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Abstract

Commercial applications such as database servers often have very large
instruction footprints and consequently are frequently stalled due to instruc-
tion cache misses.  A large fraction of the i-cache misses are typically due to
conflicts in the relatively small direct-mapped on-chip instruction caches.  A
variety of tools have been developed to try to order the procedures of an ap-
plication to minimize these conflicts. Such tools often make use of profile
information to place procedures so that procedures that frequently call each
other do not conflict in the i-cache.  However, users often avoid using any
kind of tool that requires them to do extra profiling and linking steps to op-
timize their application.  In addition, any tool that does a static layout of
procedures (whether using profiling information or not) cannot adapt to
varying application workloads that cause very different application behavior.

We have developed a method called DPP (dynamic procedure placement)
for placing procedures at run time for good i-cache performance and have
implemented it for Digital Unix on Alpha servers.  Our system uses a run-
time loader similar to a shared-library loader and is completely transparent.
Our method efficiently invokes the loader at procedures calls and also cor-
rectly handles indirect procedure calls.  We have developed a variety of ex-
tensions, including run-time code optimizations and a way of restarting the
procedure placement while an application is running.  In this paper, we
describe our method, explain the difficult implementation issues, discuss our
extensions, and give performance results for a variety of benchmarks and the
Oracle database server.  We also provide detailed simulation results using
the SimOS-Alpha full-machine simulator.
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Abstract

Commercial applications such as database servers often have very large instruction foot-
prints and consequently are frequently stalled due to instruction cache misses. A large fraction
of the i-cache misses are typically due to conflicts in the relatively small direct-mapped on-
chip instruction caches. A variety of tools have been developed to try to order the procedures
of an application to minimize these conflicts. Such tools often make use of profile informa-
tion to place procedures so that procedures that frequently call each other do not conflict in the
i-cache. However, users often avoid using any kind of tool that requires them to do extra profil-
ing and linking steps to optimize their application. In addition, any tool that does a static layout
of procedures (whether using profiling information or not) cannot adapt to varying application
workloads that cause very different application behavior.

We have developed a method called DPP (dynamic procedure placement) for placing pro-
cedures at run time for good i-cache performance and have implemented it for Digital Unix
on Alpha servers. Our system uses a run-time loader similar to a shared-library loader and
is completely transparent. Our method efficiently invokes the loader at procedures calls and
also correctly handles indirect procedure calls. We have developed a variety of extensions, in-
cluding run-time code optimizations and a way of restarting the procedure placement while an
application is running. In this paper, we describe our method, explain the difficult implement-
ation issues, discuss our extensions, and give performance results for a variety of benchmarks
and the Oracle database server. We also provide detailed simulation results using the SimOS-
Alpha full-machine simulator.

1 Introduction

The code sizes of commercial applications are often extremely large, because they provide a large

number of features and extensive safeguards for security and reliability. These applications include

personal productivity software, such as word processors and spreadsheets, workflow applications,

such as SAP R/3, and database servers. On any given run, these applications will likely execute
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only a fraction of their code, but the instruction footprint is often still very large. Because of

their large footprints, such applications incur frequent instruction cache misses. While some of the

cache misses are unavoidable capacity misses, many of the misses are due to conflicts in relatively

small on-chip instruction caches which are direct-mapped or have small set associativity.

For example, the Alpha version of the Oracle 7.3 database includes 9 megabytes of instruc-

tions. When Oracle runs an on-line transaction processing (OLTP) application similar to the TPC-B

benchmark or a decision support (DSS) application similar to the TPC-D benchmark, the instruc-

tion footprint is about 1 megabyte. During these runs, instruction stalls can account for 25-30% of

the execution time of the Oracle database server on an AlphaServer 4100 multiprocessor [1].

A variety of tools have been developed to try to order the procedures of an application to min-

imize these i-cache conflicts and reduce stalls. Some tools simply make use of static information

such as the structure of the call graph, while other tools use profile information from a previous

run that contains the calling frequency between each pair of procedures or even full traces. Vari-

ous algorithms have been developed to use these types of information to place procedures so as to

reduce conflicts [4, 5, 8]. However, users often avoid using profiling tools that require them to do

an extra profiling run and re-linking step in order to optimize their application. More importantly,

any tool that does a static layout at compile or link time (whether using profiling information or

not) cannot adapt to varying application behavior caused by differing inputs. This limitation is

especially problematic for applications such as databases which have so many distinct components

and features. For example, the code exercised in the Oracle server is quite different when executing

an on-line transaction processing (OLTP) application versus a decision support (DSS) application.

A fixed procedure layout cannot possibly be optimal for these different workloads.

We have instead developed a method for doing placement of procedures at run time. Our

method, which we call DPP (fordynamic procedure placement), is completely transparent. The

user does not have to do any extra profiling or relinking steps, and the image of the application on

disk is left unchanged. In addition, because the layout occurs at run time, DPP produces different

layouts for each individual run that are tailored to that run. In the default setup, DPP places

procedures consecutively in a text segment (i.e. code segment) as they are called. Therefore,

any procedure that is not called in a particular run is never placed in the text segment. In addition,

procedures that call each other are likely to be placed near each other. However, we have developed

a number of extensions to the default arrangement. We have designed a way of restarting the

procedure layout in the middle of a run, so that the procedures used in the core part of the run can

be placed together. In addition, we have developed a method of doing automatic profiling at run

time, and then using that profile information during the same run to ensure that the most important



procedures are placed so as to reduce conflicts.

We have implemented DPP for Digital Unix on Alpha workstations and servers using a run-

time loader similar to a shared-library loader. The basic method initially maps the application code

in its normal location in the address space, and creates a new empty text segment. The loader then

copies the starting procedure of the application to the new segment, but changes all procedure calls

to call back to the loader instead. As the application runs, the loader will be invoked whenever

a procedure attempts to call another procedure at a new call site. The loader then determines

what procedure is being called, and copies that procedure to the new text segment, if not already

there, again replacing procedure calls. Complexities such as indirect procedure calls and branches

outside of a procedure are also handled. Our method is fully implemented, and we have used it for

a variety of complex applications, including an Oracle database.

Chen and Leupen [2] have previously proposed a method for doing procedure placement at run

time called “Just-In-Time Code Layout” (JITCL). We have adopted theiractivation-orderheuristic

of placing procedures consecutively as they are called as our default, but use a fundamentally

different approach to catch calls to unplaced procedures. In addition, they did not develop an actual

implementation of JITCL, but instead relied on simulation to determine potential performance

benefits. Because they only simulated their method, they apparently did not solve several important

problems for real applications, such as catching the use of indirect procedure calls. As described

above, we have also developed a number of extensions to the basic layout heuristic.

In the following section, we describe our basic method for dynamic procedure placement and

our solutions for some difficult problems encountered in real applications. We also describe the

limitations of our approach. Next, we describe a number of extensions to our basic method. We

then give performance results when using DPP, both on SimOS-Alpha, a complete machine simu-

lator, and on actual machines, for a number of standard benchmarks and for a database application.

Finally, we describe related work and conclude.

2 Design and Implementation

In this section, we describe the design and implementation of DPP (dynamic procedure placement).

In the first section, we describe the basic method. We then describe the additional problems that

must be handled to run complete applications. Finally, we discuss some of the limitations of our

method and compare with the approach taken in [2] and other possible approaches.
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Figure 1: Memory layout for DPP

2.1 Basic Method

Our method makes use of a dynamic loader that is similar to the shared-library loader that is used

in most current UNIX systems to link applications with shared libraries at run time. This dynamic

loader gains control when an application marked for dynamic procedure placement is invoked.

The loader maps in all the appropriate segments of the application, but creates an empty text

(code) segment immediately following the original application text segment. Figure 1 illustrates

the layout of the application and loader segments. The loader then copies the starting procedure S

of the application from the original text segment into the start of the empty text segment. While

copying, the loader replaces all procedure call instructions by calls back to itself, and also does all

necessary relocations, as indicated by relocation entries in the application executable. The loader

then calls the starting procedure at its new location. As the application runs, the loader will be

invoked when a procedure A attempts to call another procedure B at a new call site. If B has not

been yet been placed, then the loader copies B to the end of the new text segment, again replacing

procedure call instructions and doing relocations. In either case, the procedure call instruction at

the call site in A is updated to call B directly, if it was originally a direct procedure call. The loader

than allows execution to continue. Eventually, the application reaches a steady state in which there

is no loader overhead, because all the procedures it is using have been placed and all the call sites

have been patched.

The main difficulty with this approach is dealing with indirect procedure calls. Most RISC

processors have both direct and indirect procedure call instructions. Though our method is not



specific to the Alpha, we will reference these instructions via their name on the Alpha processor:

BSR (direct) and JSR (indirect). BSR instructions call a specific procedure, usually specified

by a relative offset from the current program counter. JSR instructions call a procedure whose

absolute address is specified by the contents of a register. JSRs are frequently used to call specific

procedures when the distance between the calling and called procedures is too large or unknown

until link time. However, JSRs also provide the flexibility to call many different procedures at a

single call site based on the current value of a register. We will refer to a data value that contains

the starting address of a procedure and can be used as the argument of a JSR as aprocedure pointer.

Procedure pointers are used in implementing a similar concept in higher-level languages, known

asfunction pointersin C and other languages.

Our problem is that any memory location or register can contain a procedure pointer. Therefore,

the loader cannot possibly correctly update all procedure pointers that contain the old address of

a procedure A so that they now point to the new address of procedure A in a new text segment.

Depending on the relocation or type information available in the executable, the loader may know

the location of all procedure pointers at the start of the program, but it does not yet know the

new locations of procedures, so it cannot update the procedure pointers. The procedure pointers

may then be copied arbitrarily into newly allocated data structures before the procedures that they

reference are placed in the new text segment.

Our solution is to catch indirect procedure calls to “old addresses” via virtual memory protec-

tion. We map the original text into the address space at its default location, but we protect it as

non-executable (using the Unixmmapsystem call). We use this mapped region as the source for

procedure instructions when copying procedures to the new text region. However, if an indirect

procedure call is made using a procedure pointer that references an “old address” in the original

text region, then a memory protection fault will occur. Under Digital Unix, the loader can obtain

control via a signal handler and then take the appropriate steps to copy the destination procedure,

if necessary, and update the procedure pointer. Note that we don' t use this method to trap direct

procedure calls, because we wish to avoid the faulting overhead in the common case.

We may now give our method in detail as shown in Figure 2. In step 2, the calls to the loader

use the same return register as the original call, so no register contents are lost. Different entry

points to the loader are used for different return registers. Note also in step 4 that the dynamic

loader returns to the call site and executes the newly replaced call instruction, rather than calling

procedure B directly. The reason is that the dynamic loader would have to use a JSR to call B,

and therefore a register would have to hold B's address. Therefore, that register's contents would

not be properly restored to what it was at the call site. Instead, the loader restores all registers and



1. Map all of the text and data segments of the application in their standard locations in the address
space, but protect the text segment so that it is not executable.

2. Create a new, empty text segment and copy the starting procedure of the application from the
original text segment to the start of the new segment. Replace all procedure call instruc-
tions by calls to the loader and do any other necessary relocation changes based on the new
location of the procedure.

3. Begin execution of the copied procedure.

4. Whenever the dynamic loader is called from the application, do the following:

� based on the return address, original call instruction, and current register contents, de-
termine the call site A that invoked the loader and the procedure B that the application
would have called at that site.

� if B is not already placed in the new text segment, copy B to the current end of the new
text segment, again replacing all procedure call instructions and doing all relocations.
Also update any statically-known procedure pointers to B in the read-only data segment
so that they point to the new address of B. If the original call was a JSR, then also update
the contents of the register that will be used by the JSR to be the new address of B.

� replace the instruction at the call site with the instruction of the original application, if
it was a JSR, or by a direct call to the new address of B, if it was a BSR.

� return to the original call site and execute the newly replaced call instruction.

5. Whenever the dynamic loader is invoked by a signal handler because of a JSR to an address in
the original text segment, do the following:

� based on the PC, original call instruction, and current register contents, determine the
call site A that caused the fault and the procedure B being called.

� as above, if B is not already placed in the new text segment, copy B to the current end
of the new text segment, making the usual changes.

� update the contents of the register that will be used by the JSR to the new address of B.

� return from the signal handler (which will cause the original call instruction to be re-
executed)

Figure 2: Basic Algorithm for DPP



or zero, zero, r18
L: ldq r27, 48(r14)

ldq r19, 848(sp)
ldq r16, 56(r14)
jsr r26, (r27)

Figure 3: Sample Code for Indirect Call

returns to the call site via the same return register as the original call instruction. Since that register

is immediately used as the return register on the call to B, all register contents will be correct on

entry to B.

2.2 Complexities

In this section, we discuss a few more implementation complexities that must be resolved to run

complete applications.

First, some applications have code (in just a few places) that actually branches to another

procedure without saving any return address. Since the destination procedure may not be placed

yet, we must call the loader in this case, but there is no obvious register to use for saving the return

address. One solution is to do some dataflow analysis when placing procedures containing such

code to determine which registers are not being used. This option can potentially add a fair bit

of computational overhead and extra code to the loader. Our approach is to modify the branch to

jump to new code added at the end of the procedure that explicitly saves a register before calling

the loader. By placing the new code at the end of the procedure, we avoid having to update relative

branches within the procedure and we also avoid having the added code interfere with the execution

of the procedure after the branch is restored to call the new location of the destination procedure.

We also encountered some applications which has a large number of virtual memory faults

because of the repeated use of procedure pointers that the loader had not updated with a new

address. This problem typically occurs when the procedure pointer is copied from its original

static location to one or more locations in data structures. When the procedure referenced by the

procedure pointer is finally placed, the loader cannot update all instances that refer to the procedure.

Although the number of such traps still did not cause significant overhead, we were interested in

reducing the number of traps where possible. Fortunately, it is usually easy to do simple analysis

of the code at a call site to determine where the procedure pointer that is being used is located.

Whenever a trap occurs, the loader therefore inspects the instructions preceding the call site. The

load instruction L used to load the procedure pointer can almost always be identified. Figure 3

gives an example of some code preceding an indirect call. Registersr16 , r18 , and r19 are



loaded with values that are arguments to the called procedure.r27 is loaded with a procedure

pointer that contains the address of the called procedure.r26 is the return register for the call.

Once it has identified the proper load instruction, the loader can calculate the memory location

of the procedure pointer and update it with the new address of the procedure, as long as a few

conditions hold. First, the registers used in calculating the effective address in instruction L cannot

have been modified between L and the JSR instruction. Similarly, no stores can occur between L

and the JSR. Finally, there cannot be any branches to instructions between L and the JSR. This

method of updating procedure pointers is highly effective in eliminating almost all virtual memory

faults once the application has reached a steady state.

Another implementation problem that we encountered was determining the call site when the

loader was invoked by a signal. The signal results because a particular call site used a JSR to call

an address in the original text segment. However, in Digital Unix, the information provided to the

signal handler does not include a direct indication of the call site address. In most RISC systems,

a standard register is used to store the return address of the call. Therefore, the signal handler can

typically determine the call site based on the contents of the standard return register. We ensure

that this method always works by modifying the very few procedures that do not use the standard

return register when doing a JSR as the loader copies them to the new text segment.

2.3 Limitations of our Approach

While the large majority of all applications can be handled transparently by our method, there are

some restrictions on the applications that can be executed. First, applications that do arithmetic

calculations on procedure pointers (or function pointers in C) may not work correctly, since the

offsets between various procedure pointers will be different in the original static layout and the

dynamic layout. Arithmetic on function pointers is, of course, not a good programming practice,

and is allowed only in a few higher-level languages like C that do not have strict type systems.

Second, applications that do comparisons between procedure pointers may not work correctly.

Certain procedure pointers may be updated when the referenced procedure is first placed, while

other procedure pointers are never updated or only updated later (because they can' t immediately

be located by the loader). Therefore, a comparison of procedure pointers that really reference the

same procedure may fail incorrectly, because one pointer contains the old address of the proced-

ure and the other pointer contains the new address. Again, applications are very unlikely to do

comparisons of procedure pointers, since comparison of associated explicit tags would be clearer.

Third, applications that make use of a signal handler to detect memory protection faults may

not work correctly, since the loader installs its own handler for memory protection faults. The



loader's handler calls any handler installed by the application if the fault does not appear to happen

because of non-executable text. Therefore, the likelihood of a problem is minimal.

2.4 Comparison with Alternate Approaches

Chen and Leupen [2] propose a different approach to placing procedures dynamically that they

call Just-In-Time Code Layout (JITCL). In their approach, each procedure call is replaced as it is

copied with a call to a “thunk routine” that corresponds to the procedure being called. A thunk

for a particular procedure is a piece of code that copies the procedure into the new text segment

if the procedure has not been placed yet, patches the call site to call the procedure at the new

address, and then jumps to the new procedure. The use of customized thunk code for each different

procedure may potentially reduce some of the overhead of our approach, in which all procedure

calls initially enter the loader and then the loader determines which procedure was called based on

register contents. On the other hand, the thunk approach has extra overhead in creating the thunks

and a bigger instruction footprint because of all the different thunks (which may each be 20-30

instructions) that are executed.

More importantly, this approach does not work at all in the presence of indirect procedure calls,

where the procedure being called cannot be determined statically. The procedure call cannot be

directed to call a particular thunk, and, just as importantly, the call site cannot be patched to call the

destination procedure directly. Since most current systems (such as Digital Unix) use procedure

pointers both for initialization and some standard library routines, this approach would not work

for any applications, even applications that did not explicitly use procedure pointers.

However, one way of modifying the thunk approach to deal with indirect procedure calls is

as follows. We place the thunks at the original address of the procedures that they represent.

Therefore, we do not have to change procedure calls at all when procedures are copied to their

new location (except for appropriately updating relative offsets in BSRs). When first encountered,

procedure calls still call procedures at their original address and therefore invoke the appropriate

thunk. The thunk executes as described above, except that it only patches the call site to call

the procedure at its new location for direct procedure calls. Indirect procedure calls are handled

correctly, since they will always call the thunk at the original procedure address, and the thunk

will jump to the procedure at its new location. The disadvantage is that indirect procedure calls

will always incur the overhead of the thunk code, both in terms of executing extra instructions and

extra occupancy of the cache and TLB.

In addition, there is extra overhead in creating the thunks. A naive approach would create a

thunk for every procedure at startup time However, that method would cause extensive initializa-



tion overhead, as a large number of virtual memory pages were touched to create thunks for many

procedures that were never used. A more sophisticated approach would use virtual memory pro-

tection to allow thunks on a particular virtual memory page to be created only when a procedure on

that page was first called. For most processors (including Alpha), it may also be necessary to add

additional bridge code so BSR calls in the new text segment, with their limited range, can actually

reach the thunks in the original segment.

Note that the first two limitations described in the Section 2.3 are avoided with this modified

approach. These limitations arise because we modify procedure pointers to point to the new loc-

ation of a procedure when possible. In this approach, we never modify procedure pointers, so

arithmetic and comparisons on procedure pointers operate as expected. However, we decided that

the added overhead of the thunk approach was likely to be much too high to justify using it to

eliminate these two minor restrictions.

3 Extensions

In this section, we describe a number of extensions to the basic DPP system that we have imple-

mented.

3.1 Code Optimizations

Given that we are already copying code at run time, it is fairly easy for us to do a number of run-

time code optimizations to further improve the performance of the application. One optimization

is to replace JSR instructions by BSR instructions when possible, because procedures that call each

other are now closer together. JSR instructions are not only used for indirect procedure calls, but

also for direct calls that cannot use BSR instructions because the two procedures are too far apart

in the virtual address space. When we use DPP, most procedures that call each other are typically

placed much closer, and therefore may be able to use a BSR call, even though they required a

JSR call in the original application. The main difficulty with this optimization is determining if a

JSR call is a simply a direct call between two far-apart procedures, or really an indirect procedure

call. Under Digital Unix, the loader is usually able to distinguish these two cases by trying to

determine from what location the procedure address used by the JSR is loaded. If the loader can

determine the location, and that location is in a read-only segment of address constants, then the

call is really a direct call to a fixed procedure. Otherwise, the loader does not do the optimization.

In the case when the loader can convert the JSR to a BSR, it may also be able to eliminate (replace



with no-ops) some instructions, such as the instruction that loads the procedure address used by

the JSR.

When we cannot eliminate the JSR, we can still try to improve its behavior on some processors.

On the Alpha, the JSR instruction includes a field which gives a “hint” of the low-order bits of the

destination address, in order to avoid delays in fetching the next i-cache line. For an indirect

procedure call, the compiler cannot fill in this hint, since it has no idea what procedure might be

called. However, when the loader is invoked for a call site that is doing an indirect procedure call

in the original application, the loader can fill in the hint with a value corresponding to the actual

target procedure on this call. In the cases where an indirect call actually calls the same procedure

over and over, filling in the hint will speed up later calls at the same call site.

3.2 Restarting Procedure Placement

Although DPP readily adapts to different uses of an application, we have developed a method

of restarting procedure placement that allows DPP to adapt better to changing behavior of an

application during a run. This technique can be useful for almost any application, since most

applications include an initialization phase. The initialization phase will often execute procedures

that are only used during initialization and may cause some procedures that will no longer be used

to be placed among procedures that will often be used. It is therefore useful to restart the procedure

placement after initialization. This technique is also useful for applications which may have long

phases of very distinct behavior. In this case, it may be beneficial to restart the placement whenever

a new phase starts.

The method for doing a restart is as follows:

1. Change the protection of the current text segment so it is non-executable and create another
empty text segment that is executable.

2. Reset the loader's table of procedure mappings, so that all procedures will be placed again in
the new text segment.

3. Copy the current procedure to the new text segment, again replacing all procedure calls to
invoke the loader and doing the necessary relocations.

4. Restart execution at the appropriate spot in the new copy of the current procedure.

When the loader is invoked by a call or a signal, it handles these events as in steps 4 and 5 in

Figure 2, with some extensions. First, it is now possible that a signal will occur because of call

through a procedure pointer that references the previous text segment (not the original application

text). Since that segment has now been made non-executable, a fault will occur and the loader



must maintain information so it can determine which procedure was being called. In addition,

there must be some method of handling procedure returns, since the return addresses on the stack

refer to the previous text segment. The simplest method is to again use virtual memory protection.

When a procedure return attempts to jump to an address in the previous text segment, the loader

will be invoked via the signal handler. The loader must then distinguish the case of a return from

the case of an indirect procedure call, both of which can cause a signal. If the signal was caused by

a return, then the loader copies the returned-to procedure to the latest text segment, as necessary,

and then returns to the appropriate location in the new copy of the procedure. Unfortunately, under

Digital Unix, it is impossible to distinguish the two reasons for a signal in all cases. Therefore, our

implementation actually replaces all return instructions of the current procedure with extra code

that invokes the loader at a special entry point. When this entry point is called, the loader copies

the returned-to procedure to the latest text segment, again replacing its return instructions. In this

way, only returns by procedures on the stack at the time of the restart are trapped.

We currently allow the user to specify when a restart should occur in two different ways. First,

if procedure names are available in the application, the user can specify the name of a procedure

which should cause a restart when it is called for the first time. Second, the user can specify

that a restart should occur when a particular signal (the UNIX “hangup” signal in our current

implementation) is sent to the application.

Our loader also provides a useful option in which the original unmodified application code is

executed until the hangup signal is sent to the application. At that point, the application code is

protected as non-executable and the procedure placement proceeds as described in Section 2.1. In

this way, the overhead of the procedure placement can be completely avoided during the initial-

ization and early phases of an application, when many procedures that are called only once are

executed and DPP is likely to be least effective. DPP can then be started and the minimal number

of procedures placed once the application is in its “main loop”.

3.3 Run-time Profiling

We have also developed an extension of DPP that records profiling information dynamically during

an application run and uses that information to produce a better procedure layout during thesame

run. We simply start the loader in a mode where it leaves unchanged the call to the loader at

the application call site whenever it is invoked. The loader is therefore invoked on every single

procedure call, and it records a profile of the procedure calls. After the certain amount of time or a

signal from the user, the loader uses the profile information to place the most important procedures

in an optimized way in a new text segment. It can use any desired static placement algorithm, such



as those described in [4, 5, 8]. It then continues in a normal way, so that any other procedures

that are called are placed as usual in a dynamic way. Because of the profiling information, the

static algorithm can do a better job than the simple dynamic algorithm in ensuring that the most

important procedures are placed so that they do not conflict.

During the profiling process, execution speed can be slowed down by a factor of ten or more,

but the profiling is clearly worthwhile if it is used only during a small warmup period and improves

the performance of a production application that will run continuously for a much longer time.

We can potentially control these restarts or profiling periods using an adaptive timing method.

For example, we can periodically do restarts on a long-running production application (say, once

an hour). If the set of procedures that are placed in the current restart period is similar to the set

of procedure placed in the preceding period, then the application has been executing similar code,

so we increase the time between restart periods. If the sets are very different, then the application

has been doing different kinds of computations (perhaps of different phase of a workload), so we

should either decrease the restart period or keep it the same.

4 Performance Results

In this section, we provide performance results for applications using DPP. We first describe some

of the expected performance effects and our experimental setup, and then give both simulated

results obtained using SimOS-Alpha, a full machine simulator, and actual results for runs on an

AlphaServer.

4.1 Expected Effects

Although we expect performance benefits from the use of DPP, there are many conflicting effects

that are involved. The main expected performance benefit is a reduction in first-level i-cache

misses. We would also expect a decrease in iTLB faults, since the procedures actually used by the

applications are packed together on fewer code pages than in the original executable. The resident

set of the application should also decrease, thereby likely improving performance when it executes

in a heavy timesharing mix of applications.

However, DPP has a large initialization cost, when it reads in and sorts symbol and relocation

information from the application executable. The loader also introduces instruction overhead and

pollutes the caches with its instructions and data each time it is invoked at a new call site. DPP will

therefore provide a performance benefit only if the application executes for a long time in a steady

state in which it is reusing largely the same code. Note also that DPP touches every instruction



page that the original application touches, since it must copy each active procedure from its original

code page to the new segment. In fact, it may touch more of the application code pages, since it

copies whole procedures, and it additionally must touch the code pages of the new text segment.

Again, a decrease in iTLB faults will only occur if the application executes for a long time with

good instruction locality. Since DPP cannot control any misses caused by kernel code, TLB fault

handlers, etc., DPP may also not help applications which have a significant amount of system time.

An interesting effect of DPP is that there may be more conflicts between instructions and data

in the combined second-level cache, because the instructions are making more effective use of

that cache. Because of DPP, there may be fewer conflicts between instructions in the second-

level cache. There will then tend to be more instructions resident in the second-level cache and

therefore potentially more conflicts with data. This effect may be especially pronounced for the

Alpha 21164, which has an on-chip combined 96 Kbyte second-level cache.

Finally, unfortunately, DPP can have negative effects on performance because of chance place-

ment decisions. For example, two crucial procedures that were not conflicting in the original static

layout may happen to conflict in the dynamic layout, even though the rest of the dynamic layout is

better for i-cache behavior. As another example, the consecutive layout of procedures in the new

text segment may happen to conflict badly in the second-level cache with a particular application

data structure.

4.2 Experimental Setup

Our application set includes three applications from the SPLASH-2 parallel application suite [11]

(but always run on one processor), four applications from the SpecInt95 collection, and the Oracle

7.3 database server running a decision support (DSS) query. The applications are listed in Table 1,

along with the number of procedures and code length in the second and third columns. For RT

(RayTrace), we use two input sets (teapot and balls4), because the cache behavior for the two

inputs is quite different. For the first four applications and Oracle, we isolated the initialization

and finalization phases and therefore can give statistics on just the main part of the application.

The Oracle execution is for a particular decision support query, which is repeated several times

after database initialization. We measure the query after it has already been executed once, so the

software database cache is fully warmed up and no disk operations are required after the restart.

We have implemented the DPP method and extensions described in the previous section for

Alpha servers running Digital Unix. However, our implementation does not correctly handle ap-

plications with kernel threads and does not currently work with shared libraries. All of the applic-

ations are therefore statically linked. All applications are compiled with maximum optimization



available under the Digital Unix compiler, excluding profiling optimizations.

We do our simulated runs using SimOS-Alpha, a port of SimOS to the Alpha. SimOS [9] is a

full machine simulator that completely simulates the available hardware and can run complete op-

erating systems and application workloads without any changes (except possibly for minor changes

to device drivers). SimOS fully simulates all activity on the machine, including user processes, ker-

nel activity, TLB fault handling, etc. In our runs, we simulate a 200 MHz Alpha processor with

separate 8 Kbyte direct-mapped first-level instruction and data caches and a 2-way associative 1

Mbyte board cache. The processor has a 48-entry instruction TLB and a 64-entry data TLB.

We are able to run our DPP loader on SimOS without any changes to the loader or to SimOS.

Most other user-level simulators would require extensive changes to simulate dynamic procedure

placement, since they assume a fixed layout of procedures as indicated by the executable and they

do not typically allow an extra executable (the loader) to be mapped into the application's address

space. In addition, SimOS correctly handles many events, such as signals, memory mapping, cache

flushes, etc., that are often not allowed or fully simulated by other simulators.

We do real performance runs on an AlphaServer 4100. The AlphaServer has four 300 MHz

21164 processors, which each have 8 Kbyte direct-mapped on-chip instruction and data caches, a

96 Kbyte 3-way associative on-chip combined second-level cache, and a 2 Mbyte direct-mapped

board-level cache. Like the simulated processor above, the Alpha 21164 has a 48-entry instruction

TLB and a 64-entry data TLB. The individual processors are rated at 8.1 SpecInt95 and 12.7

SpecFP95, and the system bus has a bandwidth of 1 Gbyte/s.

4.3 Application Results

In Table 1, we list the applications and give statistics for static and dynamic placement of pro-

cedures. The second and third columns give the number of procedures and code length (in bytes)

of the statically linked executable. The fourth column gives the number of 8 Kbyte code pages

in the static executable that are touched during execution. The fifth and sixth columns give the

number of procedures actually placed by standard DPP during a full run and the total length of

these procedures. For most applications, less than 50% of the procedures and 50% of the code in

the executable are actually used, while in the Oracle run, less than 20% of the procedures and code

are used. The seventh column gives the number of code pages in the new segment touched with

dynamic placement (i.e. roughly the sixth column divided by 8192). In comparison with the fourth

column, the “page footprint” is much smaller for all applications when DPP is used. Many pages

in the original code segment are also touched during layout as procedures are copied to the new

segment, but these pages are rarely touched once all the necessary procedures have been placed.



Static Dynamic Restart

no. of code pages no. of code pages no. of no. of no. of code

procs length touched procs length touched traps faults procs length

LU 379 163840 16 93 45836 6 166 4 10 4428

water 408 221184 20 131 87396 11 354 6 36 39916

RT/teapot 524 262144 25 203 108604 14 476 113 42 21180

RT/balls4 524 262144 25 203 105796 13 464 7394 42 19964

m88ksim 607 278528 29 204 108852 14 485 17 90 62428

perl 674 532480 49 175 244148 30 550 4 NA NA

gcc 2282 1630208 175 1080 1078260 132 6544 70 NA NA

go 654 360448 41 409 265348 33 1826 5 NA NA

Oracle/DSS 12670 10330112 635 2479 2231204 273 8235 470 465 503812

Table 1: Applications and Placement Statistics

The eighth and ninth columns give the number of traps (normal calls to the loader) and faults

(calls to the loader via the signal handler). The number of traps is essentially the number of call

sites that are encountered, since a trap can only happen once at each call site. The number of faults

is quite low for all applications except RT (RayTrace). RayTrace makes extensive use of function

pointers for manipulating various kinds of geometric objects, and the function pointers used at one

particular call site cannot be patched, as described in Section 2.2, because of a modification to

the register used to load the function pointer. With some additional analysis, the code at this call

site could potentially be modified so that the address of the function pointers could be determined

properly at run time.

The last two columns of Table 1 give the number of procedures placed (and their total length)

in the main part of the application when the loader does a restart after application initialization.

Clearly, a large number of procedures are only used for initialization and finalization, and the code

being used in the main part of the application is often quite small. Hence, restarting the placement

after initialization should improve the effectiveness of DPP by ensuring that the procedures used

by the main computation are placed near each other.

Table 2 gives the results of simulating the applications on SimOS. The first row for each ap-

plication is for a normal run and the second row is for a run using DPP. As mentioned above, the

statistics for perl, gcc, and go are for entire runs, while the statistics for the remaining applica-

tions exclude initialization and finalization phases (which often include I/O and other interaction

with the operating system.) All statistics include all activity on the machine, including TLB faults,

kernel activity, clock interrupts, etc. The statistics for the normal runs show that LU, Water, and

RT/balls4 have very good i-cache performance, while the remaining applications show extensive



Instruction Data Execution

L1 stall L2 stall Stall TLB L1 stall L2 stall Stall TLB Time

time time cycles faults time time cycles faults

LU 0.27% 0.06% 1.9M 19 29.7% 4.8% 201M 107K 2.914s

0.22% 0.07% 1.7M 49 29.8% 4.8% 202M 107K 2.915s

Water 1.72% 0.01% 9.1M 10 8.6% 0.01% 45.2M 289 2.635s

0.87% 0.01% 4.6M 33 8.7% 0.01% 46.0M 707 2.615s

RT/teapot 10.69% 0.20% 42.4M 750 23.0% 1.05% 93.4M 174K 1.945s

8.83% 0.06% 33.8M 489 23.4% 1.18% 93.4M 174K 1.901s

RT/balls4 0.77% 0.98% 324M 2824 17.4% 40.8% 10814M 8.59M 92.78s

0.65% 1.22% 350M 1655 17.3% 41.1% 10909M 8.59M 93.37s

m88ksim 21.1% 0.00% 22144M 22.4K 7.80% 0.09% 8292M 916K 525.0s

19.8% 0.00% 20473M 10.0K 7.93% 0.09% 8279M 911K 516.5s

perl 18.7% 0.00% 5252M 296 15.5% 0.00% 4359M 288 140.3s

12.1% 0.00% 3130M 486 16.8% 0.01% 4356M 3323 129.8s

gcc 20.2% 1.05% 708M 188K 16.0% 5.0% 699M 956K 16.63s

19.8% 1.25% 730M 73K 15.6% 4.9% 711M 1021K 17.35s

go 11.9% 0.03% 6687M 533 33.7% 0.03% 18937M 61614 280.7s

13.2% 0.04% 7577M 1224 33.2% 0.06% 18961M 86724 285.4s

Oracle/DSS 21.0% 0.11% 675M 3000 14.8% 4.3% 611M 125574 16.01s

15.8% 0.13% 475M 4921 15.2% 4.6% 591M 125701 14.92s

Table 2: Simulated Application Performance (normal vs. with DPP)

misses in the first-level i-cache.

The stall cycles due to i-cache misses go down by 8-50% when using DPP for all applications

except RT/balls4, gcc, and go. The overall execution time also goes down for these same applica-

tions, but mostly by only 2-3%. (For LU, the execution time essentially stays the same.) However,

the execution time does go down significantly (7-8%) for perl and Oracle.

For RT/balls4, the increased instruction stall cycles seem to be due to a conflict with the ap-

plication data in the second-level cache, since the time due to L2 instruction misses increase. The

application accesses a huge amount of data, as indicated by the large number of data TLB faults.

This result is confirmed by an additional simulation of RT/balls4 in which the second-level cache

has 4-way associativity. In this run, the instruction stall cycles go down from 179M to 164M. In

gcc, the increased instruction stall cycles is probably due to the execution of the loader itself. The

loader time is less that 0.1% of the total run time for all applications except RT/teapot, where it is

0.26%, and gcc, where it is 1.39%. The high loader time in gcc is due to the large number of traps

to the loader, which in turn is due to the large number of distinct call sites that are executed during

the different passes of the compiler. The repeated execution of the loader during the short gcc run



is likely to cause cache pollution that affects the performance of the application. It is not obvious

why the instruction stall cycles and run time increase for go; these effects may be due to some

conflict between crucial procedures that happens to be introduced by the dynamic placement.

Although largely insignificant to the execution time, the stall cycles go down dramatically

for water. A large part of this effect is due to removing a conflict between a crucial application

routine and a library routine,fabs(), that computes the absolute value of a floating-point value.

This routine is placed far away from the application routines that use it by the linker, because it is

a library routine, but is automatically placed near these routines by DPP.

The number of iTLB faults goes down dramatically for m88ksim and gcc, both applications

that have large numbers of iTLB faults. The dramatic decreases in iTLB faults are likely due to the

fact that the active procedures of these applications are spread out over a large number of pages

in the static executable, while DPP places all active procedures together on a much smaller set of

pages. The iTLB faults increase somewhat for perl, go, and Oracle (but hardly affect the execution

time), possibly because of execution of the loader itself.

In Table 3, we give the actual run times for the applications on our AlphaServer when using

static and dynamic placement. For Oracle, we give results when using one, two, three, and four

server processes, respectively, to do the decision support query in parallel. As before, the results

for perl, gcc, and go are for the entire application run, while the results for the other applications

are only for the main part of the application. The obvious result is that times go down or stay

roughly the same in almost all cases, and the Oracle runs have quite significant decreases (6-10%)

in execution time. However, the changes are rather small for the other applications. On the real

machine, there may be more adverse effects due to data and instruction conflicts in the second-level

on-chip 96 Kbyte cache.

m88ksim provides one example of the usefulness of the facility for restarting procedure place-

ment. This benchmark simulates the execution of two different programs, and we consider the

second program, the Dhrystone benchmark, to be the main computation. When we restart the pro-

cedure placement just before simulating the Dhrystone benchmark, the run time goes down from

170.31 seconds to 156.36 seconds. The restart is improving performance because the mix of pro-

cedures used in simulating the first program is quite different from the mix used in simulating the

Dhrystone benchmark. As we said above, a restart is likely to be beneficial when an application

starts a new phase of computation with very different behavior.



Static Dynamic

Placement Placement

LU 1.610s 1.562s

water 2.205s 2.188s

RT/teapot 1.581s 1.585s

RT/balls4 67.18s 65.13s

m88ksim 171.29s 170.31s

perl 69.93s 68.45s

gcc 10.40s 10.86s

go 150.48s 151.63s

Oracle/DSS-1 8.77s 8.24s

Oracle/DSS-2 4.91s 4.44s

Oracle/DSS-3 3.28s 2.99s

Oracle/DSS-4 2.48s 2.30s

Table 3: Application Run Times

5 Related Work

There has been a variety of work [2, 3, 4, 5, 6, 7, 8, 10, 12] in improving the instruction cache

behavior of user applications, with most of it focusing on statically laying out the instructions of

an application using profile information from a previous run. Samples and Hilfinger [10] did early

work in using edge frequencies between basic blocks to lay out basic blocks, while McFarling [7]

used basic block frequency counts. Pettis and Hansen [8] developed a simple algorithm for placing

procedures based on procedure frequency counts that is frequently used. Several more complex

but potentially more effective algorithms [4, 5, 6] have been developed recently, including some

that make use of a full trace of procedure calls. Most of these systems have been run only on

user-level simulators, and the authors report the changes in instruction miss rates, but not changes

in execution time. Several systems [3, 12] have recently been developed to manage automatically

the collection of profiles and the re-optimization of user executables.

Our system is most similar to the Just-In-Time Code Layout of Chen and Leupen [2]. However,

as we describe in Section 2.4, their approach does not work for indirect procedure calls, which are

used in almost all applications, at least in initialization and library code. Because they did not do

an actual implementation, they did not necessarily address the detailed implementation issues that

arise. In addition, their simulation results were obtained by instrumenting the user applications,

and therefore probably do not model the interference of loader and kernel code with the application



code in the i-caches. It is not clear if they modeled the behavior of the TLBs. Our simulations using

SimOS-Alpha model the entire system, including the execution of the unmodified loader code, and

we have reported performance results for real systems as well.

6 Conclusions

We have described a method called DPP (dynamic procedure placement) for laying out the pro-

cedures of an application at run time for better instruction cache behavior. Our method is fully

implemented and transparently runs on a variety of applications, including the Oracle 7.3 database

server. It handles a number of difficult problems that arise with real applications, including the use

of indirect procedure calls. We have simulated the effects of DPP on a number of applications using

SimOS-Alpha, a complete machine simulator, and have also measured actual performance results.

Our method usually reduces instruction stall cycles significantly (by 8-50%) for the applications

we have simulated, and typically reduces the execution time as well, but to a lesser degree. We also

achieved notable improvements (6-10%) in the actual run time for the Oracle database executing

a decision support workload. Most other recent work in this area has only reported simulation

results, rather than changes in application run times on real systems.

By default, our system simply places procedures consecutively in a new text segment in the

order in which they are called. However, we have developed an extension in which the layout is

restarted during an application run, so that the procedures that are used in the main part of the

application are more likely to be placed closed together. This extension significantly improved the

performance of one of our applications that had two distinct phases of computation. We have also

implemented a mode in which procedure calls are transparently monitored for a period of time,

and then, during the same run, the profiling information is used to layout the most important pro-

cedures. In the future, we intend to investigate additional run-time layout heuristics. For instance,

we could make use of cache size information to reduce conflicts even when important procedures

cannot be placed near each other. Also, we may want to place very large procedures in a separate

segment, since they are guaranteed to conflict with other procedures in the first-level caches. Fi-

nally, it may be useful to dynamically clone some small but important procedures at run time if it

is otherwise not possible to place the procedures so as to avoid conflicts with some of their callers.
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