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Abstract

Database applications such as online transaction processing
(OLTP) and decision support systems (DSS) constitute the largest
and fastest-growing segment of the market for multiprocessor serv-
ers. However, most current system designs have been optimized
to perform well on scientific and engineering workloads. Given
the radically different behavior of database workloads (especially
OLTP), it is important to re-evaluate key system design decisions
in the context of this important class of applications.

This paper examines the behavior of database workloads on
shared-memory multiprocessors with aggressive out-of-order pro-
cessors, and considers simple optimizations that can provide fur-
ther performance improvements. Our study is based on detailed
simulations of the Oracle commercial database engine. The results
show that the combination of out-of-order execution and multiple
instruction issue is indeed effective in improving performance of
database workloads, providing gains of 1.5 and 2.6 times over an
in-order single-issue processor for OLTP and DSS, respectively. In
addition, speculative techniques enable optimized implementations
of memory consistency models that significantly improve the per-
formance of stricter consistency models, bringing the performance
to within 10-15% of the performance of more relaxed models.

The second part of our study focuses on the more challenging
OLTP workload. We show that an instruction stream buffer is ef-
fective in reducing the remaining instruction stalls in OLTP, provid-
ing a 17% reduction in execution time (approaching a perfect in-
struction cache to within 15%). Furthermore, our characterization
shows that a large fraction of the data communication misses in
OLTP exhibit migratory behavior; our preliminary results show that
software prefetch and writeback/flush hints can be used for this data
to further reduce execution time by 12%.

1 Introduction

With the increasing demand for commercial applications, data-
base workloads such as online transaction processing (OLTP)

and decision support systems (DSS) have quickly surpassed sci-
entific and engineering workloads to become the largest market
segment for multiprocessor servers. While the behavior of DSS
workloads has been shown to be somewhat reminiscent of sci-
entific/engineering applications [2, 28], a number of recent studies
have underscored the radically different behavior of OLTP work-
loads [2, 4, 5, 11, 14, 20, 21]. In general, OLTP workloads lead
to inefficient executions with a large memory stall component and
present a more challenging set of requirements for processor and
memory system design. This behavior arises from large instruc-
tion and data footprints and high communication miss rates that are
characteristic for such workloads [2].

The dramatic change in the target market for shared-memory
servers has yet to be fully reflected in the design of these systems.
Current processors have been primarily optimized to perform well
on the SPEC benchmark suite [24], and system designs are focused
on scientific and engineering benchmarks such as STREAMS [15]
and SPLASH-2 [31]. One important outcome of this trend has
been the emergence of aggressive out-of-order processors that ex-
ploit instruction-level parallelism (ILP) with ever-increasing design
complexity. Given the dominant role of database workloads in
the marketplace, it is important to re-evaluate the benefits of ILP
features such as out-of-order execution, multiple instruction issue,
non-blocking loads, and speculative execution in the context of
such workloads. The goal of this paper is to shed light on the be-
nefits of such techniques for database applications, thus helping
designers determine whether the benefits warrant the extra system
complexity.

This paper presents a detailed simulation study of database
workloads running on shared-memory multiprocessors based on
next-generation out-of-order processors. We present a thorough
analysis of the benefits of techniques such as out-of-order execu-
tion and multiple issue in database applications, and identify simple
solutions that further optimize the performance of the more chal-
lenging OLTP workload. In contrast, most previous studies of ag-
gressive out-of-order processors in shared-memory systems have
focused on scientific and engineering applications. Similarly, ar-
chitectural studies of database workloads have been mostly based
on simple in-order processor models [2, 5, 28].

To investigate the behavior of databases, we have instrumented
and studied the Oracle commercial database engine (version 7.3.2)
running on Alpha processors under Digital Unix. We use traces
of OLTP and DSS workloads running on Oracle to drive a highly
detailed trace-driven multiprocessor simulator. Our base set of res-
ults show that the combination of out-of-order execution and mul-



tiple issue provide performance improvements of 1.5 and 2.6 times
for OLTP and DSS, respectively, over multiprocessor systems with
single-issue in-order processors. While multiple issue and out-of-
order execution individually improve performance, the combina-
tion of these techniques interact synergistically to achieve higher
performance.

Given the range of memory consistency models supported by
commercial multiprocessors (sequential consistency for SGI, “pro-
cessor consistency”-like for Intel and Sun, and Alpha or PowerPC
consistency for Digital and IBM), we were also interested in eval-
uating the effectiveness of speculative techniques that can be used
in conjunction with out-of-order processors [7]. Our results show
that these techniques can reduce the execution time of OLTP and
DSS in sequentially consistent systems by 26-37%, bringing the
performance to within 10-15% of systems with more relaxed mod-
els (e.g., Alpha consistency). Given that these techniques have been
adopted in several commercial microprocessors (e.g., HP PA8000,
Intel Pentium Pro, Mips R10000), the choice of the hardware con-
sistency model for a system does not seem to be a dominant factor
for database workloads, especially for OLTP.

The second part of our study focuses on further reducing the re-
maining instruction stall and remote memory latencies in our OLTP
workload. We show that a simple 4-entry instruction stream buffer
can reduce the execution time by 17%, bringing the performance to
within 15% of a system with a perfect instruction cache. For data
misses, our results indicate that the memory stall time is dominated
by the latency of remote dirty misses. Our characterization shows
that most of these data misses are generated by a small subset of
the application instructions and exhibit migratory data access pat-
terns. In the absence of source code for Oracle, we used a simple
scheme for inserting software prefetch and flush/write-back hints
into the code as a preliminary study. This optimization provided a
12% reduction in execution time.

The rest of paper is structured as follows. The next section
presents our experimental methodology, including a description of
OLTP and DSS workloads and the simulated multiprocessor sys-
tem. Section 3 describes the base performance results with aggress-
ive out-of-order processors. We address the remaining instruction-
and data-related memory stalls for OLTP in Section 4. Finally, we
discuss related work and conclude.

2 Experimental Methodology

Because of their complexity and size, commercial-grade database
workloads are challenging applications to study in a simulation en-
vironment. In this section, we describe our database workloads and
the experimental setup used to study them.

2.1 Database Workloads

We use the Oracle 7.3.2 commercial database management system
as our database engine. In addition to the server processes that
execute the actual database transactions, Oracle spawns a few dae-
mon processes that perform a variety of duties in the execution of
the database engine. Two of these daemons, the database writer
and the log writer, participate directly in the execution of transac-
tions. The database writer daemon periodically flushes modified
database blocks that are cached in memory out to disk. The log
writer daemon is responsible for writing transaction logs to disk
before it allows a server to commit a transaction.

Client processes communicate with server processes through
pipes, and the various Oracle processes (i.e., daemons and servers)
communicate through a shared memory region called the System

Global Area (SGA). The SGA consists of two main regions - the
block buffer area and the metadata area. The block buffer area is
used as a memory cache of database disk blocks. The metadata
area is used to keep directory information for the block buffer, as
well as for communication and synchronization between the vari-
ous Oracle processes.

2.1.1 OLTP Workload

Our OLTP application is modeled after the TPC-B benchmark from
the Transaction Processing Performance Council (TPC) [29]. TPC-
B models a banking database system that keeps track of customers'
account balances, as well as balances per branch and teller. Each
transaction updates a randomly chosen account balance, which in-
cludes updating the balance of the branch the customer belongs to
and the teller from which the transaction is submitted. It also adds
an entry to the history table which keeps a record of all submitted
transactions.

The application was extensively tuned in order to maximize
transaction throughput and CPU utilization. For OLTP, we run Or-
acle in “dedicated mode,” in which each client process has a dedic-
ated Oracle server process to execute database transactions.

We chose to use TPC-B instead of TPC-C (the current official
transaction processing benchmark from TPC) for a variety of reas-
ons. First, TPC-B has much simpler setup requirements than TPC-
C, and therefore lends itself better for experimentation through sim-
ulation. Second, our performance monitoring experiments with
TPC-B and TPC-C show similar processor and memory system be-
havior, with TPC-B exhibiting somewhat worse memory system
behavior than TPC-C [2]. As a result, we expect that changes in
processor and memory system features to affect both benchmarks
in similar ways. Finally, it is widely acknowledged that actual cus-
tomer database applications will typically show poorer perform-
ance than TPC-C itself.

2.1.2 DSS Workload

The DSS application is modeled after Query 6 of the TPC-D bench-
mark [30]. The TPC-D benchmark represents the activities of a
business that sells a large number of products on a worldwide scale.
It consists of several inter-related tables that keep information such
as parts and customer orders. Query 6 scans the largest table in the
database to assess the increase in revenue that would have resulted
if some discounts were eliminated. The behavior of this query is
representative of other TPC-D queries [2].

For DSS, we used Oracle with the Parallel Query Optimization
option, which allows the database engine to decompose the query
into multiple sub-tasks and assigneach one to an Oracle server pro-
cess. The queries were parallelized to generate four server pro-
cesses per processor (16 processes in a 4-processor system).

2.2 Simulation Methodology

We use the RSIM simulation infrastructure [17] to model multipro-
cessor systems with processors that exploit ILP techniques. Due to
the difficulty of running a commercial-grade database engine on a
user-level simulator (such as RSIM), our strategy was to use traces
of the applications running on a four-processor AlphaServer4100,
and drive the simulator with those traces. This trace-driven simula-
tion methodology is similar to that used by Lo et al. [13].

The traces were derived with a custom tool built using
ATOM [23]. Only the Oracle server processes were traced since
the many daemon processes have negligible CPU requirements.



However, the behavior of the daemons with respect to synchroniz-
ation and I/O operations was preserved in the traces. All blocking
system calls were marked in the traces and identified as hints to the
simulator to perform a context switch. The simulator uses these
hints to guide context switch decisions while internally modeling
the operating system scheduler. The simulation includes the latency
of all I/O and blocking system calls. The values for these latencies
were determined by instrumenting the application to measure the
effect of the system calls on an Alpha multiprocessor.

The trace also includes information regarding Oracle's higher-
level synchronization behavior. The values of the memory loca-
tions used by locks are maintained in the simulated environment.
This enables us to correctly model the synchronization between
processes in the simulated environment and avoid simulating spuri-
ous synchronization loops from the trace-generation environment.
Our results show that most of the lock accesses in OLTP were con-
tentionless and that the work executed by each process was relat-
ively independent of the order of acquisition of the locks. DSS
shows negligible locking activity.

One trace file was generated per server process in the system.
The total number of instructions simulated was approximately 200
million for both OLTP and DSS. Warmup transients were ignored
in the statistics collection for both the workloads.

2.3 Scaling and Validation

We followed the recommendations of Barroso et al. [2] in scaling
our workloads to enable tracing and simulation. Specifically, we
carefully scaled down our database and block buffer sizes while
continuing to use the same number of processes per processor as
a full-sized database. We use an OLTP database with 40 branches
and an SGA size over 900MB (the size of the metadata area is over
100MB). The DSS experiments use an in-memory 500MB data-
base. The number of processes per CPU was eight for OLTP and
four for DSS. Similar configurations were used by Lo et al. [13].

In the past, transaction processing applications were reported to
be mainly I/O bound and to have a dominant componentof their ex-
ecution time in the operating system. Today, a modern database en-
gine can tolerate I/O latencies and incurs much less operating sys-
tem overhead; the operating system component for our tuned work-
loads (measured on the AlphaServer4100) was less than 20% of
the total execution time for the OLTP workload and negligible for
the DSS workload. Since our methodology uses user-level traces,
we do not take into account the non-negligible operating system
overheads of OLTP. However, as reported in Barroso et al. [2], the
execution behavior of Digital Unix running this OLTP workload is
very similar to the user-level behavior of the application, includ-
ing CPI, cache miss ratios, and contributions of different types of
misses. Therefore, we expect that the inclusion of operating system
activity would not change the manner in which our OLTP workload
is affected by most of the optimizations studied here.

Significant care was taken to ensure that the traces accurately
reflect the application behavior, and that the simulated execution
reproduces the correct interleaving of execution and synchroniza-
tion behavior of the various processes. We configured our simulator
to model a configuration similar to that of our server platform and
verified that the cache behavior, locking characteristics, and spee-
dup of the simulated system were similar to actual measurements
of the application running on our server platform. We also verified
our statistics with those reported in [2] and [13] for similar config-
urations.

2.4 Simulated Architecture

We use RSIM to simulate a hardware cache-coherent non-uniform
memory access (CC-NUMA) shared-memory multiprocessor sys-
tem using an invalidation-based, four-state MESI directory coher-
ence protocol. Due to constraints of simulation time, we only
model a system with four nodes. Each node in our simulated system
includes a processor, separate first level data and instruction caches,
a unified second-levelcache, a portion of the global shared-memory
and directory, and a network interface. A split-transaction bus con-
nects the network interface, directory controller, and the rest of the
system node. The system uses a two-dimensional wormhole-routed
mesh network.

The L1 data cache is dual-ported, and uses a write-allocate,
write-back policy. The unified L2 cache is a fully pipelined, write-
allocate write-back cache. In addition, all caches are non-blocking
and allow up to 8 outstanding requests to separate cache lines. At
each cache, miss status holding registers (MSHRs) [12] store in-
formation about the misses and coalesce multiple requests to the
same cache line. All caches are physically addressed and physically
tagged. The virtual memory system uses a bin-hopping page map-
ping policy with 8K page sizes, and includes separate 128-element
fully associative data and instruction TLBs.

Our base system models an out-of-order processor with support
for multiple issue, out-of-order instruction execution,non-blocking
loads, and speculative execution. We use an aggressive branch
prediction scheme that consists of a hybridpa/g branch predictor
for the conditional branches [26], a branch target buffer for the
jump target branches, and a return address stack for the call-return
branches. In the event of branch mispredictions, we do not issue
any instructions from after the branch until the branch condition is
resolved; our trace-driven methodology precludes us from execut-
ing the actual instructions from the wrong-path.

Figure 1 summarizes the other important parameters used in
our base processor model. To study the effect of the individual
techniques as well as the relative importance of various perform-
ance bottlenecks, we vary many of these parameters in our ex-
periments. Specifically, we study both in-order and out-of-order
processor models, and the effect of instruction window size, issue
width, number of outstanding misses, branch prediction, number of
functional units, and cache size on the performance.

Both the in-order and out-of-order processor models support
a straightforward implementation of the Alpha consistency model
(hereafter referred to as release consistency [RC] for ease of nota-
tion), using the AlphaMBandWMBfence instructions to impose or-
dering at synchronization points. The out-of-order processor model
also supports implementations of sequential consistency (SC) and
processor consistency (PC), and optimized implementations for
these consistency models. These are further described in Sec-
tion 3.4.

3 Impact of Aggressive Processor Features on
Database Workloads

Sections 3.1 and 3.2 evaluate the performance benefits and limita-
tions of aggressive ILP techniques for OLTP and DSS workloads.
Section 3.3 provides a comparison of multiprocessor results with
those for uniprocessors. Finally, Section 3.4 examines the perform-
ance of optimized implementations of memory consistency models
enabled by ILP features.



Processor parameters
Processor speed 1 GHz
Issue width 4 (default)
Instruction window size 64 (default)
Functional units
- integer arithmetic 2
- floating point 2
- address generation 2

Branch prediction
- conditional branches PA(4K,12,1)/g(12,12)
- jmp branches 512-entry 4-way BTB
- call-returns 32-element RAS

Simultaneous speculated branches8
Memory queue size 32

Contentionless memory latencies
Memory type Latency (in processor cycles)
Local read 100
Remote read 160-180
Cache-to-Cache read 280-310

Memory hierarchy
Cache line size 64 bytes
Number of L1 MSHRs 8
L1 data cache size (on-chip) 128 KB
L1 data cache associativity 2-way
L1 data cache request ports 2
L1 data cache hit time 1 cycle
L1 instruction cache size (on-chip) 128 KB
L1 instruction cache associativity 2-way
L1 instruction cache request ports 2
L1 instruction cache hit time 1 cycle
L2 cache size (off-chip) 8M
L2 cache associativity 4-way
L2 request ports 1
L2 hit time (pipelined) 20 cycles
Number of L2 MSHRs 8
Data TLB 128 entries, full-assos
Instruction TLB 128 entries, full-assos

Figure 1: Default system parameters.

3.1 Performance Benefits from ILP Features

Figures 2 and 3 present our results for OLTP and DSS respectively.
Part (a) of each figure compares multiprocessor systems with in-
order and out-of-order processors with varying issue widths. Part
(b) shows the impact of increasing the instruction window size for
the out-of-order processor. Parts (c) through (g) show the impact
of supporting multiple outstanding misses (discussed later). The
bars in each graph represent the execution time normalized to that
of the leftmost bar in the graph.1 We further breakdown execution
time into CPU (both busy and functional unit stalls), data (both
read and write), synchronization, and instruction stall (including
instruction cache and iTLB) components. Additionally, the bars
on the right hand side in parts (b) and (c) show a magnification of
the read stall time corresponding to the bars on the left hand side.
The read stall time is divided into L1 hits plus miscellaneous stalls
(explained below), L2 hits, local and remote memory accesses (ser-
viced by memory), dirty misses (i.e., cache-to-cache transfers), and
data TLB misses. The base results assume a release-consistent sys-
tem, therefore there is little or no write latency. Section 3.4 dis-
cusses the performance of stricter consistency models.

With out-of-order processors, it is difficult to assign stall time
to specific instructions since each instruction's execution may be
overlapped with both preceding and following instructions. We use
the following convention to account for stall cycles. At every cycle,
we calculate the ratio of the instructions retired that cycle to the
maximum retire rate and attribute this fraction of the cycle to the
busy time. The remaining fraction is attributed as stall time to the
first instruction that could not be retired that cycle. For memory
instructions, there are extra stall cycles that may be attributed to
the instruction in addition to the time spent in the execution stage:
(i) time spent in the address generation stage that cannot be hidden
due to data dependence or resource contention, and (ii) pipeline re-
start time after a branch misprediction, instruction cache miss, or
exception when the memory instruction is at the head of the win-
dow. While these stalls are included for all memory categories,
their impact is particularly visible in the “L1+misc” component be-
cause the base L1 latency is only one cycle. Similar conventions
have been adopted by many previous studies (e.g., [18, 21]).

Overall, our results show that the OLTP workload is character-
ized by a significant L2 component due to its large instruction and
data footprint. In addition, there is a significant memory compon-
ent arising from frequent data communication misses. For OLTP,
the local miss rates for the first-level instruction and data caches
and the second level unified cache are 7.6%, 14.1% and 7.4% re-

1We factor out the idle time in all the results; the idle time is less than 10% in most
cases.

spectively. In contrast, the main footprint for the DSS workload
fits in the large L1 caches (128K), and the memory component is
much smaller relative to OLTP; DSS is more compute intensive and
benefits from spatial locality on L2 misses. The local miss rates
for DSS are 0.0% and 0.9% for the first-level instruction and data
caches and 23.1% for the second level cache. These observations
are consistent with those reported in previous studies [2, 13].

The results further indicate that support for multiple issue, out-
of-order execution, and multiple outstanding loads provide signi-
ficant benefits for OLTP and DSS, even though the benefits for
OLTP are smaller in comparison. Most of the gains are achieved
by a configuration with four-way issue, an instruction window of
32 to 64 entries, and a maximum of four outstanding cache misses
(to unique cache lines). Interestingly, many current processors are
in fact more aggressive than this. For example, the HP-PA 8000
supports a fifty-six entry instruction window and ten outstanding
misses. The Alpha 21264 supports an eighty entry instruction win-
dow and eight outstanding misses.

3.1.1 OLTP Workload

Multiple Issue
Going from single- to eight-way issue, in-order processors

provide a 12% improvement in execution time while out-of-order
processors provide a 22% improvement (Figure 2(a)). The bene-
fits from multiple issue stem primarily from a reduction in the CPU
component. Out-of-order processors allow more efficient use of the
increased issue width. However, the benefits for in-order and out-
of-order processors level off at two-way and four-way issue (re-
spectively).
Out-of-order Execution

Comparing equivalent configurations with in-order and out-of-
order processors in Figure 2(a), we see that out-of-order execution
achieves reductions in execution time ranging from 13% to 24%,
depending on the issue width. The combination of multiple is-
sue and out-of-order execution interact synergistically to achieve
higher performance than the sum of the benefits from the individual
features.

The performance improvements due to out-of-order execution
stem from reductions in the instruction and data stall components
of execution time. The decoupling of fetch and execute stages in
out-of-order processors enables part of the instruction miss latency
to be overlapped with the execution of previous instructions in the
instruction window. Similarly, the latency of a data load operation
can be overlapped with other operations in the instruction window.
In contrast, the amount of overlap in in-order processors is funda-
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Figure 2: Impact of ILP features on OLTP performance.

mentally limited since these systems require the processor to stall
at the first data dependence that is detected.

Increasing the instruction window size increases the potential
for overlap in out-of-order processors. As seen from Figure 2(b),
performance improves as the instruction window size is increased,
but levels off beyond 64 entries. A large fraction of this improve-
ment comes from the L2 cache hit component (the read stall time
graph of Figure 2(b)).
Multiple Outstanding Misses

Figure 2(c) summarizes the impact of increasing the number of
outstanding misses. The various bars show the performance as the
number of MSHRs is increased. For OLTP, supporting only two
outstanding misses achieves most of the benefits. This behavior
is consistent with frequent load-to-load dependences that we have
observed in OLTP.

To further understand this result, Figures 2(d)-(g) display
MSHR occupancy distributions. The distribution is based on the
total time when at least one miss is outstanding, and plots the frac-

tion of this time that is spent when at leastn MSHRs are in use.
Figures 2(d) and (e) present the distributions for all misses at the
first-level data and second-level unified caches, while Figures 2(f)
and (g) correspond to only read misses.

Figures 2(f)-(g) indicate that there is not much overlap among
read misses, suggesting that the performance is limited by the data-
dependent nature of the computation. By comparing Figures 2(d)
and (e) (both read and write misses) with Figures 2(f)-(g) (read
misses), we observe that the primary need for multiple outstanding
misses stems from writes that are overlapped with other accesses.
Overall, we observe that there is a small increase in the MSHR
occupancy when going from in-order to out-of-order processors
which correlates with the decrease in the read stall times seen in
Figure 2(c).
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Figure 3: Impact of ILP features on DSS performance.

3.1.2 DSS Workload

Figure 3 summarizes the results for DSS. Overall, the improve-
ments obtained from the ILP features are much higher for the DSS
workload than for OLTP. This results from the compute-intensive
nature of DSS that leads to little memory stall time. Clearly, the
ILP features are more effective in addressing the non-memory stall
times. Going from single issue to 8-way issue achieves a 32% re-
duction in execution time on in-order processors, and a 56% re-
duction in execution time on out-of-order processors (Figure 3(a)).
Out-of-order issue achieves reductions in execution time ranging
from 11% to 43% depending on the issue width. As with OLTP,
there is synergy between out-of-order and multiple issue. Perform-
ance levels off for instruction window sizes beyond 32. Figures 2(c)
and 3(c) indicate that the DSS workload can exploit a larger number
of outstanding misses (4 compared to 2 in OLTP). Figures 3(d)-(g)
indicate that this is mainly due to write overlap. The high write
overlap arises because of the relaxed memory consistency model
we use which allows the processor to proceed past write misses

without blocking.

3.2 Limitations of the ILP Features

3.2.1 OLTP Workload

Although the aggressive ILP features discussed above significantly
improve OLTP performance, the execution time is still dominated
by various stall components, the most important of which are in-
struction misses and dirty data misses. This leads to a low IPC of
0.5 on the base out-of-order processor.

We next try to determine if enhancement of any processor fea-
tures can alleviate the remaining stall components. Our results are
summarized in Figure 4. The left-most bar represents the base out-
of-order configuration; subsequent bars show the effect of infinite
functional units, perfect branch prediction, and a perfect instruc-
tion cache. The last bar represents a system with twice the instruc-
tion window size (128 elements) along with infinite functional units
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Figure 4: Factors limiting OLTP performance.
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Figure 5: Relative importance of components in uniprocessor and multiprocessor systems.

and perfect branch prediction, instruction cache, and i- and d-TLBs
(Figure 2(b) shows the performance of the system when the instruc-
tion window size alone is doubled).

The results clearly show that functional units are not a bottle-
neck. Even though OLTP shows a cumulative branch misprediction
rate of 11%, perfect branch prediction gives only an additional 6%
reduction in execution time. Frequent instruction misses prevent
the branch prediction strategy from having a larger impact. Not
surprisingly, an infinite instruction cache gives the largest gain, il-
lustrating the importance of addressing the instruction stall time.
Increasing the instruction window size on a system with infin-
ite functional units, perfect branch prediction, perfect instruction
cache, and perfect TLB behavior (rightmost bar in Figure 4) allows
for more synergistic benefits. The L2 stall component is further di-
minished, leaving dirty miss latencies as the dominant component.
Section 4 discusses techniques to address both the instruction stall
and the dirty miss components.

3.2.2 DSS Workload

As discussed before, the DSS workload experiences very little stall
time due to its highly compute-intensive nature and its relatively
small primary working set. The IPC of the DSS workload on our
base out-of-order system is 2.2. The main limitation in this ap-
plication is the number of functional units (results not shown). In-
creasing the number of functional units (to 16 ALUs and 16 address
generation units; floating point units are not used by the workload)
results in a 12% performance improvement. For our default con-
figuration, improving other parameters like the branch prediction,
instruction cache and tlb sizes do not make any significant impact.

3.3 Comparison with Uniprocessor Systems

Our experiments show that uniprocessor systems achieve benefits
quantitatively similar to multiprocessors from ILP features for both
DSS and OLTP. However, it is interesting to compare the sources
of stall time in uniprocessor and multiprocessor systems. Figure 5
presents the normalized execution times for our base uniprocessor
and multiprocessor systems. For OLTP, the instruction stall time is
a significantly larger component of execution time in uniprocessors
since there are no data communication misses. For both workloads,
multiprocessors bring about larger read components as expected.

3.4 Performance Benefits from ILP-Enabled Con-
sistency Optimizations

Features such as out-of-order scheduling and speculative execution
also enable hardware optimizations that enhance the performance
of memory consistency models. These optimized implementations
exploit the observation that the system must onlyappearto ex-
ecute memory operations according to the specified constraints of
a model.

The technique ofhardware prefetchingfrom the instruction
window [7] issues non-binding prefetches for memory operations
whose addresses are known, and yet are blocked due to consistency
constraints.Speculative load execution[7] increases the benefits of
prefetching by allowing the return value of the load to be consumed
early, regardless of consistency constraints. The latter technique
requires hardware support for detecting violations of ordering re-
quirements due to early consumption of values and for recovering
from such violations. Violations are detected by monitoring co-
herence requests and cache replacements for the lines accessed by
outstanding speculative loads. The recovery mechanism is sim-
ilar to that used for branch mispredictions or exceptions. Both of
the above techniques are implemented in a number of commercial
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Figure 6: Performance benefits from ILP-enabled consistency optimizations.

microprocessors (e.g., HP PA8000, Intel Pentium Pro, and MIPS
R10000).

Figure 6 summarizes the performance of three implementations
of consistency models – a straightforward implementation, another
with hardware load and store prefetching, and a third that also uses
speculative loads. The figure shows the performance of sequential
consistency (SC), processor consistency (PC), and release consist-
ency (RC) for each of the implementations. Execution times are
normalized to the straightforward implementation of SC. The data
stall component of execution time is further divided into read and
write stall times.

Our results show that the optimizations have a large impact on
the performance of the stricter models (SC and PC), and a relat-
ively small impact on RC (as expected). While prefetching alone
achieves some benefits, the data-dependent nature of computation
allows for even greater benefits with speculative loads. For ex-
ample, with both prefetching and speculative loads, the execution
time of SC is reduced by 26% for OLTP and by 37% for DSS,
bringing it to within 10% and 15% of the execution time of RC. In
contrast, without these optimizations, RC achieves significant re-
ductions in execution time compared to SC (46% for DSS and 28%
for OLTP). Given that these optimizations are already included in
several commercial microprocessors, our results indicate that the
choice of the hardware consistency model may not be a key factor
for out-of-order systems running database workloads (especially
OLTP). In contrast, previous studies based on the same optimiza-
tions have shown a significant performance gap (greater than 15%)
between SC and RC for scientific workloads [19].

3.5 Summary of ILP Benefits

Techniques such as multiple issue, out-of-order execution, and mul-
tiple outstanding loads provide significant benefits for both OLTP
and DSS. The gains for DSS are more substantial as compared with
OLTP. OLTP has a large memory system component that is difficult

to hide due to the prevalence of dependent loads. Most of the bene-
fits are achieved by a four-way issue processor with a window size
of 32 to 64 and a maximum of four outstanding cache misses. Fur-
thermore, ILP features present in current state-of-the-art processors
allow optimized implementations of memory consistency models
that significantly improve the performance of stricter consistency
models (by 26-37%) for database workloads, bringing their per-
formance to within 10-15% of more relaxed models.

4 Addressing Instruction and Data Bottle-
necks in OLTP

Section 3.2 showed that the instruction stall time and stall time due
to read dirty misses are two primary bottlenecks that limit the per-
formance of our OLTP workload. This section further analyzes
these bottlenecks and evaluates simple solutions to address them.

4.1 Addressing the Instruction Bottleneck

Our analysis of the instruction stall time in OLTP identifies two key
trends. First, the instruction stall time is dominated by first-level
cache misses that hit in the second-level cache. This stems from the
fact that the instruction working set of OLTP is about 560KB which
fits in the large 8M second-level cache, but overwhelms the 128K
first-level cache. Second, a significant portion of the instruction
references follow a streaming pattern with successive references
accessing successive locations in the address space. These charac-
teristics suggest potential benefits from adding a simple instruction
stream buffer between the first and second level caches.

A stream bufferis a simple hardware-based prefetching mech-
anism that automatically initiates prefetches to successive cache
lines following a miss [10]. To avoid cache pollution due to the
prefetched lines, the hardware stores the prefetched requests in the
stream buffer until the cache uses the prefetched data. In the event
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Figure 7: Addressing performance bottlenecks in OLTP.

of a cache miss that does not hit in any of the entries in the stream
buffer, the hardware flushes all the entries in its buffer and initiates
prefetches to the new stream.

Our results show that a simple stream buffer is very effective
in reducing the effects of instruction misses in OLTP. A 2-element
instruction buffer is successful in reducing the miss rate of the base
out-of-order system by almost 64%. A 4-element stream buffer
reduces the remaining misses by an additional 10%. Beyond 4 ele-
ments, the stream buffer provides diminishing returns for two reas-
ons. First, the misses targeted by the stream buffer decrease, since
streams in OLTP are typically less than 4 cache lines long. Second,
additional stream buffer entries can negatively impact performance
by causing extra contention for second-level cache resources due to
useless prefetches.

Figure 7(a) compares the performance of our base system to
systems including stream buffers of size 2, 4, and 8 elements. As an
upper bound on the performance achievable from this optimization,
we also include results for a system with a perfect instruction cache,
and a system with a perfect instruction cache and perfect instruction
TLB.

As shown in Figure 7(a), a 2- or 4-element stream buffer re-
duces the execution time by 16%, bringing the performance of the
system to within 15% of the configuration with a perfect icache.
Most of the benefits come from increased overlap of multiple in-
struction misses at the L1 cache. The improvement in performance
from stream buffers is more pronounced in uniprocessor configur-
ations where the instruction stall time constitutes a larger compon-
ent of the total execution time. Our results for uniprocessors (not
shown here) show that stream buffers of size 2 and 4 achieve reduc-
tions in execution time of 22% and 27% respectively compared to
the base system.

Further characterization of the instruction misses indicate that a
large fraction of the remaining misses exhibit repeating sequences,
though with no regular strides. Code realignment by the compiler,
or a predictor that interfaces with a branch target buffer to issue
prefetches for the right path of the branch could potentially target
these misses. Our preliminary evaluation of the latter scheme indic-
ates that the benefits from such predictors are likely to be limited
by the accuracy of the path prediction logic and may not justify
the associated hardware costs, especially when a stream buffer is
already used.

An alternative to using a stream buffer is to increase the size of
the transfer unit between the L1 and L2 caches. Our experiments
with a 128-byte cache line size suggest that such an architectural
change can also achieve reductions in miss rates comparable to
the stream buffers. However, stream buffers have the potential to

dynamically adapt to longer stream lengths without associated in-
creases in the access latency, and without displacing other useful
data from the cache.

We are not aware of any current system designs that include
support for an instruction stream buffer between the L1 and L2
cache levels. Our results suggest that adding such a stream buffer
can provide high performance benefits for OLTP workloads with
marginal hardware costs.

4.2 Addressing the Data Communication Miss
Bottleneck

As shown in Figure 5(a), read dirty misses (serviced by cache-to-
cache transfers) account for 20% of the total execution time of
OLTP on our base out-of-order system. In addition, dirty misses
account for almost 50% of the total misses from the L2 cache. To
better understand the behavior of these dirty misses, we performed
a detailed analysis of the sharing patterns in Oracle when running
our OLTP workload. Our key observations are summarized below.

First, we observed that 88% of all shared write accesses and
79% of read dirty misses are to data that exhibit a migratory sharing
pattern.2 OLTP is characterized by fine-grain updates of meta-data
and frequent synchronization that protects such data. As a result,
data structures associated with the most actively used synchroniza-
tion tend to migrate with the passing of the locks.

Second, additional characterization of the migratory misses
show that they are dominated by accesses to a small subset of the
total migratory data, and are generated by a small subset of the
total instructions. On our base system, 70% of the migratory write
misses refer to 3% of all cache lines exhibiting migratory behavior
(about 520 cache lines), and more importantly, 75% of the total mi-
gratory references are generated by less than 10% of all instructions
that ever generate a migratory reference (about 100 unique instruc-
tions in the code). Finally, analysis of the dynamic occurrence of
these instructions indicate that 74% of the migratory write accesses
and 54% of the migratory read accesses occur within critical sec-
tions bounded by identifiable synchronization.

The above observations suggest two possible solutions for redu-
cing the performance loss due to migratory dirty read misses. First,
a software solution that identifies accesses to migratory data struc-

2We use the following heuristic to identify migratory data [3, 25]. A cache line is
marked as migratory when the directory receives a request for exclusive ownership to
a line, the number of cached copies of the line is 2, and the last writer to the line is
not the requester. Because our base system uses a relaxed memory consistency model,
optimizations for dealing with migratory data such as those suggested by Stenstrom et
al. [25] will not provide any gains since the write latency is already hidden.



tures can scheduleprefetchesto the data, enabling the latency to
be overlapped with other useful work. Support for such software-
directed prefetch instructions already exists in most current pro-
cessors.

Second, a solution that identifies the end of a sequence
of accesses to migratory data can schedule a“flush” or
“WriteThrough” [1] instruction to update the memory with the
latest values. Subsequent read requests can then be serviced at
memory, avoiding the extra latency associated with a cache-to-
cache transfer (for our system configuration, this can reduce the
latency by almost 40%). We found that it is important for the flush
operation to keep a clean copy in the cache (i.e., not invalidate the
copy) since the latency of subsequent read misses would otherwise
neutralize the gains. This requires minor support in the protocol
since the flush effectively generates an unsolicited “sharing write-
back” message to the directory.

Given our lack of access to the Oracle source code, we could
not correlate the migratory accesses to the actual data structures.
Instead, we used our characterizations to identify the instructions
that are likely to generate migratory data accesses to perform a pre-
liminary study. Our experiments involve adding the appropriate
prefetch and flush software primitives to the code around some of
the key instructions.

Figure 7(b) summarizes our results. All results assume a 4-
element instruction stream buffer given the importance of this op-
timization. The leftmost bar represents the base system with a 4-
element stream buffer. The second bar represents adding appro-
priate flush primitives at the end of specific critical sections. As
shown in Figure 7(b), the flush primitive is successful in signific-
antly reducing the impact of dirty misses on the total execution
time3, achieving a 7.5% reduction in execution time. As an ap-
proximate bound on this improvement, we selectively reduced the
latency of all migratory read accesses (by 40%) to reflect service
by memory; this gave a bound of 9% which is very close to the
7.5% improvement from the flush primitive. Finally, also adding
prefetching for migratory data at the beginning of critical sections
(rightmost bar) provides a cumulative reduction of 12% in execu-
tion time. Late prefetches and contention effects due to the com-
bination of flush and prefetch appear to limit additional perform-
ance benefits. A realistic software solution that is aware of the data
structures which cause the migratory accesses may be able to avoid
both these problems.4

5 Discussion and Related Work

Our work extends previous studies by providing a thorough ana-
lysis of the benefits of aggressive techniques such as multiple is-
sue, out-of-order execution, non-blocking loads, and speculative
execution in the context of database workloads, and by identifying
simple optimizations that can provide a substantial improvement in
performance. Our work is also the first to study the performance of
memory consistency models in the context of database workloads.

There are a number of studies based on the performance of out-
of-order processors for non-database workloads(e.g., [8, 16, 18]).
Most previous studies of databases are based on in-order pro-
cessors [2, 4, 5, 6, 14, 20, 27, 28], and therefore do not address
the benefits of more aggressive processor architectures. A number
of the studies are limited to uniprocessor systems [4, 6, 13, 14].
As discussed in Section 3, data communication misses play a more

3The increase in the local and remote components of read latency corresponds to
the dirty misses that are converted to misses serviced by the memory.

4Given the amount of tuning that is done on database benchmarks, it would not be
unthinkable for database vendors to include such optimizations in their code if it leads
to significant gains.

dominant role in multiprocessor executions and somewhat reduce
the relative effect of instruction stall times.

Another important distinction among the database studies is
whether they are based on monitoring existing systems [4, 5, 11,
27] (typically through performance counters) or based on simula-
tions [6, 13, 14, 20, 21, 28]; one study uses a combination of both
techniques [2]. Monitoring studies have the advantage of using
larger scale versions of the workloads and allowing for a larger
number of experiments to be run. However, monitoring studies are
often limited by the configuration parameters of the system and the
types of events that can be measured by the monitoring tools. For
our own study, we found the flexibility of simulations invaluable
for considering numerous design points and isolating the effects of
different design decisions. Nevertheless, we found monitoring ex-
tremely important for tuning, scaling, and tracing our workloads
and for verifying the results of our simulations.

The following describes the database studies based on out-of-
order processors in more detail. Keeton et al. [11] present a mon-
itoring study of the behavior of an OLTP workload (modeled after
TPC-C) on top of Informix, using the performance counters on a
quad Pentium Pro system. Similar to our study, this paper shows
that out-of-order execution can achieve performance benefits on
OLTP. Our work differs because we study a more futuristic pro-
cessor configuration through detailed simulations. This enables us
to quantitatively isolate the performance benefits from various ILP
techniques as well as evaluate solutions to the various performance
bottlenecks. We also evaluate the performance of DSS in addition
to OLTP.

Rosenblum et al. [21] present a simulation study that focuses
on the impact of architectural trends on operating system perform-
ance using three workloads, one of which is TPC-B on Sybase.
The study considers both uniprocessor and multiprocessor systems,
with the multiprocessor study limited to in-order processors. The
TPC-B workload used in this study is not representative because
it exhibits large kernel and idle components primarily due to the
lack of sufficient server processes. The paper does however make
the observation that the decoupling of the fetch and execute units
allows for some overlap of the instruction stall time in the unipro-
cessor system. Lo et al. [13] examine the performance of OLTP and
DSS on a simultaneous multithreaded (SMT) uniprocessor system
with support for multiple hardware contexts using the same simula-
tion methodology as our study. Even though the SMT functionality
is added on top of an aggressive out-of-order processor, the study
primarily focuses on the effects of SMT as opposed to the underly-
ing mechanisms in the base processor.

We are not aware of any work other than the original stream
buffer work by Jouppi [10] that has studied the effect of stream
buffers to alleviate the instruction miss bottleneck. This may partly
be due to the fact that the standard SPEC, SPLASH, and STREAM
benchmark suites do not stress the instruction cache significantly.
Our evaluation differs from Jouppi's [10] in two key respects. First,
we evaluate the impact of the stream buffer optimization on the
execution time of a complex commercially-used database engine.
Second, we perform our evaluation in the context of an aggressive
out-of-order processor model that already includes support to hide
part of the instruction stall latencies and show that the stream buffer
can still provide a benefit.

Primitives similar to the “flush” primitive that we use in Sec-
tion 4 have been proposed and studied by a number of other
groups (e.g., [9, 22]). Our “flush” primitive is modeled after
the “WriteThrough” primitive used by Abdel-Shafi et al. [1].
That study also showed that the combination of prefetching and
“WriteThrough” could be used to achieve better performance im-
provements than using either of them alone (in the context of sci-
entific applications).



Our study is based on systems with conventional cache hier-
archies. A number of processors from Hewlett-Packard have opted
for extremely large off-chip first level instruction and data caches
(e.g., HP PA-8200 with up to 2MByte separate first level instruc-
tion and data caches), which may be targeting the large footprints
in database workloads. These very large first level caches make the
use of out-of-order execution techniques critical for tolerating the
correspondingly longer cache access times.

Finally, our study evaluates the benefits of exploiting intra-
thread parallelism in database workloads. Two previous studies
have focused on exploiting inter-thread parallelism through the use
of multithreaded processors [6, 13]. This approach depends on the
fact that database workloads are already inherently parallel (either
in the form of threads or processes) for hiding I/O latency. These
studies show that multithreading can provide substantial gains, with
simultaneous multithreading (SMT) [13] providing higher gains
(as high as three times improvement for OLTP). Our study shows
that DSS can benefit significantly from intra-thread parallelism (2.6
times improvement). The incremental gains from the addition of
SMT are less significant in comparison [13]. Intra-thread parallel-
ism is not as beneficial for OLTP (1.5 times improvement) due to
the data dependent nature of the workload. In this case, SMT is
more effective in hiding the high memory overheads.

6 Concluding Remarks

With the growing dominance of commercial workloads in the mul-
tiprocessor server market, it is important to re-evaluate the justifica-
tions for key design decisions that have been made primarily based
on the requirements of scientific and engineering workloads. This
paper provides an in-depth analysis of the performance of aggress-
ive out-of-order processors in multiprocessor configurations, and
considers simple optimizations that can provide further perform-
ance improvements, in the context of OLTP and DSS workloads.

Among database applications, online transaction processing
(OLTP) workloads present the more demanding set of requirements
for system designers. While DSS workloads are somewhat reminis-
cent of scientific/engineering applications in their behavior, OLTP
workloads exhibit dramatically different behavior due to large in-
struction footprints and frequent data communication misses which
often lead to cache-to-cache transfers. Our results reflect these
characteristics, with our DSS workload achieving a 2.6 times im-
provement from out-of-order execution and multiple issue, and our
OLTP workload achieving a more modest 1.5 times improvement.
In addition to the frequent instruction and data misses, gains in
OLTP are limited due to the data dependent nature of the computa-
tion.

The inefficiencies in OLTP may be addressed through a number
of simple optimizations. We showed that a simple 4-entry stream
buffer for instructions can provide an extra 17% reduction in execu-
tion time. Our preliminary results with software prefetch and flush
hints are also promising, giving another 12% reduction in execution
time.

We also found that speculative techniques that may be easily
added to aggressive out-of-order processors are extremely benefi-
cial for multiprocessor systems that support a stricter memory con-
sistency model. For example, the execution time of a sequentially
consistent system can be improved by 26% and 37% for OLTP and
DSS workloads, bringing it to within 10-15% of more relaxed sys-
tems. Given that these techniques have been adopted in several
commercial microprocessors, the choice of the hardware consist-
ency model for a system does not seem to be a dominant factor for
database workloads, especially for OLTP.

In the future, we are interested in further pursuing software op-

timizations (including prefetch and flush hints) especially in the
context of OLTP workloads to see whether it is possible to further
relieve some of the challenging requirements such workloads im-
pose on hardware (e.g., large, fast off-chip caches and fast cache-
to-cache transfers).
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