

Security and SilverStream eXtend

November 19, 2001

Security and SilverStream eXtend

1

Overview ..2

Authentication ...3
Web Container Authentication 3
Client Container Authentication 5
EJB Client Authentication 5
Resource Authentication 5
Web Services Authentication 6
SilverStream eXtend Support 6

eXtend Application Server 6
eXtend Composer 7
eXtend Director 7

Access Control...8
SilverStream eXtend Support 9

eXtend Application Server 9
eXtend Director 9
eXtend Composer 10

Data Confidentiality and Integrity11
SilverStream eXtend Support 11

eXtend Application Server 11
eXtend Composer 12
eXtend Director 12

Other Security Topics..13
Non-repudiation and Auditing 13
Protection from Viruses 13
Protection from Denial-of-service Attacks 13
Single Signon 13
Firewalls 14
Maintenance 15

For More Information ...18

Security and SilverStream eXtend

2

The SilverStream eXtend� product line is a set of J2EE applications
and tools that enable the creation of other J2EE applications, particularly
those architected around Web Services. Such applications are inherently
distributed and usually of enterprise scale, so security is typically very
important to those people creating and deploying the applications. This
paper will explore the following common security topics as they relate to
J2EE, Web Services, and SilverStream eXtend:

♦ Authentication
♦ Access Control
♦ Data Confidentiality and Integrity
♦ Other Security Topics

• Non-repudiation and Auditing
• Protection from Viruses
• Protection from Denial-of-service Attacks
• Single Signon
• Firewalls
• Maintenance

We will cover the J2EE and Web Services specifications and the
particular implementation choices and extensions defined in all eXtend
products. We will describe what eXtend provides and which features you
can replace or augment. We assume basic knowledge of J2EE and Web
Services technologies but not expertise.

Overview

Security and SilverStream eXtend

3

Authentication is the process of verifying the identity of an entity, which
can be a user or another program. The entity, once identified, is
commonly referred to as a principal. In J2EE, authentication happens in
a few ways:

♦ Web users communicating with a Web container from a browser will
use standard HTTP mechanisms to authenticate. The servlet
specification describes three methods to be supported.

♦ J2EE client applications authenticate using mechanisms built into
the client container and make use of some JAAS technologies.

♦ EJB containers authenticate callers whether they are from client
containers, Web containers, or other EJB containers.

♦ Resources authenticate to back-end systems such as databases or
Enterprise Information Systems typically by passing a username
and password when creating a connection.

Web Container Authentication

The servlet specification describes the following authentication
mechanisms that Web containers support:

♦ HTTP Basic authentication
♦ HTTP Digest authentication
♦ Form-based authentication
♦ HTTPS Client authentication

HTTP Basic authentication is what is commonly used on the Web. A
client makes a request of the server (Web container). If the request
requires authentication, the server responds with an HTTP 401 response
code. The browser receives the response, prompts the user for a
username and password, then resends the request to the server with an
added header called Authorization. The header includes the entered
username and password, separated by a colon and base64-encoded.
Despite the name base64 encoding, this should not be confused with
encryption; it's not. This method is completely susceptible to
eavesdroppers sniffing on the wire and is not secure. If SSL is used to
encrypt the traffic, then it is reasonably secure � depending on the level
of the encryption used. Regardless of its flaws, HTTP Basic
authentication is by far the most commonly used authentication
mechanism on the Web. Web containers are required to support it, and
all browsers support it.

HTTP Digest authentication is similar but instead of sending the
username and password base64-encoded, a hash of them is sent. This
is only slightly more secure. Eavesdroppers cannot get the actual
password, but do learn a string that can be used to replay a message,

Authentication

Security and SilverStream eXtend

4

which allows them to authenticate themselves, as you, without your
knowledge. Digest is not commonly implemented in browsers; Web
containers are not required to support it.

HTTP Basic and Digest authentication are both defined in RFC 2617.

Form-based authentication is very similar to the above but allows an
application to create a customized login screen instead of using the
standard browser login dialog. While this capability may not seem that
important, it is required of all Web containers. Instead of returning a 401
status code when login is required, the container sends back a status
code for an HTTP redirect to a login page. This page contains an HTML
form with fields named j_username and j_password and with action
set to j_security_check. The browser displays the form and the user
fills it out and posts it back to the container. The container recognizes
the well-known form fields and performs the login.

Form-based security is roughly the same as HTTP Basic since the
username and password are sent over the wire in clear text, so you
should use SSL for anything secure. When building the application, the
URL of the login page is specified in the deployment descriptor of the
WAR file. Here is an example showing how the form should be coded:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">

</form>

HTTPS Client authentication uses SSL (Secure Sockets Layer) and
public key certificates to authenticate a client user. This can result in
strong encryption and can be quite secure. Netscape invented SSL to
help secure the Web. SSL Version 2.0 was the first commonly
implemented version. Version 3.0 is commonly used today. In addition,
the IETF defined TLS (Transport Layer Security) in RFC 2246 as a
successor to SSL. TLS is now available in the latest versions of most
browsers.

SSL and TLS work at the socket layer of the application, establishing a
secure TCP connection. This means authenticating the server, possibly
encrypting the communications channel, and optionally authenticating
the client. Authentication is performed using public key encryption (which
will not be described here). Both SSL and TLS allow for a negotiation of
encryption mechanisms used by the client and server; these
mechanisms are referred to as cipher suites. Some cipher suites define
weak encryption and therefore offer less security; others are stronger. All
J2EE-compliant Web containers must support HTTPS Client
authentication and the following relatively weak cipher suites:

♦ SSL_RSA_EXPORT_WITH_RC4_40_MD5
♦ SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Security and SilverStream eXtend

5

Client Container Authentication

The J2EE specification defines only broad authentication requirements
for a client container to support. A J2EE client application must be able
to authenticate to Web and EJB containers. The container must �provide
an appropriate user interface� to gather authentication information from
the user. In addition, if an application specifies (in the deployment
descriptor) the name of a class implementing the JAAS interface
javax.security.auth.callback.CallbackHandler, then the
container must call this class when trying to authenticate the user. This
provides the application with a means to implement whatever
authentication mechanism it requires.

EJB Client Authentication

The EJB 1.1 specification set requirements for authenticating EJB
clients, but did not prescribe how it was to be done. EJB 2.0 (required in
J2EE 1.3) specifies the use of CSIv2 (Common Secure Interoperability
Version 2, OMG�s security specification for CORBA) to transfer
authentication information from client to server in a standard way,
allowing vender interoperability. This mechanism is similar to HTTP
Basic authentication and was designed with the idea of using an SSL-
like mechanism for securing the communications channel. At
deployment time, EJBs can be configured to require client
authentication. In addition, EJBs can be configured at deployment time
to run as a specified principal, not merely as the principal of the caller.
The EJB 2.0 specification also requires that containers support a means
to establish a transitive trust relationship between one or more Web and
EJB containers.

Resource Authentication

Resources in J2EE refer to external systems such as databases,
Enterprise Information Systems, and JMS systems. They are not
precisely defined, but think of them as things you access by getting
connections via JDBC, Connectors, and JMS. For each of these you can
choose container-managed or component-managed authentication. The
choice is specified in the application component�s deployment
descriptor.

♦ In component-managed authentication, the application code must
call the appropriate (possibly proprietary) APIs to do the
authentication.

♦ In container-managed authentication, it is the container's
responsibility to do the authentication, usually with deployment
information.

Security and SilverStream eXtend

6

J2EE requires that containers support both APIs for specifying the
authentication information at runtime and a means to specify the
authentication information solely using deployment information.

Web Services Authentication

The Web Services technologies do not define much in this area aside
from depending on standard HTTP mechanisms including HTTPS
support, which is already included in J2EE.

SilverStream eXtend Support

eXtend Application Server
eXtend Application Server implements HTTP Basic, Form-based, and
HTTPS Client authentication. It can be configured to require
authentication on every HTTP request. It includes a pure Java
implementation of SSL 3.0 and TLS 1.0 and supports both RSA and
DSA certificates. Requirements for client certificates can be configured
in several ways:

♦ Certificate not requested or required
♦ Certificate requested but not required
♦ Certificate requested, not required; auto-add if not in database
♦ Certificate required, auto-add if not in database
♦ Certificate required; anonymous if not in database
♦ Certificate required for known user
♦ Certificate required for known user, but user remains anonymous

While user registry mechanisms are beyond the scope of J2EE, an
application server must have some means of managing the accounts of
registered users. eXtend Application Server contains a user registry that
stores users in the SilverMaster database. Alternatively, the server can
be configured to use the registry from one or more of the following
security systems: Window NT, LDAP, and NIS+. The SilverStream
Management Console (SMC) is used to administer the SilverStream
user registry and can also be used to configure server certificates.

Version 4 of eXtend Application Server will include a jBroker ORB that
includes a complete implementation of CSIv2. The application server's
EJB container will support the requirements for propagation of the
caller�s identity and the definition of a run-as principal at deployment
time. It also will support the configuration of transitive trust relationships.

eXtend Application Server includes all required support for JDBC and (in
Version 4) Connectors. Usernames and passwords can be specified
either programmatically or at deployment time by specifying
authentication information in the deployment plan.

Security and SilverStream eXtend

7

The application server ships with the jBroker MQ implementation of a
JMS server, which supports the standard JMS APIs for connection
creation, including passing a username and password. The JMS server
includes its own user and group registry. The JMQSecurityAdmin
interface allows the management of users and groups. Version 2.1 of
jBroker MQ will allow for integration with additional authentication
systems, such as LDAP.

eXtend Composer
eXtend Composer consists of a design-time GUI designer and a runtime
system to access back-end resources using a connection pool
mechanism. The runtime system is a J2EE application capable of being
deployed to a variety of application servers. Both the design and runtime
systems provide authentication facilities. Typically, all connections share
a single user identity whose credentials are defined at deployment time.
Both username/password and certificate-based authentication are
supported. In addition, the GUI designer is capable of designing
components that use credentials obtained out-of-band when establishing
connections. For greatest flexibility, developers can override or re-
implement the IGnvConnectionFactory interface and establish
connections however they want.

eXtend Director
eXtend Director consists of design-time GUI tools and several runtime
subsystems. The runtime subsystems are also J2EE applications
capable of being deployed to a variety of application servers. The
runtime subsystems depend on the Web and EJB containers to provide
authentication. eXtend Director uses a user registry implementation that
allows different "realms" to be plugged in by implementing the EbiRealm
interface. Implementations exist to connect to the eXtend Application
Server user registry, to WebLogic realms, and to WebSphere's
equivalent. Developers are free to extend any of these implementations
or to provide their own.

The Portal subsystem�s Wireless Transcoding Engine allows
communication with clients that are Web browsers as well as other
wireless devices. In the WAP (Wireless Access Protocol) world, a
separate gateway is responsible for converting WAP to HTTP. Such
gateways typically support features needed to enable the use of HTTP
Basic and Form-based authentication. WTLS (Wireless Transport Layer
Security) is the equivalent of SSL in the wireless world and provides for
the use of x.509 certificates that are usable in HTTP Client
authentication.

Security and SilverStream eXtend

8

Access control (also known as authorization) is the next issue after
authentication. After you know who someone is, you can determine what
he or she is allowed to do or, more likely, if they are allowed to do what
they just requested.

J2EE addresses access control by using security roles. Permission is
granted to perform an action if the user principal is in the role allowed to
perform the action. Roles are listed in deployment descriptors of J2EE
archives, and at deployment time these roles are mapped to real
accounts or groups in the deployed environment.

Roles are mapped to actions in one of two ways, either declaratively in
the deployment descriptor or programmatically by making API calls. The
methods EJBContext.isCallerInRole(role) and
HttpServletRequest.isUserInRole(role) return true if the calling
principal is in the specified security role.

Note that both of these schemes bind a role permission requirement to a
method. J2EE refers to this as class-based access control. There is
currently no facility for what J2EE calls instance-based access control,
which is a mechanism to restrict access based on specific data, not on a
method. For example, a class-based access control mechanism would
allow Alice to look up the account balance of any account by allowing
Alice to run the method getBalance(). An instance-based mechanism
would allow Bob to look up his own account�s balance but not anyone
else�s, by giving him access to his account object.

However, J2EE does provide some tools for developers to implement
such a scheme themselves. The two methods
HttpServletRequest.getUserPrincipal() and
EJBContext.getCallerPrincipal()return the principal of the calling
user, allowing the application to perform some authorization check
based on the user's identity. Note that in the case of an anonymous
user, these methods behave differently.
HttpServletRequest.getUserPrincipal()always returns null if the
user is anonymous, but EJBContext.getCallerPrincipal() is
required to always return a valid principal (never null). An EJB container
is free to implement whatever scheme it wants to represent anonymous
users.

The Web Services specifications do not address access control at all.
Currently Web Services need to piggyback on the mechanisms of the
underlying technologies used for the implementation, such as J2EE.

Access Control

Security and SilverStream eXtend

9

SilverStream eXtend Support

eXtend Application Server
eXtend Application Server implements all the required declarative and
programmatic access control mechanisms. The EJB container identifies
an anonymous user with a single distinguished principal named
anonymous.

JMS ACLs (Access Control Lists) have the following three permissions:

♦ Consume �- Permission to receive messages or browse a queue,
and to subscribe to topic messages

♦ Produce �- Permission to send messages to a queue, and to publish
messages to a topic

♦ Manage �- Permission to manage jBroker MQ; in the current
release, only users belonging to the administrator group have the
Manage permission

The ACLs can be changed using a GUI console as well as using
standard java.security APIs.

eXtend Director
eXtend Director uses ACLs to define authorization at several different
levels. The permission set (for example, Read, Write, Create, Update,
and Delete) is dependent on the specific ACL. It is stored as meta-data
for the ACL, and is extensible using the EbiSecurityMetaDelegate
interface. All ACLs are stored in the database and can be accessed
using the EbiSecurityAclDelegate interface.

There are three levels of ACLs:

♦ A Locksmith ACL with one permission, Protect. This ACL applies to
all elements in all Director subsystems. This permission is the ability
to change ACLs.

♦ Individual ACLs for administration of each subsystem, typically with
Protect, Read, Create, Update and Delete permissions.

♦ Element Type ACLs at the subsystem level. Currently, only the
Content Management subsystem defines Element Type ACLs and
does so for folders, documents, and repositories.

All ACLs can be changed using the EbiSecurityAclDelegate API. In
addition, Director includes the HTML-based PAC (Portal Administration
Console), which can be used to edit the Locksmith and subsystem
administration ACLs. The Content Management Element Type ACLs can
be edited using the HTML-based PMC (Portal Management Console),
which is used to manage the Content Management subsystem.

Security and SilverStream eXtend

10

The Portal subsystem uses a built-in role-based authorization
mechanism for pages, components, and workflow processes. Roles and
their mappings to users or groups are defined in XML files contained in
ResourceSets. For example:

<security-role>
 <display-name>System Administrator</display-name>
 <description>Portal App Admins1</description>
 <user-map>
 <principal>administrator</principal>
 <principal>jsmith</principal>
 </user-map>
 <group-map>
 <principal>administrators</principal>
 </group-map>
</security-role>

A page, component, or workflow process can (through their descriptor)
require that the user be in a specified set of roles. For example, here's a
descriptor for a portal page that requires a user to be in either the
manager or the administrator role to run the Hello World page:

<portal-page>
<display-name>Hello World</display-name>
<description>Hello World Page</description>
<categories>

<category>UserPages</category>
</categories>
<flush-immediately>false</flush-immediately>
<mime-type>text/html</mime-type>
<style-name>HelloWorld</style-name>
<file-name>HelloWorld.xml</file-name>
<run-role-map>

<role-name>manager</role-name>
<role-name>administrator</role-name>

</run-role-map>
</portal-page>

All runtime ACL-based or role-based authorization checks are performed
by calling the EbiSecurityDelegate interface. Developers can call
these checks in their own code as well.

eXtend Composer
eXtend Composer generates components that can be deployed as
servlets, EJBs, or Web Service-based services. These services have no
additional access control requirements or capabilities beyond what J2EE
defines for them.

Security and SilverStream eXtend

11

Data confidentiality is concerned with keeping others from seeing
sensitive data. You might confuse it with access controls but it is usually
different. It usually involves encrypting data traveling over a wire,
preventing eavesdropping while allowing authenticated users to perform
authorized actions. It could also be encrypting data in persistent storage
so that attackers, even if they get in, still cannot read the data.

Data integrity is similar: it involves ensuring that data is not corrupted or
modified while the data is in transit. Encrypting the data is sufficient to
prevent it from being altered; if it is, it will not decrypt properly. Some
systems that require integrity but not confidentiality will encrypt a
checksum of the data, which is much faster than encrypting all the data.

J2EE covers data confidentiality by requiring that Web containers
support HTTPS (SSL). In addition, the EJB 2.0 specification requires the
support of the following cipher suites to be used with IIOP over SSL 3.0
or TLS 1.0:

♦ TLS_RSA_WITH_RC4_128_MD5
♦ SSL_RSA_WITH_RC4_128_MD5
♦ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
♦ SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
♦ TLS_RSA_EXPORT_WITH_RC4_40_MD5
♦ SSL_RSA_EXPORT_WITH_RC4_40_MD5
♦ TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
♦ SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

According to the EJB 2.0 specification, both EJB clients and servers can
be configured to require a secure transport, providing confidentiality,
integrity, or both. At runtime, the client and server perform a negotiation
to determine if a secure transport is required.

SilverStream eXtend Support

eXtend Application Server
eXtend Application Server supports the following SSL cipher suites:

♦ SSL_NULL_WITH_NULL_NULL
♦ SSL_RSA_WITH_NULL_MD5
♦ SSL_RSA_WITH_NULL_SHA
♦ SSL_RSA_EXPORT_WITH_RC4_40_MD5
♦ SSL_RSA_WITH_RC4_128_MD5
♦ SSL_RSA_WITH_RC4_128_SHA
♦ SSL_RSA_EXPORT_WITH_DES_40_CBC_SHA
♦ SSL_RSA_WITH_DES_CBC_SHA
♦ SSL_RSA_WITH_3DES_EDE_CBC_SHA
♦ SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
♦ SSL_DHE_DSS_WITH_DES_CBC_SHA

Data Confidentiality and
Integrity

Security and SilverStream eXtend

12

♦ SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
♦ SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
♦ SSL_DHE_RSA_WITH_DES_CBC_SHA
♦ SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
♦ SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
♦ SSL_DH_anon_WITH_RC4_128_MD5
♦ SSL_DH_anon_EXPORT_WITH_DES_40_CBC_SHA
♦ SSL_DH_anon_WITH_DES_CBC_SHA
♦ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

At the present time, jBroker MQ does not support the use of SSL for its
communications.

eXtend Composer
The eXtend Composer Designer can connect to running servers, and, if
SSL is required, supports the following cipher suites:

♦ SSLParams.SSL_RSA_WITH_RC4_128_MD5
♦ SSLParams.SSL_RSA_WITH_RC4_128_SHA
♦ SSLParams.SSL_RSA_EXPORT_WITH_RC4_40_MD5
♦ SSLParams.SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
♦ SSLParams.SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

eXtend Director
eXtend Director uses facilities of the application server it is deployed on
to provide data confidentiality and data integrity. When using the
Transcoding Engine to communicate with WAP devices, WTLS is
typically used to provide confidentiality from the end-user client.

Security and SilverStream eXtend

13

Non-repudiation and Auditing

Currently, there are no J2EE or Web Services requirements for support
of non-repudiation or auditing systems. Non-repudiation is the property
that once you have authenticated something you cannot subsequently
refute that you did. For example, if Alice possesses a digitally signed
contract whose signature verifies with Bob�s public key, then Bob can�t
claim he didn�t sign it since no one else is able to use his private key to
do that. Auditing systems are logging systems, but with the added
property that the logs are not alterable. The idea is that if an attacker
does manage to break in and do something, if the action is logged you
don�t want him to have the ability to alter the logs to cover his actions.

The eXtend platform currently offers no built-in support for these
features. The application server does provide logging facilities, but these
logs are not tamper-resistant, as a true auditing system would require.

Protection from Viruses

Currently, there are no known viruses that can infect the eXtend
platform. We believe this is not coincidence. The eXtend platform is
written in Java, which is a typesafe programming language with bounds
checking. There is no possibility of the buffer overflow problems
common to C, C++, and other languages that most viruses exploit.

eXtend Application Server comes with its own built-in Web server, so
you need not run other virus-susceptible Web servers for your
application. We have seen several sites that have been attacked by
various viruses (such as NIMDA or Code Red), and the server has
performed well. In the worst case the server reported a benign error
message about receiving malformed HTTP requests.

Protection from Denial-of-service Attacks

There is a vulnerability to denial-of-service attacks from too many
requests, but this is the case with all servers running on a public
network. For an overview of denial-of-service attacks and a list of some
network-level precautionary measures you can do to reduce your
exposure to them, see:
http://www.cert.org/tech_tips/denial_of_service.html.

Single Signon

A commonly requested capability is that of single signon. Unfortunately,
it is not a very well-defined request. Single signon is the desire to be
able to access multiple applications and resources while forcing the user
to login only once. This is easy if all the systems are built together and
well-integrated, but in most cases multiple systems come from different

Other Security Topics

Security and SilverStream eXtend

14

venders, use different technologies, and have been implemented at
different times. As such, they use different security mechanisms,
particularly for authentication.

In one sense, eXtend Application Server can do single signon. Because
multiple application servers (not configured in a cluster) can all be
configured to use an LDAP (or other external) user registry, by using
HTTP Basic authentication to one server you�ll send your credentials to
each, requiring only a single login. Of course, this doesn�t take into
account an application that needs to pass those credentials to other
back-end systems.

With the popularity of applications that use a Web browser as a front-
end, a class of single signon solutions that leverage HTTP
authentication has become popular. For example, getAccess by Entrust
is a product that, among other things, plugs into a Web server and
intercepts authentication requests, then uses its own authentication
service to validate the user. getAccess also intercepts other requests
and performs authorization checks by matching on the requested URL.
This allows you to secure an application (regardless of its back-end) by
performing access control on the URLs it exposes. eXtend Application
Server contains Web Server Integration (WSI) modules that plug in to
IIS, Netscape, and Apache servers. Using WSI modules allows a Web
server to proxy for the application server and allows products that
integrate with Web servers, such as getAccess, to integrate with the
application server.

Firewalls

Firewalls are commonly used to restrict remote access to a machine. It
is a broad term that can describe many different functions. Some
firewalls restrict clients to be from specific addresses; some restrict
access to specific ports. Certain protocols work by using well-known
ports, and if you close that port you are not susceptible to requests or
attacks on those protocols. eXtend Application Server separates its
runtime operation from its design and administration functions. Each of
the three can be configured to run on different ports, allowing a firewall
to be configured to deny access to these capabilities. For example, the
server can be configured so that administration functions can be
performed only from within the corporate network.

Maintenance

Finally, the most common security issue is users not properly configuring
their systems. Security is often an afterthought or is neglected
altogether. It is important that system administrators take all the
recommended steps to secure their systems and keep up-to-date with

Security and SilverStream eXtend

15

patches as they become available. With some products, patches are
released frequently so this can be quite a burden, but so far eXtend
Application Server has not had to release a security patch.

By default, Version 3.7 of the application server installs the server totally
secured, rather than relying on administrators to lock down every little
thing. Still, the best thing any organization that cares about security can
do is to have a security plan and a regular review to make sure it is
being followed. The SilverStream eXtend Application Server
Administrator's Guide provides a security checklist to help you secure
your environment.

Security and SilverStream eXtend

16

Security and SilverStream eXtend

17

Securing Your Web Applications
SilverStream eXtend Application Server Administrator�s Guide

SilverStream eXtend product information
http://www.silverstream.com/extend

Strategic partner information
http://www.silverstream.com/partner

SilverStream Developer Center
http://devcenter.silverstream.com
Visit the SilverStream Developer Center for additional information on
how to build and deploy J2EE applications with SilverStream

Register and attend an educational seminar or event
http://www.silverstream.com/events

Sign up for training
http://www.silverstream.com/edu

Learn more about SilverStream�s customers
http://www.silverstream.com/customers

General contact information
http://www.silverstream.com/contactus

Information contained in this document is subject to change without notice.
Copyright © 2001 SilverStream Software, Inc. All rights reserved.
SilverStream and jBroker are registered trademarks and SilverStream
eXtend is a trademark of SilverStream Software, Inc. All other registered
trademarks are property of their respective owners.

For More Information

