October 1998

WRL
Research Report 98/11

Performance of Database
Workloads on Shared-Memory
Systems with Out-of-Order
Processors

Parthasarathy Ranganathan
Kourosh Gharachorloo
Sarita Adve

Luiz André Barroso

COMPAQL Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

October 1998

The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq's Corporate
Research group. Our focus is research on information technology that is relevant to the technical strategy of the
Corporation and has the potential to open new business opportunities. Research at WRL ranges from Web search
engines to tools to optimize binary codes, from hardware and software mechanisms to support scalable shared
memory paradigms to graphics VLSl ICs. As part of WRL tradition, we test our ideas by extensive software or
hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports and technical notes.
This document isaresearch report. Research reports are normally accounts of completed research and may include
material from earlier technical notes, conference papers, or magazine articles. We use technical notes for rapid dis-
tribution of technical material; usually this represents research in progress.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.digital.com/wrl/home

You can request research reports and technical notes from us by mailing your order to:

Technical Report Distribution
Compag Western Research Laboratory
250 University Avenue

Palo Alto, CA 94301 U.SA.

You can aso request reports and notes viae-mail. For detailed instructions, put the word “Help” in the subject
line of your message, and mail it to:

wrl-techreports@pa.dec.com

Appeaed in the Conferenceon Architedural Suppotfor Programmming Languagsand Operating Sysems (ASPLOS), Octobe 1998.
Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors

Parthasarathy Ranganathari, Kourosh Gharachorlodf,
Sarita V. Adve®, and Luiz Andr & Barrosd

*Electrical and Computer Engineering 'Western Research Laboratory

Rice University Compaq Computer Corporation
{parthas,saritd @rice.edu {barroso,kourosh@pa.dec.com
Abstract and decision support systems (DSS) have quickly surpassed sci-

entific and engineering workloads to become the largest market
Database applications such as online transaction processingsegment for multiprocessor servers. While the behavior of DSS
(OLTP) and decision support systems (DSS) titute the largest workloads has been shown to be somewhat reminiscent of sci-
and fastest-growing segment of the market for multiprocessor serv-entific/engineering applications [2, 28], a number of recent studies
ers. However, most current system designs have been optimizedhave underscored the radically different behavior of OLTP work-
to perform well on scientific and engineering workloads. Given loads [2, 4, 5, 11, 14, 20, 21]. In general, OLTP workloads lead
the radically different behavior of database workloads (especially to inefficient executions with a large memory stall component and
OLTP), it is important to re-evaluate key system design decisions present a more challenging set of requirements for processor and
in the context of this important class of applications. memory system design. This behavior arises from large instruc-
This paper examines the behavior of database workloads onton and data footprints and high communication miss rates that are

shared-memory multiprocessors with aggressive out-of-order pro- characteristic for such workloads [2].
cessors, and considers simple optimizations that can provide fur- ~ The dramatic change in the target market for shared-memory
ther performance improvements. Our study is based on detailedServers has yet to be fully reflected in the design of these systems.
simulations of the Oracle commercial database engine. The resultsCurrent processors have been primarily optimized to perform well
show that the combination of out-of-order execution and multiple on the SPEC benchmark suite [24], and system designs are focused
instruction issue is indeed effective in improving performance of on scientific and engineering benchmarks such as STREAMS [15]
database workloads, providing gains of 1.5 and 2.6 times over anand SPLASH-2 [31]. One important outcome of this trend has
in-order single-issue processor for OLTP and DSS, respectively. In been the emergence of aggressive out-of-order processors that ex-
addition, speculative techniques enable optimized implementationsploit instruction-level parallelism (ILP) with ever-increasing design
of memory consistency models that significantly improve the per- complexity. Given the dominant role of database workloads in
formance of stricter consistency models, bringing the performance the marketplace, it is important to re-evaluate the benefits of ILP
to within 10-15% of the performance of more relaxed models. features such as out-of-order execution, multiple instruction issue,
The second part of our study focuses on the more challenging non-blocking loads, and speculative execution in the context of
OLTP workload. We show that an instruction stream buffer is ef- SUCh workloads. The goal of this paper s to shed light on the be-
fective in reducing the remaining instruction stalls in OLTP, provid- N€fits of such techniques for database applications, thus helping
ing a 17% reduction in execution time (approaching a perfect in- designers determine whether the benefits warrant the extra system

struction cache to within 15%). Furthermore, our characterization COMplexity.
shows that a large fraction of the data communication misses in ~ This paper presents a detailed simulation study of database
OLTP exhibit migratory behavior; our preliminary results showthat workloads running on shared-memory ltiprocessors based on
software prefetch and writeback/flush hints can be used for this datanext-generation out-of-order processors. We present a thorough
to further reduce execution time by 12%. analysis of the benefits of techniques such as out-of-order execu-
tion and multiple issue in database applications, and identify simple
solutions that further optimize the performance of the more chal-
1 Introduction lenging OLTP workload. In contrast, most previous studies of ag-
gressive out-of-order processors in shared-memory systems have
focused on scientific and engineering applications. Similarly, ar-
chitectural studies of database workloads have been mostly based
on simple in-order processor models [2, 5, 28].

To investigate the behavior of databases, we have instrumented
and studied the Oracle commercial database engine (version 7.3.2)
running on Alpha processors under Digital Unix. We use traces
of OLTP and DSS workloads running on Oracle to drive a highly
detailed trace-driven nftiprocessor simulator. Our base set of res-
ults show that the combination of out-of-order execution and mul-

With the increasing demand for commercial applications, data-
base workloads such as online transaction processing (OLTP)

tiple issue provide performance improvements of 1.5 and 2.6 times Global Area (SGA). The SGA consists of two main regions - the
for OLTP and DSS, respectively, over multiprocessor systems with block buffer area and the metadata area. The block buffer area is
single-issue in-order processors. While multiple issue and out-of- used as a memory cache of database disk blocks. The metadata
order execution individually improve performance, the combina- area is used to keep directory information for the block buffer, as
tion of these techniques interact synergistically to achieve higher well as for communication and synchronization between the vari-
performance. ous Oracle processes.

Given the range of memory consistency models supported by
commercial multiprocessors (sequential consistency for SGI, “pro- 5 1 1 OLTP Workload
cessor consistency”-like for Intel and Sun, and Alpha or PowerPC
consistency for Digital and IBM), we were also interested in eval- Our OLTP application is modeled after the TPC-B benchmark from
uating the effectiveness of speculative technigues that can be usedhe Transaction Processing Performance Council (TPC) [29]. TPC-
in conjunction with out-of-order processors [7]. Our results show B models a banking database system that keeps track of customers'
that these techniques can reduce the execution time of OLTP andaccount balances, as well as balances per branch and teller. Each
DSS in sequentially consistent systems by 26-37%, bringing the transaction updates a randomly chosen account balance, which in-
performance to within 10-15% of systems with more relaxed mod- cludes updating the balance of the branch the customer belongs to
els (e.g., Alpha consistency). Given that these techniques have beernd the teller from which the transaction is submitted. It also adds
adopted in several commercial microprocessors (e.g., HP PA8000.an entry to the history table which keeps a record of all submitted
Intel Pentium Pro, Mips R10000), the choice of the hardware con- transactions.
sistency model for a system does not seem to be a dominant factor ¢ application was extensively tuned in order to maximize

for database workloads, especially for OLTP. _ transaction throughput and CPlilization. For OLTP, we run Or-

The second part of our study focuses on further reducing the re- acle in “dedicated mode,” in which each client process has a dedic-
maining instruction stall and remote memory latenciesin our OLTP ated Oracle server process to execute database transactions.
workload. We show thgt a_simple 4-entry_ins_truction stream buffer We chose to use TPC-B instead of TPC-C (the current official
can reduce the execution time by 17%, bringing the performance 1o yansaction processing benchmark from TPC) for a variety of reas-
Wl_thm 15% of a system with a perfect instruction _cache. For_data ons. First, TPC-B has much simpler setup requirements than TPC-
misses, our results indicate that the memory stall time is dominated ¢ an therefore lends itself better for experimentation through sim-
by the latency of remote d_lrty misses. Our characterization shows ;|ation. Second, our performance monitoring experiments with
that most of these data misses are generated by a small subset 6fpc_g and TPC-C show similar processor and memory system be-
the application instructions and exhibit migratory data access pat- hayior, with TPC-B exhibiting somewhat worse memory system
terns. In the_ abse_nce of source code for Oracle, we_used a S'Tnp'eoehavior than TPC-C [2]. As a result, we expect that changes in
scheme for inserting software prefetch and flush/write-back hints ocessor and memory system features to affect both benchmarks
into the code as a preliminary study. This optimization provided & i, gimilar ways. Finally, it is widely acknowledged that actual cus-
12% reduction in execution time. tomer database applications will typically show poorer perform-

The rest of paper is structured as follows. The next section ance than TPC-C itself.
presents our experimental methodology, including a description of
OLTP and DSS workloads and the simulated multiprocessor sys-
tem. Section 3 describes the base performance results with aggress2-1-2 PSS Workload
ive out-of-order processors. We address the remaining instruction- TR

.) . The DSS application is modeled after Query 6 of the TPC-D bench-
a_nd data-related memory stalls for OLTP in Section 4. Finally, we mark [30]. p'llqhe TPC-D benchmark r(e?prergents the activities of a
discuss related work and conclude. business that sells a large number of products on a worldwide scale.
It consists of several inter-related tables that keep information such
. as parts and customer orders. Query 6 scans the largest table in the
2 Experlmental Methodology database to assess the increase in revenue that would have resulted
if some discounts were eliminated. The behavior of this query is
Because of their complexity and size, commercial-grade databaserepresentative of other TPC-D queries [2].
workloads are challenging applications to study in a simulation en- £or DSS, we used Oracle with the Parallel Query Optimization
vironment. In this section, we describe our database workloads andqption, which allows the database engine to decompose the query

the experimental setup used to study them. into multiple sub-tasks and assigach one to an Oracle server pro-
cess. The queries were parallelized to generate four server pro-
cesses per processor (16 processes in a 4-processor system).
2.1 Database Workloads perp (16p P ystem)

We use the Oracle 7.3.2 commercial database management syste ; :

as our database engine. In addition to the server processes thall?'z Simulation Methodology

execute the actual database transactions, Oracle spawns a few dagye yse the RSIM simulation infrastructure [17] to model multipro-
mon processes that perform a variety of duties in the execution of cegsor systems with processors that exploit ILP technigues. Due to
the database engine. Two of these daemons, the database writefhe difficulty of running a commercial-grade database engine on a
and the log writer, participate directly in the execution of transac- |;ser-level simulator (such as RSIM), our strategy was to use traces
tions. The database writer daemon periodically flushes modified of the applications running on a four-processor AlphaServer4100,
database blocks that are cached in memory out to disk. The logand drive the simulator with those traces. This trace-driven simula-
writer daemon is responsible for iting transaction logs to disk tjon methodology is similar to that used by Lo et al. [13].

beforg itallows a server to corr_lmltatr.ansactlon. The traces were derived with a custom tool built using
Client processes communicate with server processes throughatom [23]. Only the Oracle server processes were traced since

pipes, and the various Oracle processes (i.e., daemons and serverge many daemon processes have negligible CPU requirements.
communicate through a shared memory region called the System

However, the behavior of the daemons with respect to synchroniz-2.4 Simulated Architecture
ation and 1/O operations was preserved in the traces. All blocking))
system calls were marked in the traces and identified as hints to theWe use RSIM to simulate a hardware cache-coherent non-uniform
simulator to perform a context switch. The simulator uses these memory access (CC-NUMA) shared-memoryltipiocessor sys-
hints to guide context switch decisions while internally modeling tem using an invalidation-based, four-state MESI directory coher-
the operating system scheduler. The simulation includes the latencyence protocol. Due to constraints of simulation time, we only
of all /0 and blocking system calls. The values for these latencies model a system with four nodes. Each node in our simulated system
were determined by instrumenting the application to measure thelnclu_d_es a processor, separate flrst_level data and instruction caches,
effect of the system calls on an Alpha multiprocessor. a unified second-level cache, a portion of the global shared-memory
The trace also includes information regarding Oracle's higher- and directory, and a network ".“erface- Alisfransaction bus con-
level synchronization behavior. The values of the memory loca- NECts the network interface, directory controller, and the rest of the
tions used by locks are maintained in the simulated environment. SYStém node. The system uses a two-dimensional wormhole-routed

This enables us to correctly model the synchronization between MeSh network. _ _
processesin the simulated environment and avoid simulating spuri- ~_The L1 data cache is dual-ported, and uses a write-allocate,
ous synchronization loops from the trace-generation environment. Write-back policy. The unified L2 cache is a fully pipelined, write-
Our results show that most of the lock accessesin OLTP were con-allocate write-back cache. In aitidn, all caches are non-blocking
tentionless and that the work executed by each process was relatand allow up to 8 outstanding requests to separate cache lines. At
ively independent of the order of acquisition of the locks. DSS each cache, miss status holding registers (MSHRs) [12] store in-
shows negligible locking activity. formation about the misses and coalescdtipia requests to the

One trace file was generated per server process in the systemSame cacheline. All caches are physically addressed and physically

The total number of instructions simulated was approximately 200 1299€d: The virtual memory system uses a bin-hopping page map-
million for both OLTP and DSS. Warmup transients wegadred Ping policy with 8K page sizes, and includes separate 128-element
in the statistics collection for both the workloads. fully associative data and instruction TLBS.)
Our base system models an out-of-order processor with support
for multiple issue, out-of-order instruction executioon-blocking
2.3 Scaling and Validation loads, and speculative execution. We use an aggressive branch
prediction scheme that consists of a hylp@lg branch predictor

We followed the recommendations of Barroso et al. [2] in scaling for the conditional branches [26], a branch target buffer for the
our workloads to enable tracing and simulation. Specifically, we jump target branches, and a return address stack for the call-return
carefully scaled down our database and block buffer sizes while branches. In the event of branch mispredictions, we do not issue
continuing to use the same number of processes per processor agny instructions from after the branch until the branch condition is
a full-sized database. We use an OLTP database with 40 branchegesolved; our trace-driven methodology precludes us from execut-
and an SGA size over 900MB (the size of the metadata area is overing the actual instructions from the wrong-path.
100MB). The DSS experiments use an in-memory 500MB data- Figure 1 summarizes the other important parameters used in
base. The number of processes per CPU was eight for OLTP andy ;1 pase processor model. To study the effect of the individual
four for DSS. Similar configurations were used by Lo etal. [13]. techniques as well as the relative importance of various perform-

In the past, transaction processing applications were reported toance bottlenecks, we vary many of these parameters in our ex-
be mainly I/O bound and to have a dominant componentof their ex- periments. Specifically, we study both in-order and out-of-order
ecution time in the operating system. Today, a modern database enprocessor models, and the effect of instruction window size, issue
gine can tolerate I/O latencies and incurs much less operating sys-width, number of outstanding misses, branch prediction, number of
tem overhead; the operating system componentfor our tuned work-functional units, and cache size on the performance.
loads (measured on the AlphaServer4100) was less th_an 20% of Both the in-order and out-of-order processor models support
the total execution time for the OLTP workload and negligible for 5 straightforward implementation of the Alpha consistency model
the DSS workload. Since our methodology uses user-level traces, nereafter referred to as release consistency [RC] for ease of nota-
we do not take into account the non-negll_glble operating system tion), using the AlphaBandWMBence instructions to impose or-
overheads of OLTP. However, as reported in Barroso et al. [2], the gering at synchronization points. The out-of-order processor model
execution behavior of Digital Unix running this OLTP workload is 4150 supports implementations of sequential consistency (SC) and
very similar to the user-level behavior of the application, includ- processor consistency (PC), and optimized implementations for

ing CPI, cache miss ratios, and contributions of different types of hese consistency models. These are further described in Sec-
misses. Therefore, we expect that the inclusion of operating systemyjs, 3 4.

activity would not change the manner in which our OLTP workload
is affected by most of the optimizations studied here.

Significant care was taken to ensure that the traces accurately3 Impact of Aggressive Processor Features on
reflect the application behavior, and that the simulated execution

reproduces the correct interleaving of execution and synchroniza- ~ Database Workloads

tion behavior of the various processes. We configured our simulator

to model a configuration similar to that of our server platform and Sections 3.1 and 3.2 evaluate the performance benefits and limita-
verified that the cache behavior, locking characteristics, and spee-tions of aggressive ILP techniques for OLTP and DSS workloads.

dup of the simulated system were similar to actual measurementsSection 3.3 provides a comparison of multiprocessor results with

of the application running on our server platform. We also verified those for uniprocessors. Finally, Section 3.4 examines the perform-
our statistics with those reported in [2] and [13] for similar config- ance of optimized implementations of memory consistency models
urations. enabled by ILP features.

Processor parameters -
Processor speed 1GHz | — Memory hierarchy
Issue width 4 (default) Cache line size 64 bytes
Instruction window size 64 (default) Numberof L1 MSHRs 8
Functional units L1 data cache size (qn-.c!np) 128 KB
- integer arithmetic 2 L1 data cache associativity 2-way
- floating point 2 L1 data cache request ports 2
- address generation 2 L1 fdata ca_che hit tlmel . 1 cycle
Branch prediction L1 instruction cache size (on-chig) 128 KB
- conditional branches PA(4K,12,1)/g(12,12) L1 instruction cache associativity | 2-way
- jmp branches 512-entry 4-way BTB L1 instruction cache request ports 2
- call-returns 32-elementRAS L1 instruction cache hit time 1cycle
Simultaneous speculated branches L2 cache size (off-chip) 8M
Memory queue size 32 L2 cache associativity 4-way
Contentionless memory latencies tg L?tqt?niztf?rzined) ;0 cveles
Memory type Latency (in processor cycleg Number of I_prMSHRs a Yy
Iﬁ%ﬁg{gigad 128-180 Data TLB 128 entries, full-assog
Cache-to-Cache read 280-310 Instruction TLB 128 entries, full-assog

Figure 1: Default system parameters.

3.1 Performance Benefits from ILP Features spectively. In contrast, the main footprint for the DSS workload
fits in the large L1 caches (128K), and the memory component is
Figures 2 and 3 present our results for OLTP and DSS respectively. much smaller relative to OLTP; DSS is more compute intensive and
Part (a) of each figure compares ltiprocessor systems with in- penefits from spatial locality on L2 misses. The local miss rates
order and out-of-order processors with varying issue widths. Partfor DSS are 0.0% and 0.9% for the first-level instruction and data
(b) shows the impact of increasing the instruction window size for caches and 23.1% for the second level cache. These observations
the out-of-order processor. Parts (c) through (g) show the impact are consistent with those reported in previous studies [2, 13].
of supporting mitiple outstanding misses (discussed later). The g yaqyits further indicate that support forltiple issue, out-
bars in each graph_ represent the execution time normallzed_to thatof-order execution, and multiple outstanding loads provide signi-
of the leftmost bar in the graphWe further breakdown execution fieont henefits for OLTP and DSS, even though the benefits for
time into CPU (both busy and functional unit stalls), data (both & vp are smaller in comparison. Most of the gains are achieved
read and write), synchronization, and instruction stall (including "5 configuration with four-way issue, an instruction window of
instruction cache and iTLB) components. Aufshally, the bars 35 1 64 entries, and a maximum of four outstanding cache misses
on the right hand side in parts (b) and (c) show a magnification of ;, ,nique cache lines). Interestingly, many current processors are
the read stall time corresponding to the bars on the left hand side.;, fact more aggressive than this. For example, the HP-PA 8000
The read stall time is divided into L1 hits plus miscellaneous stalls supports a fifty-six entry instruction window and ten outstanding

(explained below), L2 hits, local and remote memory accesses (Ser-nisses. The Alpha 21264 supports an eighty entry instruction win-
viced by memory), dirty misses (i.e., cache-to-cache transfers), anddow and eight outstanding misses.

data TLB misses. The base results assume a release-consistent sys-
tem, therefore there is little or no write latency. Section 3.4 dis-
cusses the performance of stricter consistency models. 3.1.1 OLTP Workload

With out-of-order processors, it is difficult to assign stall time Multiole Issue
to specific instructions since each instruction's execution may be p. i) . .
overlapped with both preceding and following instructions. We use ~ G0ing from single- to eight-way issue, in-order processors
the following convention to accountfor stall cycles. At every cycle, Provide a 12% improvement in execution time while out-of-order
we calculate the ratio of the instructions retired that cycie to the Processors provide a 22% improvement (Figure 2(a)). The bene-
maximum retire rate and attribute this fraction of the cycle to the fits from multiple issue stem primarily from a reduction in the CPU
busy time. The remaining fraction is attributed as stall time to the COmMponent. Out-of-order processors allow more efficient use of the
first instruction that could not be retired that cycle. For memory increased issue width. However, the benefits for in-order and out-
instructions, there are extra stall cycles that may be attributed to 0f-order processors level off at two-way and four-way issue (re-
the instruction in addition to the time spent in the execution stage: SPectively).

(i) time spent in the address generation stage that cannot be hidder®ut-of-order Execution

due to data dependence or resource contention, and (i) pipeline re- Comparing equivalent configurations with in-order and out-of-
start time after a branch misprediction, instruction cache miss, or order processors in Figure 2(a), we see that out-of-order execution
exception when the memory instruction is at the head of the win- achieves reductions in execution time ranging from 13% to 24%,
dow. While these stalls are included for all memory categories, depending on the issue width. The combination of multiple is-
their impact is particularly visible in the “L1+misc” componentbe- sue and out-of-order execution interact synergistically to achieve
cause the base L1 latency is only one cycle. Similar conventions higher performance than the sum of the benefits from the individual
have been adopted by many previous studies (e.g., [18, 21]). features.

Overall, our results show that the OLTP workload is character- The performance improvements due to out-of-order execution
ized by a significant L2 component due to its large instruction and stem from reductions in the instruction and data stall components
data footprint. In addition, there is a significant memory compon- of execution time. The decoupling of fetch and execute stages in
ent arising from frequent data communication misses. For OLTP, out-of-order processors enables part of the instruction miss latency
the local miss rates for the first-level instruction and data cachesto be overlapped with the execution of previous instructions in the
and the second level unified cache are 7.6%, 14.1% and 7.4% re-nstruction window. Similarly, the latency of a data load operation
can be overlapped with other operations in the instruction window.
In contrast, the amount of overlap in in-order processors is funda-

L We factor out the idle time in all the results; the idle time is less than 10% in most
cases.

g
= 100 | 1000
5 92.1 90.1 88.8 86.8 instr -
= a synch
3 801 . 74.3 data |
= . 68.4 67.8 cpPU
B oo n
<
E 40+
o
=2
20
o]
1-way 2-way 4-way 8-way 1-way 2-way 4-way 8-way
In-order processors Out-of-order processors
(a) Effect of multiple issue and out-of-order execution (windaresi64; 8 outstanding misses)
2 2
S 100 2P = 100 |
S 90.4 88.0 instr % d(‘;’_LB
=1 83.2 h irt
g 801 l l R A 5 80t oy
é . CPU & IO(I:_BZI
E 60 |- 60 556 L1+misc -
g 48.1 46.6 a4.1
g a0 L 40 _l . . 42.7
2 i
e _
[| | | [|
0% 16 32 64 128 0% 16 32 64 128
Size of instruction window Size of instruction window
(b) Effect of varying instruction window size on out-of-order processors (issue width=4, 8 outstanding misses)
£ £
g 100 _1io = 100 d
instr = TLB
2 83.2 s;gih = dirty R
5 80t 79.4 79.4 A % gol
g g g =" E e
.. L2
g 60 |- @ 60 . L1+misc -
[45.8
% 20 L 20 L 42.1 42.1
S i 1 n
S 20t 20 +
| | |
07 2 4 8 07 2 4 8
Number of MSHRs Number of MSHRs
(c) Effect of varying multiple outstanding misses on out-of-order processors (windew&, issue width=4)
o —A— in-order, 1-way —A— in-order, 1-way —A— in-order, 1-way 3 —A— in-order, 1-way
g 1.2 —— 000, 4-way g 1.2 —— 000, 4-way g 1.2 —— 000, 4-way g 1.2 —— 000, 4-way
3 3 3 3
(53 (53 (53 (53
o o o o
2 2 2 2
I I I I
%] 0 0 0
s s s s
0.0 0.0 0.0 0.0
01234561738 01234561738 01234561738 01234561738
L1 dcache MSHR L2 MSHR L1 dcache Read MSHR L2 Read MSHR
(d) L1 dcache overlap (e) L2 overlap (f) L1 dcache read overlap (9) L2 read overlap

Figure 2: Impact of ILP features on OLTP performance.

mentally limited since these systems require the processor to stalltion of this time that is spent when at leasMSHRs are in use.

at the first data dependence that is detected. Figures 2(d) and (e) present the distributions for all misses at the
Increasing the instruction window size increases the potential first-level data and second-level unified caches, while Figures 2(f)

for overlap in out-of-order processors. As seen from Figure 2(b), and (g) correspond to only read misses.

performance improves as the instruction window size is increased, Figures 2(f)-(g) indicate that there is not much overlap among

but levels off beyond 64 entries. A large fraction of this improve- read misses, suggesting that the performance is limited by the data-

ment comes from the L2 cache hit component (the read stall time dependent nature of the computation. By comparing Figures 2(d)

graph of Figure 2(b)). and (e) (both read and write misses) with Figures 2(f)-(g) (read

Multiple Outstanding Misses misses), we observe that the primary need for multiple outstanding

N misses stems from writes that are overlapped with other accesses.

outstanding misses. The various bars show the performance as th&Vverall, we observe that there is a small increase in the MSHR
occupancy when going from in-order to out-of-order processors

number of MSHRs is increased. For OLTP, supporting only two X 4 - . ;
outstanding misses achieves most of the benefits. This behaviorWh'Ch correlates with the decrease in the read stall times seen in

is consistent with frequent load-to-load dependences that we have':igure 2(c).
observed in OLTP.
To further understand this result, Figures)2(g) display
MSHR occupancy distributions. The distribution is based on the
total time when at least one miss is outstanding, and plots the frac-

Figure 2(c) summarizes the impact of increasing the number o

(5]
£ 100 | 1900
=)
£ o s ey -
I~ dat:
§ =% 68.4 68.1 CSS -
<5
- 60f 52.1
9 ||
% 40 39.7 39.0
E
2 20t
1-way 2-wa; 4-way 8-way 1-way 2-wa 4-way 8-way
In-order processors Out-of-order processors
(a) Effect of multiple issue and out-of-order execution (windozesi64; 8 outstanding misses)
2 2
= 100 1820 = 100
e 83.6 e £ d;’_LS B
=1 . syncl ir
% 801 aa 71.8 71.0 82‘3 - § 80T ool
2
E 60 |- 60 L1+mi'§c -
5
E 40t 40 {-
2 30.5
20 20 - 21—'8 17.2
|~ |~ 14.9 14.5
| - -
o o - - [-
8 16 32 64 128 8 16 32 64 128
Size of instruction window Size of instruction window
(b) Effect of varying instruction window size on out-of-order processors (issue width=4, 8 outstanding misses)
2 g
S 100 {- 1820 = 1001
S instr < dTLB
3 80 + 83.5 synch 2 sol dity R
£ = 704 Sy m & " oeal
2
B 60 60 1— L1smiss
T 44.6
£ 40} 40+ HE
2 -
20+ 20 . - 126
o . | [
1 2 4 8 1 2 8
Number of MSHRs Number of MSHRs
(c) Effect of varying multiple outstanding misses on out-of-order processors (windew&, issue width=4)
Py —A— in-order, 1-way & —A— in-order, 1-way & —A— in-order, 1-way —A— in-order, 1-way
s 12t —o— 000, 4-way g 12 —o— 000, 4-way g 12 —o— 000, 4-way g 12 —— 000, 4-way
3 10} 3 1.0 3 3 1.0
o o o o
x 081 x 0.8 x x 0.8
I I I I
2 o6} 2 o6 2 2 o6
0.4+ 0.4 0.4
0.2+ 0.2 0.2
0.0 | | | | | A 0.0} | | | | | 0.0 0.0} | ;N N N N
01234561738 01234561738 01234561738 01234561738
1

L1 dcache MSHR

(d) L1 dcache overlap

(e) L2 overlap

(f) L1 dcache read overlap

L1 dcache Read MSHR

L2 Read MSHR

(9) L2 read overlap

Figure 3: Impact of ILP features on DSS performance.

3.1.2 DSS Workload without blocking.

Figure 3 summarizes the results for DSS. Overall, the improve-

ments obtained from the ILP features are much higher for the DSS 3.2 Limitations of the ILP Features
workload than for OLTP. This results from the compute-intensive

nature of DSS that leads to litle memory stall time. Clearly, the 3.2.1 OLTP Workload

ILP features are more effective in addressing the non-memory stall . . N
times. Going from single issue to 8-way issue achieves a 32% re-Although the aggressive ILP features discussed above significantly

duction in execution time on in-order processors, and a 56% re- improve OLTP performance, the execution time is still dominated
duction in execution time on out-of-order processors (Figure 3(a)). Py various stall components, the most important of which are in-
Out-of-order issue achieves reductions in execution time ranging Struction misses and dirty data misses. This leads to a low IPC of
from 11% to 43% depending on the issue width. As with OLTP, 0-5 0n the base out-of-order processor.

there is synergy between out-of-order and multiple issue. Perform- ~ We next try to determine if enhancement of any processor fea-
ance levels off for instruction window sizes beyond 32. Figures 2(c) tures can alleviate the remaining stall components. Our results are
and 3(c) indicate that the DSS workload can exploit a larger number summarized in Figure 4. The left-most bar represents the base out-
of outstanding misses (4 compared to 2 in OLTP). Figures 3(d)-(g) of-order configuration; subsequent bars show the effect of infinite
indicate that this is mainly due to write overlap. The high write functional units, perfect branch prediction, and a perfect instruc-
overlap arises because of the relaxed memory consistency modetion cache. The last bar represents a system with twice the instruc-
we use which allows the processor to proceed past write missestion window size (128 elements) along with infinite functional units

g g
= 100 | 100.0 100.0 040 = 100
S . instr 8 dTLB
5 synch @ dirty
3 80t data 2 80+ remote
5 oz cPU 3] local
= < L2
T 601 60 - i
8 53.0 54.3 L1+misc
% 51.5 51.0 471
-0 0 n
S l 30.3
2] 2] |
| | u =
0o o
Base Infinite Perfect Perfect Perfect Base Infinite Perfect Perfect Perfect
Functional branch instruction combination Functional branch instruction combination
Units prediction cache +2X window Units prediction cache +2X window
Figure 4: Factors limiting OLTP performance.
g g g g
= | 100.0 100.0 = | = | 100.0 100.0 = |
8 100 instr [= 100 dg.'-B S 100 . instr = 100 dg.'-B
3 synch 2 ity 5 synch 2l irty
3 80 H data g 80t remote 3 80t data [l g 80t remote
I~ CPU > local I~ CPU > local
> 14 L2 mm o 13 L2 mm
2 601 60 - L1+misc 3 604} 60 - L1+misc
I 53.8 Q
]]
E a0} 40 }39.6 l E a0} a0
o o
= = 20.7
20 + 20 + 20 + 20 + .
0 0 . [0 01, =
]
- - (0] - - (0] - - (0] - -
Uni- Multi- Uni- Multi- Uni- Multi- Uni- Multi-
processor processor processor processor processor processor processor processor
(a) OLTP workload (b) DSS workload

Figure 5: Relative importance of components in uniprocessor attipnogessor systems.

and perfect branch prediction, instruction cache, and i- and d-TLBs 3.3 Comparison with Uniprocessor Systems

(Figure 2(b) shows the performance of the system when the instruc-

tion window size alone is doubled). Our experiments show that uniprocessor systems achieve benefits
The results clearly show that functional units are not a bottle- quantitatively similar to multiprocessors from ILP features for both

neck. Even though OLTP shows a cumulative branch misprediction PSS and OLTP. However, it is interesting to compare the sources

rate of 11%, perfect branch prediction gives only an additional 6% of stall time in uniprc_)cessor and_ mul_tiprocessor systems. Figure 5
reduction in execution time. Frequent instruction misses prevent presents the normalized execution times for our base uniprocessor

the branch prediction strategy from having a larger impact. Not anq m_u_Itiprocessor systems. For OLTP, the in_strug:tion_stall time is

surprisingly, an infinite instruction cache gives the largest gain, il- asignificantly larger componentof execution time in uniprocessors

lustrating the importance of addressing the instruction stall time. SiNce there are no data communication misses. For both workloads,
Increasing the instruction window size on a system with infin- Multiprocessors bringtmut larger read components as expected.

ite functional units, perfect branch prediction, perfect instruction

cache, and perfect TLB behavior (rightmost bar in Figure 4) allows 3.4 Performance Benefits from ILP-Enabled Con-

for more synergistic benefits. The L2 stall componentis further di- ~° . S

minished, leaving dirty miss latencies as the dominant component. sistency Optimizations

Section 4 discusses techniques to address both the instruction stall . . .
and the dirty miss components. Features such as out-of-order scheduling and speculative execution

also enable hardware optimizations that enhance the performance
of memory consistency models. These optimized implementations
3.2.2 DSS Workload exploit the observation that the system must oappearto ex-

. . . ecute memory operations according to the specified constraints of
As discussed before, the DSS workload experiences very little stall 5 yqdel. 1y op g P

time due to its highly compute-intensive nature and its relatively
small primary working set. The IPC of the DSS workload on our
base out-of-order system is 2.2. The main limitation in this ap-
plication is the number of functional units (results not shown). In-
creasing the number of functional units (to 16 ALUs and 16 address
generation units; floating point units are not used by the workload)
results in a 12% performance improvement. For our default con-
figuration, improving other parameters like the branch prediction,
instruction cache and tlb sizes do not make any significant impact.

The technique ohardware prefetchingrom the instruction
window [7] issues non-binding prefetches for memory operations
whose addresses are known, and yet are blocked due to consistency
constraintsSpeculative load executi¢ri] increases the benefits of
prefetching by allowing the return value of the load to be consumed
early, regardless of consistency constraints. The latter technique
requires hardware support for detecting violations of ordering re-
quirements due to early consumption of values and for recovering
from such violations. Violations are detected by monitoring co-
herence requests and cache replacements for the lines accessed by
outstanding speculative loads. The recovery mechanism is sim-
ilar to that used for branch mispredictions or exceptions. Both of
the above techniques are implemented in a number of commercial

g
S 100 }-200.0
8 . 88.2 86.8 instr g
2 8ol . . 771 e
g 72.2 . 70.1 5 67.7 67.8 read g
c
g oo n n N
g
E 40t
o
=
[o]

SC PC RC SC PC RC SC PC RC
Straightforward With prefetching With prefetching
implementation + speculative loads

(a) OLTP workload

g
g 100 {100-0 instr
5 83.0 82.2 synch -
3 80t write
< d
> 63.2 62.6 cry ™
g eor 54.0 . . 53.4 Eﬁ’ 53.7
g oL [[| - [
2

20

o]

SC PC RC SC PC RC SC PC RC
Straightforward With prefetching With prefetching
implementation + speculative loads

(b) DSS workload
Figure 6: Performance benefits from ILP-enabled consistency optimizations.

microprocessors (e.g., HP PA8000, Intel Pentium Pro, and MIPS to hide due to the prevalence of dependentloads. Most of the bene-
R10000). fits are achieved by a four-way issue processor with a window size

Figure 6 summarizes the performance of three implementations of 32 to 64 and a maximum of four outstanding cache misses. Fur-
of consistency models — a straightforward implementation, another thermore, ILP features presentin current state-of-the-art processors
with hardware load and store prefetching, and a third that also usesallow optimized implementations of memory consistency models
speculative loads. The figure shows the performance of sequentiathat significantly improve the performance of stricter consistency
consistency (SC), processor consistency (PC), and release consisthodels (by 26-37%) for database workloads, bringing their per-
ency (RC) for each of the implementations. Execution times are formance to within 10-15% of more relaxed models.
normalized to the straightforward implementation of SC. The data
stall component of execution time is further divided into read and . .
write stall times. 4 Addressing Instruction and Data Bottle-

Our results show that the optimizations have a large impact on i
the performance of the stricter models (SC and PC), and a relat- necksin OLTP
ively small impact on RC (as expected). While prefetching alone
achieves some benefits, the data-dependent nature of computatio
allows for even greater benefits with speculative loads. For ex-
ample, with both prefetching and speculative loads, the execution
time of SC is reduced by 26% for OLTP and by 37% for DSS,
bringing it to within 10% and 15% of the execution time of RC. In
contrast, without these optimizations, RC achieves significant re- i i
ductions in execution time compared to SC (46% for DSS and 28% 4.1 Addressing the Instruction Bottleneck
for OLTP). Given that these optimizations are already included in Qur analysis of the instruction stall time in OLTP identifies two key
several commercial microprocessors, our results indicate that thetrends. First, the instruction stall time is dominated by first-level
choice of the hardware consistency model may not be a key factor cache misses that hit in the second-level cache. This stems from the
for out-of-order systems running database workloads (especially fact that the instruction working set of OLTP is about 560KB which
OLTP). In contrast, previous studies based on the same optimiza-fits in the large 8M second-level cache, but overwhelms the 128K
tions have shown a significant performance gap (greater than 15%lfirst-level cache. Second, a significant portion of the instruction
between SC and RC for scientific workloads [19]. references follow a streaming pattern with successive references
accessing successive locations in the address space. These charac-
. teristics suggest potential benefits from adding a simple instruction
3.5 Summary of ILP Benefits stream buffer between the first and second level caches.

Techniques such as multiple issue, out-of-order execution, and mul- A Stream buffeiis a simple hardware-based prefetching mech-
tiple outstanding loads provide significant benefits for both OLTP @nism that automatically initiates prefetches teassive cache
and DSS. The gains for DSS are more substantial as compared witHines following a miss [10]. To avoid cache pollution due to the

OLTP. OLTP has a large memory system componentthat s difficult Prefetched lines, the hardware stores the prefetched requests in the
stream buffer until the cache uses the prefetched data. In the event

&ection 3.2 showed that the instruction stall time and stall time due
o read dirty misses are two primary bottlenecks that limit the per-
formance of our OLTP workload. This section further analyzes
these bottlenecks and evaluates simple solutions to address them.

£ £ £
= 100 Heel) = 100 Jﬁo 925 ; = 00r dTLB
instr - instr <
2 80 fﬁ) Eﬁl 82.7 synch - % 80 . 88.1 synch L % 80 dirty
a I~ data B data u remote
§ - .2 69.5 cey § cry g local
L2
L 60t L 60 @ 60 {s5.3 L1+misc
Q 8 46.7 44.7
S 401 T 40 40
E £ = n
S S
= 20t = 201+ 20 +
H m m
0 0
Base 2-element 4-element 8-element Perfect Perfect Base Base Base Base Base Base
stream stream stream i-cache i-cache +Flush + Flush + Flush + Flush
buffer buffer buffer +itlb + Prefetch + Prefetch
(a) Addressing instruction misses (b)Addressing communication misses

(base assumes 4-element stream buffer)
Figure 7: Addressing performance bottlenecks in OLTP.

of a cache miss that does not hit in any of the entries in the streamdynamically adapt to longer stream lengths without associated in-
buffer, the hardware flushes all the entries in its buffer and initiates creases in the access latency, and without displacing other useful
prefetches to the new stream. data from the cache.

Our results show that a simple stream buffer is very effective We are not aware of any current system designs that include
in reducing the effects of instruction misses in OLTP. A 2-element support for an instruction stream buffer between the L1 and L2
instruction buffer is successful in reducing the miss rate of the basecache levels. Our results suggest that adding such a stream buffer
out-of-order system by almost 64%. A 4-element stream buffer can provide high performance benefits for OLTP workloads with
reduces the remaining misses by an additional 10%. Beyond 4 ele-marginal hardware costs.
ments, the stream buffer provides diminishing returns for two reas-
ons. First, the misses targeted by the stream buffer decrease, since . L .
streams in OLTP are typically less than 4 cache lines long. Second,4.2 Addressing the Data Communication Miss

additional stream buffer entries can negatively impact performance Bottleneck
by causing extra contention for second-level cache resources due to
useless prefetches. As shown in Figure 5(a), read dirty misses (serviced by cache-to-

Figure 7(a) compares the performance of our base system tocache transfers) account for 20% of the total execution time of
systems including stream buffers of size 2, 4, and 8 elements. As anOLTP on our base out-of-order system. In addition, dirty misses
upper bound on the performance achievable from this optimization, account for almost 50% of the total misses from the L2 cache. To
we also include results for a system with a perfect instruction cache, better understand the behavior of these dirty misses, we performed
and a system with a perfectinstruction cache and perfectinstructiona detailed analysis of the sharing patterns in Oracle when running
TLB. our OLTP workload. Our key observations are summarized below.

As shown in Figure 7(a), a 2- or 4-element stream buffer re- First, we observed that 88% of all shared write accesses and
duces the execution time by 16%, bringing the performance of the 79% of read dirty misses are to data that exhibit a migratory sharing
system to within 15% of the configuration with a perfect icache. pattern’ OLTP is characterized by fine-grain updates of meta-data
Most of the benefits come from increased overlap of multiple in- and frequent synchronization that protects such data. As a result,
struction misses at the L1 cache. The improvement in performancedata structures associated with the most actively used synchroniza-
from stream buffers is more pronounced in uniprocessor configur- tion tend to migrate with the passing of the locks.
ations where the instruction stall time constitutes a largernmmom Second, aditlonal characterization of the migratory misses
ent of the total execution time. Our results for uniprocessors (not show that they are dominated by accessesto a small subset of the
shown here) show that stream buffers of size 2 and 4 achieve reductotal migratory data, and are generated by a small subset of the
tions in execution time of 22% and 27% respectively compared to total instructions. On our base system, 70% of the migratory write
the base system. misses refer to 3% of all cache lines extifig migratory behavior

Further characterization of the instruction misses indicate that a (2bout 520 cache lines), and more importantly, 75% of the total mi-
large fraction of the remaining misses exhibit repeating sequencesgratory references are generated by less than 10% of all instructions
though with no regular strides. Code realignment by the compiler, that ever generate a migratory reference (about 100 unique instruc-
or a predictor that interfaces with a branch target buffer to issue tions in the code). Finally, analysis of the dynamic occurrence of
prefetches for the right path of the branch could potentially target these instructions indicate that 74% of the migratory write accesses
these misses. Our preliminary evaluation of the latter scheme indic- and 54% of the migratory read accesses occur withtical sec-
ates that the benefits from such predictors are likely to be limited tions bounded by identifiable synchronization.
by the accuracy of the path prediction logic and may not justify The above observations suggest two possible solutions for redu-
the associated hardware costs, especially when a stream buffer iging the performance loss due to migratory dirty read misses. First,
already used. a software solution that identifies accesses to migratory data struc-

An alternative to using a stream buffer is to increase the size of —;) L -
. . We use the following heuristic to identify migratory data [3, 25]. A cache line is
th_e transfer unit betwee_n the_ L1 and L2 caches. Our eXpe_”memsmarked as migratory when the directory receives a request for exclusive ownership to
with a 128-byte cache line size suggest that such an architecturala line, the number of cached copies of the line is 2, and the last writer to the line is
change can also achieve reductions in miss rates comparable tawotthe requester. Because our base system uses a relaxed memory consistency model,

the stream buffers. However, stream buffers have the potential to optimizations for dealing with migratory data such as those suggested by Stenstrom et
' ’ al. [25] will not provide any gains since the write latency is already hidden.

tures can schedulerefetchedo the data, enabling the latency to dominant role in multiprocessor executions and somewhat reduce
be overlapped with other useful work. Support for such software- the relative effect of instruction stall times.

directed prefetch instructions already exists in most current pro- Another important distinction among the database studies is

cessors. whether they are based on monitoring existing systems [4, 5, 11,
Second, a solution that identifies the end of a sequence?27] (typically through performance counters) or based on simula-
of accesses to migratory data can scheduleflash” or tions [6, 13, 14, 20, 21, 28]; one study uses a combination of both

“WriteThrough” [1] instruction to update the memory with the techniques [2]. Monitoring studies have the advantage of using
latest values. Subsequent read requests can then be serviced drger scale versions of the workloads and allowing for a larger
memory, avoiding the extra latency associated with a cache-to- number of experiments to be run. However, monitoring studies are
cache transfer (for our system configuration, this can reduce theoften limited by the configuration parameters of the system and the
latency by almost 40%). We found that it is important for the flush types of events that can be measured by the monitoring tools. For
operation to keep a clean copy in the cache (i.e., not invalidate the our own study, we found the flexltly of simulations invaluable
copy) since the latency of subsequent read misses would otherwiseor considering numerous design points and isolating the effects of
neutralize the gains. This requires minor support in the protocol different design decisions. Nevertheless, we found monitoring ex-
since the flush effectively generates an unsolicited “sharing write- tremely important for tuning, scaling, and tracing our workloads
back” message to the directory. and for verifying the results of our simulations.

Given our lack of access to the Oracle source code, we could The following describes the database studies based on out-of-
not correlate the migratory accesses to the actual data structuresorder processors in more detail. Keeton et al. [11] present a mon-
Instead, we used our characterizations to identify the instructions itoring study of the behavior of an OLTP workload (modeled after
that are likely to generate migratory data accessesto perform a pre-TPC-C) on top of Informix, using the performance counters on a
liminary study. Our experiments involve adding the appropriate quad Pentium Pro system. Similar to our study, this paper shows
prefetch and flush software primitives to the code around some of that out-of-order execution can achieve performance benefits on
the key instructions. OLTP. Our work differs because we study a more futuristic pro-

Figure 7(b) summarizes our results. All results assume a 4- cessor configuration through detailed simulations. This enables us
element instruction stream buffer given the importance of this op- t0 quantitatively isolate the performance benefits from various ILP
timization. The leftmost bar represents the base system with a 4-techniques as well as evaluate solutions to the various performance
element stream buffer. The second bar represents adding approbotﬂeneCkS. We also evaluate the performance of DSS in addition
priate flush primitives at the end of specific critical sections. As to OLTP.
shown in Figure 7(b), the flush primitive is successful in signific- Rosenblum et al. [21] present a simulation study that focuses
antly reducing the impact of dirty misses on the total execution on the impact of architectural trends on operating system perform-
time®, achieving a 7.5% reduction in execution time. As an ap- ance using three workloads, one of which is TPC-B on Sybase.
proximate bound on this improvement, we selectively reduced the The study considers both uniprocessor and multiprocessor systems,
latency of all migratory read accesses (by 40%) to reflect service with the multiprocessor study limited to in-order processors. The
by memory; this gave a bound of 9% which is very close to the TPC-B workload used in this study is not representative because
7.5% improvement from the flush primitive. Finally, also adding it exhibits large kernel and idle components primarily due to the
prefetching for migratory data at the beginning of critical sections lack of sufficient server processes. The paper does however make
(rightmost bar) provides a cumulative reduction of 12% in execu- the observation that the decoupling of the fetch and execute units
tion time. Late prefetches and contention effects due to the com- allows for some overlap of the instruction stall time in the unipro-
bination of flush and prefetch appear to limit additional perform- cessorsystem. Lo et al. [13] examine the performance of OLTP and
ance benefits. A realistic software solution that is aware of the data DSS on a simultaneous multithreaded (SMT) uniprocessor system
structures which cause the migratory accesses may be able to avoidvith support for mitiple hardware contexts using the same simula-
both these problents. tion methodology as our study. Even though the SMT functitna

is added on top of an aggressive out-of-order processor, the study

primarily focuses on the effects of SMT as opposed to the underly-
5 Discussion and Related Work ing mechanisms in the base processor.

We are not aware of any work other than the original stream

Our work extends previous studies by providing a thorough ana- buffer work by Jouppi [10] that has studied the effect of stream
lysis of the benefits of aggressive techniques such as multiple is- buffers to alleviate the instruction miss bottleneck. This may partly
sue, out-of-order execution, non-blocking loads, and speculative be due to the fact that the standard SPEC, SPLASH, and STREAM
execution in the context of database workloads, and by identifying benchmark suites do not stress the instruction cache significantly.
simple optimizations that can provide a substantial improvement in Our evaluation differs from Jouppi's [10] in two key respects. First,
performance. Our work is also the first to study the performance of we evaluate the impact of the stream buffer optimization on the
memory consistency models in the context of database workloads. execution time of a complex commercially-used database engine.

There are a number of studies based on the performance of out->€¢ond, we perform our evaluation in the context of an aggressive
of-order processors for non-database workloads(e.g., [8, 16, 18]). 0ut-of-order processor model that already includes support to hide
Most previous studies of databases are based on in-order pro-part of_the instruction sta}II latencies and show that the stream buffer
cessors [2, 4, 5, 6, 14, 20, 27, 28], and therefore do not addressc@n Still provide a benefit.
the benefits of more aggressive processor architectures. A number Primitives similar to the “flush” primitive that we use in Sec-
of the studies are limited to uniprocessor systems [4, 6, 13, 14]. tion 4 have been proposed and studied by a number of other
As discussed in Section 3, data communication misses play a moregroups (e.g., [9, 22]). Our “flush” primitive is modeled after
the “WriteThrough” primitive used by Abdel-Shafi et al. [1].

"’T_he increase in the local and remote components of read latency corresponds toThat study also showed that the combination of prefetching and
the%r.ty misses that are converted to misses serviced by the memory. “WriteThrough” could be used to achieve better performance im-
iven the amount of tuning that is done on database benchmarks, it would not be
unthinkable for database vendorsto include such optimizations in their code if it leads pro_v_ement_s thf"m using either of them alone (in the context of sci-
to significant gains. entific applications).

Our study is based on systems with conventional cache hier- timizations (including prefetch and flush hints) especially in the
archies. A number of processors from Hewlett-Packard have optedcontext of OLTP workloads to see whether it is possible to further
for extremely large off-chip first level instruction and data caches relieve some of the challenging requirements such workloads im-
(e.g., HP PA-8200 with up to 2MByte separate first level instruc- pose on hardware (e.g., large, fast off-chip caches and fast cache-
tion and data caches), which may be targeting the large footprints to-cache transfers).
in database workloads. These very large first level caches make the
use of out-of-order execution techniques critical for tolerating the
correspondingly longer cache access times. 7 Acknowledgements

Finally, our study evaluates the benefits of exploiting intra-
thread parallelism in database workloads. Two previous studies This paper benefited from discussions with Norm Jouppi, Jack Lo,
have focused on exploiting inter-thread parallelisnotigh the use and Dan Scales, and from comments by the anonymous reviewers.
of multithreaded processors [6, 13]. This approach depends on thewe would also like to thank Jef Kennedy from Oracle for review-
fact that database workloads are already inherently parallel (eithering this manuscript, Marco Annaratone from WRL for supporting
in the form of threads or processes) for hiding 1/O latency. These this work, and Drew Kramer from WRL for technical support. This
studies show that multithreading can provide substantial gains, with research was primarily done while Parthasarathy Ranganathan was
simultaneous multithreading (SMT) [13] providing higher gains a summer intern at WRL. At Rice, he is also supported by a Lod-
(as high as three times improvement for OLTP). Our study shows ieska Stockbridge Vaughan Fellowship. Sarita Adve's research is
that DSS can benefit significantly from intra-thread parallelism (2.6 supported in part by an Alfred P. Sloan Research Fellowship, IBM,
times improvement). The incremental gains from the addition of the National Science Foundation under Grant No. CCR-9410457,
SMT are less significant in comparison [13]. Intra-thread parallel- CCR-9502500, CDA-9502791, and CDA-9617383, and the Texas
ism is not as beneficial for OLTP (1.5 times improvement) due to Advanced Technology Program under Grant No. 003604-025.
the data dependent nature of the workload. In this case, SMT is
more effective in hiding the high memory overheads.

References

6 Concluding Remarks [1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An Evaluation
of Fine-Grain Producer-Initiated Communication in Cache-Coherent

.) Multiprocessors. IrProceedings of the 3rd International Symposium
With the growing dominance of commercial workloads in the mul on High-Performance Computer Architectupages 204—215, Febru-

tiprocessor server market, it is important to re-evaluate the justifica- ary 1997.

tions for key design decisions that have been made primarily based)

on the requirements of scientific and engineering workloads. This 2

paper provides an in-depth analysis of the performance of aggress-

ive out-of-order processors in multiprocessor configurations, and

considers simple optimizations that can provide further perform- ! ; :

ance improvenE)lentsp in the context of OLTFI)D and DSS worEIoads ng m'g{atory shared data. Iﬁroceeimghs of the 20th92ngggl I,Ulter'
! o) - : national Symposium on Computer Architecfysages 98-108, May

Among database applications, online transaction processing 1993.
(OLTP) workloads presentthe more demanding set of requirements 4]

L. A. Barroso, K. Gharachorloo, and E. D. Bugnion. Memory System
Characterization of Commercial Workloads. Pnoceedings of the
25th International Symposium on Computer Architectiume 1998.

[3] A. L. Cox and R. J. Fowler. Adaptive cache coherency for detect-

Z. Cventanovic and D. Bhandarkar. Performance characterization of

for system designers. While DSS workloads are somewhat reminis- the Alpha 21164 microprocessor using TP and SPECworkloads. In
cent of scientific/engineering applications in th_elr behavior, OL_TP Proceedings of the 21st Annual International Symposium on Com-
workloads exhibit dramatically different behavior due to large in- puter Architecturepages 6070, Apr 1994.

struction footprints and frequent data communication misses which 5] Z. Cvetanovic and D. D. Donaldson. AlphaServer 4100 performance
often lead to cache-to-cache transfers. Our results reflect these characterizationDigital Technical Journal8(4):3—20, 1996.
characteristics, with our DSS workload achieving a 2.6 times im- 6] R.J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.iiqte, and

provement from out-_of-_order execution and mu_ItlpIe ISsue, and our S. Liu. Evaluation of multithreaded uniprocessors for commercial

OLTP workload achieving a more modest 1.5 times improvement. application environments. IRroceedings of the 21th Annual Inter-

In addition to the frequent instruction and data misses, gains in national Symposium on Computer Architecfyrages 203—-212, June

OLTP are limited due to the data dependent nature of the computa- 1996.

tion. [7] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to en-
The inefficiencies in OLTP may be addressed through a number hance the performance of memory consistency model®rdéneed-

of simple optimizations. We showed that a simple 4-entry stream ings of the 1991 International Conference on Parallel Processing

buffer for instructions can provide an extra 17% reduction in execu- pages 1:355-364, August 1991.

tion time. Our preliminary results with software prefetch and flush [8] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding memory latency

hints are also promising, giving another 12% reduction in execution using dynamic scheduling in shared-memontiptocessors. IfPro-

time. ceedings of the 19th Annual International Symposium on Computer

We also found that speculative techniques that may be easily ArCh'te?ture pages 22-33, Ma}_’ 1992. _
added to aggressive out-of-order processors are extremely benefi-[9] MH D. glll, J.R. Lagu?MS. K. Rglﬂha&rdt, and D. A'?fw' cOPE?ranve
cial for multiprocessor systems thafggpoort a stricter memory con- shared memory: Soltware and naraware supportior scalanipros
sistency model. For example, the execution time of a sequentially ~ C@SSOrsTOCS 11(4):300-318, November 1993.
consistent system can be improved by 26% and 37% for OLTP and[10] N. P. Jouppi. Improving direct-mapped cache performance by the
DSS workloads, bringing it to within 10-15% of more relaxed sys- addition 'of a small fuIIy-assouatweache and pr_efetch buffers. In
tems. Given that these techniques have been adopted in several ~ Froceedings 17th Annual International Symposium on Computer Ar-
commercial microprocessors, the choice of the hardware consist- chitecture pages 364-373, June 1990.

ency model for a system does not seem to be a dominant factor for[11] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
database workloads, especially for OLTP. Performance Characterization of the Quad Pentium Pro SMP Using

. . . OLTP Workloads. InProceedings of the 25th International Sym-
In the future, we are interested in further pursuing software op- posium on Computer Architectyrdune 1998.

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Kroft. Lockup-free instruction fetch/prefetch cache organization.
In Proceedings of the 8th Annual International Symposium on Com-
puter Architecturepages 81-85, 1981.

J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy,
and S. S. Parekh. An Analysis of Database Workload Performance on
Simultaneous Multithreaded Processors.Phaceedings of the 25th
International Symposium on Computer Architecfurene 1998.

A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrast-
ing characteristics and cache performance of technical aftéuser
commercialworkloads. IRroceedings of the Sixth International Con-
ference on Architectural Support for Programming Languages and
Operating Systempages 145-156, Oct 1994.

J. D. McCalpin. Memory bandwidth and machine balance in current
high performance computers. IEEE Technical Committee on Com-
puter Architecture NewsletteDec 1995.

B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluation of Design
Alternatives for a Multiprocessor Micro processor.Hroceedings of
the 23rd International Symp. on Computer Architec typ@ges 67-77,
May 1996.

V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference Manual
version 1.0. Technical Report 9705, Department of Electrical and
Computer e University, August 1997.

V. S. Pai, P. Ranganathan, and S. V. Adve. The Impact of Instruc-
tion Level Parallelism on Multiprocessor Performance and Simulation
Methodology. InProceedings of the 3rd International Symposium
on High Performance Computer Architectupages 72-83, February
1997.

V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An Evaluation
of Memory Consistency Models for Shared-Memory Systems with
ILP Processors. IfProceedings of the 7th International Conference

on Architectural Support for Programming Languages and Operating
Systemgpages 12—-23, Oct. 1996.

S. E. Perl and R. L. Sites. Studies of windows NT performance us-
ing dynamic execution traces. Proceedings of the Second Sym-
posium on Operating System Design and Implementgtiages 169—
184, Oct. 1996.

M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
The impact of architectural trends on operating system performance.
In Proceedings of theiffeenth ACM Symposium on Operating Sys-
tems Principlespages 285-298, 1995.

J. Skeppstedt and P. Stenstrom. A Compiler Algorithm that Reduces
Read Latency in Ownership-Based Cache Coherence Protocols. In
International Conference on Parallel Architectures and Compilation
Techniquesl995.

A. Srivastava and A. Eustace. ATOM: A System for Building Custom-
ized Program Analys is Tool®roceedings of the ACM SIGPLAN "94
Conference on Programming Languagkrch 1994.

Standard Performance Councllhe SPEC95 CPU Benchmark Suite
http://www.specbench.org, 1995.

P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive cache co-
herence protocol optimized for migratory sharing.Pimceedings of

the 20th Annual International Symposium on Computer Architecture
pages 109-118, May 1993.

T.-Y.Yeh and Y.N.Patt. Alternative Implementations of Two-level Ad-
aptive Branch Prediction. IRroceedings of the 19th Annual Interna-
tional Symposium on Computer Architectut892.

S. S. Thakkar and M. Sweiger. Performance of an OLTP application
on Symmetry multiprocessor system. Roceedings of the 17th An-
nual International Symposium on Computer Architectpeges 228—
238, June 1990.

P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas. The
memory performance of DSS commercial workloads in shared-
memory multiprocessors. [Fhird International Symposium on High-
Performance Computer Architectydan 1997.

Transaction Processing Performance CouncilPC Benchmark B
(Online Transaction Processing) Standard Specificatl®90.

[30] Transaction Processing Performance CoundPC Benchmark D

(Decision Support) Standard Specificati@rec 1995.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 Programs: Characterization and Methodological Consid-
erations. InProceedings of the 22nd International Symposium on
Computer Architecturgpages 24—-36, June 1995.

