
J U L Y 1 9 9 8

WRL
Research Report 98/8

The Multicluster
Architecture:
Reducing Processor
Cycle Time Through
Partitioning

Keith I. Farkas
Paul Chow
Norman P. Jouppi
Zvonko Vranesic

Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

 The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate
Research group. Our focus is research on information technology that is relevant to the technical strategy of the
Corporation and has the potential to open new business opportunities. Research at WRL ranges from Web search
engines to tools to optimize binary codes, from hardware and software mechanisms to support scalable shared
memory paradigms to graphics VLSI ICs. As part of WRL tradition, we test our ideas by extensive software or
hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports and technical notes.
This document is a research report. Research reports are normally accounts of completed research and may in-
clude material from earlier technical notes, conference papers, or magazine articles. We use technical notes for
rapid distribution of technical material; usually this represents research in progress.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.compaq.com/wrl/

You can request research reports and technical notes from us by mailing your order to:

Technical Report Distribution
Compaq Western Research Laboratory
250 University Avenue
Palo Alto, CA 94301 U.S.A.

You can also request reports and notes via e-mail. For detailed instructions, put the word “Help” in the sub-
ject line of your message, and mail it to:

wrl-techreports@pa.dec.com

The Multicluster Architecture: Reducing Processor Cycle Time

Through Partitioning

Keith I. Farkasy

farkas@pa.dec.com

Paul Chowz

pc@eecg.toronto.edu

Norman P. Jouppiy

jouppi@pa.dec.com

Zvonko Vranesicz

zvonko@eecg.toronto.edu

yCompaq Computer Corporation

Western Research Lab

250 University Avenue

Palo Alto, California 94301

zElectrical and Computer Engineering

University of Toronto

10 Kings College Road

Toronto, Ontario, Canada

M5S 3G4

Abstract

The multicluster architecture that we introduce o�ers a decentralized, dynamically-scheduled ar-

chitecture, in which the register �les, dispatch queue, and functional units of the architecture

are distributed across multiple clusters, and each cluster is assigned a subset of the architectural

registers. The motivation for the multicluster architecture is to reduce the clock cycle time, re-

lative to a single-cluster architecture with the same number of hardware resources, by reducing

the size and complexity of components on critical timing paths. Resource partitioning, however,

introduces instruction-execution overhead and may reduce the number of concurrently executing

instructions. To counter these two negative by-products of partitioning, we developed a static

instruction scheduling algorithm. We describe this algorithm, and using trace-driven simulations

of SPEC92 benchmarks, evaluate its e�ectiveness. This evaluation indicates that for the con�g-

urations considered, the multicluster architecture may have signi�cant performance advantages at

feature sizes below 0.35�m, and warrants further investigation.

This report is a superset of The Multicluster Architecture: Reducing Cycle Time Through Par-

titioning, published in the proceedings of The 30th Annual IEEE/ACM Symposium on Microar-

chitecture, December 1997. A version of this report has also been published in the International

Journal of Parallel Programming, 27(5), October 1999.

1

The Multicluster Architecture

1 Introduction

A continuing challenge in the design of microprocessors is the need to balance the complexity of

the hardware against the speed at which it can be clocked. This challenge exists because increased

hardware complexity can impact the cycle time of a processor in two ways. First, if a component is

on a critical timing path, increasing the complexity of the component may increase its cycle time,

and thus, that of the processor. Second, because complex components may be physically larger and

further apart, the time for signals to travel between them may be greater, thereby necessitating

an increase in the processor's cycle time. One approach to reducing these two consequences of

complexity is to partition the hardware, thereby reducing the complexity and size of components.

In this paper, we introduce a dynamically-scheduled, partitioned architecture called the mul-

ticluster architecture. This architecture implements dynamic scheduling using dispatch queues and

explicit register renaming hardware, a basis that is used in the DEC Alpha 21264 [1] and the MIPS

R10000 [2]. Dispatch queues are used to maintain the pool of instructions from which the instruc-

tion scheduler issues instructions to the functional units, while register renaming is used to map

the architectural registers (i.e., those named by instructions) to a larger set of physical registers.

In the multicluster architecture, the dispatch queues, register �les, and functional units are

distributed across multiple clusters. The instructions that are executed by a cluster C are those

dispatched from the dispatch queue of cluster C, and these instructions are the only instructions

that can read or write the physical registers of cluster C. Each cluster is assigned a subset of

the architectural registers. This assignment along with the architectural registers named by an

instruction determines the cluster(s) that execute the instruction. Multiple-cluster execution is

used whenever an instruction either names source registers that are not accessible from within one

cluster or names a destination register that is not uniquely assigned to one cluster (Section 2.1

discusses the assignment of architectural registers to clusters). The instructions for all clusters are

obtained from a single, shared stream of instructions that are fetched from a single instruction

cache. The data cache is also shared by all clusters.

The isolation of each cluster's components provides two bene�ts relative to a processor with

a non-partitioned architecture that can issue the same number of instructions per cycle as all the

clusters of a multicluster processor. First, because each cluster issues fewer instructions per cycle,

the register �les of a given cluster require fewer read/write ports. As the number of read/write

ports largely determines the cycle time of a register �le, partitioning reduces its cycle time and

perhaps that of the processor. Indeed, the DEC Alpha 21264 has a partitioned integer register

�le because the integer register �le is on a critical timing path [1]. Second, because each cluster

issues fewer instructions per cycle, the dispatch queue of a given cluster not only requires fewer

read/write ports, but also requires less complex instruction-scheduling logic. Consequently, the

cycle time of the instruction-scheduling hardware will likely be smaller. For example, since the

instruction queues of the MIPS R10000 are on a critical timing path [2], a smaller cycle time might

have been obtained had the queues been partitioned.

We begin the discussion of the multicluster architecture in the next section by describing the

WRL Technical Report 98/8 2

The Multicluster Architecture

re
gi

st
er

 fi
le

 &
by

pa
ss

in
g

re
gi

st
er

re
na

m
in

g

in
st

ru
ct

io
n

di
st

rib
ut

io
n

in
st

ru
ct

io
n

ca
ch

e

transfer
buffers

instruction
dispatch
queue

execution
unit

execution
unit

data
cache

m
em

 in
te

rf
ac

e

result
operandcentral

control result

re
gi

st
er

 fi
le

 &
by

pa
ss

in
g

branch
prediction re

gi
st

er
re

na
m

in
g

instruction
dispatch
queue

instruction
scheduling

control
re

gi
st

er
 fi

le
 &

by
pa

ss
in

g

execution
unit

execution
unit

operand

instruction
scheduling

control

Figure 1: A dual-cluster processor built within the multicluster architecture framework.

architecture, and the process by which instructions are executed. Then, in Section 3, we describe

the most successful of the static instruction scheduling algorithms we developed for it. In Section 4,

we then present the results of a simulation-based evaluation of this algorithm. Finally, in Section 5,

we re-examine the motivation for the architecture in light of the results, and suggest areas for future

work.

Without loss of generality, we discuss the multicluster architecture in terms of a multicluster

processor with two clusters. Further, in our model of such a processor (Figure 1), each cluster

comprises a single dispatch queue (rather than the multiple queues used in the R10000 and Alpha

21264), and two register �les, one for integer values, and the second for
oating-point values.

2 The Architecture

This section describes the multicluster architecture, the process by which instructions are executed,

and tradeo�s in the design of a multicluster processor. A more complete description is presented

in [3].

2.1 Instruction Distribution and Execution

Instructions are read from the instruction cache in fetch order and are distributed, also in fetch

order, to one or both clusters. If an instruction can't be distributed to a cluster because a dispatch-

queue entry or a physical register is not available, the instruction stream is stalled until the required

WRL Technical Report 98/8 3

The Multicluster Architecture

resource becomes available. The distribution of instructions to the clusters is based on the registers

named by each instruction and the cluster(s) to which the architectural registers have been assigned.

We use the term local register to refer to an architectural register that has been assigned to one

cluster, and the term global register to refer to an architectural register that has been assigned to

both clusters. Global registers would typically be used for stack and global pointers, as well as other

commonly used variables. Owing to the ease of detecting the architectural registers named by an

instruction and the cluster(s) to which each register has been assigned, the hardware required for

instruction distribution is relatively simple. In the simplest case, for a two-cluster con�guration,

local registers could be identi�ed using a bit-mask, and the cluster assignment for these registers

could be based on whether the register number is even or odd. Simple distribution criterion are

especially important if distribution to more than one cluster is anticipated. Although a simple

hardware mechanism exists to support the dynamic reassignment of the architectural registers (see

[3]), we assume that the assignment is static.

When an instruction is executed that names a local register R as a destination, the value

computed by the instruction is stored in a physical register of the cluster to which register R has

been assigned. But, when an instruction is executed that names a global registerG as a destination,

the value computed by the instruction is stored in a physical register of each cluster. Thus, two

physical registers are required to maintain the value of a global register, one in each cluster, but

only one physical register is required to maintain the value of a local register.

Execution Details

The execution of an instruction requires that the hardware perform a sequence of steps, with

this sequence dependent on the cluster(s) to which each of the named (architectural) registers

are assigned. There are various scenarios under which these sequences occur, and these can be

grouped into �ve main categories. To better examine these categories, consider the the integer add

instruction r2 r0 + r1, and a scenario from each category.

Scenario one: suppose that the three registers named by this instruction are local

registers assigned to cluster C1. To perform the add, the hardware �rst distributes the in-

struction to cluster C1. The distribution process comprises three tasks: the source registers r0 and

r1 are mapped to the physical registers of cluster C1, the destination register r2 is renamed to a

free physical register of cluster C1, and the instruction is inserted into a free entry in the dispatch

queue of cluster C1. Later, after the source operands are available and when a suitable functional

unit is available, the hardware issues the instruction, reads its source operands, performs the add,

and writes the result into the bound physical register.

Scenario two: suppose again that all three registers are local registers, but with

source register r1 and destination register r2 assigned to cluster C1, and source register

r0 assigned to cluster C2. To perform the add, the hardware distributes a copy of the instruction

to both clusters. Dual distribution provides the mechanism by which the source operand that is

not available in cluster C1 (i.e., r0) is transfered to the cluster that performs the computation (i.e.,

WRL Technical Report 98/8 4

The Multicluster Architecture

time

addition
done

master
issued

reg r2
written

slave
issued

reg r0 written into operand
transfer buffer of cluster C1

cluster C2

reg r0

cluster C1

reg r1
reg r2

Figure 2: Dual execution of the instruction r2 r0 + r1 when operand r0 is forwarded to cluster

C1.

cluster C1).

Themaster copy does the computation with the slave copy supplying one of the source operands.

The master copy is executed by cluster C1 because the majority of the local registers named by

the instructions are assigned to cluster C1 (the selection of the master copy's cluster is discussed

further in [3]). When the master copy is distributed to cluster C1, r2 is renamed using a physical

register belonging to this cluster. However, when the slave copy is distributed to cluster C2, it is

not allocated a physical register because the destination of the instruction is a local register that

has been assigned to cluster C1. Figure 2 shows the steps taken to execute the add instruction by

executing the master and slave copies. These steps are explained below.

There exists a data dependence between the slave copy and the immediately preceding instruc-

tion in fetch order that wrote r0. The slave copy can be issued only after this dependence is resolved

and when an integer issue slot is available. The hardware requires an integer issue slot to issue the

slave copy because the slave copy must read the value of r0 from the integer register �le, and to

do so requires access to a read port. There also exists a data dependence between the master copy

and the immediately preceding instruction in fetch order that wrote r1, and a dependence between

the master and slave copies. This inter-copy dependence guarantees that the master copy will be

issued only when its second operand, that is r0, is available. Therefore, the master copy will be

issued after both input dependences are resolved and when a suitable functional unit is available.

In the write-back stage of the execution pipeline, the slave copy writes the value of r0 into

an entry in the operand transfer bu�er (Figure 1) of cluster C1, the master copy's cluster. An

entry in the operand transfer bu�er is allocated to the slave copy when it is issued. If an entry is

not available, then the slave copy is blocked from being issued, and in certain circumstances, an

instruction-replay exception is required to avoid issue deadlock (see [3] for more details). When the

slave copy writes the value into the allocated entry, it also stores the unique ID of the instruction

of which it is a copy. This ID is used by the hardware to associatively search the operand transfer

bu�er to locate the operand for the associated master copy. The dependence between the master

copy and the slave copy is removed when the slave copy is issued, thereby permitting the master

copy to be issued as soon as the next cycle. After the master copy obtains the value, the entry

WRL Technical Report 98/8 5

The Multicluster Architecture

time

slave
issued

reg r2 written

addition
done

master
issued

result copied into result
transfer buffer of cluster C2

cluster C2

cluster C1

reg r0
reg r1

reg r2

Figure 3: Dual execution of the instruction r2 r0 + r1 when result is forwarded to cluster C2.

allocated to the slave copy is freed. This entry can be used by another instruction in the next cycle.

Scenario three: suppose again that the two source registers are local registers

assigned to cluster C1, but that the destination register r2 is assigned to cluster C2. To

perform the add, the hardware again distributes a copy of the instruction to both clusters, but this

time, dual distribution provides the mechanism by which the result of the computation is transfered

to the cluster to which the destination register has been assigned. Figure 3 shows the steps taken

to execute the add instruction for this scenario; these steps are explained below.

Because the two source operands for the operation are located on the same cluster, the master

copy of the instruction will be issued �rst. Then, the result is computed, and forwarded to the slave

copy. The slave copy is then issued and it writes the forwarded result into the physical register

bound to r2. Unlike in the second scenario, the physical register is allocated to the slave copy

because the destination register is assigned to the slave copy's cluster C2 and not the master copy's

cluster C1. The data transfer is performed by writing the value computed by the master copy into

an entry in the result transfer bu�er of cluster C2. This entry is freed after the slave copy reads

the result out of the entry prior to writing the result into the bound physical register. To prevent

the slave copy from being issued before the result is available, there exists a dependence between

the slave and master copies. This dependence is removed two cycles before the master copy is due

to �nish computing the result, and, thus, for simple one-cycle latency instructions like the add, the

slave copy can be issued as soon as one cycle after the master copy is issued (see [3] for a description

of the execution pipeline). Finally, as also discussed in [3], separate result and operand transfer

bu�ers are provided to reduce implementation complexity and to reduce the number of times an

instruction-replay exception is required to free up a bu�er entry.

Scenario four: suppose again that both source registers are local and assigned to

cluster C1, but that the destination register r2 is a global register. Because the destination

is a global register, both the slave and master copies are allocated physical registers when they are

inserted into their respective dispatch queues. Thus, dual distribution provides the mechanism

by which (1) a physical register in each cluster is allocated for the new value of r2, (2) the inter-

instruction dependences arising from the use of r2 are maintained in each dispatch queue, and (3)

the value computed by the master copy is written into the two allocated physical registers.

WRL Technical Report 98/8 6

The Multicluster Architecture

time

result
written
into C2’s
buffer

addition
done

master
issued

C1’s copy of
reg g2 written

reg g2

cluster C1

cluster C2

reg g2

reg r0
reg r1

slave
issued

C2’s
copy of
reg g2
written

Figure 4: Dual execution of the instruction r2 r0 + r1 when global result is forwarded to cluster

C2.

The same sequence of steps as for the third scenario is performed to execute the add, with the

exception that, when the master copy writes the result into the slave copy's result transfer bu�er,

the master copy also writes the result into the physical register it was allocated. Figure 4 illustrates

this scenario.

Scenario �ve: �nally, suppose again that source registers r0 and r1 are local registers

and the destination register r2 is a global register, but that r0 has been assigned to

cluster C2, while r1 has been assigned to cluster C1. As in the second scenario, the slave

copy is issued only after its data dependence is resolved and when both an integer issue slot and

an operand transfer bu�er entry are available. Once the slave copy writes the operand into the

allocated entry, the hardware suspends it. The master copy is then issued only after its data de-

pendence is resolved, and when both a suitable functional unit and a result transfer bu�er entry

are available. When the master copy obtains the forwarded source operand, it frees the operand

transfer bu�er entry (which is associated with its cluster). It then computes the result, and writes

it into both the allocated result transfer bu�er entry (which is associated with the slave copy's

cluster) and into its own register �le. Finally, the slave copy is awakened, it obtains the result, frees

the result transfer bu�er entry, and writes the result into its own register �le. Figure 5 illustrates

reg g2

reg g2

cluster C1

cluster C2

reg r1

reg r0

time

slave
issued

slave
wakes

slave
suspended C2’s

copy of
reg g2
written

reg r0
written
into C1’s
buffer

addition
done

master
issued C1’s copy of

reg g2 written

result written into C2’s
buffer

Figure 5: Dual execution of the instruction r2 r0 + r1 when operand r0 is forwarded to cluster

C1 and global result is forwarded to cluster C2.

WRL Technical Report 98/8 7

The Multicluster Architecture

the steps for this scenario.

The performance obtained from a multicluster processor is a�ected by the number of instruc-

tions distributed to one cluster, the number distributed to two clusters, and how these instructions

are arranged in the instruction fetch stream; this order is important because it a�ects resource

availability. Dual-distributed instructions require more hardware resources than instructions dis-

tributed to one cluster. Thus, a larger number of dual-distributed instructions contributes to a

smaller instruction throughput. In addition, when an instruction is dual distributed, the two cop-

ies operate as a pair to perform the required task. Because the mechanism that supports this

cooperation introduces some overhead, a dual-distributed instruction requires more clock cycles to

execute than a single-distributed instruction (assuming all other conditions are the same). Thus,

not only do dual-distributed instructions contribute to a reduction in throughput, they may also

require more clock cycles to execute. However, note that these two negative e�ects are o�set by

the reduction in the cycle time of the processor clock that is provided by partitioning the hardware

resources. Consequently, even though an application may require more clock cycles to execute on

a multicluster processor than on a single-cluster processor, the run time may be reduced.

2.2 Related Architectures

A number of similarities and di�erences exist between proposed and existing architectures and the

multicluster architecture. This section brie
y examines a few such architectures.

The aim of the multicluster architecture is to decrease the cycle time of the processor to permit

a single thread of execution to run faster. Partitioning of components to increase performance

was also one of the aims of the decoupled access/execute architecture proposed by Smith [4]. This

architecture and the multicluster architecture both consists of two tightly-coupled clusters inter-

connected by bu�ers. However, the two clusters of the decoupled access/execute architecture are

statically scheduled, with one responsible for reading and writing memory, and the other respons-

ible for computing results. The decoupled access/execute architecture also requires that values

be written into and read from the inter-cluster bu�ers in the same order. Thus, while the access

and execute instruction streams may \slip" with respect to each other, instructions from di�erent

streams cannot be executed out of order.

In the multicluster architecture and the Multi
ow architecture [5], the physical registers and the

functional units of both architectures are distributed among the clusters of the respective machine.

However, while a mechanism exists in the multicluster architecture for accessing the registers in

other clusters, in the Multi
ow architecture, for an ALU (arithmetic logic unit) A to use a value

stored in the registers associated with another ALU, this value must �rst be explicitly copied to

a register in the register �le of A. This two-step process is coordinated by the compiler, a fact

that underlines that the hardware is completely predictable, which is not true for the multicluster

architecture due to its use of dynamic scheduling. One implication of the predictability of the

Multi
ow architecture is that it allows the Multi
ow compiler to balance the work to be performed

WRL Technical Report 98/8 8

The Multicluster Architecture

across all ALUs and to encode it into a single instruction stream. However, as discussed in Section 3,

balancing the workload across the clusters of the multicluster architecture is more di�cult due to

the unpredictability of dynamic scheduling.

The Multiscalar architecture [6] is in some ways similar to the the multicluster architecture

in that both derive bene�ts from partitioning a large processor into several clusters of execution

resources. In addition, both architectures share the common need for good static scheduling of

the application to keep all functional units busy. However, there are a number of important

di�erences. First, the basis used to distribute the instructions to the clusters of a Multiscalar

architecture is information encoded in the binary by the compiler, whereas for the multicluster

architecture, the basis is the architectural registers named by each instruction. Second, each cluster

of the Multiscalar architecture independently fetches the instructions assigned to it, whereas the

clusters of a multicluster architecture share a common instruction fetch stream. As a result of

these two di�erences, instruction scheduling for the multicluster architecture is more complex. A

third important di�erence is that, while the Multiscalar architecture attempts to exploit parallelism

between threads each consisting of many basic blocks, while the multicluster architecture primarily

exploits parallelism within and between basic blocks.

Simultaneously multithreaded processors [7] and tightly-coupled multiprocessors [8] share the

property that they are capable of simultaneously executing independent or co-operating sequences

of instructions, called threads. The aim of supporting this capability is to reduce the number of clock

cycles required to execute multiple threads sequentially. In contrast, the aim of the multicluster

architecture is to decrease the cycle time of the processor to permit a single thread of execution to

run faster.

3 Static Instruction Scheduling

Static instruction scheduling is the process by which, prior to the execution of an application,

the machine-level instructions are ordered with the goal of minimizing the number of clock cycles

required to execute the application. For an application to perform well when executing on a

multicluster processor, two requirements must be met. First, the instructions that are required to

perform the task must be balanced across the clusters, with each cluster concurrently performing

similar amounts of work. However, this requirement cannot be directly addressed by the compiler

because the work done by a cluster is a function of the order in which instructions are issued, and

the issue order is not deterministic. Thus, the compiler can only indirectly address the requirement

of workload balance by ensuring that the distribution of instructions to clusters is balanced. The

second requirement is that the number of instructions distributed to more than one cluster must

be minimized. Instructions distributed to only one cluster are preferred because dual distribution

increases hardware-resource requirements and execution latency.

To meet the above two requirements for good performance, the compiler must micro-manage

the allocation of architectural registers to the data values used by each instruction. This focus for

WRL Technical Report 98/8 9

The Multicluster Architecture

compilation is adopted because the distribution of instructions is determined by the architectural

registers named by each instruction and the cluster(s) to which each architectural register is as-

signed. The objective of choosing the architectural registers that will be named by the instructions

is to generate an ideal code schedule with the following properties.

Property 1 (Ideal code schedule) Let Nd be the number of instructions of an application that

are distributed to both clusters for execution when the application is run, N1
s be the number distrib-

uted to only cluster C1, and N
2
s be the number distributed only to cluster C2. A well performing

code schedule will result in the following at run-time:

1. At no time during execution should the absolute di�erence between N1
s and N2

s be larger than

�, the instruction-balance factor, where � > 0.

2. Nd should be as small as possible.

The performance of an application whose code schedule satis�es property 1 is strongly a�ected

by the value chosen for the instruction-balance factor �. Large values of � favor a single cluster over

an equal distribution of instructions. As a result, the application is likely to be concurrently using

only a subset of the available hardware resources. Hence, compared to a single-cluster processor

with the same overall resources, more clock cycles will be required to execute the application. On

the other hand, small values of � will likely lead to a larger number of dual-distributed instructions

than for larger values of �. Because dual-distributed instructions require more hardware resources

and have a large latency, the number of clock cycles is again likely to be larger. Thus, optimal

performance demands optimal selection of the instruction-balance factor.

However, in practice, for the benchmarks considered, smaller values of � and a more even

distribution is preferable. That is, the performance cost of dual-distributing instructions is much

less than the cost of not taking full advantage of the available hardware resources [3]. Consequently,

the primary objective of static instruction scheduling is to generate a code schedule, which, when

run, generates an instruction stream in which the instruction-distribution imbalance never exceeds

�. If the imbalance is bounded by �, then the distribution is said to be balanced. The secondary

objective is to minimize the number of dual-distributed instructions. To address the two objectives,

the compiler considers each (static) instruction individually, and seeks a register assignment for the

data values used by the instructions. The criterion used to select a register and hence a cluster

for a data value is whether the instruction distribution is likely to be balanced. If it is not, the

compiler must select a register that is assigned to the under-subscribed cluster. But if it is, then

the compiler can select a register that allows the instruction to be distributed to only one cluster.

To select a register for the value used by an instruction, the compiler must �rst determine

whether the instruction distribution is likely balanced around the instruction at run time. To

do so, the compiler must know the order in which instructions will be fetched and distributed.

Because this information is implicit in an ordered sequence of instructions, the allocation of values

to registers must be carried out after the instructions are ordered into a code schedule. That is,

WRL Technical Report 98/8 10

The Multicluster Architecture

prepass schedulingmust be used. Once the instruction balance has been estimated for an instruction,

to make the register selection(s) for the instruction, the compiler must take into account the inter-

dependences between instructions that arise from one or more instructions using a value generated

by another. As a result of this source of dependences, decisions made for one instruction can a�ect

those made for other instructions. A useful abstraction for capturing this source of dependences is

that of a live range [9].

3.1 Code Generation Methodology

The code generation methodology, which takes into account the issues introduced in the previous

subsection, comprises the following six steps.

1. The application is compiled into an intermediate language (IL) to which are applied conven-

tional optimizations like common subexpression elimination and constant propagation.

2. The IL instructions are arranged into a (static) code schedule. The IL instructions correspond

one-to-one to the machine-level instructions of the processor, but unlike the machine-level

instructions, the IL instructions name live ranges and not registers.

3. The live ranges associated with the stack pointer and the global pointer are designated as

candidates for global registers; all other live ranges are designated as candidates for local

registers. (The rational for this designation is discussed in [3].)

4. The live ranges that are candidates for local registers are then partitioned with the goal of

maximizing the concurrent utilization of both clusters, and minimizing the number of dual-

distributed instructions.

5. The live ranges are allocated to the architectural registers with global-register candidates

allocated to global registers and local-register candidates allocated to local registers.

6. The machine-level instructions (including those required for register spilling) are arranged

into a code schedule.

Steps 1, 2, 4, and 5 correspond to the four compilation problems: code optimization, code

scheduling, live range partitioning, and register allocation. Although solutions to these four problems

must handle the unique characteristics of the multicluster architecture, we have focused on solving

the third problem, live range partitioning, since this problem captures most of the idiosyncrasies of

the architecture. In Section 3.5, we brie
y describe the most successful of the novel techniques we

developed for solving this problem, while in Sections 3.2-3.4, we brie
y describe how we modi�ed

existing techniques to solve the other three compilation problems. A more extensive description of

our solutions to the four problems is given in [3].

WRL Technical Report 98/8 11

The Multicluster Architecture

3.2 Code Optimization

The code optimization problem can be solved using techniques such as those described by Aho et

al. [9]. Since this problem arises early in the compilation of an application, solutions to it are

relatively independent of the unique characteristics of the multicluster architecture. Thus, to limit

the scope of our research, the existing techniques were used without modi�cation.

3.3 Code Scheduling

The code scheduling problem can best solved using techniques that tend to generate large basic

blocks. Such techniques, like trace scheduling [5], are preferable due to the necessity of estimating

the run-time instruction imbalance on a per-basic-block basis when performing live range partition-

ing. The run-time instruction imbalance is a function of the order in which the basic blocks appear

in the fetch stream, and the static imbalance of each block. To ensure a given degree of balance is

obtained at run time, the compiler would have to take into account all control
ow paths by which

a given basic block can be reached, and the cluster allocation of the live ranges used within the

basic block. Owing to the complexity of concurrently considering these two e�ects, scheduling on

a per-basic-block basis is mandated.

3.4 Register Allocation

Finally, the register allocation problem can best be solved using the graph-coloring technique de-

veloped by Briggs et al. [10]. This technique is most suitable because it separates the process of

coloring nodes from the process of spilling live ranges. The separation of these two phases provides

a convenient framework for implementing the desire to spill a live range �rst to a local register in

the other cluster and, if no register is available, then to memory. In addition, the separation of the

phases increases the likelihood that a live range will be allocated a register [10] and allows for other

optimizations [3]. These features compete against the increased likelihood that more live ranges

will be spilled since each cluster of the multicluster architecture is allocated only a subset of the

architectural registers.

3.5 Live Range Partitioning

This section presents an overview of the local scheduler, which was developed to solve the live

range partitioning problem; a more complete description is given in Appendix A. The approach

taken by the local scheduler is to determine for each live range L in the intermediate-language

representation of an application, the cluster to which L should be assigned so as to ensure the

instruction-distribution at run time is balanced in the vicinity of every instruction that reads or

writes L.

To determine cluster assignments for the live ranges, the local scheduler begins by sorting the

basic blocks according to the number of times the �rst instruction in each basic block is estimated

WRL Technical Report 98/8 12

The Multicluster Architecture

1: C = 0

basic block #3 (10)basic block #2 (10)

basic block #1 (20)

basic block #4 (100)

basic block #5 (20)

3: G = [S] + 8
4: H = [S] + 4

5: G = [S] + E
6: H = [S] + 12

12: D= C + G

A= G + 108:
B= A x A
G= B / H
C= G + C

9:
10:
11:

2: E = 16

7: S = H + E

Figure 6: Example control
ow graph. In the graph, the numbers in parentheses give the dynamic-

execution estimates for each basic block. Furthermore, while live range S is assumed to be a

candidate for a global register, all other live ranges are assumed to be candidates for local registers.

to be executed1. Basic blocks with equal estimates are sorted by the number of static instructions

in each block. Then, the basic block having the largest estimate and the greatest number of

instructions is removed from the list, and a bottom-up, in-order traversal is carried out on the

instructions in the block. As an example, consider the control
ow graph shown in Figure 6, and

the execution estimates for each block given by the numbers in the parentheses. For this control

ow graph, the basic blocks will be traversed in the order 4, 1, 5, 3, and 2.

The purpose of this traversal is to visit each instruction in turn, and if the instruction writes

an unassigned live range, choose a cluster for the live range. A cluster is chosen for a live range

L, which is written by an instruction I , by �rst examining the instruction-distribution around the

instruction. If the distribution is not balanced, the cluster chosen for L will be the one that reduces

the degree of imbalance. An instruction-distribution is considered unbalanced in the vicinity of

an instruction I if, at run time, at the point in time that I is distributed to one or both clusters

for execution, there has been more than a given number of instructions distributed to one cluster

than the other; this number is a compile-time constant. (The reader is referred to [3] for a more

1These estimates are derived from pro�ling the execution of the application on a dual-cluster processor.

WRL Technical Report 98/8 13

The Multicluster Architecture

formal de�nition of imbalance.) If the distribution is estimated to be balanced, however, then the

scheduler determines the cluster that is preferred by the majority of the instructions that read or

write L. The scheduler selects cluster C as the preferred cluster for one of these instructions if the

assignment of L to C will allow the instruction to be distributed to only one cluster.

Thus, once the bottom-up traversal of a basic block is completed, there will remain no unassigned

live ranges among those that are written by the instructions in the basic block. After completing the

bottom-up traversal of a basic block, the scheduler removes the next basic block from the list, and

carries out a bottom-up traversal on its instructions. This process continues until all basic blocks

are visited. As a result of this process, the cluster-assignment for a live range will be determined

the �rst time an instruction is encountered that writes it during the basic-blocks traversals. Thus,

for the example of Figure 6, the local scheduler will visit the basic blocks in the order 4, 1, 5, 3, and

2, and, as a result, the live ranges will be assigned to clusters in the order C, G, B, A, E, D, and

H . Live range S, however, is not considered during live range partitioning because it is assumed

to be a candidate for a global register.

4 Performance Assessment

The performance impact of the schedulers we developed was determined by using ATOM [11], an

object-code instrumentation system, to simulate the execution of several SPEC92 benchmarks. For

these simulations, we �rst compiled the benchmarks using the standard Digital Unix compilers

for 21064-based workstations to produce a native binary. Then, using ATOM, we analyzed the

native binary to discover the data and control dependences between instructions, and the live

ranges these instructions read and write. While the use of ATOM and the standard compilers

prohibited the use of compilation techniques (e.g., loop unrolling) not supported by the Digital Unix

compilers, but which might improve the performance of the multicluster architecture, it simpli�ed

the implementation of the schedulers and permitted the fundamental scheduling problems to be

the focus of the work.

After identifying the live ranges, they were partitioned and assigned to the architectural registers

using one of the schedulers; the object code generated by the schedulers is called the rescheduled

binary. For this step, the schedulers assumed that the even-numbered architectural registers were

assigned to cluster C1 and the odd-numbered registers to cluster C2. This architectural-register-

to-cluster assignment was determined through the analysis of early simulation results (see [3] for

more details). Then, the rescheduled binary was instrumented using ATOM and linked with the

multicluster simulator. Instrumentation took into account the new register assignments for each

instruction and any code required to spill live ranges. Finally, the combined application-simulator

was then run and the number of (simulated) clock cycles required to execute the application was

recorded. This number is our performance metric.

To evaluate the impact of rescheduling, we compared the performance obtained from the res-

cheduled binaries when they were executed on a dual-cluster processor to that obtained when the

WRL Technical Report 98/8 14

The Multicluster Architecture

instruction types

all integer
oating point loads & control

all multiply other all divide other stores
ow

1 number issued single 8 8 8 8 4 4 4 4 4

2 per cycle dual, per cluster 4 4 4 4 2 2 2 2 2

3 latency in cycles 6 1 8/16 3 1y 1

Table 1: Instruction-issue rules for the single-cluster (row #1) and the dual-cluster (row #2)

processors. Row #3 gives the functional-unit latencies. All functional units are fully pipelined

with the exception of the
oating-point divider. The divider is not pipelined and has an eight-cycle

latency for 32-bit divides, and a 16-cycle latency for 64-bit divides. yThere is a single load-delay

slot.

native binary was executed on a single-cluster processor. For this comparison, the single-cluster

processor was con�gured with the same number of resources as the entire dual-cluster processor.

Although the evaluation was done for both four-way and eight-way issue processors, the results

presented here are only for an eight-way issue processor because these more clearly show the im-

portant trends.

4.1 Simulation Model

The single-cluster and dual-cluster processors each implement a RISC, superscalar processor whose

instruction set is based on the DEC Alpha instruction set. Each processor supports non-blocking

loads and non-blocking stores, and allows all instructions to be speculatively executed. Each

processor includes separate data and instruction caches, each of which is a 64-Kbyte, two-way set

associative cache. The data cache is assumed to use an inverted MSHR [12], and thus, imposes no

restriction on the number of in-
ight cache misses. The memory interface between the instruction

and data caches, and the lower levels of the memory hierarchy is assumed to have a 16-cycle fetch

latency and unlimited bandwidth.

In each clock cycle, each processor can fetch up to 12 instructions from the instruction cache,

and can insert these instructions into the dispatch queue(s). The single-cluster processor has a

128-entry dispatch queue, while each cluster of the dual-cluster processor has a 64-entry dispatch

queue. To enable fetching beyond conditional branches, both processors use a branch prediction

scheme proposed by McFarling [13] that comprises a bimodal predictor, a global history predictor,

and a mechanism to select between them; all other control
ow instructions are assumed to be

100% predictable. As instructions are inserted into a dispatch queue, the architectural registers

named by each are renamed to the corresponding physical registers. The single-cluster processor

has 128 integer and 128
oating point registers, while each cluster of the dual-cluster processor has

64 integer and 64
oating point registers.

In each clock cycle, the instruction scheduling logic selects instructions to issue out of the

dispatch queues using a greedy algorithm that issues the oldest, ready-to-issue instruction in a

WRL Technical Report 98/8 15

The Multicluster Architecture

speedup ratio

benchmark none local

(1) (2) (3)

compress -14 +6

doduc -21 -15

gcc1 -15 -10

ora -5 -22

su2cor -36 -25

tomcatv -41 -19

Table 2: The speedup ratios 100(1� Ndual

Nsingle
) obtained when the benchmarks were not rescheduled

(column 2) and when the local scheduler was used to rescheduling them (column 3).

queue �rst. The single-cluster processor can issue up to eight instructions per cycle, while each

cluster of the dual-cluster processor can issue at most four instructions per cycle. The instruction

issue rules for the processors are given in the �rst and second rows of Table 1, while the functional

unit latencies are given in the third row. Correctly executed instructions are retired in program

order with each processor capable of retiring no more than eight per cycle. Finally, both processors

are assumed to implement precise exceptions, and each cluster of the dual-cluster processor has

eight operand- and eight result-bu�er entries.

4.2 Results

A common (and expected) trend is that more clock cycles are required to execute a benchmark

on the dual-cluster processor than on the single-cluster processor. This increase is attributable to

an increase in the number of stalls of the instruction-fetch stream, a reduction in the number of

instructions issued per cycle, an increase in the instruction-issue disorder, and a slight increase in the

data-cache miss rate due to the increased issue disorder. A useful metric is Ndual

Nsingle
, where Nsingle is

the number of (simulated) clock cycles required to execute the native binary of a benchmark on the

single-cluster processor, while Ndual is the number of (simulated) clock cycles required to execute

either the native binary or the rescheduled binary on the dual-cluster processor. This performance

ratio is said to indicate a speedup if it is less than one, and a slowdown if it is greater than one.

Note, because performance is really a product of the number of clock cycles and the period of the

clock T , a multicluster processor will perform as well as or better than a single-cluster processor if

the clock period of the multicluster processor Tdual is less than or equal to
Nsingle

Ndual
� Tsingle.

The performance ratios for each benchmark are presented in Table 2 as the percentage spee-

dup/slowdown. This percentage is equal to 100(1 � Ndual

Nsingle
). Comparison of all 12 data points

indicates that in general, the benchmarks incurred a slowdown in the number of clock cycles of

WRL Technical Report 98/8 16

The Multicluster Architecture

between 5% and 41%. Further comparison of the performance ratios indicates that with the excep-

tion or ora, the use of the local scheduler signi�cantly reduces the slowdown incurred from running

on the dual-cluster processor. Furthermore, in the case of compress, with the use of the local sched-

uler, the benchmark performs better on the dual-cluster processor than the single-cluster processor.

This increase in performance is due to the single-cluster processor having a larger dispatch queue.

The size of the dispatch queue is important for two reasons. First, with larger dispatch queues,

there is likely to be a greater amount of time between when a branch prediction is made and when

the branch predictor tables are updated with the direction taken by the branch2. Hence, with

larger dispatch queues, a greater number of predictions may be based on information that may not

re
ect the direction taken by immediately preceding branches in program order. The size of the

dispatch queue is also important because a larger dispatch queue allows for more disorder in the

issuing of instructions. In the case of compress, this increase in issue disorder leads to an increase

in the cache miss rate, and thus, a performance degradation.

In general, better performance is obtained with the local scheduler because the local scheduler

generates code schedules that result in better utilization of hardware resources. In particular, the

local scheduler resulted in a higher degree of concurrent utilization of both clusters, and a reduction

in the number of dual-distributed instructions. In addition, with the local scheduler, instructions

were issued more in order, with the e�ect that signi�cantly fewer instruction-replay exceptions

are required to free up an operand transfer bu�er entry. One exception to this trend, however,

is ora, for which the use of the local scheduler signi�cantly increased the number of instruction

replays, thus degrading performance. A more detailed analysis of the impact of the local scheduler

is presented in [3].

Considering the ratios for the local scheduler indicates that its use results in a worst-case

slowdown of 25%. To compensate for the increase in clock cycles that this slowdown represents,

the dual-cluster processor would have to use a processor clock with a period 20% smaller (=

100� 100 Tdual
Tsingle

= 100� 100
Nsingle

Ndual
= 100� 100

Nsingle

1:25�Nsingle
).

Recently Palacharla et al. have created delay models for the critical paths of dynamically sched-

uled superscalar processors [14] as a function of issue width. They report that in a 0.35�m process,

the worst case delay increased from 1248ns for a four-issue processor to 1484ns for an eight-issue

processor, an increase of 18%. Given that there is only an 18% di�erence between the cycle times

of the four-issue and eight-issue processors in a 0.35�m process generation, reducing the cycle time

through partitioning would not improve overall performance. However, for a 0.18�m process gener-

ation, Palacharla et al. found that the worst-case path would increase by 82% when moving from a

four-issue processor to an eight-issue processor. The larger relative delays for wide-issue machines

at 0.18�m feature sizes is due to wire delay increasing relative to gate delays as feature sizes are

reduced. Thus, communication becomes relatively more expensive in comparison to computation.

Given this larger cycle time di�erence between narrow and wide issue machines at smaller feature

2The prediction is made at the point of insertion into the dispatch queue while the updating occurs after the

branch is executed.

WRL Technical Report 98/8 17

The Multicluster Architecture

sizes, the net e�ect of partitioning in the multicluster architecture could result in a signi�cant

overall performance increase.

5 Conclusions

In this paper we have introduced the multicluster architecture, a decentralized, dynamically-

scheduled architecture. In this architecture, the register �les, dispatch queue, and functional units

of the architecture are distributed across multiple clusters, and each cluster is assigned a subset

of the architectural registers. The motivation for partitioning these resources is to reduce the size

and complexity of components that are likely to be on the critical timing path of a centralized

processor, and in the process, to reduce the cycle time of the decentralized processor.

The architecture provides a mechanism to allow the register �le of one cluster to be accessed

by instructions being executed on another cluster. This mechanism is based on distributing an

instruction to more than one cluster for execution. The multiple distribution of instructions in-

creases the number of clock cycles required to execute these instructions, and reduces the number

of instructions that can be simultaneously in execution. However, these two negative e�ects are

o�set by the reduction in the cycle time of the processor clock that is provided by partitioning the

register �le and other hardware resources. Consequently, an application may require more clock

cycles to execute on a multicluster processor than on a single-cluster processor, but its run time

may be smaller.

There are two requirements for an application to perform well when executing on a multicluster

processor. First, the instructions that are required to perform the task must be balanced across

the clusters, with each cluster concurrently performing similar amounts of work. However, this

requirement cannot be directly addressed by the compiler because the work done by a cluster is

a function of the order in which instructions are issued, and the issue order is not deterministic.

Thus, the compiler can only indirectly address the requirement by ensuring that the distribution

of instructions to clusters is balanced. The second requirement is that the number of instructions

distributed to more than one cluster must be minimized. This requirement seeks to counter the

above noted two negative e�ects of multiple distribution. Since the distribution of instructions

is based on the architectural registers named by the instructions, static instruction scheduling is

the process by which the instructions are ordered and architectural registers are assigned to the

operands and results of the instructions.

In this paper, we have described a novel algorithm we developed to implement this process. We

have also described some of the results from simulations we performed on a number of dual-cluster

processor con�gurations to evaluate the e�ectiveness of the algorithms. Using the processor cycle

time analysis of Palacharla et al. for a 0.35�m process, the negative instructions-per-cycle e�ects of

partitioning would slightly outweigh the advantage gained from a reduction in cycle time. However

for smaller feature sizes, such as in their 0.18�m process model, a signi�cant net performance

improvement could be obtained. Thus we believe the multicluster architecture warrants further

WRL Technical Report 98/8 18

The Multicluster Architecture

investigation.

6 Future Work

A promising area for further investigation are optimizations that require information derived from

the source code of an application, which we did not consider owing to the limitations of the frame-

work we used to implement the schedulers. For example, techniques such as superblock scheduling

[15], and trace scheduling [5] might be used to increase the number of instructions that can be

jointly scheduled, thus permitting a better estimation of the run-time distribution of the workload.

Loop unrolling, which is a part of trace scheduling, could also be used to generate a code schedule in

which multiple iterations of a loop were interleaved, with each iteration scheduled to use a separate

cluster of a multicluster processor. To further increase the performance of loop unrolling, schemes

could be devised to decrease the amount of interaction between the iterations of the loop, and thus,

the number of inter-cluster data transfers. One such scheme is to duplicate the code that calculates

addresses. A second scheme is to allocate key variables to global registers so that the variables can

be accessed from within each cluster without an inter-cluster data transfer.

A second set of techniques might be used to exploit the hardware mechanism (see [3]) that was

developed to permit the dynamic reassignment of the architectural registers to the clusters of a

multicluster processor. In particular, the compiler could provide the hardware with hints to indicate

when the reassignment could be made, and to directly specify the architectural-register-to-cluster

assignment for each architectural register. This functionality would provide additional
exibility

in separating a sequence of instructions into a number of partially-independent threads.

Acknowledgments

The research described in this paper has been partially funded by the Natural Sciences and Engin-

eering Research Council of Canada and by Digital Equipment Corporation. We thank Brad Calder

and Alan Eustace for helping us with the ATOM simulation infrastructure, Annie Warren and

Jason Wold for logistical support while our simulations ran, and the other WRL-ites for putting up

with these simulations. In addition, we thank the anonymous reviewers for their comments, and

Subbarao Palacharla and Pritpal Ahuja for their early work on the architecture. Finally, we thank

Digital Equipment Corporation for providing us with the Alpha AXP workstations.

A Appendix

This appendix continues the discussion of Section 3 on the local scheduler, and in particular, de-

scribes in more detail the live-range-partitioning algorithm on which the local scheduler is based.

For a discussion of the other schedulers we developed, which do not perform as well as the local

scheduler, the reader is referred to [3].

WRL Technical Report 98/8 19

The Multicluster Architecture

As discussed in Section 3.1, a six-step approach was used for scheduling an application for

execution on a dual-cluster processor. The two goals of the live-range partitioning (step four) are

to �rst limit the instruction imbalance to the range dictated by the value of �, the balance factor

(see page 10), and then to minimize the number of instructions that are distributed to more than

one cluster.

When choosing a cluster for a live range L, the local scheduler selects one of the instructions that

writes L, and if necessary, chooses a cluster for L without considering any of the other instructions

that read or write L. The instruction that is chosen is referred to as the pivotal instruction, or

Ip. Whether the other instructions that read or write the live range are considered depends on

the instruction balance around Ip. If the instruction balance is within the range de�ned by the

instruction balance factor �, then the other instructions will be considered. But if the balance is

not within range, then L will be assigned to the cluster that reduces the degree of imbalance around

Ip.

The local scheduler uses the following method to determine the pivotal instruction for live

range L. First, it sorts the basic block by assigning a higher rank to those that are estimated to be

executed a larger number of times. The execution estimate for a basic block is equal to the number

of times the �rst instruction in the basic block is committed when the application is executed on

a dual-cluster processor. The binary used to acquire the execution estimates is the one generated

by the OSF/1 compiler. Once all basic blocks are ranked, the scheduler does a bottom-up, in-

order traversal of the instructions in each basic block, beginning with the block having the highest

rank and ending with the block having the lowest rank. The pivotal instruction for L is the �rst

instruction encountered during the traversal of the basic blocks that names L as its destination.

That is, instruction Ip is the �rst instruction encountered that writes L. When this instruction is

encountered, L is assigned to a cluster. Once the assignment is made, it cannot be changed. When

subsequent writers of L are encountered during the traversal of the basic blocks, these instructions

are ignored.

The �rst step in choosing a cluster assignment for the live range L is to determine whether

the instruction is balanced around the pivotal instruction. In the following section, we begin by

describing how instruction balance is quanti�ed, then, in Section A.2, we describe how we determine

if the instruction distribution would likely be unbalanced, and �nally, in Section A.3, we discuss

how a cluster is chosen for L.

A.1 Quantifying Instruction Balance

The instruction balance in the neighborhood of an instruction is represented by a pair of balance

variables �a and �
b. The value of these variables is calculated using the values of a second pair of

variables �a and �
b.

The values of �a and �b for an instruction I are calculated using a top-down, in-order traversal

and a bottom-up, in-order traversal of the instructions in the basic block that contains I . The

objective of the top-down traversal is to measure the contribution of the instructions that precede

WRL Technical Report 98/8 20

The Multicluster Architecture

I in the basic block, while the objective of the bottom-up traversal is to measure the contribution of

the instructions that follow I . Thus, from the perspective of the instruction, the top-down traversal

provides information about the past while the bottom-up traversal provides information about the

future. The reason for providing both sources of information is discussed in the next section.

If there are n instructions in the basic block, then the value of the �
a
i variable for the i

th

instruction, i � n, is equal to the number of instructions in the set f1; : : : ; ig that would be

distributed only to cluster C1, minus the number that would be distributed only to cluster C2.

That is, if N1
i is the number of instructions that would be distributed only to cluster C1 after the

i
th instruction is visited, and N

2
i is the number that would be distributed to only cluster C2 after

the ith instruction is visited, then �ai = N
1
i �N

2
i . The �

b balance variables are calculated in a similar

fashion but during the bottom-up traversal rather than the top-down traversal. In this case, N1
i is

the number of instructions in the set fi; : : : ; ng that would be distributed to only cluster C1, while

N
2
i is the number of instructions in the set fi; : : : ; ng that would be distributed to only cluster C2.

Note that it is assumed that �a0 = �
b
n+1 = 0, and thus, the degree of imbalance of the basic block

�
B = �

b
1 = �

a
n.

The method for computing the values of the balance variables �a and �
b is motivated by the

observation that, at run time, the instruction balance around an instruction I is a function of the

instruction balance of both the basic block B containing I and the basic blocks that are fetched

prior to basic block B. Consider �rst the �a variable for the ith instruction in block B. The value

of this variable (i.e., �ai) is computed as the sum of two quantities:

1. �ai

2. the weighted sum of the �b1 values of the basic blocks that are the predecessors of B in the

control-
ow graph and that have had their live ranges already allocated to clusters. The

weights used for this sum are based on estimates of how frequently during the execution of

the program a given predecessor will be executed prior to block B being executed.

The value of the �bi balance variable is computed similarly. However, in this case, the second

quantity is the weighted sum of �b1 values of the basic blocks that are the successors to basic block

B, and the weights used indicate how frequently a given successor will be executed following the

execution of B.

A.2 Evaluating Instruction Balance

The instruction distribution in the neighborhood of the ith instruction in a basic block is balanced

if the absolute values of the balance variables �a and �b are less than or equal to the balance factor

�. If each balance variable is plotted in one of the dimensions of a two-dimensional plane, then

the values for which the distribution is balanced would be enclosed by a box centered at the origin

with sides of length 2�. This box is depicted as a gray rectangle in Figure 7. In this �gure, the �a

variable is plotted on the horizontal axis while the �b variable is plotted on the vertical axis. The

WRL Technical Report 98/8 21

The Multicluster Architecture

α = αb

a
bα

αa
0

choose cluster 2

choose cluster 1

α = − α

b

a

ch
oo

se
 c

lu
st

er
 1

ch
oo

se
 c

lu
st

er
 2

choose
either cluster

(r
eg

io
n

1)

(region 2)

(r
eg

io
n

3)

(region 4)

B

B

−B

−B

Figure 7: Graphical representation of the conditions governing which cluster is chosen for a partic-

ular set of � values.

values of these variables for which the distribution is not balanced lie outside of the gray box, and

in one of four regions.

Suppose the scheduler is determining the cluster preference of the ith instruction for a live range

L. The �rst region comprises the values for which �
a
> �

b and �
a
> �. Since the variable �a has

the bigger value, to reduce the unbalance in the vicinity of the ith instruction, a cluster should be

chosen for L so that the value of �a is decreased. But since �ai = (N1
i �N

2
i) > 0, where N1

i and

N
2
i are the number of instructions distributed to only cluster C1 and C2 respectively, to reduce the

value of �ai , the value of N
2
i must be increased. Thus, L must be assigned to cluster C2. Similarly,

if the point de�ned by the values of the balance variables lies in the second region, cluster C2 must

again be chosen because here too, increasing the N2
i count will decrease the amount of imbalance.

On the other hand, if the point de�ned by the two balance variables lies in the other two regions,

by similar reasoning, cluster C1 must be chosen for live range L.

Note that in making a cluster choice for a live range, the scheduler must take into account

both balance variables, since, to use only one could lead to an incorrect cluster choice. Consider,

for instance, if 0 < �
a
< � and �

b
> �. In this case, if the scheduler ignored the value of �b, it

might choose cluster C1 for the live range. But, this choice would increase the value of �b, and

hence, the instruction distribution imbalance. To prevent the scheduler from making such a choice,

the instruction distribution balance above the instruction and below the instruction are taken into

account.

WRL Technical Report 98/8 22

The Multicluster Architecture

A.3 Assigning a Live Range to a Cluster

If the instruction distribution is not balanced around the pivotal instruction, the scheduler assigns

L to the under-subscribed cluster. But, if the distribution is balanced, the scheduler considers the

other instructions that use L before choosing a cluster for L.

Instruction Distribution is Unbalanced Around the Pivotal Instruction

To reduce the instruction distribution imbalance around the pivotal instruction Ip, L should be

assigned to cluster C1 if C1 is over subscribed, or to cluster C2 if C2 is over subscribed. Figure 7

indicates the conditions under which one cluster or the other is chosen. While fairly straightforward,

this strategy of choosing the under-subscribed cluster for L may only result in an increase in

the number of dual-distributed instructions while having no e�ect on the instruction-distribution

imbalance. This e�ect will occur if the pivotal instruction names another live range Ls as a source

operand, and Ls has already been assigned to the over-subscribed cluster Co; this e�ect will also

occur if Ip names two source live ranges, and both have been allocated to Co. If L is then assigned to

the under-subscribed cluster Cu, the instruction will be dual-distributed but the degree of imbalance

will not be reduced. Since it is desirable to assign L to cluster Co so that Ip is not dual-distributed,

the following modi�cation to the basic strategy was investigated.

The scheduler is allowed to postpone making a cluster assignment for L until the instruction Ie
that precedes Ip in the basic block is visited. Assuming that Ie writes the live range Le, there are

three scenarios to consider:

1. If Le is unassigned and if this live range can be assigned to the under-subscribed cluster

Cu without Ie being dual distributed, then (1) L is assigned to the over-subscribed cluster

Co, and (2) Le is assigned to the under-subscribed cluster Cu. The net e�ect of these two

assignments is that neither Ip nor Ie is dual distributed.

2. If Le is assigned and if Ie will be distributed only to the under-subscribed cluster Cu, then L

is assigned to the over-subscribed cluster Co.

3. Otherwise, both L and Le are assigned to the under-subscribed cluster Cu.

In practice, this modi�cation was found to give slightly better performance but the increase

was in general too small to be signi�cant. While it is possible that a more signi�cant performance

gain could have been made if three rather than two instructions were considered, larger numbers

of instructions were not considered due to algorithmic complexity.

Instruction Distribution is Balanced Around the Pivotal Instruction

When the instruction distribution is balanced around the pivotal instruction Ip, the cluster for L

is chosen by visiting the other instructions that name L as a source or destination. The objective

WRL Technical Report 98/8 23

The Multicluster Architecture

cluster assignment
for live range 1

cluster assignment
for live range 2

21unassigned

unassigned

1

2 2

x

2

x

1

1

2

1

x

1 = cluster 1
2 = cluster 2
x = don’t care

= cluster assignment for live
range L where:

Figure 8: Cluster assignment for live range L given the cluster assignments for live ranges #1 and

#2.

of this process is to determine the cluster assignment for L that will result in the majority of these

instructions being distributed to only one cluster. After visiting the instructions, the preferences

are tallied, and L is assigned to the cluster that was preferred by the majority.

When an instruction I is visited, the scheduler determines the preferred cluster for I by in-

specting the cluster assignments of the one or two other live ranges it names. For convenience, let I

name two other live ranges L1 and L2. Because L1 and L2 may be unassigned, assigned to cluster

C1, or assigned to cluster C2, there are 3� 3 = 9 cases to consider. The objective of the inspection

of these nine cases is to determine the preferred cluster for L that would permit instruction I to

be distributed to only one cluster. There are three possible outcomes of the inspection: cluster

C1 is preferred, cluster C2 is preferred, or neither is preferred. The nine cases and the outcomes

that apply to each are shown in Figure 8. In this �gure, the horizontal axis indicates the cluster

assignment of L1 while the vertical axis indicates the assignment for L2. The squares located at

the nine points of intersection enclose the outcome chosen for the corresponding (L1; L2) pair. For

example, if both live ranges are unassigned, or both are assigned but to di�erent clusters, then,

there is no preferred cluster for L; an `x' is used in the �gure to represent no preference. As a

second example, if L1 is assigned and L2 is not, then the preferred cluster is the cluster to which

L1 is assigned; these cases correspond to the row with L2 = unassigned.

A.4 Summary

In summary, the local scheduler consists of three phases. In the �rst phase, the basic blocks are

sorted, and then if some live ranges must be assigned to a speci�c cluster, say, to ensure that the

calling convention for shared libraries is upheld, these live ranges are pre-assigned (see Section A.2.2

in [3] for more details on pre-assignment). In the second phase, in the order derived in the �rst

phase, each basic block is visited, and its instructions are traversed in bottom-up order. For each

instruction visited, if the live range it writes has not already been assigned to a cluster, a cluster

WRL Technical Report 98/8 24

The Multicluster Architecture

initialization

for each basic block B

add B to sorted list of basic blocks

end for

for each live range L

if live range is to be pre-assigned

assign it to proper cluster

end if

end for

cluster assignment

for each basic block Ba on list

for each instruction Ia in Ba from last to �rst

if Ia does not write an unassigned live range L

skip to next instruction

end if

if instruction balance is valid

for each instruction Ib that names live range L

nominate a cluster for L

end for

assign L to the most popular cluster

else

assign L to the under-subscribed cluster

end if

for each basic block Bb containing one or more of the instructions that name L

compute balance variables for each instruction in Bb

end for

end for

end for

register allocation

for each live range L

assign L to a register in the desired cluster,or spill it to the other cluster or to memory

end for

Figure 9: Pseudo-code description of the local scheduler.

assignment is chosen for it. And �nally, in the third phase, the live ranges are allocated to the

architectural registers. A pseudo-code description of these steps is given in Figure 9.

WRL Technical Report 98/8 25

The Multicluster Architecture

A.5 Scheduling Intricacies

In this section, we provide additional insight into the intricacies of instruction scheduling for a

multicluster processor. A more lengthly discussion is given in [3].

To allocate live ranges to clusters, an algorithm must be used that makes a decision using only

the information available at the time the decision is made. These algorithms are said to be greedy.

A greedy algorithm is required because there exists a dependence between the instruction distri-

butions on which is based the selection of a cluster for a live range L, and the clusters subsequently

chosen for some of the remaining unallocated live ranges. For convenience, let these remaining

unallocated live ranges be the set L. The dependence arises because the clusters chosen for the

live ranges in L may su�ciently change the instruction distributions on which the selection for L is

based so that a di�erent cluster should have been chosen for L. That is, based on the information

known after allocating the live ranges in L, it is possible that a di�erent cluster should have been

originally chosen for L. However, if the compiler were to reallocate L, the instruction distributions

on which the cluster selection of already allocated live ranges were based may change su�ciently to

warrant the reallocation of some of these live ranges. While such backtracking may result in a more

balanced overall instruction distribution, it is computationally expensive and possibly intractable.

Irrespective of whether backtracking is used, the allocation of a live range to a cluster is complic-

ated by having to take into account the instruction distribution in the vicinity of each instruction

that de�nes and/or uses the live range. It is possible that the allocation of the live range to a

cluster will increase the imbalance around some of these instructions while decreasing it around

others. When this scenario arises, a greedy algorithm is required to choose a register and hence a

cluster for the live range.

The algorithm used by the local scheduler to chose a cluster for a live range makes decisions

that are locally advantageous. That is, the cluster-allocation decision for a live range is governed

�rst by whether the instruction distribution is balanced around the pivotal instruction, and then

by whether the distribution is balanced around the remaining instructions that read or write the

live range. For the benchmarks we considered, this strategy worked better than one in which

the objective of cluster allocation was to correct the instruction imbalance around all instructions

that used the live range in question. Such a global strategy did not work as well as the one used

by the local scheduler because its use resulted in decisions that were neither globally nor locally

advantageous.

References

[1] Linley Gwennap. Digital 21264 Sets New Standard. Microprocessor Report, 10(14), 1996.

[2] Kenneth C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28{40,

1996.

WRL Technical Report 98/8 26

The Multicluster Architecture

[3] Keith I. Farkas. Memory-system Design Considerations for Dynamically-scheduled

Microprocessors. PhD thesis, Department of Electrical and Computer En-

gineering, University of Toronto, Ontario, Canada, January 1997. (URL:

http://www.eecg.toronto.edu/�farkas/thesis phd.html).

[4] James E. Smith. Decoupled Acess/Execute Computer Architecture. In the Proceedings of the

9th International Symposium on Computer Architecture, pages 112{119, 1982.

[5] P. Geo�rey Lowney, Stefan Freudenberger, Thomas Karzes, W.D. Lichtenstein, Robert P.

Nix, John S. O'Donnell, and John C. Ruttenberg. The Multi
ow Trace Scheduling Compiler.

Journal Of Supercomputing, 7(1-2):51{142, May 1993.

[6] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In the

Proceedings of the 22st International Symposium on Computer Architecture, pages 414{425,

1995.

[7] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L.

Stamm. Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous

Multithreaded Processor. In the Proceedings of the 23rd International Symposium on Computer

Architecture, pages 191{202, May 1996.

[8] Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of Design Alternatives

for a Multiprocessor Microprocessor. In the Proceedings of the 23rd International Symposium

on Computer Architecture, pages 67{77, May 1996.

[9] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Principles, Techniques and

Tools. Addison-Wesley Publishing Company, Reading Mass., 1986.

[10] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register

allocation. ACM Transactions on Programming Languages and Systems, 16(3):428{455, May

1994.

[11] Amitabh Srivastava and Alan Eustace. Atom: A system for building customized program

analysis tools. In the Proceedings of the ACM SIGPLAN `94 Conference on Programming

Languages, March 1994.

[12] Keith I. Farkas and Norman P. Jouppi. Complexity/Performance Tradeo�s with Non-Blocking

Loads. In the Proceedings of the 21st International Symposium on Computer Architecture,

pages 211{222, 1994.

[13] Scott McFarling. Combining branch predictors. DEC WRL Technical Note TN-36, 1993.

[14] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Complexity-E�ective Super-

scalar Processors. In the Proceedings of the 24th Annual International Symposium on Computer

Architecture, pages 206{218, 1997.

WRL Technical Report 98/8 27

The Multicluster Architecture

[15] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and Wen-mei W.

Hwu. IMPACT: an Architectural Framework for Multiple-Instruction-Issue Processors. In

the Proceedings of the 18th Annual International Symposium on Computer Architecture, pages

266{275, 1991.

WRL Technical Report 98/8 28

