
N O V E M B E R 1 9 8 8

WRL
Technical Note TN-7

TCP/IP PrintServer:
Server Architecture
and Implementation

Christopher A. Kent

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

TCP/IP PrintServer
Server Architecture
and Implementation

Christopher A. Kent

November, 1988

Abstract

The TCP/IP PrintServer is a printer that uses Internet protocols to communicate
with its clients. This document describes the internal operation and implemen-
tation of the printer-resident software.

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

1. Introduction

The TCP/IP PrintServer is a freestanding Ethernet-connected print server that uses TCP/IP
protocols to receive files for printing. This document describes the internals of the PrintServer
and the mechanisms used to process print jobs and interact with clients. The reader is assumed
to be familiar with the VAXELN mechanisms for job and process management, events, and
communication.

The software installation procedures are described in a companion document entitled TCP/IP
PrintServer: BSD Unix Client Interface [9]. The TCP-based protocols by which clients com-
municate with the server are described in a companion document entitled TCP/IP PrintServer:
PrintServer protocol [10]. TCP is one of a family of protocols collectively referred to as
"Internet protocols"; they are usually referred to collectively as "TCP/IP". TCP stands for
"Transmission Control Protocol" [6] and IP stands for "Internet Protocol" [7]. The interface be-
tween the server and the PostScript interpreter is described in a document entitled Distributed
Printing Services V2.0/Controller Software Interface Specification [5]. It is briefly summarized
in section 2.

1.1. Clients, management clients, and console clients

In normal use, the PrintServer receives connections from client hosts, prints the files that it
receives over those connections, and closes the connection. The host computers that connect to
the PrintServer are called clients.

There are three different reasons that a client might connect to a PrintServer, and therefore
1three different kinds of client connections :

• If a host connects to the PrintServer for the purpose of printing a file, then it is
called an ordinary client.

• If a host connects to the PrintServer for the purpose of providing administrative ser-
vices to it, then the host is called a management client.

• If a host connects to the PrintServer for the purpose of providing a remote console
display to a user, then the host is called a console client.

Ordinary clients, and the protocols by which they communicate with the PrintServer, are
described in the companion BSD Unix Client Interface document.

When a management client connects to the PrintServer, it sends a list of the services that it is
willing to provide. When the PrintServer needs a service, it checks each of the connected
management clients, and requests the service from the first one that it finds that offers that ser-
vice. If none of the connected clients offers that service, then the request is abandoned and some
suitable corrective action is taken. Other than during the interval between a reboot and the first
management client connection, the PrintServer will never wait for a management service to be-

1Note that from the point of view of the client software, as described in the Client Interface document, there is
fourth kind called a remote client, but remote clients never connect to the server and are therefore not relevant to
server management issues.

1

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

2come available. In an ordinary installation, there will be one management client that provides
all services, and possibly a second for backup to make sure that accounting information is never
lost. The ability to factor out the different services and offer them from different places is one
that will not be needed in any but the most complex of installations.

It is perfectly correct for a single host to be an ordinary client and a management client all at
the same time. It is also quite correct for a host to be an ordinary client for one PrintServer while
being a management client for another.

1.2. The protocol

In the era of line printers, one communicated with a printer by sending it data, which it
printed. No protocol was needed beyond link-level issues such as framing and flow control.
Modern high-speed PostScript printers are connected via a Local Area Network (LAN) such as
Ethernet. To print a file on such a print server, one must cope with network connections, access
control, error recovery, remote accounting, and support for various features of the PostScript
language such as file I/O.

The PrintServer protocol [10] is an Internet protocol that is built on top of TCP. TCP provides
full-duplex, reliable, flow-controlled byte stream communication between two nodes on a net-
work. The PrintServer protocol is a record-oriented protocol that uses TCP streams as its trans-
port mechanism.

Printing is done in units called print sessions, or simply sessions. A session is an uninterrupted
connection from a client to a PrintServer. A client opens a session, then for each file to be
printed, it starts a job within that session, prints the file, and ends the job. At the end of the
session, the client releases the network connection, and another client is free to print.

1.3. Goals and non-goals

The IP-based PrintServer is intended to make the PrintServer product line usable from any
computer that can speak IP, with an emphasis on Ultrix and UNIX systems. In particular, the
project goals are:

• Provide PrintServer access to any system that speaks IP, especially UNIX-
compatible systems.

• Provide 40 page per minute throughput on large print jobs.

• Use the same Adobe-supplied modules, for the PostScript interpreter and LNV11
driver, as the LAPS-based system.

• Provide a printing protocol that is simpler than LAPS. This protocol should be
placed in the public domain, and be easy to interface to the existing UNIX lpd line
printer system.

2If the printer is configured for reliable accounting and no management client is offering accounting services, the
PrintServer will wait until the accounting service becomes available.

2

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

• Use TCP/IP as the base communication protocol family.

• Provide network access control.

• Provide centralized per-job accounting.

• Provide centralized error and event logging.

• Provide a mechanism for remote storage of fonts.

• Provide a console in a style familiar to UNIX users (command based instead of
menu based).

• Provide remote console ("remote server management") facilities.

• Provide a configuration mechanism that is not VMS-specific and can be easily ap-
plied to the needs of UNIX.

• Allow up to 16 client connections at one time.

The following are specific project non-goals:

• Provide support for any PrintServer other than the LPS40.

• Provide all VMS-based PrintServer-provided functions in a UNIX environment.
This includes but is not limited to server management.

• Use LAPS as a print/client protocol.

• Internationalization.

2. Overview

Four pieces of software are used to print on the PrintServer:

lpr There is a special back end to the standard Unix line printer spooler that uses
the PrintServer protocol to transmit print jobs to the PrintServer.

lpad One or more machines on the network provide support services by running a
management client, lpad.

lprc This program provides remote console services.

server The software that runs on the PrintServer itself.
The server software is an application that runs on the MicroVAX II inside the PrintServer. It is

written using the VAXELN operating system, and consists of several VAXELN jobs, as shown
in Figure 1.

One job handles all client interactions with the PrintServer. This is known as the server job
and is the subject of this report.

Two jobs cooperate to provide the PostScript interpreter and drive the print engine hardware.
These are known jointly as "the controller". The code for these jobs was obtained from Adobe
Systems, Inc.

The interface to the controller is via four channels, implemented as VAXELN (reliable) cir-
cuits. Communication is in terms of Packets, each of which is sent in a single VAXELN

3

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

BOOTP

UDP TCP

IP

PostScript
Interpreter

LNV11
Driver

Server

Print
Engine

Ethernet

Figure 1: Jobs in the PrintServer application

MESSAGE. A Packet consists of a header and some data. The header contains job boundary
markers and identifiers, as well as a description of the data portion of the Packet. The four chan-
nels are:

Data The controller treats messages arriving over the data channel as Packets con-
taining data to be consumed by the PostScript interpreter via its standard in-
put stream. The sequence of Packets from the one with its "start-of-job" bit
set to the one with its "end-of-job" bit set (inclusive) constitute one
PostScript file, which is ordinarily executed as one PostScript job.

Status The controller sends controller status blocks to the status channel in response
to specific events detected by the PostScript interpreter. These events are:
PostScript language-level errors, job abort, and exiting the server
save/restore context.

Characters written to the standard output file result in the sending of user
status blocks over the status channel. When the standard output file is closed
(which ordinarily happens only at the end of each PostScript job), the con-
troller sends a special controller status block as an end-of-file marker for the

4

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

standard output file of the current job. This status block is not sent until the
last page of the job has been delivered to the output stacker.

The use and disposition of status blocks are discussed more fully in Section
2.1.2.

Resource Resource status blocks are generated by execution of PostScript operators
that require delivery of resources via the resource channel. The two resource
requests defined at present are font fault and password check.

When the PostScript findfont procedure is executed for a font that is not
present in the PostScript VM, it generates a resource status block that re-
quests that the font be loaded via the resource channel. At present, this re-
quest is always denied by sending an error Packet down the resource chan-
nel.

When the checkpassword operator is executed, it generates a resource status
block requesting that the supplied password be checked. It then awaits a suc-
cess or failure indication on the resource channel.

Control The controller reads Packets asynchronously from the control channel. When
it receives one, it pays attention only to the length in the header and the
body. It treats the body as a sequence of control blocks, which it acts upon
immediately. A control block consists of a type and a size.

In response to a "show status" request, the controller sends a controller status
block and a printer status block containing the current status of each.

In response to an "abort" request, the controller forces execution of the
PostScript interrupt error from errordict [1]. Ordinarily, this is delayed un-
til the next object is about to be executed by the PostScript interpreter;
however, if the interpreter is blocked waiting for data to arrive from the data
or resource channel, the wait is aborted and the interrupt is executed im-
mediately.

Three jobs cooperate to provide network services: one for the TCP protocol, one for the IP
protocol, and one for the BOOTP protocol, which is used to determine the PrintServer’s IP ad-
dress at boot time [3]. The code for these jobs was obtained from Process Software, Inc.

The TCP/IP interface was designed to present the same interface as the standard DECnet
facilities for reliable circuit connections [4]. Additional management functions are provided by
sending control messages to the IP and TCP control PORTs [8].

2.1. Processes within the server job

The server job is made up of four groups of processes: the main process, the status collector,
the PrintServer protocol handler, and the console. Error logging, accounting and remote file ac-
cess are provided by a module that uses management connections, but do not exist as separate
processes. (See Figure 2.)

5

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

Error
Messages

User
Data

Operator
Messages

Accounting
Data

Management
client

Print
client

Incoming
connection

Console
client

Management
connection

Protocol
handler

Server

Remote
driver

Local
driver

Console
manager

Status
collector

Data
channel

Status
channel

Resource
channel

Control
channel

Controller

Figure 2: Processes in the server job

2.1.1. Main server process

The main server process is the first process started in the server job. It begins by starting the
PostScript interpreter job and the LNV11 driver job. Next, data structures are initialized and the
other process groups are started.

Finally, it goes into an infinite loop, accepting incoming connection requests and dispatching
them to the protocol handler.

2.1.2. Status collector

The controller communicates events in the PostScript interpreter and print engine by sending
status blocks over the status channel. A status block consists of a class (one of Printer, Resource,
Controller or User), a condition record, and some class-specific fields. A condition record con-
tains a set of recipients, an action code, a message code, and zero or more arguments.

6

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

The status collector receives status blocks from the status channel, interprets them, and dis-
patches them. It looks up the message text associated with the message code and uses that and
the argument list to form a message string. If the recipient set does not indicate that the message
is only for internal use, the message string is sent to the indicated recipients. (Possible recipients
are the user, the error logger, and the console log.)

The action code indicates what action, if any, should be taken with respect to the job. This
condition record may be for information only, may pause or resume the job, or may indicate that
the job is complete or will be aborted.

2.1.3. PrintServer protocol handler

The PrintServer protocol handler is invoked as a process that is started for each connection
that is accepted by the main server process. The client’s first protocol record indicates whether
this connection is to transmit a print job or jobs, establish a management connection, or to start a
remote console.

If this is a management or console connection, the protocol handler creates a new process with
the appropriate handler, passes the connection to the new process, and exits.

The job handler consists of two processes: the protocol parser and an abort monitor.

The protocol parser either accepts or rejects "start session" requests depending on the number
of clients already connected, the system state, and the access control list. If a connection is
rejected, the parser sends a message containing a description of the reason and breaks the con-
nection. If the connection is accepted, ensuing protocol records are interpreted and passed to the
PostScript interpreter as appropriate.

The session is composed of one or more PostScript jobs. For each job in the session, the
protocol parser informs the controller that a job is starting, relays the client’s uninterpreted print
data, informs the controller that the job has ended, and waits for a synchronization message from
the controller (via the status collector) that indicates that the last sheet of the job has been suc-
cessfully printed. Should the connection be broken in the middle of a job or session, the protocol
parser is sure to send the controller an end of job indication and allow the controller to clean up
properly in preparation for the next job.

The abort monitor watches the TCP connection for "urgent" data. The client sends job abort
requests as urgent data; the abort monitor is responsible for receiving and carrying out these

3requests while the protocol parser is busy doing other things . If an abort request is found, the
monitor sends a control channel abort request to the controller and signals the protocol parser to
quit. The protocol parser will see both the quit signal and the abort request; it will heed the quit
signal but ignore the abort request.

If the protocol parser happens to see the abort request before the abort monitor does, it sends a
control channel abort request to PostScript and begins to quit. In this case, the abort monitor will
not issue an abort request.

3For example, waiting for the PostScript interpreter to finish an infinite loop.

7

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

2.1.4. Console

The console display is divided into three parts: the banner, shell, and log. The banner shows a
short summary of the printer’s current status. The log is an append-only record of messages
intended for an operator’s attention, including both print job and hardware status. The shell is
the area where an operator can use a line-oriented interface to inquire into and alter the full state
of the printer.

The console code handles both local and remote consoles. There is one local console active at
all times; in the standard configuration, there can be up to 10 remote consoles active simul-
taneously.

2.2. System state

The status collector maintains state containing the most recent condition records having to do
with the PostScript interpreter and the print engine, as well as other configuration information. It
exports a set of interfaces for querying and updating this state.

The job queue is a linked list of records, one per active job. The queue is served in FIFO
order. Each job record contains job identification information, the network connection handle,
and three EVENTs: proceed, done, and abort.

After a job has been added to the job queue, it waits for the proceed EVENT. The job manager
signals proceed when the job has reached the head of the queue.

When a job has delivered all its data to the controller, it waits for the done and abort EVENTs.
The controller sends a condition record to the status collector when the last sheet has been suc-
cessfully delivered to the output stacker; the status collector then signals done. If an operator or
the client aborts the job during this period, the effect is to signal abort.

The console subsystem maintains a state record for each active console. This state contains the
input buffer, state about the current mode of the console (e.g., repeat mode and privileges), and a
set of input/output methods. The methods provide a standard interface for performing console
I/O, hiding the implementation differences for local and remote consoles. All console com-
mands are implemented in terms of these methods.

The server maintains a record of the currently active management connections and the services
they offer. The server uses these connections to send accounting and error log records, and to
perform remote procedure calls [2] for file and time services. If a connection fails, the server
notices and removes the associated record.

Protocol records are sent over a TCP connection. TCP provides to its clients the illusion of a
seamless byte stream, but in reality, the stream is broken up into segments. Each of these seg-
ments is sent in a single IP packet. VAXELN doesn’t embody the concept of a byte stream
network connection -- the incoming data is always broken up into messages. This means that,
depending on network parameters, flow control, buffering, and the phase of the moon, several
protocol records may appear in one message, or one protocol record may be broken across two or
more messages.

8

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

A Frame provides an abstract interface to the network that reconstructs protocol records
regardless of these details. Routines in the server call Frame utilities to read (or write) a single
protocol record from (or to) the network, and the utility routine handles all details of buffering
and reconstruction.

3. Operation

So far, the server looks like a collection of facilities. To see how they interact, we now con-
sider the lifetimes of a print session, a console, and a management connection.

3.1. A print session

A print session begins when a client tries to establish a TCP connection to the PrintServer’s
service port. The master server job is waiting for a connection request; when it receives the re-
quest, it accepts the circuit, specifying that a small receive window should be used. The server
now creates a child process, running the PrintServer protocol handler.

The protocol handler allocates and initializes a Frame, and loops receiving and processing
incoming procotol records.

Client Server
sends response Comments
SSN begin a session

The child tries to allocate a job queue entry. If the queue is full, if job acceptance is disabled,
or if the PrintServer hasn’t been contacted by a management client to get its configuration infor-
mation, the child sends a NAK, closes the connection and exits. The NAK contains a verbose
indication of why the job was refused.

NAK refuse it

If the child accepts the job, it records the session-specific information in the job queue entry,
attaches the job to the tail of the job queue, sets up the abort monitor, sends a REPLY with job
identification, and logs a message on the console. If the job ends up at the head of the job queue,
attaching the job has the side effect of signalling the job’s proceed EVENT.

REPLY acknowledge it
INFO identify the coming print job

The INFO record contains information specific to the first print job in the session. The job
queue entry and the console banners are updated.

SOJ start a print job

The client is about to start sending data. At this point, the child blocks until the job is at the
head of the job queue. This is accomplished by waiting until the proceed EVENT is signalled. If
the job is already at the head of the queue (because all other jobs have completed, or it was
attached at the head of the queue), proceed will already be signalled.

9

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

If the PrintServer is in single job mode, the operator must manually release the job. In this
case, proceed is cleared just before it is waited on, and the operator’s intervention signals it
again.

The child also waits on the abort EVENT, to allow the client or an operator to abort the job
before it starts running. If this occurs, the child sends a KILL packet to the client and detaches
the job from the queue.

KILL notify the client that the job is dead

When proceed is signalled, the child opens the TCP receive window to allow the client to
send data. It then zeroes the accounting counters, and clears the "Start of job sent to PostScript"
state bit (SOJ).

DATA send the break page
...
DATA
EOJ end of break page

DATA messages are repackaged into Packets and sent directly to the controller. If SOJ is clear,
the "start of job" bit is set in the Packet when it’s sent to the controller, and SOJ is set. The
connection to the controller is flow controlled by ELN, so the protocol interpreter will block
when the controller gets behind.

When an EOJ packet is sent, the "end of job" bit is set in the next Packet sent to the controller.
This signals the controller to send a synchronization condition record when the last sheet has
been delivered to the output stacker. The job waits on the done EVENT, which will be signalled
by the status collector when this condition record arrives. At that point, the child sends an ac-
counting record to the client (both as a REPLY and on all management connections that have
advertised the accounting service).

REPLY Return page count
INFO identify the coming print job
SOJ start a print job
DATA send file 1
...
DATA
EOJ

REPLY Return page count

Further print jobs follow the same pattern. The child does not give up the session’s position in
the job queue; as long as the client maintains the connection, it controls the PrintServer.

WAIT wait for all error messages
REPLY announce the end

When the client is done with all its jobs, it sends a WAIT. At this point, the child makes sure
that the current PostScript job has seen an "end of job" and waits for the done EVENT. This is
usually an empty wait, since the child has just waited for the same EVENT for the last EOJ
message. At this time, the child relinquishes the session’s position in the job queue and signals
next job’s proceed EVENT. The child doesn’t exit until the TCP connection is closed by the
client.

10

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

KILL abort the job
REPLY send accounting info for the aborted job

If the client wishes to abort the current job, it sends a KILL record as urgent data. If the child
is blocked sending to the controller, the abort monitor sends a control Packet to abort the
PostScript job. If the child is not blocked, it will see the KILL first and abort the job. (See
section 2.1.3.)

In either case, the KILL is treated much like a WAIT: the child waits for the done EVENT,
sends an accounting record for the aborted job, and removes the session from the job queue.

The client may break the TCP connection at any time. If the child is not in a session, it kills
the abort monitor and exits. If it is in the middle of a session, it aborts the current job and
removes the session from the job queue first.

3.2. The consoles

The console subsystem is designed to share a great deal of code between the local and remote
cases. All routines that deal with input or output do so via the uniform I/O interface provided by
the appropriate methods. The local methods deal in great detail with the user interface and the
specifics of writing to the VT100-class terminal that is used for the local console. The remote
methods do little but format information into protocol records and send them to a peer running
on the client. The client is responsible for the exact layout of the remote user interface and the
details of the remote terminal. The output format is general enough that both very simple and
very complex remote clients can be built.

The processes that make up the console subsystem are divided into two logical parts: the log-
ger and banner, and the individual shells.

The logger and banner processes are simple loops that wait for an event and update all cur-
rently active consoles, using the output method recorded in that console’s state entry. The logger
waits for a message on its PORT (CONSOLE_LOG) and appends it to the log area of the consoles.
The banner waits for a timeout or a message on the CONSOLE_BANNER PORT and updates the
banner line of the consoles.

Each shell consumes two processes. One loops forever, waiting for input, filling a buffer and
signalling an EVENT when there is new input. The other does the work: it waits for the EVENT,
reads the completed input line, calls the appropriate command procedure, and displays the out-
put. Both local and remote consoles have this two-process structure.

Whether local or remote, the processing loop is identical. First, print the prompt and assemble
a complete line of user input. The local console does its own echo, erase and kill processing; the
remote client is expected to send a complete line. The table of commands is searched for the first
word on the command line. If it is found, and the command may be executed with the current set
of privileges, the command routine is called with a pointer to the console state entry (which
contains pointers to the output methods).

If the command is repeatable and the repeat interval is non-zero, the command is called again
after the repeat interval passes. This continues until the user types any character.

11

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

After the command or repeat loop exits, the prompt is printed again and the loop restarted.

A remote console client begins the same way that a print client does: it attempts to establish a
TCP connection to the PrintServer’s service port. The master server job accepts the request and
hands the connection off to a newly-created protocol handler process.

Client Server
sends response Comments
CSSN begin a console session

First, the protocol process opens the TCP receive window. Then, it creates a new remote shell
process, hands off the connection, and exits.

The shell tries to allocate a console entry. If none are unused, it sends a NAK record, closes
the connection and exits.

NAK refuse it

If a console entry is available, the shell initializes it with pointers to the remote console
methods and sends a REPLY record to the peer. It then disables the input timeout and requests
the banner process to update all the banner lines (so the new console will have something on its
banner line).

REPLY acknowledge it
DATA 1<banner line> send the banner info

Console output is destined for one of four portions of the screen: banner, shell, log, or prompt.
The first byte of the record is used to indicate the portion of the screen on which the rest of the
record should be drawn: 1 for the banner line, 2 for the shell, 3 for the log, and 4 for the shell
prompt. A console client can use or ignore any part of the output stream. For example, a simple
client to just watch the log would print DATA packets sent to 3, but ignore all others.

Now the shell prompts for input and waits for an input packet. The prompt is treated specially
so the peer can notice the length for erase and kill processing.

DATA 4lps40 % send the prompt
DATA jobs\n an input command

When a complete input line has been received, the shell looks through the command table for
a match on the input string. If a match is found, the appropriate routine is called with the console
entry as an argument.

DATA 2No jobs\n command output
DATA 4lps40 % another prompt

This continues until the network connection is closed.

3.3. A management connection

Management connections exist in the server as VAXELN PORTs on which messages can be
sent -- for the majority of their lifetime, there is no associated process. Routines in the server that
need to make use of a management service call on a utility routine. The utility routine finds an

12

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

appropriate management connection for the desired service and sends the required network traf-
fic.

A management client begins the same way that a print client does: it attempts to establish a
TCP connection to the PrintServer’s service port. The master server job accepts the request and
hands the connection off to a newly-created protocol handler process.

Client Server
sends response Comments
MSSN begin a management session

First, the protocol process opens the TCP receive window. Then, it creates a new management
connection process, hands off the connection, and exits.

The new process tries to allocate a management connection entry. If none are unused, it sends
a NAK record, closes the connection and exits.

NAK refuse it

If a management connection entry is available, the process copies the parameters from the
MSSN record and notes which services the client offers. Error logging, accounting, and remote
file access are the three types of management services. The process then sends a REPLY that
echoes the services the client offers.

REPLY acknowledge it

Every time a new management client contacts the PrintServer, the PrintServer resets its idea of
the current time from that client. Thus every client must offer time service; the PrintServer uses
the action of asking for and receiving the time from a client to determine if the client is still
alive.

TIME ask the current time
REPLY get it

The server keeps track of whether or not it has been configured; that is, whether or not it has
been contacted by a management client and successfully read its configuration and setup files.
Configuration files are a degenerate case of general file access: requests for the files $CONFIG
or $SETUP are translated by the management client into unique names for the printer. The
server will not accept print sessions until it has successfully read the configuration files.

OPEN open $CONFIG
REPLY get a file handle

READ request a line of the file
REPLY receive it
...

CLOSE close $CONFIG
OPEN open $SETUP

REPLY get a file handle
READ request a line of the file

REPLY receive it
...

CLOSE close $SETUP

13

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

Finally, the process exits, leaving the connection entry allocated for further use. If, when a
connection is used, the client has died or the connection has otherwise failed, the connection
entry is deallocated and its services marked unavailable.

4. What’s next?

The PrintServer40 is the first step in an evolutionary PrintServer family. While the entire
future isn’t clear, some pieces are already in place. Here are some coming attractions and what
needs to be done to use this software on the new hardware.

4.1. PrintServer 20

The current code should work as is on a PrintServer 20, with the exception of the front panel
driver. Implementing a driver for the front panel should be straightforward. Since the console
code is table driven, all that is needed is an input command table and a set of output methods.
The input command table should be constructed to map the character sequences generated by
pressing front panel buttons into the appropriate commands. The output methods will be
whatever code is required to speak to the front panel. Since neither the banner nor the log output
are appropriate for the 20’s small front panel, these output methods will be no-ops.

Some new commands may have to be written to implement the 20’s specified front panel be-
havior, but this should not be very difficult.

4.2. Overlapping jobs

Currently, there is a 12 second delay between the end of one job and the start of the next. This
delay is required to allow the paper pipeline to clear completely - it insures that all pages of the
current job have been correctly delivered to the output stacker before accepting data for a new
job.

Adobe has promised a version of PostScript that will provide a synchronization message when
the processing for the current job is complete. This will allow us to overlap sending data for a
new job with the finishing of the old job. It adds some risk: if a job is deleted from the client
host’s queue when its processing is done, but the printer crashes before all the pages are
delivered, some pages will be irretrievably lost.

To take advantage of this new synchronization mechanism, the server code will have to be
changed. However, the change appears to be simple. The code that synchronizes on an EOJ
packet will wait for the new synchronization message, while the WAIT code will still wait for the
"all pages printed" message. This will allow jobs within a session to be overlapped, but will try
to print all pages from a given session safely.

14

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

5. References

[1] Adobe Systems, Incorporated.
PostScript Language Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1985.

[2] Andrew D. Birell and Bruce Jay Nelson.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59, February, 1984.

[3] Bill Croft and John Gilmore.
Bootstrap Protocol (BOOTP).
RFC 951, SRI-NIC, September, 1985.

[4] Digital Equipment Corporation.
VAXELN C Run-Time Library Reference Manual.
3.1 edition, Maynard, Massachusetts, 1988.

[5] HardCopy Firmware Group.
Distributed Printing Service V2.0 / Controller Software Interface Specification.
V2.0-3 edition, Digital Equipment Corporation, Maynard, Massachusetts, 1987.

[6] Jon Postel.
Transmission Control Protocol.
RFC 793, SRI-NIC, September, 1981.

[7] Jon Postel.
Internet Protocol.
RFC 791, SRI-NIC, September, 1981.

[8] Process Software Corporation.
TCP/IP VAXELN Software User’s Guide.
Version 1.0 edition, Amherst, Massachusetts, 1988.

[9] Brian K. Reid.
TCP/IP PrintServer: BSD Unix Client Interface.
TN 5, Digital Equipment Corporation Western Research Laboratory, September, 1988.

[10] Brian K. Reid and Christopher A. Kent.
TCP/IP PrintServer Print Server Protocol.
TN 4, Digital Equipment Corporation Western Research Laboratory, October, 1988.

15

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

ii

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

Table of Contents
1. Introduction 1

1.1. Clients, management clients, and console clients 1
1.2. The protocol 2
1.3. Goals and non-goals 2

2. Overview 3
2.1. Processes within the server job 5

2.1.1. Main server process 6
2.1.2. Status collector 6
2.1.3. PrintServer protocol handler 7
2.1.4. Console 8

2.2. System state 8
3. Operation 9

3.1. A print session 9
3.2. The consoles 11
3.3. A management connection 12

4. What’s next? 14
4.1. PrintServer 20 14
4.2. Overlapping jobs 14

5. References 15

iii

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

iv

TCP/IP PRINTSERVER SERVER ARCHITECTURE AND IMPLEMENTATION

List of Figures
Figure 1: Jobs in the PrintServer application 4
Figure 2: Processes in the server job 6

v

