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Abstract

UNIX Internet servers with an event-driven architecture often perform poorly under real work-
loads, even if they perform well under laboratory benchmarking conditions. We investigated the
poor performance of event-driven servers. We found that the delays typical in wide-area networks
cause busy servers to manage a large number of simultaneous connections. We also observed that
the selectsystem call implementation in most UNIX kernels scales poorly with the number of
connections being managed by a process. The UNIX algorithm for allocating file descriptors also
scales poorly. These algorithmic problems lead directly to the poor performance of event-driven
servers.

We implemented scalable versions of the select system call and the descriptor allocation al-
gorithm. This led to an improvement of up to 58% in Web proxy and Web server throughput, and
dramatically improved the scalability of the system.

�This is an expanded version of a paper that appeared in theProceedings of the1998 USENIX Annual Technical
Conference, New Orleans, LA, June 1998.
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1 Introduction

Many Web servers and proxies are implemented as as single-threaded event-driven processes.
This approach is motivated by the belief that an event-driven architecture has some advantages
over a thread-per-connection architecture [Ous96], and that it is more efficient than process-per-
connection designs, including “pre-forked” process-per-connection systems. In particular, event-
driven servers have lower context-switching and synchronization overhead, especially in the con-
text of single-processor machines.

Unfortunately, event-driven servers have been observed to perform poorly under real conditions.
In a recent study of Digital's Palo Alto Web proxies, Maltzahn et. al. [MRG97] found that the
Squid (formerly Harvest) proxy server[CDN+96, Squ] performs no better than the older CERN
proxy[LNBL96]. This is surprising, because the CERN proxy forks a new process to handle each
new connection, and process creation is a moderately expensive operation. This result is also in
sharp contrast with the study by Chankhunthod et al.[CDN+96], which concluded that Harvest is
an order of magnitude faster than the CERN proxy.

Maltzahn et. al. [MRG97] attribute Squid's poor performance to the amount of CPU time Squid
uses to implement its own memory management and non-blocking network I/O abstractions. We
investigated this phenomenon in more detail, and found out that the large delays typical of wide-
area networks (WANs) cause Squid to have a large number of simultaneously open connections.
Unfortunately, the traditional UNIX implementations of several kernel features used by event-
driven single-process servers do not scale well with the number of active descriptors in a process.
These are theselectsystem call, used to support non-blocking I/O, and the kernel routine that
allocates a new file descriptor. (We refer to the descriptor-allocation routine asufalloc(), as it is
named in Digital UNIX, although other UNIX variants use different names, e.g.,fdalloc().) A
system running the Squid server spends a large fraction of its time in these kernel routines, which
is directly responsible for Squid's poor performance under real workloads.

We designed and implemented scalable versions ofselect() and ufalloc() in Digital UNIX,
and evaluated the performance of Squid and an event-driven Web server in a simulated WAN
environment. We observed throughput improvements of up to 43% for the Web server, and up
to 58% for Squid. We observed dramatic reductions in CPU utilizations at lower loads. We also
evaluated these changes on a busy HTTP proxy server, which handles several million requests per
day.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the working of
a typical event-driven server running on a UNIX system. We also describe the dynamics of typical
implementations ofselect() andufalloc(). Section 3 describes our quantitative characterization
of the performance problems inselect() andufalloc(). In Section 4 we present scalable versions
of select() andufalloc(). In Sections 5 and 6 we evaluate our implementation. Finally, Section 7
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covers related work and and offers some conclusions.

2 Background

In this section we present a brief overview of the working of a typical event-driven server. We
will also describe classical implementations ofselect() andufalloc(). This will provide necessary
background for the discussion in the following sections.

2.1 Event-driven servers

An event-driven server typically has a single thread which manages all connections to the server.
The thread uses theselect() system call to simultaneously wait for events on these connections.

When a call toselect() returns, the server's main loop invokes event handlers for each of the
ready descriptors. These handlers perform a variety of tasks depending on the nature of the partic-
ular event. For example, when a socket being used to listen for new connections becomes ready,
the corresponding handler callsaccept() to return a file descriptor for the new connection. Hand-
lers invoked when a connection becomes ready for reading or writing perform the actual read or
write to the appropriate descriptor. The execution of handlers may cause the addition or removal
of descriptors from the set being managed by the server.

Event-driven servers are fast because they have no locking or context switching overhead. The
same thread manages all connections, and all handlers are executed synchronously. A single-
threaded server, however, cannot exploit any true concurrency in the stream of tasks. Thus, on
multiprocessor systems, event-driven servers have as many threads as processors. Examples of
event-driven servers include Squid[CDN+96, Squ] and its commercial version NetCache[Net],
Zeus[Zeu], thttpd[tht] and several research servers[BDR97, KEGW96, PDZ97].

2.2 select()

Theselectsystem call allows a user process to wait for events on a set of descriptors. A process can
indicate interest in three types of events on a descriptor: events that make a descriptorreadable,
those that make itwritable, andexceptionevents. This information is passed to the kernel using
three bitmaps. In each bitmap thekth bit indicates interest in events of that type for thekth
descriptor. These bitmaps are value-result parameters, and the returned bitmaps indicate the sets
of ready descriptors. Stevens[Ste90] describes theselect() interface in detail.

We describe the Digital UNIX implementation ofselect(). However, the classical BSD imple-
mentation ofselect() is similar to the Digital UNIX implementation. The main differences are
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related to the multithreaded nature of the Digital UNIX kernel. Thus our discussion is fully ap-
plicable to 4.3BSD and most BSD-derived implementations. Also, we discuss howselect() works
for descriptors that represent sockets, but our discussion and algorithms can be trivially extended
to include descriptors that refer to other kinds of objects, such as vnodes. (Vnodes are kernel data
structures used to represent files and devices.)

In Digital UNIX, the select() function in the kernel starts by creating internal data structures
containing summary information about sockets that are marked in at least one input bitmap. Sub-
sequently,select() callsdo scan(), which callsselscan() to check the status of each of the entities
(vnodes or sockets) corresponding to the selected descriptors.

For each selected socket,selscan() enqueues a record referring to the current thread on the
select queueof the socket. This is done so that the thread can be identified as waiting inside
select() for events on the socket.selscan() then callssoo select() for each socket, which checks
to see if the condition that the process is interested in (i.e. the socket is readable, writable, or has
pending exceptions) is true. If none of the conditions that the user process is selecting on are true,
thendo scan() goes to sleep waiting for any of these to become true.

Note that the linear search inselscan() covers every socket of potential interest to the selecting
process, independent of how many are actually ready. Thus, the cost is proportional to the number
of file descriptors involved in the call toselect(), rather than to the number of events discovered
by the call.

When a network packet comes in, protocol processing may cause a condition on whichdo scan()
is blocked to become true. The thread that performs protocol processing for an incoming packet
calls select wakeup(), which wakes up all threads that are blocked indo scan() awaiting this
condition.

A thread that is woken up indo scan() calls selscan(), which callssoo select() for all the
sockets that the corresponding call toselect() specified in its three bitmaps.do scan() also calls
undo scan() to remove this thread from select queues of the selected sockets.

2.3 ufalloc()

The kernel functionufalloc() is called to allocate a new file descriptor for a process. This function
is called as a result of theopen(), socket(), socketpair(), dup(), dup2() andaccept() system
calls.

UNIX semantics for file descriptor allocation require that the kernel allocate the lowest-numbered
available descriptor. This prevents the use of a straightforward scalable implementation, such as a
free list. Instead, all of the UNIX variants that we know of, including BSD-derived systems such
as Digital UNIX, and System V Release 4 systems such as Solaris, use a linear search of the file
descriptor table. The search starts with file descriptor0 and continues to the firstNULL entry. The
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cost of this search is roughly proportional to the number of open file descriptors, although it might
complete before checking all of the possible descriptor table slots.

3 Problems in select() and ufalloc()

As we observed in section 1, Maltzahn et. al. [MRG97] found that the Squid proxy server per-
forms no better than the older CERN proxy under real workloads, contradicting the study by
Chankhunthod et al.[CDN+96], which concluded that Harvest is an order of magnitude faster than
the CERN proxy. Indeed, a simple LAN-based experiment using a simulated client load does show
a big performance difference between Squid and the CERN proxy.

In an attempt to explain this peculiar result, we tried to understand why Squid's performance
under real load is so much worse than under ideal conditions. One factor that is different in the two
scenarios is that under real load Squid manages a much larger number of simultaneous connections
than in a LAN-based test scenario. This is because of much larger delays experienced in WANs.
Because WAN environments have larger round-trip times (RTTs), and are more likely to exhibit
packet losses, HTTP connections tend to last much longer in WAN environments than in simple
LAN environments. Therefore, for a given connection arrival rate, a WAN-based HTTP server will
have more open connections than a server in a LAN environment.

Richardson's measurements of Digital's Palo Alto Web proxies [Ric97] show between 30 and
950 simultaneously open connections, depending on time of day. Richardson's measurements also
show that while the median response time is about 250 msec., the mean is 2.5 seconds: some
connections stay open for a very long time. The large ratio of mean to median holds over a wide
range of response sizes (although the 10:1 ratio only holds when all response sizes are considered
together). This implies that at any given time, most of the open connections arecold (idle for long
intervals), and only a few arehot.

Following this intuition, we tried to evaluate the effect of a large number of cold connections
on Squid performance. We used DCPI [AB+97] to profile a system running the Squid proxy
under a carefully designed request load. To simulate the effect of large WAN delays, we set up a
dummy HTTP client process on a client machine. This process opened a large number (100-2000)
of connections to the Squid server but subsequently made no requests on these connections. We
refer to this process as theload-adding client. Another process on the client machine simulated a
small number (10-50) of HTTP clients, which repeatedly made HTTP requests of the proxy. Each
request retrieved a 1259-byte response. We used the scalable client (S-Client) architecture from
Banga and Druschel [BD97].

In our tests, we ran the Squid server process on an AlphaStation 500 (400Mhz 21164, 8KB
I-cache, 8KB D-cache, 96KB level 2 unified cache, 2MB level 3 unified cache, SPECint95 =
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12.3) equipped with 192MB of physical memory. The server operating system was Digital UNIX
4.0B, with the latest patches that were available at the time. The client machine was a 333Mhz
AlphaStation 500 (same cache configuration as above, SPECint95 9.82) with 640MB of physical
memory, running DUNIX 3.2C. The Squid version used was Squid-1.1.11. The client and server
were connected using a 100Mbps FDDI network.

This experiment indicates that up to 53% of the system's CPU time is being spent insideselect()
(and its various components –selscan(), soo select(), etc.). Up to 11% of the CPU is being spent
by the user process in collating information from the bitmaps returned byselect().

Our detailed results are shown in Figure 1. The x-axis represents the number of cold connections.
Curves are plotted, for both 10 hot connections and 50 hot connections, showing the percentage
of CPU time spent in kernel-mode functions related toselect(), and the percentage of CPU time
spent in the user-modeselect() loop.
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Figure 1:select() costs in unmodified kernel

Figure 1 shows that the costs of both the kernelselect() implementation and the user-mode
select() loop rise significantly with increasing numbers of cold connections. Also, these costs are
relatively independent of the number of hot connections, up to about 1000 cold connections.

The costs are initially linear in the number of cold connections, but eventually they flatten out.
As the number of cold connections increases, the system spends more CPU time in each call
to select(), and so the calls toselect() come less often. This causes the number of pending
events returned byselect() to increase (at low loads,select() usually returns just one pending
event, but when called infrequently, it often returns several). The cost of eachselect() call is thus
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amortized over a larger number of interesting events. Thus, the total CPU cost ofselect(), which
is proportional to the number ofselect()s per second times the cost of eachselect, tends to level
off.

These numbers were generated with a request load of about 100 requests/second. At higher
rates,select() is still important, butufalloc() also consumes significant CPU time, because of its
linear search algorithm. A typical DCPI profile for the system above, with 750 cold connections,
50 hot connections, and 220 new connections/second, is shown in Table 1.

CPU % Procedure Mode
21.91% all kernelselectfunctions kernel
8.31% soo select() kernel
7.56% selscan() kernel
4.82% undo scan() kernel
1.22% select() kernel

17.79% ufalloc() kernel

4.23% comm select() user

1.71% Xsyscall() kernel
1.68% doprnt() user
1.32% idle thread() kernel
1.20% memset() user
1.15% cache lookup() kernel
1.10% namei() kernel

750 cold connections, 50 hot connections,
220 requests/second

Table 1: Example profile for unmodified kernel

In summary, the current implementations ofselect() andufalloc() do not scale well with the
number of open connections in a server process. Both algorithms do work that is linear in the
number of connections being managed by the process, and proxies in WAN environments tend to
have many open connections. In the next section we will describe our implementation of scalable
versions of these functions.



SCALABLE KERNEL PERFORMANCE FORINTERNET SERVERS... 7

4 Scalable select() and ufalloc()

In this section we describe our design for scalable versions ofselect() andufalloc(). We also
describe our prototype implementation of these designs in Digital UNIX.

4.1 select()

Consider an event-driven server process waiting for activity on any of a few thousand sockets.
Recall from Section 2 thatselect() always performs a full scan through all of these sockets, either
to find those few that are currently ready, or to indicate that a thread is waiting for events on each
of the sockets.

A full scan is also performed after the protocol code processes an incoming packet and callsse-
lect wakeup() to unblock a thread waiting insideselect(). The full scan is performed even though
only a few of the sockets are actually ready. This wasted effort is expended because, between the
call to select wakeup() and the invocation ofdo scan(), we throw away the information about
the identity of the socket that has become ready.selscan() then does a significant amount of work
to rediscover the set of ready sockets.

The key idea of our design is to preserve information about the change in the state of a socket
betweenselect wakeup() anddo scan(). We use this information to prune both the initial scan,
and the scan after theselect wakeup(), to inspect only those sockets that need inspection. These
are the sockets either about which we have no prior information, or for which we have state-change
hints from the protocol-processing layer.

We changed the Digital UNIX kernel to keep track of three sets for each thread, named READY,
INTERESTED, and HINTS. (The first two of these sets actually consist of three component sets,
one for read-ready descriptors, one for write-ready descriptors and one for exceptions.) The IN-
TERESTED set is the subset of sockets that the thread is currently interested in selecting on. The
READY set is a subset of the INTERESTED set and includes those sockets which the kernel thinks
areready. The kernel maintains state-change information about sockets in the INTERESTED set,
rather than for the full set of sockets open for a thread. This state-change information is maintained
as the HINTS set. The HINTS set includes sockets that might have become ready since the last
call to select(), and is updated by the protocol layer when a packet arrives for a socket.
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Each call toselect() specifies a SELECTING set for the thread, which is used to compute the
new values of the READY and INTERESTED sets.select() uses the HINTS and READY sets to
prune its initial scan. It checks only those sockets which are in the SELECTING set and either:

1. are not in the old INTERESTED set, or

2. are in the old READY set, or

3. are in the HINTS set

Mathematically, we can express the computation of these sets as:

INTERESTEDnew = SELECTING [ INTERESTEDold

READYnew = C(INTERESTEDnew \ (INTERESTEDold [READYold [HINTS))

whereC expresses the computation of checking the status of descriptors in its argument set.
The computation ofC 's argument set above appears to have complexity proportional to the size

of the SELECTING set. We took care to optimize this computation and its data-cache footprint.
The resulting code has a very small cost relative to other parts ofselect().

The set returned fromselect() is:

READYto user = SELECTING \READYnew

A descriptor must be removed from the INTERESTED sets ofall threads in a process at some
point between the time that the descriptor is closed and the time that it is next allocated byany
thread in the process.

For each socket, we record the set of processes that have a reference to the socket. In the
protocol processing code, when a packet comes in for a socket,sowakeup() records a hint in the
HINTS sets of each of the threads in the referencing processes for which this socket is present in
the INTERESTED set of the thread.sowakeup() also wakes up all such threads that are blocked
in select(). After a thread is woken up inselect(), it scans only those sockets in its HINTS set.

4.2 ufalloc()

The existingufalloc() implementation uses a linear search to find the lowest-numbered free
descriptor. We converted this into a logarithmic-time algorithm by adding an auxiliary data struc-
ture, a two-level tree of bitmaps. The collection of all the level-1 nodes can be thought of as a
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Figure 2: Two-level ufalloc bitmap

single bitmap; each bit in this bitmap describes the allocation state of one file descriptor. One-
valued bits in this bitmap correspond to allocated descriptors. The level-1 bitmap is stored as an
array of nodes.

Each bit in the level-0 bitmap describes the state of an entire level-1 node. One-valued bits in
this bitmap correspond to level-1 nodes with no zero bits; a zero-valued bit in the level-0 bitmap
corresponds to a level-1 node with at least one zero bit.

Figure 2 shows an example of such a tree. For simplicity, this figure depicts the nodes as 4-bit
integers, although our actual implementation uses 64-bit integers. We use the Alpha's little-endian
bit-order in this example. The example tree shows that descriptors 0, 1, and 4 through 7 are
allocated, while descriptors 2 and 3 are free.

When a process wants to allocate a new file descriptor, the level-0 bitmap is searched for the first
zero bit. The index of this bit is used as an index into the array of level-1 nodes, and the indexed
node is then searched to find the first zero bit. Efficient algorithms exist for finding the first zero
bit in a word, but we have found that a simple linear search is sufficiently fast, since the dominant
cost on modern CPUs is the number of data-cache misses, not the number of instructions executed.

When a descriptor is deallocated, the appropriate bits are cleared in both bitmaps. This leads to
a constant-time cost for deallocation.

With the level-1 nodes and the entire level-0 bitmap represented as 64-bit words, this algorithm
directly supports 4096 descriptors per process. A straightforward generalization to a deeper tree
would support an enormous number of descriptors, even if a smaller word size were used.
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Figure 4: Squid idle time – 1259-byte files

5 Experimental Evaluation

We evaluated the effects of our implementation ofselect() andufalloc() on the performance of two
event-driven Internet servers: the Squid proxy, and the thttpd [tht] Web server (we used a modified
version of thttpd with numerous performance improvements [PDZ97]). These experiments were
performed using the same server and client systems describe in Section 3. We also measured the
effect of our changes on the performance of Digital's Palo Alto proxies.

5.1 Scalability with respect to connection rate

The S-Client architecture introduced by Banga and Druschel [BD97] allows the generation of high
HTTP request rates, using a small number of client machines. We used S-Clients to vary the load
on the server. At the lowest load, the server is underutilized; at the higher loads, the server is the
bottleneck.

For each request rate, we ran two kinds of benchmarks. In the naive benchmark, we used only
enough S-Clients to generate the desired request rate. In the more realistic benchmark, we also
used a load-adding client, to simulate the presence of long-delay connections. The load-adding
client was run with 750 infinitely slow connections. (We show the effect of varying the number of
slow connections in Section 5.2.)

All clients, in all of the experiments, repeatedly requested a single file of a fixed sized. In some
experiments, we used an 8192-byte file; this is within the range of typical response sizes reported
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for the Web. In other experiments, we used a 1259-byte file; the shorter file size places more
emphasis on per-connection overheads.

For our experiments using the Squid proxy server, we arranged things so that each request re-
ceived by the proxy would generate an “If-Modified-Since” message from the proxy to the origin
server, but the actual data would be served from the proxy's cache. The origin server ran on
identical hardware (a 400Mhz AlphaStation 500), using the thttpd server program; we ensured that
the origin server was never the bottleneck.

Figure 3 shows how the response time of the Squid proxy varies with request rate, for 1259-
byte files. The results for all kernels on the naive benchmark are effectively identical; for the
realistic benchmark, we plot different curves for the different kernels. For each curve, the final
point shows the “saturation throughput” for the given kernel; beyond this point, increasing the
offered load did not increase throughput. This figure clearly shows that the presence of adding
slow connections in the realistic benchmark drastically reduces the throughput achieved with the
unmodified kernel relative to the naive benchmark. It also shows that our new implementations
of select() andufalloc() solve this performance problem. The performance of the fully modified
kernel is nearly independent of the presence of many slow connections.

Figure 4 shows the effect of the new versions ofselect() andufalloc() on server CPU idle time,
also for 1259-byte files. At lower request rates, where the server is underutilized, our modifica-
tions greatly increase idle time for the realistic benchmark. The increase in idle time reflects the
improved scalability of the system in the presence of cold connections.
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Figure 5: Squid response times – 8KB files
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Figure 6: Squid idle time – 8KB files

Figure 5 shows the response time of the Squid proxy for 8129-byte files. As in Figure 3, the
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fully modified kernel provides a higher saturation request rate than the original kernel, and yields
lower response times at all request rates. However, the new kernel's performance on the realistic
benchmark does not come quite as close to the performance of the naive benchmark; this may be
due to data-cache collisions between the larger packets and the kernel's data structures. In these
tests, as Figure 6 shows, the unmodified kernel showed no idle time for all request rates, while the
new kernel showed some idle time up to 300 requests/sec.
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Figure 7: CPU share of ufalloc() and select(), Squid Proxy – 1259-byte files

We used DCPI to obtain CPU time profiles of the server. Figure 7 shows the fraction of CPU time
used inselect() and inufalloc(), for various request rates, using 1259-byte files. (The results for
tests using 8192-byte files are analogous.) In each group of three bars, the leftmost bar represents
the unmodified kernel, the center bar represents the kernel with the newselect(), and the rightmost
bar represents the kernel with new versions of bothselect() andufalloc(). At rates above 600
requests per second, each bar is independently labelled. The top section of each bar shows the
CPU time spent inufalloc(), and the middle section shows the CPU time spent inselect(). The
bottom section of each bar (“others”) shows the CPU time used for all other components of the
server, including user-mode code. Idle time is not shown; it corresponds to the space above the
bar, if any.

Figure 7 shows that the newufalloc() almost entirely eliminates the CPU costs of descriptor
allocation in all of the tested configurations. The newselect() also costs much less than the old
select().
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When the server is underutilized, at rates below about 200 requests per second, the CPU pro-
files show that the newselect() provides an additional performance impact: although we have not
changed the implementation of any code covered by the “others” part of the profile, and the total
throughput has not changed, the CPU costs of the “others” components has been reduced, relative
to the unmodified kernel. We attribute this to better data-cache behavior, because the newselect()
has a much smaller data-cache footprint than the original implementation. The modifiedufalloc()
may also have a similar effect on cache performance. The improved data-cache footprint ofse-
lect() is probably responsible for some of the throughput gains in the server-bound configurations.

CPU % Procedure Mode
21.96% all idle time kernel

11.49% all kernelselectfunctions kernel
11.24% select() kernel
0.15% new soo select() kernel
0.10% new selscan one() kernel

16.37% comm select() user

2.61% tcp slowtimo() kernel
1.73% tcp fasttimo() kernel
1.39% doprnt() user
1.21% Xsyscall() kernel
1.10% XentInt() kernel
1.00% bcopy() kernel
0.91% read io port() kernel
0.90% memset() user

750 cold connections, 50 hot connections, 220 requests/second

Table 2: Example profile for modified kernel

As can be seen in Figure 3, even with our kernel modifications, the realistic benchmark still
causes a small performance degradation compared to the naive benchmark. We attribute this to the
inherently poor scalability of theselect() programming interface. This interface passes inform-
ation proportional to the total number of active connections on each call toselect(). Moreover,
when select() returns, the user process must do work proportional to the total number of act-
ive connections to discover which descriptors have pending events. Finally,select() overwrites
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its input bitmaps, thus requiring additional user-mode work to create these bitmaps on each call.
These costs cannot be eliminated with the current interface. In a separate publication [BDM98],
we propose a new, scalable interface to replaceselect().

Table 2 shows a profile of the modified kernel, made under the same conditions as the profile
of the original kernel shown in Table 1. The new kernel spends 22% of the time in the idle loop,
compared to almost no idle time for the original kernel. The original kernel spent about 22% of the
CPU inselect() and its subroutines, and 18% of the CPU inufalloc(). The modified kernel spends
11% of the CPU inselect(), and virtually none inufalloc(). However, the busiest function in the
system is now the user-levelcomm select() function, using 16% of the CPU. The almost 28% of
the CPU together consumed by the kernelselect() and user-modecomm select() functions is a
result of the poorly scaling bitmap-basedselect() programming interface.
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Figure 8: Response time for thttpd

Our experiments using the thttpd [tht] Web server gave similar results. Using our modified kernel
(with new implementations of bothselect() andufalloc()), server throughput (at server saturation)
improved by 58% for 1259-byte files, as shown in figure 8. For 8192-byte files, throughput in-
creased by 37%; further improvement may have been limited by the available network bandwidth,
rather than by the server. At lower request rates, the modified kernel showed much more idle time.
For example, at 100 requests/sec. for a 1259-byte file, the unmodified kernel showed 16% idle
time; the modified kernel showed 88% idle time. At at 100 requests/sec. for an 8192-byte file, the
unmodified kernel had no idle time, but the modified kernel still showed 73% idle time.
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5.2 Scalability with respect to connection count

To demonstrate that our implementations ofselect() andufalloc(), unlike the original code, does
scale well as the number of cold connections increases, we performed another series of experi-
ments. In these experiments, we varied the number of connections from the load-adding client,
between 0 and 2000 connections, and then increased the request rate until the server was saturated.
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Figure 9: Performance of Squid Proxy – Scalability

Figure 9 shows that the throughput of the original kernel drops by 44% as the number of of cold
connections increases from zero to 2000. The figure also shows that the kernel with our scalable
ufalloc() has a somewhat smaller dependency on the number of cold connections, and for the
kernel with our implementations of bothselect() andufalloc(), its throughput drops by only 14%
over the same range. We believe that the remaining dependency results from the user-level costs
of the programming interface forselect().

6 Performance of a live system

Digital Equipment Corporation operates a Web proxy system, in Palo Alto, California, that serves
a large fraction of Digital's internal users. During a typical weekday, the system handles as many
as 2.6 million HTTP requests, from at least 5570 individual client hosts.

We installed our modified kernel on the proxy server, a 500 MHz AlphaStation 500 system
(21164A processor, SPECInt95 = 15.0) with 512 MBytes of RAM. We then ran the system using
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Figure 10: CPU costs as a function of request rate: NetCache, caching disabled

either the unmodified kernel or our modified kernel, each for an entire calendar day (midnight to
midnight, Pacific Time), and collected extensive monitoring information.

We ran trials both using Squid, and using the NetCache proxy [Net] from Network Appliance,
Inc. The NetCache trials are described first, in sections 6.1 through 6.5. The Squid trials are
described starting in section 6.6.

6.1 NetCache configuration

For the trials using NetCache, we used version 3.1.2c-OSF of the NetCache software. Like Squid,
NetCache was based on the Harvest Cache software, although NetCache and Squid have since
evolved separately. Because caching tends to reduce the number of simultaneous network connec-
tions, during our first set of trials we operated this software with caching disabled. For various
reasons, this does not significantly increase response time as seen by the users. In Section 6.5, we
show results for the NetCache server with caching enabled.

Table 3 shows some statistics for each of the trials. The “Max. alloc. fds” column shows the
largest number of file descriptors allocated to a single process at any one point during the trial; the
“Peak req. rate” column shows the largest number of requests logged during a single second over
the course of the day.
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Date Kernel Requests Max. Peak
version handled alloc. req.

fds rate
1998-04-16 old 2581113 107
1998-04-23 new 2602448 755 116

Table 3: Statistics for NetCache live tests, caching disabled

6.2 Effect of request rate on CPU load

The operating system maintains counts of the number of clock interrupts that occur in each system
mode (user-mode, kernel-mode, and idle). During the course of each trial, we logged these counters
every 15 minutes, which allowed us to reconstruct the mean time spent in each mode during the
15 minutes prior to each log entry. The proxy software creates a timestamped log entry for each
HTTP request it receives, so we can also count the number of requests handled in each 15 minute
period, and then compute the mean request rate over that period.

Figure 10 shows how CPU idle time, and CPU kernel-mode time, vary as a function of the mean
request rate. Each point on the scatterplot represents one 15-minute sample. The circles correspond
to idle time; the squares correspond to kernel-mode time. The filled marks show performance with
the old versions of bothselect() andufalloc() (the trial of 1998-04-16). The open marks show the
performance of the new implementations (the trial of 1998-04-23).

We then computed linear regressions for each set of samples. The regression lines are shown in
Figure 10; the numeric results are given in Table 4. (User-mode regressions are given in the table,
but not shown in the figure.) Each sample set includes 96 points (24 hours of 15-minute samples).
The correlation between kernel-mode time and request rate is quite close; the correlation for idle
time is not quite as good, probably because of some outliers caused by daily “housekeeping” tasks
done during periods of low request rate. Because the outliers all occur at low request rates (that
is, late at night), we recalculated the regressions after excluding samples taken at rates below 20
requests/second. These regressions, shown in Table 5, show higher correlation coefficients for idle
time and user-mode time.

The regressions for idle time and kernel-mode time show significantly steeper slopes for the
unmodified kernel, compared to those for the new implementations ofselect() andufalloc(). The
regressions for user-mode time suggest that the new kernel performs slightly better, perhaps be-
cause of better data-cache utilization, but the difference might not be significant.

Although one cannot necessarily expect linear behavior at very high request rates, a linear extra-
polation of the idle time regressions from the full data sets gives X-intercepts of 58 requests/sec. for
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Date Kernel CPU Slope Corr.
version mode coeff.

1998-04-16 old idle -1.67 -0.96
1998-04-23 new idle -1.34 -0.92

1998-04-16 old kernel 1.09 0.98
1998-04-23 new kernel 0.85 0.99

1998-04-16 old user 0.58 0.77
1998-04-23 new user 0.49 0.66

N = 96

Table 4: Linear regressions: full 1-day data sets: NetCache, caching disabled

Date Kernel CPU Slope Corr.
version mode coeff.

1998-04-16 old idle -1.69 -0.97
1998-04-23 new idle -1.46 -0.98

1998-04-16 old kernel 1.02 0.96
1998-04-23 new kernel 0.85 0.99

1998-04-16 old user 0.68 0.97
1998-04-23 new user 0.65 0.99

N = 54

Table 5: Linear regressions: above 20 requests/second, NetCache, caching disabled
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the unmodified kernel, and 69 requests/sec. for the new implementation. Using the truncated data
sets (Table 5), the calculated X-intercepts are 57 and 68 requests/sec., respectively. This suggests
that the modified kernel might support a peak request rate about 19% higher than the unmodified
kernel, in this application. However, we caution against using the X-intercept to predict the actual
peak request rate, since in other trials (see, for example, Figure 12) we found that the system can
indeed process requests at mean rates above the X-intercept.

Note that our samples were averaged over 15-minute intervals. The actual one-second peak rates
experienced during these trials (see Table 3) were 107 requests/sec. for the unmodified kernel, and
116 requests/sec. for the modified kernel. Clearly, the systems can support rates higher than the
extrapolation of idle time implies. The main significance of our performance improvements may
be not the increase in peak throughput, but the decrease in queueing delay (and response time) at
high throughputs.

6.3 Profile results

We obtained CPU-time profiles, using DCPI, for the proxy server during periods of heavy load, for
both the original kernel (Table 6) and our modified kernel (Table 7). Each profile covers a period
of exactly one hour. The tables include all procedures accounting for at least 1% of the non-idle
CPU time.

The first column in each profile shows the fraction of CPU time spent in each function or group
of procedures. As the first row in each table shows, even during periods of heavy load, some time is
spent in the kernel's idle thread and its children. Therefore, the second column shows the fraction
of non-idle CPU time spent in all non-idle procedures; this is a more useful basis for comparing the
two kernels. Note that the profiles include a mixture of kernel-mode and user-mode procedures.

The modified kernel spends 30% of the non-idle CPU time inselect() and related procedures,
compared to almost 40% spent in such procedures by the unmodified kernel. However, kernel-
modeselect() processing is still a significant burden on the CPU. As in Figure 2, considerable
time is spent in the user-modecommSelect() procedure (Squid and NetCache apparently use
slightly different names for the same procedure). These observations support our belief that the
bitmap-basedselect() programming interface leads to unnecessary work, and probably to signific-
ant capacity misses in the data caches.

In experiments with simulated loads, we observed that NetCache on our kernel callsselect()
about 7 times as it does on the unmodified kernel. We believe this is because our fasterselect()
causes a NetCache thread to return fromselect() with usually only one ready descriptor1. Before

1NetCache uses multiple event-driven threads, presumably for exploiting the parallelism available on SMP
machines.
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CPU % Non-idle Procedure Mode
CPU %

10.77% all idle time kernel
89.23% 100.00% all non-idle time kernel

35.27% 39.53% all select functions kernel
13.51% 15.14% selscan kernel
12.56% 14.08% soo select kernel
7.48% 8.38% undo scan kernel
1.64% 1.83% select kernel

12.64% 14.17% commSelect user

1.74% 1.95% all TCP functions kernel

1.49% 1.67% malloc-related #1 user
1.39% 1.56% malloc-related #2 user
1.09% 1.22% mutex unblock user
1.03% 1.16% read io port kernel
0.95% 1.07% bcopy kernel
0.94% 1.05% memGrep user

Profile on 1998-04-16 from 10:00 to 11:00 PDT
mean load = 54 requests/sec.
peak load ca. 98 requests/sec

Table 6: Profile of unmodified kernel on live proxy: NetCache, caching disabled
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CPU % Non-idle Procedure Mode
CPU %

16.29% all idle time kernel
83.71% 100.00% all non-idle time kernel

25.11% 30.00% all select functions kernel
11.23% 13.42% new soo select kernel
7.73% 9.24% new selscan one kernel
5.67% 6.77% select kernel
0.04% 0.05% new undo scan kernel

15.33% 18.32% commSelect user

2.70% 3.23% all TCP functions kernel

2.56% 3.05% in pcblookup kernel
1.09% 1.30% mutex unblock user
1.01% 1.21% bcopy kernel
1.00% 1.19% read io port kernel
0.97% 1.16% malloc-related #1 user
0.93% 1.12% memGrep user
0.91% 1.09% malloc-related #2 user

Profile on 1998-04-23 from 10:00 to 11:00 PDT
mean load = 55 requests/sec.

peak load ca. 116 requests/sec

Table 7: Profile of modified kernel on live proxy: NetCache, caching disabled
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the next event arrives, other NetCache threads callselect() to discover this event again. In the un-
modified kernel, each call toselect() takes longer, and returns multiple events. This may account
for the heavy use ofselect() in Table 7.

In this application, even the unmodified kernel spends very little time inufalloc() (0.20%).
However, the modified kernel spends even less time inufalloc() (0.03%). For this proxy, the total
number of open file descriptors is relatively small. However, one might expect this fraction to
become more significant at higher request rates.

We are not entirely sure what caused the significant increase in time that the modified kernel
spends inin pcblookup. This may be the result of an unfortunate collision in the direct-mapped
data caches.

We note that in this real-world environment, for both versions of the kernel, just over 1% of
the non-idle CPU time is spent in all kernel-related data movement (thebcopy()). Even less time
is spent computing checksums. A moderate amount of time (between 2% and 3%) is spent in
TCP-related functions (which have been highly optimized in Digital UNIX). These measurements
reinforce the emphasis placed by Kay and Pasquale[KP93] on “non-data touching processing over-
heads”; however, they failed to recognize that the poor scalability ofselect() would ultimately
dominate the other costs.

6.4 Data cache effects

We have speculated in several places that our kernel modifications affect data cache utilization.
DCPI allows us to estimate the mean cycles per instruction (CPI) for each procedure in a profile,
and to estimate the fraction of dynamic stalls caused by data-cache misses. We found that the CPI
for the user-modecommSelect() procedure declined from 1.69 to 1.62 as a result of our kernel
changes, mostly because of fewer data-cache misses.

We also found that the CPI forin pcblookup() increased from about 1.28 to 11.15 as an apparent
result of our kernel changes, even though we did not change the code for this kernel procedure.
This suggests that we somehow created a particularly unlucky collision in the data caches between
the data structures forin pcblookup() and those forselect().

6.5 Performance with caching enabled

We ran similar trials using NetCache with caching enabled. Table 8 shows some statistics for each
of the trials.

Compared to Table 3, the use of caching seems to greatly increase the maximum number of
allocated file descriptors (by a factor of more than three), while also more than doubling the peak
request rate. A plot of request rates over a relatively short interval reveals what is happening.
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Date Kernel Requests Max. Peak
version handled alloc. req.

fds rate
1998-05-08 old 1959078 228
1998-05-05 new 2255685 2380 244

Table 8: Statistics for live tests: NetCache, caching enabled

Figure 11 shows the logged request rate per second, for one second intervals between 11:00:00
and 11:05:00 (PDT) during the trials of 1998-04-23 (caching disabled) and 1998-05-05 (caching
enabled). Timestamps for requests are taken from the log entries written by the proxy server, not
from external observation.
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Figure 11: View of short-term request rates, with and without caching

From Figure 11, it appears that when caching is enabled, the server is blocking for periods of
many seconds, then processing a burst of requests. (It is not clear whether request processing per
se is blocking, or whether the delay is actually in the generation of log entries.) When caching is
disabled, the request rate is far smoother.

Why does the server block when caching is enabled? Note that the blocking periods (i.e., periods
of zero request rate) all start at almost precisely on a 30-second “clock.” We suspect that the
culprit is the “update” policy, typical of UNIX systems, in which modified file system buffers are
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flushed to disk at 30-second intervals. This policy has long been known to be suboptimal [Mog94]
(and should be fixed in a future release of Digital UNIX), but the extremely long delay periods
experienced in this case suggest that the disk subsystem used for the cache has been improperly
configured; it simply cannot absorb all of the random writes being generated. (Although Digital
UNIX supports a journaled file system, which should absorb many more writes per second, the
proxy was configured to use the traditional “Berkeley Fast File System” for cache storage.)

The increased burstiness of request processing could explain some of the increase in value for
the maximum number of allocated file descriptors seen, in Table 8, when caching is enabled. Since
some requests are being delayed for long intervals, and since the proxy server can presumably
accept new network connections while it is waiting for disk I/O, the maximum number of requests
in progress is likely to increase as a result of lengthy disk delays.

The use of caching also directly increases the number of allocated file descriptors, because
NetCache stores each cached object in a separate file. Especially during periods of delayed file
I/O, the server might have many such files open at once. However, we have not directly measured
the number of such descriptors.
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Figure 12: CPU costs as a function of request rate: NetCache, caching enabled

Figure 12 shows, for NetCache with caching enabled, how CPU idle time, and CPU kernel-
mode time, vary as a function of the mean request rate. Each point on the scatterplot represents
one 15-minute sample. The circles correspond to idle time; the squares correspond to kernel-mode
time. The filled marks show performance with the old versions of bothselect() andufalloc() (the
trial of 1998-05-08). The open marks show the performance of the new implementations (the trial
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Date Kernel CPU Slope Corr.
version mode coeff.

1998-05-08 old idle -2.31 -0.98
1998-05-05 new idle -1.87 -0.97

1998-05-08 old kernel 1.21 0.98
1998-05-05 new kernel 0.79 0.96

1998-05-08 old user 1.10 0.93
1998-05-05 new user 1.08 0.96

N = 96

Table 9: Linear regressions: full 1-day data sets: NetCache, caching enabled

of 1998-05-05).
Compared to Figure 10 (for NetCache with caching disabled), Figure 12 suggests that our kernel

changes have a similar effect on CPU time consumption whether or not caching is enabled; this
is probably because the caching component of NetCache uses relatively little CPU time. This
conclusion is supported by the linear regressions shown in Table 9, but since the use of caching
seems to reduce the CPU-time efficiency of the entire system, the slopes are considerably steeper
than they are in Table 4 (for NetCache with caching disabled). With our modified kernel and
NetCache, the idle-time X-intercept with caching disabled is at 69 requests/sec, but drops to 49
requests/sec when caching is enabled. (Remember that the X-intercept is not a good predictor of
the actual peak request rate, as is clear from Figure 12.)

Tables 10 and 11 show DCPI profiles for, respectively, the unmodified and modified kernels,
both running NetCache with caching enabled. Again (as for the caching-disabled trials, shown in
Tables 6 and 7), the modified kernel results in significantly less time spent in the kernel'sselect()
functions. Overall, in these profiles, the caching-enabled systems spend less of their time in these
functions than do the caching-disabled systems, perhaps because they sustained lower mean re-
quest rates. (The lower rates could be a consequence of lower offered load; they do not necessarily
reflect poorer proxy performance.)

One minor difference between the profiles in Table 7 (caching disabled) and Table 11 (caching
enabled) is in the ranking of two of the modified kernel'sselect() functions. The caching-disabled
system spends 36% more time innew selscan one() than inselect(), while the caching-enabled
system spends 22% more time inselect() than innew selscan one(). This could be a result
simply of the lower mean request rate, or it could reflect a difference in the way that the proxy
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CPU % Non-idle Procedure Mode
CPU %

35.86% all idle time kernel
64.14% 100.00% all non-idle time kernel

15.74% 24.54% all select functions kernel
6.26% 9.76% selscan kernel
5.19% 8.10% soo select kernel
3.38% 5.27% undo scan kernel
0.86% 1.34% select kernel

10.97% 17.10% commSelect user
1.67% 2.61% pmap zero page kernel

1.20% 1.88% all TCP functions kernel

1.15% 1.79% strcmp user
0.88% 1.37% mutex unblock user
0.86% 1.34% bcopy kernel
0.76% 1.18% read io port kernel
0.70% 1.09% memGrep user
0.69% 1.08% malloc-related #1 user
0.69% 1.07% malloc-related #2 user

Profile on 1998-05-08 from 12:00 to 13:00 PDT
mean load = 36 requests/sec.

peak load ca. 210 requests/sec

Table 10: Profile of unmodified kernel on live proxy: NetCache, caching enabled
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CPU % Non-idle Procedure Mode
CPU %

48.40% all idle time kernel
51.60% 100.00% all non-idle time kernel

6.34% 12.29% all select functions kernel
2.59% 5.01% new soo select kernel
1.85% 3.59% select kernel
1.52% 2.94% new selscan one kernel
0.01% 0.02% new undo scan kernel

7.20% 13.95% commSelect user
2.16% 4.18% malloc-related #1 user

2.01% 3.89% all TCP functions kernel

1.84% 3.56% malloc-related #2 user
1.52% 2.94% in pcblookup kernel
1.08% 2.10% strcmp user
0.89% 1.72% mutex unblock user
0.86% 1.68% bcopy kernel
0.85% 1.65% malloc-related #3 user
0.79% 1.53% read io port kernel
0.74% 1.43% memset user
0.74% 1.43% memGrep user
0.64% 1.23% tcp slowtimo kernel
0.62% 1.19% memcpy user
0.61% 1.18% malloc-related #1 user
0.58% 1.12% str grep user

Profile on 1998-05-25 from 12:00 to 13:00 PDT
mean load = 43 requests/sec.

peak load ca. 214 requests/sec

Table 11: Profile of modified kernel on live proxy: NetCache, caching enabled
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software uses theselect() system call when caching is enabled.

6.6 Performance with Squid proxy

For the trials using Squid, we started with version 1.1.20 of the Squid software. All of our Squid
trials were run with caching disabled.

As noted, Squid and NetCache share a common ancestor, and apparently they use similar tech-
niques to wait for events. With Squid, we had the advantage of public access to the source code,
so we were able to investigate its behavior in greater detail.

We first obtained a DCPI profile of Squid running on our modified kernel, shown in Table 12.
Over 30% of the non-idle CPU is spent in the user-modecomm select() function. Note that this
is similar to the profile for NetCache, shown in Table 7 (NetCache uses the namecommSelect(),
apparently for the same function). In the Squid profile, the effect is more pronounced, although
this might be because of the substantially lower request load during this trial.

Using DCPI, we were able to discover the exact reasons whycomm select() was consuming so
many cycles. The main problem came from excessive data-cache misses, incurred because before
every call toselect(), the procedure walks through an array of large data structures, indexed by file
descriptor. This activity not only spends cycles withincomm select(), but also tramples on most
or all of the contents of the data cache, resulting in excessive cache misses for other procedures.

A relatively minor modification to the algorithm incomm select() allowed us to eliminate
almost all of the cache misses [Mog99]. We also found that the procedure, when scanning the
bitmaps returned byselect(), was using an inefficient technique; we replaced it by a faster, al-
beit somewhat less portable, mechanism. As a result, we eliminated essentially all of the CPU
cycles spent incomm select(); see Table 13. Not coincidentally, these changes eliminated a large
fraction of the data-cache misses incurred by the entire system, which probably improves the per-
formance of other functions as well.

We will refer to this modified Squid as version 1.1.20Mod, and used it for all of our subsequent
trials.

The profile for Squid 1.1.20Mod shows that a significant fraction of the user-mode time is now
spent in fivemalloc-related functions (due to themalloc() algorithm used in Digital UNIX, it is
not possible to disentangle the time spent as a consequence of callingfree().) We elected not to
attack this particular issue, because we understand that a forthcoming version of Squid has already
greatly reduced its use ofmalloc(), by maintaining its own pools for certain dynamically-allocated
data structures.

We then ran full-day trials of Squid 1.1.20Mod with both the unmodified and modified kernels.
Table 14 shows statistics for these two trials.

Figure 13 shows how CPU idle time, and CPU kernel-mode time, vary as a function of the mean
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CPU % Non-idle Procedure Mode
CPU %

65.80% all idle time kernel
34.20% 100.00% all non-idle time kernel

8.42% 24.63% all select functions kernel
6.20% 18.14% select user
1.21% 3.54% new soo select kernel
0.96% 2.80% new selscan one kernel
0.01% 0.04% new undo scan kernel

10.30% 30.12% comm select user

1.23% 3.60% all TCP functions kernel

1.20% 3.52% malloc-related #1 user
1.12% 3.28% malloc-related #2 user
0.70% 2.05% in pcblookup kernel
0.60% 1.76% malloc-related #3 user
0.45% 1.31% malloc-related #5 user
0.27% 0.79% malloc-related #4 user
0.32% 0.95% bcopy kernel

Profile on 1998-07-16 from 11:00 to 12:00 PDT
mean load = 17 requests/sec.
peak load ca. 73 requests/sec

Table 12: Profile of modified kernel on live proxy: Squid 1.1.20
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CPU % Non-idle Procedure Mode
CPU %

65.43% 100.00% all non-idle time kernel
34.57% all idle time kernel

16.02% 24.49% all select functions kernel
9.42% 14.40% select kernel
3.71% 5.67% new soo select kernel
2.82% 4.31% new selscan one kernel
0.03% 0.04% new undo scan kernel

5.37% 8.21% malloc-related #1 user
4.35% 6.64% malloc-related #2 user
4.10% 6.27% in pcblookup kernel
2.93% 4.47% malloc-related #3 user

2.88% 4.40% all TCP functions kernel

1.46% 2.23% malloc-related #5 user
1.34% 2.06% malloc-related #4 user
0.94% 1.44% memCopy user
0.92% 1.41% memset user
0.88% 1.35% bcopy kernel
0.84% 1.28% read io port kernel
0.72% 1.10% doprnt user

0.36% 0.54% comm select user

Profile on 1998-09-09 from 11:00 to 12:00 PDT
mean load = 56 requests/sec.

peak load ca. 131 requests/sec

Table 13: Profile of modified kernel on live proxy: Squid 1.1.20Mod
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Date Kernel Requests Max. Peak
version handled alloc. req.

fds rate
1998-09-15 old 2242373 � 1581 121
1998-09-09 new 2591284 1714 139

Table 14: Statistics for live tests: Squid 1.1.20Mod

0 7010 20 30 40 50 60
Mean requests/second

0

100

20

40

60

80

C
PU

 %
 in

 g
iv

en
 m

od
e

Idle, old

Kernel, old

Idle, new

Kernel, new

Figure 13: CPU costs as a function of request rate: Squid 1.1.20Mod
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Date Kernel CPU Slope Corr.
version mode coeff.

1998-09-15 old idle -1.69 -0.96
1998-09-09 new idle -1.26 -0.92

1998-09-15 old kernel 1.05 0.94
1998-09-09 new kernel 0.73 0.95

1998-09-15 old user 0.64 0.85
1998-09-09 new user 0.54 0.80

N = 96

Table 15: Linear regressions: full 1-day data sets: Squid 1.1.20Mod

request rate. Each point on the scatterplot represents one 15-minute sample. The circles correspond
to idle time; the squares correspond to kernel-mode time. The filled marks show performance with
the old versions of bothselect() andufalloc() (the trial of 1998-09-15). The open marks show
the performance of the new implementations (the trial of 1998-09-09). The new kernel clearly
outperforms the original kernel in these trials. The idle-time X-intercept for the unmodified kernel
is 55 requests/sec, while the X-intercept for the modified kernel is 83 requests/sec, an improvement
of 51%.

This is a much larger improvement than for NetCache, with or without caching. We suspect that
by eliminating the large amount of user-mode CPU time spent in thecomm select() function,
our modified version of Squid puts more emphasis on the performance of the kernel (and thus on
the benefits of a more efficient kernel). Additionally, by eliminating a particularly nasty source
of data-cache misses, our changes tocomm select() indirectly improve the performance of other
data-intensive functions (such asselect()) by improving their cache-hit rates.

Table 15 show linear regressions for CPU time as a function of request rate, for Squid 1.1.20Mod
running on both kernels. The table shows significant improvements in the kernel-mode and idle-
time slopes. It also shows a small improvement in the slope of the user-mode regression, perhaps
due to reduced data-cache interference between theselect() functions and the user-mode compu-
tations.

Table 16 shows a DCPI profile for Squid 1.1.20Mod running on the unmodified kernel. Com-
pared to Table 13, the profile for the modified kernel, the unmodified system spends a far larger
fraction of the non-idle CPU time in the kernelselect() functions.

The profile for the unmodified kernel also shows considerably less idle time (11% vs. 35%),
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CPU % Non-idle Procedure Mode
CPU %

89.27% 100.00% all non-idle time kernel
10.73% all idle time kernel

38.96% 43.64% all select functions kernel
13.83% 15.50% soo select kernel
12.33% 13.81% selscan kernel
10.11% 11.32% undo scan kernel
2.51% 2.81% select kernel

5.87% 6.57% malloc-related #1 user
4.51% 5.05% malloc-related #2 user
3.48% 3.89% pmap zero page kernel
3.13% 3.51% malloc-related #3 user
1.68% 1.88% memCopy user
1.53% 1.72% malloc-related #5 user

1.46% 1.64% all TCP functions kernel

1.28% 1.43% malloc-related #4 user
0.85% 0.96% memset user
0.75% 0.84% bcopy kernel

0.23% 0.26% comm select user

Profile on 1998-09-15 from 11:00 to 12:00 PDT
mean load = 48 requests/sec.

peak load ca. 106 requests/sec

Table 16: Profile of unmodified kernel on live proxy: Squid 1.1.20Mod
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even though during the profiled periods, the system with that kernel processed a lower mean request
rate (48 vs. 56 requests/sec) and peak request rate (106 vs. 131 requests/sec). This explains the
appearance of thepmap zero page() function in the profile for the unmodified kernel, soaking
up almost 4% of the non-idle CPU time. When the kernel spends a significant amount of time in
the idle loop, it puts this time to use by zeroing the contents of free pages. When these pages are
later allocated to virtual address spaces or files, the kernel then does not have to spend the time to
zero their contents.

However, when the system spends little time in the idle loop, it soon runs out of pre-zeroed
free pages, and pages must then be zeroed when they are allocated. This causes additional delay
for the consumers of these pages [RBH+95]. So the increase in idle time provided by our kernel
modifications not only improves latency directly, by decreasing the time to perform theselect()
system call; it also improves latency indirectly.

0 205 10 15
% non-idle CPU time

0

5

Squid 1.1.20Mod
Netcache 3.1.2c-OSF

select

new_soo_select

new_selscan_one

Figure 14: Breakdown of kernelselect() costs for NetCache and Squid

The profiles in Tables 7 and 13 imply that Squid and NetCache use theselect() system call in
different ways. Figure 14 illustrates this difference, for trials using the modified kernel. NetCache
causes the kernel to spend significantly more time innew selscan one() andnew soo select(),
while Squid causes the kernel to spend significantly more time in theselect() function. While this
difference might be partly the result of different request patterns during the two trial periods, we
believe that it may actually reflect algorithmic differences between Squid and NetCache.

We know that Squid invokes theselect() system call in two different modes. Thecomm select()
function first invokesselect() with a bitmap representing all “interesting” file descriptors; then,
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whenselect() returns a non-empty bitmap,comm select() iterates through this bitmap and in-
vokes handlers for ready descriptors. Because it might take some time to get through this set of
handlers (they might even block, in some cases), during this loopcomm select() frequently calls
comm select incoming() to see if any requests have arrived on several special descriptors. One
is used for accepting new HTTP connections; the others are used for inter-cache communication
in a caching hierarchy. Thus,comm select incoming() invokes theselect() system call with a
very small bitmap (and, we believe, usually does not find any ready descriptors as a result). This
might explain why Squid spends proportionately more time in the kernel'sselect() function than
NetCache, and less time in thenew selscan one() andnew soo select() functions.

Without access to the NetCache sources, we cannot verify this analysis. However, we note that
the DCPI profile for NetCache does not include any functions with a name, or execution frequency,
similar to that ofcomm select incoming() from the Squid profile. We suspect that Squid's calls
to comm select incoming() are unnecessarily frequent, and hence Squid is spending too much
time in the kernel'sselect() function. If so, it might be possible to eliminate another 10% or so of
the CPU time spent in the kernel on Squid's behalf. We also note that the multithreaded design of
NetCache, discussed in Section 6.3, may affect its use of theselect() system call.

6.7 Summary of live performance results

We obtained measurements from live proxy systems to verify that our concerns about scaling are
indeed important, and to better understand the details of how real-world proxies actually perform.

The central assumption behind the work presented in this paper is that real-world Web servers
and proxies, unlike systems benchmarked in LAN environments, must manage a very large number
of file descriptors. Our measurements confirm this; we saw peak per-process file descriptor counts
as high as 2380 (and even higher on days when transient network conditions led to periods of no
progress).

We expect the peak descriptor counts seen by a given to grow as Web traffic increases, espe-
cially since faster CPUs and better proxy software will allow a single system to handle larger user
populations.

We also expect that a continued transition to the use of “persistent connections” will increase the
number of simultaneously active descriptors. The basic HTTP/1.0 protocol carries just one request
per TCP connection. HTTP/1.1, currently being deployed, allows the use of multiple requests per
connection, and so TCP connections persist even when no request is in progress. Some HTTP/1.0
implementations support a similar feature, called “keep-alive,” but keep-alive does not interoperate
well with proxies, nor is it implemented in Squid 1.1.20, so our measurements do not model its
effects. Anecdotal evidence suggests that widespread use of persistent connections might increase
the number of open TCP connections (i.e., descriptors) by a factor of 4 or more.
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Given that a real-world proxy server must manage lots of open connections, it is not surprising
that an event-driven server (such as NetCache or Squid) would spend a lot of time in theselect()
system call. Our DCPI profiles bear this out; with the original implementation ofselect(), we
found that during a typical period of heavy load, NetCache spent about 40% of the system's non-
idle CPU cycles inselect(), and our improved version of Squid spent 44% of the non-idle cycles
in select().

Even with our improved implementation ofselect(), NetCache still spends 30% of the non-idle
cycles in that part of the kernel, and Squid spends 25% of the non-idle cycles there. So while we
have made major improvements in the efficiency ofselect(), it is still an impediment to scaling;
replacing it with a different programming interface remains the most appealing solution.

We found that, unlike in our benchmark-based tests, the cost ofufalloc() does not seem to be a
major problem for the live proxy systems. This may be a consequence of our use, in the benchmark
tests, of a fixed set of “cold” connections; in real life, the pattern of descriptor allocation might be
considerably different. However, our modified version ofufalloc() did perform significantly better
than the original, even if the absolute numbers are relatively small.

By correlating measured request rates with the amount of CPU time spent in various modes, we
were able to demonstrate that, overall, our kernel changes provide a significant improvement in
the efficiency of the proxy server system. This should lead to a higher maximum throughput, and
lower per-request latency, although we have not measured either value directly.

We learned from the DCPI profiles that Squid 1.1.20 spends a lot of time using an inefficient
algorithm for constructing the input bitmaps for theselect() system call, and also is not very
efficient at scanning the result bitmaps. By making some simple changes to these algorithms, we
were able to eliminate virtually all of this cost, improving the performance of Squid. This result
suggests that although the use of bitmaps in theselect() programming interface is not the best
possible design, it is relatively unimportant compared to other aspects of theselect() interface.

The DCPI profiles for NetCache 3.1.2c-OSF suggest that it, too, uses the same inefficient al-
gorithms as in Squid 1.1.20. However, the profiles also suggest that NetCache and Squid make
use ofselect() in somewhat different ways, and Squid might be able to learn a few tricks from
NetCache.

7 Related Work

Operating system researchers and vendors have devoted much effort to improving Internet server
performance. One early experience that lead to published results was the 1994 California election
server [Mog95a, Mog95b]; another early study was performed at NCSA [McG95]. Operating
system vendors responded to complaints of performance problems by improving various kernel
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mechanisms, especially by replacing BSD's linear-time PCB lookup algorithm [MD93, Sol], and
by changing certain kernel parameter values. Vendors also provided tuning guides for systems
being used as Web servers [DEC98].

In response to observations about the large context-switching overhead of process-per-connection
servers, recent servers [CDN+96, Net, Squ, tht, Zeu] have used event-driven architectures. Meas-
urements of these servers under laboratory conditions indicate an order of magnitude performance
improvement [CDN+96, SS96].

Maltzahn et. al. [MRG97] reported the poor performance of Squid under real conditions. Fox et
al. [FGC+97], in describing the Inktomi system, also briefly mention that their event-driven front-
ends spend 70% of their time in the kernel, and attribute this to the state-management overhead of
a large number of simultaneous connections. However, neither of these papers analyzed the reason
for this phenomenon in any detail.

8 Conclusion

We presented a detailed analysis of the effect of WAN delays on the performance of event-driven
servers, and showed that linear scaling in theselect() andufalloc() implementations leads to ex-
cessive kernel CPU consumption.

We described scalable versions ofselect() andufalloc(), and evaluated their impact on the per-
formance of event-driven servers. We showed that these changes improve the performance of Web
servers and proxies on realistic benchmarks, and on a live proxy, without harming performance on
naive benchmarks.

Our results show the need for a new, scalable interface to replaceselect(). We are currently
working to develop this.
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