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Abstract

This paper presents a new method for detecting regions of a
program where the memory hierarchy is performing poorly. By
observing where actual measured execution time differs from the
time predicted given a perfect memory system, we can isolate
memory bottlenecks. MTOOL, an implementation of the ap-
proach aimed at Fortran programs running on MIPS-chip based
wor kstationsis described and results for some of the Perfect Club
and SPEC benchmarksarereported.
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1 Introduction

Many modern conputer architectures i ncludi ng cache-based uni processors

and nost shared nenory mul tiprocessors present the programmer with a
(deceptive) uni formaccess nodel of menory. RISC architectures for exanple
provide sinple load and store instructions to represent nenory operations.
Inpractice, however, the loadinstructionmnayinvol ve accessingon-chipcache
whi ch 1s backed by a second level cache of static RAMwhi ch is backed by
main nenory. The tine difference betweena hit inthe first level cache and
amss tonainnenory can be one to two orders of nagnitude (see Table 1).

Programmers seeking to i nprove perfornance sonetines findit useful to
optim ze an al gori thmwi threspect toaparticul ar nenory hi erarchy. Studies
like [1], [2], [7] and [8] have reported speed-ups of 100% and nore owing to
inproved cache performance when nested loops are reordered and nmatrix
al gorithns are blocked. To nmake use of such techniques, the user nust
know where nenory bottlenecks lie and when a transfornation inproves
performance.

Two techni ques are typically enployed to isolate nenory bottlenecks.
The least tine consum ng approachis to statically anal yze a program us-
ing dependency anal ysis toidentify hownanyitens will be in cache after a
certain nunber of iterations of aloop[3, 6]. Such techniques are inportant
because they are potentially fast enough to incorporate into conpilers to
automatically nanage transfornations. However, the static techniques rely
onthe sinple structure of both the loop and the nenory systemto perform
their anal yses. 'The approxi mate nature of anal ytic techni ques and the in-

Mss Penal ty (cycles)
Muchi ne Primary| Secondary| Renote
DEC 3100 6 - -
DEC 5000 10 - -
SGI (4 node) 14 40 -
M PS 6280 2-4 50 -
Stanford DASH 14 28 | 103-136

Table 1: Mnory H erarchy Penal ties



creasing conplexity of the nenory hierarchies they attenpt to nodel nake
t heminappropriate as a conpl ete performance debuggi ng sol ution.

A the opposite end of the spectrum there are trace driven simulators
whi ch simul ate the executionof every nenory reference inaprogram These
simul ations can nodel the entire nenory hierarchy and produce access tine
estimates for everyvariable reference ina program The obvious drawback of
simul ationis its cost;for large prograns, sinul ation nay be quite expensi ve.
Also, it is non-trivial to correctly nodel a conplicated nenory hierarchy,
particul arl y when nmul ti programm ng or mul tiprocessing is invol ved.

Our technique strikes a bal ance between the expense of sinmul ation and
the inaccuracy of static anal ysis. QOur key observationis that if we assune
nenory access tine is uniformthen, at least for sinpler architectures, it is
relatively cheapto correctly estinate the CPU execution tine of a program
By conparing this uniformaccess nodel estinmate with actual observed exe-
cutiontine, we canisolate regions ina programwhere the nenory hierarchy
perforns poorly.

The next section discusses the nethod for estimating execution tine as-
sum ng constant nenory access tine. Section 3 describes howto use the
estimate to isolate nenory bottlenecks. Section 4 presents a nenory bot-
tleneck tool inplenentation, MIOOL, which runs on the DE(station 3100
and 5000. Section ) provides exanpl es of MIOOL’s user interface. Section6
reports resul ts when the tool is run onthe Perfect (1 ub benchnarks and sci -
entific benchnarks inthe SPECset. Finally, section7 gives sone concl usions
about the breadth of applicability of our techni que and suggests directions
for future research.

2 Estimating Fecuion Tim

(onsider a conputer where all instructionschedulingis handled by software
(i.e., no hardware interlocks) and where eachinstruction (including nenory
access instructions) has a known, fixed executiontine. For sucha conputer,
we can determ ne the execution tine of a programgi veninstructionexecution
counts using the formula,

execution time = (# of tines ith instruction executes) *
(tine per execulion of instructioni)



Let us try to apply a simlar technique to a RISC architecture. First we
di vide the programinto basic blocks. Abasic blockis a groupof instructions
with a uni que entry point such that when the entry instruction executes, all
other instructions inthe basic blockwill execute. It is possibletoidentifyall
basic blocks in nost executabl e prograns by exam ning branch instruction
destinations andindirect junptables. After determ ningthe basic blocks, we
instrunent the executabl e fil e by precedi ng each blockwith code toincrenent
a counter. Running theinstrumented programproduces atable of basic block
counts. Adiscussionof nethods for instrunenting conpiledcode is provided
in the Appendi x.

(sing the counts and our know edge of when hardware interlocks are
triggered, we canestinate howlong each basic blockexecutes. Our estinates
will have two shortcom ngs:

1. Mnory access instructions do not execute in constant tine.

2. There may be hardware interl ocks across basic block boundaries.

The first shortcomng is actually the feature on which our bottleneck
detection techni que is based. We assune all nenory accesses take the m ni -
mumpossible tine (typicallythe tinefor aprinmary cache hit) and when our
prediction disagrees with neasured execution tine we report a bottleneck.

The second weakness is not a problemfor many RISCarchitectures be-
cause there are few hardware interlocks and these interlocks rarely cross
basic bl ock boundaries. Onthe MPS processor where our experinents were
perforned, the inter-block interlocks were negligible in real code. If such
interlocks occur with appreciable frequency, they can be estinmated by in-
strunenting to collect branch frequencies as well as basic block counts. The
branch frequencies tell us howoften one basic block precedes another and
we can i nprove our estimate by including interlocks between adjacent basic
bl ocks.

Thus, we have a technique for estimating execution tine of a whole pro-
gram Mreover, our nethod costs onl y one instrunented programexecution
rather than requiring a full, expensive nachine sinmul ation. The task nowis
touse this estinmation technique toisolate bottlenecks.



3 Isolating Bottlenecks

Inthis section, we devel op a framework for detecting bottlenecks by neasur-
ing di vergence frompredi cted behavior. W begin by fornalizing the notion
of neasuring actual tine spent in a region of code. Aneasurable object or
mobject is a set of instructions in which we canidentify all entry and exit
points. The object is neasurable because we can place start tiner and stop
tiner calls at these entry and exit points to neasure the tine spent in the
object. For exanple, we cantine a procedure by placing a start_timercall at
the top of the procedure and stop_tiner calls before every returnstatenent.
Simlarly, we can tine a loop by placing a start_tiner above the top of the
loop and a stop_tiner bel owthe bottomof the loop.

W say an mobject is tinable if we caninstrunent the programto nea-
sure the tine spent within the object. Atimable object nust satisfy two
criteria:

1. The total tine spent withinthe object substantiallyexceeds tiner gran-
ularity.

2. The perturbation created by the tiner is not significant.

The first aspect of timabilityis rarely a problemas nost systens provide at
least a 1/60th of a second tiner, and mobjects of interest typicallyexecute
for seconds, minutes, or even hours. The perturbation issue is nore diffi-
cult. To avoid changing nenory performance, we require that the nunber

of nenory operations perforned by the mobject substantially exceed the
nunber perfornmed in a clock timer call. In addition, to avoid appreciably
slowing the programdown, we require that the tine spent in the mobject
substantially exceed the tine to make a clock call.

(sing the above criteria, we canidentify regions of the programwhose
actual executiontines can be neasured. These executiontines include, how
ever, not only the work done in an mobject proper, but al so the work done
on behalt of the object by any procedures that it calls. Incontrast, the basic
block counting estination techni que of the previous section cal culates only
the work done in a basic block; it ignores the tine spent in procedure calls.
Furthernore, while we can estimate the total tine spent in a procedure g,
we cannot necessarily determ ne the tine spent in gon behalf of a particul ar
caller. Thus, we cannot al ways estimnate the tine spent i nand on behalf of an
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mobject that calls ¢ W w1l say that the mobjects whose execution tine
can be accuratel y predi cted by basic-bl ock countingtechni ques are estinable.

Toidentifyestimable mobjects, we exploit infornation about the struc-
ture of a programs call graph. In a call graph, nodes represent procedures
and there is a directed edge fromnode v to node wif procedure vcalls w
during the execution of the program 'The call graph has a distinguished
node, the root, whichis the procedure where execution begins.

W say a node vdom nates wif every path through the graph fromthe
root to wpasses through v. The useful aspect of the call graph is that a
node is estimable if it domnates all of its descendants. Intuitively, if a node
v dom nates wthen all the work in wis done on behalf of v. Hence, if a
node domnates all of its children, then the estimated tine for that node
andits descendants is just the sumof each of their estinmated tines, ignoring
procedure calls.

This observation serves as a working definition of estimability. The defi-
nitioninplies that both the root of the call graph, which corresponds to the
execution of the whole program and the l eaves which correspondto call-free
procedures, are estinable. G ven this operational definition of estimabil-
ity, the prinmary issue inisolating nenory bottlenecks nowbecones one of
granul arity of detection.

W coul d estimate the execution tine of the full programand conpare
this nunber against actual runtine, but this will onl ydescribe the nagnitude
of the nenory effects, not localize them Instead, our approachis to findaset
of smaller, timable mobjects containingthe najority of nenory operations,
and then to select nenbers of this set that are estinable. The next section
outlines our al gorithm

4 'The Inplemantation

This sectiondescribes oneinplenentationof the estinable, tinable mobject
approachtoisolating nenory bottlenecks, MIOOL. This specific i npl enen-
tation is for Fortran prograns running on MPS-chip based workstations.
Fortran was chosen as a target | anguage because l arge Fortran prograns of -
ten have nenory bottl eneckedregi ons and mich of the researchonalleviating
nenory bottlenecks has concentrated on scientific code.

MIOOL seeks toisol ate bottlenecks at the level of procedures andloops.



This decisionreflects the fact that procedures andloops have natural neaning
to the user, satisty the definition of mobject, and typicallyrunlong enough
to neet the timability criteria. 'The first step of the bottleneck isolation
process is toinstrunent the programof interest to collect basic bl ock counts
and to run the instrunented code on a representative input. The basic
block counts are useful not only for estimating execution tinme; they also
provide MIOOL with precise knowl edge of where nenory operations are
concentrated.

MIOOL sorts the procedures by t he nunber of nenory operations they
execute and sel ects those that containthe first 95%of all nenory operations.
For each of these procedures, MIOOL makes a list of loops and tries to
neasure first the individual 1oops and then the whole procedure, subject to
timability and estinmability constraints. Timability constraints are strongly
systemdependent. DEC s ULTRI X provi des a 1/60th of asecond granul arity
clock, but a systemcall is required to read the clock.

The overhead of the systemcall perturbs execution undesirably. The
cleanest solution woul d be to nodify the operating systemto create a clock
directly accessible by user processes, but a sinpler, nore widely applicable
option was to add an interval tiner to create a clockin user nenory. Start
and stop clock calls access the clockinuser nenory whichis updated by the
interrupts of the interval tiner.

sing the user nemory clock, MIOOL’ s tiner has granularity of 1/60th
of a second and work per start/stop call of about 70 instructions. The re-
sults reported in Section 6 seemto indicate this granul arity and overhead
are acceptable. Also, we expect that interest in characterizing and i nprov-
ing performance will drive architects and operating systens programmers to
provide better clocks in the future.

At this point, MIOOL has gathered a collection of timable loops and
procedures. The next stepis to determ ne whichof these objectsis estimable.
(onceptually, MIOOL uses a sinple depth first al gorithmto label each
procedure in the call graph with two paraneters:

H#ofcall s fromvtow
Tot(v) =1 Tot *
ot(v) + Z ot (w) t ot al #ofcallsianJJl

calls from vtow

TDES(w) =1 + nunber of descendant s o f w.
[t is easytoshowthat for every node, Tot(v) <TDES(v) and Tot(v) =



TDES(v) exactly when vis estimable. This relation fornalizes the observa-
tion of the previous section that a node is estinable when all the work of its
descendants is done onits behalf.

Thus, we have a test for estimability. Extending the test toloops sinply
invol ves checking the anal ogous condition that:

_ #of calls fromlooptow
Z TDES(w) +1 = Z Tot (w) # total #of callstow

wadled in lap wedledinlap

In nost cases, the loops and procedures selected by MIOOL i mmedi atel y
satisfy the estimability condition. The conditionis nmet frequently because
the objects selected by MIOOL contain the najority of nenory operations

whi ch typically neans they invol ve the nost frequently executed portions of
code which are normally leaves or objects all of whose children are |l eaves.

Wien the test is not satisfied imediately, several options are available.
One natural choice is to nove up the call graph as we knowthat eventually
we will encounter an estimable node, the root. This option is not ideal,
however, because it reduces the precision w th whichwe localize bottlenecks.
Abetter choice is to check whether we can in fact accurately estimate the
tine spent in a procedure call. Below, we describe three cases where we can
make an accurate estimate.

My scientificlibrary routines are sinple, loop-free leaf procedures that
al ways followthe sane execution path. Their estimated execution tines are
consequently constant. W can often identify such procedures by checking
that they neet two conditions:

1. The procedure is aloop-free and call-free.

2. The average tine per call as determned by basic block counts is equal
to the maxi numor m ni mumpossible tine per call.

The first condition inplies the procedure is estimable and that we can
run shortest and longest path al gorithns on the control flow graph of the
procedure to boundits executiontine. Usingthese bounds, we can checkthe
second condi tion which inplies that the execution tine per call is constant
because average equal s extremum This test finds that such commonlibrary
calls as SQRT() and EXP() have constant execution tines when called in the
Pertect (1ub benchnarks.



1. Instrunent executabl e programand collect basic block rounts.
2. Select loops and procedures containing nost nenory operations.
3. Himnate selectedobjects that fail toneet timabilitylconstraints.

4. Flimnate selected objects that fail to neet estinmability con-
straints.

5. Instrunent code to neasure actual tine spent in remaining se-
lected objects.

6. Run instrunented code, correlate actual tines with eptinated
tines toisolate bottlenecks, and report bottlenecks tg the user.

Figure 1: MIOOL’s Bottleneck Isolation Al gorithm

Two ot her sinple heuristics suffte to elimnate nany other problematic
calls. Suppose object vcalls procedure p. Then, we can nornally assune
average tine per call fromvto pis average tine per call to v when either:

1. The vast majority (98% of calls to pare nade by v, or

2. (avg. tine per call to p) * (#of calls fromvto p) < tine spent in v,
so any error in the approxinmationis negligible.

Both of these heuristics can be inaccurate under pathol ogical conditions
(when t he variance of the executiontine of pacross callsislarge), so MOOL
issues a warning whenever it invokes them They have not caused problens
with the benchmarks neasured in this study.

The steps MIOOL uses to isolate nenory bottl enecks are summrized
in Figure 1. Step 6 is of course the nost significant to the user.

5 User Interface

The user viewof MIOOLis considerably less conplex than the al gorithns
of the previous sections. The user types MTOOL program-name input-files
and waits while MIOOL instrunents the programto collect basic block



Predicted User Time: 95.0

Measured Time (compensated for counters): user 132.4 sys 0.7
Overhead estimates: User (memory) System (I/0)
39.3 0.7

Proceed with memory bottleneck probe insertion (y/n)?

Figure 2: MIOOLs Initial Bottleneck Fstinate

counts, runs and tines the instrunented code, and displays aresult 1ike that
shown in Figure 2. MIOOL generates the data in the figure by estimating
the run-tine of the programand conparing it with the neasured execution
tine, appropriately adjusted for the effects of the counters. The infornation
prevents a a user fromproceedi ng when no significant nenory bottl enecks
are present.

Assum ng the user asks MIOOL to produce an instrunented program
MIOOL executes steps 2to 5 of Figure 1 producing afil e of m object descri p-
tors and actual execution tine neasurenents. This summary file i s handed
off to the front end.

The front end’s top level windowis shownin Figure 3 for the Perfect Club
benchmark TFS.t, an air flowsinmul ati on. Overhead is defined as

(actual tine —estinutedtine)/estinutedtine.

The histograminthe l over 1 eft of the wi ndowvisuallysunmmarizes the datain
the upper right. The line “Measured 91% of nenory operations” reports the
percentage of all executed nenory operations that are i ncl uded i n neasured
objects. Al tines and overheads refer to user tine only; tine spent in the
operating systemon behal f of a programis ignored (though it was reported
at an earlier stage—see Figure 2).

By pressing the hi stogrambutton, the user can obtain a histogramwhere
bars represent total tine spent on behalf of a procedure (Fig. 4). This tine
is split into estinated tine and neasured nenory overhead. The bars are
sorted in decreasing order of nenory bottleneck nagnitude. By clicking
the nouse on the nenory overhead portion of a bar, the user opens a text
window (Fig. 5) displaying the procedure.






Masured bottlenecks within the procedure are displayed by highlight-
ing the text. Bottlenecks are highlighted one at a tine, with the overall
overhead contri bution and the extra cycles per nenory operation associated
with the bottleneck reported at the top of the text window Pressing the
INFO button opens a popup wi ndow that gives further information about
the distribution of nenory operations when the neasured object includes
loops or procedure calls. Figure 6 shows a sinple INFOw ndowfor the top
bottleneck in dflux(). Pressing PREV or NEXT displays the previous or
next bottleneck; bottlenecks are sorted by nagni tude. The text wmi ndownay
be scrolled by pressing the vertical arrows at the right side of the wi ndow,
and mul tiple text windows nmay be open simul t aneously.

Three aspects of the user interface deserve comment froman inpl enen-
tor’s perspective. First, the interfaceis relatively portable becauseit is buil:
using Interviews [4], anobject orientedtool kit that runs ontopof X Second,
the notion of clicking on a bar to obtain further infornation on the associ-
ated bottleneck is quite general. For exanple, it would be easy to support
an option where clicking on a procedure’s estinated tine bar woul d provi de
information inplicit inour tine estinmate like register usage, floating point
stalls, MLOPS, nost often executed lines, etc. Athird note about the
interface is that is uses standard line nunber infornation available in the
object file to relate basic block level information back to source code lines.
Inthis sense, the user interface is l anguage-independent.

6 Resuts

The final neasure of MIOOL and its user interface is howwell they iso-
late nenory bottlenecks. Table 2 sunmarizes our results for a subset of the
Pertect (1 ub benchnarks and the scientific benchnarks in the SPECsuite.

The col um entitled “%of Mnory Operations” indicates that our heuristics
for selecting tinable, estinmable mobjects succeedin choosing good potenti al
bottlenecks, as we neasure over 90%of nenory operations in all but two
cases where we neasure 85% 'The col utm on unexpl ai ned overhead, which
reports the diflerence bet ween neasured overhead for the whol e programand
the sumof neasured overheads for individual objects confirns this concl u-
sion, as our neasured mobjects typically account for all but a fewpercent
of overhead. The least positive result is the data on nunber of source lines
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Une x- #of Source Lines

%of | Over- | plained In All| Mdian/ | Mx/ | In All
Program| nops | head| Overhd | m obj. mobj | mobj | Code
tfs 91% | 40% 4% 252 8 53 | 2020
nas 9% | 25% 0% 591 84 395 3976
sds 93% 6% 2% 167 12 120 | 7607
1 ws 93% 9% 0% 100 100 100 | 1237
lgs 98% | 12% 0% 323 35 132 2327
f pppp 85% | H0% 11% 940 274 666 | 2718
doduc 85% | 29% 5% 2541 102 477 5334
spice2gf 95% | 46% 2% 756 41 434 | 18411
dnasa’ 97% | 107% 1% 257 9 118 1105

Table 2: MIOOL Effecti veness

containedinthe mobjects. On half of the prograns, the nedi an object con-
tains fewer than 50 lines, but for sone prograns like fpppp, we are perhaps
failing to localize bottlenecks adequately. This problemis discussed further
inthe Conclusions section bel ow.

7 Corxl vsioms

The resul ts reported above support the general conclusionthat our techni que
succeeds indetecting nenory bottlenecks inscientific Fortranprograns. One
shortcom ng of the current inplenentationis that it does not satisfactorily
localize the bottlenecks inafewof the prograns (see Table 2). This problem
can certainly be addressed by nodi fyi ng our al gorithmto select snmaller m
objects. Currently, MIOOL searches for tinable, estinmable mobjects start-
ing with outer loops. Sone benefit could be derived by trying i nner loops
first. Simlarly, MIOOLwi 1l tine a whole loop-free procedure, regardl ess of
hownany lines it contains. It would be a sinple matter to add heuristics
to partition large procedures into miltiple mobjects. This newheuristic
woul d benefit prograns 1ike fpppp in the SPECset where a key bottleneck

is a 700 line loop-free procedure. Finally, we could add a newoption where
MIOOL di spl ays a procedure withits frequentl yexecuted nemory references

hi ghli ghted whenever the MIOOL sel ected mobject exceeds a certain line
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count threshold. The user could then nanually create acceptably propor-
tioned mobjects containing these highlighted nenory operations, subject
to MIOOL’ s checks for estimability and timability.

MIOOL coul d al so be enhanced by broadeni ng the class of prograns for
which it can detect bottlenecks. MIOOLis nowrestricted to non-recursive
prograns that do not use procedure variables. The restriction onrecursion
derives prinmarily fromthe fact that the sinplestart/stopclocktiners will not
work when an mobject can be re-entered (and the clock re-started) before
it is exited (and the clockis stopped). The restriction could be renoved by
prohibiting the timng of recursive procedures or by using nore conplicated
tiners that keep track of the depth of the recursive call and only start and
stop the clock on the first entry and l ast exit. Because MIOOLis | anguage
independent (except for the restriction on recursion) nodifying the tiners
(and nodi fyi ng the check for estimability of section 4 to account for loops in
the call graph) woul d al l ow MIOOL to handl e 1 anguages wi th recursion.

The restriction on procedure variables is also easy to renove. MOOL s
definitionof estimabilityreqires a well-defined call graphandthe use of proce-
dure vari abl es neans that the full structure of the call graphis not determ ned
until run-tine. By nodifying the basic block counting instrunentation to
record a dynam ¢ call graph, this restriction could be circunvented.

The final and perhaps nost exciting applicationtfor MIOOLtechnol ogyis
portingit toashared nenorymiltiprocessor. Mnory bottlenecks onshared
nenory nachines can be severe and detecting themis diffcult. Analytic
techni ques cannot handl e the conplexity of parallel systens and sinul ating
miltipleinteractingprocessorsis extrenelyconplex andexpensive. MIOOL
shoul d provide a viable alternative to these approaches.

Acknowledgements: [ woul d like to thank David WI1 of DEC WRL who
sponsored part of this research during a summer internship and provided
inval uabl e advi ce on the ins and outs of patching code.

8 Apperdix Imstrumrting (Ode

MIOOL requires the ability to nodify an executable file in a non-intrusive
nanner. One approachusedbythe Pixie [5] programfromMPSis todirectly
patch an executable. Aproblemarises because sone junps are indirect; they
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have the formJR rl where r/is a register containing an address. Pixie’s
solutionis toinclude anindirect junp table which naps every address inthe
original executable to its corresponding address in the patched executable.
Indirect junps are al ways nade through this table. The drawback of Pixie

is that it canintroduce non-negligible overhead.

Asecond approachis to patchthe code at 1ink tine, nodifying pc-rel ative
junps, text addresses in the data segnent, and the relocation dictionary
to correctly reflect changes in the executable file. The advantage of this
approach is that all junp destination addresses are clearly identifiable and
no overhead is added. See [9] for a a conplete description of the technique.

MIOOL uses a third approach. MIOOL pat ches the executable directly,
but it does not use anindirect junptable. Instead, MIOOL pattern natches
to find i nstructions which load addresses in the text segnent. The loaded
text address is nodified to represent the correspondi ng address inthe instru-
nented code. Thus, a JR r1 will succeed because the instructions toload ri
with a val ue have been correctly updated. This techni que suffers fromthe
potential drawback that the pattern matcher could fail in highly optimzed
code, but we have encountered no problens to date.
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