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Prefiltered Antialiased Lines Using Half-Plane Distance Functions

Robert McNamara1, Joel McCormack2, Norman P. Jouppi2

Abstract

We describe a method to compute high-quality antiali-
ased lines by adding a modest amount of hardware to a
fragment generator based upon half-plane edge functions.
(A fragment contains the information needed to paint one
pixel of a line or a polygon.) We surround an antialiased
line with four planar edge functions to create a long, thin,
rectangle. We scale the edge functions so that they com-
pute signed distances from the four edges. For each frag-
ment within the antialiased line, the four distances to the
fragment are combined and the result indexes an intensity
table. The table is computed by convolving a filter kernel
with a prototypical line at various distances from the line’s
edge. Because the convolutions aren’t performed in hard-
ware, we can use wider, more complex filters with better
high-frequency rejection than the narrow box filter com-
mon to supersampling antialiasing hardware. The result is
smoother antialiased lines.

Our algorithm is parameterized by the line width and
filter radius. These parameters do not affect the rendering
algorithm, but only the setup of the edge functions. Our
algorithm antialiases line endpoints without special han-
dling. We exploit this to paint small blurry squares as ap-
proximations to small antialiased round points. We do not
need a different fragment generator for antialiased lines,
and so can take advantage of all optimizations introduced
in an existing half-plane fragment generator.

1. Introduction

A device that displays an array of discrete pixels, such
as a CRT monitor or a flat-panel LCD, has a finite fre-
quency response. The abrupt step transition from a back-
ground color to a line color and back again—a square
wave—requires an infinite frequency response to reproduce

correctly. Typical line-drawing algorithms sample a line at
the center of each pixel, so that a pixel displays either the
background color or the line color. This point sampling
allows the irreproducible high frequencies to manifest
themselves (alias) at lower frequencies. Line edges appear
staircased and jagged rather than smooth and continuous.
When animated, these aliasing artifacts are even more ob-
jectionable, as they seem to crawl along the line edges.

Antialiasing techniques apply a low-pass filter to the
desired scene in order to attenuate these high frequencies,
and thus display smooth line edges. With filtering, a
pixel’s color is computed byconvolvingthe filter with the
desired scene. That is, the pixel color is a weighted aver-
age of an area of the desired scene around the pixel’s cen-
ter, and so a pixel near a line edge is a blend of the back-
ground color and the line color.

Antialiasing trades one artifact for another—filtering
blurs the edge of the line. A good filter blurs less than a
poor filter for the same degree of high-frequency rejection,
but usually requires a more complex weighting and sam-
ples a larger area.Prefiltering techniques hide this com-
plexity from hardware by delegating to software the work
of convolving the filter with a prototypical line at several
distances from the line. The results are used to create a
table that maps the distance of a pixel from a line into an
intensity. The table can be constructed once at hardware
design time, or for more accuracy can be recomputed each
time an application selects a different line width, filter ra-
dius, or filterkernel(weighting function).

This paper describes a way to draw antialiased lines
using prefiltering. We use four half-plane edge functions,
as described by Pineda [8], to surround a line, creating a
long, thin rectangle. We scale these functions so that each
computes a signed distance from the edge to a pixel. Scal-
ing requires computing the reciprocal of the length of the
line, but only to a few bits of precision. We push the edge
functions out from the line by an amount that depends upon
the filter radius, so that the antialiased line, which is wider
and longer than the original line, is surrounded by the
scaled edge functions. We evaluate the four edge functions
at each pixel within the antialiased line, and the resulting
distances index one or more copies of a table to yield inten-
sities. We show several ways to combine the distances and
intensities, as combinations that yield better-looking line
endpoints have a higher implementation cost. We also
show how to exploit the combination of nicely rounded
endpoints and varying line and filter widths to approximate
small antialiased circles (e.g., OpenGL antialiased wide
points [9]) by painting blurry squares with an appropriate
filter radius.
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This paper first reviews some filter theory (Wolberg
[11] is good source for more detail) and Pineda’s work [8].
We then show how to turn edge functions into distance
functions that depend upon the line width and filter radius.
We show how different combinations of distance functions
affect the quality of line endpoints, and how to paint small
antialiased points. We compare our algorithm with previ-
ous work. Finally, we present the details of the complete
algorithm along with precision requirements and our con-
clusions.

2. Filtering and Prefiltering

A finite impulse response (FIR) low-pass filter maps
an ideal infinite-resolution image onto a discrete array of
pixels by weighted averaging (convolving) a small area of
the image around the center of each pixel. We refer to this
area as thefootprint of the filter; if the filter is circularly
symmetric then the filter’s radius determines its footprint.
The weighting function is called the filterkernel.

The simplest possible kernel—point-sampling—uses a
single point in the scene for each pixel, and produces the
aliased line and polygon edges seen with low-end graphics
accelerators.

Supersampling examines the image at a large number
of discrete points per pixel, applying the appropriate filter
weight at each sample point. But even high-end antialias-
ing hardware [1][7] tends to use a square box filter of ra-
dius ½. This filter weights all portions of the image within
the footprint equally, and has poor high-frequency rejec-
tion. Further, such implementations sample the desired
image with only 8 or 16 points per pixel, and so can vary
widely from the true analytic convolution result.

More sophisticated kernels use more complex weight-
ings, and reduce aliasing artifacts more effectively and with
less blurring than a box filter. The best practical filters
have a two or three pixel radius, with negative weights in
some regions. Filters with a smaller radius and non-
negative weights limit quality somewhat, but improve
drawing efficiency and match OpenGL semantics, where
an unsigned alpha channel represents pixel intensity. One
good compromise is a cone with a radius of one pixel, that
is, a circularly symmetric linear filter.

Figure 1 shows this filter. The grid lines are spaced at
distances of1/10 of a pixel, with unit pixel distances labeled
on thex andy axes. Bold lines demarcate pixel “bounda-
ries,” for readers who think of pixels as tiny squares. This
kernel has a maximum valueh at the center of the pixel.

A filter with only positive weights that is too narrow
(its radius r is too small) leaks a good deal of high fre-
quency energy, resulting in lines with a “ropy” appearance.
A filter that is too wide creates fat blurry lines. In practice,
the “best” filter radius is chosen by gathering a bunch of
people around a screen and asking which lines they like
best. Since one person’s smoothness is another person’s
blurriness, our algorithm allows loading data for an arbi-
trary filter, with programmable radius and weights.

We wish to paint an antialiased approximation to a de-
sired lineLd, which has an intensity of 1 at all points inside
the line, and an intensity of 0 at all points outside the line1.
Since all points inside the desired line have unit intensity,
the convolution at each pixel simplifies to computing the
volume of the portion of the filter kernel that intersectsLd

(which has unit height). To create anantialiasedline Laa

we place the filter kernel at each pixel inside or near the
desired lineLd, and compute the pixel’s intensity as the
volume of the intersection of the kernel with the line.
Figure 2 shows a desired line with a width of one pixel,
intersected with the filter kernel placed at a pixel center.
The portion of the line that doesn’t intersect the filter ker-
nel is shown slightly raised for clarity of illustration only.
Since the left and right edges of the filter kernel extend
beyond the sides of the line, they have been shaved off.
The intensity for the pixel is the volume of the filter kernel

1 Our algorithm is not limited to white lines on black
backgrounds. The antialiased intensity is used as an alpha
value to blend the background color and the line color. Our
algorithm also paints good-looking depth-cued lines, which
change color along their length, even though it does not
quite correctly compute colors near the line endpoints.
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Figure 1: A conical filter kernel of radius 1 centered
on a pixel. The height at any (x, y) point is the relative

weight that the ideal image contributes to the pixel.

-1

0

1

-1

0

1

0

0.25

0.5

0.75

1

-1

0

1

Figure 2: A conical filter kernel of radius 1 and a
line of width 1. Only the portion of the filter that

intersects the line contributes to the pixel’s intensity.
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that remains. Note that the antialiased lineLaa will light up
pixels “outside” the desired lineLd with some intensity less
than 1.

In theory, the heighth of the kernel should be chosen
to normalize the filter kernel volume to one, so that filter-
ing doesn’t change the overall brightness of the line. In
practice, this makes antialiased lines seem slightly dim. A
filter with a diameter wider than the line always spills over
the edges of the line, and so no pixel has the maximum
intensity of 1. Though nearby pixels slightly light up to
compensate, the antialiased line nonetheless appears dim-
mer than the equivalent aliased line. We’ve chosen the
height h in the following examples so that when the filter
kernel is placed over the middle of a line, the intensity is 1.
This is an esthetic decision, not an algorithmic requirement,
though it does slightly simplify some of the endpoint com-
putations described below in Section 5.

A prefiltered antialiasing implementation need not
compute the volume of the intersection of a filter kernel
with a desired line at each pixel in the antialiased line.
Instead, for a given line width and filter kernel we can pre-
compute these convolutions at several distances from the
line, and store the results in a table.

For now, we’ll ignore pixels near line endpoints, and
assume the filter intersects only one or both of the long
edges ofLd. The orientation of the line has no effect upon
its intersection volume with a circularly symmetrical fil-
ter—only the distance to the line matters. Gupta & Sproull
[3] summarized the two-dimensional volume integral as a
one-dimensional function. Its input is the distance between
a pixel center and the centerline of the desired line. Its
output is an intensity. This mapping has a minimum inten-
sity of 0 when the filter kernel is placed so far away that its
intersection with the desired line is empty. The mapping
has a maximum intensity when the filter kernel is placed
directly on the centerline. If the filter’s diameter is smaller
than the line width, this maximum intensity is also reached
at any point where the filter kernel is completely contained
within the line. This mapping is then reduced to a discrete
table; we have found 32 5-bit entries sufficient to avoid
sampling and quantization artifacts.

Figure 3 shows a graph of such a mapping, where the
filter kernel is a cone with a radius of one pixel, the desired
line’s width is one pixel, and the height of the filter kernel
has been chosen so that the maximum intensity value is 1.0.
The horizontal axis is the perpendicular distance from the
centerline of the desired line, the vertical axis is the inten-
sity value for that distance. When the filter is placed over
the center of the line (distance 0), the intersection of the
filter kernel with the line is as large as possible, and so the
resulting intensity is at the maximal value. When the filter
is placed a distance of 1.5 pixels from the center of the line,
the intersection of the filter with the line is empty, and so
the resulting intensity is 0.

3. Half-Plane Distance Functions

In order to use a distance to intensity table, we need a
way to efficiently compute the distance from a pixel to a
line. We were already using half-plane edge functions
[5][8] to generate fragments for polygons and aliased lines
in the Neon graphics accelerator [6]. Thus, it was natural
and cost-effective to slightly modify this logic to compute
distances for antialiased lines.

Given a directed edge from a point (x0, y0) to a point
(x1, y1), we define the edge functionE(x, y):

∆x = (x1 – x0)
∆y = (y1 – y0)
E(x, y) = (x – x0)*∆y – (y – y0)*∆x

Given the value ofE at a particular (x, y), it is easy to
incrementally compute the value ofE at a nearby pixel.
For example, here are the four Manhattan neighbors:

E(x+1, y) = E(x, y) + ∆y
E(x–1,y) = E(x, y) – ∆y
E(x, y+1) = E(x, y) – ∆x
E(x, y–1) =E(x, y) + ∆x

An edge function is positive for points to the right side
of the directed edge, negative for points to the left, and zero
for points on the edge. We surround a line with four edge
functions in a clockwise fashion; only pixels for which all
four edge functions are positive are inside the line.

An edge function indicates which side of the edge a
point lies, but we need to know the distance from an edge
to a point (x, y). Careful examination of the edge function
shows that itdoescompute the distance to a point (x, y), but
that this distance is multiplied by the distance between
(x0, y0) and (x1, y1). By dividing an edge functionE by the
distance between (x0, y0) and (x1, y1), we can derive a dis-
tance functionD:

D(x, y) = E(x, y) * 1/ sqrt(∆x2 + ∆y2)

The fragment generation logic we use for aliased ob-
jects has four edge function evaluators. The setup se-
quence for an aliased line initializes these evaluators with
four edge functions that surround the aliased line. If we
surround an antialiased line in a similar manner, no
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Figure 3: Mapping of the distance between a
pixel and the center of the line into an intensity.
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changes are needed in the logic used to traverse objects.
Changes are limited to the setup of the edge evaluators for
antialiased lines, which differs from aliased line setup in
two ways. First, we multiply the values loaded into the
edge evaluators by the reciprocal of the length of the de-
sired line, so that the edge evaluators compute Euclidean
distances that we can later map into intensities. When we
refer to the four distance functionsD0 throughD3, remem-
ber that these distance functions are computed by the same
edge evaluators that aliased lines use. Second, we “push”
the edge evaluators out from the desired line, as the antiali-
ased line is longer and wider than the desired line.

Figure 4 shows how the edge evaluators are positioned
for antialiased lines. The grid demarcates pixel boundaries.
The solid line Lm is the one-dimensional (zero width)
mathematical line segment between the endpoints (x0, y0)
and (x1, y1). The dashed lineLd is the desired line, with a
width w of one pixel (measured perpendicularly to the
mathematical lineLm). The four distance functionsD0, D1,
D2, and D3 surround the antialiased lineLaa, which is
lightly shaded. Each distance function computes a signed
distance from an edge or end of the antialiased line to a
point. Points toward the inside of the antialiased line have
a positive distance; points away from the antialiased line
have a negative distance. A fragment has non-zero inten-
sity, and thus is part of the antialiased lineLaa, only if each
of the four distance functions is positive at the fragment.

We derive the position of each distance function from
the desired line’s endpoints (x0, y0) and (x1, y1), its width w,
and the filter radiusr. The two side distance functionsD0

andD2 are parallel to the mathematical lineLm and on op-
posite sides of it. (“D is parallel toLm” means that the line

described byD(x, y) = 0 is parallel toLm.) Their distance
from the mathematical line is ½w + r. The ½w term is the
distance that the desired lineLd sticks out from the mathe-
matical line. Ther term is the distance from the desired
line Ld at which the filter kernel has an empty intersection
with the desired line. The two end cap distance functions
D1 and D3 are perpendicular to the mathematical lineLm.
Their distance from the start and end points ofLm is r. The
end caps can optionally be extended an additional distance
of ½ w to make wide antialiased lines join more smoothly.

Gupta & Sproull map the distance between a fragment
and the mathematical lineLm into an intensity. In contrast,
we have introduced four distances, one from each edge of
the antialiased lineLaa. This is convenient for reusing frag-
ment generation logic, but has other advantages as well.
The next two sections show how the four distance functions
can easily accommodate different line widths and filter
radii, and how they nicely antialias line endpoints without
special casing them.

4. Varying Line and Filter Widths

We would like to support various line widths and filter
radii in a uniform manner. We therefore don’t actually use
the Euclidean distance functions described above. Instead,
we scale distances so that a scaled distance of 1 represents
the Euclidean distance from the edge of the antialiased line
to the point at which the filter function first reaches its
maximum intensity. This scaling is dependent upon both
the filter radius and the line width, and falls into two cases.

In one case, the filterdiameter is equal to or larger
than the linewidth, so the filter kernel can’t entirely fit in-
side the desired line, as shown in Figure 5. The grid de-
marcates pixels. The solid line is the infinitely thin
mathematical lineLm between provided endpoints (x0, y0)
and (x1, y1). The thick dashed line is the desired lineLd,
with a widthw of one pixel. The circles represent the foot-

(x0, y0)

(x1, y1)

D0 = 0 D1 = 0

D3 = 0 D2 = 0

LmLdLaa

Figure 4: An antialiased line surrounded by four
four distance functions. All four functions have

a positive intensity within the shaded area.
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Figure 5: Scaling when the filter is wider than the desired
line. Minimum intensity occurs when the filter is at
distancer outside the desired line, while maximum

intensity occurs at distancew/2 inside the desired line.
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print of the filter, which also has a radiusr of one pixel.
The minimum intensity occurs when the filter is located at
least r pixels outside the edge of the desired line, and so
does not overlap the desired lineLd. The maximum inten-
sity occurs when the filter is centered onLm, and so is lo-
cated ½w pixels inside the edge of the desired line. Our
scaled distance of 1 corresponds to a Euclidean distance of
the filter radiusr plus ½ the desired line widthw. In this
case, the table entries (which map distances from the near-
est line edge into intensities) automatically compensate for
the filter “falling off” the opposite line edge farther away.

In the other case, the desired line is wider than the fil-
ter diameter, as shown in Figure 6. The desired line has a
width w of three pixels, while the filter’s radiusr is still one
pixel. Again, the minimum intensity occurs when the filter
is r pixels outside the edge of the desired line. But the
maximum intensity is reached as soon as the filter footprint
is completely inside the desired line, at a distance ofr pix-
els inside the edge of the desired line. A scaled distance of
1 corresponds to a Euclidean distance of2r pixels.

Thus, we compute the scaled distance functions as:

if (w > 2 * r) {
filter_scale= 1 / (2 * r);

} else {
filter_scale= 1 / (r + ½ w);

}
scale= filter_scale* 1/ sqrt(∆x2 + ∆y2)
D(x, y) = E(x, y) * scale

Measuring distance from the edges of the antialiased
line (where the action is), combined with scaling, means
that the distance-to-intensity function no longer depends
upon the exact values ofw andr, but only upon their ratio.
Figure 7 shows the mapping for three different ratios.

If the intensity mapping table is implemented in a
RAM, recomputing the mapping each time the ratio

changes yields the best possible results. (A high-resolution
summed area table of the filter kernel [2] provides an effi-
cient way of computing a new distance to intensity table,
especially for the two-dimensional table described below in
Section 5.)

In practice, we can accommodate the typical range of
ratios using a single mapping and still get visually pleasing
(though slightly inaccurate) results. At one extreme, the
maximum filter radius will probably not exceed 2; larger
radii result in excessive blurring. Coupled with a minimum
line width of 1, the largest possibler/w ratio is 2. At the
other extreme, allr/w ratios of ½ or smaller use the same
mapping.

5. Line Endpoints

We have so far begged the question of how to map the
values of the four distance functions at a fragment’s posi-
tion into an intensity. The answer is intimately related to
how accurately we antialias the line’s endpoints. All tech-
niques described in this section compute the same, correct
intensity for fragments sufficiently distant from the line’s
two endpoints, but differ substantially near the endpoints.
In general, the more complex implementations compute
better-looking endpoints. Figure 8 shows a 3D graph of the
correct intensities, computed by convolving the filter kernel
at each point on a fine grid near a line endpoint.

The simplest mapping takes the minimum of the four
distances at a fragment, and then indexes the intensity table
to get the fragment’s intensity. Figure 9 shows the result,
which looks something like a chisel. This makes line end-
points appear more square than they should, which is par-
ticularly noticeable when many short lines are drawn close
together, such as in stroke fonts.

Allowing one distance function to modulate another
decreases intensities near the antialiased line’s corners. We
improved endpoint quality considerably by taking the
minimum of the two side distance functionsD0 and D2,
taking the minimum of the two end distance functionsD1

andD3, and multiplying the two minima to get a composite
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Figure 6: Scaling when the filter is narrower
than the desired line. Maximum intensity
occurs at distancer inside the desired line.
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distance, which we use to index the distance to intensity
table. Figure 10 shows the result, which more closely
matches the desired curve. However, note also that the
center of the line near the endpoint shows a slightly sharp
peak, rather than a smoothly rounded top, and that the end-
point resembles a triangular wedge. This difference is in-
distinguishable from the exact convolutions for lines of
width one, but is slightly noticeable on lines of width three.

We can remove the peak with another increase in im-
plementation complexity. Rather than multiplying the side
minimum by the end minimum, we duplicate the distance
to intensity table, look up an intensity for each minimum,
then multiply the resulting intensities. Figure 11 shows the
result. It is hard to visually distinguish this from the de-
sired curve. Subtracting the desired curve from the multi-
plied intensity curve shows that the multiplied intensities
don’t tail off as quickly as the ideal curve, and so the end-
points stick out slightly further than desired.

The most accurate mapping leverages the relatively
small number of entries in the distance to intensity table.
We can use a two-dimensional table that maps the side

minimum distance and the end minimum distance into the
correct intensity that was computed by convolution. This
results in the ideal curve shown in Figure 8. Since this
two-dimensional table is symmetric around the diagonal,
nearly half of the table can be eliminated. A 32 x 32 table
is plenty big—we could detect no improvement using lar-
ger tables. A 32 x 32 table requires 1024 entries, or only
528 entries if diagonal symmetry is exploited. A 16 x 16
table, which more closely matches the resolution of many
hardware antialiasing implementations, requires 256 en-
tries, or only 136 entries if diagonal symmetry is exploited.

It is instructive to contrast these small tables with
Gupta & Sproull’s [3] endpoint tables. For integer end-
points, their table uses 17 rows, each composed of six en-
tries for the six pixels most affected near the endpoint, for a
total of 102 entries. They state that allowing four bits of
subpixel precision for endpoints requires a 17x17x17x6
table, with a total of 29,478 entries! In reality, the table
would be even larger, as some subpixel endpoint positions
can substantially affect more than six nearby pixels.

Figure 8: Ideal intensities near an endpoint computed
via convolution create a smoothly rounded tip.

Figure 9: Intensities using the minimum distance
function create an objectionable “chisel” tip.

Figure 10: Intensities from multiplying the minimum
side distance by the minimum end distance slightly

but noticeably project the center of the endpoint.

Figure 11: Intensities from multiplying the minimum
side intensity by the minimum end intensity are
indistinguishable from the ideal computation.
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6. Antialiased Points

OpenGL wide antialiased points [9] should be ren-
dered by convolving a filter kernel with a circle of the
specified diameter. With a circularly symmetric filter, the
resulting intensities are circularly symmetric around the
center of the antialiased point—intensity is strictly a func-
tion of the distance from the center of the circle. We might
have implemented a quadratic distance evaluator and a spe-
cial distance to intensity table for antialiased points. Or we
could have left antialiased points up to software. Instead,
we observed that most applications paint relatively small
antialiased points, and that we could use the programmable
line width and filter radius to paint small slightly blurry
squares as an approximation to small slightly blurry points.

If the filter radius is large enough compared to the
square, the antialiased intensities are nearly circularly
symmetric, as the corners of the antialiased square have
intensities that are effectively zero. Figure 12 and Figure
13 show intensity plots of an antialiased square when the

filter radius is equal to the square’s width. Each intensity is
computed by multiplying the end minimum intensity by the
side minimum intensity, as described above in Section 5.
Figure 12 is the usual 3D plot; Figure 13 is a contour plot
showing iso-intensity curves. Each iso-intensity curve
shows the set of (x, y) locations that have the same intensity
value; the different curves represent intensity level of 0.1,
0.2, etc. Note that only the lowest intensity curve deviates
noticeably from a circle. This deviation is undetectable on
the display, and the antialiased square is indistinguishable
from an antialiased circle.

If we always use a one to one ratio between square size
and filter radius, in order to make the antialiased square
look circular, and then paint larger and larger squares,
eventually the filter radius becomes so large that the an-
tialiased square line appears unacceptably blurred. We can
accommodate slightly larger squares by limiting the filter
radius to some maximum that doesn’t blur things too much,
then allow the size of the square to increase a bit beyond

Figure 12: Intensities are nearly circularly symmetric
when the square size is equal to filter radius.

Figure 13: Contour lines when the
square size is equal to filter radius.

Figure 14: Intensities are slightly non-circular at low inten-
sities when the square size is 1.5 times the filter radius.

Figure 15: Contour lines when the
square size is 1.5 times the filter radius.
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this. The antialiased “point” gradually becomes more like
a square with rounded corners, but it takes awhile for this
to become objectionable. Figure 14 and Figure 15 show an
antialiased square whose width is 1.5 times the filter radius;
most of the contour lines still look like circles. For typical
displays, we’ve found that antialiased squares up to about
five or six pixels in size look quite good. (Note that this
may increase the filter radius beyond the 2 pixels “maxi-
mum” hypothesized previously in Section 4, but that this
does not increase the maximumr/w ratio beyond 2, as the
square size is increasing, too.)

7. Comparison With Previous Work

Our algorithm owes much to Gupta & Sproull [3], but
differs in several important ways. We compute four dis-
tances from a pixel to the edges and endpoints of the line;
they use a single Bresenham-based distance to the center of
the line. We combine distances before table lookup, and/or
intensities after table lookup, in a fashion that automatically
antialiases line endpoints; they handle endpoints as a spe-
cial case using a special table. We allow non-integer end-
points by adding a few bits of precision to computations;
non-integer endpoints explode their special endpoint table
into infeasibility. We support different line widths and
filter radii via setup computations that merely alter the edge
functions’ increments and initial values; they require
changing rendering operations to paint different numbers of
pixels on each scanline, and a new endpoint table with a
different number of entries.

Turkowski [10] proposes two distance functions, one
along the length of the line and one perpendicular to that.
Along the length of the line, he obtains results identical to
us. At the endpoints, his algorithm can paint better-looking
wide lines, as he defines the endpoints to be semicircles.
Unfortunately, this requires using a CORDIC evaluation to
compute a distance at each pixel location, which is much
more expensive than our two-dimensional table lookup or
our limited precision multiply.

Neither of the two previous techniques map directly
into a fragment generator based on half-plane edge func-
tions, though Turkowski’s work could conceivably be
wedged into such a design. Two other techniques, both
used in half-plane fragment generators, are worth noting.

The PixelVision chip [5] paints antialiased lines by
linearly ramping the intensity from 0 at one edge of a line
to 1 at the center, and then back down to 0 at the other
edge. Due to a lack of gamma correction on this hardware,
this results in a filter with a very sharp central cusp, with
poor high-frequency rejection. It computes the edges of an
antialiased line as ±½ the width in the horizontal direction
for x-major lines, and in the vertical direction fory-major
lines, rather than perpendicular to the line. This results in
antialiased lines that change width as they rotate, and are
nearly 30% too narrow at 45°. Finally, it simply truncates
endpoints to the nearest integer, so that several small lines
drawn in close proximity look ragged.

The RealityEngine [1] and InfiniteReality [7] treat pix-
els as squares, and allow an antialiased line intensity to be
computed as the intersection of a line with a pixel’s square.
The result is a separable (square) box filter with a radius of
½. This narrow linear filter results in ropiness (blurry
staircasing) along the length of the line.

Figure 16 shows a starburst pattern of one-pixel wide
lines2, magnified 2.3 times to show greater detail, and an-
tialiased using a regular 4 x 4 subpixel grid like that in the
RealityEngine. Although the 16 sample points allow 17
levels of intensity, lines that are almost vertical or horizon-
tal tend to have intensities that poorly match the pixel area
covered by the line. Since their edges nearly parallel a col-
umn or row of 4 sample points, a slight increase in area
coverage from one pixel to another may jump up to four
intensity levels. (The RealityEngine does allow sample
points to be lit with an “area sample” algorithm, which
mitigates this problem, at the expense of other artifacts due
to lighting up sample points that are outside the object.)

Figure 17 shows the same starburst with 8 supersample
points, but arranged in a less regular sparse pattern on an
8 x 8 subpixel grid, similar to InfiniteReality. One sample
point is used on each row and column of the subpixel grid,
and each quadrant contains two samples. Since half as
many sample points are used, there are only 9 levels of
intensity, which makes lines at about 40° noticeably more
aliased. However, the intensity more accurately matches
the area covered by near horizontal and vertical lines, and
so those are slightly improved.

Figure 18 shows the starburst painted with our algo-
rithm; the two minimum distances are multiplied to get a
single distance that is then mapped into an intensity. Since
we accurately represent distances to the line edges and di-
rectly map that to an intensity, we do not suffer the large
intensity jumps that plague supersampling. Since we use a
wider filter with better high-frequency rejection, we also
paint lines with less aliasing (stairstepping) than existing
supersampling hardware.

Our technique is susceptible to artifacts when different
colored lines are near or cross each other. We treat each
line independently: the precomputed convolution assumes a
line interacts only with the constant background, and not
with other lines. If the OpenGL [9] frame buffer raster
operationCOPYis naïvely used, these artifacts are severe,
as the second line overwrites much of the previous line.
The OpenGL blending function (SRC_ALPHA,

2 All image examples have been grouped onto a single
color page. Please print the examples on a high-quality
ink-jet printer for best results. Laser printers are mediocre
at reproducing subtle color gradations. If you insist on
viewing with Adobe Acrobat, which uses a mediocre re-
duction filter, please magnify example pages to the full
width of your screen, or you will see artificially bumpy
lines, and please ensure that your display is properly
gamma corrected, or you will see ropy lines when you
shouldn’t.
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DST_ONE_MINUS_SRC_ALPHA) combines the new line
with existing information from the frame buffer:

dst= src_alpha* src + (1 – src_alpha) * dst

This blending reduces such artifacts. However, the
most recently painted line still tends to underweight any
previously painted lines nearby, and our technique cannot
use anyZ depth information to give a sense of far and near
at line intersections. These artifacts are unnoticeable when
all antialiased lines are the same color, but give misleading
depth cues when different portions of a wireframe object
area are painted with different colors.

Supersample techniques have one nice advantage over
our algorithm, as they maintain information about the sub-
pixel coverage andZ depth values of both lines, and then
compute a filtered pixel value based upon this information.
However, maintaining equivalent rendering speed requires
scaling frame buffer memory capacity and bandwidth up by
the number of sample points.

And note that typical hardware supersampling is still
subject to large errors in color due to the narrow box filter.
As an artificially worst case example, consider several ver-
tically adjacent horizontal lines, each 1.05 pixels in width,
alternating between red and green. This pattern is just be-
low the Nyquist limit (the highest theoretically reproduci-
ble frequency with a perfect reconstruction filter), but far
beyond the highest reproducible frequency of any actual
display device. Since any attempt to display individual
lines will show aliasing artifacts, a perfect filter matched to
the display would render the entire scene as a muddy yel-
low.

Figure 19 shows such alternating lines rendered three
different ways. The left portion was rendered using a 4x4
dense supersampling pattern. When a line’sy coordinate is
vertically near the center of a pixel, the pixel displays in-
correctly as a nearly saturated red or green, because the
adjacent lines contribute almost nothing to the pixel’s
color. But when a line’sy coordinate is nearly equidistant
between two pixel centers, the pixels display as the correct
muddy yellow, because adjacent red and green lines are
almost equally weighted. Lines with intermediatey coor-
dinates result in intermediate colors.

The middle and right portions of Figure 19 were ren-
dered with our algorithm, blending new line information
with existing frame buffer information using
(SRC_ALPHA, DST_ONE_MINUS_SRC_ALPHA). In the
middle portion, we painted all red lines, then all green
lines. It shows less variation in color than the supersam-
pling images due to the wider filter. But the color is heav-
ily biased away from yellow and toward green, as the more
recently painted green lines underweight the contribution of
the previously painted red lines. In the right portion, we
painted lines from bottom to top. While theaveragecolor
is now correct, the variations in color are larger.

Figure 20 shows crossing lines of like (top half) and
different (bottom half) colors, painted with a 4x4 super-
sampling pattern. The starburst lines are nearer than the
horizontal lines in the left half, and the horizontal lines are

nearer in the right half. In the top half, there is no way to
show which line is nearer when lines cross. The brain must
use other cues, like perspective foreshortening (not present
in this flat image), to discern this information. In the bot-
tom half, the near lines clearly paint over the far lines,
yielding additional clues as to depth relationships. Such a
situation might occur when different subassemblies of a
wireframe image (engine block, pistons, etc.) are displayed
with different colored lines.

Figure 21 shows how our algorithm paints the same
pattern of crossing lines. Like-colored lines cross
smoothly, without noticeable artifacts, and again with no
sense of near and far. However, different colored lines can
provide false depth cues. The most recently painted line
appears nearer than older lines, regardless of actual depth.
We tried the OpenGL blending function (SRC_ALPHA,
DST_ONE), which fully weights existing frame buffer in-
formation. We hoped that when different colored lines
crossed, this would create a neutral blend with no depth
cues. However, this blending function can make one color
line look like it is always nearer than another color line,
regardless of the order that they are painted, and so still
provides incorrect depth cues. Further, this blending func-
tion erroneously brightens the intersection of like-colored
lines.

Rendering high quality images without artifacts re-
quires (1) using a wide, non-box filter like our algorithm,
and (2) maintaining accurate geometry information for each
line or surface that is visible within a pixel, like supersam-
pling with many sample points. We suggest that future
supersampling hardware could adopt more sample points
over a wider area, such that adjacent pixels’ sample points
overlap one another, and that these sample points be
weighted unequally. The weighting requires at least a
small multiplier per sample point, but current silicon fabri-
cation technology makes this feasible. Allowing sample
points to extend farther from a pixel center requires gener-
ating more fragments for a line or surface, but it is easy to
increase the fragment generation rate by increasing the
number of fragments generated in parallel. More problem-
atic is the increased memory capacity and bandwidth re-
quirements of current supersampling hardware when the
number of sample points is increased. We suggest that this
problem is tractable if a sample point mask, rather than a
single sample point, is associated with each color/Z entry,
as described by Jouppi & Chang in [4]. This technique
allows many sample points with just a few color/Z entries
per pixel.

8. Algorithm Details

We now present the complete algorithm at a detailed
level, including the setup of the edge functions. The algo-
rithm is parameterized by the line widthw and the filter
radiusr.
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1. Computex andy deltas

∆x = x1 – x0;

∆y = y1 – y0;

2. Compute the length of the line and the reciprocal
square root. The length and reciprocal square root
need only a few bits of precision, and can use a small
table lookup after a normalizing shift.

length2 = ∆x2 + ∆y2;
if ( length2 0 == 0) {

We’re done with this line
}
reciprocal_sqrt= 1 / sqrt(length2);

3. Compute a scale factor for turning∆x and ∆y into
scaled distances. We want a scaled distance of 1 to
represent the Euclidean distance from an edge at which
the filter function first reaches its maximum value. We
must compensate for this stretching or compression of
Euclidean distances when we “push” the sides and
ends of the line out in steps 8 and 9 below.

if (w > 2 * r) {
filter_scale= 1/ (2 * r);

} else {
filter_scale= 1 / (r + ½ w);

}
scale= reciprocal_sqrt* filter_scale;

4. Compute the scaled increments for use with the dis-
tance function. These multiplies must be high preci-
sion, in order to keep the slope of the antialiased line
sufficiently close to the slope of the desired line.

∆sx= ∆x * scale;
∆sy= ∆y * scale;

5. Compute the scaled increments for each distance func-
tion. Referring back to Figure 4,D0 is to the left of the
mathematical line from (x0, y0) to (x1, y1). D1 is at the
end of the line, a little past (x1, y1). D2 is to the left of
the line from (x1, y1) to (x0, y1). D3 is at the beginning
of the line, a little past (x0, y0). The antialiased line is
thus surrounded by the distance functions in a clock-
wise fashion. Note that the start and end distance
functionsD1 and D3 reverse the roles of∆sx and ∆sy,
as they are perpendicular to the original line.

D0.inc.x = +∆sy;
D0.inc.y = –∆sx;

D1.inc.x = –∆sx;
D1.inc.y = –∆sy;

D2.inc.x = –∆sy;
D2.inc.y = +∆sx;

D3.inc.x = +∆sx;
D3.inc.y = +∆sy;

6. Compute the initial (x, y) position from which frag-
ment generation will proceed. The details of proce-
dure InitialPosition are not relevant, except that we
generate fragments from (x1, y1) toward (x0, y0) so as to
maximize the number of fragments generated before
generating fragments that overlap the previous con-
nected line.

(xinitial, yinitial) = InitialPosition(x1, y1);

7. Compute thex andy distances from the initial position
to the starting and ending points of the line. We actu-
ally compute the reverse subtract for the deltas, as the
initial position’s coordinate are chosen to be less than
or equal to the endpoint coordinates. The reverse sub-
tract yields small nonnegative numbers for∆xend and
∆yend, which can reduce some setup time later on.

∆xstart = x0 – xinitial;
∆ystart = y0 – yinitial;
∆xend = x1 – xinitial;
∆yend = y1 – yinitial;

8. Compute the initial value of the two side edge distance
evaluatorsD0 and D2 at position (xinitial, yinitial). We
“push” the two side edges out by the Euclidean dis-
tance ½w + r from the mathematical lineLm that goes
from (x0, y0) to (x1, y1). The ½w is obvious: if we want
a line that isw pixels wide centered aroundLm, we
need half the line width on either side. We addition-
ally push the side edges out byr, because that is the
distance from the desired line where the intensity
should be 0. SinceD0 andD2 are parallel to the origi-
nal line, we can compute this initial value from the
point (x0, y0) or (x1, y1). Since we have chosen an ini-
tial point for fragment generation that is near the line
endpoint (x1, y1), ∆xend and ∆yend are small numbers.
We use these small numbers in the computations
shown here so that hardware takes fewer cycles to
multiply them by the increments. Finally, remember
that the distance functions are not operating in Euclid-
ean distance, but are scaled byfilter_scale.

side_push= (½w + r) * filter_scale;
∆sides= (∆xend * ∆sy) – (∆yend * ∆sx);
D0.current= side_push– ∆sides;
D2.current= side_push+ ∆sides;

9. Compute the initial values of the start and end edge
distance evaluatorsD3 andD1 at position (xinitial, yinitial).
We “push” the start and end edges out a distance of the
filter radius from the start and end points, as that is the
distance at which the intensity should be 0. To make
connected lines somewhat prettier, we can also push
out an by additionalw/2.

if (project_ends) {
cap_push= side_push;

} else {
cap_push= r * filter_scale;

}
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∆start = (∆ystart * ∆sy) + (∆xstart * ∆sx);
D3.current= cap_push– ∆start;
∆end= (∆xend * ∆sx) + (∆yend * ∆sy);
D1.current= cap_push+ ∆end;

10. Visit all fragments in the antialiased line (the traversal
algorithm is not relevant). For each fragment visited,
evaluate the four distance functions, clamp them to the
range 0.0 to 1.0, and attach the four clamped distances
to the fragment.

11. For each generated fragment, with associated clamped
distancesD0, D1, D2, andD3, convert the four distances
into a single intensity. We show all four methods for
computing an intensity described above in Section 5.

if (use minimum of all four function for combining) {
intensity= integral_table_1D

[min(D0, D1, D2, D3)];
} else if (multiply side minimum by end minimum) {

intensity= integral_table_1D
[min(D0, D2) * min(D1, D3)];

} else if (multiply intensities) {
intensity= integral_table_1D[min(D0, D2)]

* integral_table_1D[min(D1, D3)];
} else if (two-dimensional distance to intensity table) {

intensity= integral_table_2D
[min(D0, D2), min(D1, D3)];

}

9. Precision Requirements

When rendering aliased objects, each edge evaluator
must compute its value exactly, as the four results must
determine unequivocally if a fragment is contained inside
an object. If the supported address space is 2m x 2m pixels,
with an additionaln bits of subpixel precision, eachx andy
coordinate requiresm+n bits. Each edge evaluator requires
a sign bit, 2m integer bits, andn fractional bits. (An
evaluator doesn’t need 2m+1 integer bits, because it is im-
possible for both terms of the edge function to be at oppo-
site ends of their ranges simultaneously. An edge evaluator
doesn’t need 2n fractional bits, because onlyn fractional
bits change when moving from one fragment to another.)

Unlike edge functions, distance functions and the sub-
sequent derivation of intensity are subject to several
sources of error. Since antialiased lines are inherently
blurred, most of these errors won’t create a visual problem
as long as sufficient precision is maintained. We discuss
the following sources of errors:

• The error in the computation ofx andy increments for
the evaluators, and the subsequent accumulation of this
error, which alters the slope of the line and thus moves
the position of one endpoint;

• the number of entries in the distance to intensity table,
which affects the magnitude of intensity changes;

• overflow of the distance function, which most likely
causes some fragments in the antialiased line to be ig-
nored; and

• error in the computation of the reciprocal square root,
which alters the width of the line.

When the scaledx and y increments∆sx and ∆sy
(computed in Section 8, Step 4 above) are rounded to some
precision, their ratio is altered. In the worst case, one in-
crement is just over ½ the least significant bit (lsb), the
other has just under ½ the lsb. They round in different di-
rections, creating nearly a bit of difference between the
two. If a line extends diagonally from (0, 0) to (2m, 2m), we
add the∆sy error into the edge accumulator 2m–1 times,
and subtract the∆sx error 2m–1 times, thus affecting the
bottomm+1 bits of an edge evaluator. The net effect is to
change the slope of the line, which moves the endpoint
farthest from the starting position. We therefore require
m+1 bits to confine the error, and must allocate these bits
sufficiently far below the binary point of the edge accumu-
lator so that one endpoint doesn’t move noticeably. Limit-
ing endpoint movement to1/32 of a pixel seems sufficient.

But how many bits in an edge accumulator represents
1/32 of a pixel? The distance functions operate in a scaled
space. If we limit the largest filter radius to four pixels,
then the minimumfilter_scale(computed above in Section
8, Step 3) is1/8. And so we require 5+3=8 more bits below
the binary point in addition to them+1 accumulation error
bits.

We also need enough bits to index the distance to in-
tensity table so that the gradations in intensity aren’t large
enough to be noticeable. We tried four bits (16 table en-
tries of four bits), which is typical of many antialiasing
implementations, but found we could detect Moiré effects
when displaying a starburst line pattern. Using five bits (32
table entries of five bits) eliminated these patterns com-
pletely—we couldn’t reliably tell the difference between
five and more bits. Fortunately, we need not add these five
bits to the eight already required to limit endpoint move-
ment—the index bits lie just below the binary point, and so
they overlap the top five of the eight bits that limit endpoint
movement.

Finally, we need enough integer bits above the binary
point to accumulate the worst-case maximum value.
Again, we are operating in a scaled space, and so must al-
low for the worst possiblefilter_scale. If the minimum
allowed line width is one pixel, and the minimum allowed
filter radius is ½ pixel, then at these limits scaled distances
are equivalent to Euclidean distances. In the worst case of
a line diagonally spanning the address space, at one end-
point we are sqrt(2)*2m pixels from the other endpoint. So
we need a sign bit plus anotherm+1 bits.

All told, the edge evaluators need 2m+11 bits for an-
tialiased lines. If we haven=4 bits of subpixel precision,
this is an increase of 6 bits over the aliased line require-
ments. Intermediate computations to set up the edge evalu-
ators require a few more bits.



WRL RESEARCHREPORT98/2 PREFILTEREDANTIALIASED LINESUSINGHALF-PLANE DISTANCE FUNCTIONS

12

We still need to determine precision requirements for
the reciprocal square root. Gupta & Sproull [3] have a
similar term in their algorithm, which they imply must be
computed to high precision. In truth, high precision is un-
necessary in both their algorithm and ours. Note that a
distance function divides thex andy increments of an edge
function by the same value. Errors in the reciprocal square
root change the mapping of Euclidean space into scaled
space, and thus change only the apparent width of the line.
The reciprocal square root need only be accurate enough to
make these width differences between lines unnoticeable;
five or six bits of precision seem sufficient.

10. Conclusions

We have described an algorithm for painting antiali-
ased lines by making modest additions to a fragment gen-
erator based upon half-plane edge functions. These edge
functions are commonly used in hardware that antialiases
objects via supersampling, but these implementations in-
variably use a narrow box filter that has poor high-
frequency rejection. Instead, we implement higher quality
filters by prefiltering a line of a certain width with a filter
of a certain radius to create a distance to intensity mapping.
This prefiltering can be done once at design time for a read-
only table, or whenever the line width to filter radius ratio
changes for a writable table. We don’t require special han-
dling for endpoints, nor large tables for subpixel endpoints.
By scaling Euclidean distances during antialiased line
setup, we can accommodate a wide range of filter radii and
line widths with no further algorithm changes. We can
exploit these features to paint reasonable approximations to
small antialiased circles. The resulting images are gener-
ally superior to typical hardware supersampling images.

We implemented a less flexible version of this algo-
rithm in the Neon graphics accelerator chip [6]. Additional
setup requirements are small enough that antialiased line
performance is usually limited by fragment generation
rates, not by setup. High-quality antialiased lines paint at
about half the speed of aliased lines. An antialiased line
touches roughly three times as many pixels as an aliased
line, but this is somewhat offset by increased efficiency of
fragment generation for the wider antialiased lines. The
additional logic for antialiasing is reasonable: Neon com-
putes the antialiased intensity for four fragments in parallel,
with an insignificant increase in real estate over the existing
logic devoted to traversing object and interpolating vertex
data.
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Figure 16: 4x4 dense supersampling aliases noticeably.

Figure 17: 8x sparse supersampling also aliases noticeably.

Figure 18: Our algorithm exhibits only slight ropiness.

Figure 19: Alternating adjacent red and green lines, 1.05
pixels in width. 4x4 supersampling (left) has large varia-
tions in color. Our algorithm painting first red, then green
lines (middle), has a greenish bias. Our algorithm painting

bottom to top (right) has large variations in color.

Figure 20: 4x4 supersampling paints crossing lines of like
color (top half) with no sense of near and far. Lines of dif-
ferent colors (bottom half) display near lines over far lines.

Figure 21: Our algorithm paints crossing lines of like color
(top half) with no sense of depth. Lines of different colors

(bottom half) display recently painted lines over older lines.


