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Abstract

The "mostly-copying" garbage collection algorithm provides a way to perform
compacting garbage collection in spite of the presence of ambiguous pointers in
the root set.  As originally defined, each collection required almost all accessible
objects to be moved. While adequate for many applications, programs that
retained a large amount of storage spent a significant amount of time garbage col-
lecting. To improve performance of these applications, a generational version of
the algorithm has been designed.  This note reports on this extension of the algo-
rithm, and its application in collectors for Scheme and C++.
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1. Introduction

The "mostly-copying" garbage collection algorithm [1] [2] was developed to allow compact-
ing garbage collection in environments hostile to classical copying collection algorithms. Unlike
classical copying collectors, it is able to tolerate ambiguous pointers in its root set. This has
allowed it to be used to manage storage in a portable Scheme system, Scheme->C, that compiles
Scheme to C [3]. In such an environment, the runtime system has no control over or knowledge
of how the stack and registers are used.  As originally defined, the mostly-copying collector’s
behavior is similar to that of the classical "stop-and-copy" collector.  Both have a running time
that is O(accessible storage) and reclaim memory by moving accessible storage to another
"space" in memory.

While such a collector has adequate performance for many applications, it does have some
limitations. In large programs, each time a garbage collection occurs there is a significant pause
in computation as almost all accessible storage must be copied, and the time spent garbage col-
lecting can be a significant portion of the total program execution time.  For example, Steele
[10] reports that large Lisp programs spend 10 to 40 percent of their time garbage collecting,
and experience with Scheme->C suggests similar behavior.  Before trying to improve this situa-
tion, one should remember that different programs require different garbage collector behavior.
For example, an interactive graphics editor wants to minimize the program pauses during gar-
bage collection, while a Scheme compiler wants to minimize the total time spent garbage collect-
ing.

Generational garbage collection techniques appear to be able to satisfy the needs of both types
of programs; the remainder of this note describes a "generational mostly-copying" garbage col-
lector. Section 2 introduces generational collection and is followed by a review of the mostly-
copying collection algorithm in section 3.  These ideas are merged in section 4, which shows
how the mostly-copying algorithm can be made generational.  Section 5 describes the implemen-
tation in the Scheme->C system, and section 6 describes the implementation for C++.  The note
ends with the conclusion in section 7 that a "generational mostly-copying" collector is able to
provide performance improvements for both interactive and non-interactive programs.

2. An Introduction to Generational Garbage Collection

One way to improve the efficiency of copying garbage collectors is to reduce the amount of
storage copied on each garbage collection.  Generational garbage collectors attempt to do this by
treating objects differently depending upon their age.  In his overview of garbage collection,
McEntee [7] credits Lieberman and Hewitt with a proposal for generational garbage collection in
1980, and Moon with a later implementation of a generational garbage collector for the Sym-
bolics 3600.  Work more relevant to the current effort is that done on conventional processors by

1Ungar [12] for Smalltalk and Shaw [9] for Common Lisp.

Generational garbage collectors rely on two observations about dynamic storage allocation:
new objects are more likely to be freed than old objects, and new objects typically point to old

1Ungar also originated the generational garbage collection slogan: "young objects die young."
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objects. These garbage collectors ignore long-lived objects and concentrate on reclaiming space
occupied by short-lived objects.  The algorithm can be illustrated by considering garbage collec-
tion with two generations (additional generations can be added in a straightforward manner).

When an object is initially allocated, it is considered to be a member of the first generation.
Once an object has survived some number of collections, it is moved to the second generation
(also known as the stable set). When storage is reclaimed, one ignores stable set objects and
attempts to recover it from the inaccessible first generation objects.  Only when one is unable to
get enough space from first generation objects will one garbage collect objects belonging to the
stable set.

Generational garbage collectors need a larger root set than either the mostly-copying or clas-
sical stop-and-copy collectors.  Besides the usual register and stack contents, they must also
know about all stable set objects that reference first generation objects. If this information
(called the remembered set) were not known, first generation objects whose only references were
from stable set objects would be deleted in error.  The remembered set may be maintained by
either software tests at appropriate stores in the program or by virtual memory hardware traps.
With this introduction to generational collection complete, we will now turn our attention to a
review of the mostly-copying collection algorithm.

3. A Review of Mostly-Copying Collection

The mostly-copying collector is an evolution of the classical stop-and-copy collector [5]. Both
algorithms divide the storage area into two equal semispaces: "old space" and "new space".
When all the storage is allocated in one semispace, the garbage collector is invoked.  It recovers
space by using a set of root pointers (also known as the base set) to move all accessible storage
to the other semispace. Where the mostly-copying algorithm differs from stop-and-copy is in
how it defines its root pointer set and semispaces.

The mostly-copying algorithm makes few restrictions on the root set. It simply requires that
somewhere in the set of cells, R, there be sufficient "hints" to find all accessible storage.  A
typical R would be the current program state, i.e. the entire contents of the processor’s stack and
registers.

The heap used by the mostly-copying algorithm is a contiguous region of storage, divided into
2a number of equal-size pages . Associated with each page is a space identifier, space, which

identifies the "space" that objects on the page belong to.  In the figures illustrating this algorithm,
the space identifier associated with the page containing the cell is the number to the left of the
cell, and each cell is assumed to be in its own page (see Figure 1).

Two space identifiers: current_space and next_space, identify important sets of pages. During
normal allocation, current_space and next_space are equal, but during garbage collection,
next_space is set to the "next" space identifier.  When comparing this algorithm with the clas-
sical one, it is reasonable to think of pages with their space identifier equal to next_space as the

2The page size used by the algorithm is independent of any underlying hardware’s page size.
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Figure 1: Mostly-copying memory organization and sample list

analogue of "new space", and those with their space identifier equal to current_space as the
analogue of "old space".  Like the classical one, this collector works by moving objects from
"old space" to "new space". While this can be done by copying objects to newly allocated pages
in next_space, it can also be done by changing the space identifier associated with the page hold-
ing the object to next_space. This later method is the key to mostly-copying collection as it
leaves the object’s address unchanged.

Memory allocation is a two part process: first, allocate a page of memory, and then allocate
space from it. A page is free when its space field is not equal to current_space or next_space.
When it is allocated, its space identifier is set to next_space.

The garbage collector is invoked when half the pages in the heap have been allocated.  It starts
by advancing next_space to the next space identifier. Next, it makes an educated guess as to
what portions of the heap contain accessible items.  This is done by examining each word in the
stack and the registers and looking for "hints".  If the word could be a pointer into a page of the
heap allocated to the current_space, then that page is promoted to next_space by changing the
page’s space identifier (see Figure 2).

At the completion of this phase, all pages containing items which might be referenced by
pointers in the stack or registers are in next_space. The items which they reference are now
copied to next_space (see Figure 3).  This is done by sweeping across all pages in the next_space
and updating their pointers by a method similar to that used by the stop-and-copy collector. Like
the stop-and-copy algorithm, the objects in the heap must be self-identifying at collection time,
and their pointer fields must be valid. Once all pointers in pages in next_space have been up-
dated, current_space is set to next_space and garbage collection is complete.

For more information on this algorithm and its variants, the reader is directed to the technical
report [1]. With this review of mostly-copying garbage collection complete, it is now ap-
propriate to turn our attention to making the algorithm generational.

3



MOSTLY-COPYING GARBAGE COLLECTION PICKS UP

B

C

D
nil

2

1

1

1

Figure 2: Promote possibly referenced pages to next_space
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Figure 3: Copy the rest of the accessible objects

4. A Generational Mostly-Copying Collector

The most straightforward (and least efficient) way to keep track of the age of an object is to
place a garbage collection counter in each object.  Each time the object is garbage collected, the
counter is incremented.  When the counter gets above a certain value, the object is moved into
the stable set.  Since the mostly-copying collector divides memory into pages, an object’s age
may be approximated by associating it with the page holding the object.  One way to store this is
to encode it in the space identifier associated with each page.

A simple two-generation "generational mostly-copying" garbage collector can be constructed
3from the previous algorithm as follows . During user program execution, objects are allocated

3Shaw [9] extended stop-and-copy collection in a similar manner and called it stop-and-copy with stable data.
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with odd-numbered space identifiers.  Objects that have survived one garbage collection are
moved into the stable set that is stored in pages marked with an even-numbered space identifier.

During its execution, the user program assists the garbage collector by constructing the
remembered set.  This is done by keeping track of all pages with even-numbered space iden-
tifiers that have pointers stored into them.

Memory allocation is a two part process: first, allocate a page of memory, and then allocate
space from it. A page is free when its space field is odd and not equal to current_space. When it
is allocated, its space identifier is set to next_space.

The garbage collector is invoked when half the pages in the heap have been allocated.  It starts
by advancing next_space to the next space identifier (an even number).  Next, it makes an edu-
cated guess as to what portions of the heap contain accessible items.  This is done by examining
each word in the stack and the registers and looking for "hints".  If the word could be a pointer
into a page of the heap allocated to the current_space, then that page is promoted to next_space
by changing the page’s space identifier.

At the completion of this phase, all pages containing items that might be referenced by
pointers in the stack or registers are in next_space. The items which they or members of the

4remembered set point to are now verified to be in the stable set or copied to next_space. This is
done by sweeping across all pages in the next_space and the remembered set and updating their
pointers by a method similar to that used by the stop-and-copy collector. Once all pointers in
pages in next_space and the remembered set have been updated, current_space and next_space
are set to next_space+1 (an odd number) and garbage collection is complete.

At some point in time, the garbage collector may wish to recover inaccessible objects in the
stable set.  This can be done by changing the space identifier of all pages in the stable set to
current_space and then garbage collecting using the original mostly-copying algorithm.

Multiple generations can be accomodated by this algorithm with appropriate encodings of the
space identifier.  For example, space identifier values equal to 0 modulo 4 could represent the
first generation, values equal to 1 modulo 4 could represent the second generation, etc.  Ap-
propriate remembered sets would be retained for references from older to newer generations.  As
objects continue to be retained, they would gradually move from one generation to the next,
where higher numbered generations contain older objects that are less often garbage collected.

5. Implementation for Scheme->C

The generational mostly-copying collector added to Scheme->C is similar to the one
previously described.  It has two generations and the remembered set is maintained by software.
When an object survives one garbage collection, it is moved to the stable set. When the amount
allocated in the heap following a garbage collection of the first generation is greater than a user
defined level, both generations are garbage collected.

4Pointers to objects in pages with even space identifier values need not be followed as those objects are in the
stable set.

5



MOSTLY-COPYING GARBAGE COLLECTION PICKS UP

When compiling the Lisp dialect Scheme [8], the compiler need only generate code to main-
tain the remembered set for constructs that destructively change lists: SET-CAR! and SET-
CDR!, store into a vectors:  VECTOR-SET!, and make assignments: SET!.

By comparing the performance of programs running with the old and new garbage collectors
one can observe the costs and benefits of generational mostly-copying collection.  The test
programs are four benchmarks from Gabriel’s benchmark suite [6] and the Scheme->C compiler
compiling a large Scheme program.  The benchmarks chosen perform a significant number of
modifications to existing data structures. As they are all fairly short, no garbage collection is
done during their execution.  The increase in the time spent in the benchmark programs gives
one an estimate of the cost of managing the remembered set via software.  As one might expect,
the worst increase was in the program Destructive which constructs a tree as a list of lists and
then destructively modifies its elements.  Programs that make extensive use of vectors, such as
FFT, Puzzle, and Triangle, showed smaller increases in running time.  The performance decrease
observed here is in agreement with measurements reported in [9].

For larger programs that require garbage collection, the time spent managing the remembered
set is more than made up for by the reduced garbage collection time.  In the sample Scheme->C
compile, the program time was increased by 8%, but the total running time was reduced by 20%.

Program Program time GC time Total time
name change change change

Destructive +12% - +12%

FFT +4% - +4%

Puzzle +4% - +4%

Triangle +9% - +9%

Scheme->C compiler +8% -82% -20%

Similar improvements have been observed for interactive programs. A graphical multiproces-
sor performance monitor written by Bert Halstead that used to take approximately 500 ms to
garbage collect is now able to collect in less than 30 ms.  Similarly, garbage collection pauses for
a visual programming language system written by John Danskin are now 50-400ms rather than
2-5 seconds.

Those familiar with earlier work in generational garbage collection may wonder if this collec-
tor is really too simple.  That is, by using only two generations of storage, and moving objects

5into the stable set when they survive one collection, do we retain too many items ? Experience
to date with Scheme->C suggests that this is not a problem, and a comparison with Ungar’s work
[12] shows why.  The typical Scheme->C workstation is a DECstation3100 that has ap-
proximately one order of magnitude greater performance than the SUN’s used by Ungar.  First,
this allows Scheme->C programs to allocate 2MB or more of heap between collections and still
have good interactive performance. In contrast, Ungar’s volatile objects occupied only 200KB.
Second, in Scheme->C, reclamation of the stable set takes a few seconds and thus can be

5Ungar calls this the "the tenuring problem".
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tolerated after some number of minutes of computation. For example, a 12MB heap with 3MB
accessible data can be totally reclaimed in less than 7 seconds. Ungar on the other hand suggests
that collecting the stable set will take 5 minutes and must be done every 3 to 8 hours.

Having shown that the generational extension to the mostly-copying collection algorithm is
worthwhile for Scheme->C, our attention now turns towards implementations for other program-
ming languages, such as C++.

6. Implementation for C++

C++ is an object oriented superset (except for a couple of minor details) of the C programming
6language [11]. The garbage collector for it evolved from that published in the appendix of [1] .

In order to simplify its use, the heap size need not be configured (it expands automatically as
needed) and all static data is assumed to contain hints.  Rather than requiring pointers to be
located at the beginning of each object, the user provides the garbage collector with a method to
locate the pointers.  For example, a class that holds a variable length string, a reference count,
and pointers to strings that are greater or lesser than it can be defined as follows:

struct word {
word* lesser;
word* greater;
int count;
char symbol[ 4 ];
word( char* chars );
void pointers();

};

void word::pointers( )  {
gcpointer( &lesser );
gcpointer( &greater );

}

GCCALLBACK( word_callback, word::pointers );

word::word( char* chars )
{

this = (word*)gcalloc( sizeof( word )+
strlen( chars )-3,
word_callback );

lesser = NULL;
greater = NULL;
count = 1;
strcpy( symbol, chars );

}

The constructor, word::word, allocates space in the heap and then initializes it.  Space al-
location is done by the call to gcalloc that takes the size in bytes and a "callback object" as its
arguments. The callback object, word_callback, is declared by GCCALLBACK. It denotes

6Astute readers of that document will note that processing of objects larger than one page is incorrect in the
procedure promote_page, as it does not correctly identify the first page of the object.
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the method, word::pointers, that the garbage collector calls to identify all pointers in the
object. This is done by calling gcpointer with the address of each pointer in the object that
could point to a garbage collected object.

Once the object has been defined, storage is allocated using the normal C++ mechanism:
sp = new word( "dictionary" );

Maintaining the remembered set is more of a problem in C++ than in Scheme. Since
Scheme->C was implemented at WRL, it was easy to modify the compiler to add software
checks in the small number of areas where data in the stable set could be modified.  In C++
though, any store via a pointer has the possibiliy of modifying stable set data. Monitoring all
such stores by software would require modification of a foreign compiler (not desired) and
would have a significant impact on program performance. An alternative way to manage the
remembered set is to use the underlying processor’s virtual memory system, as was done by
Shaw [9]. This was not done here as it was desired to keep the garbage collector as architecture
independent as possible.  Instead, the entire stable set is considered to be the remembered set.
While this is not as good as knowing the actual remembered set, it is better than not using a
generational garbage collector.  Given that one expects much of the stable set to be retained, it is
cheaper to scan the entire stable set for pointers to first generation objects, than to both move and
scan most of the stable set.  Shaw’s work with Common Lisp supports this view.

One extension that an implementer might wish to make is to allow C++ destructor methods to
explicitly return storage.  Given that one trusts the programmer to know when to return data,
there may be some benefit in this. A second extension that one may wish to make is to have the
garbage collector call a destructor method when it detects that an object is no longer needed.  In
order to do this without having to scan all recovered storage (and thus losing one of the ad-
vantages of a copying collector), one could register those objects needing cleanup action with the
garbage collector. One should recognize though that rapid activation of cleanup procedures is
not something that generational collection does well.  It gains performance by ignoring long
lived objects; the longer an object lives, the longer it will take to recognize that it is no longer
needed. One way to get around this would be to keep all objects needing cleanup actions in the
first generation. However, if this represents a significant portion of the accessible data, the
benefits of generational collection will be lost.

An alternative type of garbage collector that one might try with C++ is a conservative collec-
tor [4]. Unlike the mostly-copying collector, such collectors do not put any restrictions on
pointer use nor do they compact memory. With such collectors, objects in the heap need not
have valid pointers nor have runtime discernible structure.  While they might place fewer restric-
tions on programs, the benefits of memory compaction provided by the mostly-copying collector
are worth the restrictions.

7. Conclusions

This note has discussed an improvement to the mostly-copying garbage collection algorithm
that allows it to provide generational collection for a variety of programming languages.  While
performance data is not available for C++, its performance in the Scheme->C system shows that
it provides significant performance improvement over the previous non-generational version of

8
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the collector.  While small benchmarks that don’t require any garbage collection run a bit slower,
large batch programs such as compiles run faster and interactive programs have shorter pauses.
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