
J U L Y 1 9 9 4

WRL
Technical Note TN-44

ATOM:
A Flexible Interface
for Building High
Performance Program
Analysis Tools

Alan Eustace
Amitabh Srivastava

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

ATOM: A Flexible Interface for Building
High Performance Program Analysis Tools

Alan Eustace
Amitabh Srivastava

July 1994

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Code instrumentation is a powerful mechanism for understanding
program behavior. Unfortunately, code instrumentation is extremely dif-
ficult, and therefore has been mostly relegated to building special purpose
tools for use on standard industry benchmark suites.

ATOM (Analysis Tools with OM) provides a very flexible and efficient
code instrumentation interface that allows powerful, high performance
program analysis tools to be built with very little effort. This paper il-
lustrates this flexibility by building five complete tools that span the interests
of application programmers, computer architects, and compiler writers.

The first tool reports the number of bytes read by the application. The
second tool is an instruction profiler that computes the number of instruc-
tions executed in each procedure as a percentage of the total number of in-
structions executed. The third tool simulates the execution of the application
running in a direct mapped data cache and reports hit and miss data. The
fourth tool computes the total amount of memory allocated and deallocated
by the application. The final tool isolates potential compiler performance
bugs. Each tool is written in between 24 and 60 lines of code.

This flexibility does not come at the expense of performance. Because
ATOM uses procedure calls as the interface between the application and the
analysis routines, the performance of each tool is similar to or greatly ex-
ceeds the best known hand-crafted implementations.

i

1 Introduction

Program analysis tools are extremely important for understanding program behavior. Computer

architects need such tools to evaluate how well programs will perform on new architectures.

Software writers need tools to analyze their programs and identify critical pieces of code. Compiler

writers often use such tools to determine how well their instruction scheduling or branch prediction

algorithm is performing or to provide input for profile-driven optimizations.

Over the past decade three classes of tools for different machines and applications have

been developed. The first class consists of basic block counting tools like Pixie[13], Epoxie[22]

and QPT[11]. The second class consists of data and instruction address tracing tools. Pixie

and QPT can also generate address traces. They communicate these traces to analysis routines

through inter-process communication. Tracing on the WRL Titan[3] communicated with analysis

routines using shared memory, but this required operating system modifications. MPTRACE

[6] is similar to Pixie but it collects traces for multiprocessors by instrumenting assembly code.

ATUM [1] generates address traces by modifying microcode and saves a compressed trace in

a file that is analyzed offline. The third class of tools consists of simulators. Tango Lite[7]

supports multiprocessor simulation by instrumenting assembly language code. PROTEUS[4]

also supports multiprocessor simulation but instrumentation is done by the compiler. g88[2]

simulates Motorola 88000 using threaded interpreter techniques. Shade[5] uses instruction level

simulation to selectively generate traces. This technique offers considerable flexibility at the

expense of much lower performance.

The important features that distinguish ATOM[18, 15, 16] from previous systems are listed

below.

� ATOM is a tool-building system. A diverse set of tools ranging from basic block counting

to cache modeling can be easily built.

� ATOM provides the common infrastructure in all code-instrumenting tools, which is the

cumbersome part. The user simply specifies the tool details.

� ATOM allows selective instrumentation. The user specifies the points in the application to

be instrumented, the procedure calls to be made, and the arguments to be passed.

� The communication of data is through procedure calls. Information is directly passed

from the application to the specified analysis routine with a procedure call instead of

1

through interprocess communication, files on disk, or a shared buffer with central dispatch

mechanism.

� ATOM tool overhead is proportional to the complexity of the underlying analysis. Many

interesting tools can be built that have little or no impact on application performance.

� Even though the analysis routines run in the same address space as the application, precise

information about the application is presented to analysis routines at all times.

� As ATOM works on object modules, it is independent of compiler and language systems.

To illustrate the power and flexibility of this approach, this paper fully implements a variety

of custom program analysis tools, including input/output, instruction profiling, cache simulation,

dynamic memory allocation, procedure inlining profile driven optimizations, and evaluating the

quality of compiled code. None of these tools takes more than 60 lines of code to implement.

These tools form the basis of many of the tools that are distributed as part of the standard ATOM

distribution.

To illustrate the performance of these tools, each was applied to the SPEC92 tool suite. The

instrumented application times are compared to the uninstrumented applications using wall clock

times.

2 Implementation of ATOM

ATOM is built using OM[19, 20, 21], a link-time code modification system.

Figure 1 describes this process. First, the OM generic object modification library is linked with

a tool specific instrumentation file to produce a custom instrumenting tool. This program reads in

the user application, and modifies it by adding calls to tool specific analysis procedures. ATOM

completes the process by linking the instrumented application with the tool specific analysis file.

The output of ATOM is a custom instrumented application executable that is run in exactly the

same manner as the original application.

3 A Simple Example

From a user perspective, applying an ATOM tool to an application is done by executing a command

such as

2

application
 data

application
 output

analysis
 output

standard
 linker

 custom
instrumenting
 tool

 custom
instrumented
 application

 user
application

 user
analysis
 code

 generic
object modifier

 user
instrumenting
 code

Figure 1: The ATOM Process

atom appl.rr read.inst.c read.anal.c -o appl.read

The first argument is the application program, which has been specially linked to include

relocation records. The second and third arguments are the instrumentation and analysis files. In

this example, we instrument the application to count and write to a file the total number of bytes

read each time the instrumented application is executed.

The instrumentation file is shown of the left side of Figure 2. Line 2 includes the instrument.h

file which defines the ATOM primitives for manipulating application programs. Line 3 defines

the Instrument procedure, which is linked with the OM object code modification library to

produce a custom instrumenting tool. All analysis procedures that are called from the application

program are declared and placed by the Instrument procedure.

Line 5 makes use of theAddCallProtoATOM primitive to declare the name and arguments

to the RecordRead analysis procedure. This procedure takes a single argument of type REGV.

Arguments of type REGV are used to pass the contents of a specific processor register. Line 6

declares the PrintResult analysis procedure, which does not take any arguments.

Line 7 calls the GetNamedProc primitive to return a pointer to the read procedure. Line 8

checks to see if this value is NULL, indicating that the procedure read is not defined in this

application. All communication between the application program and the analysis procedures is

done through procedure calls.

3

Instrumentation File Analysis File

1 #include <stdio.h>
2 #include <instrument.h>
3 Instrument() f
4 Proc *p;
5 AddCallProto(“RecordRead(REGV)”);
6 AddCallProto(“PrintResults()”);
7 p = GetNamedProc(“read”);
8 if (p != NULL) f
9 AddCallProc(p,ProcBefore,“RecordRead”, REG ARG 3);
10 AddCallProgram(ProgramAfter,“PrintResults”);
11 g
12 g

1 #include <stdio.h>
2 long bytes = 0;
3 void RecordRead(long size) f
4 bytes = bytes + size;
5 g
6 void PrintResults() f
7 FILE *file = fopen(“read.out”,“w”);
8 fprintf(file, “%ldnn”, bytes);
9 fclose(file);
10 g

Figure 2: Read Tool Implementation

Line 9 uses the ATOM primitiveAddCallProc to add a call to theread procedure. The first

argument, p is a pointer to the read procedure. The second argument, ProcBefore, specifies

that the call is to be inserted before the read procedure is executed. The third argument indicates

that the call is to the RecordRead analysis procedure. The remainder of the arguments are used

to determine what values ATOM passes to RecordRead. In this case, the final argument passes

the contents of the register REG ARG 3 to the analysis procedure. In the Alpha AXP calling

convention, this register contains the contents of the third argument to the read procedure. The

RecordRead procedure is shown on the right side of Figure 2. This procedure simply adds this

size to a total.

Line 10 calls the AddCallProgram primitive, which adds a call to the PrintResults

procedure after the application finishes executing. The corresponding analysis procedure opens a

file, prints out the result, and closes the file. The definitions for both these procedures are shown

on the right side of Figure 2.

Notice that it is important that the analysis procedure does not call the instrumented version of

the read procedure, since reads that occur inside the analysis procedure must not increment the

application totals. To guarantee this, library procedures that would normally be shared between

the application and the analysis procedures are linked into the instrumented application twice.

Only the version that is linked into the application is instrumented. This guarantees that calls

made to read by the analysis procedures do not influence the statistics gathered by the read tool.

4

Although this tool is relatively simple, it is straightforward to extend the read tool into a

general input/output tool. The first extension is to add calls to analysis procedures before and

after for open system calls. This allows the analysis procedures to record the name of the file

opened and the file descriptor returned. By instrumenting both read and write procedures and

passing the first (file descriptor) and third arguments (size in bytes), the read and write totals can

be accumulated for each open file. The final extension is to use the Alpha AXP cycle counter to

maintain fine grain times of how long each operation takes. This allows the tool to determine the

rate of read and write operations. This extended tool is called io and is distributed with ATOM as

part of the standard tool set.

4 ATOM Primitives

ATOM tools traverse an application, find interesting places to add calls to analysis procedures, and

pass arguments that correspond to data or events in the application. To provide these functions,

ATOM provides three types of primitives: navigation, information, and instrumentation.

Navigation primitives traverse the application. The simple example presented above used the

GetNamedProc primitive to find a specific procedure. Other navigational primitives traverse

procedures, basic blocks within procedures, and instructions within basic blocks. A basic block

is a set of sequential assembly language instructions that are not interrupted by branch or jump

instructions.

Information primitives provide static information about instructions, basic blocks, procedures,

or the program. For example, given an instruction, ATOM primitives can return the program

counter, the opcode, the instruction class, address displacements, the source line number, a mask

of the registers used or set by the instruction, etc. Given a basic block, primitives are provided to

find the number of instructions in the basic block and the starting program counter of the block.

Given a procedure, primitives are provided to find the file name, stack frame size, register save

and restore masks, etc. General program information includes the sizes of text and data sections,

along with general statistics on the number of procedures, basic blocks and procedures in the

application.

Instrumentation primitives allow calls to analysis procedures to be inserted into the application

before or after instructions, basic blocks, procedures. The arguments to these procedures can

include any value computed by the instrumentation routine or provided by ATOM primitives. The

arguments of these procedures can be constants, processor registers, effective addresses, branch

condition values, arguments to application procedures, file names, line numbers, or character

5

strings.

Although not shown in these examples, ATOM also allows command line arguments to be

passed to instrumentation routines. Parameters can also be passed to analysis procedures through

setenv variables.

5 Instruction Profiling

In this section we implement an instruction profiler based on counting the number of instructions

executed in each procedure. Although it is possible to implement this tool by placing a call to an

analysis procedure before every instruction in the application, ATOM’s selective instrumentation

can significantly reduce this overhead by instrumenting only basic blocks. For example, if a set

of 10 sequential executed instructions are inside of a loop, we can keep track of the total number

of instructions executed by adding 10 each time we enter the loop body.

Figure 3 defines the instrumentation and analysis files for the profile tool.

As in the previous section, lines 6 through 9 of the instrumentation file declares the interface

to the OpenFile, ProcedureCount, ProcedurePrint, and CloseFile analysis

procedures.

In line 10, the AddCallProgram primitive is used to add a call to OpenFile before

the application begins execution. The GetProgramInfo ATOM primitive, when passed the

ProgramNumberProcs argument, returns the number of procedures in the application. The

corresponding analysis procedure uses this argument to allocate sufficient memory to accumulate

a count for each procedure in the application.

Lines 12 through 21 navigate each procedure in the application. Within each procedure, lines

14 through 18 process each basic blocks. Line 16 calls the AddCallBlock ATOM primitive

to add a call to the ProcedureCount analysis procedure. The two arguments passed are a

procedure index n, and the number of instructions in the basic block. This value is returned by

the GetBlockInfo primitive. The corresponding analysis procedure uses these arguments to

increment the number of instructions executed by this procedure.

For each procedure in the application, line 19 adds a call to the ProcedurePrint analysis

procedure. ProcedurePrint is passed the unique procedure index and the name of the

procedure. This name is returned by the ProcName ATOM primitive. The corresponding

analysis file uses these two parameters to determine if the procedure was executed, and if so,

prints the procedure name, number of instructions, and percentage of instructions executed in

this procedure to a file. Notice that the effect of line 19 is to add hundreds of calls to analysis

6

Instrumentation File Analysis File

1 #include <stdio.h>
2 #include <instrument.h>
3 Instrument() f
4 Proc *p; Block *b;
5 int n = 0;
6 AddCallProto(“OpenFile(int)”);
7 AddCallProto(“ProcedureCount(int,int)”);
8 AddCallProto(“ProcedurePrint(int,char *)”);
9 AddCallProto(“CloseFile()”);
10 AddCallProgram(ProgramBefore, “OpenFile”,
11 GetProgramInfo(ProgramNumberProcs));
12 for (p = GetFirstProc(); p != NULL;
13 p = GetNextProc(p)) f
14 for (b = GetFirstBlock(p); b != NULL;
15 b = GetNextBlock(b)) f
16 AddCallBlock(b,BlockBefore, “ProcedureCount”,
17 n,GetBlockInfo(b,BlockNumberInsts));
18 g
19 AddCallProgram(ProgramAfter, “ProcedurePrint”,
20 n++, ProcName(p));
21 g
22 AddCallProgram(ProgramAfter, “CloseFile”);
23 g

1 #include <stdio.h>
2 long instrTotal;
3 long *instrPerProc;
4 FILE *file;
5 void OpenFile(int n) f
6 instrPerProc = (long *) malloc(sizeof(long) * n);
7 file = fopen(“prof.out”, “w”);
8 fprintf(file, “%30s %15s %10snn”, “Procedure”,
9 “Instructions”, “Percentage”);
10 g
11 void ProcedureCount(int n, int instructions) f
12 instrTotal += instructions;
13 instrPerProc[n] += instructions;
14 g
15 void ProcedurePrint(int n, char *name) f
16 if (instrPerProc[n] > 0)
17 fprintf(file, “%30s %15ld %9.3fnn”, name,
18 instrPerProc[n], 100.0 * instrPerProc[n] / instrTotal);
19 g
20 void CloseFile() f
21 fprintf(file, “nn%30s %15ldnn”, “Total”, instrTotal);
22 fclose(file);
23 g

Figure 3: Profiling Tool Implementation

procedures to the end of the program, each with a different index and character string.

Line 22 adds a call to the CloseFile analysis procedure after the application completes

executing.

Although this is a very simple profiling tool, many more interesting tools can be built using

the same principles. Russell Kao built an ATOM based version of the popular tool gprof. This

tool adds procedure calls at the start of each procedure to push the name of the procedure on

a procedure call stack. This stack is popped by adding a similar analysis procedure call to the

procedure exit. Gprof reports the percentage of time spent in a procedure and the procedures

descendants. The instrumentation procedure was also expanded to use the Alpha AXP dual issue

rules to compute cycles rather than instructions executed.

Many other profile based tools have also been developed. One such tool records the value of

the Alpha AXP cycle counter at the start of the procedure and at the end of the procedure and

computes the wall clock time spent in each procedure.

7

6 Cache Simulator

Processor cycle times are getting faster at a much greater rate than main memory access times.

This disparity has led computer architects to place a subset of main memory into one or more

levels of fast, expensive cache memory [9]. The effectiveness of this technique is application

dependent. Applications that reference the same address multiple times or that use nearby data

items benefit most from the data cache.

Although it is clear that cache memory plays an increasingly important role in application

performance, measuring cache performance has been relegated to a few industrial and university

research reports. Almost all of these studies have focused primarily on the performance of the

SPEC92 benchmark suite.

This section presents a simple tool that simulates the execution of the application running in

a 64K-byte direct mapped data cache with 32-byte blocks. The tool computes the total number

of data cache references, the number of misses, and the miss rate. The miss rate is the number of

misses divided by the number of references.

The strategy used in this tool is to instrument all load and store instructions with a call to

an analysis procedure called Reference which is passed the effective address. This effective

address is used to simulate the application running in the cache. The cache tool implementation

is shown in Figure 4.

Line 5 of the instrumentation file declares the Reference analysis procedure. The type

VALUE indicates that the argument does not live in a processor register, but must be computed

by ATOM prior to passing the value to the analysis procedure. Lines 11 through 17 examine

each instruction. Lines 13 and 14 determine if the instruction is a load or a store. If so, the

AddCallInstATOM primitive adds a call to instruction i. The InstBefore argument adds

the call before the instruction. The name of the analysis procedure to call is Reference, and

the argument passed is the EffAddrValue, which ATOM computes by adding the contents of

the base register plus the sign extended displacement. Line 20 completes the tool by adding a

call to the PrintResults procedure after the application completes execution.

The analysis procedure is shown on the right side of Figure 4. This is a simple implementation

of a direct mapped cache. Lines 4 defines the cache data structure, which is used to hold a cache

tag for each 32 byte block in the cache. Line 5 defines the reference and miss counters.

Lines 7 through 9 compute the cache tag and index, and line 11 probes the cache. If the tags do

not match, a miss is recorded in line 12, and the tag is updated in line 13. In either case, the

number of references is incremented.

8

Instrumentation File Analysis File

1 #include <stdio.h>
2 #include <instrument.h>
3 Instrument() f
4 Proc *p; Block *b; Inst *i;
5 AddCallProto(“Reference(VALUE)”);
6 AddCallProto(“PrintResults()”);
7 for (p = GetFirstProc(); p != NULL;
8 p = GetNextProc(p)) f
9 for (b = GetFirstBlock(p); b != NULL;
10 b = GetNextBlock(b)) f
11 for (i = GetFirstInst(b); i != NULL;
12 i = GetNextInst(i)) f
13 if (IsInstType(i,InstTypeLoad) ||
14 IsInstType(i,InstTypeStore))
15 AddCallInst(i,InstBefore,
16 “Reference”, EffAddrValue);
17 g
18 g
19 g
20 AddCallProgram(ProgramAfter, “PrintResults”);
21 g

1 #include <stdio.h>
2 #define CACHE SIZE 65536
3 #define BLOCK SHIFT 5
4 long cache[CACHE SIZE >> BLOCK SHIFT];
5 long references, misses;
6 void Reference(long address) f
7 int index =
9 address & (CACHE SIZE-1)) >> BLOCK SHIFT;
10 long tag = address >> BLOCK SHIFT;
11 if (cache[index] != tag) f
12 misses++;
13 cache[index] = tag;
14 g
15 references++;
16 g
17 void PrintResults() f
18 FILE *file = fopen(“cache.out”, “w”);
19 fprintf(file, “%ld %ld %fnn”,
20 references, misses, 100.0 * misses / references);
21 fclose(file);
22 g

Figure 4: Cache Tool Implementation

To guarantee that the results properly reflect the reference pattern of the uninstrumented

program, ATOM guarantees that all data items referenced in the original program are placed in

exactly the same locations when the program is instrumented. To guarantee this accuracy for

instruction cache simulations, ATOM converts all references to the program counter to those of

the uninstrumented program before passing the contents to the analysis procedures.

Although the number of hits and misses is useful to computer architects, this information has

rarely been presented in a form that is useful to application programmers. By combining the

instruction profile tool shown in the previous section with the cache modeling tool shown above,

ATOM can create a hybrid tool that shows cache misses in a profile like format. This tool is

called memsys and it is included with the standard ATOM distribution.

9

Instrumentation File Analysis File

1 #include <stdio.h>
2 #include <instrument.h>
3 void Instrument() f
4 Proc *procMalloc =
5 GetNamedProc(“malloc”);
6 Proc *procFree = GetNamedProc(“free”);
7 AddCallProto(“PrintResults()”);
8 if (procMalloc)
9 ReplaceProcedure(procMalloc, “my malloc”);
10 if (procFree)
11 ReplaceProcedure(procFree, “my free”);
12 AddCallProgram(ProgramAfter, “PrintResults”);
13 g

1 #include <stdio.h>
2 #include <stdlib.h>
3 long totalMalloc, totalFree = 0;
4 char *my malloc(size t size) f
5 size t *mptr = (long *) malloc(size+sizeof(long));
6 totalMalloc += size;
7 mptr[0] = size;
8 return ((void *) &mptr[1]);
9 g
10 my free(void *ptr) f
11 size t *mptr = ptr;
12 size t size = mptr[-1];
13 totalFree += size;
14 free(&mptr[-1]);
15 g
16 void PrintResults() f
17 FILE *file = fopen(“dyn.out”, “w”);
18 fprintf(file, “%ld %ldnn”, totalMalloc, totalFree);
19 fclose(file);
20 g

Figure 5: Dynamic Memory Tool Implementation

7 Monitoring Dynamically Allocated Memory

Many programs make extensive use of dynamically allocated memory. Such memory is typically

allocated using the malloc system call, and deallocated using the free system call. These

procedures are called thousands of times by application programs, allocating, deallocating, and

reallocating the same piece of memory many times. This section presents a tool that computes

the total number of bytes allocated and freed over the course of the application’s execution.

The implementation is shown in Figure 5.

Lines 4 through 6 of the instrumentation file are used to search for procedures with the

names malloc and free. If these procedures are present in the application, these library

functions are replaced in lines 6 and 7 by the procedures my malloc and my free. The

ReplaceProcedure semantics require the type and arguments of the new procedure to be

identical to the original procedure calls.

The analysis procedures prepend the size of allocated objects to each dynamically allocated

element. Line 5 calls the standard version ofmalloc, but requests additional memory to prepend

10

the object size. Line 6 adds this size to the total amount of allocated memory. Line 7 saves this

size in the first location in the dynamically allocated memory. The pointer to the start of the

requested memory is returned in line 8. Each call to free was replaced in the application by a

call to my free. In line 12, this procedure uses a negative index to access the size of the object,

which it adds to the total amount deallocated by the application. Line 14 calls the standard free

procedure to deallocate the memory.

The ability to replace procedures and monitor data references is fundamental to an emerging

set of tools that monitor allocations, deallocations and references to memory[8]. Jeremy Dion and

Louis Monier[14] recently completed an ambitious ATOM based tool called Third Degree, that

finds and reports many kinds of reads of uninitialized memory, reads and writes to unallocated

memory, array bound errors, and freeing the same object more than once. The technique used

is to replace all calls to allocate and free library procedures with versions that keep track of the

ranges of valid heap locations. Symbolic interpretation in the instrumentation procedures is used

to significantly reduce the number of memory references that must be instrumented. The result is

a very effective and efficient tool for testing the validity of memory operations. This tool is also

included in the standard ATOM distribution.

8 Compiler Auditing

Modern compilers implement a long list of optimizations: loop unrolling, reductions in strength,

software pipelining, global register allocation, instruction rearrangement. Unfortunately, these

techniques are complicated and interact in non-trivial ways. The resulting code often misses

simple optimizations. Tools that evaluate the quality of the compiled code and isolate potential

performance problems are called compiler auditors[12].

This section presents a simple compiler auditing tool that adds a procedure call before each

load instruction to save the contents of the destination register. Another procedure call is added

after each load instruction that checks to see if the destination register was modified by the

instruction. If not, the instruction loaded a value that was already in the register. These loads are

termed redundant.

The implementation is shown in Figure 6.

This tool is similar to previous tools, with the exception of lines 17 through 24. Line 17

checks if the instruction is a load operation. If so, line 18 adds a call to the SaveLoad procedure

before the instruction and passes the contents of the destination register, as returned by the

GetInstRegEnum ATOM primitive. Line 20 adds a matching call to CheckLoad after the

11

Instrumentation File Analysis File

1 #include <stdio.h>
2 #include <instrument.h>
3 Instrument() f
4 Proc *p; Block *b; Inst *i;
5 int n = 1;
6 AddCallProto(“OpenFile(int)”);
7 AddCallProto(“SaveLoad(REGV)”);
8 AddCallProto(“CheckLoad(int,long)”);
9 AddCallProto(“Print(int,long)”);
10 AddCallProto(“CloseFile()”);
11 for (p = GetFirstProc(); p != NULL;
12 p = GetNextProc(p)) f
13 for (b = GetFirstBlock(p); b != NULL;
14 b = GetNextBlock(b)) f
15 for (i = GetFirstInst(b); i != NULL;
16 i = GetNextInst(i)) f
17 if (IsInstType(i,InstTypeLoad))f
18 AddCallInst(i,InstBefore, “SaveLoad”,
19 GetInstRegEnum(inst,InstRA));
20 AddCallInst(i,InstAfter, “CheckLoad”,
21 n, GetInstRegEnum(inst,InstRA));
22 AddCallProgram(ProgramAfter, “Print”,
23 n++, InstPC(i));
24 g
25 g
26 g
27 g
28 AddCallProgram(ProgramBefore, “OpenFile”,n);
29 AddCallProgram(ProgramAfter, “CloseFile”);
30 g

1 #include <stdio.h>
2 struct Work f
3 long count;
4 long wasted;
5 g *work;
6 FILE *file;
7 void OpenFile(int n) f
8 work = (struct Work *)
8 malloc(sizeof(struct Work) * n);
9 file = fopen(“work.out”, “w”);
10 fprintf(file, “%11s %11s %11snn”,
10 “PC”, “Count”, “Wasted”);
11 g
12 void CloseFile() f
15 fclose(file);
16 g
17 long value;
18 void SaveLoad(long val) f
19 value = val;
20 g
21 void CheckStore(int n,long val) f
22 work[n].count++;
23 if (value == val) work[n].wasted++;
24 g
25 void Print(int n, long pc) f
28 if (work[n].wasted != 0)
29 fprintf(file, “0x%9lx %11ld %11ldnn”,
29 pc, work[n].count, work[n].wasted);
30 g

Figure 6: Compiler Auditing Implementation

load instruction. The arguments are a unique index of the load instruction, and the new contents of

the destination register. CheckLoad compares this value to the value saved by the SaveLoad

analysis procedure and increments the appropriate counters. The output file contains a count of

the number or redundant times each load is executed along with the number of times the load was

redundant.

Redundant loads can be caused by redundant data, and therefore may not be indicative of

potential performance bugs. This is the case in the SPEC92 benchmark hydro2d where an amazing

42 percent of the loads are redundant. Often compiler optimizations can detect loop invariant

instructions and unnecessary spilling and restoring or registers. In one very early version of the

compiler, this tool found 8 identical sequential load instructions from the same memory location

to the same destination register!

12

Benchmark DynMem Read Profile Cache Audit
alvinn 0.987 0.989 3.910 8.709 11.929

compress 1.007 0.980 4.143 9.367 7.524
doduc 0.990 1.008 2.915 8.300 12.053

ear 1.011 1.005 5.753 6.609 9.403
eqntott 0.995 0.997 4.177 8.117 10.841

espresso 1.050 1.006 8.919 10.664 14.490
fpppp 0.994 0.994 1.761 12.972 21.832
gcc1 1.016 1.006 5.654 8.596 10.540

hydro2d 0.987 0.991 2.403 7.422 10.512
li 1.021 1.054 6.204 11.059 12.483

mdljdp2 0.996 1.000 2.926 4.325 5.198
mdljsp2 1.020 1.027 3.183 6.113 9.367

nasa7 0.997 1.002 1.694 8.193 11.378
ora 0.931 0.931 4.221 7.883 11.652
sc 1.033 1.030 6.014 6.961 8.504

spice 1.012 1.018 3.929 7.277 9.545
su2cor 0.985 0.992 2.457 7.730 9.641

swm256 0.987 0.990 1.472 9.540 13.956
tomcatv 0.998 0.990 1.821 6.401 13.555

wave5 0.995 0.993 3.146 9.284 10.690

Average 1.000 1.004 3.613 8.269 11.230

Figure 7: Performance of Atom Tools

9 Performance

The performance of ATOM tools is a function of the number of analysis procedure calls that are

executed and the amount of work done by each call. Figure 7 shows the performance of each tool

over the SPEC92 benchmark suite. Each entry reflects the wall clock time of the instrumented

program divided by the wall clock time of the uninstrumented program.

The Dynamic Memory and Read tools have a minimal affect on application performance,

since both have relatively few instrumentation points. Contrast this with the compiler auditing

tool, which adds two calls to analysis procedures for each load instruction. Also notice that

there is considerable variation between benchmarks for a single tool. For example, the profile

tool slows down application by as little as 1.472 for swm256 and as much as 8.919 for espresso.

Both instrument at basic blocks, but since the basic block size of espresso is much smaller, the

instrumented application spends a larger percentage of time in the analysis procedures.

When comparing these times to other tools reported in the literature, it is important to include

13

the time necessary to gather the data and to analyze the results. For example, many cache

instrumentation tools studies report competitive times for gathering trace data into in-memory

buffers, but do not include the times to empty the buffer, simulate the cache, and report the results.

There are many ways to substantially increase the performance of ATOM based tools. One

approach is to reduce or eliminate the analysis procedure call overhead either through inlining

or other compiler optimizations. Another approach is to make use of the flexibility of the

instrumentation interface to reduce the frequency of analysis procedure calls. For example, the

profile tool instrumentation routine can be easily rewritten to eliminate adding calls to analysis

procedures for those blocks where data flow analysis determines that the count is identical

to another block that has already been instrumented. Another example is instruction translation

buffer simulation. Here, ATOM based tools need only instrument branches or sequential execution

that crosses page boundaries. Since these are relatively infrequent, these tools are very efficient.

Another example are tools that simulate branch prediction algorithms. Rather than infer branch

behavior by sifting through instruction address traces, ATOM tools instrument only conditional

branches.

10 Conclusions

ATOM is a unique tool for understanding program performance. The flexible interface allows a

diverse set of tools to be built with minimal effort. Without the support ATOM provides, these

tools would be extremely difficult to build. The performance of these tools compares favorably

with hand-crafted implementations, since instrumentation is inserted only when necessary to

gather statistics. Communication of data to the analysis procedures is accomplished through

procedure calls, rather than relying on expensive interprocess communication. The analysis

routines are always presented with information about the application program as if it was executing

uninstrumented.

ATOM has been applied to many commercial applications with text sizes of up to 100MB.

Hundreds of tools have been written by both industrial and university users to evaluate the

performance of caches, garbage collection algorithms, branch prediction, compiler optimizations,

input/output, system calls, novel CPU architectures, as well as many other aspects of system

performance. Currently we are in the process of extending ATOM to be able to instrument the

OSF1 kernel.

14

11 Acknowledgments

Great many people have helped us bring ATOM to its current form. Jim Keller, Mike Burrows,

Roger Cruz, John Edmondson, Mike McCallig, Dirk Meyer, Richard Swan and Mike Uhler were

our first internal users, and Dirk Grunwald and Brad Calder provided our first external field test

site. Jeremy Dion, Ramsey Haddad, Russell Kao, Greg Lueck, Mike McCallig, and Louis Monier

contributed exciting new tools. Many, many others, provided help, support, encouragement, bug

reports, flames, and endorsements! Also, Brad Chen, Ted Romer, Ramsey Haddad, Louis Monier

provided helpful suggestions on the content of this paper. We thank you all.

References

[1] Anant Agarwal, Richard Sites, and Mark Horwitz. ATUM: A New Technique for

Capturing Address Traces Using Microcode. Proceedings of the 13th International

Symposium on Computer Architecture, June 1986.

[2] Robert Bedichek. Some Efficient Architectures Simulation Techniques. Winter 1990

USENIX Conference, January 1990.

[3] Anita Borg, R.E. Kessler, Georgia Lazana, and David Wall. Long Address Traces from

RISC Machines: Generation and Analysis, Proceedings of the 17th Annual Symposium

on Computer Architecture, May 1990, also available as WRL Research Report 89/14,

Sep 1989.

[4] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl.

PROTEUS: A High-Performance Parallel-Architecture Simulator. MIT/LCS/TR-516,

MIT, 1991.

[5] Robert F. Cmelik and David Keppel, Shade: A Fast Instruction-Set Simulator for

Execution Profiling. Technical Report UWCSE 93-06-06, University of Washington.

[6] Susan J. Eggers, David R. Keppel, Eric J. Koldinger, and Henry M. Levy. Techniques for

Efficient Inline Tracing on a Shared-Memory Multiprocessor. SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, vol 8, no 1, May 1990.

15

[7] Stephen R. Goldschmidt and John L. Hennessy, The Accuracy of Trace-Driven Simu-

lations of Multiprocessors. CSL-TR-92-546, Computer Systems Laboratory, Stanford

University, September 1992.

[8] Robert Hastings and Bob Joyce. Fast Detection of Memory Leaks and Access Errors.

Winter 1992 USENIX Conference, January 1992.

[9] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach, pp. 408-425, Morgan Kaufmann, 1990.

[10] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Prentice-

Hall, 1978.

[11] James R. Larus and Thomas Ball. Rewriting executable files to measure program

behavior. Software, Practice and Experience, vol 24, no. 2, pp 197-218, February 1994.

[12] James R. Larus and Satish Chandra. Using Tracing and Dynamic Slicing to Tune

Compilers. University of Wisconsin Computer Sciences Department Technical Report

#1174. August, 1993

[13] MIPS Computer Systems, Inc. Assembly Language Programmer’s Guide, 1986.

[14] Digital Equipment Corporation. Third Degree Reference Manual, 1993

[15] Digital Equipment Corporation. ATOM Reference Manual, 1993

[16] Digital Equipment Corporation. ATOM User Manual, 1993

[17] Richard L. Sites, ed. Alpha Architecture Reference Manual Digital Press, 1992.

[18] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized

Program Analysis Tools. Proceedings of the SIGPLAN’94 Conference on Programming

Language Design and Implementation, June, 1994.

[19] Amitabh Srivastava and David W. Wall. A Practical System for Intermodule Code

Optimization at Link-Time. Journal of Programming Language, 1(1), pp 1-18, March

1993. Also available as WRL Research Report 92/6, December 1992.

16

[20] Amitabh Srivastava and David W. Wall. Link-Time Optimization of Address Calcu-

lation on a 64-bit Architecture. Proceedings of the SIGPLAN’94 Conference on Pro-

gramming Language Design and Implementation, to appear. Also available as WRL

Research Report 94/1, February 1994.

[21] Amitabh Srivastava. Unreachable procedures in object-oriented programming, ACM

LOPLAS, Vol 1, #4, pp 355-364, December 1992. Also available as WRL Research

Report 93/4, August 1993.

[22] David W. Wall. Systems for late code modification. In Robert Giegerich and Susan L.

Graham, eds, Code Generation - Concepts, Tools, Techniques, pp. 275-293, Springer-

Verlag, 1992. Also available as WRL Research Report 92/3, May 1992.

17

18

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘The USENET Cookbook: an Experiment in

Michael J. K. Nielsen. Electronic Publication.’’

WRL Research Report 86/1, September 1986. Brian K. Reid.

WRL Research Report 87/7, December 1987.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘MultiTitan: Four Architecture Papers.’’

WRL Research Report 86/3, October 1986. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.
‘‘Optimal Finned Heat Sinks.’’ WRL Research Report 87/8, April 1988.
William R. Hamburgen.

WRL Research Report 86/4, October 1986. ‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/1, March 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 87/1, August 1987. Roots.’’

Joel F. Bartlett.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/2, February 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘The Experimental Literature of The Internet: An

J. Accetta. Annotated Bibliography.’’

WRL Research Report 87/2, November 1987. Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.
‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul. ‘‘Measured Capacity of an Ethernet: Myths and

WRL Research Report 87/3, December 1987. Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher
‘‘Cache Coherence in Distributed Systems.’’ A. Kent.
Christopher A. Kent. WRL Research Report 88/4, September 1988.
WRL Research Report 87/4, December 1987.

‘‘Visa Protocols for Controlling Inter-Organizational
‘‘Register Windows vs. Register Allocation.’’ Datagram Flow: Extended Description.’’
David W. Wall. Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
WRL Research Report 87/5, December 1987. Kamaljit Anand.

WRL Research Report 88/5, December 1988.
‘‘Editing Graphical Objects Using Procedural

Representations.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
Paul J. Asente. Joel F. Bartlett.
WRL Research Report 87/6, November 1987. WRL Research Report 89/1, January 1989.

19

‘‘Optimal Group Distribution in Carry-Skip Ad- ‘‘The Distribution of Instruction-Level and Machine

ders.’’ Parallelism and Its Effect on Performance.’’

Silvio Turrini. Norman P. Jouppi.

WRL Research Report 89/2, February 1989. WRL Research Report 89/13, July 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’ ‘‘Long Address Traces from RISC Machines:

William R. Hamburgen. Generation and Analysis.’’

WRL Research Report 89/3, February 1989. Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.
‘‘Simple and Flexible Datagram Access Controls for WRL Research Report 89/14, September 1989.

Unix-based Gateways.’’

Jeffrey C. Mogul. ‘‘Link-Time Code Modification.’’

WRL Research Report 89/4, March 1989. David W. Wall.

WRL Research Report 89/17, September 1989.
‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ ‘‘Noise Issues in the ECL Circuit Family.’’

V. Srinivasan and Jeffrey C. Mogul. Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 89/5, May 1989. WRL Research Report 90/1, January 1990.

‘‘Available Instruction-Level Parallelism for Super- ‘‘Efficient Generation of Test Patterns Using

scalar and Superpipelined Machines.’’ Boolean Satisfiablilty.’’

Norman P. Jouppi and David W. Wall. Tracy Larrabee.

WRL Research Report 89/7, July 1989. WRL Research Report 90/2, February 1990.

‘‘A Unified Vector/Scalar Floating-Point Architec- ‘‘Two Papers on Test Pattern Generation.’’

ture.’’ Tracy Larrabee.

Norman P. Jouppi, Jonathan Bertoni, and David WRL Research Report 90/3, March 1990.

W. Wall.
‘‘Virtual Memory vs. The File System.’’WRL Research Report 89/8, July 1989.
Michael N. Nelson.

‘‘Architectural and Organizational Tradeoffs in the WRL Research Report 90/4, March 1990.

Design of the MultiTitan CPU.’’
‘‘Efficient Use of Workstations for Passive Monitor-Norman P. Jouppi.

ing of Local Area Networks.’’WRL Research Report 89/9, July 1989.
Jeffrey C. Mogul.

‘‘Integration and Packaging Plateaus of Processor WRL Research Report 90/5, July 1990.

Performance.’’
‘‘A One-Dimensional Thermal Model for the VAXNorman P. Jouppi.

9000 Multi Chip Units.’’WRL Research Report 89/10, July 1989.
John S. Fitch.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces- WRL Research Report 90/6, July 1990.

sor with High Ratio of Sustained to Peak Perfor-
‘‘1990 DECWRL/Livermore Magic Release.’’mance.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,Norman P. Jouppi and Jeffrey Y. F. Tang.

Don Stark, Gordon T. Hamachi.WRL Research Report 89/11, July 1989.
WRL Research Report 90/7, September 1990.

20

‘‘Pool Boiling Enhancement Techniques for Water at ‘‘Interleaved Fin Thermal Connectors for Multichip

Low Pressure.’’ Modules.’’

Wade R. McGillis, John S. Fitch, William William R. Hamburgen.

R. Hamburgen, Van P. Carey. WRL Research Report 91/9, August 1991.

WRL Research Report 90/9, December 1990.
‘‘Experience with a Software-defined Machine Ar-

‘‘Writing Fast X Servers for Dumb Color Frame Buf- chitecture.’’

fers.’’ David W. Wall.

Joel McCormack. WRL Research Report 91/10, August 1991.

WRL Research Report 91/1, February 1991.
‘‘Network Locality at the Scale of Processes.’’

‘‘A Simulation Based Study of TLB Performance.’’ Jeffrey C. Mogul.

J. Bradley Chen, Anita Borg, Norman P. Jouppi. WRL Research Report 91/11, November 1991.

WRL Research Report 91/2, November 1991.
‘‘Cache Write Policies and Performance.’’

‘‘Analysis of Power Supply Networks in VLSI Cir- Norman P. Jouppi.

cuits.’’ WRL Research Report 91/12, December 1991.

Don Stark.
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’WRL Research Report 91/3, April 1991.
William R. Hamburgen, John S. Fitch.

‘‘TurboChannel T1 Adapter.’’ WRL Research Report 92/1, March 1992.

David Boggs.
‘‘Observing TCP Dynamics in Real Networks.’’WRL Research Report 91/4, April 1991.
Jeffrey C. Mogul.

‘‘Procedure Merging with Instruction Caches.’’ WRL Research Report 92/2, April 1992.

Scott McFarling.
‘‘Systems for Late Code Modification.’’WRL Research Report 91/5, March 1991.
David W. Wall.

‘‘Don’t Fidget with Widgets, Draw!.’’ WRL Research Report 92/3, May 1992.

Joel Bartlett.
‘‘Piecewise Linear Models for Switch-Level Simula-WRL Research Report 91/6, May 1991.

tion.’’

‘‘Pool Boiling on Small Heat Dissipating Elements in Russell Kao.

Water at Subatmospheric Pressure.’’ WRL Research Report 92/5, September 1992.

Wade R. McGillis, John S. Fitch, William
‘‘A Practical System for Intermodule Code Optimiza-R. Hamburgen, Van P. Carey.

tion at Link-Time.’’WRL Research Report 91/7, June 1991.
Amitabh Srivastava and David W. Wall.

‘‘Incremental, Generational Mostly-Copying Gar- WRL Research Report 92/6, December 1992.
bage Collection in Uncooperative Environ-

‘‘A Smart Frame Buffer.’’ments.’’
Joel McCormack & Bob McNamara.G. May Yip.
WRL Research Report 93/1, January 1993.WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

21

‘‘Tradeoffs in Two-Level On-Chip Caching.’’ ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Norman P. Jouppi & Steven J.E. Wilton. Robert N. Mayo, Herve Touati.

WRL Research Report 93/3, October 1993. WRL Research Report 94/5, April 1994.

‘‘Unreachable Procedures in Object-oriented

Programing.’’

Amitabh Srivastava.

WRL Research Report 93/4, August 1993.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Research Report 93/6, November 1993.

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’

Norman P. Jouppi, Patrick Boyle, Jeremy Dion, Mary

Jo Doherty, Alan Eustace, Ramsey Haddad,

Robert Mayo, Suresh Menon, Louis Monier, Don

Stark, Silvio Turrini, Leon Yang, John Fitch, Wil-

liam Hamburgen, Russell Kao, and Richard Swan.

WRL Research Report 93/8, December 1993.

‘‘Link-Time Optimization of Address Calculation on

a 64-bit Architecture.’’

Amitabh Srivastava, David W. Wall.

WRL Research Report 94/1, February 1994.

‘‘ATOM: A System for Building Customized

Program Analysis Tools.’’
Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.

‘‘Complexity/Performance Tradeoffs with Non-

Blocking Loads.’’

Keith I. Farkas, Norman P. Jouppi.
WRL Research Report 94/3, March 1994.

‘‘A Better Update Policy.’’
Jeffrey C. Mogul.

WRL Research Report 94/4, April 1994.

22

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Brian K. Reid and Christopher A. Kent. sures’’

WRL Technical Note TN-4, September 1988. Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.
‘‘TCP/IP PrintServer: Server Architecture and Im- WRL Technical Note TN-23, January 1992.

plementation.’’

Christopher A. Kent. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-7, November 1988. Techniques for Die Attach’’

John S. Fitch.
‘‘Smart Code, Stupid Memory: A Fast X Server for a WRL Technical Note TN-24, January 1992.

Dumb Color Frame Buffer.’’

Joel McCormack. ‘‘TurboChannel Versatec Adapter’’

WRL Technical Note TN-9, September 1989. David Boggs.

WRL Technical Note TN-26, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Recovery Protocol For Spritely NFS’’

John Ousterhout. Jeffrey C. Mogul.

WRL Technical Note TN-11, October 1989. WRL Technical Note TN-27, April 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘Electrical Evaluation Of The BIPS-0 Package’’

Generations and C++.’’ Patrick D. Boyle.

Joel F. Bartlett. WRL Technical Note TN-29, July 1992.

WRL Technical Note TN-12, October 1989.
‘‘Transparent Controls for Interactive Graphics’’

‘‘The Effect of Context Switches on Cache Perfor- Joel F. Bartlett.

mance.’’ WRL Technical Note TN-30, July 1992.

Jeffrey C. Mogul and Anita Borg.
‘‘Design Tools for BIPS-0’’WRL Technical Note TN-16, December 1990.
Jeremy Dion & Louis Monier.

‘‘MTOOL: A Method For Detecting Memory Bot- WRL Technical Note TN-32, December 1992.
tlenecks.’’

‘‘Link-Time Optimization of Address Calculation onAaron Goldberg and John Hennessy.
a 64-Bit Architecture’’WRL Technical Note TN-17, December 1990.

Amitabh Srivastava and David W. Wall.

‘‘Predicting Program Behavior Using Real or Es- WRL Technical Note TN-35, June 1993.

timated Profiles.’’
‘‘Combining Branch Predictors’’David W. Wall.
Scott McFarling.WRL Technical Note TN-18, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘Cache Replacement with Dynamic Exclusion’’
‘‘Boolean Matching for Full-Custom ECL Gates’’Scott McFarling.
Robert N. Mayo and Herve Touati.WRL Technical Note TN-22, November 1991.
WRL Technical Note TN-37, June 1993.

23

