObject (page 46))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int DeleteBinderyObject (
 char *objectName,
 WORD objectType);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

239 (0xEF) ERR_INVALID_NAME

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

244 (0xF4) ERR_NO_OBJECT_DELETE_PRIVILEGE

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 125

126 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object to be
deleted and must not contain wildcard characters. The objectName can be from 1 to 48 characters
long, including the NULL terminator. Only printable characters can be used. Slashes, backslashes,
colons, semicolons, commas, asterisks, and question marks are prohibited.

See Also
CreateBinderyObject (page 118), RenameBinderyObject (page 148)

DeleteBinderyObject Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
 int completionCode;
 char objectName[48];
 WORD objectType;

 strcpy (objectName, "PROSE");
 objectType = OT_USER;
 completionCode = DeleteBinderyObject (objectName, objectType);
 if (completionCode == 0)
 printf ("%s of Type %d has been deleted\n", objectName,
objectType);
 else
 printf ("Error %d in DeleteBinderyObject\n", completionCode);
}
ry Management

novdocx (E
N

U
) 01 February 2006
DeleteBinderyObjectFromSet
Deletes a bindery object from a property of type Set (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWDeleteObjectFromSet (page 48))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int DeleteBinderyObjectFromSet (
 char *objectName,
 WORD objectType,
 char *propertyName,
 char *memberName,
 WORD memberType);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object from which the member is to
be deleted (maximum 48 characters, including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of a set property (maximum 16 characters,
including the NULL terminator).

memberName
(IN) Specifies the string containing the name of the bindery object to be deleted from the set
(maximum 48 characters, including the NULL terminator).

memberType
(IN) Specifies the type of bindery object to be deleted from the set (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

Return Values

0 (0x00) ESUCCESS
Server-Based Bindery Functions 127

128 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName, objectType, and propertyName parameters must uniquely identify a
bindery object’s properties. These parameters must not contain wildcard characters. The property
must be of type Set. The objectName can be from 1 to 48 characters long, including the NULL
terminator. The propertyName can be from 1 to 16 characters long, including the NULL
terminator. Only printable characters can be used. Slashes, backslashes, colons, semicolons,
commas, asterisks, and question marks are prohibited.

The memberName and memberType parameters must uniquely identify the bindery object to be
deleted and must not contain wildcard characters.

This function searches consecutive segments of the property’s value for a unique object ID that
matches the unique object ID of the member to be deleted. When the member is found it is deleted.
The remaining IDs in the segment are shifted and the last previously used slot in the segment is
filled with zeros. This ensures that IDs within a segment are packed. However, IDs are not packed
between segments.

See Also
AddBinderyObjectToSet (page 104), IsBinderyObjectInSet (page 139)

DeleteBinderyObjectFromSet Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
char objectName[48];
char propertyName[16];
char memberName[48];
WORD objectType, memberType;
 strcpy (objectName, "SUPERVISOR");
 objectType = OT_USER;
 strcpy (propertyName, "BASEBALL_TEAM");

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

234 (0xEA) ERR_NO_SUCH_MEMBER

235 (0xEB) ERR_NOT_GROUP_PROPERTY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

248 (0xF8) ERR_NO_PROPERTY_WRITE_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
 strcpy (memberName, "PROSE");
 memberType = OT_USER;
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n");
 break;

 case 234:
 printf ("NO SUCH MEMBER\n");
 break;

 case 235:
 printf ("NOT GROUP PROPERTY\n");
 break;

 case 240:
 printf ("WILDCARD NOT ALLOWED\n");
 break;

 case 248:
 printf ("NO PROPERTY WRITE PRIVILEGE\n");
 break;

 case 251:
 printf ("NO SUCH PROPERTY\n");
 break;

 case 252:
 printf ("NO SUCH OBJECT\n");
 break;

 case 254:
 printf ("SERVER BINDERY LOCKED\n");
 break;

 case 255:
 printf ("BINDERY FAILURE\n");
 break;

 case default:
 printf ("completionCode = %d\n",
 completionCode);
 break;
 }
 else
 printf ("SUCCESSFULLY deleted member %s from %s\n",
 memberName, propertyName);
}
Server-Based Bindery Functions 129

130 NDK: Binde

novdocx (E
N

U
) 01 February 2006
DeleteProperty
Deletes properties from a bindery object (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDeleteProperty (page 50))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int DeleteProperty (
 char *objectName,
 WORD objectType,
 char *propertyName);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object from which the property is
to be deleted (maximum 48 characters, including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the property to be deleted (maximum 16
characters; can contain wildcard characters, including the NULL terminator).

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

246 (0xF6) ERR_NO_PROPERTY_DELETE_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

The propertyName parameter contains the name of the property to be deleted and can be from 1
to 16 characters long, including the NULL terminator. Wildcard characters are allowed, but slashes,
backslashes, commas, colons, semicolons, asterisks, and question marks are prohibited. All
matching properties of the bindery object are deleted when the propertyName parameter contains
wildcard characters.

See Also
CreateProperty (page 121)

DeleteProperty Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
char objectName[48];
char propertyName[16];
WORD objectType;

 strcpy (objectName, "PROSE");
 objectType = OT_USER;
 strcpy (propertyName, "BASEBALL_TEAM");
 completionCode = DeleteProperty (objectName, objectType,
 propertyName);
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n");

 case 240:
 printf ("WILDCARD NOT ALLOWED\n");

 case 241:
 printf ("INVALID BINDERY SECURITY\n");

 case 246:
 printf ("NO PROPERTY DELETE PRIVILEGE\n");

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 131

132 NDK: Binde

novdocx (E
N

U
) 01 February 2006

 case 251:
 printf ("NO SUCH PROPERTY\n");

 case 252:
 printf ("NO SUCH OBJECT\n");

 case 254:
 printf ("SERVER BINDERY LOCKED\n");

 case 255:
 printf ("BINDERY FAILURE\n");

 case default:
 printf ("Error %d in DeleteProperty\n",
 completionCode);
 }
 else
 printf ("SUCCESSFULLY deleted %s from %s’s properties\n",
 propertyName,
 objectName);
}
ry Management

novdocx (E
N

U
) 01 February 2006
GetBinderyAccessLevel
Indicates the access level of the current connection number to the server’s bindery (For cross-
platform functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM
Development Concepts, Tools, and Functions) and call NWGetBinderyAccessLevel (page 54))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int GetBinderyAccessLevel (
 BYTE *securityAccessLevel,
 long *objectID);

Parameters
securityAccessLevel

(OUT) Receives the security access level the requesting object has to the bindery.

objectID
(OUT) Receives the unique ID of the bindery object logged in to the current connection or else
a value of -1 if no object is logged in on the current connection.

Return Values

Remarks
Object security determines who can access the object. The low-order nibble determines who can
read (scan for and find) the object. The high-order nibble determines who can write to (add
properties to or delete properties from) the object.

The following values are defined for each nibble:

0 (0x00) ESUCCESS

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor
Server-Based Bindery Functions 133

134 NDK: Binde

novdocx (E
N

U
) 01 February 2006
For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

See Also
GetBinderyObjectName (page 137), ScanBinderyObject (page 151), ScanProperty (page 158)

GetBinderyAccessLevel Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
BYTE securityAccessLevel;
long objectID;

 GetBinderyObjectID ("JDOE", OT_USER, &objectID);
 completionCode = GetBinderyAccessLevel (&securityAccessLevel,
 objectID);
 if (completionCode == 0)
 {
 printf (" \n\n\nSUCCESSFUL\n\n");
 printf ("Security Access Level —> %2X\n",
 securityAccessLevel);
 }
 else
 printf ("Error %d in GetBinderyAccessLevel\n",
 completionCode);
}

4 0 1 0 0 NetWare Operating System
ry Management

novdocx (E
N

U
) 01 February 2006
GetBinderyObjectID
Returns a bindery object’s unique identification number (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWGetObjectID (page 58))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int GetBinderyObjectID (
 char *objectName,
 WORD objectType,
 long *objectID);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

objectID
(OUT) Receives the unique bindery object ID number.

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

239 (0xEF) ERR_INVALID_NAME

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 135

136 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

See Also
GetBinderyObjectName (page 137)

GetBinderyObjectID Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
char objName[48];
WORD objType;
long objectID;
int completionCode;

 printf ("Enter Object Name: ");
 scanf ("%s", objName);
 printf ("\nEnter Object Type: ");
 scanf ("%d", &objType);
 completionCode = GetBinderyObjectID (objName, objType,
 &objectID);
 if (completionCode)
 {
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n\n");
 if (completionCode == 239)
 printf ("INVALID NAME\n\n");
 if (completionCode == 240)
 printf ("WILDCARD NOT ALLOWED\n\n");
 if (completionCode == 252)
 printf ("NO SUCH OBJECT\n\n");
 if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n\n");
 if (completionCode == 255)
 printf ("BINDERY FAILURE\n\n");
 }
 else
 printf ("\n\nObject ID for %s is... %8lX\n",
 objName, objectID);
}
ry Management

novdocx (E
N

U
) 01 February 2006
GetBinderyObjectName
Returns the name and type of a bindery object (For cross-platform functionality, see Developing
NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions)
and call NWGetObjectName (page 65))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int GetBinderyObjectName (
 long objectID,
 char *objectName,
 WORD *objectType);

Parameters
objectID

(IN) Specifies a unique bindery object ID.

objectName
(OUT) Receives a string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(OUT) Receives the type of the bindery object (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

Return Values

Remarks
The value in the objectID parameter is a 4-byte number that identifies a bindery object. It is
assigned by the operating system.

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 137

138 NDK: Binde

novdocx (E
N

U
) 01 February 2006
The objectName and objectType parameters uniquely identify the bindery object and do not
contain wildcard characters. The objectName can be from 1 to 48 characters long, including the
NULL terminator. Only printable characters are used.

See Also
GetBinderyObjectID (page 135)

GetBinderyObjectName Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
char objectName[48];
WORD objectType;
long objectID;
int completionCode;

 printf ("Enter Object ID: ");
 scanf ("%8lX", &objectID);
 completionCode = GetBinderyObjectName (objectID, objectName,
 &objectType);
 if (completionCode)
 {
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n\n");
 if (completionCode == 252)
 printf ("NO SUCH OBJECT\n\n");
 if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n\n");
 if (completionCode == 255)
 printf ("BINDERY FAILURE\n\n");
 else
 printf ("Error %d in GetBinderyObjectName\n",
 completionCode);
 }
 else
 {
 printf ("\n\n\nObject Name... %s\n", objectName);
 printf ("Object Type... %d\n", objectType);
 }
}
ry Management

novdocx (E
N

U
) 01 February 2006
IsBinderyObjectInSet
Determines whether a bindery object is a member of a property of type Set (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call NWIsObjectInSet (page 67))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int IsBinderyObjectInSet (
 char *objectName,
 WORD objectType,
 char *propertyName,
 char *memberName,
 WORD memberType);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the Set property (maximum 16 characters,
including the NULL terminator).

memberName
(IN) Specifies the string containing the bindery object name to be checked for set membership
(maximum 48 characters, including the NULL terminator).

memberType
(IN) Specifies a member’s bindery object type (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

Return Values

0 (0x00) ESUCCESS
Server-Based Bindery Functions 139

140 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Remarks
The objectName, objectType, and propertyName parameters must uniquely identify a
bindery object’s property and must not contain wildcard characters. The property must be of type
Set. The objectName can be from 1 to 48 characters long, including the NULL terminator. The
propertyName can be from 1 to 16 characters long, including the NULL terminator. Only
printable characters can be used. Slashes, backslashes, colons, semicolons, commas, asterisks, and
question marks are prohibited.

The memberName and memberType parameters must uniquely identify the bindery object to be
searched and must not contain wildcard characters.

IsBinderyObjectInSet scans segments of a Set property for the object ID of the specified
memberName.

See Also
AddBinderyObjectToSet (page 104), DeleteBinderyObjectFromSet (page 127)

IsBinderyObjectInSet Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
char objectName[48];
char propertyName[16];
char memberName[48];
WORD objectType, memberType;

 strcpy (objectName, "SUPERVISOR");
 objectType = OT_USER;
 strcpy (propertyName, "BASEBALL_TEAM");
 strcpy (memberName, "PROSE");
 memberType = OT_USER;

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

234 (0xEA) ERR_NO_SUCH_MEMBER

235 (0xEB) ERR_NOT_GROUP_PROPERTY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

249 (0xF9) ERR_NO_PROPERTY_READ_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
ry Management

novdocx (E
N

U
) 01 February 2006
 completionCode = IsBinderyObjectInSet (objectName, objectType,
 propertyName, memberName, memberType);
 if (completionCode)
 switch (completionCode)
 {
 case 150:
 printf ("SERVER OUT OF MEMORY\n");
 break;

 case 234:
 printf ("NO SUCH MEMBER\n");
 break;

 case 235:
 printf ("NOT GROUP PROPERTY\n");
 break;

 case 240:
 printf ("WILDCARD NOT ALLOWED\n");
 break;

 case 248:
 printf ("NO PROPERTY WRITE PRIVILEGE\n");
 break;

 case 249:
 printf ("NO PROPERTY READ PRIVILEGE\n");
 break;

 case 251:
 printf ("NO SUCH PROPERTY\n");
 break;

 case 252:
 printf ("NO SUCH OBJECT\n");
 break;

 case 254:
 printf ("SERVER BINDERY LOCKED\n");
 break;

 case 255:
 printf ("BINDERY FAILURE\n");
 break;

 case default:
 printf ("completionCode = %d\n", completionCode);
 break;
 }
 else
 printf (" SUCCESSFULLY COMPLETED\n ");
}
Server-Based Bindery Functions 141

142 NDK: Binde

novdocx (E
N

U
) 01 February 2006
OpenBindery
Opens the bindery (For cross-platform functionality, see Developing NLMs with Cross-Platform
Functions (NDK: NLM Development Concepts, Tools, and Functions) and call NWOpenBindery
(page 70))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int OpenBindery (void);

Return Values

Remarks
The bindery files are normally kept open and locked. Therefore, this function is only required after
CloseBindery is called. No other bindery calls can be serviced while the bindery is closed.

See Also
CloseBindery (page 116)

OpenBindery Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;

/* NOTE: When the bindery is closed, most network functions
 are disabled. Use the CloseBindery function with care.
 Also, be sure to call OpenBindery before an endofjob
 (EOJ) occurs.
*/

 completionCode = CloseBindery ();
 printf ("completionCode = %d\n", completionCode);

0 (0x00) ESUCCESS
ry Management

novdocx (E
N

U
) 01 February 2006

/* At this point, perform the steps you need (such as backing
 up a networked system); then reopen the bindery before an
 endofjob (EOJ) occurs.
*/

 completionCode = OpenBindery ();
 printf ("completionCode from Open Bindery = %d\n",
 completionCode);
}
Server-Based Bindery Functions 143

144 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ReadPropertyValue
Returns the value of a bindery object’s property (For cross-platform functionality, see Developing
NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions)
and call NWReadPropertyValue (page 72))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ReadPropertyValue (
 char *objectName,
 WORD objectType,
 char *propertyName,
 int segmentNumber,
 BYTE *propertyValue,
 BYTE *moreSegments,
 BYTE *propertyFlags);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the property (maximum 16 characters,
including the NULL terminator).

segmentNumber
(IN) Specifies the number of the data to be read: 1 = First segment of the property’s value.

propertyValue
(OUT) Receives a buffer containing a segment of the property’s value (128 bytes).

moreSegments
(OUT) Receives a flag that indicates if the property value has more data segments after the
current segment (0 = no more segments, 255 = more segments follow).

propertyFlags
ry Management

novdocx (E
N

U
) 01 February 2006
(OUT) Receives the property flags of the property: BF_DYNAMIC or BF_STATIC is logically
ORed with BF_ITEM or BF_SET (BF_STATIC | BF_ITEM, and so on).

Return Values

Remarks
This function passes the objectName, objectType, propertyName, and segmentNumber
parameters. It returns the value of a bindery object’s property through the propertyValue
parameter. The moreSegments parameter returns a flag indicating whether more segments exist,
and the propertyFlags parameter returns the property flags of the property.

The objectName, objectType, and propertyName parameters must uniquely identify a
bindery object’s property and must not contain wildcard characters. The objectName can be from
1 to 48 characters long, including the NULL terminator. The propertyName can be from 1 to 16
characters long, including the NULL terminator. Only printable characters can be used. Slashes,
backslashes, colons, semicolons, commas, asterisks, and question marks are prohibited.

The propertyFlags parameter indicates whether the property is Dynamic or Static and whether
the property is of type Set or Item. A Dynamic property is a property that is created and deleted
frequently. Dynamic properties are deleted from the bindery when the server is initialized. Static
properties remain in the bindery until deleted with DeleteProperty.

The property type indicates the type of data stored in the value of a property. The value of a Set
property contains a series of bindery object IDs. Each object ID is 4 bytes long. The value of an Item
property contains segments of 128-byte strings.

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

236 (0xEC) ERR_NO_SUCH_SEGMENT

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

249 (0xF9) ERR_NO_PROPERTY_READ_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 145

146 NDK: Binde

novdocx (E
N

U
) 01 February 2006
Bit 1 of the propertyFlags parameter are set as follows:

Figure 6-1 The propertyFlags Parameter

For example, 0x2 indicates that a property is Static and of type Set.

This function is used iteratively to read property values with more than 128 bytes of data. The
segment number should be set to 1 to read the first data segment of a property and then incremented
for each subsequent call until the moreSegments flag is set to 0 or NO_SUCH_SEGMENT is
returned.

The data returned in the propertyValue parameter is an array of bindery object IDs, if the
property is of type Set. When reading the value of a property of type Set, a member’s bindery object
ID of 0 indicates the end of a segment. When a member is deleted from a set, compaction occurs
only within its segment. Therefore, to ensure that all members of a set are read, continue reading
segments until the bindery sets the moreSegments flag to 0 or returns a NO_SUCH_SEGMENT
error.

The bindery makes no attempt to coordinate activities between multiple entities that might be
reading or writing data to a single property. This means that one entity might read a partially updated
property and get inconsistent data if the property’s data extends across multiple segments. If this
presents a problem, coordination on reads and writes must be handled by application programs.
Logical record locks can be used to coordinate activities among applications.

See Also
GetBinderyObjectName (page 137), WritePropertyValue (page 164)

ReadPropertyValue Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

/*
 * This example gets the network and node address of a file
 * server from the NET_ADDRESS property.
 */

main()
{
BYTE netaddr[128], more, flags;

 printf("return code = %d\r\n",
 ReadPropertyValue("ROSS", 4, "NET_ADDRESS", 1, netaddr,
ry Management

novdocx (E
N

U
) 01 February 2006
 &more, &flags));
 printf(
 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02Xmore=%x,flags=%x\r\n,
 netaddr[0], netaddr[1], netaddr[2], netaddr[3],
 netaddr[4], netaddr[5], netaddr[6], netaddr[7], netaddr[8],
 netaddr[9], more, flags);
}
Server-Based Bindery Functions 147

148 NDK: Binde

novdocx (E
N

U
) 01 February 2006
RenameBinderyObject
Renames a bindery object (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWRenameObject (page 75))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int RenameBinderyObject (
 char *objectName,
 char *newObjectName,
 WORD objectType);

Parameters
objectName

(IN) Specifies the string containing the name of a currently defined bindery object (maximum
48 characters, including the NULL terminator).

newObjectName
(IN) Specifies the string containing the new name of the bindery object (maximum 48
characters, including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

239 (0xEF) ERR_INVALID_NAME

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

243 (0xF3) ERR_NO_OBJECT_RENAME_PRIVILEGE

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED
ry Management

novdocx (E
N

U
) 01 February 2006
Remark
The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

See Also
CreateBinderyObject (page 118), DeleteBinderyObject (page 125)

RenameBinderyObject Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
char objectName[48];
char newObjectName[48];
WORD objectType;

 printf ("\n\n —- RENAME BINDERY OBJECT —-\n\n ");
 printf ("FROM: ");
 scanf ("%s", objectName);
 printf ("\n TO: ");
 scanf ("%s", newObjectName);
 printf ("\nEnter type of object: ");
 scanf ("%d", &objectType);
 completionCode = RenameBinderyObject (objectName,
 newObjectName, objectType);
 if (completionCode)
 {
 printf ("\n\n\n");
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n\n");
 if (completionCode == 239)
 printf ("INVALID NAME\n\n");
 if (completionCode == 240)
 printf ("WILDCARD NOT ALLOWED\n\n");
 if (completionCode == 252)
 printf ("NO SUCH OBJECT\n\n");
 if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n\n");
 if (completionCode == 255)
 printf ("BINDERY FAILURE\n\n");
 }
 else
 printf ("\n\n\nSUCCESSFULLY renamed %s to %s\n",

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 149

150 NDK: Binde

novdocx (E
N

U
) 01 February 2006
 objectName, newObjectName);
}
ry Management

novdocx (E
N

U
) 01 February 2006
ScanBinderyObject
Scans the bindery for an object (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWScanObject (page 77))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ScanBinderyObject (
 char *searchObjectName,
 WORD searchObjectType,
 long *objectID,
 char *objectName,
 WORD *objectType,
 char *objectHasProperties,
 char *objectFlag,
 char *objectSecurity);

Parameters
searchObjectName

(IN) Specifies the string containing the bindery object to search for (maximum 48 characters;
can contain wildcard characters, including the NULL terminator).

searchObjectType
(IN/OUT) Specifies the type of the bindery object to search for (OT_WILD, OT_USER,
OT_GROUP, OT_PRINT_SERVER, and so on).

objectID
(IN/OUT) Contains the object ID from the previous search (initial search requires a -1), and
receives the unique bindery object ID for the matching object.

objectName
(OUT) Receives a NULL-terminated string containing the name of the matching bindery object
(maximum 48 characters, including the NULL terminator).

objectType
(OUT) Receives the type of the matching bindery object (OT_USER, OT_GROUP,
OT_PRINT_SERVER, and so on).

objectHasProperties
Server-Based Bindery Functions 151

152 NDK: Binde

novdocx (E
N

U
) 01 February 2006
(OUT) Receives a flag that indicates if the bindery object has properties to scan: 0 = No
properties for object. 255 = Object has properties.

objectFlag
(OUT) Receives a flag that indicates if the matching bindery object is Dynamic or Static
(BF_DYNAMIC or BF_STATIC).

objectSecurity
(OUT) Receives a flag that indicates the read and write access of others to the matching
bindery object.

Return Values

Remarks
This function is used iteratively to scan the bindery for all objects that match both the
searchObjectName and the searchObjectType parameters.

The objectID parameter should be set to -1 for the first search. Upon return, the objectID
parameter receives a number which is the value in the objectID parameter for the next call. This
function can scan for one particular object type or all object types (WILD). It can also scan for a
specific object name, or it can use wildcard characters to scan for a group of related object names.

The objectSecurity parameter is actually two nibbles. The low-order nibble determines who
can scan for and find the object. The high-order nibble determines who can add properties to the
object. The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

239 (0xEF) ERR_INVALID_NAME

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
ry Management

novdocx (E
N

U
) 01 February 2006
See Also
ChangeBinderyObjectSecurity (page 110), CreateBinderyObject (page 118), DeleteBinderyObject
(page 125), ScanProperty (page 158)

ScanBinderyObject Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
char searchObjectName[48];
WORD searchObjectType;
long objectID = -1;
char objectName[48];
WORD objectType;
char objectHasProperties;
char objectFlag;
char objectSecurity;

 printf ("\n\n");
 printf ("Enter Object name to search: ");
 scanf ("%s", searchObjectName);
 printf ("\nEnter object type to search: ");
 scanf ("%4X", &searchObjectType);
 printf ("\nObject name... %s\n", searchObjectName);
 printf ("\nObject type... %d\n", searchObjectType);
 printf ("\nObject type... %4X\n", searchObjectType);
 printf ("\n\n\n\n\n\n");
 printf ("OBJECT NAME OBJECT TYPE OBJECT ID\n");
 printf ("———- ———- ——\n\n");
 for (objectID = -1, completionCode = 0; !completionCode;)
 {
 completionCode = ScanBinderyObject (searchObjectName,
 searchObjectType, &objectID, objectName,
 &objectType, &objectHasProperties,
 &objectFlag, &objectSecurity);
 if (completionCode == 0)
 {
 printf ("%15s %2d %8lX\n",
 objectName, objectType, objectID);
 printf ("More %d, Dynamic/Static %d, R/W Access %d\n",
 objectHasProperties, objectFlag,
 objectSecurity);
 }
 }
}
Server-Based Bindery Functions 153

154 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ScanBinderyObjectTrusteePaths
Returns the paths to which an object has trustee rights (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWScanObjectTrusteePaths (page 80))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwdir.h>

int ScanBinderyObjectTrusteePaths (
 LONG objectID,
 BYTE volumeNumber,
 int *sequenceNumber,
 WORD *trusteeAccessMask,
 char *trusteePathName);

Parameters
objectID

(IN) Specifies a unique bindery object ID for which trustee information should be found.

volumeNumber
(IN) Specifies the volume number of the volume to be searched (0 to 31).

sequenceNumber
(IN) Contains the sequence number from the previous search (initial search requires a -1).

trusteeAccessMask
(OUT) Receives the object’s trustee rights to trusteePathName (the returned path).

trusteePathName
(OUT) Receives a string containing a path of which the object is a trustee. The path is in the
form:
volume:directory\...\directory | file

The maximum is 319 characters (MAX_SERVER + MAX_VOLUME + MAX_PATH). If the
buffer allocated to this parameter is smaller than 319 characters, the server can abend if the
buffer is overwritten.
ry Management

novdocx (E
N

U
) 01 February 2006
Return Values

Remarks
This function is used iteratively to scan and return all of the paths (directories and files) and the
corresponding access masks for which the specified object is a trustee.

The sequenceNumber parameter should initially be set to -1 to get the first trustee path. Upon
return, the sequence number is set to the value needed for the next call. Do not modify this value as
this function is iteratively called to obtain all of the trustee’s paths.

When all valid trustee paths have been returned, ERR_NO_MORE_TRUSTEES is returned and
trusteePathName is set to "\0."

Only the supervisor, the object, or a bindery object that is security equivalent to the supervisor or
object, can scan an object’s trustee paths.

0 (0x00) ESUCCESS

137 (0x89) ERR_NO_SEARCH_PRIVILEGE

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

156 (0x9C) ERR_NO_MORE_TRUSTEES

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 155

156 NDK: Binde

novdocx (E
N

U
) 01 February 2006
The trusteeAccessMask gives the trustee specific rights within the directory or the file, and if
it is a directory, in all that directory’s subdirectories, unless the trustee’s rights are explicitly
disallowed (using the Inherited Rights Mask) in those directories.

Figure 6-2 The trusteeAccessMask for NetWare 3.0 and above

For versions of NetWare previous to 3.0, the trustee rights appear in a 1-byte format as follows:

Figure 6-3 The 1-byte trustee rights mask for NetWare 2.x

See Also
GetVolumeNumber (NetWare SDK)
ry Management

novdocx (E
N

U
) 01 February 2006
ScanBinderyObjectTrusteePaths Example
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <nwconio.h>
#include <nwtypes.h>
#include <nwdir.h>

main()
{
 int rc,i;
 long oid;
 int sn;
 WORD tam;
 char path[1000];

 printf("object id to scan (hex): ");
 scanf("%x",&oid);
 i = 0;
 sn = 0;
 while(!(rc = ScanBinderyObjectTrusteePaths
 (oid,0,&sn,&tam,path)))
 {
 i++;
 printf("sequence number = %d\n",sn);
 printf("access mask = %#X\n",tam);
 printf("path name is\n%s\n\n",path);
 }
 printf("number of paths = %d\n",i);
 printf("rc = %x\n",rc);
}
Server-Based Bindery Functions 157

158 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ScanProperty
Scans the bindery for an object’s properties (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWScanProperty (page 85))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int ScanProperty (
 char *objectName,
 WORD objectType,
 char *searchPropertyName,
 long *sequenceNumber,
 char *propertyName,
 char *propertyFlags,
 char *propertySecurity,
 char *propertyHasValue,
 char *moreProperties);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object to search (maximum 48
characters, including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

searchPropertyName
(IN) Specifies the string containing the name of the property to search for (maximum 16
characters; can contain wildcard characters, including the NULL terminator).

sequenceNumber
(IN/OUT) Contains the sequence number from the previous search (initial search requires a -1)
and receives the sequence number for the matching property.

propertyName
(OUT) Receives a string containing the name of the matching property (maximum 16
characters, including the NULL terminator).

propertyFlags
ry Management

novdocx (E
N

U
) 01 February 2006
(OUT) Receives the property flags of the matching property: BF_DYNAMIC or BF_STATIC
is logically ORed with BF_ITEM or BF_SET (BF_STATIC |BF_ITEM, and so on).

propertySecurity
(OUT) Receives the read and write security of the matching property.

propertyHasValue
(OUT) Receives a flag that indicates if the property has an attached value that can be read (0 =
no value for property, 255 = property has value).

moreProperties
(OUT) Receives a flag that indicates if the bindery object has more properties (0 = no more
properties for given object, 255 = more properties to scan).

Return Values

Remarks
This function is used iteratively to scan the bindery for all properties of the bindery object that match
the searchPropertyName parameter. This function passes the objectName, objectType,
searchPropertyName, and sequenceNumber parameters. The function returns the
sequenceNumber, propertyName, propertyFlags, propertySecurity,
propertyHasValue, and moreProperties parameters.

The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

The sequenceNumber parameter should be set to -1 for the first search. Upon return, the
moreProperties flag is set if the matched property is not the last property. If it is not the last
property, the sequenceNumber receives a number to be used as the sequenceNumber for the
next call.

The propertyFlags parameter indicates whether the property is Dynamic or Static and whether
it is of type Set or Item. A Dynamic property is a property that is created and deleted frequently.
Dynamic properties are deleted from the bindery when the server is initialized. Static properties
remain in the bindery until deleted with the DeleteProperty function.

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 159

160 NDK: Binde

novdocx (E
N

U
) 01 February 2006
The property type indicates the type of data stored in the Value of a property. The value of a Set
property contains a series of bindery object IDs. Each object ID is 4 bytes long. The value of an Item
property contains segments of 128-byte strings.

The propertySecurity parameter is actually two nibbles. The low-order nibble determines
who can scan for and find the object. The high-order nibble determines who can add properties to
the object.

The following values are defined for each nibble:

For example, 0x31 indicates that any user logged in to the server can find the object, but only the
supervisor can add a property to the object.

See Also
ReadPropertyValue (page 144), ScanBinderyObject (page 151)

ScanProperty Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode;
WORD objectType;
long sequenceNumber;
char objectName[48], searchPropertyName[16], propertyName[16];
char propertyFlags, propertySecurity, propertyHasValue;
char moreProperties;

 printf ("\n\n");
 printf ("Enter Object Name —> ");
 scanf ("%s", objectName);
 printf ("\nEnter Object Type —> ");
 scanf ("%d", &objectType);
 printf ("\nEnter Property Name to Search —> ");
 scanf ("%s", searchPropertyName);
 sequenceNumber = -1;
 moreProperties = 0;
 do
 {
 completionCode = ScanProperty (objectName, objectType,
 searchPropertyName, &sequenceNumber,

0 0 0 0 0 Anyone

1 0 0 0 1 Logged

2 0 0 1 0 Object

3 0 0 1 1 Supervisor

4 0 1 0 0 NetWare Operating System
ry Management

novdocx (E
N

U
) 01 February 2006
 propertyName, &propertyFlags, &propertySecurity,
 &propertyHasValue, &moreProperties);
 printf ("\n\n\n");
 if (completionCode)
 {
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n");
 else if (completionCode == 241)
 printf ("INVALID BINDERY SECURITY\n");
 else if (completionCode == 251)
 printf ("NO SUCH PROPERTY\n");
 else if (completionCode == 252)
 printf ("NO SUCH OBJECT\n");
 else if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n");
 else if (completionCode == 255)
 printf ("BINDERY FAILURE\n");
 else
 printf ("completionCode = %d\n", completionCode);
 }
 else
 {
 printf (" SUCCESSFULLY COMPLETED...\n\n\n");
 printf ("Property Name... %s\n",
 propertyName);
 printf ("Property Flags... %d\n",
 propertyFlags);
 printf ("Property Security... %2X\n",
 propertySecurity);
 printf ("Property has Value.. %d\n",
 propertyHasValue);
 printf ("More Property... %d\n",
 moreProperties);
 }
 } while (moreProperties != 0);
}
Server-Based Bindery Functions 161

162 NDK: Binde

novdocx (E
N

U
) 01 February 2006
VerifyBinderyObjectPassword
Verifies that the password of a bindery object is valid (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWVerifyObjectPassword (page 88))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int VerifyBinderyObjectPassword (
 char *objectName,
 WORD objectType,
 char *password);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

password
(IN) Specifies the string containing the password to be checked (maximum 128 characters;
must be uppercase; NULL string = no password).

Return Values

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0XFF) ERR_NO_SUCH_OBJECT_OR_BAD_PASSWORD
ry Management

novdocx (E
N

U
) 01 February 2006
Remarks
This function verifies the password of a bindery object by passing the objectName,
objectType, and password parameters.

The objectName and objectType parameters must uniquely identify the bindery object and
must not contain wildcard characters. The objectName can be from 1 to 48 characters long,
including the NULL terminator. Only printable characters can be used. Slashes, backslashes, colons,
semicolons, commas, asterisks, and question marks are prohibited.

There is a distinction between a bindery object without a password property and a bindery object
with a password property that has no value. An entity is not allowed to log in to a server as a bindery
object that does not have a password property. However, an entity is allowed to log in to a server as
a bindery object that has a password property with no value. This function does not require that the
requesting entity be logged in to the server.

If the object does not have a password property then the check fails. If the object has a password of
length zero, a password of length zero matches.

See Also
ChangeBinderyObjectPassword (page 108)
Server-Based Bindery Functions 163

164 NDK: Binde

novdocx (E
N

U
) 01 February 2006
WritePropertyValue
Writes a value to a property of type Item (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWWritePropertyValue (page 90))

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.x

Service: Server-Based Bindery

Syntax
#include <\nlm\nit\nwbindry.h>

int WritePropertyValue (
 char *objectName,
 WORD objectType,
 char *propertyName,
 int segmentNumber,
 BYTE *propertyValue,
 BYTE moreSegments);

Parameters
objectName

(IN) Specifies the string containing the name of the bindery object (maximum 48 characters,
including the NULL terminator).

objectType
(IN) Specifies the type of the bindery object (OT_USER, OT_GROUP, OT_PRINT_SERVER,
and so on).

propertyName
(IN) Specifies the string containing the name of the property to which the data is to be written
(maximum 16 characters, including the NULL terminator).

segmentNumber
(IN) Segment number of the data to be written: 1 = First segment of the property’s value.

propertyValue
(IN) Contains a segment of the property’s value (maximum 128 bytes).

moreSegments
(IN) Indicates if the property value has more data segments after the current segment: 0 = No
more segments 255 = More segments follow.
ry Management

novdocx (E
N

U
) 01 February 2006
Return Values

Remarks
The objectName, objectType, and propertyName parameters must uniquely identify a
bindery object’s property and must not contain wildcard characters. The objectName can be from
1 to 48 characters long, including the NULL terminator. The propertyName can be from 1 to 16
characters long, including the NULL terminator. Only printable characters can be used. Slashes,
backslashes, colons, semicolons, commas, asterisks, and question marks are prohibited.

The segmentNumber parameter should be set to 1 to write the first data segment. When creating a
property value, the segments must be written in sequential order. Before segment n can be written,
all segments from 1 to n-1 must have been written. To write property data of more than one segment
(128 bytes), this function should be called iteratively. Once all segments of a property value have
been established, segments can be written at random.

When writing the last segment of a property value the moreSegments flag should be set to zero.
The bindery truncates the property value and discards extra segments if the moreSegments flag is
0 and the bindery has segments beyond the segment written. Property values should be kept to a
single segment (128 bytes) to improve bindery efficiency.

The bindery makes no attempt to coordinate activities between multiple entities that might be
reading or writing data to a single property. This means that one entity might read a partially-
updated property and get inconsistent data, if the property’s data extends across multiple segments.
If this presents a problem, coordination on reads and writes must be handled by application
programs. Logical record locks can be used to coordinate activities among applications.

Do not use this function to write values to set properties. Instead, call AddBinderyObjectToSet.

See Also
AddBinderyObjectToSet (page 104), ReadPropertyValue (page 144)

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

232 (0xE8) ERR_NOT_ITEM_PROPERTY

236 (0xEC) ERR_NO_SUCH_SEGMENT

240 (0xF0) ERR_WILDCARD_NOT_ALLOWED

241 (0xF1) ERR_INVALID_BINDERY_SECURITY

248 (0xF8) ERR_NO_PROPERTY_WRITE_PRIVILEGE

251 (0xFB) ERR_NO_SUCH_PROPERTY

252 (0xFC) ERR_NO_SUCH_OBJECT

254 (0xFE) ERR_SERVER_BINDERY_LOCKED

255 (0xFF) ERR_BINDERY_FAILURE
Server-Based Bindery Functions 165

166 NDK: Binde

novdocx (E
N

U
) 01 February 2006
WritePropertyValue Example
#include <stdio.h>
#include <\nlm\nit\nwbindry.h>

main()
{
int completionCode, segmentNumber;
char objectName[48], propertyName[16];
WORD objectType;
BYTE propertyValue[128], moreSegments;

 printf ("\n\n");
 printf ("Enter Object Name —> ");
 scanf ("%s", objectName);
 printf ("\nEnter Object Type —> ");
 scanf ("%d", &objectType);
 printf ("\nEnter Property Name —> ");
 scanf ("%s", propertyName);
 printf ("\nEnter Segment Number —> ");
 scanf ("%d", &segmentNumber);
 printf ("\nEnter Property Value —> ");
 scanf ("%d", &propertyValue);
 printf ("\nEnter More Segments —> ");
 scanf ("%d", &moreSegments);
 completionCode = WritePropertyValue (objectName,
 objectType, propertyName, segmentNumber,
 propertyValue, moreSegments);
 printf ("\n\n\n");
 if (completionCode)
 {
 if (completionCode == 150)
 printf ("SERVER OUT OF MEMORY\n");
 else if (completionCode == 232)
 printf ("NO ITEM PROPERTY\n");
 else if (completionCode == 236)
 printf ("NO SUCH SEGMENT\n");
 else if (completionCode == 240)
 printf ("WILDCARD NOT ALLOWED\n");
 else if (completionCode == 241)
 printf ("INVALID BINDERY SECURITY\n");
 else if (completionCode == 248)
 printf ("NO PROPERTY WRITE PRIVILEGE\n");
 else if (completionCode == 251)
 printf ("NO SUCH PROPERTY\n");
 else if (completionCode == 252)
 printf ("NO SUCH OBJECT\n");
 else if (completionCode == 254)
 printf ("SERVER BINDERY LOCKED\n");
 else if (completionCode == 255)
 printf ("BINDERY FAILURE\n");
 else
 printf ("completionCode = %d\n", completionCode);
 }
ry Management

novdocx (E
N

U
) 01 February 2006
 else
 printf (" SUCCESSFULLY COMPLETED...\n");
}
Server-Based Bindery Functions 167

168 NDK: Binde

novdocx (E
N

U
) 01 February 2006
ry Management

Revision History

A
novdocx (E

N
U

) 01 February 2006

169

ARevision History

The following table outlines all the changes that have been made to the Bindery documentation (in
reverse chronological order):

Release Date Revision Description

October 11, 2006 Fixed broken links.

March 1, 2006 Updated format.

October 5, 2005 Transitioned to revised Novell documentation standards.

March 2, 2005 Updated legal information.

June 9, 2004 Added documentation for two new UTF-8 functions:
NWGetObjectEffectiveRightsExt (page 63) and
NWScanObjectTrusteePathsExt (page 83)

February 2002 Updated Pascal syntaxes.

Updated links.

September 2001 Added NetWare 6.x support to documentation.

Added alternative text to figures.

June 2001 Made changes to improve document accessibility.

Added links to Section 5.4, “Server-Based Bindery Functions,” on page 101.

May 2000 Added this revision history

	NDK: Bindery Management
	About This Guide
	1 Bindery Concepts
	1.1 Bindery vs. NDS
	1.2 Bindery Files
	1.2.1 Activity Coordination

	1.3 Bindery Objects
	1.3.1 Object ID
	1.3.2 Object Type
	1.3.3 Object Name
	1.3.4 Object Flags
	1.3.5 Object Security
	1.3.6 Has-Properties Flag

	1.4 Bindery Object Properties
	1.4.1 Property Name
	1.4.2 Property Flags
	1.4.3 Property Security

	1.5 Standard Bindery Properties
	1.6 Bindery Properties Associated with NetWare Security
	1.6.1 USER_DEFAULTS and LOGIN_CONTROL Properties
	1.6.2 OLD_PASSWORDS Property
	1.6.3 NODE_CONTROL Property
	1.6.4 ACCT_LOCKOUT Property

	1.7 Types of Bindery Functions
	1.7.1 Bindery Status Functions
	1.7.2 Bindery Object Functions
	1.7.3 Bindery Object Information Functions
	1.7.4 Bindery Property Functions
	1.7.5 Bindery Password Functions

	2 Bindery Tasks
	2.1 Creating a Bindery Object
	2.2 Scanning for Bindery Objects
	2.3 Scanning Bindery Properties
	2.4 Reading the Value of a Bindery Property
	2.5 Checking for a Member of a Set Property
	2.6 Setting Bindery Emulation

	3 Bindery Functions
	NWAddObjectToSet
	NWChangeObjectPassword
	NWChangeObjectSecurity
	NWChangePropertySecurity
	NWCloseBindery
	NWCreateObject
	NWCreateProperty
	NWDeleteObject
	NWDeleteObjectFromSet
	NWDeleteProperty
	NWDisallowObjectPassword
	NWGetBinderyAccessLevel
	NWGetObjectDiskSpaceLeft
	NWGetObjectID
	NWGetObjectEffectiveRights
	NWGetObjectEffectiveRightsExt
	NWGetObjectName
	NWIsObjectInSet
	NWOpenBindery
	NWReadPropertyValue
	NWRenameObject
	NWScanObject
	NWScanObjectTrusteePaths
	NWScanObjectTrusteePathsExt
	NWScanProperty
	NWVerifyObjectPassword
	NWWritePropertyValue

	4 Bindery Values
	4.1 Extended Object Type Values
	4.2 Maximum Rights Mask Values
	4.3 Security Rights Mask Values

	5 Server-Based Bindery Concepts
	5.1 Objects
	5.2 Properties and Values
	5.3 Workgroup Managers
	5.4 Server-Based Bindery Functions

	6 Server-Based Bindery Functions
	AddBinderyObjectToSet
	ChangeBinderyObjectPassword
	ChangeBinderyObjectSecurity
	ChangePropertySecurity
	CloseBindery
	CreateBinderyObject
	CreateProperty
	DeleteBinderyObject
	DeleteBinderyObjectFromSet
	DeleteProperty
	GetBinderyAccessLevel
	GetBinderyObjectID
	GetBinderyObjectName
	IsBinderyObjectInSet
	OpenBindery
	ReadPropertyValue
	RenameBinderyObject
	ScanBinderyObject
	ScanBinderyObjectTrusteePaths
	ScanProperty
	VerifyBinderyObjectPassword
	WritePropertyValue

	A Revision History

