
J u l y 1 9 9 8

Memory System
Characterization of
Commercial Workloads

Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

WRL
Research Report 98/9

Luiz André Barroso
Kourosh Gharachorloo
Edouard Bugnion

J u l y 1 9 9 8

The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate
Research group. Our focus is research on information technology that is relevant to the technical strategy of the
Corporation and has the potential to open new business opportunities. Research at WRL ranges from Web search
engines to tools to optimize binary codes, from hardware and software mechanisms to support scalable shared
memory paradigms to graphics VLSI ICs. As part of WRL tradition, we test our ideas by extensive software or
hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports and technical notes.
This document is a research report. Research reports are normally accounts of completed research and may include
material from earlier technical notes, conference papers, or magazine articles. We use technical notes for rapid dis-
tribution of technical material; usually this represents research in progress.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.digital.com/wrl/home

You can request research reports and technical notes from us by mailing your order to:

Technical Report Distribution
Compaq Western Research Laboratory
250 University Avenue
Palo Alto, CA 94301 U.S.A.

You can also request reports and notes via e-mail. For detailed instructions, put the word “Help” in the subject
line of your message, and mail it to:

wrl-techreports@pa.dec.com

Appeared in Proceedings of the25th International Symposiumon Computer Architecture, July 1998.

Memory System Characterization of Commercial Workloads

Luiz Andr é Barroso, Kourosh Gharachorloo, andEdouard Bugnion�

Western Research Laboratory
Digital Equipment Corporation
fbarroso,kouroshg@pa.dec.com

bugnion@cs.stanford.edu

Abstract

Commercial applications such as databases and Web servers con-
stitute the largest and fastest-growing segment of the market
for multiprocessor servers. Ongoing innovations in disk sub-
systems, along with the ever increasing gap between processor
and memory speeds, have elevated memory system design as
the critical performance factor for such workloads. However,
most current server designs have been optimized to perform well
on scientific and engineering workloads, potentially leading to
design decisions that are non-ideal for commercial applications.
The above problem is exacerbated by the lack of information
on the performance requirements of commercial workloads, the
lack of available applications for widespread study, and the fact
that most representative applications are too large and complex
to serve as suitable benchmarks for evaluating trade-offs in the
design of processors and servers.

This paper presents a detailed performance study of three im-
portant classes of commercial workloads: online transaction pro-
cessing (OLTP), decision support systems (DSS), and Web in-
dex search. We use the Oracle commercial database engine for
our OLTP and DSS workloads, and the AltaVista search engine
for our Web index search workload. This study characterizes
the memory system behavior of these workloads through a large
number of architectural experiments on Alpha multiprocessors
augmented with full system simulations to determine the impact
of architectural trends. We also identify a set of simplifications
that make these workloads more amenable to monitoring and
simulation without affecting representative memory system be-
havior. We observe that systems optimized for OLTP versus DSS
and index search workloads may lead to diverging designs, spe-
cifically in the size and speed requirements for off-chip caches.

1 Introduction

During the past few years, shared-memory multiprocessor sys-
tems based on commodity microprocessors have emerged as the
platform of choice for running demanding commercial database
and Web workloads. Even though these systems have tradition-
ally targeted engineering and numeric applications, the cost ef-
fectiveness of using commodity components has enabled them
to successfully compete in a market which was once exclusively

�Edouard Bugnion is a graduate student in computer science at Stanford
University.

the domain of mainframes. In fact, with the increasing demand
for database applications and the emergence of the Web, com-
mercial workloads have quickly surpassed scientific/engineering
workloads to become the largest market segment for multipro-
cessor servers.

The dramatic change in the target market for shared-memory
servers has yet to be fully reflected in the design of these sys-
tems. The behavior of commercial workloads is known to be
very different from numeric workloads [12]. Yet, current pro-
cessors have been primarily optimized to perform well on the
SPEC95 [18] benchmark suite. Similarly, design of multipro-
cessor architectures, along with academic research in this area,
have been heavily influenced by popular scientific and engineer-
ing benchmarks such as SPLASH-2 [26] and STREAMS [13],
with only a handful of published architectural studies that have
in some way tried to address issues specific to commercial work-
loads [3, 7, 9, 12, 14, 16, 20, 21, 24].

The lack of architectural research on commercial applications
is partly due to the fact that I/O issues have been historically con-
sidered as the primary performance bottleneck for such work-
loads. However, innovations in disk subsystems (RAID arrays,
use of non-volatile memory) and software improvements that
exploit the intrinsic parallelism of these workloads to hide I/O
latencies have largely alleviated problems in this area. At the
same time, the increasing gap between processor and memory
speeds, and the higher memory latencies typical of multipro-
cessor systems, have made memory system design the critical
performance factor for commercial workloads.

Even though the architecture community has recently de-
veloped a sense of urgency to pay more attention to commercial
applications, a combination of factors complicate their study:

Lack of Availability and Restrictions. The biggest difficulty in
studying commercial database engines is the lack of easy access
due to the proprietary nature of the software. Software licenses
typically prevent the disclosure and publication of performance
information, and almost never include any access to the source
code.

Large Scale. Commercial applications are often difficult and
expensive to set up due to their large scale. For example, just
the hardware cost of systems assembled for generating audit-
quality performance results on database benchmarks is often sev-
eral hundred thousand (and sometimes a few million) dollars.

Complexity. Commercial workloads are inherently complex,
and often exhibit a large amount of non-trivial interaction with

the operating system and the I/O subsystem. The difficulty in the
understanding and interpretation of the results is exacerbated by
the lack of source code. These interactions also make such work-
loads an extremely challenging target for simulation studies.

Moving Target. Due to the competitive nature in some import-
ant commercial markets such as databases, software changes oc-
cur at a very fast pace, often providing large performance im-
provements with each new generation. For example, commer-
cial database engines have improved tremendously during the
past few years in scaling to more processors in shared-memory
systems. Therefore, studies that are a few years old (e.g. [16]) or
that are based on software that is not of commercial grade (e.g.,
the public domain Postgres database [21]) are likely to be out-
dated and non-representative. The above issues are even more
pronounced for Web workloads since numerous applications in
this area are yet to be developed, and the existing ones are only
in their infancy.

The goal of this paper is to provide a detailed characterization
of the memory system behavior of three important commercial
workloads running on a shared-memory multiprocessor: (i) on-
line transaction processing (OLTP), (ii) decision support systems
(DSS), and (iii) Web index search. We have been fortunate to
have access to the Oracle database engine [19] for running our
database workloads, and the popular AltaVista search engine for
our Web workload.

Our characterization results consist of two classes of exper-
iments. The first set of results consists of a large number of
monitoring experiments on Alpha multiprocessor platforms, us-
ing a wide range of hardware and software monitoring tools. The
second set of results uses full system simulation (using our Al-
pha port of SimOS [15]) to study the effect of architectural vari-
ations. In dealing with the large scale and complexity of these
workloads, we have identified a number of simplifications that
make these workloads more amenable to monitoring and simula-
tion studies (both full system and user-level only) without affect-
ing their intrinsic memory behavior. Determining and validating
the appropriate set of simplifications is a non-trivial task. Our
techniques result from several months of studying Oracle, and
we benefited from the expertise of the designer of the AltaVista
index search [2].

One of the most interesting results of this paper is with re-
spect to OLTP. Although OLTP is known to be memory intens-
ive, emerging architectural trends will allow off-chip caches to
capture significant working sets and eliminate most capacity and
conflict misses, leaving only communication misses. The use
of larger-scale shared-memory multiprocessors for running com-
mercial workloads indicate that dirty cache misses will soon out-
number misses to memory, effectively forcing systems architects
to reconsider trade-offs that penalize dirty misses. The same
trade-off is not necessarily exposed by scientific applications
which in general exhibit much lower communication miss rates,
and for which communication data often gets replaced back to
memory before being read by another processor. Our results
also show that DSS and AltaVista behave quite differently from
OLTP. Despite the size of their largest data structures, the critical
working sets of these applications fit in reasonably sized on-chip
caches.

The rest of paper is structured as follows. The next sec-
tion provides a detailed description of the commercial workloads
used in our study. Section 3 presents our experimental method-

ology and setup. Sections 4, 5, and 6 present our main results:
our monitoring experiments, our simulation experiments, and the
discussion of our scaling methodology. Finally, we discuss re-
lated work and conclude.

2 Background on Commercial Work-
loads

This section provides a detailed description of our two database
workloads and our Web index search workload.

2.1 Database Workloads

The most important classes of applications in the database mar-
ket are online transaction processing (OLTP) and decision sup-
port systems (DSS). Online transaction processing systems are
used in day-to-day business operations (e.g., airline reserva-
tions), and are characterized by a large number of clients who
continually access and update small portions of the database
through short running transactions. On the other hand, decision
support systems are primarily used for business analysis pur-
poses, whereby information from the OLTP side of a business
is periodically fed into the DSS database and analyzed. In con-
trast to OLTP, DSS is characterized by long running queries that
are primarily read-only and may each span a large fraction of the
database.

2.1.1 Oracle Database Engine

Our OLTP and DSS workloads run on top of the Oracle 7.3.2
DBMS. The Oracle 7.3.2 DBMS runs on both uniprocessors and
multiprocessor shared memory machines, and recent benchmark
results demonstrate that the software scales well on current SMP
systems [4]. Figure 1 illustrates the different components of Or-
acle. The server executes as a collection of Unix processes that
share a common large shared memory segment, called theSys-
tem Global Area, or SGA. Oracle has two types of processes,
daemonsandservers. The daemons run in the background and
handle miscellaneous housekeeping tasks such as checking for
failures and deadlocks, evicting dirty database blocks to disk,
and writing redo logs. The server processes are the ones that ac-
tually execute database transactions and account for most of the
processing. Both daemon and server processes share the same
code, but have their own private data segment called thePro-
gram Global Area, or PGA. Daemons and servers primarily use
the SGA for communication and synchronization, but also use
signals to wake up blocked processes.

The SGA is roughly composed of two regions, namely the
block bufferandmeta-dataareas. The block buffer area is used
for caching the most recently used database disk blocks in main
memory, and typically accounts for 80% of the SGA size. The
meta-data area contains the directory information that is used to
access the block buffers, in addition to space for miscellaneous
buffers and synchronization data structures.

Database engines maintain two important types of persistent
data structures: the database tables and the redo log. The latter
keeps a compressed log of committed transactions, and is used
to restore the state of the database in case of failure. Committing
only the log to disk (instead of the actual data) allows for faster

Proc. monitor Sys. monitorLog writerDB writer
Server process

PGA

SGA

Block buffer area

m
et

a-
da

ta
ar

ea

Redo log files

Database disks

Figure 1: Major components of the Oracle 7.3.2 server.

transaction commits and for a more efficient use of disk band-
width. Oracle 7.3.2 has a single daemon process, thelog writer
that groups commit logs from independent transactions into a
single disk write for more efficient use of the disk bandwidth.

2.1.2 OLTP Workload

Our OLTP workload is modeled after the TPC-B bench-
mark [22]. This benchmark models a banking system, with each
transaction simulating a balance update to a randomly chosen
account. The account balance update involves updates to four
tables: the branch table, the teller table, the account table itself,
and the history table. Each transaction has fairly small compu-
tational needs, but the workload is I/O intensive because of the
four table updates per transaction. Fortunately, even in a full-size
TPC-B database (e.g., a few hundred GBs), the history, branch,
and teller tables can be cached in physical memory, and frequent
disk accesses are limited to the account table and the redo log.

We use Oracle in a dedicated mode for this workload, whereby
each client process has a dedicated server process for serving its
transactions. The communication between a client and its server
process occurs through a Unix pipe. Each transaction consists
of five queries followed by a commit request. To guarantee the
durability of a committed transaction, commit requests block the
server until the redo information has been written to the log. To
hide I/O latencies, including the latency of log writes, OLTP runs
are usually configured with multiple server processes (e.g. 7-8)
per processor.

Even though TPC-C has superseded TPC-B as the official
OLTP benchmark, we have chosen to model our OLTP workload
on TPC-B because it is simpler to set up and run, and yet exhibits
similar behavior to TPC-C as far as processor and memory sys-
tem are concerned. We have verified this similarity by comparing
our memory system performance results presented in Section 4
with results from audit-size TPC-C runs [4] on the same hard-
ware platform (AlphaServer 4100). We have also confirmed this
similarity on other Alpha multiprocessor platforms.

We provide a few general statistics, gathered with the
DCPI [1] profiling tool, on the high-level behavior of the work-
load. On a four processor AlphaServer, the workload spends
71% in user-mode, 18% in the kernel and 11% in the idle loop.
As expected from a tuned system, the workload hides most of

SELECT SUM(LEXTENDEDPRICE * L DISCOUNT) AS REVENUE
FROM LINEITEM
WHERE
L SHIPDATE>= DATE ' [date]' AND
L SHIPDATE< DATE ' [date]' + INTERVAL ' 1' YEAR
L DISCOUNT BETWEEN [discount] - 0.01 AND [discount] + 0.01 AND
L QUANTITY < [quantity];

Figure 2: SQL code for query Q6 in TPC-D.

the I/O latency. A more detailed breakdown shows that 85%
of the user time is spent in the servers, 15% in the clients and
that the computation requirement of the daemons is negligible.
Another interesting behavior in OLTP is the high frequency of
context switches. Server processes block between each query,
on average every 25K instructions. Client processes run an even
smaller number of instructions between blocking system calls.
This leads to a fine interleaving between multiple server and cli-
ent processes that share the same processor.

2.1.3 DSS Workload

Our DSS workload is modeled after the TPC-D benchmark [23].
The benchmark simulates the decision support system for a
wholesale supplier that distributes and sells products worldwide.
The database size is specified by a scale factor (SF), with a scale
factor of 1 corresponding to a raw data size of 1 GB. Typical
audited TPC-D databases sizes are 100-1000 GBs. The follow-
ing are the eight tables in the database (with the number of rows
shown for SF=1): lineitem (6000K rows), order (1500K rows),
partsupp (800K rows), part (200K rows), customer (150K rows),
supplier (10K rows), nation (25 rows), and region (5 rows).
These tables provide the information on all parts that are bought
from suppliers and sold to customers. Each customer order is
reflected in the order table, along with the ordered parts being
reflected in the lineitem table. The lineitem table is by far the
biggest table, and constitutes about 75% of the total raw data
that is used to build the database. The benchmark also allows
various indices to be created for fields in the data tables to help
queries that can benefit from index scans.

The TPC-D benchmark consists of 17 read-only queries (Q1
to Q17) and two update queries (UF1 and UF2). The read-only
queries vary in complexity and running time, with some quer-
ies accessing only one or two tables and other queries accessing
all the main data tables. These queries are used to answer crit-
ical business questions; e.g., Q1 provides a summary pricing re-
port of all lineitems shipped as of a given date. The two update
queries model infrequent modifications to the database to keep it
up-to-date.

The focus of this paper is on the read-only queries, since these
queries are by far the most important component in the over-
all performance of TPC-D. The read-only queries are expressed
in the Structured Query Language (SQL), a non-procedural lan-
guage commonly used in relational databases. For illustration
purposes, Figure 2 shows the SQL code for one of the simplest
queries, “Q6”. This query selects (from the lineitem table) all
goods ordered in a given period with a given discount and max-
imum quantity, and computes the total sum of discounts over
these goods.

Before executing an SQL query, the database engine first for-
mulates an optimized execution plan built out of a combination
of basic table manipulation operations: selects, joins, sorts, and

Tables Selects Joins Sorts/ User Kernel Idle
Used Aggr.

Q1 1 1 FS - 1 94% 2.5% 3.5%
Q4 2 1 FS, 1 I - 1 86% 4.0% 10%
Q5 6 6 FS 5 HJ 2 84% 4.0% 12%
Q6 1 1 FS - 1 89% 2.5% 8.5%
Q8 7 8 FS 7 HJ 1 82% 5.0% 13%
Q13 2 1 FS, 1 I 1 NL 1 87% 4.0% 9.0%

Table 1: Representative DSS queries. FS: full table scan, I: index
scan, HJ: hash join, NL: nested loop join. Aggr.: Aggregates.

aggregates.Selectsoperate on a single table and may use an
index or a hash table. Ajoin takes two tables as input and pro-
duces one result table by merging rows that match a given cri-
teria. Joins fall into three categories: merge (sort) which sorts
both tables and does the join; nested loop which for every row in
one table, finds rows to join from the second table (ideally using
an index scan); and hash join which creates a hash on the larger
table and scans the other table for the join. Finally, database en-
gines support a range ofsort andaggregateoperations on rows
of a given table.

The choice of the optimized execution plan is critical to the
performance of the query.Intra-query parallelism, the parallel-
ization of a query between a given number of server processes,
is required to hide the latency of disk accesses and to take ad-
vantage of the additional processors present on a multiprocessor.
With Oracle, the degree of parallelization is configurable and is
typically set to 6-7 servers per processor. Referring back to the
example in Figure 2, Q6 can be parallelized by parceling the full
table scan among the server processes, and performing a final
reduction to determine the aggregate sum.

We have chosen to study 6 queries, shown in Table 1, that
represent different access patterns and exhibit different levels of
complexity, parallelism, and parallel execution efficiency. The
table also shows the number and type of basic operations chosen
by the Oracle optimizer for the parallelized version of the queries
in our study. In addition, we show the breakdown between user,
kernel, and idle time on the four processor AlphaServer.

In contrast to OLTP, the kernel component of DSS workloads
is negligible. Another key difference with OLTP workloads is
that blocking system calls (typically disk read accesses in DSS)
occur rather infrequently; e.g., in Q6, an average of 1.7M in-
structions are executed by a server between blocking calls.

2.2 Web Index Search Workload

The AltaVista index search is a state-of-the-art indexing program
used to run the popular AltaVista Internet Search service. We
chose to study AltaVista for two main reasons: (i) it represents
an important use of high performance multiprocessors for Web
applications, and (ii) it fits especially well in our study because it
is similar to a DSS workload without depending on a commercial
database engine.

AltaVista is a multi-threaded application that matches queries
against a large search index database (currently over 200 GBs).
The entire database is mapped into the address space of the
threads. Unlike a database engine, which makes its own block re-
placement decisions, AltaVista relies on the operating system to
implement an adequate page replacement policy. AltaVista runs
multiple threads per processor to hide the latency of page faults.
Since the main data structure, i.e., the index data, is read-only,

there is virtually no synchronization necessary between the mul-
tiple threads while serving queries. Both the main search loop
in each thread and the data layout have been carefully optimized
to the point of scheduling individual instructions for maximum
issue bandwidth and on-chip cache performance.

Before searching the actual database, the thread first checks
the query against a cache of recently issued queries, allowing it to
return the result of some queries immediately. During the search
it is likely that the thread will give up its processor before reach-
ing its quantum due to page faults in the memory mapped index
files. Effective caching of index pages in main memory, high hit
rates in the results cache, and a sufficient number of threads to
serve queries lead to an extremely efficient system with virtually
no idle time.

3 Methodology

This section describes the hardware platform and tools used for
our monitoring studies, our simulation platform, and the work-
load parameters used in this study.

3.1 Hardware Platform

Our monitoring experiments were mostly performed on an Al-
phaServer 4100 with four 300 MHz 21164 processors and 2 GB
of physical memory. Each processor has 8KB direct-mapped on-
chip instruction and write-through data caches, a 96KB on-chip
combined 3-way set associative second-level cache (Scache),
and a 2MB direct-mapped board-level cache (Bcache). The
block size is 32 bytes at the first level caches and 64 bytes at
lower levels of the cache hierarchy. The individual processors
are rated at 8.1 SPEC95int and 12.7 SPEC95fp respectively, and
the system bus has a bandwidth of 1 GB/s. The dependent load
latencies measured on the AlphaServer 4100 are 7 cycles for a
Scache hit, 21 cycles for a Bcache hit, 80 cycles for a miss to
memory, and 125 cycles for a dirty miss (cache-to-cache trans-
fer). The latencies are quite good especially under a light load
(approximately 260 nsec for a miss to memory). We have also
used the 8 processor AlphaServer 8400 for a few of our database
studies, and for doing the characterization of the AltaVista search
engine. Both servers were configured with high-performance
StorageWorks HSZ disk array subsystems.

3.2 Monitoring Tools

The complexity of commercial workloads, combined with the
lack of access to source code (e.g., in the case of Oracle), make
them particularly challenging to use as benchmarks in an archi-
tectural study. We find that monitoring the execution of such
workloads on existing platforms is absolutely critical for devel-
oping a deeper understanding of the application behavior, and
for subsequently sizing and tuning the workload parameters to
achieve representative and efficient runs.

Although developing an understanding of the applications and
tuning them was by far the most time consuming part of our
study, we were helped greatly by the wide variety of monitor-
ing and profiling tools that are available on the Alpha platform.
To begin with, the Alpha 21164 processor provides a rich set of
event counters that can be used to construct a detailed view of

processor behavior, including all activity within the three-level
cache hierarchy [3]. We used the IPROBE monitoring tool to
gain access to the processor event counters. A typical monit-
oring experiment involved multiple runs of the workload with
IPROBE, measuring a single event in each run.1 Event types
available include counts of accesses and misses in the various
caches, TLB misses, types of instructions, branch mispredicts,
issue widths, memory barriers, replay traps, etc.

DCPI [1] (Digital Continuous Profiling Infrastructure) is an
extremely low overhead sampling-based profiling system that
is also based on the processor event counters, and is especially
useful because of its ability to associate event frequencies with
specific executable images or processes. ATOM [17] is a static
binary translator that facilitates the instrumentation of an execut-
able image. We used ATOM to instrument the Oracle binary
to identify different memory regions accessed by the servers, to
study the different phases of OLTP transactions, to characterize
the system call and synchronization behavior of the workloads,
and finally to generate user-level traces for various simple foot-
print and cache studies.

3.3 Simulation Environment

We augment our monitoring experiments by using simulations to
primarily study the effect of architectural variations on our work-
loads. For this purpose, we developed an Alpha port of the Si-
mOS simulation environment. SimOS [15] is a full system sim-
ulation environment originally developed at Stanford University
to study MIPS-based multiprocessors. Our version of SimOS
simulates the hardware components of Alpha-based multipro-
cessors (processors, MMU, caches, disks, console) in enough de-
tail to run Digital's system software. Specifically, SimOS-Alpha
models the micro-architecture of the Alpha 21164 processor [5]
and runs essentially unmodified versions of Digital Unix 4.0 and
the 21164 PALcode.

SimOS-Alpha supports multiple levels of simulation detail,
enabling the user to choose the most appropriate trade-off
between simulation detail and slowdown. Its fastest simulator
uses an on-the-fly binary translation technique similar to Em-
bra [25] to position the workload into a steady state. The ability
to simulate both user and system code under SimOS is essential
given the rich level of system interactions exhibited by commer-
cial workloads. In addition, setting up the workload under Si-
mOS is particularly simple since it uses the same disk partitions,
databases, application binaries, and scripts that are used on our
hardware platform.

3.4 Workload Parameters

One of the most challenging aspects of studying commercial ap-
plications is appropriately sizing the workloads to make them
manageable for architectural studies without severely altering
the underlying behaviors that are being studied. This section
briefly describes the actual setup and parameters that we use for
each of our workloads. Section 6 discusses the validation of our
approach by analyzing the impact of our scaling assumptions.

1The Alpha 21164 can count at most three different events during any
given run. We use only a single count per run to keep any perturbation from
counter overflow interrupts to a minimum.

There are three key issues for monitoring experiments: (i)
amount of disk and physical memory required, (ii) bandwidth
requirement for the I/O subsystem, and (iii) total runtime. For
database workloads, scaling down the size of the database and
the block buffer cache size (in the SGA) directly addresses (i)
above, and typically leads to more manageable runtimes as well.2

The I/O subsystem requirements are more difficult to address,
since hiding the I/O latency in such workloads typically requires
very large disk arrays for parallel access. Given the limitations in
the capacity of the I/O subsystem on our experimental platform,
we chose to make the relevant portions of the database memory
resident by appropriately sizing the block buffer cache relative to
the database size. However, we still use the same number of pro-
cesses per processor as an out-of-memory database (even though
this may no longer be necessary for hiding I/O latencies). The
above policy turns out to be important for capturing a represent-
ative memory behavior in such workloads (see Section 6).

The OLTP workload uses a TPC-B database with 40 branches,
corresponding to a 900MB database. The Oracle SGA is set to
1 GB to make the database memory resident, and the block size
in the block buffer cache is set to 2KB. It is impossible to elimin-
ate all I/O in an OLTP workload since every transaction commit
requires the redo log to be written to disk. Fortunately, the I/O
bandwidth requirements on the log disk can be easily matched by
standard SCSI disks. Our experiments consist of 28 server pro-
cesses (7 per physical processor), each executing 1500 transac-
tions. To allow for reproducible results, we shutdown and restart
the OLTP database, and warm up the SGA, before each meas-
urement run.

The DSS workload uses a 500MB TPC-D database, with the
SGA set to 1 GB with 32KB blocks. We use a parallelism degree
of 16 for table operations, leading to 4 server processes per pro-
cessor; some of the queries exhibit pipelined table operations,
leading to 8 server processes per processor. We warm up the
SGA by running a given query at least once before starting the
measurement experiments.

Our strategy for studying AltaVista is different because we
were able to do our monitoring experiments on the actual hard-
ware platform used to run this application. Therefore, we did not
do any scaling of the database. However, we limited the number
of queries (replayed from a saved log of queries) to achieve ap-
proximately a 10 minute run per experiment. We use a total of
30 server threads.

The issues in scaling the workload for simulation studies are
slightly different. High simulation speed (about one order of
magnitude slower than the host system) is essential for full sys-
tem simulation to position the workload to the start of the query
with a warmed up database. Unfortunately, the slow speed of
detailed processor and memory system simulators constrains the
length of the workload actually studied. The use of simulation
does have a certain number of advantages, for example making
it perfectly feasible to model an aggressive I/O subsystem.

Simulations of commercial workloads based on user-level
activity alone require further careful simplifications that are
briefly discussed in Section 6.

2For OLTP and AltaVista, the total runtime is a function of total number
of transactions/queries that are executed, and not the size of the database.

 data_stalls
 instruction_stalls
 dual_issue
 single_issue

||0

|20

|40

|60

|80

|100 |

|
|

|
|

|
|

CPI=7.0

OLTP

1.5

DSS-q1

1.9

DSS-q4

1.8

DSS-q5

1.5

DSS-q6

1.5

DSS-q8

1.5

DSS-q13

1.3

AV

Figure 3: Basic cycle breakdown.

4 Monitoring Results

Our monitoring studies primarily use the hardware event coun-
ters of the Alpha with the IPROBE tool. Gathering a full set
of event counts requires a large number of individual runs, and
ensuring consistent behavior across multiple runs is an important
issue. All event count measurements automatically factor out the
execution of the idle thread.

Figure 3 presents the basic breakdown of execution time
into four components: single- and double-issue cycles, and
instruction- and data-related stall cycles.3 We also show the
cycles per instructions (CPI) directly calculated from the event
counts. This figure shows a clear distinction between OLTP
which has a CPI of 7.0 and DSS and AltaVista with CPIs in the
1.3-1.9 range. All workloads show a significant fraction of stall
cycles, with instruction stalls being as important as data stalls.

By using a wider set of event counts, combined with latency
estimates, we are able to calculate the approximate breakdown
of cycles into more detailed categories, such as those shown in
Figure 4. Three categories show the cycles spent at each level of
the cache hierarchy. The issue category is the sum of single- and
dual-issue cycles. The other categories are pipeline and address-
translation related stalls. The replay trap is specific to the Alpha
21164 implementation and is used in lieu of stalling the pipeline
due to resource hazards. We used a latency of 5 cycles for branch
mispredicts and replay traps and 20 cycles for TLB misses. For
memory stalls, we used the dependent load latencies of Sec-
tion 3.1. The memory system breakdowns are only approximate
since we can not account for possible overlap among accesses.

Table 2 presents the cache miss rate at all levels of the cache
hierarchy for the three workloads. The local miss rate is the ratio
of accesses that miss in the cache relative to those that reach
that cache. The fraction of dirty misses is relative to Bcache
misses.4 The following sections cover the behavior of each of the
workloads in greater detail. All three sections refer to Figures 3
and 4 and to Table 2.

3Although the 21164 is a quad-issue machine, two of the slots are used for
floating-point instructions. As a result, our workloads practically never triple-
or quad-issues.

4Dirty misses are Bcache misses that have to be fetched from another pro-
cessor's cache.

 TLB
 branch_mispredicts
 replay_traps
 memory_barriers
 issues
 Bcache_Misses
 Bcache_Hits
 Scache_Hits

||0

|20

|40

|60

|80

|100 |

|
|

|
|

|
|

CPI=7.0

OLTP

1.5

DSS-q1

1.9

DSS-q4

1.8

DSS-q5

1.5

DSS-q6

1.5

DSS-q8

1.5

DSS-q13

1.3

AV

Figure 4: Detailed estimated cycle breakdown.

4.1 OLTP

Figure 3 clearly shows that OLTP suffers from a very low issue
rate, especially when compared to DSS or AltaVista. The cycle
breakdown shows a CPI of 7.0 for our OLTP workload based on
TPC-B, which is about twice the CPI of audit-size TPC-C runs
on the same family of hardware servers [4]. This difference is
primarily due to more complex and compute intensive queries in
TPC-C and the better locality of that workload due to the higher
number of small database tables. Nevertheless, the memory sys-
tem trends of both workloads match quite well.

Figure 4 shows that over 75% of the time is spent stalling for
memory accesses and Figure 3 indicates that those stall cycles
are about evenly divided between instruction- and data-related
stalls. Perhaps more surprising is that about half of the memory
system stalls are to accesses that hit in the secondary and board-
level caches (Scache and Bcache). This behavior underscores the
importance of having very low-latency to non-primary caches,
where the most significant working set resides.

The results in Table 2 show that the workload overwhelms all
on-chip caches (Icache, Dcache and Scache). The performance
of the Icache is particularly poor and explains the large compon-
ent of instruction-related stalls in Figure 3. The workload does
exhibit some locality in the Bcache (local miss ratio of 19%).
Since the Bcache miss rate is still significant, both the latency
component due to Bcache misses (memory and dirty miss stall
cycles) and the bandwidth requirements on the interconnect are
quite significant in multiprocessor configurations. Even though
the AlphaServer 4100 has one of the fastest memory systems in
its class, the intense traffic generated by OLTP leads to higher
average latencies.

The latency of dirty misses, which account for over 15% of all
Bcache misses in OLTP, is also a significant factor. The import-
ance of dirty misses is heightened by two factors. First, current
CPU designs tend to optimize accesses to the Bcache from the
processor at the expense of interventions by external requests.
For example, the base dependent load latency in our system for
dirty misses is 125 cycles (417 ns) as opposed to 80 cycles (267
ns) for memory. This trend is prevalent on other current mul-
tiprocessors with latencies of 742 ns (dirty) vs. 560 ns (clean)
on the Sun Enterprise 10000 and of 1036 ns (dirty) vs. 472 ns
(clean) on the SGI Origin 2000 [8].

Second, the fraction of dirty misses increases with both the
size of Bcaches and with the number of CPUs. The fraction of

OLTP DSS-Q1 DSS-Q4 DSS-Q5 DSS-Q6 DSS-Q8 DSS-Q13 AltaVista
Icache (global) 19.9% 9.7% 8.5% 4.6% 5.9% 3.7% 6.7% 1.8%
Dcache (global) 42.5% 6.9% 22.9% 11.9% 11.3% 11.0% 12.4% 7.6%
Scache (global) 13.9% 0.8% 2.3% 1.0% 0.6% 1.0% 1.0% 0.7%
Bcache (global) 2.7% 0.1% 0.5% 0.2% 0.2% 0.3% 0.3% 0.3%
Scache (local) 40.8% 3.6% 10.7% 5.7% 3.9% 6.0% 6.1% 7.6%
Bcache (local) 19.1% 13.0% 21.3% 23.9% 30.7% 27.9% 31.3% 41.2%
Dirty miss fraction 15.5% 2.3% 2.2% 10.6% 1.7% 8.4% 3.3% 15.8%

Table 2: Cache miss rate for OLTP, DSS, and AltaVista.

Bcache Dirty
Type Accesses Misses Misses
Instructions 72.5% 49.4% 0.0%
Private data 20.7% 15.0% 0.0%
Shared data (meta-data) 6.0% 32.0% 95.3%
Shared data (block buffer) 0.8% 3.6% 4.7%

Table 3: Breakdown of OTLP server process access patterns.

dirty misses was observed to increase to 20% for the same con-
figuration running on a four CPU AlphaServer 8400 which has
4MB Bcaches, and to 24% when using eight processors. Our
simulation results using SimOS show that this fraction can ex-
ceed 50% on 4MB two-way set-associative caches with only four
processors. This indicates that dirty misses are a key factor for
the performance of OLTP on larger machines.

Table 3 shows a breakdown of the types of server process
accesses that cause Bcache and dirty misses. These results are
based on cache simulations using ATOM-derived traces. Al-
though the block buffer area is much larger than the meta-data
area, it accounts for only 12% of the shared memory accesses,
10% of the Bcache misses to shared data, and under 5% of the
dirty misses. In fact, accesses to the meta-data lead to a large
fraction of Bcache misses, and account for virtually all dirty
misses.

4.2 DSS

In contrast to OLTP, the DSS queries are much more efficient,
with instructions taking 1.5 to 1.9 cycles on average. Table 2
shows that the first level Icache and Dcache are not completely
successful in keeping the miss rates low. However, the 96K
Scache is extremely effective in capturing the main footprint for
this workload; the worst local miss rate for the Scache is about
10% for Q4. The approximate breakdown of time shown in Fig-
ure 4 clearly shows this effect where the memory system time is
dominated by hits in the Scache. The Bcache is also reasonably
effective in reducing misses to the memory system, given the
relatively small size of the on-chip caches; most misses at this
level are to the large database tables that are accessed through
sequential table scans and exhibit good spatial locality. Finally,
the fraction of Bcache misses that are dirty in another processor's
cache are generally low, with the larger fractions occurring in the
two more complex queries (Q5 and Q8). Based on the above ob-
servations, the biggest improvements in the memory hierarchy
are likely to come from larger first level caches.

Figure 4 also shows that the replay trap component in DSS
queries constitute a visible fraction of the stall time, especially
in Q5 and Q8. Our detailed event counter experiments show that
these replay traps are primarily due to the write buffer or miss
address file being full.

4.3 AltaVista

The AltaVista experiments utilized one of the AlphaServer
8400's at the Palo Alto site during the summer of 1997. The
AlphaServer 8400 had eight 300MHz 21164 processors, each
with a 4MB Bcache, and 8GB of main memory. Although the
AlphaServer 8400 differs from the AlphaServer 4100 in terms of
Bcache and system bus, both platforms are based on the same
processors.

Table 2 shows the cache performance of AltaVista. AltaVista
has the lowest CPI of all the application that we studied. There
are two main reasons for that: low first-level cache miss ratios
and high fraction of dual-issue cycles. The instruction work-
ing set fits into the Icache, and the data working set fits into the
Scache, although with relatively good Dcache performance. The
effectiveness of the on-chip caches renders the Bcache fairly in-
effective. In fact, over 40% of the accesses that reach the Bcache
lead to a miss. AltaVista's next significant working set is the en-
tire index, which does not even fit into main memory. Figure 3
also shows a high fraction of dual-issue cycles, due to the careful
coding of AltaVista's main loop.

4.4 Summary of Monitoring

We found the monitoring experiments to be critical for under-
standing the behavior of commercial workloads, and for fine-
tuning them to achieve representative performance. Good mon-
itoring support, such as the rich set of event counters on Alpha
21164, are invaluable for such a study. These measurements in-
dicate that both hits and misses to the secondary caches, as well
as the latency of dirty misses, are important for OLTP. In con-
trast, the only significant memory system component of DSS and
AltaVista is hits in the secondary on-chip cache.

5 Simulation Results

We complement our direct observations of workload execution
with simulation experiments that go beyond the limitations of
monitoring, specifically to study the sensitivity of various archi-
tectural parameters and to classify the memory sharing behavior

OLTP DSS Q6
Event SimOS HW error SimOS HW error
Instructions 99.5 100.0 0.5% 101.1 100.0 1.1%
Bcache misses 2.25 2.39 5.7% 0.15 0.14 9.1%
User cycles 66.5% 71% 88.5% 89%
Kernel cycles 16.9% 18% 2.2% 2.5%
PAL cycles 6.0% 1.0%
Idle cycles 10.7% 11% 8.4% 8.5%

Table 4: Comparison of events measured on hardware platform
and simulator.

of the workloads. We used SimOS on the OLTP workload and
on two representative queries of DSS. Q5 is a complex hash join
and Q6 is a simple scan. For OLTP, we start all clients and serv-
ers and run 4000 transactions to position the workload. We then
study in detail the execution of 1000 transactions. For Q5 and
Q6, we run the query once to position the workload and then
study the second execution in detail.

We first configure SimOS to resemble the four processor Al-
phaServer 4100 hardware used in the monitoring experiments.
This allows us to calibrate and validate the simulator against the
monitoring results. These results are presented in Section 5.1.
We then evaluate the sensitivity of architectural parameters on
the workload execution and memory system performance. We
first discuss the memory system and sharing behavior of OLTP
in Section 5.2. We then discuss the sensitivity of both workloads
to on-chip cache sizes in Section 5.3 and their sharing patterns
as a function of the coherence granularity in Section 5.4.

5.1 Simulation Methodology and Validation

Although we configured SimOS to resemble the performance
characteristics of the hardware, there are some differences
between the platforms. SimOS models a single-issue pipelined
processor with a two-level cache hierarchy, including separ-
ate 32KB two-way set associative instruction and data caches
and a unified 2MB off-chip cache, all with a 64-byte line size.
We do not model the second-level on-chip cache of the 21164.
In addition, the simulation model uses sequential consistency,
as opposed to the weaker Alpha memory model of our hard-
ware platform. The differences in processor pipeline, cache
hierarchy, consistency model, and I/O subsystem preclude us
from performing timing comparisons with the hardware plat-
form. However, we can compare the behavior of a large number
of key execution components.

Table 4 compares a few execution statistics of the hardware
and simulation platforms. The table shows the number of in-
structions executed (including non-idle operating system time)
and the off-chip cache miss rate. In addition, we show the
breakdown of cycles into four categories. The PAL time cor-
responds to the execution of privileged instructions sequences
(called PALcode in Alpha) such as reloading the TLB. The in-
struction counts match almost perfectly. Bcache miss rates also
match rather closely, especially considering the minor difference
in the operating systems versions, which includes different ver-
sions of the page coloring algorithm. The cycle breakdowns also
show a very close match. These times are measured using DCPI
on the hardware platform, which does not separate PAL from

 idle
 pal
 kernel-MEM
 kernel-CACHE
 kernel-INST
 user-MEM
 user-CACHE
 user-INST

||0

|40

|80

|120

|160

|200 |

|
|

|
|

|
|

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

1w 2w

1MB

1w 2w

2MB

1w 2w

4MB

1w 2w

8MB

(a) Execution Time

 Instruction
 Replacement
 Cold
 False_Sharing
 True_Sharing

||0

|1

|2

|3
|4

|5 |
|

|
|

|
|

|

 M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

1w 2w

1MB

1w 2w

2MB

1w 2w

4MB

1w 2w

8MB

1w 2w

1MB

1w 2w

2MB

1w 2w

4MB

1w 2w

8MB

User Kernel

(b) Contribution of Bcache Misses

Figure 5: OLTP execution time (a) and Bcache behavior (b) for
different cache sizes and associativity (P=4).

user or kernel time. Overall, this data shows that SimOS provides
an accurate simulation of a real system.

5.2 Sharing patterns of OLTP

We first study the impact of Bcache sizes and associativity on
the performance of OLTP workloads. Figure 5(a) shows the
normalized execution time for various cache sizes and 1- and
2-way associativity (1w,2w) on a four processor configuration.
All times are normalized to the execution of the 2MB direct-
mapped cache. The figure also shows the breakdown of execu-
tion time into user, kernel, PAL and idle components. User and
kernel are further categorized by instruction execution (INST),
stalls within the cache hierarchy (CACHE), and memory system
stalls (MEM). The first observation is that the kernel compon-
ent is much smaller than the user component for all data points.
Both user and kernel benefit from increases in cache sizes and
higher associativity, with 2-way associativity typically providing
the performance of the next bigger direct-mapped cache. Non-
etheless, cache and memory system stalls remain a big compon-
ent of the execution time even at the largest configuration. The
second observation is that the idle time increases with bigger
caches. This is a consequence of keeping the same number of
server processes, which can no longer hide the I/O latency for
configurations with increased processing rates. However, a real-
istic configuration with larger cache sizes would simply exploit
more servers.

Intuitively, higher processing rates are expected to increase the

 Instruction
 Replacement
 Cold
 False_Sharing
 True_Sharing

||0

|1

|2

|3

|4

|5 |

|
|

|
|

|
|

 M
e
m

o
ry

 c
yc

le
s

p
e
r

in
st

ru
ct

io
n

1 2 4 6 8

User

1 2 4 6 8

Kernel

Figure 6: Contribution of Bcache stalls at different number of
processors (1-8P, 2MB 2-way Bcaches).

demands on the I/O subsystem for OLTP. However, our simula-
tions show an interesting interaction that results in the opposite
effect. A more efficient memory system results in more transac-
tions being ready to commit each time the log writer is activated.
The batching of commits from independent transactions into a
single log file operation leads to a more efficient use of the log
disk. Going from the 1MB direct-mapped configuration to the
8MB 2-way configuration, we see a 33% reduction in the num-
ber of writes to the database log and a 20% reduction in the total
size of these writes.

Figure 5(b) shows the contribution of Bcache misses to the
execution time in terms of cycles per instruction. We have separ-
ated the effect of user and kernel misses. For each configuration,
we also show the breakdown into five categories. Communic-
ation misses are separated into true and false sharing using the
methodology of Dubois et al. [6].5 Data capacity and conflict
misses are merged into a single replacement category. Data cold
misses and instruction misses complete the breakdown.

Let us focus on user misses. There are large gains from set-
associativity, even at large cache sizes. This can be partly attrib-
uted to the page mapping decisions made by the operating sys-
tem, which may be limiting the performance of direct-mapped
caches.6 Therefore, we will focus on results for 2-way caches in
order to offset the conflicts caused by the page mapping policy.
Instruction misses and data replacement play an important factor
up to 4MB, at which point the useful working set is captured by
the cache. As expected, communication misses dominate at the
larger cache sizes. Interestingly, only a surprisingly small frac-
tion of the communication in Oracle is due to false sharing. The
trends are similar for kernel misses, although false sharing is a
more important factor.

Our more detailed statistics show that the fraction of cache-
to-cache transfers (dirty misses) increases with improvements of
the memory system, as observed in the monitoring results. With
4MB and 8MB 2-way set associative caches, the fraction of dirty
misses is 55% and 62% respectively. Clearly, trade-offs that pen-
alize dirty misses will have a severe impact on OLTP perform-
ance.

We also looked at the impact of the number of processors on

5Communication misses do not imply a dirty cache miss, since the data
may have been written back to memory.

6The page mapping policies of Digital UNIX have improved since the
version we used in these experiments.

||0

|2

|4

|6

|8

|10 |

|
|

|
|

|
|

 M
is

se
s

pe
r

10
0

in
st

ru
ct

io
ns

16 32 64128

OTLP-User

16 32 64128

OLTP-Kernel

16 32 64128

DSS-Q5

16 32 64128

DSS-Q6

16 32 64128

OTLP-User

16 32 64128

OLTP-Kernel

16 32 64128

DSS-Q5

16 32 64128

DSS-Q6

Instruction Cache Data Cache

Impact of on-chip cache sizes

Figure 7: On-chip cache miss-rates for OLTP and DSS for split
I/D caches (16KB-128KB).

the sharing patterns. Again, we chose to model 2MB 2-way set
associative caches to compensate for the excessive conflicts in
direct-mapped caches. Figure 6 shows that communication stalls
increase linearly with the number of processors for both user and
kernel and that the operating system communicates slightly more
per instruction that the application. The ratio of false sharing to
true sharing is independent of the number of processors. Instruc-
tion and data replacement misses are essentially unaffected by
the size of the system. Even at eight processors, the contribution
of kernel misses to the overall execution time remains low. The
above results emphasize the relative importance of communica-
tion misses for larger processor configurations.

5.3 Cache Hierarchy Performance

Primary cache misses that hit in the cache hierarchy play a sig-
nificant role for OLTP and a dominant role for DSS. Figure 7
shows the miss-rates of the workloads as a function of the on-
chip cache size for four processor configurations. In all cases, we
assume split instruction and data caches that are 2-way set asso-
ciative. User and Kernel misses are separated only for OLTP.
OLTP and DSS have very different cache performance, with
DSS having significantly lower cache miss rates. Larger on-chip
caches are effective for both OLTP and DSS. While large on-chip
caches can capture most of the misses in DSS, it is unlikely that
the working sets of OLTP can fit into current or next generation
on-chip caches.

5.4 Sensitivity to Cache Line Size

Figure 8 shows the impact of line size on the Bcache miss rate
for a four processor configuration. Again, we model a 2MB
2-way set associative cache. The data communicated between
server processes (true sharing) exhibits good spatial locality in
both OLTP and DSS Q5, probably due to the use of producer-
consumer communication through buffers. As expected, there is
an increase in the amount of false sharing, although this remains
surprisingly low for the database and moderate for the kernel.
Streaming data which is classified as cold misses by our simu-
lator also exhibits great spatial locality, especially in DSS Q6.
At the same time, the replacement and instruction miss rate are
not visibly affected by changes in the line size. Therefore, big-
ger cache lines may be more effective at larger cache sizes where

 Insruction
 Replacement
 Cold
 False_Sharing
 True_Sharing

||0.00

|0.30

|0.60

|0.90

|1.20

|1.50

|1.80

|

|
|

|
|

|
|

|

 M
is

se
s

pe
r

10
0

in
st

ru
ct

io
ns

32 64 128 256

OTLP-User

32 64 128 256

OLTP-Kernel

32 64 128 256

DSS-Q5

32 64 128 256

DSS-Q6

Impact of Bcache line size

Figure 8: Bcache miss rate for different line sizes (32-256 bytes,
2MB 2-way Bcaches).

most replacement and instruction misses have already been elim-
inated.

The miss rate metric shown in Figure 8 obviously does not
account for the increased latency and bandwidth requirements
of larger cache lines. In fact, with simulation parameters based
on an Alpha 21164 processor, the performance peaks at 128B
for OLTP. For DSS, line sizes of 128B and 256B have nearly
identical performance.

5.5 Summary of Simulation Results

Our simulation studies complement our monitoring experiments.
The ability to look at more detailed information such as the
classification of cache misses is invaluable in developing a
deeper understanding of these workloads. The simulation res-
ults suggest that OLTP workloads continue to benefit from lar-
ger Bcaches up to the 4-8MB range. Since most of the misses
at that point are true-sharing misses, there appears to be no be-
nefit from going beyond such sizes. However, primary working
sets of DSS appear to fit comfortably into next generation on-
chip cache sizes, making DSS somewhat oblivious to the Bcache
design parameters.

6 Impact of Scaling

This section briefly describes the experiments we performed to
confirm that the way we scale our workloads does not affect their
memory system characteristics. As discussed in Section 3.4,
there are three key issues to consider: (i) amount of disk and
physical memory required, (ii) bandwidth requirement for the
I/O subsystem, and (iii) total runtime.

In the case of AltaVista, we did not have to do any scaling
to the application aside from limiting the time of each run as
discussed in Section 3.4. Furthermore, given the extremely high
memory system efficiency that AltaVista achieves, we did not try
to further study a scaled down version through simulation.

For our database workloads, addressing the above issues in-
volved scaling down the database size, sizing the SGA appro-
priately to make the database memory resident, and limiting the
number of transactions executed (in the case of OLTP). For both
the OLTP and DSS workloads, we sized the database so that it

just fit in the main memory of the server used for the monitoring
experiments. Although this makes the database much smaller
than typical sizes, all relevant data structures are still orders of
magnitude larger than the size of the hardware caches in our sys-
tems. Therefore, given the access patterns of OLTP and DSS,
our workloads are big enough (by a wide margin) for memory
system studies.

Having an in-memory experiment drastically reduces the disk
capacity and bandwidth requirements of the system. Since I/O is
no longer an issue, we can store the database and logs on regular
file systems rather than raw devices. In this situation, it is im-
portant to limit the size of the file system buffer cache to avoid
double buffering problems.

In our memory-resident studies we used as many server pro-
cesses as would have been required to hide the I/O latencies in
an out-of-memory run. We found this critical as the number of
servers per processor has a significant impact in the cache be-
havior of the application. For example, in OLTP, going from 8
to 28 server processes in our hardware platform decreased the
fraction of dirty misses by a factor of two (due to an increase in
capacity/conflict misses). Similarly, the DSS Q5 query sees an
increase of 20% in the Bcache miss rate when going from 4 to
16 server processes.

Another indication of the validity of our scaling methodology
for DSS is that the actual run times of those queries that scale
with the problem size7 correlate extremely well (i.e., by the scal-
ing factor) with the run times for an audited (100GB) database
on the same platform.

Scaling issues for full system simulation environments such
as SimOS are very similar to those described above since one
can simulate reasonably large machines. For user-level simula-
tions however, other simplifications beyond scaling have to be
addressed. The following are observations from experiments we
have done based on tracing user-level activity with ATOM [17]
to determine the viability of using such traces. It is important
to consider the effect of not modeling operating system instruc-
tions. For OLTP, operating system activity is non-negligible but
it also does not dominate the memory system behavior in a well
tuned system. Moreover, the trace generator must compensate
for the effects of time dilation resulting from the binary instru-
mentation by adjusting all real-time and timeout values. More
importantly, the trace simulator must appropriately emulate the
scheduling and page mapping policies of a multiprocessor oper-
ating system. The scheduling decisions take place at each block-
ing system call (I/O requests, process synchronization) and ad-
ditionally at regular intervals that correspond to the operating
system scheduling quantum. Finally, the memory behavior of
the database engine is dominated by the server processes, allow-
ing the memory activity of daemon processes to be ignored as
a simplification. This methodology has been used to study the
effectiveness of simultaneous multithreading on database work-
loads [10]. Overall, while user-level simulation studies are feas-
ible, they require a deep understanding of the system implica-
tions of the workload to ensure representative results.

7In our study those queries are Q1, Q5 and Q6.

7 Related Work

Our work extends previous studies by combining careful monit-
oring of real systems and detailed full system simulation in the
context of commercial grade OLTP, DSS and Web index server
applications. This combination allows us to identify key memory
system performance issues and analyze their trends. One such
trend is the increasing sensitivity of OLTP applications to dirty
miss latency.

Some previous studies have identified different bottlenecks for
the performance of OLTP applications than the ones we under-
score. Thakkar and Sweiger [20] have measured the performance
of an early OLTP benchmark (TP1) in the Sequent Symmetry
multiprocessor, using both memory-resident and out-of-memory
databases. Rosenblum et al. [16] focused on the impact of archi-
tectural trends on the operating system performance using three
applications, including TPC-B. Both studies identify I/O per-
formance as the critical factor for OLTP applications, although
Rosenblum et al. point out that memory system performance
will be the key bottleneck once the I/O problem has been ad-
dressed. We have observed that the I/O problem has indeed been
addressed in modern database engines, and that memory system
performance is already the main bottleneck. Perl and Sites [14]
study Microsoft SQL Server performance on an Alpha-based
Windows NT server through trace-driven simulation. They claim
that OLTP performance is mostly limited by chip pin bandwidth,
since the bandwidth that would be required to maintain a CPI of
1 in the Alpha 21164 would be much greater than what is avail-
able in that processor. We believe that their conclusion is influ-
enced by the fact that they ignored the latency-dependent nature
of the workload. An OLTP application has a large fraction of
dependent loads and branches, which slows down the issue rate
well before bandwidth becomes a limiting factor.

A few studies have raised the level of awareness in the ar-
chitecture community to the fact that OLTP workloads have
a very different behavior when compared with scientific ap-
plications. Cvetanovic and Donaldson [4], in their character-
ization of the AlphaServer 4100, measure the performance of
SPEC95 programs, the TPC-C benchmark and other industry
benchmarks. Our paper differs from this study in that it focuses
on the memory system, uses other commercial applications (in
addition to OLTP), and extends system monitoring with detailed
simulations. Maynard et al. [12] also compare commercial and
scientific applications using trace-driven simulation, but use a
uniprocessor system instead of a multiprocessor. As in our study,
they recognize the importance of Icache misses in OLTP applica-
tions. However, the fraction of operating system activity in their
studies of OLTP was more than twice what we have obtained
after tuning our OLTP application.

Some researchers have used database workloads to study vari-
ous aspects of system design. Lovett and Clapp [11] describe a
CC-NUMA multiprocessor system for the commercial market-
place, and evaluate it using abstract models that are based on
the the behavior of TPC-B and TPC-D/Q6. Although they agree
with our observation that TPC-B memory behavior is represent-
ative of TPC-C, the limitations of their methodology do not al-
low them to study memory system performance in the level of
detail done here. Eickemeyer et al. [7] take a uniprocessor IBM
AS/400 trace of TPC-C and transform it to drive both a simu-
lator and analytic models of coarse-grain multithreaded unipro-
cessors. They conclude that multithreading is effective in hiding

latency of OLTP. Verghese et al. [24] use a DSS workload to
evaluate operating system support for page migration and replic-
ation.

Trancoso et al. [21] use a public domain database engine to
perform a detailed study of the memory performance of some
TPC-D queries. However their engine could not automatically
parallelize the queries, nor had the efficiency of the Oracle en-
gined used here. Therefore their execution patterns differ sub-
stantially from ours. The use of a user-level simulator also pre-
vents the study of system interactions.

8 Concluding Remarks

This paper presents a detailed characterization of three import-
ant workloads: online transaction processing (OLTP), decision
support systems (DSS), and Web index search. We use a com-
bination of hardware monitoring experiments augmented with
full system simulations to identify the critical memory system
design issues for each of the three workloads. A careful scaling
of these workloads allows for manageable architectural studies
without compromising representative memory system behavior.

Contrary to some previous studies, we find that operating sys-
tem activity and I/O latencies do not dominate the behavior of
well-tuned database workloads running on modern commercial
database engines. Our three workloads stress the memory sys-
tem in different ways. OLTP has significant instruction and data
locality that can only be effectively captured by large off-chip
caches. OLTP also exhibits a high communication miss rate
which makes the workload sensitive to both memory and dirty
miss latencies. Increases in cache sizes and number of processors
will make dirty misses play an even more critical role in overall
system performance. In contrast, DSS and AltaVista are primar-
ily sensitive to the size and latency of on-chip caches. As such,
these applications are somewhat insensitive to the off-chip cache
size and to memory and dirty miss latencies.

As a consequence of these workload differences, systems op-
timized for OLTP versus DSS and Web index search workloads
may lead to diverging designs. A system for DSS and Web in-
dex searching may opt to trade large board-level caches for either
lower memory latencies or lower cost. Such a design point will
clearly lead to poor OLTP performance.

We find the combination of monitoring and full system simula-
tion techniques to be extremely valuable for the comprehensive
study of complex applications, and plan to push this technique
for studying the scalability issues of larger systems.

Acknowledgments

We would like to thank Robert Stets and Arun Sharma for their
contributions to the early part of this work, Jef Kennedy from
Oracle for reviewing the manuscript, Marco Annaratone for sup-
porting this research, John Shakshober, Kalyan K. Das, and
Charles Wang for their assistance with the database workloads,
Mike Burrows for his help in setting up the AltaVista experi-
ments, and Drew Kramer for his technical assistance in setting
up our hardware platform. We also thank Jennifer Anderson,
Jeff Dean, Alan Eustace, and Jeff Mogul from WRL for their
many suggestions and careful reviewing of the final manuscript.

References

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Hen-
zinger, S.-T. Leung, R. L. Sites, M. T. Vandervoorde, C. A. Wald-
spurger, and W. E. Weihl. Continuous profiling: Where have all
the cycles gone? InProceedings of the 16th International Sym-
posium on Operating Systems Principles, pages 1–14, Oct 1997.

[2] M. Burrows. Private communication.

[3] Z. Cventanovic and D. Bhandarkar. Performance characteriza-
tion of the Alpha 21164 microprocessor using TP and SPEC-
workloads. InProceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 60–70, Apr 1994.

[4] Z. Cvetanovic and D. D. Donaldson. AlphaServer 4100 per-
formance characterization.Digital Technical Journal, 8(4):3–20,
1996.

[5] Digital Equipment Corporation.Digital Semiconductor 21164
Alpha microprocessor hardware reference manual, March 1996.

[6] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenstrom. The detection and elimination of useless misses in
multiprocessors. InProceedings of the 20th International Sym-
posium on Computer Architecture, pages 88–97, May 1993.

[7] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squillante,
and S. Liu. Evaluation of multithreaded uniprocessors for com-
mercial application environments. InProceedings of the 21th An-
nual International Symposium on Computer Architecture, pages
203–212, June 1996.

[8] C. Hristea, D. Lenoski, and J. Keen. Measuring memory hier-
archy performance of cache-coherent multiprocessors using mi-
cro benchmarks. InProceedings of Supercomputing '97, Novem-
ber 1997.

[9] T. Kawaf, D. J. Shakshober, and D. C. Stanley. Performance ana-
lysis using very large memory on the 64-bit AlphaServer system.
Digital Technical Journal, 8(3):58–65, 1996.

[10] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh. An analysis of database workload per-
formance on simultaneous multithreaded processors. InProceed-
ings of the 25th Annual International Symposium on Computer
Architecture, June 1998.

[11] T. Lovett and R. Clapp. STiNG: A CC-NUMA computer system
for the commercial marketplace. InProceedings of the 23rd An-
nual International Symposium on Computer Architecture, pages
308–317, May 1996.

[12] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Con-
trasting characteristics and cache performance of technical and
multi-user commercial workloads. InProceedings of the Sixth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 145–156, Oct
1994.

[13] J. D. McCalpin. Memory bandwidth and machine balance in cur-
rent high performance computers. InIEEE Technical Committee
on Computer Architecture Newsletter, Dec 1995.

[14] S. E. Perl and R. L. Sites. Studies of windows NT performance
using dynamic execution traces. InProceedings of the Second
Symposium on Operating System Design and Implementation,
pages 169–184, Oct. 1996.

[15] M. Rosenblum, E. Bugnion, S. A. Herrod, and S. Devine. Using
the SimOS machine simulator to study complex computer sys-
tems.ACM Transactions on Modeling and Computer Simulation,
7(1):78–103, Jan. 1997.

[16] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. The impact of architectural trends on operating system
performance. InProceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, pages 285–298, 1995.

[17] A. Srivastava and A. Eustace. ATOM: A system for building cus-
tomized program analysis tools. InProceedings of the SIGPLAN
'94 Conference on Programming Language Design and Imple-
mentation, pages 196–205, June 1994.

[18] Standard Performance Council.The SPEC95 CPU Benchmark
Suite. http://www.specbench.org, 1995.

[19] G. Sturner.Oracle7. A User's and developer's Guide. Thomson
Computer Press, 1995.

[20] S. S. Thakkar and M. Sweiger. Performance of an OLTP applic-
ation on Symmetry multiprocessor system. InProceedings of the
17th Annual InternationalSymposium on Computer Architecture,
pages 228–238, June 1990.

[21] P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas. The
memory performance of DSS commercial workloads in shared-
memory multiprocessors. InThird International Symposium on
High-Performance Computer Architecture, Jan 1997.

[22] Transaction Processing Performance Council.TPC Benchmark B
(Online Transaction Processing) Standard Specification, 1990.

[23] Transaction Processing Performance Council.TPC Benchmark
D (Decision Support) Standard Specification, Dec 1995.

[24] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating
system support for improving data locality on CC-NUMA com-
puter servers. InProceedings of the Seventh International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 279–289, October 1996.

[25] E. Witchel and M. Rosenblum. Embra: Fast and flexible ma-
chine simulation. InProceedings of the 1996 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems,
pages 68–79, May 1996.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. InProceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

