
M A R C H 1 9 9 4

WRL
Technical Note TN-42

Speculative
Execution
and
Instruction-Level
Parallelism

David W. Wall

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Speculative Execution
and

Instruction-Level Parallelism

David W. Wall

March 1994

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

i

Abstract

Full exploitation of instruction-level parallelism by superscalar and similar
architectures requires speculative execution, in which we are willing to issue a
potential future instruction early even though an intervening branch may
send us in another direction entirely. Speculative execution can be based ei-
ther on branch prediction, where we explore the most likely path away from
the branch, or on branch fan-out, in which we explore both paths and
sacrifice some hardware parallelism for the sake of not being entirely wrong.
Recent techniques for branch prediction have greatly improved its potential
success rate; we measure the effect this improvement has on parallelism. We
also measure the effect of fan-out, alone and also in combination with a
predictor. Finally, we consider the effect of fallible instructions, those that
might lead to spurious program failure if we execute them speculatively;
simply refusing to do so can drastically reduce the parallelism.

1 Introduction

Recent years have seen a great deal of interest in multiple-issue machines [1, 6, 9], machines that

can issue several mutually independent instructions in the same cycle. These machines exploit

the parallelism that programs exhibit at the instruction level.

It is important to know how much parallelism is available in typical applications. Machines

providing a high degree of multiple-issue would be of little use if applications did not display

that much parallelism. The available parallelism depends strongly on how hard we are willing to

work to find it. Recent studies studies [4, 5, 6, 13, 14, 15, 16, 17] have led to a growing consensus

that high levels of parallelism are available only by doing speculative execution, in which we can

issue an instruction whose data dependencies are satisfied even though its control dependencies

are not. That is, we issue a potential future instruction early even though an intervening branch

may send us in another direction entirely.

1

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

There are two approaches to the selection of instructions to execute speculatively. We can

do branch prediction, trying to guess whether a conditional branch will be taken so we know

which of the two possible paths to follow in selecting instructions. Or we can fan out and select

instructions from both possible paths, spending some of our machine parallelism for the assurance

that at least some of the instructions we speculatively execute will be useful. It is possible to use

a combination of the two, fanning out part of the time and predicting the rest of the time.

This paper presents results concerning three questions. First, recent work in branch predic-

tion [8, 10, 18, 19] has shown how to use very large predictors to improve the performance of

hardware predictors from around 92% success to around 98%. What effect does this have on

instruction-level parallelism? Second, how useful is a fan-out capability, both by itself and in

combination with a predictor? Third, on some architectures certain instructions must not be exe-

cuted speculatively because they can cause run-time exceptions. Does this cripple a multiple-issue

machine, or can it be tolerated?

We start with an overview of branch prediction and fan-out techniques. We then describe our

experimental environment, based like many others on trace-based simulation. Finally we present

our results, and some conclusions.

2 Branch prediction

Branch prediction can be done statically or dynamically. Static prediction based on the direction

of the branch or other heuristics is only somewhat effective, but prediction based on a profile of

a previous run of the application is successful around 90% of the time. Dynamic prediction is

normally done in hardware, with the prediction for a given branch based on recent events in the

execution. A common hardware branch predictor [7, 12] maintains a table of saturating two-bit

counters. Low-order bits of a branch’s address provide an index into this table, associating a

counter with each branch; if the table is small then the program space wraps around, possibly

associating the same counter to several branches across the program. We predict that a branch

will be taken if the associated counter is 2 or 3, and otherwise predict not taken. Later, when

the branch is resolved, we increment the counter if it was taken, and otherwise decrement it. A

predictor of 512 counters is successful about as often as a profile, but unfortunately increasing

the size of the table does not help much; the success rate levels off at 92% or 93% regardless of

the table size.

2

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

Recent studies have explored more sophisticated hardware prediction using branch histo-

ries [10, 18, 19]. These approaches maintain tables relating the recent history of the branch (or of

branches in the program as a whole) to the likely next outcome of the branch. These approaches

do quite poorly with small tables, but unlike the two-bit counter schemes they can benefit from

much larger predictors.

An example is the local-history predictor [18]. It maintains a table of n-bit shift registers,

indexed by the branch address as above. When the branch is taken, a 1 is shifted into the table

entry for that branch; otherwise a 0 is shifted in. To predict a branch, we take its n-bit history

and use it as an index into a table of 2n 2-bit counters like those in the simple counter scheme

described above. If the counter is 2 or 3, we predict taken; otherwise we predict not taken. If the

prediction proves correct, we increment the counter; otherwise we decrement it. The local-history

predictor works well on branches that display a regular pattern with a small period.

Sometimes the behavior of one branch is correlated with the behavior of another. A global-

history predictor [18] tries to exploit this effect. It replaces the table of shift registers with a single

shift register that records the outcome of the n most recently executed branches, and uses this

history pattern as before, to index a table of counters. This allows it to exploit correlations in the

behaviors of nearby branches, and allows the history to be longer for a given total predictor size.

An interesting variation is the gshare predictor [8], which uses the identity of the branch as

well as the recent global history. Instead of indexing the array of counters with just the global

history register, the gshare predictor computes the xor of the global history and branch address.

McFarling [8] got even better results by using a table of two-bit counters to dynamically choose

between two different schemes running in competition. Each predictor makes its prediction as

usual, and the branch address is used to select another 2-bit counter from a selector table; if the

selector value is 2 or 3, the first prediction is used; otherwise the second is used. When the

branch outcome is known, the selector is incremented or decremented if exactly one predictor

was correct. This approach lets the two predictors compete for authority over a given branch, and

awards the authority to the predictor that has recently been correct more often. McFarling found

that combined predictors did not work as well as simpler schemes when the total predictor size

was small, but did quite well indeed when large.

3

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

3 Branch fan-out

Rather than try to predict the destinations of branches, we might speculatively execute instructions

along both possible paths, squashing the wrong path when we know which it is. Some of our

hardware parallelism capability is guaranteed to be wasted, but we will never miss out completely

by blindly taking the wrong path. Unfortunately, branches happen quite often in normal code, so

for large degrees of parallelism we may encounter another branch before we have resolved the

previous one. Thus we cannot continue to fan out indefinitely: we will eventually use up all the

machine parallelism just exploring many parallel paths, of which only one is the right one.

In some respects fan-out duplicates the benefits of branch prediction, but they can also work

together. We explore both paths up to the fan-out limit, and then explore only the predicted path

beyond that point.

4 Fallible instructions

In most architectures, some instructions can fail, causing an exception. Examples are memory

references, which can cause segmentation violations, and floating-point operations, which can

cause several kinds of traps. Speculatively executing a fallible instruction is dangerous, because it

might make a correct program fail; to avoid this, the hardware must somehow make the exception

itself speculative, so that the failure does not occur until we are sure that the instruction should

have been executed.

The easy way out is simply to refuse to speculatively execute a fallible instruction. This

is likely to degrade the parallelism, since it will also delay safe instructions that depend on the

fallible instruction, but it eliminates the need for hardware trickiness.

5 Simulation environment

To study the effects of these issues on instruction-level parallelism, we used the trace-based

simulator described in detail in an earlier report [17]. An instruction trace of the application is

passed, one instruction at a time, to the scheduler. The scheduler places each instruction into

some cycle of a sequence of pending cycles, subject to dependencies with previously scheduled

instructions. Whether there is a dependency is determined by the parallelism model we use. If

the model does not include branch prediction, for example, then each instruction appearing after

4

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

4 206 8 10 12 14 16 18
0.7

1

0.75

0.8

0.85

0.9

0.95

pr
ed

ic
tio

n
su

cc
es

s
ra

te

counter

ctr/gsh
loc/gsh

 16 64 256 1K 4K 16K 64K 256K 1M

Figure 1: Fraction of branches predicted correctly by three different prediction
schemes, as a function of the total number of bits in the predictor

a branch in the trace must be scheduled after that branch in the pending cycles. If the model does

include branch prediction, in contrast, we can schedule later instructions into cycles before the

branch, if the predictor is successful; otherwise we must assume that a real machine would have

speculatively executed instructions from the wrong path, and would only start looking down the

correct path when execution of the branch instruction reveals the misprediction.1

The simulator uses a greedy scheduling algorithm, placing each instruction as early as possible

in the pending cycles, given the instructions that preceded it in the trace. Each cycle can hold a

maximum of 64 instructions, and the entire sequence of pending cycles can hold 2048 instructions.

When the number of pending instructions exceeds that number, we “issue” the first cycle, which

prevents us from scheduling any more instructions in it.

For the purposes of this paper, the parallelism model simulated is specified by four parameters:

branch prediction and fan-out, fallibility, register renaming, and memory disambiguation. The

full system is somewhat more flexible than this.

In this paper we are interested in the effect of varying the size of the branch predictor. Different

predictors do the best in different regions of this spectrum of size. Figure 1 shows the harmonic

1This approach to a missed prediction ignores the possibility that code could be moved from after the point where
the paths rejoin to a position before the paths split apart. Recognizing such opportunities is difficult in hardware but
feasible in a software scheduler [4, 14].

5

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

mean of the success rates of three predictors for twelve SPEC92 benchmarks, as the predictor

size varies. The two-bit-counter predictor does best for predictor sizes up to 512 bits. A predictor

built by combining a counter predictor and a gshare predictor does best in the middle range up

through 4K bits, and a combination of a local predictor and a gshare predictor works best above

4K bits. Throughout this paper, when we speak of a predictor of a particular size, the range that

includes this size will determine the prediction technique used.

Branch fan-out is a little trickier to model. We want to explore both paths away from a branch,

but the simulator has only the correct instruction trace to work from and therefore cannot actually

schedule instructions from paths not taken. Exploring these false paths on a real machine would

use up hardware parallelism, however, especially since we will likely have to schedule another

branch before the first is issued and resolved. We model this approximately by assuming that

there is a fan-out limit on the number of branches we can look past. If our model has a non-zero

fan-out limit, we can handle branches beyond that limit either by giving up or by conventional

branch prediction.

There are two kinds of instructions we can consider fallible: floating-point binary operations

and memory-reference instructions. In this paper we arbitrarily allowed only heap references

to fail, on the perhaps generous assumption that program analysis or language semantics could

preclude the failure of references to stack or static data.

This paper is not directly concerned with the effects of register or memory dependencies.

To provide a small selection of contexts for our exploration of branch analysis and fallibility,

however, we assumed four different base models. The alpha model assumes perfect memory

disambiguation, so that a store conflicts with a load or store only if the two actually reference

the same word in memory, and assumes an infinite number of registers with a perfect renaming

scheme, so that we never have output dependencies or antidependencies between registers. The

beta model also assumes perfect memory disambiguation, but assumes 64 CPU registers and 64

FPU registers, managed dynamically by a hardware renaming scheme using an LRU discipline

(relative, of course, to the position in the scheduled cycles rather than in the instruction trace). The

gamma model assumes perfect memory disambiguation and no register renaming, so that register

conflicts are determined by the registers actually allocated by the DECstation compiler. The delta

model assumes no register renaming and simple but very conservative memory disambiguation

by instruction inspection, a common technique used in compile-time instruction-level pipeline

schedulers: two instructions do not conflict if (a) they use they use the same base register but

6

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

alpha infinite

beta 64 int, 64 fp

gamma no renaming

delta no renaming

perfect

perfect

perfect

inspection

 register
renaming

 memory
disambiguation

Figure 2: The four base models of register renaming and memory disambiguation

different displacements, or (b) one uses a register known to point to the stack and the other one

known to point to the global data area. Figure 2 summarizes these four models.

In all four of these models we assume that all indirect jumps (chiefly procedure returns, calls

to procedure variables, and case-statement indexed jumps) are predicted perfectly. Procedure

returns are easy to predict with simple hardware, but other jumps are less so. Assuming perfect

jump prediction is therefore generous but probably not consequential; indirect jumps are rare

enough in the programs we tested that jump prediction has a significant effect on parallelism only

when branch prediction is also perfect.

All of our simulations were done with a set of twelve programs from the SPEC92 suite. (The

rest of them run too long for our simulation to be feasible.) We usually gave them the official

“small” data sets where possible, and in the case of tomcatv and alvinn we modified the value of

a constant to reduce the number of iterations of the outer loop.

6 Results

Our first experiment measured the parallelism as the total size of the branch predictor increased.

As described earlier, different predictors have better success rates in different size ranges, so we

use different predictors for the small, intermediate, and large predictor sizes. (This is why some

benchmarks show a sudden change around 512 bits or 4K bits.) Figure 3 shows the results for

each of our four base models. The solid curves are integer benchmarks; the dotted curves are

floating-point benchmarks.

Under the alpha model, with infinite registers and perfect memory disambiguation, we see

7

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

6 208 10 12 14 16 18
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
mdljsp2
hydro2d

li
espress
gcc1

ora

alvinn
compres

harmonic mean2

3

4
5
6
7
8

20

30

40
50

 64 256 1K 4K 16K 64K 256K 1M

(a) infinite registers and perfect memory disambiguation

6 208 10 12 14 16 18
1

64

pa
ra

lle
lis

m 10

tomcatv

fpppp
swm256

li
hydro2d
doduc
mdljsp2
gcc1
espress
ora
compres
alvinn

harmonic mean2

3

4
5
6
7
8

20

30

40
50

 64 256 1K 4K 16K 64K 256K 1M

(b) 64 renamed registers and perfect memory disambiguation

6 208 10 12 14 16 18
1

64

pa
ra

lle
lis

m 10
hydro2d
li
tomcatv
doduc
compres
gcc1
ora
espress
fpppp
swm256
alvinn
mdljsp2

harmonic mean

2

3

4
5
6
7
8

20

30

40
50

 64 256 1K 4K 16K 64K 256K 1M

(c) no register renaming and perfect memory disambiguation

6 208 10 12 14 16 18
1

64

pa
ra

lle
lis

m 10

hydro2d
li
doduc
tomcatv
ora
compres
gcc1
espress
fpppp
swm256
alvinn
mdljsp2

harmonic mean

2

3

4
5
6
7
8

20

30

40
50

 64 256 1K 4K 16K 64K 256K 1M

(d) no register renaming and memory disambiguation by inspection

Figure 3: Effect of branch predictor size on parallelism

8

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

701 705702 703 704
1

64

pa
ra

lle
lis

m 10
alpha
beta

gamma

delta

2

3

4
5
6
7
8

20

30

40
50

 0 1 2 4 8 701 705702 703 704
1

64

pa
ra

lle
lis

m 10

alpha

beta

gamma

delta

2

3

4
5
6
7
8

20

30

40
50

 0 1 2 4 8

Figure 4: Effect of fan-out on parallelism without branch prediction (left)
and with a 0.5-kilobit branch predictor (right)

that a few programs benefit considerably from large predictors. Gcc1 continues to improve even

as we reach a predictor of three-quarters of a megabit. Both li and espresso improve 40% between

1 kilobit and 1 megabit; the harmonic mean of the improvements over that range is 25%. It is

interesting that the programs least sensitive to the size of the predictor are those most parallel and

those least parallel.

Under the beta model we see roughly the same behavior, though it is not as pronounced.

Now the mean payoff of the biggest predictor over the 1-kilobit predictor is about 14%. When

we eliminate first register renaming and then perfect memory disambiguation, we see that the

advantage of a very large predictor evaporates almost completely. The largest improvement from

1Kb is 13%, but few programs do even close to this well; the mean is more like 2%.

Unsurprisingly, we see that a very large branch predictor can be helpful, but only if we get

everything else right.

Next we consider the effects of fanning out at branches. Figure 4 shows the mean parallelism

over the 12 programs as the fan-out limit increases, for each of the four base models. The left-hand

graph assumes that the fan-out capability is working alone, without subsequent branch prediction:

when the fan-out limit is reached we can look beyond no more branches for instructions to issue.

9

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

The right-hand graph assumes that fan-out is followed by branch prediction: when the fan-out

limit we can continue to look past branches for instructions, but only along the predicted path.

The predictor used is a modest one, a simple counter-based predictor of 256 entries. 2

Without branch prediction, a little fan-out helps a lot, even in the poorer base models. Fanning

out past just 1 level of branching improves the parallelism of gamma and delta by around 30%,

and of alpha and beta by around 50%. Increasing the fan-out limit continues to improve things

significantly, but the effects are not as dramatic.

Interestingly, fanning out even to a level of 8 branches gives us a parallelism in each model

that is nearly the same as the parallelism from using the half-kilobit predictor with no fan-out

at all. Adding eight levels of fan-out to this predictor improves the parallelism somewhat, by

30-45% in alpha and beta, and by about 7% in gamma and delta.

Thus an ambitious fan-out capability could be an adequate substitute for branch prediction,

though it is hard to imagine the circumstances in which it would be easier to implement. Adding

branch prediction to even a modest predictor does not buy us much unless (again) we do a very

good job of handling register and memory dependencies.

We assumed that two kinds of instructions could fail: binary floating-point operations, and

heap memory references. In the actual traces, of course, these operations never fail; since we could

not know that in advance, we model their fallibility by insisting that they always be scheduled

later than any previous branch. We also experimented with models in which only one of these two

classes of instructions are fallible. These proved uninteresting, because the behavior of the twelve

SPEC92 programs is bimodal: the integer programs do essentially no floating-point operations,

and the floating-point programs make few or no heap references. In either case, assuming that

only one could fail gave results essentially identical to assuming that neither or both could fail.

Figure 5 shows the results, for the four base models and two different predictor sizes. We

have separated out the integer from the floating-point programs, and present the harmonic mean

parallelism for each. The upper curve in each pair is the parallelism without fallible instructions;

the lower is with fallible instructions.

Fallibility has a larger effect on the integer programs than on the floating-point programs. It

2The simulator’sviewpoint is the reverse of the hypothetical hardware’s. The simulator schedules each successive
instruction into one of the pending cycles, so to implement a fan-out of n without prediction it allows the instruction
to be scheduled earlier than the previous n branches, but not the n+ 1st. To implement fan-out followed by branch
prediction, we tentatively predict every branch, and allow an instruction to be scheduled before any number of
successfully predicted branches, preceded by n more branches whether predicted successfully or not. In other words,
the instruction must be scheduled after the nth branch before the last incorrectly predicted branch.

10

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

701 704702 703
1

64

pa
ra

lle
lis

m 10
fp

int

2

3

4
5
6
7
8

20

30

40
50

 delta gamma beta alpha 701 704702 703
1

64

pa
ra

lle
lis

m 10

fp

int

2

3

4
5
6
7
8

20

30

40
50

 delta gamma beta alpha

Figure 5: Effect of fallible instructions on parallelism with 0.5-kilobit branch
predictor (left) and with 0.7-megabit branch predictor (right)

reduces the parallelism of integer programs so much that the most ambitious model has barely

half again the parallelism of the poorest.

Fallibility has its greatest effect on the more ambitious models. It can cut the parallelism of

a good model in half but rarely reduces the smaller parallelism of a poorer model by more than

a fifth. Evidently (and perhaps obviously) the more different kinds of bottlenecks to scheduling

you have, the less another one matters.

7 Conclusions

The qualitative conclusions of this study should come as no great surprise, though we hope the

quantitative results will serve as useful hints to the architecture and compiler communities.

Very good branch prediction from megabit history-based predictors can significantly improve

parallelism, though the magnitude of this improvement was not as great as we had hoped to see.

The payoff of a large predictor is probably negligible unless we also take strong action to reduce

false register dependencies and disambiguate memory references.

Fanning out across many levels of branches can in principle be a substitute for modest branch

prediction, though a large predictor has no trouble beating it. Since fan-out is likely to be harder

11

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

to implement than ordinary prediction, it is probably more interesting to note that adding fan-out

to prediction can improve it. As before, however, the improvement is significant only if we have

false register and memory conflicts well under control.

These results confirm that we really need to work with a combination of very good techniques

if we want to achieve high levels of parallelism. It is therefore important to note that refusing

to execute fallible instructions speculatively can halve the parallelism of the more ambitious

models. Techniques that allow failures to be postponed until we are sure they were supposed to

happen [2, 3, 11] are essential to the full exploitation of instruction-level parallelism.

References

[1] Tilak Agarwala and John Cocke. High performance reduced instruction set processors. IBM

Thomas J. Watson Research Center Technical Report #55845, March 31, 1987.

[2] Roger A. Bringmann, Scott A. Mahlke, Richard E. Hank, John C. Gyllenhaal, and Wen-mei

W. Hwu. Speculative execution exception recovery using write-back suppression. 26th An-

nual International Symposium on Microarchitecture, 214–223, December 1993. Published

as SIG MICRO Newsletter 24.

[3] Harry Dwyer and H. C. Torng An out-of-order superscalar processor with speculative execu-

tion and fast, precise interrupts. 25th Annual International Symposium on Microarchitecture,

272–281, December 1992. Published as SIG MICRO Newsletter 23,(1&2).

[4] Joseph A. Fisher. Global code generation for instruction-level parallelism: trace scheduling-

2. Technical Report HPL-93-43, Hewlett-Packard Laboratories, June 1993.

[5] Joseph A. Fisher and Stefan M. Freudenberger Predicting conditional branch directions

from previous runs of a program. Fifth International Symposium on Architectural Support

for Programming Languages and Operating Systems, pp. 85–95, October 1992. Published

as Computer Architecture News 20 (special issue), Operating Systems Review 26 (special

issue), SIGPLAN Notices 27 (9).

[6] Norman P. Jouppi and David W. Wall. Available instruction-level parallelism for superscalar

and superpipelined machines. Third International Symposium on Architectural Support for

Programming Languages and Operating Systems, pp. 272–282, April 1989. Published as

12

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

Computer Architecture News 17 (2), Operating Systems Review 23 (special issue), SIGPLAN

Notices 24 (special issue).

[7] Johnny K. F. Lee and Alan J. Smith. Branch prediction strategies and branch target buffer

design. Computer 17 (1), pp. 6–22, January 1984.

[8] Scott McFarling. Combining branch predictors. WRL Technical Note TN-36, June 1993.

Digital Western Research Laboratory, 250 University Ave., Palo Alto, CA.

[9] Alexandru Nicolau and Joseph A. Fisher. Measuring the parallelism available for very long

instruction word architectures. IEEE Transactions on Computers C-33 (11), pp. 968–976,

November 1984.

[10] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the accuracy of dynamic

branch prediction using branch correlation. Fifth International Symposium on Architectural

Support for Programming Languages and Operating Systems, 76–84, September 1992.

Published as Computer Architecture News 20 (special issue), Operating Systems Review 26

(special issue), SIGPLAN Notices 27 (special issue).

[11] Anne Rogers and Kai Li. Software support for speculative loads. Fifth International Sym-

posium on Architectural Support for Programming Languages and Operating Systems, pp.

38–50, October 1992. Published as Computer Architecture News 20 (special issue), Oper-

ating Systems Review 26 (special issue), SIGPLAN Notices 27 (9).

[12] J. E. Smith. A study of branch prediction strategies. Eighth Annual Symposium on Computer

Architecture, pp. 135–148. Published as Computer Architecture News 9 (3), 1986.

[13] Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on multiple instruction

issue. Third International Symposium on Architectural Support for Programming Languages

and Operating Systems, pp. 290–302, April 1989. Published as Computer Architecture News

17 (2), Operating Systems Review 23 (special issue), SIGPLAN Notices 24 (special issue).

[14] Michael D. Smith, Mark Horowitz, and Monica Lam. Efficient superscalar performance

through boosting. Fifth International Symposium on Architectural Support for Programming

Languages and Operating Systems, pp. 248–259, October 1992. Published as Computer

Architecture News 20 (special issue), Operating Systems Review 26 (special issue), SIGPLAN

Notices 27 (9).

13

SPECULATIVE EXECUTION AND INSTRUCTION-LEVEL PARALLELISM

[15] Kevin B. Theobald, Guang R. Gao, and Laurie Hendren. On the limits of program parallelism

and its smoothability.. 25th Annual International Symposium on Microarchitecture, 10–19,

December 1992. Published as SIG MICRO Newsletter 23,(1&2).

[16] G. S. Tjaden and M. J. Flynn. Detection and parallel execution of parallel instructions. IEEE

Transactions on Computers C-19 (10), pp. 889–895, October 1970.

[17] David W. Wall. Limits of instruction-level parallelism. Research Report 93/6, Digital West-

ern Research Laboratory, November 1993. An earlier version appeared in Fourth Interna-

tional Symposium on Architectural Support for Programming Languages and Operating

Systems, 176–188, April 1991.

[18] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branch

prediction. Nineteenth Annual International Symposium on Computer Architecture, 124–

134, May 1992. Published as Computer Architecture News 20(2).

[19] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors that use two levels

of branch history. Twentieth Annual International Symposium on Computer Architecture,

257–266, May 1993.

14

15

WRL Research Reports

‘‘Titan System Manual.’’

Michael J. K. Nielsen.

WRL Research Report 86/1, September 1986.

‘‘Global Register Allocation at Link Time.’’

David W. Wall.

WRL Research Report 86/3, October 1986.

‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen.

WRL Research Report 86/4, October 1986.

‘‘The Mahler Experience: Using an Intermediate

Language as the Machine Description.’’

David W. Wall and Michael L. Powell.

WRL Research Report 87/1, August 1987.

‘‘The Packet Filter: An Efficient Mechanism for

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael

J. Accetta.

WRL Research Report 87/2, November 1987.

‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987.

‘‘Cache Coherence in Distributed Systems.’’

Christopher A. Kent.

WRL Research Report 87/4, December 1987.

‘‘Register Windows vs. Register Allocation.’’

David W. Wall.
WRL Research Report 87/5, December 1987.

‘‘Editing Graphical Objects Using Procedural
Representations.’’

Paul J. Asente.

WRL Research Report 87/6, November 1987.

‘‘The USENET Cookbook: an Experiment in

Electronic Publication.’’
Brian K. Reid.

WRL Research Report 87/7, December 1987.

‘‘MultiTitan: Four Architecture Papers.’’

Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.

‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.

WRL Research Report 88/1, March 1988.

‘‘Compacting Garbage Collection with Ambiguous

Roots.’’

Joel F. Bartlett.

WRL Research Report 88/2, February 1988.

‘‘The Experimental Literature of The Internet: An

Annotated Bibliography.’’

Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.

‘‘Measured Capacity of an Ethernet: Myths and

Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.

WRL Research Report 88/4, September 1988.

‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,

Kamaljit Anand.

WRL Research Report 88/5, December 1988.

‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett.
WRL Research Report 89/1, January 1989.

‘‘Optimal Group Distribution in Carry-Skip Ad-
ders.’’

Silvio Turrini.

WRL Research Report 89/2, February 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’

William R. Hamburgen.
WRL Research Report 89/3, February 1989.

16

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak Perfor-

mance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’

Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.

WRL Research Report 89/14, September 1989.

‘‘Link-Time Code Modification.’’

David W. Wall.

WRL Research Report 89/17, September 1989.

‘‘Noise Issues in the ECL Circuit Family.’’

Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 90/1, January 1990.

‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’

Tracy Larrabee.

WRL Research Report 90/2, February 1990.

‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.

WRL Research Report 90/3, March 1990.

‘‘Virtual Memory vs. The File System.’’

Michael N. Nelson.

WRL Research Report 90/4, March 1990.

‘‘Efficient Use of Workstations for Passive Monitor-

ing of Local Area Networks.’’

Jeffrey C. Mogul.

WRL Research Report 90/5, July 1990.

‘‘A One-Dimensional Thermal Model for the VAX

9000 Multi Chip Units.’’

John S. Fitch.
WRL Research Report 90/6, July 1990.

‘‘1990 DECWRL/Livermore Magic Release.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,

Don Stark, Gordon T. Hamachi.

WRL Research Report 90/7, September 1990.

17

‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Research Report 90/9, December 1990.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-

fers.’’

Joel McCormack.

WRL Research Report 91/1, February 1991.

‘‘A Simulation Based Study of TLB Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi.

WRL Research Report 91/2, November 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-

cuits.’’

Don Stark.

WRL Research Report 91/3, April 1991.

‘‘TurboChannel T1 Adapter.’’

David Boggs.

WRL Research Report 91/4, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’

Joel Bartlett.

WRL Research Report 91/6, May 1991.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Research Report 91/7, June 1991.

‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ-

ments.’’
G. May Yip.

WRL Research Report 91/8, June 1991.

‘‘Interleaved Fin Thermal Connectors for Multichip

Modules.’’

William R. Hamburgen.

WRL Research Report 91/9, August 1991.

‘‘Experience with a Software-defined Machine Ar-

chitecture.’’

David W. Wall.

WRL Research Report 91/10, August 1991.

‘‘Network Locality at the Scale of Processes.’’

Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991.

‘‘Cache Write Policies and Performance.’’

Norman P. Jouppi.

WRL Research Report 91/12, December 1991.

‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

William R. Hamburgen, John S. Fitch.

WRL Research Report 92/1, March 1992.

‘‘Observing TCP Dynamics in Real Networks.’’

Jeffrey C. Mogul.

WRL Research Report 92/2, April 1992.

‘‘Systems for Late Code Modification.’’

David W. Wall.

WRL Research Report 92/3, May 1992.

‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’

Russell Kao.

WRL Research Report 92/5, September 1992.

‘‘A Practical System for Intermodule Code Optimiza-

tion at Link-Time.’’

Amitabh Srivastava and David W. Wall.
WRL Research Report 92/6, December 1992.

‘‘A Smart Frame Buffer.’’

Joel McCormack & Bob McNamara.

WRL Research Report 93/1, January 1993.

18

‘‘Recovery in Spritely NFS.’’

Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.

WRL Research Report 93/3, October 1993.

‘‘Unreachable Procedures in Object-oriented

Programing.’’

Amitabh Srivastava.

WRL Research Report 93/4, August 1993.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Research Report 93/6, November 1993.

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

‘‘Link-Time Optimization of Address Calculation on

a 64-bit Architecture.’’

Amitabh Srivastava, David W. Wall.

WRL Research Report 94/1, February 1994.

‘‘ATOM: A System for Building Customized

Program Analysis Tools.’’

Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.

19

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘The Effect of Context Switches on Cache Perfor-

mance.’’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’

Aaron Goldberg and John Hennessy.
WRL Technical Note TN-17, December 1990.

‘‘Predicting Program Behavior Using Real or Es-
timated Profiles.’’

David W. Wall.

WRL Technical Note TN-18, December 1990.

‘‘Cache Replacement with Dynamic Exclusion’’

Scott McFarling.
WRL Technical Note TN-22, November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-

sures’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.

‘‘A Comparison of Acoustic and Infrared Inspection

Techniques for Die Attach’’

John S. Fitch.

WRL Technical Note TN-24, January 1992.

‘‘TurboChannel Versatec Adapter’’

David Boggs.

WRL Technical Note TN-26, January 1992.

‘‘A Recovery Protocol For Spritely NFS’’

Jeffrey C. Mogul.

WRL Technical Note TN-27, April 1992.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

Patrick D. Boyle.

WRL Technical Note TN-29, July 1992.

‘‘Transparent Controls for Interactive Graphics’’

Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.
WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’
Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.

