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Abstract

The sustained performance of fast processors is critically dependent on
cache performance.  Cache performance in turn depends on locality of refer-
ence. When an operating system switches contexts, the assumption of locality
may be violated because the instructions and data of the newly-scheduled
process may no longer be in the cache(s).  Context-switching thus has a cost
above that associated with that of the operations performed by the kernel.

We fed address traces of the processes running on a multi-tasking operat-
ing system through a cache simulator, to compute accurate cache-hit rates
over short intervals.  By marking the output of such a simulation whenever a
context switch occurs, and then aggregating the post-context-switch results of
a large number of context switches, it is possible to estimate the cache perfor-
mance reduction caused by a switch.  Depending on cache parameters the net
cost of a context switch appears to be in the thousands of cycles, or tens to
hundreds of microseconds.

This technical note is a preprint of a paper to appear in the
Proceedings of the Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery.  To copy otherwise, or to republish, requires a fee
and/or specific permission.
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1. Introduction

The sustained performance of fast processors is critically dependent on cache performance.
Although in principle a well-designed CPU should be able to execute nearly one instruction per
cycle (assuming that it issues one instruction at a time), in practice it is not possible to sustain
such an execution rate because the memory system cannot always deliver instructions and data
fast enough.

Cache performance in turn depends on locality of reference; when the sequence of addresses
referenced by software cannot all be stored in the cache, cache misses result.  In modern com-
puters, the penalty for a single cache miss might be tens or hundreds of cycles [11]. It is not
possible to build a cache that is large enough to hold the working sets of all possible software,
nor is it possible to code all software to avoid all cache misses.  It is possible, however, to design
caches that provide high performance for a wide range of software, and it is also possible to
structure software to use the cache (or caches) efficiently [12]. The trick is thus to match the
design of the cache system with the design of the software, so that the overall system will have
maximum performance.

When an operating system managing multiple processes switches contexts, the assumption of
locality may be violated because the instructions and data of the newly-scheduled process may
no longer be in the cache or caches.  This may be because the caches are simply too small to hold
the working set of many processes.  Context-switching thus has a cost above that associated with
the operations performed by the kernel.

It is important to know what the costs of a context switch are, because if the cache-
performance cost is low, or if context switching can be avoided by restructuring the operating
system, then the cache system should be designed to yield the best price/performance ratio for
uninterrupted application programs. On the other hand, if the cache-performance cost is high,
and if context switches are expected to be frequent, then one should pay attention to this when
designing the cache system.  In particular, real-time systems, in which processes must respond
quickly to external events, might inevitably exhibit poor locality of reference and yet require
maximum CPU performance immediately after a context switch.  (Designers of real-time sys-
tems typically have avoided caches, to ensure predictability.  This may no longer be feasible,
particularly for such applications as multi-media workstations.)

The cache-performance cost of a context switch may be estimated by looking at how the
cache-hit rate varies after a context switch.  In principle, this could be done by using a hardware
or microcode-based monitor [1], but in practice it might be impossible for the monitor to know
when a context switch has occurred, and to keep track of which process was running after the
switch. It is much easier to take address traces from an actual system, annotated with context-
switch information, and feed them to a cache simulator.  Also, the simulation approach makes it
possible to examine the effect of many different cache designs.

The experiments described in this paper measure the cache-performance cost of context
switches for a variety of programs executing concurrently (through timesharing) on a Unix

operating system.  Several different cache organizations were simulated, representing both cur-
rent and future workstation hardware.  (Since ‘‘server’’ systems are often just workstation
processors in larger packages, their cache systems are the same and our results should apply.)
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Depending on the cache system parameters, we found cache-performance costs up to tens or
hundreds of microseconds for an average context switch.  Viewed another way, a context switch
‘‘wastes’’ several thousand instruction cycles, and is comparable to the time it takes to send or
receive a network packet.  The cache-performance costs of a context switch may be greater than
all other context-switch costs.

1.1. Previous work

Several trace-based studies have analyzed cache performance under multiprogramming
workloads. When true multiprogramming traces have not been available, as in Smith [16] and in
Thiebaut and Stone [18], single process traces have been interleaved based on estimates of in-
struction execution time.  Agarwal et al. [1, 2] and Stunkel and Fuchs [17] have captured ac-
curate multiprogramming traces; simulations using their multiprogramming traces have focused
on long-term average performance for different cache configurations.  For example, Agarwal
used multiprogramming traces to compare the average behavior of uniprocess caches and mul-
tiprocess caches with either cache flushing on context switch or the use of process identifiers on
cache lines.  Hill and Smith [10] used Agarwals’s traces to evaluate associativity of caches,
while Stunkel’s primary concern was multiprocessor cache behavior.

Multiprogramming traces are used because they better represent the actual sequence of
memory references on a machine.  To our knowledge, they have never been used to isolate and
quantify the fine-grain behavior of processes after a context switch or to differentiate cache be-
haviors for voluntary and involuntary context switches.  (Clark and Emer [7] used non-
multiprogramming traces to examine how both voluntary and involuntary context switching af-
fected translation-buffer performance.)

The short length of previous traces has also limited their usefulness.  None of the earlier
studies collected traces of more than tens of millions of references. Our much longer traces, of
hundreds of millions or billions of references, allow us to average the short-term behavior of
thousands of context switches.  They also allow accurate analysis of the effects of context
switches in systems with very large caches.

2. Goals and caveats

The goal of our experiments was to measure the decrease in overall system performance
resulting from a context switch.  Since the results of measuring any short single sequence of
instructions is uninformative (because over short time scales, locality can vary significantly), we
instead looked at statistics (primarily the mean) of a large number of context switches.

We were interested in the performance of the system, not in the underlying cache hit rates,
because performance is a function not only of cache hit rate but also of memory system latencies.
For this reason, our measurements are cast in terms of the ‘‘cycles per instruction’’ (CPI) ob-
served when executing programs.  For the single-issue architectures that we simulated, a CPI of
1.0 is ideal; higher CPIs represent poorer performance.  For example, if the average CPI over the
execution of a program is 2.0, then the program will take twice as long to complete as on a
idealized machine that never has a cache miss.
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The programs that were traced were compiled for a straightforward ‘‘RISC’’ architecture [13].
Our results are most directly applicable to systems with similar instruction sets, including many
of those currently on the market.  Architectures with unusually large (or small) register sets
might behave differently.

Our cache simulations assume that cache misses are the only possible cause for an instruction
taking more than one cycle.  In real systems this may not be true; for example, pipeline inter-
locks may cause the processor to stall at times. Also, we include in our count of ‘‘instructions’’
executed any no-op instructions inserted by the compiler (for example, in branch slots). Because
of this, the simulated CPI might be somewhat different from the real CPI, especially on machines
with different instruction sets.  We assume that good compilers will do enough code-
reorganization to approach the optimal CPI.

We have not measured the cost of executing the kernel code for performing a context switch.
Other studies have measured this cost on other systems [3, 4, 14]. Context-switching times
measured with minimal user-process code (hence minimizing the cache effects covered in this
paper) show large variations between operating systems, and the operating system kernel used
for our experiments is known to have poor performance.  For a given operating system, context-
switch costs vary between different processors even after normalizing for nominal processor
speed [3, 14], partly because the cost of executing the kernel code to do context switches is af-
fected by cache performance.  Because of this, kernel overhead for context-switching may in-
crease (in relative terms) as cache-miss penalties grow with increasing cycle time.  Careful
measurement of this effect is a good area for further research.

Because our measurements are not predicated on any specific operating system, they should
be applicable to any similar system.  By ‘‘similar’’ we mean a system that reschedules processes
in the same way that Unix systems do, and that does not make any attempt to take cache be-
havior into account when deciding which process to run next.  A scheduler that tried to schedule
processes to avoid context-switch-related cache misses might not produce the same results.

We also ignored any kernel operations that might flush or invalidate regions of the cache.
Mostly, these would be associated with network or file input operations.  This means that the
actual cache performance following certain system calls might be worse than our simulations
show.

3. Measurement method

Each in our series of experiments consisted of these steps:
1. Run a set of application programs concurrently on a timesharing system.

2. Trace the instruction and data addresses generated during the execution of these
programs.

3. Use the trace to simulate the cache behavior for a specific cache design.

4. Extract from the simulation results the system’s performance (in terms of CPI) for
some number of instructions following each context switch.
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5. Aggregate the post-context-switch performance over all the context switches to
compute the average cost.

The first four steps are actually performed concurrently:  as the programs run and generate
traces, the traces are fed ‘‘on-the-fly’’ to a cache simulator. Otherwise, the volume of the traces
would have overwhelmed our disk storage.  Even so, the output of the cache simulator is quite
bulky, on the order of 10 Mbytes for one experiment.

We collected the results of 5000 context switches for each experiment; this reflects between
33 million and 1.3 billion user instructions executed.  Several hours are required to generate each
such trace, mostly due to the cost of cache simulation.

Sections 3.1 and 3.2 sketch how the traces are generated and the cache simulation is done; a
more detailed description is available in [5].

3.1. Generation of traces

Address traces are generated by the programs themselves. A special linker modifies the code
generated by the compiler to insert calls to tracing routines at each load and store, and at the
entry to each basic block.  The tracing routines simply add a record to a trace buffer, a large
region of memory mapped in the program’s address space and managed by the operating system.
Since the trace-buffer records for basic blocks show how many instructions are executed in the
block, the trace buffer describes the complete set of addresses referenced by the program (ignor-
ing some minor ambiguities about the ordering of instruction and load/store references within
basic blocks).

Programs traced in this way are much larger than normal, so the records for basic blocks are
made to reflect the instruction addresses as they occur in the unmodified program.

Also, traced programs take somewhat longer to execute than normal, so the operating system
has been modified to reschedule processes less often than usual.  The intent is to avoid causing
more involuntary context switches simply because the programs are running slowly.

3.2. Cache simulation

Whenever the trace buffer becomes full, the operating system arranges for a special trace-
analysis process to run.  (This process is not itself traced, and while it is running the traced
processes are not scheduled.)  The trace-analysis program runs through the trace buffer and feeds
the new traces to a cache simulation; when the trace buffer is empty, the analysis program blocks
and allows the traced programs to continue.

The kernel inserts into the trace buffer additional records reflecting context switches (except
for those caused by the tracing procedure).  These identify which process is running at any given
time, which is necessary for the cache simulator to convert the virtual addresses in the trace
buffer to the physical addresses used by some kinds of caches.  The context switch records in-
clude the reason why the process was suspended; this allows us to distinguish between page
faults, involuntary suspensions, and each Unix system call type.
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The analysis program can simulate a variety of cache designs, including 1- or 2- level caches,
split or integrated instruction and data caches, write-through or write-back policies, and various
values for line size, cache size, and cost of cache hits and misses.  All costs are measured in
terms of processor cycles, so the processor cycle time is not directly relevant.

For our purposes, we wanted to know the average CPI over relatively short intervals (1000 or
10000 instructions).  We arranged for the cache simulator to output the CPI value for the first
100 intervals after every context switch; the simulator also indicates which process was running
after the switch.  (The processes are identified by short tags that are recycled fairly quickly; thus,
there is some ambiguity that arises for processes that are created or destroyed during the experi-
ment.) By printing CPI values for only the initial intervals after a context switch, we elide much
of the enormous output from the simulator.

Because we want to know how the CPI would have behaved if the processes did not interfere
1with each other in the cache, we also simultaneously simulate ‘‘per-process’’ caches . That is,

the same reference stream is fed through two simulations, one that is perturbed by context
switches, and one that is not.  It is as if we ran each process on its own computer.

3.3. Aggregation over multiple context switches

The output of the simulator is thus a file that (in effect) contains tuples of the form:

(process-id, context-switch-ID, instructions-since-context-switch, CPI ,shared
CPI )private

where context-switch-ID identifies the most recent context switch event, CPI is the CPIshared
simulated for a real machine with one set of caches, and CPI is the CPI simulated for aprivate
hypothetical machine with a separate set of hardware caches for each process. (The CPI values
are the average CPI since the previous tuple.)

The first phase of aggregation is to superimpose these tuples so that for each process-id, we
have a sequence of tuples of the form:

(instructions-since-context-switch, average-CPI , average-CPI )shared private

(Actually, we maintain additional information in these tuples, allowing us to calculate other
statistics such as standard deviation and maximum CPI).

From this information, we can directly produce graphs of instantaneous CPI vs. instructions-
since-context-switch for each of the processes.  Because different programs behave in different
ways (and because some of the processes do not run for long enough to generate stable results),
it is more useful to aggregate the per-process results into overall statistics for the ‘‘average’’
context switch (for example, see figure 2).

Plots of CPI vs. instructions-since-context-switch give a good sense of how long, in terms of
instructions executed, it takes after a context switch for the cache performance to return to nor-
mal. To get a sense of how long it takes in terms of actual time (or at least, processor cycles), we

1More precisely, we simulate ‘‘per-process-ID’’ caches.  This will introduce some small errors when process IDs
are reused, but this happens infrequently.
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calculate the ‘‘excess CPI’’ as the difference between the CPI during a specific interval andshared
the CPI for the same interval (e.g., figure 4).  We can then integrate this curve with respectprivate
to time to get the ‘‘cumulative excess cycles,’’ which is effectively the cache-performance cost
of a context switch (e.g., figure 5).

4. Experiments

Since some application mixes cause more context switches than others, we chose three sets of
programs. One simulates a timesharing system with a few intensive users; another simulates a
compute-bound load with a couple of large programs; the third simulates a repetitive client-
server interaction, such as might be encountered using a kernelized operating system.  The
programs are summarized in table 1; most of the programs each create several processes.  The
benchmark sets are summarized in table 2; the sizes listed are approximate.

PROGRAM DESCRIPTION MAXIMUM SIZE

Magic A VLSI layout system. 10 Mb

Tree A memory-intensive tree-search program 12 Mb
written in Scheme.

BigTree Tree on a larger problem. 65 Mb

TV A CMOS VLSI timing verifier. 3.4 Mb

make #1 Compilation of portions of the C source for Magic.

make #2 Link and load of the Magic program binaries.

interactive An infinitely looping shell script of simple commands
(cp, cat, ex, rm, ps, and ls).

pingpong A pair of processes exchanging messages, as if 0.6 Mb
one were a file server and the other a client.

Table 1: Programs used to generate traces

NAME PROGRAMS TOTAL SIZE

Timesharing Magic, Tree, make #1, make #2, interactive 75 Mb

Compute-bound BigTree, TV 69 Mb

Client-Server pingpong 0.6 Mb

Table 2: Benchmark sets

4.1. Cache configurations and parameters

We simulated a variety of different cache designs, which are summarized in table 3.  All of the
designs are direct-mapped caches.  Cache tags are either physical addresses or virtual addresses
with process-ID tags, so the caches need not be flushed on context switches.  The word size in all
cases is 32 bits.
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NAME LEVEL 1 LEVEL 1 LEVEL 1 LEVEL 2 LEVEL 2
INSTRUCTION DATA MISS TIMING UNIFIED MISS TIMING

Design 1a 16B x 4k = 64kB 16B x 4k = 64kB 15 cycles None
Write through
6 write buffers

Design 1b 16B x 16k = 256kB 16B x 16k = 256kB 15 cycles None
Write through
6 write buffers

Design 2a 16B x 128 = 2kB 16B x 128 = 2kB 13 cycles 128 x 4k = 512kB 200 cycles
Write through Write back
4 write buffers

Design 2b 16B x 512 = 8kB 16B x 512 = 8kB 13 cycles 128 x 16k = 2mB 200 cycles
Write through Write back
4 write buffers

Sizes are in bytes Level-1 hit timing = 1 cycle, in all cases Level-2 hit timing = Level-1 miss timing

Table 3: Cache configurations

Design 1a represents the memory system of a contemporary high-performance workstation,
2the DECStation-5000/200, with a cycle time of 40 nSec . Design 1b represents the same sys-

tem, except that the cache RAMs are one generation larger (RAM sizes usually grow by a factor
of 4 between generations).

Design 2a represents a hypothetical future workstation design based on a single-chip processor
with on-chip level 1 caches, and an external level-2 cache.  The cycle time for such a CPU might
be between 2 nSec and 4 nSec.  Design 2b represents the same system as used in Design 2a, with
cache RAMs four times as large.

5. Results

For each set of benchmarks, we ran trials using each of the cache designs. In section 5.4, we
summarize the cache-performance costs of context switching for each of the trials.  Before that,
however, we will examine a small set of trials in detail, in order to see how we obtained the
summary results.  These particular trials were all done using cache design 1a.

5.1. Timesharing benchmark results (Trial A)

We begin by looking at what kinds of context switches were captured in our traces.  In a trace,
each context switch is followed by CPI values for some number of instructions, before another
context switch occurs; we will call each of these series of CPI values a ‘‘trace segment.’’  Figure
1 graphs the distribution of trace segment lengths.  (The point where the solid curve passes the
50% level on the y-axis gives the median interval between context switches.)  The data are also
broken down by the causes of the switches: system calls, page faults, and involuntary switches.
Even though the Timesharing workload involves a mix of IO-bound and compute-bound

2The actual cycle time has no effect on our simulations, since all times are normalized to units of cycles.
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3programs, most of the context switches are involuntary, imposed by the scheduler .
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Figure 1: Distribution of trace segment lengths (Trial A)

Next we graph CPI as a function of instructions since context switch.  Figure 2 shows CPI
values obtained when simulating a shared cache; figure 3 shows the values obtained when
simulating one cache per process.  The curves are averages over all the context switches in the
trace. Again, the data has been broken down into three classes of context-switch causes.
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Figure 2: Average CPI for all switches, shared cache (Trial A)

3Since traced programs run slower than normal, the scheduler has been modified to let them for about 400,000
cycles, or 1/60th of a second of non-traced time.
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Looking at figure 3, we see that context switches affect cache performance even when mul-
tiprogramming is ignored.  System calls have the greatest effect on CPI, because after a system
call (a file read, for example) a process is likely to be operating on new data.  A page fault also
increases the CPI, because it signals that the process has switched to a new locality of reference.
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Figure 3: Average CPI for all switches, private caches (Trial A)

Involuntary switches, on the other hand, should not affect the non-multiprogramming CPI of a
process, since they are not correlated with the process’s addressing behavior.  The ‘‘scheduler’’
curve in figure 3 is certainly flatter than the others, yet it is not completely flat.

Why is this so?  It is because the curve is an aggregate over all the processes in the
benchmark, and all the involuntary context switches.  Although the curve runs the width of the
graph, not all of the individual trace segments last that long.  For a compute-bound process,
which seldom switches voluntarily, its segments show steady-state behavior and a relatively low
CPI. I/O-intensive processes, however, voluntarily switch so often that they seldom reach
steady-state behavior.  When involuntarily suspended, their CPI is still relatively high, and when
next scheduled they usually switch voluntarily after a short while.  Thus, segments from these
processes are shorter, and contribute their high CPI only to the first part of the aggregated

4curve .

The curve in figure 3 for switches caused by system calls also shows surprising behavior: it
has a notable initial dip (directly visible only when graphed at a finer time-scale). The full ex-
planation of this is straightforward but too lengthy to fit here.  Briefly, it comes because virtually
all of the system-call context switches in the benchmark come from a single loop in one of the
processes, and this process apparently does something unusual.  Because few of the context
switches are caused by system calls (see figure 1), this anomaly has little effect on the overall
average.

4Another way to think about this curve is as the aggregate of a number of nearly-flat lines of varying heights and
lengths.
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Figure 4 shows the difference between figures 2 and 3; that is, it shows the portion of the CPI
attributable to multiprogramming.  We call this the ‘‘excess CPI.’’  Note that the curve for
‘‘scheduler switches’’ is indistinguishable from the curve for all switches; this is because most
switches are involuntary.
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Figure 4: Excess CPI for all switches (Trial A)

Finally, we can calculate the total cache-performance cost of a context switch, by integrating
the curves in figure 4 with respect to instructions since a context switch.  We call this the
‘‘cumulative excess CPI’’; figure 5 shows the results for this trial.
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Figure 5: Cumulative excess CPI for all switches (Trial A)

One can see from figure 5 that the curve does not reach an asymptote.  If we were to look
further out in time, it would flatten out, but since (as we saw in figure 1) few of the trace seg-
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ments last that long, the results in that region are suspect.  Thus, we arbitrary cut off the curve at
the point where only 10% of the trace segments remain, and call the final value the average cost
for the trial.  This number may not have any intrinsic meaning, but it allows us to make useful
comparisons between different cache configurations and benchmarks.

It might seem surprising that the effects of a context switch are detectable, however weakly,
400,000 instructions later, but we believe that the effect is real.  In the Timesharing benchmark,

5the scheduler rotates through enough processes that by the time a process is rescheduled, most
of its working set has been removed from the cache; in other words, a context switch might
effectively cold-start the cache.  The combined cache contains 8k lines, and a miss costs 15
cycles, so it could take over 120,000 cycles to reload a completely discarded working set.  The
average context-switch cost we calculated is an order of magnitude smaller than this, so we con-
clude that a process might well be subject to excess cache misses long after a context switch.

5.2. Compute-bound benchmark results (Trial B)

The Compute-bound workload, which consists of two compute-bound processes sharing the
CPU, generates almost exclusively involuntary context switches.  (Fewer than 1% are caused by
either system calls or page faults.)  These processes have a slightly lower average CPI than those
in the Timesharing workload, probably because they do more computation between memory
references. The excess CPIs in this benchmark are lower as well, so the resulting curve for
cumulative excess CPI reaches a lower plateau (see figure 6).
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Figure 6: Cumulative excess CPI for all switches (Trial B)

5The number of processes varies between trials, averaging 85, but not all 85 are runable at once.
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5.3. Client-Server benchmark results (Trial C)

The Client-Server workload, which consists of two intensively communicating processes alter-
nating the CPU, generates almost exclusively voluntary context switches.  (Fewer than 0.1% are
involuntary, and no page faults are taken.)  The CPIs are extremely low, since almost all the
references are satisfied by the cache.  In fact, the private-cache CPIs are almost exactly 1.0, but
there is a little contention in the shared cache case, so the excess CPIs are non-zero.  Figure 7
shows the cumulative excess CPI; the curve is flat after 4000 instructions, because from that
point on, the excess CPI is zero.
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Figure 7: Cumulative excess CPI for all switches (Trial C)

5.4. Summary of all experiments

The experiments we ran are summarized in table 4.  ‘‘Data refs’’ gives the number of loads
and stores executed.  ‘‘Average cost’’ is the average, over all the processes for the entire trace, of
the cost of a context switch.  ‘‘Total cycles’’ gives the total number of cycles simulated for the
trace.

The column labelled ‘‘Overhead ratio’’ is an indication of the total slowdown due to the
cache-performance costs of context switching.  It is calculated by multiplying the ‘‘Average
Cost’’ by the number of switches (5000) to get the total number of excess cycles, and dividing
that by ‘‘Total cycles’’ to get a ratio.

We ran at least two trials for each combination of benchmark and cache design. Because our
cache simulations were done ‘‘on-the-fly’’, each trial represents a different trace; thus, there is
some variation between experiments due to luck rather than cache parameters.

12



THE EFFECT OF CONTEXT SWITCHES ON CACHE PERFORMANCE

TRIAL CACHE BENCHMARK TOTAL DATA AVERAGE TOTAL OVERHEAD
DESIGN SET INSTRS REFS COST CYCLES RATIO

6 6 6A Design 1a Timesharing 555 * 10 149 * 10 10000 cycles 706 * 10 7.1%

6 6 6A1 Design 1a Timesharing 651 * 10 174 * 10 10300 cycles 820 * 10 6.3%

6 6 6B Design 1a Compute-bound 1313 * 10 356 * 10 4300 cycles 1445 * 10 1.5%

6 6 6B1 Design 1a Compute-bound 1238 * 10 335 * 10 4200 cycles 1361 * 10 1.5%

6 6 6C Design 1a Client-Server 33 * 10 10 * 10 186 cycles 35 * 10 2.7%

6 6 6C1 Design 1a Client-Server 33 * 10 10 * 10 186 cycles 35 * 10 2.7%

6 6 6D Design 2a Timesharing 538 * 10 145 * 10 24500 cycles 1561 * 10 7.8%

6 6 6D1 Design 2a Timesharing 635 * 10 169 * 10 26300 cycles 1787 * 10 7.4%

6 6 6E Design 2a Compute-bound 1229 * 10 333 * 10 11700 cycles 3791 * 10 1.5%

6 6 6E1 Design 2a Compute-bound 1235 * 10 335 * 10 10000 cycles 3800 * 10 1.3%

6 6 6F Design 2a Client-Server 33 * 10 10 * 10 261 cycles 37 * 10 3.5%

6 6 6F1 Design 2a Client-Server 33 * 10 10 * 10 234 cycles 36 * 10 3.3%

6 6 6G Design 1b Timesharing 649 * 10 175 * 10 5500 cycles 713 * 10 3.9%

6 6 6G1 Design 1b Timesharing 732 * 10 196 * 10 6300 cycles 804 * 10 3.9%

6 6 6H Design 1b Compute-bound 1271 * 10 345 * 10 1700 cycles 1350 * 10 0.63%

6 6 6H1 Design 1b Compute-bound 1233 * 10 334 * 10 1340 cycles 1310 * 10 0.51%

6 6 6H2 Design 1b Compute-bound 1310 * 10 355 * 10 1700 cycles 1391 * 10 0.61%

6 6 6I Design 1b Client-Server 33 * 10 10 * 10 186 cycles 35 * 10 2.7%

6 6 6I1 Design 1b Client-Server 33 * 10 10 * 10 186 cycles 35 * 10 2.7%

6 6 6J Design 2b Timesharing 619 * 10 164 * 10 12500 cycles 1170 * 10 5.3%

6 6 6J1 Design 2b Timesharing 680 * 10 183 * 10 15000 cycles 1304 * 10 5.8%

6 6 6K Design 2b Compute-bound 1201 * 10 325 * 10 9200 cycles 2191 * 10 2.1%

6 6 6K1 Design 2b Compute-bound 1202 * 10 325 * 10 7700 cycles 2189 * 10 1.8%

6 6 6L Design 2b Client-Server 33 * 10 10 * 10 143 cycles 36 * 10 2.0%

6 6 6L1 Design 2b Client-Server 33 * 10 10 * 10 142 cycles 36 * 10 2.0%

Table 4: Summary of experiments

5.5. Effects of changing technology

As the underlying technologies improve, processor cycle times are decreasing, and memory
sizes are increasing.  However, interconnection and other constraints limit the improvement in
main-memory access times; the net effect is that the relative speed of main memory gets worse.
Thus, cache-miss effects are also getting worse; the absolute size of the caches must increase
simply to maintain a given CPI ratio.
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Does this mean that the relative cost of context-switching is also getting worse?  Since we
have examined only two basic memory system designs, we cannot say anything conclusive, but
figure 8 hints at an answer.  For the Timesharing benchmark, the overhead ratio does worsen for
the more advanced machine.  The other benchmarks do not show consistent trends.
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Markers show individual trials; lines connect average values.

Figure 8: Overhead ratio vs. Technology

5.6. Effects of increased cache size

One technology effect that should improve cache performance is the continuing increase in
cache RAM density.  Our cache simulations allow us to examine the effect of increasing cache
size by a factor of four (one generation, since RAMs are squares).  Figure 9 shows how the
overhead ratio varies with cache size, for the two different basic system designs.

Again, the Timesharing benchmark shows a consistent trend of improving overhead ratio with
increased cache size.  The trends for the other benchmarks are less consistent.  One of the
benefits of larger caches is that they preserve more data across at least some kinds of context
switch; this effect is probably most important in the Timesharing workload.

6. Discussion

The most interesting aspect of the results of our experiments is the magnitude of the context-
switch effect on cache performance.  With the DECstation-5000, for example, the cost ranges
from 10 microseconds (client-server benchmark) to 400 microseconds (timesharing benchmark),
and our cache simulations probably underestimate the costs (by ignoring kernel references).

At the low end of this range, the cache-performance cost of a context switch is comparable to
the other costs of a context switch, and at the high end it dominates the costs.  For example, the
Ultrix kernel overhead required to perform a single context switch has been measured on the
DECstation-5000 at about 70 microseconds [14], in such a way as to avoid most of the cache-
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Figure 9: Overhead ratio vs. Cache size

performance effects.  Anderson et al. estimate the minimum cost for doing a context switch on
the DECstation-5000 at 7.4 microseconds [3].

In particular, the cost of saving and restoring even a large set of registers is quite small in
comparison to the cost of refilling the cache.  This should be kept in mind when designing an
architecture, since large register sets may have compensating benefits [19].

A trend hinted at, although not proven, by our experiments is that as CPU cycle times continue
to drop, the cache-performance costs of context switching will get worse, in relative terms.
While increasing the size of the cache improves the relative costs, feasibility and economics im-
pose constraints on cache sizes, so this trend may be unavoidable.

It may be appropriate to consider this effect when designing the memory system for a given
computer. If the intended application involves a lot of context-switching, it might pay to use
larger caches than would be chosen for a compute-bound system.

Operating system designers might infer from our results that performance would be improved
by reducing either the cost or the frequency of context switches.

For example, it might pay to be careful about choosing the order in which to schedule
processes. Also, context switching costs are relatively large when compared against the cost of
exchanging packets on a local area network.  A pair of minimal-length (but useful) packets can
be exchanged on an Ethernet in about 130 microseconds, ignoring processing costs; on an FDDI
network, the exchange can be done ten times faster. An operating system might choose to return
control to a recently-suspended process when that process receives an incoming packet, on the
assumption that the process’s working set is still mostly in the caches.

More generally, operating system designers might want to consider these results before
wholeheartedly embracing the trend towards ‘‘kernelized’’ organizations.  Such systems require
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more context-switching than conventional ‘‘monolithic kernel’’ systems (such as Unix systems),
because commonly-used system services are implemented in separate processes. (Examples in-
clude Mach [9] and V [6].) The benefits of this style of organization may outweigh the relatively
small additional cache-performance costs, but if the cache effects are indeed worsening as tech-
nology progresses, decisions based on current hardware may not be applicable in the future.

6.1. Further work

The most critical deficiency of our experiments is our inability to account for the effect of
kernel references on cache performance, and for the effect of context switching on kernel-
reference cache performance. Our current address-tracing implementation runs on an obsolete
architecture, whose operating system has excessively long code paths. While we can generate
traces with kernel references, we believe that we would learn nothing beyond verifying the in-
efficiency of our kernel.

We are therefore in the process of porting our tracing implementation to the MIPS architec-
ture, in a way that requires little kernel modification.  This will allow us to trace benchmarks
under several different, well-tuned kernels, and so to get useful information about kernel effects.
It will also allow us to compare the effects of different operating system designs, since Ultrix,
Mach, and Sprite [15] already run on the MIPS architecture, and other systems are being ported.
It would also be interesting to measure a system whose scheduler has been experimently
modified to minimize cache disruption.

We believe that it is important also to characterize larger varieties of programs and memory
system designs.  The port to the MIPS architecture will help, by giving us access to a wider set of
programs, and by providing a large base of faster machines on which to do our experiments.

We use a crude method to simulate multiple caches using a single pass through the address
trace; it requires memory proportional both to the number of processes and to the cache sizes,
and so is infeasible for some experiments.  More elegant methods have been described [10], and
perhaps could be adapted to this problem.

It would also be interesting to examine the effects of certain novel cache designs, such as
stream buffers [11], on context-switch costs.  Perhaps there are less expensive ways to reduce
context-switch overhead than simply increasing cache size.

One possible use of our tracing technique is as a performance-debugging tool.  It allows a
programmer to discover those regions of poor memory-system performance that are correlated
with context switches from system calls or page faults.  In many cases, an increased CPI is un-
avoidable, but in some instances it may indicate an inefficient algorithm.  Other tools have been
developed for similar purposes [8], but they are not able to show how a multi-process application
might best be improved.

Alternative analyses of our address traces could answer other interesting questions, such as
how much of a process’s working set is lost on each context switch, what portion of the working
set is restored before the next context switch, and what are the relative contributions of the in-
struction and data caches.
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7. Summary and Conclusions

We have developed a new approach for evaluating the cache-related performance impact of
multiprogramming, and in particular the dynamic behavior of the memory system directly fol-
lowing a context switch.  Our traces allow us to distinguish between cache misses that are intrin-
sic to a program, and those that are caused by collisions with other processes.  We are also able
to see how the different causes of context switches affect cache performance in different ways.

One implication of our results is that arguments about the proper size of register sets should be
kept in perspective; the effect of register-saving on context switching may not be as important as
has been thought.  Another implication is that highly-modularized operating system designs
might not provide the same relative performance on future hardware as they do on current
hardware. Finally, when designing the memory hierarchy of a multi-programmed computer sys-
tem, one should not choose the cache size based on benchmarks of single programs.
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