
D E C E M B E R 1 9 9 0

WRL
Technical Note TN-18

Predicting Program
Behavior Using
Real or Estimated
Profiles

David W. Wall

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Predicting Program Behavior
Using Real or Estimated Profiles

David W. Wall

December, 1990

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

There is a growing interest in optimizations that depend on or benefit from
an execution profile that tells where time is spent. How well does a profile
from one run describe the behavior of a different run, and how does this
compare with the behavior predicted statically by examining the program it-
self? This paper defines two abstract measures of how well a profile predicts
actual behavior. According to these measures, real profiles indeed do better
than estimated profiles, usually. A perfect profile from an earlier run with
the same data set, however, does better still, sometimes by a factor of two.
Using such a profile is unrealistic, and can lead to inflated expectations of a
profile-driven optimization.

i

1. Introduction

Many people have built or speculated on systems that use a run-time profile to
guide code optimization. Applications include the selection of variables to promote to
registers [7,8], placement of code sequences to improve cache behavior [3,6], and pred-
iction of common control paths for optimizations across basic block boundaries [2,5].

When such work is presented, two questions are often asked but seldom ade-
quately answered. How well does a profile from one run predict the behavior of
another? And how well can you do with an estimated profile derived from static
analysis of the program? It is important to answer these questions in general terms as
well as specific. A profile from a different run may be very useful for one kind of
optimization but nearly useless for another kind. The optimization may require identi-
fying the specific program entities that are most used, or it may require only identifying
some that are used a lot.

This paper describes a study of how well an estimated profile predicts real
behavior, and how well a profile from one run predicts the behavior of another run.

2. Methodology.

The pixie tool from Mips [4] instruments an executable file with basic block
counting; when the instrumented program is run, it produces a table telling how many
times each basic block was executed. From this table, in combination with static infor-
mation from the executable file, we derive four kinds of profiles. The first is the basic
block profile, which is just the mapping from each basic block to its execution count.
The second is the procedure profile, which maps each procedure to the number of
times it is entered. The third is the call profile, which maps each distinct call site to
the number of times it is executed. The last is the global variable profile, which maps
each global variable to the number of times it is directly referenced.

If we don’t have basic block counts from pixie, we can try to estimate them. We
first divide the program into basic blocks, and connect them into procedures and flow

graphs based on the branch structure.* We then identify the loops by computing the
dominator relation and finding the back edges, edges each of whose tail dominates its
head. A loop consists of the set of back edges leading to a single dominator, together
with the edges that appear on any path from the dominator to the head of one of the
back edges [1]. We also build a static call graph by finding all the direct calls in the
333333333333333
* The Mips code generation is stylized enough that we can recognize indirect jumps that represent case-
statements, and can deduce what the possible successor blocks are.

1

190252
190250
126993

86450
71835
60790

malloc
free
set_or
setp_implies
d1_order
set_clear

306068 full_row
242254 force_lower

4792

138058
72374
48672
47029
47027
36491

878373 cdist0
245657 d1_order

force_lower
setp_disjoint
cdist01
malloc
free
full_row

19131
15065

set_or
set_clear

setp_implies

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

program; this graph will not include calls through procedure variables.

Given this information, we considered four different ways of estimating basic
blocks counts. The first is the loop-only estimate, in which a block’s count is initially
1 and is multiplied by 3 for each loop that contains it; this ignores the effects of the call
graph. The second is the leaf-loop estimate, in which the loop-only count is multiplied
by 1024 if the block is contained in a leaf procedure, 512 if it is no more than one from
a leaf procedure, and so on with powers of 2 up to 1. The third is the call-loop esti-
mate, in which the loop-only count is multiplied by the static number of direct calls of
the block’s procedure. The fourth is the call+1-loop estimate, which is the loop-only
count is multiplied by one more than the static number of direct calls of the block’s
procedure. The call+1-loop estimate is like the call-loop estimate, except that pro-
cedures that are called only indirectly will not be shut out altogether; unfortunately pro-
cedures that are never called are similarly readmitted.

An optimizer would use a profile by selecting the most frequent entries in it and
doing something special to them: promoting them to registers, optimizing them extra
hard, or whatever. The question is how well a candidate profile, real or estimated,
predicts the behavior described by a reference profile. For this study we considered two
abstract methods of evaluating a candidate profile.

The first method, specific matching, is to take the top n entries of the candidate
profile and see how many of them are also in the top n entries of the reference profile.
For instance, consider the procedure profiles in Figure 1. If we let n = 8, we see that
the first 8 members of the candidate profile include 5 of the first 8 members of the
reference profile. Thus the candidate profile gets a score of 5/8, or 0.625.

Figure 1. Candidate profile (left) and reference profile.

The second method, frequency matching, is to take the top n entries of the candi-
date profile and look up their frequencies in the reference profile, and then compare the
total to the total of the top n entries of the reference profile. For example, taking the
profile in Figure 1 and again assuming n = 8, the total of the candidate’s top 8 entries

2

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

as revealed by the reference profile is 553250, while the total of the reference profile’s
top 8 entries is 1513681. By this measure, then, the candidate profile gets a score of
553250/1513681, or 0.365. Note that specific matching is symmetric (we get the same
score comparing A to B as comparing B to A), but frequency matching is asymmetric.

Applying this approach to all four kinds of profiles, for different values of n,
should give us some notion of how well one profile might predict another. To apply
this understanding more specifically, we also did some rough computations of the sta-
bility of the profiles when applied in two specific ways. One application is the promo-
tion of global variables to registers. The other is intensive optimization of the most fre-
quently called procedures.

We should note one important limitation of this approach. It does not address the
stability of a profile over successive versions of the same program undergoing develop-
ment. One would expect that some kinds of profiles, such as global variable use or pro-
cedure invocation, might be relatively stable even when the program is modified. One
might argue that a program under development will not be run enough times to merit
profile-based optimization, but it would still be interesting to know whether it would be
feasible. A thorough study of this question may be in order, but is not considered here.

3. Programs and data used

Our test suite consists of eleven programs. Two of them, a text editor and a draw-
ing editor, are interactive. Two are CAD tools used at WRL. Two are different C com-
piler front ends; one is recursive descent, the other yacc-based. Three of them are
SPEC benchmarks. Figure 2 describes the complete test suite.

program description22
bisim multi-level machine simulator
bitv timing verifier
udraw drawing editor
egrep file searcher
sed stream editor
Gosling emacs text editor
yacc parser generator
ccom Titan C front end22
gcc1 gnu C front end
eqntott truth table generator
espresso set operation benchmark11

1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 2. The eleven test programs.

Wherever possible, we gave the programs quite different input data, in the hopes
of maximizing the differences in their behavior. We ran bisim three different ways:
completely high-level simulation, high-level functional units with a transistor-level
register file, and transistor-level functional units with a high-level register file. Bitv
was run to verify a datapath, a register file, and a write buffer. The drawing editor was
used to draw schematics and also a home landscape design. Egrep and sed were run

3

procedure profile

call profile

1 2 4 8 16 32 64 128

global profile
loop-only
leaf-loop
call-loop
call+1-loop
other runs

block profile
loop-only
leaf-loop
call-loop
call+1-loop
other runs

1 2 4 8 16 32 64 128

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

with both simple and complicated patterns, and with large and small inputs. Emacs was
used to edit source files, English text files, and very long simulation configuration files.
Yacc was used with a high-level language grammar, an intermediate language grammar,
and a command grammar for a window manager. The two C compilers were both run
with two source files written by humans and two source files generated by the C++
front end. The eqntott and espresso benchmarks from SPEC were run with inputs pro-
vided by SPEC.

Figure 3. Average specific matching score.

4. Results

4.1. Specific matching

Our first result assumes that we score candidate profiles by the specific matching
criterion, for n = 1, 2, 4, 8, 16, 32, 64, and 128. Given a test program and a value of
n, we proceeded as follows. An estimated profile was scored against each real profile
for the same test program; we then averaged these scores. Each real profile was scored
against each of the other real profiles, but not against itself; we then averaged all the
scores comparing two real profiles. For each test program and each value of n, this
gave us 20 scores: the cross product of four profile classes and five estimate classes
(more precisely, four estimate classes and also real profiles from other runs). We then
averaged these scores over all programs; this double averaging gave each program equal
weight even though some had more datasets than others.

The results are shown in Figure 3. The fraction of the circle filled with black is
the score, so a completely black circle is perfect and a completely white circle is terri-
ble. We can see that predicting which globals will be used is fairly easy, probably
because there are fewer of them than there are of the other profiled entities. The call-
loop estimates do rather better than the other estimates. As we would expect, actual

4

procedure profile

call profile

1 2 4 8 16 32 64 128

global profile
loop-only
leaf-loop
call-loop
call+1-loop
other runs

block profile
loop-only
leaf-loop
call-loop
call+1-loop
other runs

1 2 4 8 16 32 64 128

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

profiles do considerably better than estimates, but even actual profiles do disappoint-
ingly badly at predicting which basic blocks will be executed most.

Figure 4. Average frequency matching score.

4.2. Frequency matching

Our next result has the same structure as the previous result, but it assumes fre-
quency matching instead of specific matching. Again, we used n = 1, 2, 4, 8, 16, 32,
64, and 128. Each profile’s scores were again averaged over all the profiles it was com-
pared against, and the resulting averages were again averaged over the eleven test pro-
grams.

The results are shown in Figure 4. We were rather more successful at frequency

matching than at specific matching.* The trends, however, are much the same: globals
are easy to predict, blocks are hard, call-loop estimates work better than the others, and
actual profiles work best of all.

4.3. Differences between test programs

There is a substantial variation in the predictability of the different programs. Fig-
ure 5 shows the average score for real (not estimated) profiles, using the frequency
matching criterion. This is the fifth and tenth rows of Figure 4, broken down by pro-
gram. Emacs is astonishingly predictable, perhaps because it is built around a Lisp
interpreter, so that much of its control logic (and thus much of its variability) is hidden
in the data structure. This argument would lead us to suppose that gcc1, with a table-
driven parser, might be more predictable than ccom, with a recursive descent parser.
333333333333333
* This is not guaranteed in general: the candidate profile in Figure 1, for example, got a better score at
specific matching.

5

bisim

bitv

ccom

egrep

emacs

1 2 4 8 16 32 64 128

eqntott
proc
call
glob
block

espresso
proc
call
glob
block

gcc1
proc
call
glob
block

sed
proc
call
glob
block

udraw
proc
call
glob
block

yacc
proc
call
glob
block

1 2 4 8 16 32 64 128

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

But in fact ccom is noticeably more predictable than gcc1. The least predictable pro-
grams are sed and eqntott, which is a little surprising because they are among the smal-
lest.

Figure 5. Average frequency matching scores for real profiles.

6

improv max ratio

loop-only 1.3% 2.7%
leaf-loop 1.1% 2.7%
call-loop 1.2% 2.7%
call+1-loop 1.3% 2.7%
other runs 2.3% 2.7%

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

4.4. Global register allocation

To apply this technique to a realistic specific example, let us suppose that we sud-
denly have eight registers available that we can use to promote eight global variables or
constants. They payoff of doing this is that all the loads and stores of the globals we
select will be removed. We can estimate our improvement in performance by counting
the executions of these loads and stores and dividing the total by the total number of

instructions executed.* We did this both for a reference profile (to see how well we
could possibly have done) and for a candidate profile, in each case computing the
counts using the reference profile.

Figure 6. Improvement from global register allocation.

The results are shown in Figure 6. This optimization by itself doesn’t do a lot for
performance: even if magically driven by the counts from the reference profile, the
improvement in performance is only 2.7%. A good estimated profile gives us about
half of the maximum possible performance improvement, and an actual profile gives us
about 85% of the maximum.

4.5. Selective intensive optimization

As a second specific example, let us suppose we have an excellent but expensive
optimization algorithm that will cut the execution time of any procedure in half, but
that is so expensive that we can apply it only to 5% of our procedures. We will select
as the procedures to optimize those we believe will be invoked most often, by picking
the first 5% of the entries in the procedure invocation profile. As before, we will do
this both for a candidate profile and also for a reference profile; we will compute the
improvement in performance using only the counts from the reference profile.

The results are shown in Figure 7. This optimization would speed up our pro-
grams by a third if it were driven by a perfect profile. A real profile gives us about
three-fourths of that, but even the best estimated profile -- which oddly enough was the
simple loop-only estimate -- gives us barely one-fourth.

333333333333333
* This does not take pipeline stalls into account, nor does it consider cache effects, which are likely to
increase the benefit of promoting globals to registers. It also assumes that the globals selected are not
ineligible because of aliasing. We are interested only in rough numbers here, as an example.

7

improv max ratio

loop-only 7.4% 31.2%
leaf-loop 3.7% 31.2%
call-loop 7.3% 31.2%
call+1-loop 7.3% 31.2%
other runs 24.2% 31.2%

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

Figure 7. Improvement from selective intensive optimization.

5. Conclusions

Real profiles from different runs worked much better than the estimated profiles
discussed in this paper. The best estimations were usually those that combined loop
nesting level with static call counts. Basing the estimate on the procedure’s distance
from leaves of the call graph was less effective. There may of course still be better
ways to estimate a profile: this is an interesting open question both in the general case
and in specific applications.

Even a real profile was never as good as a perfect profile from the same run being
measured. It was often quite close, however, and was usually at least half as good.
Profile-based optimization would seem to have a future, but we must be careful how we
measure it, lest we expect more than it can really deliver.

Acknowledgements

My thanks to Alan Eustace for goading me into finally doing this study, and to
Patrick Boyle, Mary Jo Doherty, Ramsey Haddad, and Joel McCormack for helping me
obtain some of the data.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools, pp. 602-605. Addison-Wesley, 1986.

[2] Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau.
Parallel processing: A smart compiler and a dumb machine. Proceedings of the
SIGPLAN ’84 Symposium on Compiler Construction, pp. 37-47. Published as
SIGPLAN Notices 19 (6), June 1984.

[3] Scott McFarling. Program optimization for instruction caches. Third Interna-
tional Symposium on Architectural Support for Programming Languages and
Operating Systems, pp. 183-191, April 1989. Published as Computer Architec-
ture News 17 (2), Operating Systems Review 23 (special issue), SIGPLAN
Notices 24 (special issue).

[4] MIPS Computer Systems, Inc. Language Programmer’s Guide, 1986.

8

PREDICTING PROGRAM BEHAVIOR USING REAL OR ESTIMATED PROFILES

[5] Scott McFarling and John Hennessy. Reducing the cost of branches. Proceed-
ings of the 13th Annual Symposium on Computer Architecture, pp. 396-403.
Published as Computer Architecture News 14 (2), June 1986.

[6] Karl Pettis and Robert C Hansen. Profile guided code positioning. Proceedings
of the SIGPLAN ’90 Conference on Programming Language Design and Imple-
mentation, pp. 16-27. Published as SIGPLAN Notices 25 (6), June 1990.

[7] Vatsa Santhanam and Daryl Odnert. Register allocation across procedure and
module boundaries. Proceedings of the SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, pp. 28-39. Published as SIGPLAN
Notices 25 (6), June 1990.

[8] David W. Wall. Global register allocation at link-time. Proceedings of the SIG-
PLAN ’86 Symposium on Compiler Construction, pp. 264-275. Published as
SIGPLAN Notices 21 (7), July 1986. Also available as WRL Research Report
86/3.

9

10

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

11

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

‘‘Spritely NFS: Implementation and Performance of Jeffrey Y.F. Tang and J. Leon Yang.

Cache-Consistency Protocols.’’ WRL Research Report 90/1, January 1990.

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

‘‘Available Instruction-Level Parallelism for Super- Tracy Larrabee.

scalar and Superpipelined Machines.’’ WRL Research Report 90/2, February 1990.

Norman P. Jouppi and David W. Wall.
‘‘Two Papers on Test Pattern Generation.’’WRL Research Report 89/7, July 1989.
Tracy Larrabee.

‘‘A Unified Vector/Scalar Floating-Point WRL Research Report 90/3, March 1990.

Architecture.’’
‘‘Virtual Memory vs. The File System.’’Norman P. Jouppi, Jonathan Bertoni, and David
Michael N. Nelson.W. Wall.
WRL Research Report 90/4, March 1990.WRL Research Report 89/8, July 1989.

‘‘Efficient Use of Workstations for Passive Monitor-‘‘Architectural and Organizational Tradeoffs in the
ing of Local Area Networks.’’Design of the MultiTitan CPU.’’

Jeffrey C. Mogul.Norman P. Jouppi.
WRL Research Report 90/5, July 1990.WRL Research Report 89/9, July 1989.

‘‘A One-Dimensional Thermal Model for the VAX‘‘Integration and Packaging Plateaus of Processor
9000 Multi Chip Units.’’Performance.’’

John S. Fitch.Norman P. Jouppi.
WRL Research Report 90/6, July 1990.WRL Research Report 89/10, July 1989.

‘‘1990 DECWRL/Livermore Magic Release.’’‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,sor with High Ratio of Sustained to Peak

Don Stark, Gordon T. Hamachi.Performance.’’
WRL Research Report 90/7, September 1990.Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.
‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’‘‘The Distribution of Instruction-Level and Machine
Wade R. McGillis, John S. Fitch, WilliamParallelism and Its Effect on Performance.’’

R. Hamburgen, Van P. Carey.Norman P. Jouppi.
WRL Research Report 90/9, December 1990.WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’
Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.

WRL Research Report 89/14, September 1989.

12

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Technical Note TN-15, December 1990.

‘‘The Effect of Context Switches on Cache

Performance.’’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory

Bottlenecks.’’
Aaron Goldberg and John Hennessy.

WRL Technical Note TN-17, December 1990.

‘‘Predicting Program Behavior Using Real or Es-
timated Profiles.’’

David W. Wall.

WRL Technical Note TN-18, December 1990.

13

