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Abstract

Profile-based optimizations are being used with increasing frequency.
Profile information can be used to improve instruction scheduling, code
layout, and to increase instruction level parallelism.  These optimizations
have been shown to be effective when they are applied to the same program
from which the profile was gathered. However, it is an open question how
profile-based optimizations should be applied to library subroutines. If many
programs use libraries in the same way, it may be possible to ‘‘pre-optimize’’
a library, or to use an optimized shared library.

This study examines the use of commonly used libraries among 43 C and
FORTRAN programs to see if the libraries have common behavior across
different programs.  We examine the behavior of the most commonly used
Unix libraries on Digital Unix.  We found that libraries have very predictable
behavior between applications.  This implies that profile-based compiler op-
timizations may be effective for libraries across applications. Therefore, one
can use profile optimizations on shared and non-shared libraries before they
are shipped, allowing a program using those libraries to take advantage of
profile-based optimization without having to gather any profiles.  All results
in this study are shown using branch misprediction rates. We feel this metric
indicates the likelihood that programs have similar behavior, and allows
comparison to earlier branch prediction studies.
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1 Introduction

Profile-guided code optimizations have been shown to be effective by several researchers. Among these optimizations
are basic block and procedure layout optimizations to improve cache and branch behavior [3, 10, 12], register allocation,
and trace scheduling [5, 6, 8, 11]. The technique that all these optimizations have in common is that they use profiles
from a previous run of a given program to predict the behavior of a future run of the same program. However, many
researchers believe that collecting profile information is too costly or time-consuming, and that many programmers
may not collect such information. Thus, there has been considerable interest in heuristic prediction, or predicting the
behavior of program from the program’s structure [1, 4, 16, 14]. These methods use heuristics or statistical information
to predict a programs behavior. They have reasonable prediction accuracy, predicting the direction of 75% to 80% of
the conditional branches in a given program. These techniques can then be applied at compile time to guide the same
compiler optimizations that are applied with profiles.

There are a number of ramifications if computer architects and system designers increasingly rely on profile-guided
optimizations to achieve higher performance. Software engineering practices promote code reuse, and programmers
typically use an existing library if possible. Many systems use shared libraries to reduce the space devoted to redundant
copies of library routines, and a shared library may be concurrently used by a large number of applications. If programs
tend to use shared libraries in a similar manner, performing profile-guided optimizations on those libraries may be
possible. Furthermore, many computer users may not gather profile information for further optimization. If existing
shared and non-shared libraries could be pre-optimized, system performance would improve with little cost.

To our knowledge, there is no study that has examined using profiles from one application to predict the branch
activity of another application. This study examines the behavior of some of the most commonly used Unix libraries:
libc, libm, libX11, libXt, libXaw, libUfor, libfor, and libFutil. There are two desirable outcomes
to our study. The most obvious outcome is that we wanted to determine if programs do or do not use subroutines
from libraries in the same fashion. Additionally, we wanted to see how much time is spent by applications in library
routines.

In this paper, we examine the common behavior between different applications by examining the branching behavior
using shared libraries. We also measure and examine the procedure, basic block, conditional branch, and conditional
branch edge execution frequencies. Our measurements show that programs tend to spend a considerable amount of
time in some libraries: 59% for X11 programs, 16% for Fortran programs, and 10% for our other C programs. The
results also show that these libraries have common behavior between different applications.

2 Background

Several studies have examined how execution from one run of a program predicts the future behavior of that program.
David Wall provided an early study on predicting the future behavior of a program using profiles [15]. The results
showed that using profiles from a different run of the application achieved results close to that of a perfect profile from
the same run. Fisher and Freundenberger confirmed this observation applied to static branch prediction [9]. They
used traces from one execution of a program to predict the outcome of conditional branches for the same and different
inputs. They defined perfect profile prediction to be the prediction accuracy achieved when the same input was used to
trace the program and then used to measure the accuracy of static branch prediction. Their C/Integer results show that,
on average, 95% of the perfect profile prediction accuracy is achieved when profiling a program with the best matched
previous trace. Only 75% of the perfect profile prediction accuracy was achieved when taking the worse previous
trace. Both of these studies and others have promoted profile based optimizations as a means to achieve increased
processing performance.

More recently other studies have been performed using compile time heuristics to estimate profile information.
These studies address a number of issues. First, it may be possible to use simple heuristics to estimate profiles,
implying that profile-based optimizations can be performed using heuristics. Furthermore, even though many extant
compilers perform some profile-based optimizations, most programmers do not use such options, either because the
profiling method is not standardized across platforms, they are unaware of the option, they are uncertain of the benefits
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of profile-based optimization, or they believe that the process of gathering profiles and recompiling their programs is
too expensive.

Ball and Larus proposed several heuristics for predicting a program’s behavior at compile time [1]. In a later
study [4], we found their heuristics are reasonably accurate, resulting in a 25% mispredict rate at compile time without
profile information. By comparison, perfect profile prediction had a 8% miss rate for the same collection of programs.
Other studies by Wagner et. al. and Wu and Larus have focused on using these heuristics and other techniques to fully
estimate a programs behavior at compile time [14, 16].

We examined an alternative technique for predicting program behavior by combining profile information gathered
from a number of applications. We collected a “feature vector” describing an individual conditional branch, and then
use various machine-learning techniques to determine what combination of features, if any, accurately predicted the
branches. We have considered two techniques; the first, described in [4], uses a “neural network” to combine the
information from the feature vectors, and the second technique uses “decision trees” to accomplish the same goal. We
found that we could create heuristics to be used at compile time for a specific compiler, language and architecture.
Our results show that this technique, called Evidence-based Static Prediction (ESP), results in a 20% mispredict rate,
a slight improvement to the Ball and Larus heuristics, which had a miss rate of 25%.

This study is motivated by these previous studies. We wondered if it would be effective to use profile information
to predict library behavior across different applications rather than predicting the behavior of library routines using the
Ball and Larus heuristics or the ESP techniques. We felt libraries had similar behavior between different applications. If
this was true, as this study shows, then one could use profiles to profile the libraries and perform compiler optimizations.
Any program can then take advantage of the pre-optimized libraries without having to pay the overhead of gathering
profiles and performing compiler optimizations on the library code.

3 Evaluation Methods

To perform our evaluation, we collected information from 43 C and FORTRAN programs. We instrumented the
programs from the SPEC92 benchmark suite and other programs, including many from the Perfect Club [2] suite and
a large number of applications for the X window system. We used ATOM to instrument the programs [13]. The
programs were compiled on a variety of DEC Alpha workstations using the Alpha AXP-21064 processor with either
the DEC C, C++ or FORTRAN compilers. Most programs were compiled using the standard OSF/1 V3.2 operating
systems; other programs were compiled using different compilers and different versions of the operating system. All
programs were compiled with optimization and linked with shared libraries. Although we used shared libraries in
our study, the results should be immediately applicable to non-shared libraries. We instrumented the shared libraries
because it clearly identified the location of each subroutine, which could not be done by the subroutine name alone. For
example, some programs provide their own implementation of “qsort”. We wanted to determine when an application
or system routine was being used.

Table 1 shows the basic statistics for the programs we instrumented. Later tables examine a subset of the programs
shown in Table 1, because not all programs use all libraries. The first column in Table 1 lists the number of instructions
traced in millions of instructions, and the second column gives the percentage of traced instructions that are branches.
The next six columns divide the traced branches into six classes: conditional branches (CB), unconditional branches
(UB), procedure calls (PC), indirect procedure calls (IJSR), return instructions (RET), and indirect jumps (JMP). The
second to last column shows the percentage of procedure calls that are between (Inter) libraries (objects). Procedure
calls to shared libraries are implemented as indirect jumps on the Alpha architecture running Digital Unix. Furthermore,
shared libraries require that symbols be “preemptable” – that is, if the main program defines a subroutine, and that
subroutine name is called within a library routine, the library routine must call the subroutine in the main program.
This applies to all procedures declared in libraries that are not statically defined. This means that procedure calls to
non-statically defined procedures within a shared library must use an indirect jump to locate the appropriate subroutine.
The last column in Table 1 shows the percentage of all subroutine calls where the source and destination are within the
same library, but because of symbol preemption an indirect procedure call must be used.

These last two columns in Table 1 are of interest when implementing shared libraries. Overall, 60% (46:4%+13:3%)
of the procedure calls executed by the programs must be implemented as indirect procedure calls. A sizable fraction
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# Insn’s % of Breakdown of Branches %Procs
Program (Mill.) Branches %CB %UB %PC %IJSR %RET %JMP Inter NS Libs

APS 1459 4.7 84.9 4.6 5.0 0.1 5.2 0.2 53.5 2.5
CSS 382 9.5 77.3 8.7 5.1 0.9 5.9 2.1 40.8 14.3
LGS 904 8.1 85.4 3.2 4.9 0.7 5.7 0.0 27.7 0.0
LWS 14392 8.2 80.2 3.2 5.5 2.8 8.3 0.0 70.2 0.0
NAS 3511 3.8 60.8 5.7 15.3 0.2 15.5 2.5 97.9 2.1
SDS 1108 6.8 99.1 0.1 0.4 0.0 0.4 0.0 6.0 4.9
TFS 1718 3.4 94.0 1.0 2.3 0.0 2.4 0.3 93.2 5.9
TIS 1731 5.2 100.0 0.0 0.0 0.0 0.0 0.0 28.4 60.4
WSS 5556 5.6 85.8 6.7 1.7 0.4 2.0 3.4 57.6 33.9
fpppp 4262 2.7 87.1 7.5 0.7 2.0 2.7 0.0 30.6 0.1
hydro2d 6349 5.6 97.2 0.0 1.4 0.0 1.4 0.0 99.2 0.2
mdljsp2 3681 9.6 95.4 4.0 0.3 0.0 0.3 0.0 0.1 0.1
nasa7 6237 3.0 82.6 5.4 5.1 0.7 5.8 0.4 92.8 6.1
ora 5654 5.8 71.1 1.7 7.7 5.9 13.6 0.0 94.5 0.0
su2cor 4872 4.0 77.6 6.8 7.4 0.0 7.4 0.8 98.8 0.0
swm256 11041 1.7 99.6 0.2 0.1 0.0 0.1 0.1 96.1 0.3
tomcatv 910 3.3 99.8 0.1 0.0 0.0 0.0 0.0 44.0 54.7
turb3d 8682 6.4 82.4 5.0 5.0 1.2 6.2 0.3 66.9 0.0
wave5 3494 5.4 77.4 4.9 7.6 1.1 8.6 0.5 65.1 0.0
alvinn 5235 9.1 98.3 0.8 0.4 0.0 0.4 0.0 21.8 69.8
compress 89 12.4 86.6 8.8 2.3 0.0 2.3 0.0 0.1 0.1
ditroff 39 17.5 76.3 4.1 9.6 0.1 9.7 0.1 11.6 0.0
ear 13143 7.8 50.6 1.2 24.1 0.0 24.1 0.1 94.3 2.7
eqntott 1782 11.3 93.5 1.7 0.7 1.6 2.3 0.2 23.1 66.9
espresso 505 17.7 93.0 2.4 2.1 0.1 2.2 0.1 20.2 1.2
go 22770 15.6 80.4 4.0 7.7 0.0 7.7 0.1 0.2 0.0
li 1307 18.4 63.9 7.7 12.9 0.4 13.2 1.8 0.1 0.2
m88ksim 70796 18.7 69.9 16.0 6.5 0.1 6.6 0.9 0.0 0.0
perl 3400 14.1 66.7 8.0 9.9 1.0 10.8 3.7 24.2 2.9
sc 900 23.0 84.3 3.2 5.6 0.0 5.6 1.2 20.4 40.2
vortex 90401 16.3 69.2 10.1 10.3 0.0 10.3 0.1 5.9 0.2
cbzone 25 11.9 74.4 5.3 9.6 0.2 9.8 0.6 55.4 15.4
ghostview 22 15.4 78.2 5.1 7.7 0.5 8.2 0.3 43.0 31.6
gs 446 14.8 74.5 10.8 4.4 1.2 5.6 3.4 17.8 3.5
xanim 70 12.6 89.8 6.4 1.9 0.0 1.9 0.0 76.2 12.4
xfig 161 16.1 75.2 6.5 8.3 0.6 8.9 0.4 43.0 27.9
xkeycaps 32 17.7 76.2 6.6 6.8 1.6 8.4 0.3 52.2 22.0
xmgr 155 15.5 76.2 6.6 6.8 1.6 8.4 0.4 39.2 25.1
xpaint 20 14.9 73.6 7.0 8.1 1.4 9.5 0.4 52.3 31.5
xpilot 190 13.5 86.8 3.6 4.4 0.1 4.5 0.6 25.7 19.1
xpool 622 8.0 51.0 9.1 17.4 2.6 19.9 0.1 52.1 1.1
xtex 50 13.6 77.3 9.0 6.0 0.1 6.1 1.4 62.2 11.2
xv 1440 7.0 81.6 2.9 7.7 0.0 7.7 0.0 90.9 0.8

Fortran Avg 4523 5.4 86.2 3.6 4.0 0.8 4.8 0.6 61.2 9.8
C Avg 17531 15.1 77.7 5.7 7.7 0.3 7.9 0.7 18.5 15.4
X Avg 270 13.4 76.2 6.6 7.4 0.8 8.3 0.7 50.8 16.8
Overall Avg 6966 10.4 81.1 5.0 6.0 0.7 6.6 0.6 46.4 13.3

Table 1: Measured attributes of the programs used in our analysis.
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% of Instructions Executed in Each Library
Programs main libc libm libUfor libfor libFutil libots
APS 92.17 0.12 5.19 1.19 0.46 0.87 —
CSS 65.52 0.85 10.96 3.71 16.62 2.34 —
LGS 93.36 — 5.19 1.43 0.01 — —
LWS 56.90 — 43.08 — 0.01 0.01 —
NAS 51.73 0.09 42.56 0.11 3.53 1.98 —
SDS 99.63 0.03 0.03 0.04 0.12 0.15 —
TFS 94.49 0.14 4.48 0.11 0.51 0.27 —
TIS 99.99 — — — — — —
WSS 80.75 0.38 3.11 0.20 7.02 8.54 —
fpppp

p
95.18 — 4.81 — — — —

hydro2d
p

94.34 — 5.63 — 0.02 — —
mdljsp2

p
99.99 — — — — — —

nasa7
p

87.60 0.05 11.81 0.07 0.25 0.22 —
ora

p
44.66 — 55.34 — — — —

su2cor
p

77.04 — 22.96 — — — —
swm256

p
99.89 — 0.11 — — — —

tomcatv
p

99.87 — — 0.02 0.06 0.04 —
turb3d 89.17 — 10.83 — — — —
wave5

p
77.89 — 16.45 5.66 — — —

Avg 84.22 0.09 12.76 0.66 1.51 0.76 0.00

Table 2: Percentage of instructions executed in the main program and each library for the Fortran programs. Programs
with a check mark (

p
) are in the SPEC92 benchmark suite.

of these calls (13.3%) occur because of the symbol preemption rules in Unix. Indirect procedure calls contribute
considerable overhead to applications. Not only do they require mechanisms such as branch target buffers to avoid
mispredict penalties, the need for the late binding in shared libraries makes inter-procedural optimization very difficult
or impossible. There are a number of optimizations or organizations that can be considered to reduce the overhead of
shared libraries; however, these are issues we will address in a later paper.

3.1 Choosing the Libraries for this Study

Tables 2, 3, and 4 show all the libraries used by the FORTRAN and C programs we measured. All the FORTRAN
programs are in one group, since they use the same libraries. We broke the C programs into two groups. The first group
did not use the X11 window libraries, while the second group did. Programs that are part of the SPEC92 benchmark
suite are indicated by check marks. These tables show the percentage of instructions executed by each program in
each library. The “main” library indicates the main module of the program. The dashed entries (—) in the tables mean
that the library was linked with the application, but less than 0.01 percent of the program’s instructions were executed
in that library. An empty value for a given library and program indicates that the program was not linked with that
library. For example, the APS program shown in Table 2 executes 92.17% of its instructions in the main program,
and a small fraction of its instructions in libc, libm, libUfor, libfor and libFutil. Although it is linked
with libots, it spends very little time in that library. By comparison, the blank entries for the alvinn program in
Table 3 show it is not linked with libots or libcurses.

These results show that for the FORTRAN programs 84% of the program’s execution takes place in the main
program module while 13% of execution takes place in libm, with the remaining 3% of instructions being executed
in libUfor, libfor, and libFutil on average. These libraries contain routines for the FORTRAN compiler,
such as formatted I/O and the implementation for intrinsic functions. The libots library contains runtime support
for the DEC GEM compiler, such as field extraction and extended precision functions.
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% of Instructions Executed in Each Library
Programs main libc libm libots libcurses
alvinn

p
97.25 2.12 0.63

compress
p

99.98 0.02
ditroff 87.80 12.20
ear

p
90.33 6.12 3.55

eqntott
p

94.29 5.71
espresso

p
93.93 6.07

go 99.99 0.01
li
p

99.71 0.29 —
m88ksim 99.75 0.03 — 0.22
perl 70.70 29.30 —
sc
p

53.03 18.42 — 28.55
vortex 95.11 4.89 —
Avg 90.15 7.10 0.35 0.02 2.38

Table 3: Percentage of instructions executed in the main program and each library for the C programs that do not use
the X11 libraries. Programs with a check mark (

p
) are in the SPEC92 benchmark suite.

% of Instructions Executed in Each Library
Programs main libc libm libX11 libXaw libXext libXm libXmu libXt libdnet stub
cbzone 48.10 11.80 7.60 32.14 — 0.36 —
ghostview 3.38 23.39 — 20.93 7.53 0.02 0.08 44.68 —
gs 91.88 4.99 0.18 2.93 — 0.02 —
xanim 62.40 29.96 0.06 4.36 0.09 — — 3.13 —
xfig 4.95 15.05 0.15 28.58 9.84 — 0.14 41.30 —
xkeycaps 6.47 18.45 43.15 3.70 0.01 0.06 28.15 —
xmgr 22.95 12.13 0.04 23.24 — 17.05 — 24.60 —
xpaint 14.11 11.01 — 25.43 0.77 — 0.02 48.66 —
xpilot 68.64 24.24 0.03 7.09 — —
xpool 53.17 0.26 44.91 1.65 — —
xtex 45.02 23.86 — 23.09 2.95 — 0.03 5.05 —
xv 74.07 25.46 0.01 0.46 —
Avg 41.26 16.72 4.41 17.75 2.07 0.00 1.42 0.03 16.33 0.00

Table 4: Percentage of instructions executed in the main program and each library for the C programs that use the X11
libraries.
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For the C programs 90% of the program’s execution is in the main module, while most of the remaining instructions
executed are in libc. The libcurses library implements a screen interface for terminals, and is only used by the
sc spreadsheet program. For the X11 C programs, only 41% of the instructions are executed in the main module,
while 17% execute in libc, 18% in libX11, 16% in libXt, and 2% in libXaw. The libX11 library implements
the basic protocol layer for the X11 window system. The libXt library implements the basic toolkit infrastructure
and libXaw implements a specific collection of interface components.

Overall, Tables 2 through 4 indicate that the FORTRAN programs spend more of their time in library routines
than C programs that do not use the X11 libraries, and that the X11 programs execute in libraries more than the
other programs. These tables also indicate that the SPEC92 C programs are particularly unrepresentative in their use
of library routines. This is understandable since the SPEC92 benchmark suite was intended to be highly portable.
Although FORTRAN is a highly standardized language, the C language is less standardized. Thus, “portable” C
programs may make little use of various libraries.

From these tables we chose to examine libc, libX11, libXt, libXaw, libm, libUfor, libfor,
libFutil, and libX11 in this study. The remaining libraries were not used in enough programs or used enough in
any one of the programs to provide meaningful data. In our cross validation study, for each library we only include
the programs that have more than 1% of their instructions executed in that library, as shown in Tables 2 through 4.
For example, we only consider ghostview, xfig, xkeycaps, and xtex when gathering data for libXaw.

4 Library Results

We examined the differences in profile branch prediction accuracy and the coverage of procedures, basic blocks,
conditional branches, and conditional branch edges to determine how closely a profile gathered from one group of
applications matches the behavior of another application. We conducted a cross-validation study. When measuring
the performance for a particular application, we used library profile information from all other programs excluding
the program being measured. We created a weighted (Weight) and normalized (Norm) average of their profiles. In
the weighted average, the profile statistics gathered for a given program are weighted by the number of times the
program executed that branch or basic block. In the normalized average, each program was given equal weight when
creating the combined profile. Therefore, when creating the combined normalized profile, all the profiled branch
frequencies for a given program are divided by the total number of branches executed in that program’s profile before
they are added into the combined cross-validation profile. We call these profiles the cross-validation profiles. For
example, when examining the branching behavior for xfig in the libXaw library, we created a cross-validation
profile using libXaw profiles from ghostview, xkeycaps, and xtex. We used these profiles to predict the
conditional branches and obtain the basic-block coverage for the program that was excluded from this process. This
provides a fair evaluation of how well profiles for a given library will perform for any given program. For each library,
we show detailed results for conditional branches. We concentrate on conditional branch prediction because we feel it
is the best indicator for how well a profile will predict the behavior of a given program.

Results and Explanation of Data Presented for C Library: We will present the same statistics for each library.
Table 6 shows the conditional branch statistics for libc. The first column shows the overall percentage of conditional
branches that each program executes in this library. The next three columns show the coverage achieved by the
cross-validation profile. The column labeled “Static-All” represents the percent of static conditional branch sites in
libc the program executes, “Static-Cross” shows the percentage of static conditional branch sites executed that were
also executed in the cross-validation profile, and “Dynamic” represents the percentage of dynamic conditional branches
executed inlibc that were also executed in the cross-validation profile. For example, 20% of the dynamic conditional
branches executed in cbzone were executed in libc. However, cbzone only executes 6% of the static conditional
branch sites in libc. About 98% of these conditional branch sites executed by cbzone were also executed by
other programs in the cross-validation profiles, and these sites account for 100% of the 20% of the dynamic number
of conditional branches executed in libc for cbzone. The Dynamic percentage can be larger or smaller than the
Static-Cross percentage because some of the static branch sites may be frequently or infrequently executed.
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Heuristic Heuristic
Name Description

Loop Branch Predict that the edge back to the loop’s head is taken and the edge exiting
the loop is not taken.

Loop Exit If a comparison is inside a loop and no successor is a loop head, predict
the edge exiting the loop as not taken.

Pointer If a branch compares a pointer against null or compares two pointers,
predict the branch on false condition as taken.

Call Predict the successor that contains a call and does not post-dominate the
branch as taken.

Opcode If a branch checks an integer for less than zero, less than or equal to zero,
or equal to a constant, predict the branch on false condition.

Return Predict the successor that contains a return as not taken.
Store Predict the successor that contains a store instruction and does not post-

dominate the branch as not taken.
Loop Header Predict the successor that does not post-dominate and is a loop header or

a loop pre-header as taken.
Guard If a register is an operand of the branch comparison, the register is used

before being defined in a successor block, and the successor block does
not post-dominate the branch, predict the successor block as taken.

Table 5: Summary of the Ball/Larus Heuristics

The last five columns in this table indicate how well the cross-validation profile can predict the outcome of the
conditional branches in libc. The column labeled “BTFNT” represents the conditional branch miss rates using the
“backwards-taken, forwards-not-taken” static branch prediction technique. The next column, labeled “B&L”, shows
the miss rates due to the heuristics as defined by Ball and Larus [1]. We use the same implementation for the B&L
heuristics in this study as was used in the previous ESP study [4]. Table 5 describes the heuristics in detail. The
heuristics were applied one by one in a pre-determined order, and branches not being predicted by a heuristic are
predicted using a uniform random distribution. The pre-determined order is shown in Table 5, going from top to
bottom, starting with the Loop-Branch heuristic ending with the Guard heuristic. This order was found to be one of
the most effective ordering in Ball and Larus study. The “Weight” column in Table 6 represents the static profile-based
miss rates using the weighted cross-validation profile, and “Norm” represents the miss rates using the normalized
cross-validation profile. The “Perfect” column is the miss rates achieved by using the same input to trace the program
and to measure the branch prediction accuracy. In each case, the misprediction rates shown are for only the conditional
branches that were also executed in the cross-validation profile. Therefore for ear these results apply to 90% of its
conditional branches executed in libc, which accounts for 14% (90% * 16%) of all the conditional branches executed
by ear. The misprediction results show that, forear, the cross-validation profile achieves a normalized misprediction
rate of 19% which is 9% higher than the perfect miss rate of 10%. The BTFNT miss rate for ear is 47%, and the B&L
heuristic miss rate is 41%.

Overall, the table shows that the collection of programs we examined used only a small fraction of the static
conditional branch sites in libc, and that the weighted and normalized cross-validation profiles provide accurate
branch prediction information for those branches.

Results for X Libraries: Table 7 shows the conditional branch results for the X windows librarieslibX11, libXt
and libXaw. The format for these tables follows that of the table described previously for libc. Programs may
appear in multiple tables because they use multiple libraries. For example, xtex uses libc, libX11, libXt and
libXaw, while xpilot only uses libc and libX11. In each case, the “% of CBrs” reflects the percentage of
conditional branches that can be attributed to that library. These results show that the X programs execute considerably
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% of % Conditional Branch Coverage % Mispredicted Branches
Programs CBrs Static All Static Cross Dynamic BTFNT B&L Weight Norm Perfect
alvinn 4 4 98 94 44 38 16 12 5
ditroff 7 2 100 100 5 8 20 19 2
ear 16 4 95 90 47 41 17 19 10
eqntott 5 2 99 100 48 54 14 24 4
espresso 5 4 98 100 25 39 14 14 11
perl 29 3 100 100 44 47 32 30 15
sc 10 4 92 73 51 42 8 9 4
vortex 6 5 96 100 25 27 14 20 11
cbzone 20 6 98 100 32 47 22 21 18
ghostview 28 8 99 100 37 26 11 14 8
gs 7 7 99 100 37 35 25 18 13
xanim 35 7 100 100 10 14 13 13 6
xfig 18 8 100 100 26 28 18 16 11
xkeycaps 19 8 99 100 33 31 17 17 13
xmgr 16 10 96 100 29 32 17 17 13
xpaint 13 6 100 100 33 47 13 14 10
xpilot 36 10 93 48 26 35 16 14 10
xtex 25 9 100 100 47 25 12 11 2
xv 37 7 99 100 20 20 19 19 0
Libc Avg 18 6 98 95 33 34 17 17 9

Table 6: libc conditional branch statistics. % of CBrs represents the percent of conditional branches executed in
the library for each program. The column labeled Static-All represents the percent of static conditional branch sites
a program executes in the library. Static-Cross shows the percentage of conditional branch sites executed that were
also executed in the cross-validation profile, and Dynamic represents the percentage of dynamic conditional branches
executed in the library that were also executed in the cross-validation profile. The mispredict rates shown are only for
the conditional branches that were also executed in the cross-validation profile. The column labeled BTFNT represents
the conditional branch miss rates using the “backwards-taken, forwards-not-taken” static branch prediction technique.
B&L shows the miss rates using the Ball and Larus heuristics. The Weight column represents the static profile-based
miss rates using the weighted cross-validation profile and Norm represents the miss rates using the normalized cross-
validation profile. The Perfect column is the miss rates achieved by using the profile of a program to predict the same
program.
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% of % Conditional Branch Coverage % Mispredicted Branches
Programs CBrs Static All Static Cross Dynamic BTFNT B&L Weight Norm Perfect

LibX11 Conditional Branch Statistics
cbzone 43 9 98 100 76 39 6 6 4
ghostview 19 13 97 100 37 30 10 11 9
gs 2 9 98 98 70 45 2 2 1
xanim 4 10 95 95 30 24 9 7 6
xfig 25 14 96 100 39 35 9 9 8
xkeycaps 42 14 95 72 38 32 16 17 12
xmgr 23 15 75 99 37 33 11 14 9
xpaint 25 12 97 98 51 40 12 11 9
xpilot 8 10 97 99 73 45 7 8 4
xpool 4 5 99 100 62 38 8 10 6
xtex 24 13 94 100 48 39 7 7 5
LibX11 Avg 20 11 95 96 51 37 9 9 7

LibXt Conditional Branch Statistics
ghostview 44 43 98 99 28 21 8 8 6
xanim 3 30 100 100 25 24 8 8 5
xfig 42 45 98 100 36 28 8 9 6
xkeycaps 27 41 98 99 42 33 10 11 8
xmgr 30 43 89 95 44 30 14 14 9
xpaint 53 36 99 100 29 27 8 7 5
xtex 7 43 97 100 40 31 12 12 10
LibXt Avg 29 40 97 99 35 28 10 10 7

LibXaw Conditional Branch Statistics
ghostview 6 33 89 99 44 32 12 11 8
xfig 12 32 95 99 48 31 6 5 2
xkeycaps 2 23 80 97 46 45 13 12 7
xtex 4 34 94 100 47 26 5 5 3
LibXaw Avg 6 30 89 99 46 34 9 9 5

Table 7: Conditional branch statistics for the X programs using the libX11, libXt and libXaw libraries.
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% of % Conditional Branch Coverage % Mispredicted Branches
Programs CBrs Static All Static Cross Dynamic BTFNT B&L Weight Norm Perfect

Libm Conditional Branch Statistics
APS 3 1 93 100 14 71 2 2 0
CSS 4 0 100 100 20 72 13 13 12
LGS 2 0 100 100 9 71 0 0 0
LWS 12 1 93 100 31 100 0 0 0
NAS 28 1 86 100 11 100 0 0 0
TFS 3 1 51 93 6 91 2 2 2
WSS 2 1 71 99 46 92 0 0 0
fpppp 5 1 100 100 33 82 4 4 4
hydro2d 1 0 100 100 0 100 0 0 0
nasa7 14 1 73 81 8 61 2 2 2
ora 19 0 100 100 0 100 0 0 0
su2cor 18 1 69 73 2 63 2 2 2
turb3d 42 1 100 100 66 43 13 13 13
wave5 10 1 70 83 5 80 4 4 4
Libm Avg 11 1 86 95 18 81 3 3 3

LibUfor Conditional Branch Statistics
APS 5 19 97 100 28 48 24 1 1
CSS 8 18 96 100 26 15 11 11 1
LGS 3 19 98 100 49 97 48 47 0
wave5 17 18 100 92 18 37 35 35 11
LibUfor Avg 8 18 98 98 30 49 29 23 3

Libfor Conditional Branch Statistics
CSS 20 4 82 99 50 44 7 5 3
NAS 24 5 71 99 12 13 4 16 2
WSS 24 5 93 98 13 12 5 17 3
Libfor Avg 23 4 82 99 25 23 5 13 3

LibFutil Conditional Branch Statistics
APS 3 7 98 100 55 42 9 12 7
CSS 3 7 100 100 45 30 41 41 5
NAS 13 8 65 1 42 22 10 9 8
WSS 25 7 95 88 36 38 7 10 3
LibFutil Avg 11 7 90 72 44 33 17 18 6

Table 8: Conditional branch statistics for the Fortran programs using the libm, libUfor, libfor and libFutil
libraries.
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more code in libraries than the other C programs, that the libraries are used similarly between different applications,
and the cross-validation profile miss rates are very close to the Perfect miss rate.

Results for FORTRAN Libraries: Table 8 shows the conditional branch misprediction rates for the FORTRAN
programs that use libm, libUfor, libfor, and libFutil. Notice that the cross-validation profiles for libm
have an average 3% misprediction rate, which is the same as the average Perfect miss rate. This implies that
performing profile optimizations on libm would be highly effective. The other libraries also have decent miss rates,
with libUfor having the worse accuracy. Notice the high miss rates of 81% for libm and 49% for libUfor
when using the B&L heuristics in comparison to the respective miss rates of 18% and 30% when using static BTFNT
prediction. Later, we will provide analysis showing the reasons for B&L heuristic’s poor performance for libm.

4.1 Combined Library Results

The previous results showed the miss rates for the individual libraries. Now, we present the overall combined library
miss rates for each program and the miss rates achieved by the program’s main module.

The first two columns of Table 9 show the dynamic percentage of all branches that are executed in library code,
followed by the percentage of those branches that are recorded in the cross-validation profile. For example, 65% of
the conditional branches executed by NAS were executed in library code, and 80% of those branches were executed
(covered) in a cross-validation profile. Thus, 65% � 80%, or 52%, of the total branches executed by NAS were
predicted by library profiles from other programs.

The next four columns, under the major heading “Library Miss Rates for Branches in Cross Profile”, shows the
mispredict rates for all the conditional branches in a program that are covered in the cross-validation profile. We created
a normalized cross-validation profile as before. Since we are addressing multiple libraries, we included profiles from
each library that the program used into a combined cross-validation profile. We only used the programs mentioned
in the previous section to form the cross-validation profile for a specific library. For example, when gathering the
statistics for alvinn, which uses libc and libm, we combined the profiles for libc for all the programs shown
in Table 6, leaving out alvinn as before. Then, for libm, we combined all the profiles for the 14 programs listed
in Table 8. We repeated this process creating a combined cross-validation profile for each program, and we used the
“normalized” cross-validation profiles when reporting mispredict rates.

The results in columns 3 through 6 in Table 9 show the library misprediction rates for only branches in the cross-
validation profile. These miss rates apply to 34%� 92%, or 31% of the conditional branches executed on average for
the programs we examined. Overall, the low misprediction rates indicate that applying profiled-directed optimizations
to library routines would be useful, reducing the average branch misprediction rate for conditional branches executed
in libraries to 12%. This mispredict rate is comparable to the results Fisher and Freundenberger observed when using
different runs of a program to predict the outcome of the same program. They found for their C/Integer benchmarks
that using different profiles gave them a prediction accuracy between 75% to 95% of “perfect” branch prediction. In
Table 9 the “C Avg” results show that, 82%=92%, or 89% of the Perfect branch prediction accuracy is achieved for
conditional branches using profiles from different applications.

The last three columns in Table 9 show the miss rates for each program’s “Main Program Module” for the BTFNT,
B&L, and the Perfect profiling static branch prediction schemes. By main program module, we mean all non Unix
library code. On average, the programs in Table 9 execute 34% of their conditional branches in library code and 66%
of their branches in the main program module. The results show that on average the B&L heuristics have a 25% miss
rate for the main program module, which is better than the 33% miss rate for BTFNT prediction.

4.2 Analysis of Heuristic-based Library Performance

The average library results in Table 9 show that the B&L heuristics perform worse, with 47% miss rate, than
the simple BTFNT prediction scheme, which has only a 31% miss rate. Tables 10 and 11 show the reasons for this
degradation in performance. These tables contain the average branch statistics for each of the libraries previously
examined. The row labeled “Library Avg” shows the average statistics for the library results in Table 9, and “Main
Avg” is the average statistics for the main program module results also shown in Table 9.
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% Cross Prof Library Miss Rates for Main Program Module
Branches Branches in Cross Profile Miss rates

Programs Lib Cov BTFNT B&L Norm Perfect BTFNT B&L Perfect
APS 12 100 34 50 6 3 27 25 11
CSS 37 99 41 25 12 5 33 33 12
LGS 5 100 32 58 27 0 47 29 22
LWS 12 100 31 100 0 0 37 24 21
NAS 65 80 12 60 8 1 20 20 2
TFS 6 97 34 59 12 6 9 5 5
WSS 53 94 26 39 14 3 24 26 20
fpppp 5 100 33 80 4 4 44 58 12
hydro2d 1 100 2 97 1 0 25 12 4
nasa7 17 83 16 56 4 3 3 3 3
ora 19 100 0 100 0 0 37 9 5
su2cor 18 73 2 62 2 2 14 14 11
turb3d 42 100 66 28 13 13 23 20 13
wave5 27 89 14 51 24 9 18 20 2
alvinn 4 95 44 41 11 5 0 0 0
ditroff 7 100 5 8 19 2 53 26 5
ear 16 90 47 39 19 10 5 6 3
eqntott 5 100 48 54 24 4 47 4 2
espresso 5 100 25 39 14 11 33 22 15
perl 29 100 44 47 30 15 46 39 5
sc 37 20 51 56 9 4 44 41 16
vortex 6 100 25 27 20 11 31 20 0
cbzone 66 98 61 41 11 9 38 31 14
ghostview 97 99 33 25 10 7 49 36 10
gs 9 97 45 40 14 10 43 34 9
xanim 42 100 13 14 12 6 45 45 20
xfig 97 99 36 31 10 7 50 35 8
xkeycaps 91 86 38 35 14 11 48 33 7
xmgr 86 77 38 32 14 10 45 28 15
xpaint 91 99 36 32 9 7 57 36 5
xpilot 44 57 40 33 12 8 52 35 7
xpool 20 100 14 86 3 2 29 38 4
xtex 59 100 47 32 9 4 18 19 9
xv 38 100 21 20 19 0 14 28 5

Fortran Avg 23 94 24 62 9 4 26 21 10
C Avg 14 88 36 39 18 8 32 20 6
X Avg 62 93 35 35 12 7 41 33 9
Overall Avg 34 92 31 47 12 6 33 25 9

Table 9: Overall Miss rates for branches executed in Library code and in the Main Program Module. For % Cross
Prof Branches, Lib represents the percentage of branches executed in libraries for each program, and Cov represents
the percentage of those branches that are covered in the cross-validation profile. Note, only results for the programs
included in the previous individual library studies are shown. Programs that were not included in this table execute
less than 1% of their instructions in library code.
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Forward Branching CBrs Backward Branching CBrs
%Not-Taken %Taken %Not-Taken %Taken

libc 53 29 4 14
libX11 32 48 3 17
libXt 31 32 3 34
libXaw 45 45 1 9
libm 82 17 1 0
libUfor 57 28 2 13
libfor 55 22 3 20
libFutil 42 39 5 14

Library Avg 58 28 3 11
Main Avg 30 28 5 37

Table 10: Breakdown of not-taken and taken executed branches in terms of the conditional branch instruction’s
branching direction. Average results are shown for each of the libraries previously studied, and for the overall Library
Avg and Main Program Avg. Note, that taking the average of the individual library results will not equal the Library
Avg, because Library Avg shows the average of all the programs combined library rates.

L-Branch L-Exit Pointer Call Opcode Return Store L-Header Guard
libc 26 (17) 39 (11) 55 (3) 48 (3) 13 (11) 27 (16) 59 (8) 60 (2) 42 (2)
libX11 19 (20) 27 (7) 67 (20) 32 (13) 21 (4) 28 (7) 36 (12) 5 (1) 56 (2)
libXt 10 (37) 17 (9) 53 (13) 33 (10) 6 (1) 18 (5) 49 (3) 36 (1) 60 (4)
libXaw 12 (10) 18 (7) 44 (10) 33 (16) 11 (2) 13 (8) 23 (7) 24 (0) 29 (14)
libm 93 (1) 28 (0) — — 50 (0) 16 (3) 84 (74) 69 (14) — — 43 (2)
libUfor 8 (15) 95 (9) 49 (1) 21 (15) 63 (13) 3 (18) 56 (2) 100 (0) 50 (0)
libfor 9 (20) 14 (23) 85 (1) 28 (7) 21 (2) 20 (6) 15 (14) 100 (0) 41 (4)
libFutil 38 (16) 74 (5) 7 (5) 27 (5) 35 (13) 4 (9) 27 (15) 79 (4) 27 (6)

Library Avg 26 (13) 36 (8) 55 (5) 34 (5) 23 (7) 45 (31) 51 (9) 63 (1) 43 (3)
Main Avg 12 (42) 29 (8) 59 (3) 49 (9) 20 (6) 32 (4) 43 (10) 35 (2) 33 (4)

Table 11: Breakdown of Ball and Larus heuristics. There are two values shown for each heuristic. The left value is
the mispredict rate and right value in parentheses is the percentage of branches executed that used the heuristic. The
left over percentage of branches not shown were predicted using a uniform random distribution. Average results are
shown for each of the libraries previously studied, and for the overall Library Avg and Main Program Avg. The dashed
entries (—), for a given library and heuristic, indicates that the heuristic was never used for that library.

Table 10 gives a breakdown of the number of conditional branches executed that were not-taken and taken in
terms of where the branches target instruction is laid out in the code in comparison to the branches location. We call
a branch a Backward branch, when the target address of the branch appears before the branches address in the code’s
static layout. A Forward branch has its target address appearing after the branches address in the code layout. This
table, in effect, shows the breakdown of the performance for the BTFNT architecture. The BTFNT miss rate is the
sum of the percentage of Forward branches that are taken and the percentage of Backward branches that are not-taken.
The results show that libm has 82% of its branches executed as Forward branches that are not-taken. In general, the
library routines execute very few Backward branches, only 14%, compared to 42% of the branches being Backward
in the main program module.

Table 11 gives the average breakdown of the B&L heuristics for each library. The heuristics are described in
Table 5, and were applied to the branches in the pre-determined order shown in going from left to right in Table 11,
with the Loop-Branch heuristic being the first heuristic applied. For each heuristic shown in Table 11 there are two
numbers. The left number shows the heuristic mispredict rate and the right number shown in parentheses represents
the percentage of branches executed in the library that used the corresponding heuristic for branch prediction. For
example, the programs using libc in Table 6 use the Return heuristic for 16% of the executed branches on average

13



with a mispredict rate of 27%. The remaining percentage of branches executed not shown in Table 11 were predicted
using a uniform random distribution. For example, the B&L heuristics were used on average to predict 86% of the
executed branches in libX11, and the remaining 14% of the branches used random prediction.

These results show why poor performance is seen for libm when using the B&L heuristics. The results show
that libm has 74% of the branches predicted using the Return heuristic with a mispredict rate of 84%. This means
that over 62%, 84% � 74%, of the conditional branches executed in libm choose to execute a successor that goes
straight to a return instruction. Because of the high miss rate for the Return heuristic for libm and because library
code typically executes many return instructions, one might be tempted to specialize the Return heuristic so that its
prediction is inverted when compiling library code. The results show this would work well for libm, but not for any
of the other libraries. The other libraries also use the Return heuristic a fair amount of time, and they have an average
mispredict rate of only 16% for the Return heuristic’s current definition. This situation emphasizes how hard it is to
make general heuristics that perform well in all situations.

4.3 Results for Using a Pre-Optimized Library

We now turn to the issue of overall branch prediction performance, and we consider how the performance of static
branch prediction will affect programmers who use shared and non-shared libraries. We consider two scenarios that
apply this information. Consider two programmers using a system with a “whole program” optimizer. In this system
both programmers use the pre-optimized library results shown in columns 3 through 6 in Table 9 when linking their
application.

Assume that the first programmer cannot or will not profile their program for further optimization, but the second
programmer does. Therefore the first programmer, the non-profiling programmer, must rely on heuristics to improve
the programs performance. In this case, we assume the compiler uses the B&L heuristics for the main program module.
The second programmer, the profiling programmer, on the other hand, profiles the main program but not the library
routines. In both of these cases the pre-optimized libraries are used when linking the application. This scenario will
especially arise when shared libraries are used. The misprediction rates for both of these programmers are shown in
the first 8 columns in Table 12, where “BTFNT” uses BTFNT branch prediction and “B&L” uses the Ball and Larus
heuristics for all library branches. “Norm” uses the normalized cross-validation profile for the branches covered in
the profile and B&L heuristics for branches not covered in the cross-validation profile to pre-optimize the libraries.
“Perfect” shows the results of using perfect profile branch prediction for only the branches in the cross-validation
profile and B&L heuristics for library branches not in the cross-validation profile. Perfect is an unlikely scenario, and
is used to only show the upper bound on the performance achievable from using a normalized cross-validation profile.
In summary, the only performance difference between the non-profiling programmer and the profiling programmer
comes from the main program module’s miss rates because both programmers use the same pre-optimized libraries.

The major column in Table 12 labeled “Miss Rates for Non-Profiling Programmer” contains the four sub-columns
indicating how the libraries were pre-optimized as described above, and the branch mispredict rates achieved with
that method. Thus, a non-profiling programmer writing the cbzone application, using B&L heuristics to predict the
main program module’s branches, would achieve an overall 50% mispredict rate using a library pre-optimized with
BTFNT, a 37% miss rate when using B&L heuristics, and an 18% mispredict rate using a library pre-optimized with
the Normalized cross-validation profile. A 16% Perfect mispredict rate would be seen if the library was somehow
profiled only for the branches in the cross-validation profile and not the branches in the main program module.

Now assume the second programmer profiles their own program but not the libraries. The column labeled “Miss
Rates for Profiling Programmer” has columns analogous to the case for the non-profiling programmer. In this case,
for the cbzone application, BTFNT achieves a 45% mispredict rate, B&L a 32% miss rate, the normalized cross-
validation profile results in a 12% mispredict rate, and a 11% miss rate is achieved using Perfect profile prediction for
the branches in the cross-validation profile.

The final column in Table 12 gives the mispredict rate seen by profiling the whole program, including all library
branches, using the same input for the profile as the input for the prediction accuracy reported. This Overall-Perfect
miss rate shows the upper bound on profile-based prediction performance.

The average results in Table 12 show, when using a library pre-optimized with a normalized cross-validation
profile, that a non-profiling programmer can achieve a miss rate of 20%, which is only 2% higher than the Perfect
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Miss Rates for “Non-Profiling” Miss Rates for “Profiling”
Programmer Using B&L Programmer Using Perfect Overall

Programs BTFNT B&L Norm Perfect BTFNT B&L Norm Perfect Perfect
APS 27 28 23 23 14 16 11 10 10
CSS 36 30 25 23 22 17 12 9 9
LGS 29 30 29 27 22 24 22 21 21
LWS 25 33 21 21 22 30 18 18 18
NAS 16 44 17 13 9 38 10 7 2
TFS 7 9 6 5 7 8 5 5 5
WSS 27 33 21 15 24 30 18 13 11
fpppp 56 59 55 55 13 16 12 12 12
hydro2d 12 13 12 12 4 6 4 4 4
nasa7 5 11 4 4 5 11 3 3 3
ora 7 26 7 7 4 22 4 4 4
su2cor 12 21 13 13 10 19 11 11 10
turb3d 39 24 18 18 35 19 13 13 13
wave5 19 27 21 17 6 14 8 4 4
alvinn 2 2 1 1 2 2 1 1 0
ditroff 25 25 26 25 5 5 6 5 5
ear 13 12 9 7 10 9 6 5 4
eqntott 6 6 5 4 5 5 3 2 2
espresso 22 23 21 21 16 16 15 15 15
perl 40 41 36 32 16 17 12 8 8
sc 40 35 32 31 24 19 16 15 11
vortex 20 20 20 19 2 2 2 1 1
cbzone 50 37 18 16 45 32 12 11 10
ghostview 33 26 11 8 33 25 11 8 7
gs 35 35 32 32 12 12 10 9 9
xanim 32 32 31 29 17 17 17 14 14
xfig 36 31 11 8 36 30 10 7 7
xkeycaps 37 35 18 16 34 32 16 13 10
xmgr 37 31 20 17 35 30 18 15 10
xpaint 36 33 12 10 33 30 9 7 7
xpilot 39 32 26 25 23 16 10 10 9
xpool 33 48 31 31 6 20 4 3 3
xtex 35 26 13 10 31 23 9 6 6
xv 25 25 25 18 11 11 10 3 3

Fortran Avg 23 28 19 18 14 19 11 10 9
C Avg 21 20 19 17 10 9 8 6 6
X Avg 36 33 21 18 26 23 11 9 8
Overall Avg 27 28 20 18 17 18 10 9 8

Table 12: Whole program mispredict rates using a pre-optimized library for a Non-Profile programmer using B&L
prediction to predict the program’s main program module, and for a Profiling programmer using Perfect prediction
accuracy for the program’s main program module. Note, only results for the programs included in the previous
individual library studies are shown. Programs that were not included in this table execute less than 1% of their
instructions in library code.
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Procedures Basic Blocks Conditional Brs CBrs Edges % CBrs
Libraries Static %Cov Static %Cov Static %Cov Static %Cov Both Edges
libc 1848 14 34194 11 12153 16 24306 11 37
libX11 1330 31 31648 21 11456 27 22912 18 30
libXt 879 42 14452 49 5090 60 10180 44 46
libXaw 636 39 8466 46 2565 54 5130 39 43
libm 501 7 23955 2 4620 5 9240 3 39
libUfor 136 21 3461 16 1248 21 2496 12 11
libfor 195 11 15049 6 6324 8 12648 5 20
libFutil 115 13 6827 12 3491 16 6982 10 32

Table 13: Coverage statistics for each library. This is the coverage of all the combined profiles. Static represents
the static number of procedures, basic blocks, conditional branches, and edges in each library. %Cov represents the
percentage of these static procedures, basic blocks, conditional branches, and edges executed in the profiles. % CBrs
Both Edges shows the percentage of conditional branch sites executed that have both its fall-through and taken edge
executed.

% Procedures % Basic Blocks % Cond Brs % Cond Br Edges
Static Static Dyn- Static Static Dyn- Static Static Dyn- Static Static Dyn-

Libraries All Cross amic All Cross amic All Cross amic All Cross amic
libc 6 97 98 4 97 95 6 98 95 4 97 95
libX11 13 94 96 9 94 96 11 95 96 7 94 96
libXt 28 96 99 33 96 99 40 97 99 28 96 99
libXaw 26 90 99 28 89 98 30 89 99 22 85 98
libm 2 93 98 1 87 96 1 86 95 1 83 95
libUfor 18 97 96 14 97 96 18 98 98 10 97 94
libfor 9 89 100 4 82 98 4 82 99 3 81 99
libFutil 9 94 75 7 89 72 7 90 72 5 88 72

Table 14: Average cross-validation coverage statistics for procedures, basic blocks, conditional branches and condi-
tional branch edges.

miss rate of 18%. The profile programmer can achieve a 10% miss rate which is only 1% higher than the Perfect
9% miss rate. In comparing the profile programmer using the normalized pre-optimized library to the Overall-Perfect
prediction accuracy, the pre-optimized library mispredict rate is only 2% higher. Note, Perfect prediction accuracy
provides an upper bound for this type of profile-based branch prediction. Therefore, these results are very encouraging
showing that almost the same prediction accuracy can be achieved using a profiled pre-optimized library, with no cost
to the programmer, when compared to the prediction accuracy achieved if the programmer took the time to profile and
customize the library for each specific application.

4.4 Coverage Statistics

To get an overall picture on how these libraries were used, we examined the frequency and coverage of procedure
invocations, basic blocks, conditional branches and conditional branch edges executed in each library. We used all the
programs we measured and combined their profiles to obtain these statistics.

Table 13 shows the number of static procedures, basic blocks, conditional branches and conditional branch edges
in each of the libraries we measured. For example, the version of libc we used contained 1; 848 procedures, 34; 194
basic blocks and 12; 153 conditional branches. Table 13 also shows the coverage for each component for all the
programs measured. For example, 14% of the procedures in libc were executed by our program suite, resulting in
11% of the basic blocks and 16% of the conditional branch sites being executed. The columns labeled “CBrs Edges”
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indicate the number of conditional branch “edges” executed and the percentage of conditional branches where both
edges of the branch were executed. For example, although 16% of the conditional branches in libc were executed,
only 11% of the edges were executed. The last column of Table 13 represents the percentage of conditional branches
in that library where both edges were executed. For example, only 37% of the conditional branches in libc executed
both edges, indicating that many branches guard conditions that did not arise in our profiles. The low usage percentages
are very promising for profile optimizations.

Table 14 represents the average coverage statistics for each of the libraries using the cross-validation statistics
from the previous section. The results shown for each library give the average cross-validation results for procedures,
basic blocks, conditional branches, and conditional branch edges. The results shown for the percentage of conditional
branches in Table 14 for each library are identical to the average conditional branch statistics given for each library in
Tables 6 through 8. For the percent of procedures in Table 14, Static-All represents the average percentage of static
procedures that are executed in the cross-validation profile for each program in the library. Static-Cross represents the
percentage of those static procedures that were also executed in the cross-validation profile, and Dynamic represents
the dynamic percentage of procedures executed on average that were also executed in the cross-validation profile.

In summary, these coverage statistics indicate that the collection of programs we examined use only a small
portion of any library, and they tend to use the same portion of the various libraries used by other programs in the
cross-validation profiles. Furthermore, the programs use the libraries in a similar fashion, indicated by the conditional
branch coverage and the branch miss rates shown earlier.

5 Implications for Branch Prediction and Profile-based Optimizations

What does all of this information show us? First, realize that the metric we are using is indicative of common behavior
in programs, and indicates that a range of optimizations may be applied. Certainly, dynamic branch prediction methods
result in smaller mispredict rates, but statically predictable execution can be used for a number of optimizations. Pettis
and Hansen [12] and Hwu and Chang [10] both examined profile optimizations to improve instruction locality. They
found both basic block reordering algorithms and procedure layout algorithms effective at reducing the instruction
cache miss rate. In a similar study [3], we showed that profile-based basic block reordering (Branch Alignment)
improved dynamic branch prediction and eliminated misfetch penalties. Furthermore, Young and Smith [17] have
examined static correlated branch prediction techniques that rely on profile information. The “branch classification”
prediction scheme proposed by Chang et. al. [7] also takes advantage of branches that can be accurately predicted
via profile guided branch prediction using a hybrid static/dynamic branch prediction architecture. Lastly, a number of
other researchers have examined variants of trace-scheduling to optimize programs given profile information.

The data presented in x4 illustrates that only a small fraction of any library is used across a number of programs.
Thus, optimizations using profile information to layout basic blocks and procedures in shared and non-shared libraries
should improve the performance of the instruction cache, TLB, virtual memory and physical memory. Plus, branch
prediction techniques that rely on statically classifying branches and predicting their behavior at compile time can be
applied to shared libraries possibly resulting in higher branch prediction accuracies.

We feel that Table 12 best summarizes the benefits of applying trace scheduling or other profile-directed optimiza-
tions to libraries. The table shows that even if programmers do not profile their own programs, the branch misprediction
rate can be reduced from 28% to 20% with very little effort using a profiled pre-optimized library. The improvement
is largest for programs that spend more time in libraries. For example, more than 90% of the conditional branches
executed by ghostview, xfig and xpaint are captured in profiles from other programs. These programs show a
tremendous improvement in the branch misprediction rate. Other programs benefit little from profiled libraries, unless
the program itself is profiled. This usually occurs because those programs spend little time in library routines. If
programmers profile their programs, but must use shared libraries, the results of Table 12 indicate that using a profiled
pre-optimized shared library results in performance close to perfect prediction accuracy.

Beside the obvious implications for improvements in shared libraries, the fact that information from library routines
can be accurately gathered by profiles implies that static branch prediction methods, such as those of Ball and Larus [1],
our own method [4] and related methods [14, 16], can be improved. Our results indicate several ways to improve the
Ball and Larus heuristics for library code. Though, these changes would only work in specific cases, such as libm,
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BTFNT B&L ESP Norm Perfect
ESP Study 28.4 22.5 17.6 7.5
This Study 24.8 24.2 17.2 7.3

Table 15: Overall miss rates for the 17 programs common between this study and the ESP study. The same inputs
were used in both studies for each program. The differences in miss rates between these two studies comes from
re-compilation of the programs in order to use shared libraries, and a newer version of DEC OSF was used.

and would not work well for all libraries or branches in the program. This points to using a more general technique
for heuristic program-based branch prediction such as ESP.

Table 15 shows the average results for the ESP study and this study for the 17 programs that are common between
both studies. “BTFNT” represents the miss rate when all branches are predicted using BTFNT, “B&L” shows the miss
rates when the heuristics are used to predict all branches, and “ESP” shows the Evidence-based Static Prediction miss
rates [4]. “Norm” shows the miss rate when the normalized cross-validation profile is used to predict branches in the
library, and all non-profiled branches and the branches in the main program module use B&L heuristic prediction.
Therefore, the results shown for “Norm” are the same as the Non-Profile Programmer results in Table 12. Finally,
“Perfect” shows the miss rate if perfect prediction is used for the whole program.

The differences in the BTFNT, B&L, and Perfect miss rates between these two studies comes from re-compilation
of the programs for this study in order to use shared libraries, and a newer version of DEC OSF was used. The results
show that ESP is able to reduce the mispredict rate to 17.6%. Since the ESP technique is based on data gleaned from
a cross-validation study as in this study, it is likely that the ESP results gained some prediction accuracy from the
common behavior of library routines between applications. Using the normalized cross-validation profile for predicting
library branches and B&L heuristics for the rest of the program’s branches achieves a similar miss rate of 17.2%.
This implies that using a profiled pre-optimized library combined with Ball and Larus heuristic prediction can achieve
branch miss rates similar to ESP. Though, ESP is a more desirable approach to use than predefined heuristics, since ESP
can be applied to different programming languages, compilers, computer architectures, or runtime systems, effectively
capturing program behavior for that system. Furthermore, if ESP is not achieving as low of a miss rate on library code
as the profiled pre-optimized library, then this indicates that one might be able to improve the performance of ESP
by using profiles to pre-optimize libraries as in this study, and concentrate ESP features on capturing program-based
heuristics for optimizing the program’s main module.

6 Conclusions

To our knowledge, this work is the first study on common behavior between applications in libraries. Our results
show that all of these libraries are used in a similar fashion between applications. The greatest potential performance
improvements are seen for programs that spend considerable time in libraries, particularly interactive or graphics
applications that are more representative of modern applications. This is only natural, since a rich graphical user
interface typically results in complex software that is best addressed by libraries.

All results in this study were stated in terms of branch misprediction rates. We felt this would indicate the likelihood
that programs had similar behavior, and would allow comparison to earlier studies comparing profile-based branch
prediction between runs of the same program. Our results indicate that it would be beneficial to apply profile-directed
optimizations to libraries. In effect providing a pre-optimized library. This paper leaves open several issues related to
the software architecture of shared libraries that will be addressed in future studies.
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