Basics

Steps

Accessing .NET Web Services

This document tells you how to develop a .NET Web Service consumer (aprogram that
accesses aMicrosoft .NET Web Service) with SilverStream eXtend Workbench 2.0. You'll
learn about using j Broker Web 1.1 and Wor kbench tools to create the client files needed for
thiskind of Web Service.

The techniques presented here can also be used more generally to develop consumers for any
kind of Web Service that uses complex data types for input or output.

L) For more on Web Services, jBroker Web, and Workbench tools, see the Workbench help.

You can use jBroker Web and \Workbench tools to generate the code needed for a Java-based
consumer program to access any standar d (SOAP-based) Web Service. The generated code
handlesall HTTP SOAP processing under the covers, enabling the consumer programto call the
Web Service as aJava remote object (using RMI) and invoke its methods.

In this architecture, type mappings are necessary to convert parameters and return val ues back
and forth between XML (in the SOAP messages) and Java (in the client code). These mappings
are generated automatically whenever possible. However, if your target Web Service passes
complex types, you'll usually need to write some additional mapping code yourself. This
appliesfor .NET and other document-style Web Services (aswell as some RPC-style Web
Services).

jBroker Web provides the underlying support for type mapping through its compilersand API.
You should read the jBroker \Web documentation to get familiar with these before you begin
development.

The process of developing your .NET consumer program involves:
1. Preparing for development by setting up your project
2. Providing aWSDL file that describes the NET Web Service you want to access

3. Writing the type-mapping files that handle the Web Service data and its conversion on the
client

1 Accessing .NET Web Services

Generating the consumer files by using the jBroker Web compilers

Examining the generated files (which include a remote interface and stub class that
facilitate the Web Service access)

Writing your client code to call Web Service methods viathe generated files
Building the project to compile al of the classes you’ ve written and generated
Running the consumer program to test how it works

Preparing for development
To prepare for developing a .NET Web Service consumer, you:

1.

2.

Set up an appropriate project in Workbench.

The type of project you should create depends on how you ultimately plan to use the
consumer code that the jBroker Web compilers will generate. For instance:

If you plan to use the consumer code in | You should create
A standard Java application A JAR project

A J2EE application client A CAR project

A JSP page or servlet A WAR project

An Enterprise JavaBean An EJB JAR project

Add jbroker-web.jar to your project.

The jbroker-web.jar file contains the SilverStream Web Service API classes needed by the
generated consumer code at runtime. You'll find it in the Workbench compilelib directory.

InaWAR project, for example, you' d add jbroker-web.jar to the WEB-INF/lib directory.

Edit the classpath of your project so you can compile your consumer classes once they’'re
generated and edited. You'll need to include:

e jbroker-web.jar
* Any application-specific entries

For J2EE projects, you'll also need j2ee api_1 n.jar (it'sincluded automatically when
you create a J2EE project in Workbench).

Preparing for development

eXtend Workbench Development Guide

Providing a WSDL file

To generate consumer code, you' || need to providethejBroker Web compilerswithaWSDL file
that describesthetarget .NET Web Service. It'sagood ideato obtain thefilelocation or URL of
thisWSDL file early on.

These are common scenarios:

 For a.NET Web Service developed in your organization, you might have the WSDL
file on your file system or even in your project.

* For an external NET Web Service, you should be able to get the WSDL file's URL
from the appropriate Web site or registry.

Example: WSDL file for Autoloan .NET Web Service

Suppose you want to generate consumer code to usethe Autoloan .NET Web Service, whichis
listed on the XMethods public registry under the name Equated Monthly I nstalment (EMI)
Calculator. That Web Service cal culates and returns the monthly loan payment for agiventerm
(number of months), interest rate, and loan amount.

In this case, you can go to the Web site www.xmethods.net to discover the URL for the
corresponding WSDL file:

http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

When you providethisURL to thejBroker Web compilers, they will read theWSDL filetolearn
what they need to know about the Autoloan Web Service:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.0rg/2001/XMLSchema"

<types>

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s0="http://circle24.com/webservices/"
targetNamespace="http://circle24.com/webservices/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<s:schema attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://circle24.com/webservices/">

<s:element name="Calculate">

<s:complexType>

/>

<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="Months" type="s:double" />
<s:element minOccurs="1" maxOccurs="1" name="RateOfInterest" type="s:double"

Providing a WSDL file

new http://www.xmethods.net

1 Accessing .NET Web Services

<s:element minOccurs="1" maxOccurs="1" name="Amount" type="s:double" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="CalculateResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="CalculateResult" nillable="true"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="string" nillable="true" type="s:string" />
</s:schema>
</types>
<message name="CalculateSoapIn">
<part name="parameters" element="s0:Calculate" />
</message>
<message name="CalculateSoapOut">
<part name="parameters" element="s0:CalculateResponse" />
</message>
<message name="CalculateHttpGetIn">
<part name="Months" type="s:string" />
<part name="RateOfInterest" type="s:string" />
<part name="Amount" type="s:string" />
</message>
<message name="CalculateHttpGetOut">
<part name="Body" element="s0:string" />
</message>
<message name="CalculateHttpPostIn">
<part name="Months" type="s:string" />
<part name="RateOfInterest" type="s:string" />
<part name="Amount" type="s:string" />
</message>
<message name="CalculateHttpPostOut">
<part name="Body" element="s0:string" />
</message>
<portType name="AutoloanSoap">
<operation name="Calculate">
<input message="s0:CalculateSoapIn" />
<output message="s0:CalculateSoapOut" />
</operation>
</portType>
<portType name="AutoloanHttpGet">
<operation name="Calculate">
<input message="s0:CalculateHttpGetIn" />
<output message="s0:CalculateHttpGetOut" />
</operations>
</portType>
<portType name="AutoloanHttpPost">

4 Providing a WSDL file

eXtend Workbench Development Guide

<operation name="Calculate">
<input message="s0:CalculateHttpPostIn" />
<output message="s0:CalculateHttpPostOut" />
</operations>
</portType>
<binding name="AutoloanSoap" type="s0:AutoloanSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="Calculate">
<soap:operation soapAction="http://circle24.com/webservices/Calculate"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<binding name="AutoloanHttpGet" type="s0:AutoloanHttpGet">
<http:binding verb="GET" />
<operation name="Calculate">
<http:operation location="/Calculate" />
<input>
<http:urlEncoded />
</input>
<output>
<mime:mimeXml part="Body" />
</output>
</operations>
</binding>
<binding name="AutoloanHttpPost" type="s0:AutoloanHttpPost">
<http:binding verb="POST" />
<operation name="Calculate">
<http:operation location="/Calculate" />
<input>
<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>
<mime:mimeXml part="Body" />
</output>
</operations>
</binding>
<service name="Autoloan">
<documentation>This Web Service mimics a Simple Autoloan calculator.</documentation>
<port name="AutoloanSoap" binding="s0:AutoloanSoap">
<soap:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
</port>
<port name="AutoloanHttpGet" binding="s0:AutoloanHttpGet">

Providing a WSDL file 5

1 Accessing .NET Web Services

<http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />

</port>

<port name="AutoloanHttpPost" binding="s0:AutoloanHttpPost">
<http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />

</port>

</service>
</definitions>

Understanding the WSDL

Writing

In the Autoloan WSDL, you can ignore the definitions for HttpGet and HttpPost (including
message, portType, binding, and service port). Only the Soap definitions apply to the Web
Service consumer program you’ re devel oping.

Notice that this Web Service exposes one method named Calculate(). It takes a Calculate
object containing three doubles (Months, RateOfInterest, and Amount) and returns a
CalculateResponse object containing one string (Calcul ateResult).

Pay particular attention to the data definitions in the types section (for Cal culate and
CalculateResponse). You'll need to set up mappings for these types later on.

If you look in the binding section for AutoloanSoap, you'll see where thisWeb Serviceis
defined asdocument-style (as opposed to RPC-style). Thisistrue of all NET Web Services. The
significance of this style attribute is as follows:

« Document-style specifies that the SOAP request and response messages pass XML
documents.

* RPC-style specifies that SOAP request messages pass input parameters and SOAP
response messages pass return val ues.

the type-mapping files

Onceyou' ve set up aproject and located the appropriate WSDL file, you need to write type-
mapping filesfor your .NET Web Service consumer. These files represent the Web Service's
dataon the client, including both input and output objects. They a so determine how that datais
to be converted back and forth between XML and Java.

Writing the type-mapping files

eXtend Workbench Development Guide

There are three kinds of type-mapping files you need:

File

Description

Type class

For each complex data type defined in the types section of the
WSDL, you need to write a corresponding Java class. It can be
either of the following:

* A Javaclasswith publicfields

« A JavaBean with getter and setter methods for the fields

Marshaler class

Each type class requires a corresponding marshaler class that
performs the Java-to-XML data conversion (serialization) and the
XML-to-Java data conversion (deserialization). Typically, you can
use one of the general-purpose marshaler classes provided by the
jBroker Web API (in com.sssw.jbroker.web.mapping):

» PublicFieldsM arshaler for Java classes with public fields
» BeanMarshaler for JavaBeans

Alternatively, you can write your own custom marshaler classes if
necessary.

Mapping properties
file

You provide atext file named xmlr pc.type.mappingsthat specifies
the details of the type mappings. For each type to be mapped, you
include aline of information in the following format:

name = class serializer deserializer namespace local-
name schema-location

Thisinformation tellsthe jBroker Web compilers and runtime about
your type mappings and how they should be handled.

Add all of the type-mapping files you write to your project. Then compile the classes.

Example: type-mapping files for Autoloan .NET Web Service

The consumer program for the Autoloan .NET Web Service requires the following type-

mapping files:

e Cdculatejava

e CdculateResponsejava

Writing the type-mapping files

1 Accessing .NET Web Services

e xmlrpc.type.mappings

Inthis case, Calcul ate and Cal cul ateResponse are coded as Java classes with public fields. That
means the jBroker Web PublicFieldsM ar shaler class can be used with each. There's no need
to write custom marshaler classes.

Thesefiles are added to the src directory of the NET Consumer Sample project, in the package
com.exsamp.net:

2% SilverStream [NETConsumerSample] - Text Editor [_ (O] %]
File Edit ‘“iew Search Project Documents Help
DEEES [+y00 BVS gl X SitverStreanr
Wi using: ISoume Jayout = ChektendProjects NETConsumerSampletsrcicomiexsampinet mlrpe type mappings ®
E|- NETConsumerSample.spf Calculate=con. exsanp.net.Calculate com.sssw. jhroker.weh.mapp:?.ng. Fubl &
EB - CalculateResponse=con. exXxsanp.net.CalculateResponse con. sssw. jbroker.:
E}B com
E}B EX5amp

|:| Calculate. class
|:| Calculate java
|:| CalculateResponse. class

|:| CalculateResponse. java

Tappings

-
Q Directory ﬁ Praject 4 | _’I—I

[=L Open I {R__, Registries | ; E Text Ed'rtorl

Compiling 2 source files to C:ihekXtendProjects\NETConsumerSample‘\build\HETConsumerfample-classes &

BUILD SUCCE3SFUL I
-
0 _>l_I
| % Buildd E‘ Validatel [Deployl [EL Findl
I Line: 1 Column: 1 Ry

NOTE

In this example, the compiled Calculate and Cal culateResponse .class files have been
manually copied from the project’s build directory tree to the src directory tree (where
the xmlrpc.type.mappings fileis located). Thiswill enable the jBroker \Web compilers
to find them later on.

Calculate.java

Thisisthe Java class that represents the Web Service's Calculate type:

package com.exsamp.net;

public class Calculate

Writing the type-mapping files

eXtend Workbench Development Guide

{

public double Months;
public double RateOfInterest;
public double Amount;

}

CalculateResponse.java
Thisisthe Javaclass that represents the Web Service's Cal cul ateResponse type:

package com.exsamp.net;

public class CalculateResponse

{

public String CalculateResult;
public String toString() { return CalculateResult; }

}

xmlrpc.type.mappings

Here' s the propertiesfile that specifies the mappings for the Calcul ate and Cal cul ateResponse
types (there are two lines; the snippet below shows them with line-wrapping for readability):

Calculate=com.exsamp.net.Calculate com.sssw.]jbroker.web.mapping.PublicFieldsMarshaler
com.sssw.jbroker.web.mapping.PublicFieldsMarshaler http://circle24.com/webservices/
Calculate none

CalculateResponse=com.exsamp.net.CalculateResponse

com.sssw.jbroker.web.mapping.PublicFieldsMarshaler
com.sssw.jbroker.web.mapping.PublicFieldsMarshaler http://circle24.com/webservices/
CalculateResponse none

Notice that PublicFieldsMarshaler is specified as both the serializer and deserializer in each
case.

Generating the consumer files

Now you’ re ready to use the jBroker Web compilers to generate the main Javafiles for your
.NET Web Service consumer. You'll invoke the wsdl2j ava compiler to read the Web Service's
WSDL file and create a corresponding remote interface. The rmi2soap compiler isthen
invoked automatically to create a stub class that handles the SOAP access to the Web Service.

To start generating:

1. Go tothe command prompt in your operating system.

Generating the consumer files 9

1 Accessing .NET Web Services

2. Typethewsdl2java command line using the syntax specified in the jBroker \Web
documentation.

Make sure you include your type-mapping files on the classpath so the compilers will use
them.

TIP ThejBroker Web compilers arelocated in the Workbench bin\win32 directory.

Example: invoking wsdl2java for Autoloan .NET Web Service

Here's the command line used to invoke the wsdl 2java compiler for the Autoloan consumer
exampl e (in the snippet below, the wsdl2java command line is shown with line-wrapping for
readability):

cd c:\eXtendProjects\NETConsumerSample\src

wsdl2java -noskel -notie -keep -ds . -package com.exsamp.net -d .
-classpath com\exsamp\net;. http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
Notice that:

e The-noskel and -notie options are specified to prevent the generation of Web Service
implementation files (which don’t apply when you’ re devel oping a consumer).

* The-keep option is specified to retain the generated stub source file (in this case,
_AutoloanSoap_ServiceStub.java) after compilation so you can study it.

* The-ds, -package, and -d options specify the directories and paths for the generated
source and classfiles.

* The-classpath option specifies the location of the type-mapping files (in this case, it's
where xmlrpc.type.mappings, Calculate.class, and Cal culateResponse.class are stored).
« TheURL of theWSDL fileis specified at the end of the command line.

10 Generating the consumer files

eXtend Workbench Development Guide

Examining the generated files

The jBroker Web compilers generate the following filesfor your NET Web Service consumer.
Add these filesto your project in Workbench (but don’t edit them).

What the jBroker Web
compilers generate

Details

Remote interface

xxx.java Aninterface that extends java.rmi.Remote and
declares the methods exposed by the target Web Service (as
determined from the WSDL file). The generated stub class
_xo_ServiceStub implements this interface to support method
callsfor the Web Service.

NOTE When generating file names, the compilersfill in the xxx
portion based on the portType name specified in the
WSDL file. (For instance, if the portType nameis
Temper aturePortType, then xxx will be Temperature.)

Stub class

_xxx_ServiceStub.java Facilitates method calls from a Java-
based consumer to the target Web Service. xxx_ServiceStub
implements the generated remote interface by sending an
appropriate HTTP SOAP request for each method call.

When you write your client code, it will need to instantiate
_xxx_ServiceStub (viaa JNDI lookup) and call Web Service
methods on the resulting object.

In some cases, the j Broker \Web compilers may generate additional filesto support requirements
specific to your application, such as:

 Faults

e Multiple portType definitions

L For more information, see the jBroker Web documentation.

Example: generated consumer files for Autoloan .NET Web Service

Here are the files generated by the jBroker Web compilers for the Autol oan consumer example:

* AutoloanSoap.java (and AutoloanSoap.class)
e _AutoloanSoap_ServiceStub.java (and _AutoloanSoap_ServiceStub.class)

Examining the generated files

11

1 Accessing .NET Web Services

e AutoloanHttpGet.java (and A utol oanHttpGet.class)

You can ignore these files. They are generated from the AutoloanHttpGet portType in the
WSDL file, which doesn’t apply to your SOAP consumer.

e AutoloanHttpPost.java (and Autol canHttpPost.class)

You can ignore these files. They are generated from the Autol oanHttpPost portType in the
WSDL file, which doesn’t apply to your SOAP consumer.

NOTE Onceyou' re done running the jBroker \Web compilers and return to \Workbench, you
canremoveall of the.classfilesfrom your project’s src directory tree. When you build
the .javafiles under src, Workbench will generate the .classfilesin a separate build
directory tree.

AutoloanSoap.java

Thisistheremote interface used by the stub classto support method callsfor the Autoloan .NET
Web Service.

// Generated from http://upload.eraserver.net/circle24/autoloan.asmx?wsdl
// On Tue Mar 05 09:15:02 EST 2002

package com.exsamp.net;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AutoloanSoap extends Remote

com.exsamp.net.CalculateResponse Calculate (com.exsamp.net.Calculate parameters)
throws RemoteException;

_AutoloanSoap_ServiceStub.java

Thisisthe stub class. It passes method callsto the Autoloan .NET Web ServiceasHTTP SOAP
requests.

// Tue Mar 05 09:15:02 EST 2002
package com.exsamp.net;

public class _AutoloanSoap_ ServiceStub extends com.sssw.jbroker.web.portable.Stub
implements com.exsamp.net.AutoloanSoap

private static com.sssw.jbroker.web.QName _portType =
new com.sssw.jbroker.web.QName ("http://circle24.com/webservices/",

12 Examining the generated files

eXtend Workbench Development Guide

"AutoloanSoap") ;

private static final com.sssw.jbroker.web.Binding[] _bindings =
new com.sssw.jbroker.web.Binding[] {
new com.sssw.jbroker.web.Binding("soap",
"http://upload.eraserver.net/circle24/autoloan.asmx"),

}i

public AutoloanSoap_ ServiceStub()

{
super (_portType, _bindings);
__setProperty ("xmlrpc.schema.uri", "http://www.w3.org/2001/XMLSchema".intern()) ;
_setProperty("version", "1.1");

private static final com.sssw.jbroker.web.portable.RequestProperty[]
Calculate props = new com.sssw.jbroker.web.portable.RequestProperty[] {
new com.sssw.jbroker.web.portable.RequestProperty ("SOAPAction",
"\"http://circle24.com/webservices/Calculate\""),

}i

public com.exsamp.net.CalculateResponse Calculate (com.exsamp.net.Calculate _argo0)
throws java.rmi.RemoteException

com.sssw.jbroker.web.portable.ClientResponse in = null;

try {
// create an output stream
com.sssw.jbroker.web.portable.ClientRequest out =
_request ("Calculate", true, "literal", true, "null");
out.setProperties (Calculate_props) ;
Object arg = null;

// marshal the parameters
arg = _argo0;
out.writeObject (arg, "http://circle24.com/webservices/", "Calculate");

// do the invocation
in = _invoke (out) ;

// return
com.exsamp.net.CalculateResponse ret = null;

try {
ret = (com.exsamp.net.CalculateResponse)
in.readObject (com.exsamp.net.CalculateResponse.class,

"http://circle24.com/webservices/", "CalculateResponse") ;
} catch(java.io.EOFException eofExc)
ret = null;
1

Examining the generated files

13

1 Accessing .NET Web Services

return ret;
} catch (java.lang.Throwable t) {

if (t instanceof com.sssw.jbroker.web.ServiceException) {
com.sssw.Jjbroker.web.ServiceException sex =
(com.sssw.jbroker.web.ServiceException) t;
if (sex.getTargetException() != null)
t = sex.getTargetException() ;

}

// map to remote exception
throw com.sssw.jbroker.web.ServiceException.mapToRemote (t) ;

Writing your client code

No matter what kind of consumer you are developing for a.NET Web Service, your client
program needs to do the following:

1. Instantiate the stub class (_x_ServiceStub) viaa JNDI lookup

2. Enableyour type mappings for use by the stub object instance

3. Call Web Service methods on the stub object instance

When you write the class(es) for your client program, include them in your project along with
the type-mapping files, generated remote interface, and generated stub class.

Example: client program for Autoloan .NET Web Service

Here'sthe client codewritten for the Autol oan consumer example. You can base your own client
program on what you see here.

package com.exsamp.net;

import javax.naming.InitialContext;
import com.sssw.jbroker.web.ServiceObject;
import com.sssw.jbroker.web.mapping.TypeMapper;

public class Client

{

public static void main(String[] args) throws Exception

{

// Instantiate the generated stub class via JNDI lookup.

14 Writing your client code

eXtend Workbench Development Guide

// Optionally let user override the binding in the stub by
// passing in a binding (Web Service address) at runtime.
InitialContext ctx = new InitialContext () ;
String lookup = "xmlrpc:soap:com.exsamp.net.AutoloanSoap";
if (args.length > 0)

lookup += "@" + args[0];
AutoloanSoap loan = (AutoloanSoap) ctx.lookup (lookup) ;

// Create and set a type mapper to be used by the stub
// object instance. Get the mappings to use from your
// xmlrpc.type.mappings file.

TypeMapper mapper = new TypeMapper () ;
mapper.importMappings ("xmlrpc.type.mappings") ;
((ServiceObject) loan) ._setTypeMapper (mapper) ;

// Instantiate and populate the type class Calculate used
// for input to the Web Service method.

Calculate calc = new Calculate() ;

calc.Months = 24;

calc.RateOfInterest = 8;

calc.Amount = 15000;

// Call the Web Service method Calculate() via the stub

// object instance. Then print the result (from the output
// object CalculateResponse) .
System.out.println(loan.Calculate(calc)) ;

}

L) For more detailed information on writi ng code to use stubs and type mappers, seethe
jBroker Web documentation.

Building the project

At this point, you should be ready to build the project for your .NET Web Service consumer.
Building this project in Workbench compiles all of the following:

e Your type-mapping classes
» The generated remote interface and stub class
e Theclass(es) for your client program

Workbench puts the compiled .classfilesin your project’s build directory tree.

Building the project 15

1 Accessing .NET Web Services

Example: completed consumer project for Autoloan .NET Web Service

Here's the finished state of the Autoloan consumer example:

2% SilverStream [NETConsumerSample] - Java Editor [_ (O] %]
File Edit ‘“iew Search Project Documents Help
UEEE |+00 8BNS Rl X SitverStreany
Yiewy Using: W CheHtendProjects WETConsumer Sampletsrcicomiexsampinet'Client java ®

E|- METConsumerSample, spf
E}E} src
E}E com
EHb exsamp

L

|:| AutoloanSoap.java
|:| Calculate java
|:| CalculateResponse. java

|:| wmlrpe. bype.mappings
|:| _AutoloanSoap_ServiceStub. java

9 Directory ﬁ Praject

4]

package COL.EXSamp.net;

import javax.naming.InitialContext;
import com.sssw.jbroker.web.ServiceObject;
import com.sssw.jbroker.web.mapping. TypeMapper:

public class Client

{
public static void main(5String[] args) throws Exception
{
A4 Instantiate the generated stub class via JNDI lookup.
A4 Optionally let user override the binding in the stub by
A4 passing in @ binding (Web Service address) at runtime.
InitialContext ctx = new InitialContexti):
String lookup = "Xmlrpc:soap:con.eXsanp.net.dutoloanoap™;

-

E} Open I

T R_, Registries |

Source |

BUILD SUCCESSFUL

Buildfile: C:ieXtendProjects\NETConsumerSanpleibuildibuild-NETConsunerSanple.xnl
Building project "NETConsuwerSauwple™ - March 5, 2002 3:34 PM

4
| % Buildd E‘ Validatel s Deployl [EL Findl

Line: 1 Column: 1

Ry

Because this consumer involves a simple Java client program, it is now ready for testing. You
don’t need to deploy anything first. (For other kinds of consumers, you may need to deploy prior

to testing.)

Running the consumer program

If your Web Service consumer is a standard Java client program, you can test it in \Workbench
by using the Web ServiceWizard Client Runner. Thisfacility liststhe client programsin your
current project and lets you select one to execute. For each run, it automatically setsthe
classpath to include all required files and lets you supply command-line arguments.

16

Running the consumer program

eXtend Workbench Development Guide

NOTE Before you usethe Client Runner to test your .NET Web Service consumer, update the
project’s classpath (via Project>Proj ect Settings) to include the directory that
contains your xmlr pc.type.mappingsfile. (For the NETConsumerSample example,
you'd add the project’s src\com\exsamp\net directory.) This enables the |Broker \Web
runtime to find that file.

> To use the Client Runner:

1. Openthe project that contains the compiled client class you want to run.
2. Select Project>Run Web Service Client Class to display the Client Runner window.
3. Select aclient from the Client classto run dropdown.
This dropdown lists every compiled classin your project that has a main() method.
4. Typethe number of Secondsto wait for response from the Web Service.

You might need to increase this number if Web Service requests from your client time out
before getting a response.

5. Check Show command lineif you want to:

* Seethe complete command line that the Client Runner uses to execute your client (it
will appear in the display console portion of the window after you click Run)

e Optionally copy that command line to the system clipboard by clicking Copy
command line (after arun)
6. Type any command-line Arguments required by your client (use a space to separate each
argument).

NOTE InWorkbench 2.0, there’'s a known issue that prevents the Client Runner from
parsing multiple command-line arguments. It passes them as a single String to
your client’sargg[0].

7. Click Run to execute your client and see its output in the display console portion of the
window.

Example: testing the client for Autoloan .NET Web Service

Here'sthe result of calling the Autoloan .NET Web Service by executing the project’s Client
classin the Client Runner:

Running the consumer program 17

1 Accessing .NET Web Services

Web Service Wizard Client Runner : HETConsumerS ample
Cliert class ta run

Ic:om exzamp.net.Client

Seconds to wait for response IS [Show command line

Arguments

Running com.exsamp.net Client...

Equated Morthly Instalment (EMI) For the Amount $15000 is $678

Run Close Clear |

18

Running the consumer program

	Basics
	Steps
	Preparing for development
	Providing a WSDL file
	Example: WSDL file for Autoloan .NET Web Service
	Understanding the WSDL

	Writing the type-mapping files
	Example: type-mapping files for Autoloan .NET Web Service

	Generating the consumer files
	Example: invoking wsdl2java for Autoloan .NET Web Service

	Examining the generated files
	Example: generated consumer files for Autoloan .NET Web Service

	Writing your client code
	Example: client program for Autoloan .NET Web Service

	Building the project
	Example: completed consumer project for Autoloan .NET Web Service

	Running the consumer program
	Example: testing the client for Autoloan .NET Web Service

