
D E C E M B E R 1 9 9 7

WRL
Research Report 97/4a

Potential benefits
of delta encoding
and data compression
for HTTP
(Corrected version)

Jeffrey C. Mogul
Fred Douglis
Anja Feldmann
Balachander Krishnamurthy

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Potential benefits of delta encoding
and data compression for HTTP

Jeffrey C. Mogul

Digital Equipment Corporation Western Research Laboratory
mogul@wrl.dec.com

Fred Douglis
Anja Feldmann

Balachander Krishnamurthy

AT&T Labs -- Research
180 Park Avenue, Florham Park, New Jersey 07932-0971

{douglis,anja,bala}@research.att.com

December, 1997

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Caching in the World Wide Web currently follows a naive model, which assumes that
resources are referenced many times between changes. The model also provides no way to
update a cache entry if a resource does change, except by transferring the resource’s entire
new value. Several previous papers have proposed updating cache entries by transferring
only the differences, or ‘‘delta,’’ between the cached entry and the current value.

In this paper, we make use of dynamic traces of the full contents of HTTP messages to
quantify the potential benefits of delta-encoded responses. We show that delta encoding can
provide remarkable improvements in response size and response delay for an important
subset of HTTP content types. We also show the added benefit of data compression, and
that the combination of delta encoding and data compression yields the best results.

We propose specific extensions to the HTTP protocol for delta encoding and data com-
pression. These extensions are compatible with existing implementations and specifications,
yet allow efficient use of a variety of encoding techniques.

This report is an expanded version of a paper in the Proceedings of the ACM SIGCOMM ’97 Conference. It also
contains corrections from the July, 1997 version of this report.

ii

iii

Table of Contents
1. Introduction 1
2. Related work 2
3. Motivation and methodology 3

3.1. Obtaining proxy traces 3
3.2. Obtaining packet-level traces 5
3.3. Reassembly of the packet trace into an HTTP trace 5

4. Trace analysis software 6
4.1. Proxy trace analysis software 6
4.2. Packet-level trace analysis software 7

5. Results of trace analysis 8
5.1. Overall response statistics for the proxy trace 8
5.2. Overall response statistics for the packet-level trace 8
5.3. Characteristics of responses 9
5.4. Calculation of savings 10
5.5. Net savings due to deltas and compression 12
5.6. Distribution of savings 16
5.7. Time intervals of delta-eligible responses 20
5.8. Influence of content-type on coding effectiveness 22
5.9. Effect of clustering query URLs 24

6. Including the cost of end-host processing 26
6.1. What about modem-based compression? 30

7. Extending HTTP to support deltas 31
7.1. Background: an overview of HTTP cache validation 32
7.2. Requesting the transmission of deltas 33
7.3. Choice of delta algorithm 34
7.4. Transmission of deltas 35
7.5. Management of base instances 36
7.6. Deltas and intermediate caches 38
7.7. Quantifying the protocol overhead 38
7.8. Ensuring data integrity 39
7.9. Implementation experience 39

8. Future work 40
8.1. Delta algorithms for images 40
8.2. Effect of cache size on effectiveness of deltas 40
8.3. Deltas between non-contiguous responses 41
8.4. Avoiding the cost of creating deltas 41
8.5. Decision procedures for using deltas or compression 41

9. Summary and conclusions 42
Acknowledgments 42
References 42

iv

v

List of Figures
Figure 5-1: Cumulative distributions of response sizes (proxy trace) 9
Figure 5-2: Cumulative distributions of response sizes (packet trace) 9
Figure 5-3: Cumulative distributions of reference counts (proxy trace) 10
Figure 5-4: Distribution of latencies for various phases of retrieval (proxy trace) 11
Figure 5-5: Distribution of cumulative latencies to various phases (packet-level 12

trace)
Figure 5-6: Distribution of response-body bytes saved for delta-eligible responses 16

(proxy trace)
Figure 5-7: Distribution of response-body bytes saved for delta-eligible responses 16

(packet trace)
Figure 5-8: Weighted distribution of response-body bytes saved for delta-eligible 17

responses (proxy trace)
Figure 5-9: Time intervals for delta-eligible responses (proxy trace) 20
Figure 5-10: Time intervals for delta-eligible responses (proxy trace), weighted 21

by number of bytes saved by delta encoding using vdelta

vi

vii

List of Tables
Table 5-1: Improvements assuming deltas are applied at a proxy (proxy trace, 13

relative to all delta-eligible responses)
Table 5-2: Improvements assuming deltas are applied at a proxy (proxy trace, 13

relative to all status-200 responses)
Table 5-3: Improvements assuming deltas are applied at a proxy (packet-level 14

trace, relative to all delta-eligible responses)
Table 5-4: Improvements assuming deltas are applied at a proxy (packet-level 14

trace, relative to all status-200 responses)
Table 5-5: Improvements assuming deltas are applied at individual clients 15

(proxy trace, relative to delta-eligible responses)
Table 5-6: Improvements assuming deltas are applied at individual clients 15

(proxy trace, relative to all status-200 responses)
Table 5-7: Mean and median values for savings from vdelta encoding, for all 18

delta-eligible responses
Table 5-8: Mean and median values for savings from vdelta encoding, for delta- 19

eligible responses improved by vdelta
Table 5-9: Mean and median values for savings from gzip compression, for all 19

status-200 responses
Table 5-10: Mean and median values for savings from gzip compression, for 20

status-200 responses improved by gzip
Table 5-11: Breakdown of status-200 responses by content-type (packet-level 22

trace)
Table 5-12: Breakdown of delta-eligible responses by content-type (packet-level 23

trace)
Table 5-13: Summary of unchanged response bodies by content-type (packet- 23

level trace)
Table 5-14: Summary of savings by content-type for delta-encoding with vdelta, 24

(all delta-eligible responses in packet-level trace)
Table 5-15: Summary of gzip compression savings by content-type (all status-200 25

responses in packet-level trace)
Table 5-16: Improvements relative to all status-200 responses to queries (no 26

clustering, proxy trace)
Table 5-17: Improvements when clustering queries (all status-200 responses to 26

queries, proxy trace)
Table 6-1: Compression and delta encoding rates for 50 Mhz 80486 (BSD/OS 27

2.1)
Table 6-2: Compression and delta encoding rates for 90 MHz Pentium (Linux 28

2.0.0)
Table 6-3: Compression and delta encoding rates for 400 MHz AlphaStation 500 29

(Digital UNIX 3.2G)
Table 6-4: URLs used in modem experiments 30
Table 6-5: Effect of modem-based compression on transfer time 31
Table 6-6: Compression and decompression times for files in tables 6-4 and 6-5 32

using 50 Mhz 80486 (BSD/OS 2.1)
Table 6-7: Compression and decompression times for files in tables 6-4 and 6-5 32

using 400 MHz AlphaStation 500 (Digital UNIX 3.2G)

viii

1

1. Introduction

The World Wide Web is a distributed system, and so often benefits from caching to reduce
retrieval delays. Retrieval of a Web resource (such as document, image, icon, or applet) over the
Internet or other wide-area network usually takes enough time that the delay is over the human
threshold of perception. Often, that delay is measured in seconds. Caching can often eliminate
or significantly reduce retrieval delays.

Many Web resources change over time, so a practical caching approach must include a
coherency mechanism, to avoid presenting stale information to the user. Originally, the Hyper-
text Transfer Protocol (HTTP) provided little support for caching, but under operational pres-
sures, it quickly evolved to support a simple mechanism for maintaining cache coherency.

In HTTP/1.0 [3], the server may supply a ‘‘last-modified’’ timestamp with a response. If a
client stores this response in a cache entry, and then later wishes to re-use the response, it may
transmit a request message with an ‘‘if-modified-since’’ field containing that timestamp; this is
known as a conditional retrieval. Upon receiving a conditional request, the server may either
reply with a full response, or, if the resource has not changed, it may send an abbreviated reply,
indicating that the client’s cache entry is still valid. HTTP/1.0 also includes a means for the
server to indicate, via an ‘‘expires’’ timestamp, that a response will be valid until that time; if so,
a client may use a cached copy of the response until that time, without first validating it using a
conditional retrieval.

The proposed HTTP/1.1 specification [6] adds many new features to improve cache coherency
and performance. However, it preserves the all-or-none model for responses to conditional
retrievals: either the server indicates that the resource value has not changed at all, or it must
transmit the entire current value.

Common sense suggests (and traces confirm), however, that even when a Web resource does
change, the new instance is often substantially similar to the old one. If the difference (or delta)
between the two instances could be sent to the client instead of the entire new instance, a client
holding a cached copy of the old instance could apply the delta to construct the new version. In
a world of finite bandwidth, the reduction in response size and delay could be significant.

One can think of deltas as a way to squeeze as much benefit as possible from client and proxy
caches. Rather than treating an entire response as the ‘‘cache line,’’ with deltas we can treat
arbitrary pieces of a cached response as the replaceable unit, and avoid transferring pieces that
have not changed.

In this paper, we make use of dynamic traces of the full contents of HTTP messages to quan-
tify the potential benefits of delta-encoded responses. Although previous papers [2, 9, 19] have
proposed the use of delta encoding, ours is the first to use realistic traces to quantify the benefits.
Our use of long traces from two different sites increases our confidence in the results.

We show that delta encoding can provide remarkable improvements in response-size and
response-delay for an important subset of HTTP content types. We also show the added benefit
of data compression, and that the combination of delta encoding and data compression yields the
best results.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

2

We propose specific extensions to the HTTP protocol for delta encoding and data compres-
sion. These extensions are compatible with existing implementations and specifications, yet al-
low efficient use of a variety of encoding techniques.

2. Related work

The idea of delta-encoding to reduce communication or storage costs is not new. For ex-
ample, the MPEG-1 video compression standard transmits occasional still-image frames, but
most of the frames sent are encoded (to oversimplify) as changes from an adjacent frame. The
SCCS and RCS [17] systems for software version control represent intermediate versions as del-
tas; SCCS starts with an original version and encodes subsequent ones with forward deltas,
whereas RCS encodes previous versions as reverse deltas from their successors. Jacobson’s
technique for compressing IP and TCP headers over slow links [11] uses a clever, highly special-
ized form of delta encoding.

In spite of this history, it appears to have taken several years before anyone thought of apply-
ing delta encoding to HTTP, perhaps because the development of HTTP caching has been some-
what haphazard. The first published suggestion for delta encoding appears to have been by Wil-
liams et al. in a paper about HTTP cache removal policies [19], but these authors did not
elaborate on their design until later [18].

The possibility of compressing HTTP messages seems to have a longer history, going back at
least to the early drafts of the HTTP/1.0 specification. However, until recently, it appears that
nobody had attempted to quantify the potential benefits of loss-free compression, although the
GloMop project [7] did explore the use of lossy compression. A study done at the World Wide
Web Consortium reports on the benefits of compression in HTTP, but for only one example
document [15]. Also, our traces suggest that few existing client implementations offer to accept
compressed encodings of arbitrary responses (apparently, Lynx is the one exception). (Before
the Web was an issue, Douglis [4] wrote generally about compression in distributed systems.)

The WebExpress project [9] appears to be the first published description of an implementation
of delta encoding for HTTP (which they call ‘‘differencing’’). WebExpress is aimed specifically
at wireless environments, and includes a number of orthogonal optimizations. Also, the
WebExpress design does not propose changing the HTTP protocol itself, but rather uses a pair of
interposed proxies to convert the HTTP message stream into an optimized form. The results
reported for WebExpress differencing are impressive, but are limited to a few selected
benchmarks.

Banga et al. [2] describe the use of optimistic deltas, in which a layer of interposed proxies on
either end of a slow link collaborate to reduce latency. If the client-side proxy has a cached copy
of a resource, the server-side proxy can simply send a delta. If only the server-side proxy has a
cached copy, it may optimistically send its (possibly stale) copy to the client-side proxy, fol-
lowed (if necessary) by a delta once the server-side proxy has validated its own cache entry with
the origin server. This can improve latency by anticipating either that the resource has not
changed at all, or that the changes are small. The use of optimistic deltas, unlike delta encoding,
increases the number of bytes sent over the network. The optimistic delta paper, like the
WebExpress paper, did not propose a change to the HTTP protocol itself, and reported results
only for a small set of selected URLs.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

3

We are also analyzing the same traces to study the rate of change of Web resources [5].

3. Motivation and methodology

Although two previous papers [2, 9] have shown that compression and delta encoding could
improve HTTP performance for selected sets of resources, these did not analyze traces from
‘‘live’’ users to see if the benefits would apply in practice. Also, these two projects both as-
sumed that existing HTTP clients and servers could not be modified, and so relied on interposing
proxy systems at either end of the slowest link. This approach adds extra store-and-forward
latency, and may not always be feasible, so we wanted to examine the benefits of end-to-end
delta encoding and compression, as an extension to the HTTP protocol.

In this paper, we use a trace-based analysis to quantify the potential benefits from both proxy-
based and end-to-end applications of compression and delta encoding. Both of these applica-
tions are supported by our proposed changes to HTTP. We also analyze the utility of these
techniques for various different HTTP content-types (such as HTML, plain text, and image for-
mats), and for several ways of grouping responses to HTTP queries. We look at several different
algorithms for both delta encoding and data compression, and we examine the relative perfor-
mance of high-level compression and modem-based compression algorithms.

We used two different traces in our study, made at Internet connection points for two large
corporations. One of the traces was obtained by instrumenting a busy proxy; the other was made
by capturing raw network packets and reconstructing the data stream. Both traces captured only
references to Internet servers outside these corporations, and did not include any ‘‘inbound’’
requests. Because the two traces represent different protocol levels, time scales, user com-
munities, and criteria for pre-filtering the trace, they give us several views of ‘‘real life’’ refer-
ence streams, although certainly not of all possible environments.

Since the raw traces include a lot of sensitive information, for reasons of privacy and security
the authors of this paper were not able to share the traces with each other. That, and the use of
different trace-collection methods, led us to do somewhat different analyses on the two trace
sets.

3.1. Obtaining proxy traces

Some large user communities often gain access to the Web via a proxy server. Proxies are
typically installed to provide shared caches, and to allow controlled Web access across a security
firewall. A proxy is a convenient place to obtain a realistic trace of Web activity, especially if it
has a large user community, because (unlike a passive monitor) it guarantees that all interesting
activity can be traced without loss, regardless of the offered load. Using a proxy server, instead
of a passive monitor, to gather traces also simplifies the task, since it eliminates the need to
reconstruct data streams from TCP packets.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

4

3.1.1. Tracing environment

We were able to collect traces at a proxy site that serves a large fraction of the clients on the
internal network of Digital Equipment Corporation. Digital’s network is isolated from the Inter-
net by firewalls, and so all Internet access is mediated by proxy relays. This site, located in Palo
Alto, California, and operated by Digital’s Network Systems Laboratory, relayed more than a
million HTTP requests each weekday. The proxy load was spread, more or less equally, across
two AlphaStation 250 4/266 systems running Digital UNIX V3.2C.

To collect these traces, we modified version 3.0 of the CERN httpd code, which may be used
as either a proxy or a server. We made minimal modifications, to reduce the risk of introducing
bugs or significant performance effects. The modified proxy code traces a selected subset of the
requests it receives:

• Only requests going to HTTP servers (i.e., not FTP or Gopher)

• Only those requests whose URL does not end in one of these extensions: ‘‘.aif’’,
‘‘.aifc’’, ‘‘.aiff’’, ‘‘.au’’, ‘‘.avi’’, ‘‘.dl’’, ‘‘.exe’’, ‘‘.flc’’, ‘‘.fli’’, ‘‘.gif’’, ‘‘.gl’’,
‘‘.gz’’, ‘‘.ief’’, ‘‘.jpeg’’, ‘‘.jpg’’, ‘‘.mov’’, ‘‘.movie’’, ‘‘.mpe’’, ‘‘.mpeg’’, ‘‘.mpg’’,
‘‘.qt’’, ‘‘.snd’’, ‘‘.tiff’’, ‘‘.wav’’, ‘‘.xwd’’, and ‘‘.Z’’. These URLs were omitted in
order to reduce the size of the trace logs.

This pre-filtering considered only the URL in the request, not the HTTP Content-type in the
response; therefore, many responses with unwanted content-types leaked through.

For each request that is traced, the proxy records in a disk file:

• Client and server IP addresses.

• Timestamps for various events in processing the request.

• The complete HTTP header and body of both the request and the response.

To allow one-pass generation of the trace logs, byte counts for the variable-sized fields (the
HTTP headers and bodies) are written after the corresponding data. This means that the software
which parses the logs must parse them in reverse order, but this is not especially difficult. Since
the CERN proxy handles each request in a separate UNIX process, and these processes may
terminate at unpredictable times, the log format includes special ‘‘magic-number’’ markers to
allow the parsing software to ignore incomplete log entries.

This particular proxy installation was configured not to cache HTTP responses, for a variety of
logistical reasons. This means that a number of the responses in the trace contained a full body
(i.e., HTTP status code = 200) when, if the proxy had been operating as a cache, they might have
instead been ‘‘Not Modified’’ responses with no body (i.e., HTTP status code = 304). The
precise number of such responses would depend on the size of the proxy cache and its replace-
ment policy. We still received many ‘‘Not Modified’’ responses, because most of the client
hosts employ caches.

3.1.2. Trace duration

We collected traces for almost 45 hours, starting in the afternoon of Wednesday, December 4,
1996, and ending in the morning of December 6. During this period, the proxy site handled
about 2771975 requests, 504736 of which resulted in complete trace records, and generated al-

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

5

most 9 GBytes of trace file data. (Many requests were omitted by the pre-filtering step, or be-
cause they were terminated by the requesting client.) While tracing was in progress, ap-
proximately 8078 distinct client hosts used the proxy site, which (including the untraced re-
quests) forwarded almost 21 GBytes of response bodies, in addition to HTTP message headers
(whose length is not shown in the standard proxy log format).

3.2. Obtaining packet-level traces

When a large user community is not constrained to use a proxy to reach the Internet, the op-
tion of instrumenting a proxy is not available. Instead, one can passively monitor the network
segment connecting this community to the Internet, and reconstruct the data stream from the
packets captured.

We collected a packet-level trace at the connection between the Internet and the network of
AT&T Labs -- Research, in New Jersey. This trace represents a much smaller client population
than the proxy trace. All packets between internal users and TCP port 80 (the default HTTP
server port, used for more than 99.4% of the HTTP references seen at this site) on external ser-
vers were captured using tcpdump [14]. Packets between external users and the AT&T Labs --
Research Web server were not monitored. A negligible number of packets were lost due to
buffer overruns. The raw packet traces were later processed offline, to generate an HTTP-level
trace, as described in section 3.3.

Between Friday, November 8 and Monday, November 25, 1996, (17 days) we collected a total
of 51,100,000 packets, corresponding to roughly 19 Gbytes of raw data. Unlike the proxy-based
trace, this one was not pre-filtered to eliminate requests based on their content-type or URL ex-
tension.

3.3. Reassembly of the packet trace into an HTTP trace

The individual packets captured in the packet-level trace are not directly usable for our study;
they must first be reassembled into individual TCP streams, after which the HTTP request
response messages may be extracted.

Due to the huge amount of raw trace data (105 Gbytes), it was not feasible to process the
entire trace as a whole. Instead, the raw trace was split into chunks (contiguous sub-sequences)
of 3,100,000 packets (about 6 Gbytes), and each chunk was processed separately. Since an
HTTP message might span the boundary between two chunks, each chunk overlaps with the
previous chunk by 100,000 packets. This means that any given TCP stream should be present in
its entirely in at least one chunk. Some streams might be fully or partially present in two chunks;
we were able to eliminate duplicates by associating a timestamp with each stream. In subsequent
processing, any HTTP message with a duplicate timestamp was ignored (with priority given to a
full message over a partially reassembled message).

The first step in processing a chunk was to generate separate packet streams, such that all
packets within a stream belong to packet paths between the same source IP address, source port
number and destination IP address, destination port number. Because a client may reuse the
same address tuple for a subsequent connection, the next step is to identify the individual TCP

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

6

connections within each packet path. Each TCP connection begins with an exchange of SYN
packets and ends with an exchange of FIN packets, which when processed in the correct se-
quence, determine the extent of each connection.

Once the trace is divided into TCP connections, the packets within a connection must be con-
verted into HTTP messages. TCP packets may be lost, reordered, corrupted, or duplicated, but
by its design as a reliable stream protocol, TCP provides enough sequencing information in the
packet headers for our software to reconstruct the actual data stream, except in the rare cases
where our network monitor missed seeing a packet. (In these cases, we excluded the entire
HTTP exchange from future analyses.)

Using these reassembled HTTP messages, the trace-processing software generates a set of
files representing the body of each successful request and a log containing information about
URLs, timestamps, and request and response headers. This log is fed into a Perl script that
summarizes statistics and produces a trace format used as the input for later stages (see section
4.2). The trace format has one record per response, including the URL and the name of the file
that stores the associated response body, as well as other fields (such as sizes and timestamps)
necessary for our study.

In our traces we saw 1,322,463 requests, of which 26,591 (1.9%) had gaps, due to packet
losses and the segmentation of the raw trace into chunks. Another 43,938 (3.3%) of the requests
were detected as duplicates created by the overlaps between chunks. Both these sets were ex-
cluded from further analysis. To further restrict our analysis only to those references where the
client received the complete HTTP response body, we included only those TCP streams for
which we collected SYN and FIN packets from both client and server, or for which the size of
the reassembled response body equaled the size specified in the Content-length field of the
HTTP response. This left us with 1,075,209 usable responses (81% of the total).

4. Trace analysis software

Because the two traces were obtained using different techniques, we had to write two different
systems to analyze them.

4.1. Proxy trace analysis software

We wrote software to parse the trace files and extract relevant HTTP header fields. The
analysis software then groups the references by unique resource (URL), and to instances of a
resource. We use the term instance to describe a snapshot in the lifetime of a resource. In our
analyses, we group responses for a given URL into a single instance if the responses have iden-
tical last-modified timestamps and response body lengths. There may be one or more instances
per resource, and one or more references per instance.

The interesting references, for the purpose of this paper, were those for which the response
carried a full message body (i.e., HTTP status code = 200), since it is only meaningful to com-
pute the difference between response bodies for just these references. Once the analysis program
has grouped the references into instances, it then iterates through the references, looking for any
full-body reference which follows a previous full-body reference to a different instance of the

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

7

same resource. (If two references involve the same instance, then presumably a caching proxy
would have sent an If-Modified-Since request. The server then would have sent a ‘‘Not
Modified’’ response, with status = 304 and no response body, rather than two identical respon-
ses.)

For each such pair of full-body responses for different instances of a resource, the analysis
program computes a delta encoding for the second response, based on the first response. This is
done using several different delta-encoding algorithms; the program then reports the size of the
resulting response bodies for each of these algorithms.

The delta computation is done by extracting the relevant response bodies from the trace log
files into temporary files, then invoking one of the delta-encoding algorithms on these files, and
measuring the size of the output.

The delta-encoding algorithms that we applied include:

• diff -e: a fairly compact format generated by the UNIX ‘‘diff’’ command, for use as
input to the ‘‘ed’’ text editor (rather than for direct use by humans).1

• compressed diff -e: the output of diff -e, but compressed using the gzip program.

• vdelta: this program inherently compresses its output [10].
We used diff to show how well a fairly naive, but easily available algorithm would perform. We
also used vdelta, a more elaborate algorithm, because it was identified by Hunt et al. as the best
overall delta algorithm, based on both output size and running time [10].

The UNIX diff program does not work on binary-format input files, so we restricted its ap-
plication to responses whose Content-type field indicated a non-binary format; these included
‘‘text/html’’, ‘‘application/postscript’’, ‘‘text/plain’’, ‘‘application/x-javascript’’, and several
other formats. Vdelta was used on all formats.

We ran our analysis software on an AlphaStation 600 5/333 with 640 MBytes of RAM.
However, the program only used approximately 100 MBytes of virtual memory to analyze this
set of traces. A typical analysis of the entire trace set took approximately 9 hours, but the
analysis program has not been tuned or optimized, and the system spent a significant amount of
time blocked on disk I/O.

4.2. Packet-level trace analysis software

We processed the individual response body files derived from the packet trace (see section
3.2) using a Perl script to compute the size of the deltas between pairs of sequentially adjacent
full-body responses for the same URL, and the size of a compressed version of each full-body
response. This analysis, like the proxy-trace analysis, used the diff -e, compressed diff -e, and
vdelta algorithms to compute deltas.

1Because HTML files include lines of arbitrary length, and because the standard ed editor cannot handle long
lines, actual application of this technique would require use of an improved version of ed [12].

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

8

While the proxy-based trace, by construction, omitted many of the binary-format responses in
the reference stream, the packet-based trace included all content types. We classified these into
‘‘textual’’ and ‘‘non-textual’’ responses, using the URL extension, the Content-type HTTP
response-header, or (as a last resort) by scanning the file using a variant of the UNIX file com-
mand.

5. Results of trace analysis

This section describes the results of our analysis of the proxy and packet-level traces.

5.1. Overall response statistics for the proxy trace

The 504736 complete records in the proxy trace represent the activity of 7411 distinct client
hosts, accessing 22034 distinct servers, referencing 238663 distinct resources (URLs). Of these
URLs, 100780 contained ‘‘?’’ and are classified as query URLs; these had 12004 unique prefixes
(up to the first ‘‘?’’ character). The requests totalled 149 MBytes (mean = 311 bytes/message).
The request headers totalled 146 MBytes (mean = 306 bytes), and the response headers totalled
81 MBytes (mean = 161 bytes). 377962 of the responses carried a full body, for a total of 2450
MB (mean = 6798 bytes); most of the other types of responses do not carry much (or any) infor-
mation in their bodies. 17211 (3.4%) of the responses carried a status code of 304 (Not
Modified).

Note that the mean response body size for all of the references handled by the proxy site (7773
bytes) is somewhat larger than the mean size of the response bodies captured in the traces. This
is probably because the data types, especially images, that were filtered out of the trace based on
URL extension tend to be somewhat larger than average.

5.2. Overall response statistics for the packet-level trace

The 1075209 usable records in the packet-level trace represent the activity of 465 clients, ac-
cessing 20956 servers, referencing 499608 distinct URLs. Of these URLs, 77112 instances
(39628 distinct URLs) contained ‘‘?’’ and are classified as query URLs; these had 8054 unique
prefixes (up to the first ‘‘?’’ character). 52670 of the instances (28872 distinct URLs) contained
‘‘cgi’’, and so are probably references to CGI scripts.

The mean request and response header sizes were 281 bytes and 173 bytes, respectively.
818142 of the responses carried a full body, for a total of 6104 MB of response bodies (mean =
7881 bytes for full-body responses). 145139 (13.5%) of the responses carried a status code of
304 (Not Modified). We omitted from our subsequent analyses 1144 full-body responses for
which we did not have trustworthy timing data, leaving a total of 816998 fully-analyzed respon-
ses.

The mean response size for the packet-level trace is higher than that for the proxy trace, per-
haps because the latter excludes binary-format responses, some of which tend to be large. The
difference may also simply reflect the different user communities.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

9

5.3. Characteristics of responses

Figure 5-1 shows cumulative distributions for total response sizes, and for the response-body
size for full-body responses, for the proxy trace. Figure 5-2 shows the corresponding distribu-
tions for the packet-level trace. The median full-response body size was 3976 bytes for the
proxy trace, and 3210 bytes for the packet-level traces, which implies that the packet-level trace
showed larger variance in response size. Note that over 99% of the bytes carried in response
bodies, in this trace, were carried in the status-200 responses; this is normal, since HTTP respon-
ses with other status codes either carry no body, or a very small one.

1 1e+07
Size in bytes

10 100 1000 10000 100000 1e+06
0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

fr
ac

tio
n

of
 m

es
sa

ge
s

All responses, total size

’200’ responses, total size

’200’ responses, body size

Figure 5-1: Cumulative distributions of response sizes (proxy trace)

1 1e+06
Size in bytes

10 100 1000 10000 100000
0

1

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

fr
ac

tio
n

of
 m

es
sa

ge
s

All responses, total size

’200’ responses, total size

’200’ responses, body size

Figure 5-2: Cumulative distributions of response sizes (packet trace)

Delta encoding and/or caching are only useful when the reference stream includes at least two
references to the same URL (for delta encoding), or two references to the same (URL, last-
modified-date) instance (for caching). Figure 5-3 shows the cumulative distributions in the
proxy trace of the number of references per URL, and per instance. Curves are shown both for
all traced references, and for those references that resulted in a full-body response. We logged at
least two full-body responses for more than half (57%) of the URLs in the trace, but only did so
for 30% of the instances. In other words, resource values seem to change often enough that
relatively few such values are seen twice, even for URLs that are referenced more than once.
(An alternative explanation is that the values do not change, but the origin servers provide
responses that do not allow caching.)

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

10

1 10000
Number of references

10 100 1000
0

600000

100000

200000

300000

400000

500000
C

um
ul

at
iv

e
co

un
t

full-body refs per URL

full-body refs/instance

references per URL

references per instance

Figure 5-3: Cumulative distributions of reference counts
(proxy trace)

5.4. Calculation of savings

We define a response as delta-eligible if the trace included at least one previous status-200
response for a different instance of the same resource. (We did not include any response that
conveyed an instance identical to the previous response for the same URL, which probably
would not have been received by a caching proxy.) In the proxy trace, 113356 of the 377962
status-200 responses (30.0%) were delta-eligible. In the packet-level trace, 83905 of the 816998
status-200 responses (10.3%) were delta-eligible. In the proxy trace, only 30% of the status-200
responses were excluded from consideration for being identical, compared to 32% for the
packet-level trace.

We attribute much of the difference in the number of delta-eligible responses to the slower
rate of change of image responses, which were mostly pre-filtered out of the proxy trace. In the
packet-level trace, 66% of the status-200 responses were GIF or JPEG images, but only 3.0% of
those responses were delta-eligible; in contrast, 19% of the status-200 HTML responses were
delta-eligible. Some additional part of the discrepancy may be the result of the smaller client
population in the packet-level traces, which might lead to fewer opportunities for sharing.

Our first analysis is based on the assumption that the deltas would be requested by the proxy,
and applied at the proxy to responses in its cache; if this were only done at the individual clients,
far fewer of the responses would be delta-eligible. In section 5.5.1, we analyze the per-client
reference streams separately, as if the deltas were applied at the clients.

For each of the delta-eligible responses, we computed a delta using the vdelta program, based
on the previous status-200 instance in the trace, and two compressed versions of the response,
using gzip and vdelta. For those responses whose HTTP Content-type field indicated an ASCII
text format (‘‘text/html’’, ‘‘text/plain’’, ‘‘application/postscript’’, and a few others), we also
computed a delta using the UNIX diff -e command, and a compressed version of this delta, using
gzip. 66413 (59%) of the delta-eligible responses in the proxy trace were text-format responses,
as were 52361 (62%) of the delta-eligible responses in the packet-level trace.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

11

For each response, and for each of the four computations, we measured the number of
response-body bytes saved (if any). We also estimated the amount of retrieval time that would
have been saved for that response, had the delta or compression technique been used. (We did
not include the computational costs of encoding or decoding; see section 6 for those costs.)

Our estimate of the improvement in retrieval time is simplistic, but probably conservative.
We estimated the transfer time for the response from the timestamps in our traces, and then mul-
tiplied that estimate by the fraction of bytes saved to obtain a prediction for the improved
response transfer time. However, in the proxy traces it is not possible to separate the time to
transmit the request from the time to receive the first part of the response, so our estimate of the
original transfer time is high. We compensated for that by computing two estimates for the
transfer time, one which is high (because it includes the request time) and one which is low
(because it does not include either the request time, or the time for receiving the first bytes of the
response). We multiplied the fraction of bytes saved by the latter (low) estimate, and then
divided the result by the former (high) estimate, to arrive at our estimate of the fraction of time
saved.

For the packet-level traces, we were able to partially validate this model. We measured the
time it actually took to receive the packets including the first N bytes of an M-byte transfer,
where N is the number of bytes that would have been seen if delta encoding or compression had
been used. The results agree with our simpler model to within about 10%, but are still conser-
vative (because we did not model the reduction in the size of the last data packet).

10 100000
Latency in milliseconds

100 1000 10000
0

35000

5000

10000

15000

20000

25000

30000

N
um

be
r

of
 s

ta
tu

s-
20

0
re

fe
re

nc
es

Client request (1)
Connect delay (2)
To first data (3)
Other data (4)
Transfer (3 + 4)
Total (1 + 2 + 3 + 4)

status-200 responses from proxy trace

Figure 5-4: Distribution of latencies for various phases of retrieval (proxy trace)

Figure 5-4 shows the distribution of latencies for the important steps in the retrieval of full-
body (status-200) responses from the proxy trace. The four steps measured are: (1) the time for
the proxy to read and parse the client’s request, (2) the time to connect to the server (including
any DNS lookup cost), (3) the time to forward the request and to receive the first bytes of
response (i.e., the first read() system call), and (4) the time to receive the rest of the response, if
any. (The spikes at 5000 msec may represent a scheduling anomaly in the proxy software; the
spike at 10000 msec simply represents the sum of two 5000-msec delays.) We used the sum of
steps 3 and 4 as the high estimate for transfer time, and step 4 by itself as the low estimate.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

12

10 100000
Latency (milliseconds) from client’s initial SYN packet

100 1000 10000
0

180000

30000

60000

90000

120000

150000

N
um

be
r

of
 s

ta
tu

s-
20

0
re

sp
on

se
s

To server SYN (1)
To start of request (2)
To start of response hdr (3)
To start of resp. body (4)
To end of response (5)

Transfer time for response body (5 - 4)

status-200 responses from the packet-level trace

Figure 5-5: Distribution of cumulative latencies to various phases (packet-level trace)

Figure 5-5 shows a similar view of the packet-level trace. The individual steps are somewhat
different (the packet-level trace exposes finer detail), and the latencies are all measured from the
start of the connection (the client’s SYN packet). The steps are (1) arrival of the server’s SYN,
(2) first packet of the HTTP request, (3) first packet of the response header, (4) first packet of the
response body, and (5) end of the response. The figure also shows the transfer time for the
response body, which is similar to (but smaller than) the transfer-time estimate used in figure
5-4.

5.5. Net savings due to deltas and compression

Tables 5-1 and 5-2 show (for the proxy trace) how many of the responses were improved, and
by how much. Table 5-1 shows the results relative to just the delta-eligible responses; Table 5-2
shows the same results, but expressed as a fraction of all full-body responses. Because these
account for more than 99% of the response-body bytes in the traces, this is also nearly equivalent
to the overall improvement for all traced responses.

In tables 5-1 and 5-2, the rows labeled ‘‘unchanged’’ shows how many delta-eligible respon-
ses would have resulted in a zero-length delta. (An ‘‘unchanged’’ response is delta-eligible be-
cause its last-modified time has changed, although its body has not.) The rows labelled ‘‘diff
-e’’, ‘‘diff -e | gzip’’, and ‘‘vdelta’’ show the delta-encoding results only for those responses
where there is at least some difference between a delta-eligible response and the previous in-
stance. Two other lines show the results if the unchanged responses are included. The rows
labelled ‘‘vdelta compress’’ and ‘‘gzip compress’’ show the results for compressing the respon-
ses, without using any delta encoding. The final row shows the overall improvement (not includ-
ing unchanged responses), assuming that the server uses whichever of these algorithms min-
imizes each response.

It is encouraging that, out of all of the full-body responses, tables 5-1 and 5-2 show that that
22% of the response-body bytes could be saved by using vdelta to do delta encoding. This im-
plies that the use of delta encoding would provide significant benefits for textual content-types.
It is remarkable that 77% of the response-body bytes could be saved for delta-eligible responses;

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

13

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 25339 (22.4%) 145 (20.8%) 11697 (7.3%)

diff -e 37806 (33.4%) 215 (30.8%) 23400 (14.6%)

diff -e (inc. unchanged) 63145 (55.7%) 361 (51.6%) 35098 (21.9%)

diff -e | gzip 39800 (35.1%) 264 (37.7%) 32331 (20.1%)

vdelta 86825 (76.6%) 394 (56.2%) 47647 (29.7%)

vdelta (inc. unchanged) 112164 (98.9%) 539 (77.0%) 59344 (37.0%)

vdelta compress 75414 (66.5%) 207 (29.6%) 27285 (17.0%)

gzip compress 73142 (64.5%) 237 (33.8%) 31567 (19.7%)

best algorithm above 112198 (99.0%) 541 (77.2%) 59490 (37.1%)

N = 113356, 701 MBytes total, 160551 seconds total

Table 5-1: Improvements assuming deltas are applied at a proxy
(proxy trace, relative to all delta-eligible responses)

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 25339 (6.7%) 145 (6.0%) 11697 (2.1%)

diff -e 37806 (10.0%) 215 (8.8%) 23400 (4.2%)

diff -e (inc. unchanged) 63145 (16.7%) 361 (14.8%) 35098 (6.3%)

diff -e | gzip 39800 (10.5%) 264 (10.8%) 32331 (5.8%)

vdelta 86825 (23.0%) 394 (16.1%) 47647 (8.5%)

vdelta (inc. unchanged) 112164 (29.7%) 539 (22.0%) 59344 (10.6%)

vdelta compress 302739 (80.1%) 832 (34.0%) 104092 (18.7%)

gzip compress 289914 (76.7%) 965 (39.4%) 124045 (22.3%)

best algorithm above 340845 (90.2%) 1270 (51.9%) 152086 (27.3%)

N = 377962, 2462 MBytes total, 557373 seconds total

Table 5-2: Improvements assuming deltas are applied at a proxy
(proxy trace, relative to all status-200 responses)

that is, in those cases where the recipient already has a cached copy of a prior instance. And
while it appears that the potential savings in transmission time is smaller than the savings in
response bytes, the response-time calculation is quite conservative (as noted earlier).

For the 88017 delta-eligible responses where the delta was not zero-length, vdelta gave the
best result 92% of the time. diff -e without compression and with compression each was best for
about 2% of the cases, and simply compressing the response with gzip worked best in 2% of the
cases. Just over 1% of the delta-eligible responses were best left alone. The vdelta approach

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

14

clearly works best, but just using diff -e would save 52% of the response-body bytes for delta-
eligible responses. That is, more than half of the bytes in ‘‘new’’ responses are easily shown to
be the same as in their predecessors.

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 6332 (7.5%) 8 (1.2%) 1459 (0.8%)

diff -e 49681 (59.2%) 242 (38.2%) 56485 (30.2%)

diff -e (inc. unchanged) 59744 (71.2%) 292 (46.2%) 57943 (30.9%)

diff -e | gzip 50467 (60.1%) 280 (44.2%) 70487 (37.6%)

vdelta 73483 (87.6%) 467 (73.8%) 100073 (53.4%)

vdelta (inc. unchanged) 83546 (99.6%) 517 (81.7%) 101532 (54.2%)

vdelta compress 76257 (90.9%) 250 (39.5%) 52424 (28.0%)

gzip compress 72819 (86.8%) 277 (43.8%) 59402 (31.7%)

N = 83905, 633 MBytes total, 187303 seconds total

Table 5-3: Improvements assuming deltas are applied at a proxy
(packet-level trace, relative to all delta-eligible responses)

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 6332 (0.8%) 8 (0.1%) 1459 (0.1%)

diff -e 49681 (6.1%) 242 (3.9%) 56485 (2.8%)

diff -e (inc. unchanged) 59744 (7.3%) 292 (4.7%) 57943 (2.8%)

diff -e | gzip 50467 (6.2%) 280 (4.5%) 70487 (3.4%)

vdelta 73483 (9.0%) 467 (7.5%) 100073 (4.9%)

vdelta (inc. unchanged) 83546 (10.2%) 517 (8.4%) 101532 (4.9%)

vdelta compress 597469 (73.1%) 1099 (17.8%) 250822 (12.2%)

gzip compress 604797 (74.0%) 1274 (20.6%) 294036 (14.3%)

N = 816998, 6193 MBytes, 2053027 seconds

Table 5-4: Improvements assuming deltas are applied at a proxy
(packet-level trace, relative to all status-200 responses)

Tables 5-3 and 5-4 show, for the responses in the packet-level trace, how much improvement
would be available using deltas if one introduced a proxy at the point where the trace was made.
The results in table 5-3 and 5-4 are somewhat different from those in table 5-1 and 5-2 for
several reasons. The packet-level trace included a larger set of non-textual content types, which
leads to a reduction in the effectiveness of delta encoding and compression (see section 5.8).

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

15

Because the packet-level trace analysis uses a somewhat more accurate (and so less conser-
vative) model for the savings in transfer time, similar reductions in the number of bytes trans-
ferred lead to different reductions in transfer time.

Taken together, the results in tables 5-1, 5-2, 5-3, and 5-4 imply that if delta encoding is pos-
sible, then it is usually the best way to transmit a changed response. If delta encoding is not
possible, such as the first retrieval of a resource in a reference stream, then data compression is
usually valuable.

5.5.1. Analysis assuming client-applied deltas

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 16417 (27.6%) 67 (22.8%) 6175 (5.9%)

diff -e 23072 (38.7%) 126 (42.9%) 15475 (14.7%)

diff -e (inc. unchanged) 39489 (66.3%) 194 (65.7%) 21650 (20.6%)

diff -e | gzip 24424 (41.0%) 157 (53.3%) 22326 (21.3%)

vdelta 42223 (70.9%) 195 (66.0%) 31047 (29.6%)

vdelta (inc. unchanged) 58640 (98.5%) 262 (88.8%) 37223 (35.4%)

N = 59550, 296 Mbytes, 105020 seconds

Table 5-5: Improvements assuming deltas are applied at individual clients
(proxy trace, relative to delta-eligible responses)

Computation
Improved
references MBytes saved

Retrieval time
saved (seconds)

unchanged responses 16417 (4.3%) 67 (2.8%) 6175 (1.1%)

diff -e 23072 (6.1%) 126 (5.2%) 15475 (2.8%)

diff -e (inc. unchanged) 39489 (10.4%) 194 (7.9%) 21650 (3.9%)

diff -e | gzip 24424 (6.5%) 157 (6.4%) 22326 (4.0%)

vdelta 42223 (11.2%) 195 (8.0%) 31047 (5.6%)

vdelta (inc. unchanged) 58640 (15.5%) 262 (10.7%) 37223 (6.7%)

N = 377962, 2450 MBytes, 557373 seconds

Table 5-6: Improvements assuming deltas are applied at individual clients
(proxy trace, relative to all status-200 responses)

Tables 5-5 and 5-6 show (for the proxy trace) what the results would be if the deltas were
applied individually by each client of the proxy, rather than by the proxy itself. For delta-
eligible responses, client-applied deltas perform about as well as proxy-applied deltas. However,
a much smaller fraction of the responses are delta-eligible at the individual clients (19% instead

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

16

of 30%), and so the overall improvement from delta encoding is also much smaller. In other
words, the utility of delta encoding depends somewhat on the large, shared cache that a proxy
would provide. Alternatively, a reference stream longer than our two-day trace might show a
larger fraction of per-client delta-eligible responses.

5.6. Distribution of savings

Tables 5-5 and 5-6 report mean values for improvements in the number of bytes saved, and the
amount of time saved. One would not expect delta encoding to provide the same improvement
for every delta-eligible response. In some cases, especially for small responses or major chan-
ges, delta encoding can save only a small fraction of the bytes. In other cases, such as a small
change in a large response, delta encoding can save most of the response bytes. Figure 5-6
shows the distribution of the fraction of response bytes saved, for all delta-eligible responses in
the proxy trace. (Note that the vertical axis is a log scale.)

0 10020 40 60 80
% of response-body bytes saved per response

1

100000

N
um

be
r

of
 r

es
po

ns
es

10

100

1000

10000 Using ’diff -e’

Using ’diff -e’ + gzip

Using vdelta

Figure 5-6: Distribution of response-body bytes saved for delta-eligible responses (proxy trace)

0 10020 40 60 80
% of response-body bytes saved per response

1

100000

N
um

be
r

of
 r

es
po

ns
es

10

100

1000

10000 Using ’diff -e’

Using ’diff -e’ + gzip

Using vdelta

Figure 5-7: Distribution of response-body bytes saved for delta-eligible responses (packet trace)

Although delta encoding saves few or no bytes for many of the delta-eligible responses, the
bimodal distribution in figure 5-6 suggests that when delta encoding does work at all, it saves

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

17

most of the bytes of a response. In fact, for delta-eligible responses in the proxy trace, the
median number of bytes saved per response by delta encoding using vdelta is 2177 bytes (com-
pared to a mean of 4994 bytes). For half of the delta-eligible responses, vdelta saved at least
96% of the response-body bytes (this includes cases where the size of the delta is zero, because
the response value was unchanged). This is encouraging, since it implies that the small overhead
of the extra HTTP protocol headers required to support delta encoding will not eat up most of the
benefit.

Figure 5-7 shows the corresponding distribution for the packet trace. Since this trace covers
all content-types, including images, the distribution differs somewhat from that in figure 5-6, but
in general, both traces produce similar distributions.

0 10020 40 60 80
% of response-body bytes saved per response

1

1000

C
um

ul
at

iv
e

nu
m

be
r

of
 M

B
yt

es
 s

av
ed

10

100 Using ’diff -e’

Using ’diff -e’ + gzip

Using vdelta

Figure 5-8: Weighted distribution of response-body bytes saved for delta-eligible responses
(proxy trace)

Figure 5-8 shows the same data as in figure 5-6, except that instead of showing the number of
responses improved, the vertical (logarithmic) axis shows the cumulative number of bytes saved.
Essentially all of the savings comes from responses where the delta-encoded representation is
less than half the size of the original representation. For example, using the vdelta algorithm, 13
Mbytes in total are saved from responses where delta encoding saves 50% of the original
response body or less, but 527 Mbytes in total are saved from responses where delta encoding
saves more than 50% of the original body size. This suggests that, from the point of view of
network loading, it probably is not worth sending a delta-encoded response unless it is much
smaller than the original.

Another way to look at the distribution of the results is to look at the means, standard devia-
tions, and medians of various values. Table 5-7 shows these values for all delta-eligible respon-
ses in the traces, both for the original set of responses, and after the application of vdelta
(wherever it decreases the response body size, and including ‘‘unchanged’’ responses where
delta-encoding eliminates all of the response body bytes).

For the delta-eligible responses in the proxy trace, the mean and median savings in bytes
transferred are both significant fractions of the original values. However, if one assumes that
deltas are applied at the individual clients, this reduces the savings, perhaps because the set of
delta-eligible responses available to an individual client has somewhat different characteristics
than the set available to a proxy.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

18

Context Metric Original
N

Original
mean

Original
median

Mean
savings

Median
savings

Proxy trace,
deltas applied
at proxy

bytes 113356 6485 (8428) 3830 4994 (7572) 2177

Proxy trace,
deltas applied
at proxy

msec. 113356 1416 (6611) 309 524 (3349) 74

Proxy trace,
deltas applied
at clients

bytes 59550 5280 (8322) 2534 4624 (7787) 1934

Proxy trace,
deltas applied
at clients

msec. 59550 1764 (7400) 386 625 (3899) 91

Packet-level
trace, deltas
applied at
proxy

bytes 83905 7913 (14349) 3652 5949 (11833) 2676

Packet-level
trace, deltas
applied at
proxy

msec. 83905 2232 (9923) 610 1213 (8165) 129

Standard deviations are shown in parentheses

Table 5-7: Mean and median values for savings from vdelta encoding,
for all delta-eligible responses

For the original set of delta-eligible responses, the proxy trace shows a large standard devia-
tion in the retrieval time, several times the mean value. The discussion of figure 5-4 suggests
some explanations.

The results for the packet-level trace are similar, although because that trace includes images,
the standard deviation of the response size is larger. This may explain why the packet-level trace
also shows a larger standard deviation for retrieval time, as well.

Table 5-8 shows the same measurements as table 5-7, except that the sample sets are reduced
to include only those delta-eligible responses actually made shorter by vdelta. The results in
tables 5-7 and 5-8 are quite similar, because fewer than 1% of the delta-eligible responses are
excluded from table 5-8.

Table 5-9 shows the means, standards deviation, and medians for all status-200 responses,
both for the original responses, and after application of gzip compression (wherever it decreases
the response body size).

Table 5-10 shows the same measurements as table 5-9, except that the sample sets are reduced
to include only those responses actually made shorter by gzip.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

19

Context Metric Original
N

Original
mean

Original
median

Mean
savings

Median
savings

Proxy trace,
deltas applied
at proxy

bytes 112164 6546 (8449) 3872 5047 (7594) 2259

Proxy trace,
deltas applied
at proxy

msec. 112164 1401 (6540) 308 529 (3367) 78

Proxy trace,
deltas applied
at clients

bytes 58640 5280 (8322) 2617 4695 (7825) 2006

Proxy trace,
deltas applied
at clients

msec. 58640 1739 (7316) 385 635 (3928) 97

Packet-level
trace, deltas
applied at
proxy

bytes 80008 8190 (14514) 3812 6238 (12043) 2903

Packet-level
trace, deltas
applied at
proxy

msec. 80008 2300 (10120) 640 1272 (8357) 161

Standard deviations are shown in parentheses

Table 5-8: Mean and median values for savings from vdelta encoding,
for delta-eligible responses improved by vdelta

Context Metric Original
N

Original
mean

Original
median

Mean
savings

Median
savings

Proxy trace bytes 377962 6797 (10212) 3973 2964 (5912) 944

Proxy trace msec. 377962 1475 (7273) 369 386 (5795) 28

Packet-level
trace

bytes 817000 7948 (20468) 3258 1571 (7336) 170

Packet-level
trace

msec. 817000 2513 (11731) 680 358 (4416) 9

Standard deviations are shown in parentheses

Table 5-9: Mean and median values for savings from gzip compression,
for all status-200 responses

For the compression results in tables 5-9 and 5-10, the ratio of median savings to median
original size is much smaller than for the delta-encoding results in tables 5-7 and 5-8. A similar,
but less pronounced, relationship holds for the mean savings. While compression can improve a
much larger fraction of the responses in our traces than delta-encoding can, in many cases the

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

20

Context Metric Original
N

Original
mean

Original
median

Mean
savings

Median
savings

Proxy trace bytes 308115 7573 (10900) 4719 3636 (6359) 1706

Proxy trace msec. 308115 1683 (7853) 475 474 (6415) 68

Packet-level
trace

bytes 594734 9997 (23335) 4590 2158 (8524) 346

Packet-level
trace

msec. 594734 2995 (13230) 840 492 (5169) 30

Standard deviations are shown in parentheses

Table 5-10: Mean and median values for savings from gzip compression,
for status-200 responses improved by gzip

savings from compression are relatively small, while when delta-encoding is applicable, it often
saves most of the bytes in a response (see figure 5-6).

5.7. Time intervals of delta-eligible responses

The use of deltas for a resource implies that both the client and server must store information
that might otherwise not be needed. The client must store, in its cache, one or more older instan-
ces of the resource, even if these would otherwise be replaced by the cache-management policy.
The server must store either one or more pre-computed deltas, or one or more obsolete instances
of the resources, from which deltas are computed.

How long must such extra storage be used before it pays off? That is, how long, after a
response is sent, is the next delta-eligible response sent for the same resource?

1 1e+06
Time between status-200 responses for a URL

10 100 1000 10000 100000
0

6000

1000

2000

3000

4000

5000

C
ou

nt

Any delta-eligible response
Delta is non-empty
No change in body

1 hour

1 day

45 hours

Figure 5-9: Time intervals for delta-eligible responses (proxy trace)

Figure 5-9 shows the results of a simple and preliminary study of this question. The horizon-
tal axis shows, on a log scale, the number of seconds between pairs of non-identical (and there-
fore delta-eligible) status-200 responses in the proxy trace. The vertical axis shows the number
of such responses seen within a given interval since its predecessor. The solid curve shows the

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

21

distribution for all delta-eligible responses; the dotted curve shows the distribution for those
delta-eligible responses where the delta is non-empty (i.e., where the response body actually
changes). The dashed curve shows the distribution for responses where the body itself did not
change at all.

1 1e+06
Time between status-200 responses for a URL

10 100 1000 10000 100000
0

25

5

10

15

20

M
B

yt
es

 s
av

ed
 b

y
vd

el
ta

Any delta-eligible response
Delta is non-empty
No change in body

4 min.

1 hour

1 day

45 hours

Figure 5-10: Time intervals for delta-eligible responses (proxy trace),
weighted by number of bytes saved by delta encoding using vdelta

Figure 5-10 shows the same distributions, except that the vertical axis shows the number of
bytes saved by using vdelta to produce delta encodings.

The distributions all show strong peaks at 3600 seconds (1 hour). This suggests that a lot of
the delta-eligible responses are generated by ‘‘push’’ applications, which involve periodic up-
dates of information such as stock quotes, news headlines, etc. Another peak appears at about 12
hours, which might also be caused by push applications.

Because the proxy trace lasted only 45 hours, the distributions in figure 5-9 obviously cannot
include any intervals longer than that. Generally, one would expect that the distribution might
include an artificially low number of intervals whose duration is more than half the length of the
entire trace. Therefore, we would need to examine the time intervals from a much longer trace to
determine if, as implied by the figure, most of the benefit from delta-encoding comes from rela-
tively short intervals.

However, 90% of the density in the distribution is concentrated at intervals below about 14
hours (50,400 seconds). Even if one ignores the strong peaks at 1 hour and 12 hours, the bulk of
the intervals shown in figure 5-9 are only a few hours long. The distributions in figure 5-10,
weighted by the number of bytes saved, are even more skewed to relatively short durations. This
suggests that if clients and servers can cache obsolete responses for just a few hours, they should
obtain most of the available benefit from delta-encoding.

We did not do exactly the same analysis of the packet-level trace, but a similar analysis of that
trace [5] provides the probability density of the intervals between successive accesses to a given
URL. This shows a generally similar distribution to that in figure 5-9.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

22

5.8. Influence of content-type on coding effectiveness

The output size of delta-encoding and data-compression algorithms depends on the nature of
the input [10, 13], and so, in the case of HTTP, on the content-type of a response. The effec-
tiveness of delta encoding also depends on the amount by which the two versions differ, which
might also vary with content-type. We subdivided the packet-level traces by content-type and
analyzed each subset independently, to see how important these dependencies are in practice.

Content-type References MBytes Mean
size

Median
size

Mean
time

Median
time

All status-200 817000 (100%) 6193 7948 3258 2513 680

image/gif 434277 (53%) 2221 5362 2161 1896 590

text/html 184634 (23%) 1271 7216 3951 2821 720

image/jpeg 106022 (13%) 1513 14963 6834 4099 1260

application/
octet-stream

75780 (9%) 803 11113 4785 2533 660

text/plain 6988 (1%) 67 10057 3055 2799 601

image/other 2328 (0%) 9 4113 1408 1165 280

application/
x-msnwebqt

401 (0%) 0 344 302 235 120

application/
other

3789 (0%) 146 40482 748 8357 384

video/* 225 (0%) 88 409032 359012 58148 26075

text/other 45 (0%) 0 3701 2754 1509 471

other or
unknown

2509 (0%) 75 31404 4224 6073 950

Sizes are in bytes, except as noted; times are in msec.

Table 5-11: Breakdown of status-200 responses by content-type (packet-level trace)

Table 5-11 shows the distribution of status-200 responses by content-type. A significant
majority of the responses (both by count and by bytes transferred) are images, either GIF or
JPEG.

Table 5-12 shows the distribution of delta-eligible responses by content-type. Although about
19% of the status-200 HTML responses are delta-eligible, only 3% of the status-200 GIF respon-
ses are.

Table 5-13 shows what fraction of the delta-eligible responses had bodies that were entirely
unchanged from the previous instance. This might happen because the two requests came from
separate clients, or because the server was unable to determine that an ‘‘If-Modified-Since’’ re-
quest in fact refers to an unmodified resource, or because while the resource body was not
modified, some important part of the response headers did change. The table also shows other
type-specific differences in the data; for example, ‘‘text/html’’ responses change more often than

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

23

Content-type References % of
same-type
status-200
responses

MBytes % of
same-type
status-200

Mbytes

Mean size
(bytes)

All delta-eligible 83905 10.3% 633.1 10.2% 7913

text/html 35066 19.0% 282.3 22.2% 8440

application/octet-stream 31536 41.6% 237.5 29.6% 7898

image/gif 14162 3.3% 80.9 3.6% 5992

image/jpeg 2058 1.9% 24.9 1.6% 12711

text/plain 479 6.9% 1.5 2.2% 3335

application/x-msnwebqt 256 63.8% 0.1 100.0% 386

application/other 143 3.8% 2.3 1.6% 16842

image/other 83 3.6% 0.1 4.4% 855

other or unknown 122 4.9% 3.5 4.7% 30165

Table 5-12: Breakdown of delta-eligible responses by content-type (packet-level trace)

Content-type Delta-eligible
responses

MBytes Total
time

Responses
unchanged

Bytes
unchanged

Time
wasted

All delta-eligible 83905 633 187303 12.0% 7.9% 0.9%

text/html 35066 282 96128 4.2% 3.2% 1.2%

application/octet-stream 31536 238 61743 0.1% 0.0% 0.0%

image/gif 14162 81 22415 52.1% 36.4% 1.6%

image/jpeg 2058 25 4844 50.9% 41.5% 1.8%

text/plain 479 2 422 19.8% 17.9% 6.9%

application/x-msnwebqt 401 0 94 0% 0% 0%

application/other 143 2 473 25.2% 20.3% 3.3%

image/other 83 0 115 3.6% 11.5% 0.1%

other or unknown 170 4 1045 32.9% 30.4% 6.1%

Table 5-13: Summary of unchanged response bodies by content-type (packet-level trace)

‘‘text/plain’’ responses, but the ‘‘text/plain’’ responses that remain unchanged are smaller than
the ‘‘text/plain’’ responses that do change. The last column shows a conservative estimate for
the amount of time wasted in the transmission of unchanged responses.

Table 5-14 shows the delta-encoding effectiveness, broken down by content-type, for vdelta.
This table also shows a dependency on content-type; for example, delta encoding of changed
responses seems to be more effective for ‘‘text/html’’ resources than for ‘‘application/octet-
stream’’ resources. (Most ‘‘octet-stream’’ resources seem to be associated with the PointCast
application [16].) Somewhat surprisingly, the vdelta algorithm improved more than two thirds of

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

24

Content-type Delta-eligible
Responses

MBytes Total
time

Responses
improved

Bytes
saved

Time
saved

All content-types 83905 633 187303 95.1% 75.0% 54.2%

text/html 35066 282 96128 100.0% 93.6% 61.6%

application/octet-stream 31536 238 61743 100.0% 83.6% 63.0%

image/gif 14162 81 22415 71.3% 7.8% 8.6%

image/jpeg 2058 25 4844 99.8% 8.9% 8.9%

text/plain 479 2 422 99.6% 84.1% 32.2%

application/x-msnwebqt 256 0 65 100.0% 80.2% 0.5%

application/other 143 2 473 89.5% 15.8% 11.0%

image/other 83 0 115 100.0% 84.0% 13.0%

other or unknown 122 4 1099 99.2% 50.9% 73.1%

Table 5-14: Summary of savings by content-type for delta-encoding with vdelta,
(all delta-eligible responses in packet-level trace)

the ‘‘image/gif’’ and ‘‘image/jpeg’’ responses, albeit not reducing the byte-counts by very much
(both these image formats are already compressed). We suspect that the savings may come from
eliding redundant header information in these formats.

The apparent scarcity of delta-eligible images greatly reduces the utility of delta encoding
when it is viewed in the context of the entire reference stream. However, we believe that in
many bandwidth-constrained contexts, many users avoid the use of images, which suggests that
delta encoding would be especially applicable in these contexts.

Table 5-15 shows the effectiveness of compression, using the gzip program, broken down by
content-type. Although a majority of the responses overall were improved by compression, for
some content-types compression was much less effective. It is not surprising that ‘‘image/gif’’
and ‘‘image/jpeg’’ responses could not be compressed much, since these formats are already
compressed when generated. The ‘‘application/x-msnwebqt’’ responses (used in a stock-quote
application) compressed nicely, but doing so would not save much transfer time at all, because
the responses are already quite short.

5.9. Effect of clustering query URLs

A significant fraction of the URLs seen in the proxy trace (42% of the URLs referenced) con-
tained a ‘‘?’’ character, and so probably reflect a query operation (for example, a request for a
stock quote). By convention, responses for such URLs are uncachable, since the response might
change between references (HTTP/1.1, however, provides explicit means to mark such responses
as cachable, if appropriate). In this trace, 23% of the status-200 responses were for query URLs.
(There are fewer status-200 responses for query URLs than distinct query URLs in the trace,
because many of these requests yield a status-302 response, a redirection to a different URL.)

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

25

Content-type Responses MBytes Total
time

Responses
improved

Bytes
saved

Time
saved

All status-200 816998 6193 2053027 72.8% 19.8% 14.3%

image/gif 434277 2221 823214 55.7% 4.6% 3.0%

text/html 184634 1271 520817 99.7% 68.8% 41.5%

image/jpeg 106022 1513 434607 99.1% 2.8% 2.5%

application/octet-stream 75780 803 191968 66.0% 10.3% 12.2%

text/plain 6988 67 19561 95.2% 55.6% 30.1%

image/other 2328 9 2713 98.6% 47.1% 27.4%

application/other 3789 146 31665 59.9% 28.8% 13.1%

application/x-msnwebqt 401 0 94 99.5% 56.3% 0.4%

video/* 225 88 13083 93.3% 12.6% 11.0%

text/other 45 0 68 100.0% 71.7% 38.1%

other or unknown 2509 75 15236 77.0% 35.0% 33.3%

Table 5-15: Summary of gzip compression savings by content-type
(all status-200 responses in packet-level trace)

Housel and Lindquist [9], in their paper on WebExpress, point out that in many cases, the
individual responses to different queries with the same ‘‘URL prefix’’ (that is, the prefix of the
URL before the ‘‘?’’ character) are often similar enough to make delta encoding effective. Since
users frequently make numerous different queries using the same URL prefix, it might be much
more effective to compute deltas between different queries for a given URL prefix, rather than
simply between different queries using an identical URL. Banga et al. [2] make a similar obser-
vation. We will refer to this technique as ‘‘clustering’’ of different query URLs with a common
prefix. (Such clustering is done implicitly for POST requests, since POST requests carry mes-
sage bodies, and so the response to a POST may depend on input other than the URL.)

The WebExpress paper did not report on the frequency of such clustering in realistic traces.
We found, for the proxy trace, that the 100780 distinct query URLs could be clustered using just
12004 prefix URLs. Further, of the 86191 status-200 responses for query URLs, only 28186
(33%) were delta-eligible if the entire URL was used, but 76298 (89%) were delta-eligible if
only the prefix had to match.

Tables 5-16 and 5-17 show that, for the proxy trace, clustering not only finds more cases
where deltas are possible, but also provides significantly more reduction in bytes transferred and
in response times. In fact, a comparison of tables 5-17 and 5-2 shows that when queries are
clustered, delta encoding improves query response transfer efficiency more than it does for
responses in general. (We note, however, that because most query responses are generated on
the fly, and are somewhat shorter on average than other responses, the query processing over-
head at the server may dominate any savings in transfer time.)

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

26

Computation
Improved
References

MBytes
saved

Retrieval
time saved

unchanged 9285 (10.8%) 12 (3.2%) 1575 (1.1%)

diff -e 4925 (5.7%) 27 (6.8%) 3437 (2.4%)

diff -e | gzip 5112 (5.9%) 34 (8.8%) 5226 (3.7%)

vdelta 18876 (21.9%) 61 (15.3%) 12217 (8.7%)

N = 86191, 419 MBytes, 141076 seconds

Table 5-16: Improvements relative to all status-200 responses to queries
(no clustering, proxy trace)

Computation
Improved
References

MBytes
saved

Retrieval
time saved

unchanged 14044 (16.3%) 6 (1.6%) 1145 (0.8%)

diff -e 38890 (45.1%) 97 (24.4%) 9800 (6.9%)

diff -e | gzip 40438 (46.9%) 226 (56.6%) 18015 (12.8%)

vdelta 60711 (70.4%) 262 (65.6%) 24817 (17.6%)

diff -e (inc. unchanged) 52934 (61.4%) 103 (25.9%) 10946 (7.8%)

vdelta (inc. unchanged) 74755 (86.7%) 268 (67.2%) 25962 (18.4%)

N = 86191, 419 MBytes, 141076 seconds

Table 5-17: Improvements when clustering queries
(all status-200 responses to queries, proxy trace)

6. Including the cost of end-host processing

The time savings calculation described in section 5.4 omits any latency for creating and apply-
ing deltas, or for compressing and decompressing responses. Since these operations are not
without cost, in this section we quantify the cost of these operations for several typical hardware
platforms. We chose three systems: a 50 MHz 80486 (running BSD/OS, SPECint92 = 30),
which would now be considered very slow; a 90 MHz Pentium (running Linux, SPECint95 =
2.88); and a 400 MHz AlphaStation 500 (running Digital UNIX V3.2G), SPECint95 = 12.3).
The 90 MHz Pentium might be typical for a home user, and the 400 MHz AlphaStation is typical
of a high-end workstation, but by no means the fastest one available.

Tables 6-1, 6-2, and 6-3 show the results, which were computed from 10 trials on files (or, for
deltas, pairs of instances) taken from the packet-level trace. For the delta experiments, we used
65 pairs of text files and 87 pairs of non-text files; for the compression experiments, we used 685
text files and 346 non-text files. The files were chosen to be representative of the entire set of
responses. (We sorted the responses in order of size, and chose every nth entry to select 1% of
the pairs, and 0.1% of the single-instance responses.) We express the results in terms of the
throughput (in KBytes/sec) for each processing step, and for the sequential combination of the
server-side and client-side processing steps. (Deltas created by diff are applied using the ed

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

27

Text Non-text

Computation Mean Std. dev. Mean Std. dev.

diff -e 72 57 ∅ ∅

ed 90 64 ∅ ∅

both steps above 40 30 ∅ ∅

diff -e | gzip 34 29 ∅ ∅

gunzip | ed 15 14 ∅ ∅

both steps above 10 9 ∅ ∅
vdelta 63 46 89 61

vupdate 100 97 177 176

both steps above 38 29 56 40

gzip 73 43 57 32

gunzip 145 124 139 110

both steps above 47 31 40 24

vdelta (compress) 102 57 86 46

vupdate (decomp) 181 155 250 264

both steps above 64 41 61 39

Values are in Kbytes/sec., based on elapsed times ∅: not applicable

Table 6-1: Compression and delta encoding rates for 50 Mhz 80486 (BSD/OS 2.1)

program; deltas and compressed output created by vdelta are fed to the vupdate program.) For
deltas, the throughput is calculated based on the average size of the two input files.

We also show the standard deviations of these values. The deviations are large because there
is a large fixed overhead for each operation that does not depend on the size of the input, and so
throughputs for the larger files are much larger than the means. Much of this fixed overhead is
the cost of starting a new process for each computation (which ranges from 15 to 34 msec. on the
systems tested). However, since several of the delta and compression algorithms already exist as
library functions, an implementation could easily avoid this overhead2. The last three lines in
tables 6-2 and 6-3 show measurements of a library version of the vdelta and vupdate algorithms
on two of the tested platforms. The results of these tests suggest that simply eliminating the use
of a separate process reduces overheads by an order of magnitude. Although the Alpha’s perfor-
mance for the non-library versions of vdelta and vupdate are poor, relative to the much slower

2The existing versions of the ‘‘diff -e’’ command generates output that is not entirely compatible with the ed
command. ed requires one additional line in its input stream, which is normally generated by running another UNIX
command. This adds significant overhead on some versions of UNIX, and since there is a simple, efficient fix for
this problem, our measurements do not include the execution of this additional command.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

28

Text Non-text

Computation Mean Std. dev. Mean Std. dev.

diff -e 137 135 ∅ ∅

ed 102 94 ∅ ∅

both steps above 56 52 ∅ ∅

diff -e | gzip 91 83 ∅ ∅

gunzip | ed 38 34 ∅ ∅

both steps above 27 24 ∅ ∅
vdelta 183 160 193 133

vupdate 272 302 460 571

both steps above 106 102 122 90

gzip 101 79 106 78

gunzip 200 221 219 216

both steps above 64 54 70 57

vdelta (compress) 134 106 130 100

vupdate (decomp) 173 197 260 395

both steps above 73 65 80 74

vdelta (library) 925 782 1580 1661

vupdate (library) 1774 1172 3541 7829

both steps above 556 386 900 875

Values are in Kbytes/sec., based on elapsed times ∅: not applicable
Values larger than 103 might not have more than one significant digit

Table 6-2: Compression and delta encoding rates for 90 MHz Pentium (Linux 2.0.0)

Pentium, the results for the library version of vdelta imply that the Alpha’s poor performance on
the non-library code is due to some aspect of the operating system, not the CPU.

We did not make an attempt to include these costs when calculating the potential net savings
in section 5.5, because (1) we have no idea of the actual performance of the end systems
represented in the trace, (2) some of the computation could be done in parallel with data trans-
fer, since all of the algorithms operate on streams of bytes (3) it would not be always necessary
to produce the delta-encoded or compressed response ‘‘on-line’’; these could be precomputed or
cached at the server, and (4) historical trends in processor performance promise to quickly
reduce these costs.

However, we make several observations. First, the throughputs for almost all of the computa-
tions (except, on the slowest machine, for ‘‘gunzip | ed’’) are faster than a Basic-rate ISDN line
(128 Kbits/sec, or 16KBytes/sec), and the library implementations of vdelta and vupdate com-
putations are significantly faster than the throughput of a T1 line (1.544 Mbits/sec, or 193

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

29

Text Non-text

Computation Mean Std. dev. Mean Std. dev.

diff -e 407 305 ∅ ∅

ed 1295 1420 ∅ ∅

both steps above 282 210 ∅ ∅

diff -e | gzip 153 136 ∅ ∅

gunzip | ed 472 408 ∅ ∅

both steps above 114 99 ∅ ∅
vdelta 150 332 188 227

vupdate 332 529 341 406

both steps above 101 134 117 136

gzip 252 152 189 139

gunzip 413 564 375 407

both steps above 148 103 122 100

vdelta (compress) 122 117 133 119

vupdate (decomp) 156 87 126 137

both steps above 66 47 63 61

vdelta (library) 2640 1880 3713 3461

vupdate (library) 5190 5325 7939 10648

both steps above 1606 1209 2246 2339

Values are in Kbytes/sec., based on elapsed times ∅: not applicable
Values larger than 103 might not have more than one significant digit

Table 6-3: Compression and delta encoding rates for 400 MHz AlphaStation 500
(Digital UNIX 3.2G)

KBytes/sec.) This suggests that delta encoding and compression would certainly be useful for
users of dialup lines (confirming [2]) and T1 lines, would probably be useful for sites with mul-
tiple hosts sharing one T3 line, and might not be useful over broadband networks (at current
levels of CPU performance).

Second, computation speed often scales with CPU performance, but not always. For example,
the cost of using ed to apply a delta appears to depend on factors other than CPU speed.
Generally, vdelta seems to be the most time-efficient algorithm for both delta encoding and com-
pression, except sometimes when compared against ‘‘diff -e’’ (which produces much larger del-
tas).

Finally, the cost of applying a delta or decompressing a response is lower than the cost of
creating the delta or compressed response (except for some uses of ed), for a given CPU. This is

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

30

encouraging, because the more expensive response-creation step is also the step more amenable
to caching or precomputation.

6.1. What about modem-based compression?

Many users now connect to the Internet via a modem; in fact, most of the slowest links, and
hence the ones most likely to benefit from data compression, are modem-based. Modern
modems perform some data compression of their own, which could reduce the benefit of end-to-
end (HTTP-based) compression. However, we believe that a program which can see the entire
input file, and which has available a moderate amount of RAM, should be able to compress
HTML files more effectively than a modem can.

We conducted a simple experiment to test this, transferring both plain-text and compressed
versions of several HTML files via FTP over both 10 MBit/sec Ethernet LAN and modem con-
nections. URLs for these files are listed in table 6-4; our measurements used local copies, made
in January, 1997, of resources named by these URLs.

Table 6-5 shows the measurements. The modems involved were communicating at 28,800
bps, and used the V.42bis compression algorithm (a form of the Lempel-Ziv-Welch algorithm;
gzip uses the Lempel-Ziv algorithm). We used FTP instead of HTTP for a number of reasons,
including the lack of caching or rendering in FTP clients The retrieved files were written to disk
at the client (a 75 MHz Intel 486 with Windows 95).

File URL

A http://www.w3.org/pub/WWW/Protocols/

B http://www.w3.org/pub/WWW/

C http://www.specbench.org/osg/cpu95/results/results.html

D http://www.specbench.org/osg/cpu95/results/rint95.html

Table 6-4: URLs used in modem experiments

Table 6-5 shows that while the modem compression algorithms do work, and the use of high-
level compression algorithms reduce the link-level bit rate, the overall transfer time for a given
file is shorter with high-level compression than with modem compression. For example, the
achieved transfer rate for file C using only modem compression was 55.3 Kbps (over a nominal
28.8 Kbps link), while the transfer rate for the vdelta-compressed version of the same file was
only 16.3 Kbps. But, ignoring the costs of compression and decompression at the client and
server, the overall transfer time for the file was 67% shorter when using high-level compression.

We found that although vdelta provided greater savings for large files (C and D), for the
smaller files (A and B) the gzip algorithm apparently provides better results. It might be useful
for an HTTP server generating compressed responses to choose the compression algorithm based
on both the document size and the characteristics of the network path, although it could be dif-
ficult to discover if the path involves a compressing modem. In any case, using high-level com-
pression seems almost always faster than relying on modem compression, particularly for large
files.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

31

Size (bytes)
LAN transfer

(seconds)
Modem transfer

(seconds)

File HTML gzip vdelta HTML gzip vdelta HTML gzip vdelta saved
w/vdelta

A 17545 6177 7997 0.17
(0.05)

0.12
(0.04)

0.10
(0.00)

6.6
(0.52)

4.7
(0.58)

5.8
(0.54)

0.8 sec
(13%)

B 6017 2033 2650 0.10
(0.00)

0.10
(0.00)

0.10
(0.00)

2.2
(0.20)

1.8
(0.30)

2.0
(0.42)

0.2 sec
(12%)

C 374144 39200 35212 1.22
(0.04)

0.22
(0.04)

0.20
(0.00)

66.4
(0.17)

25.1
(3.07)

21.8
(2.95)

44.6 sec
(67%)

D 97125 10223 8933 0.38
(0.04)

0.12
(0.04)

0.12
(0.04)

17.7
(0.12)

6.9
(1.04)

6.1
(0.99)

11.6 sec
(66%)

Times are the mean of at least 7 trials; standard deviations shown in parentheses

Table 6-5: Effect of modem-based compression on transfer time

We measured the time required to perform compression and decompression, on two systems
of widely differing speed. Table 6-6 shows the costs when using the slowest system available for
these tests (the 50 MHz 80486 running BSD/OS). Table 6-7 shows the costs when using the
fastest system we had available (the 400 MHz AlphaStation 500 running Digital UNIX). Even
when the costs of compression and decompression are included, when using the 28,800 bps
modem the overall transfer time using high-level compression is still faster than the transfer time
using only modem compression.

For LAN transfers, the cost of compression on the slower (50 MHz 80486) system exceeds the
benefit for all but the largest file. However, the faster (400 MHz AlphaStation) system performs
compression fast enough for it to be a net benefit, except for the smallest file (where we ob-
served no change in LAN transfer time). Also, note that, since decompression requires less com-
putation than compression, if the cost of compression can be amortized over several retrievals,
even the slow system can decompress files fast enough for this to improve the overall transfer
costs of files A, C, and D.

The measurements described in tables 6-6 and 6-7 used the non-library versions of the com-
pression software (see section 6); each trial required the invocation of a separate UNIX com-
mand. With the compression and decompression algorithms integrated into the server and client
software, we would expect much lower overheads for processing small responses, and so the
break-even response size for end-to-end compression might be much smaller than implied by
these measurements.

7. Extending HTTP to support deltas

Based on our analysis of traces, we believe that the use of deltas to update invalid HTTP cache
entries could provide significant performance advantages in many cases. But in order to be
feasible, a delta mechanism must impose overheads significantly smaller than the potential
benefits, and it must be reasonably compatible with the existing HTTP design. In this section,

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

32

File gzip
compress

gunzip
decompress

gzip
total

vdelta
compress

vdelta
decompress

vdelta
total

A 0.151 0.065 0.216 0.121 0.042 0.163

B 0.061 0.031 0.092 0.044 0.020 0.064

C 2.028 0.319 2.347 1.438 0.020 1.458

D 0.481 0.100 0.581 0.290 0.020 0.310

Mean times, in seconds, of 10 trials

Table 6-6: Compression and decompression times for files in tables 6-4 and 6-5
using 50 Mhz 80486 (BSD/OS 2.1)

File gzip
compress

gunzip
decompress

gzip
total

vdelta
compress

vdelta
decompress

vdelta
total

A 0.020 (0.010) 0.007 (0.0046) 0.027 0.012 (0.006) 0.011 (0.0070) 0.023

B 0.011 (0.007) 0.006 (0.0049) 0.017 0.009 (0.003) 0.007 (0.0046) 0.016

C 0.249 (0.019) 0.026 (0.008) 0.275 0.106 (0.009) 0.028 (0.0204) 0.134

D 0.061 (0.007) 0.012 (0.006) 0.073 0.026 (0.008) 0.010 (0.0) 0.036

Mean times, in seconds, of 10 trials; standard deviations are shown in parentheses

Table 6-7: Compression and decompression times for files in tables 6-4 and 6-5
using 400 MHz AlphaStation 500 (Digital UNIX 3.2G)

we sketch how HTTP might be extended to include a delta mechanism. This is not meant as a
formal proposal to extend the HTTP standard, but rather as an indication of one possible way to
do so. (In particular, we do not propose protocol extensions to support query clustering, as
described in section 5.9.)

We assume the use of HTTP/1.1 [6], which (while not yet widely deployed) provides much
better control over caching mechanisms than do previous versions of HTTP.

7.1. Background: an overview of HTTP cache validation

When a client has a response in its cache, and wishes to ensure that this cache entry is current,
HTTP/1.1 allows the client to do a ‘‘conditional GET’’, using one of two forms of ‘‘cache
validators.’’ In the traditional form, available in both HTTP/1.0 and in HTTP/1.1, the client may
use the ‘‘If-Modified-Since’’ request-header to present to the server the ‘‘Last-Modified’’ time-
stamp (if any) that the server provided with the response. If the server’s timestamp for the
resource has not changed, it may send a response with a status code of 304 (Not Modified),
which does not transmit the body of the resource. If the timestamp has changed, the server
would normally send a response with a status code of 200 (OK), which carries a complete copy
of the resource, and a new Last-Modified timestamp.

This timestamp-based approach is prone to error because of the lack of timestamp resolution:
if a resource changes twice during one second, the change might not be detectable. Therefore,

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

33

HTTP/1.1 also allows the server to provide an ‘‘entity tag’’ with a response. An entity tag is an
opaque string, constructed by the server according to its own needs; the protocol specification
imposes a bare minimum of requirements on entity tags. (In particular, the entity tag must
change if the value of the resource changes.) In this case, the client may validate its cache entry
by sending its conditional request using the ‘‘If-None-Match’’ request-header, presenting the en-
tity tag associated with the cached response. (The protocol defines several other ways to trans-
mit entity tags, for certain specialized kinds of requests.) If the presented entity tag matches the
server’s current tag for the resource, the server should send a 304 (Not Modified) response.
Otherwise, the server should send a 200 (OK) response, along with a complete copy of the
resource.

In the existing HTTP protocol, a client sending a conditional request can expect either of two
responses:

• status = 200 (OK), with a full copy of the resource, because the server’s copy of the
resource is presumably different from the client’s cached copy.

• status = 304 (Not Modified), with no body, because the server’s copy of the resource
is presumably the same as the client’s cached copy.

Informally, one could think of these as ‘‘deltas’’ of 100% and 0% of the resource, respectively.
Note that these deltas are relative to a specific cached response. That is, a client cannot request a
delta without specifying, somehow, which two instances of a resource are being differenced.
The ‘‘new’’ instance is implicitly the current instance that the server would return for an uncon-
ditional request, and the ‘‘old’’ instance is the one that is currently in the client’s cache. The
cache validator (last-modified time or entity tag) is what is used to communicate to the server the
identity of the old instance.

7.2. Requesting the transmission of deltas

In order to support the transmission of actual deltas, the HTTP protocol would need to provide
these features:

1. A way to mark a request as conditional.

2. A way to specify the old instance, to which the delta will be applied by the client.

3. A way to indicate that the client is able to apply a specific form of delta.

4. A way to mark a response as being delta-encoded in a particular format.
The first two features are already provided by HTTP: the presence of a conditional request-
header (such as ‘‘If-Modified-Since’’ or ‘‘If-None-Match’’) marks a request as conditional, and
the value of that header uniquely specifies the old instance (ignoring the problem of last-
modified timestamp granularity)3.

We defer discussion of the fourth feature, until section 7.4.

3It might be safe to allow the use of a last-modified timestamp when this timestamp is ‘‘strong,’’ as defined in the
HTTP/1.1 specification [6].

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

34

The third feature, a way for the client to indicate that it is able to apply deltas (aside from the
trivial 0% and 100% deltas), can be accomplished by transmitting a list of acceptable delta-
encoding algorithms in a request-header field. The presence of this list in a conditional request
indicates that the client is able to apply delta-encoded cache updates.

The ‘‘Accept-Encoding’’ request-header field defined by HTTP/1.1 provides a means for the
client to indicate which content-codings it will accept. This header, already used to declare what
compression encodings are acceptable to a client, also provides the necessary syntax to com-
municate a list of acceptable delta-encoding algorithms. (The original specification [6] of this
header field was not suitable for this purpose, because it failed to prevent a server from sending a
delta-encoding that would not be intelligible to the client.)

For example, a client might send this request:
GET /foo.html HTTP/1.1
If-None-Match: "123xyz"
Accept-Encoding: diff-e, vdelta, gzip

The meaning of this request is that:

• The client wants to obtain the current value of /foo.html.

• It already has a cached response for that resource, whose entity tag is ‘‘123xyz’’.

• It is willing to accept delta-encoded updates using either of two formats, ‘‘diff-e’’
(i.e., output from the UNIX ‘‘diff -e’’ command), and ‘‘vdelta’’.

• It is willing to accept responses that have been compressed using ‘‘gzip,’’ whether
or not these are delta-encoded.

If, in this example, the server’s current entity tag for the resource is still ‘‘123xyz’’, then it
should simply return a 304 (Not Modified) response, as would an existing server.

If the entity tag has changed, presumably but not necessarily because of a modification of the
resource, the server could instead compute the delta between the instance whose entity tag was
‘‘123xyz’’ and the current instance.

We defer discussion of what the server needs to store, in order to compute deltas, until section
7.5.

We note that if a client indicates it is willing to accept deltas, but the server does not support
this form of content-coding, the HTTP/1.1 specification for ‘‘Accept-encoding’’ allows the serv-
er to simply ignore this. Such a server acts as if the client had not requested a delta-encoded
response: it generates a status-200 response.

7.3. Choice of delta algorithm

The server would not be required to transmit a delta-encoded response. For example, the
result might be larger than the current size of the resource. The server might not be able to
compute a delta for this type of resource (e.g., a compressed binary format). The server might
not have sufficient CPU cycles for the delta computation. The server might not support any of
the delta formats supported by the client. Or, finally, the network bandwidth might be high

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

35

enough that the delay involved in computing the delta is not worth the delay avoided by sending
a smaller response.

Given that the server does want to compute a delta, and the set of encodings its supports has
more than one encoding in common with the set offered by the client, which encoding should it
use? We believe that there are a number of possible approaches. For example, if CPU cycles are
plentiful and network bandwidth is scarce, the server might compute each of the possible encod-
ings and then send the smallest result. Or the server might use heuristics to choose an encoding
algorithm, based on things such as the type of the resource, the current size of the resource, and
the expected amount of change between instances of the resource.

Note also that it may pay to cache the deltas internally to the server, if a resource is typically
requested by several different delta-capable clients between modifications. In this case, the cost
of computing a delta may be amortized over many responses, and so the server might use a more
expensive computation.

7.4. Transmission of deltas

When a server transmits a delta-encoded response, it must identify it as such, and must also
indicate which encoding format is used. HTTP/1.0 provides the ‘‘Content-encoding’’ header to
mark responses that have been encoded with one or more algorithms. It might be possible to
extend the list of supported content-encodings to include delta algorithms.

However, a simplistic application of this approach would cause serious problems if the
response flows through an intermediate (proxy) cache that is not cognizant of the delta
mechanism. Because the Internet is full of HTTP/1.0 caches, which might never be entirely
replaced, and because the HTTP specifications insist that message recipients ignore any header
field that they do not understand, a non-delta-capable proxy cache that receives a delta-encoded
response might store that response, and might later return it to a non-delta-capable client that has
made a request for the same resource. This naive client would believe that it has received a valid
copy of the entire resource, with predictably unpleasant results.

Instead, we propose that delta-encoded responses be identified as such using a new HTTP
status code; for specificity in the discussion that follows, we will assume the use of the (currently
unassigned) code of 266 for this purpose. There is some precedent for this approach: the
HTTP/1.1 specification introduces the 206 (Partial Content) status code, for the transmission of
sub-ranges of a resource. Existing proxies apparently forward responses with unknown status
codes, and do not attempt to cache them.4

Given this, a delta-encoded response differs from a standard response in three ways:
1. It carries a status code of 266 (Delta).

4An alternative to using a new status code would be to use the ‘‘Expires’’ header to prevent HTTP/1.0 caches
from storing the response, then use ‘‘Cache-control: max-age’’ (defined in HTTP/1.1) to allow more modern caches
to store delta-encoded responses. This adds many bytes to the response headers, and so would reduce the effec-
tiveness of delta encoding.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

36

2. It carries a ‘‘Content-encoding’’ header, indicating which delta encoding is used in
this response.

3. Its body is a delta-encoding of the current instance, rather than a full copy of the
instance.

For example, a response to the request given in section 7.2 might look like:
HTTP/1.1 266 Delta
ETag: "489uhw"
Content-Encoding: vdelta

(when showing examples of HTTP messages, we show only some of the required header fields,
and we do not show the response body).

7.5. Management of base instances

If the time between modifications of a resource is less than the typical eviction time for
responses in client caches, this means that the ‘‘old instance’’ indicated in a client’s conditional
request might not refer to the most recent prior instance. This raises the question of how many
old instances of a resource should be maintained by the server, if any.

There are many possible options; for example:

• The server might not store any old instances, and so would never respond with a
delta.

• The server might only store the most recent prior instance; requests attempting to
validate this instance could be answered with a delta, but requests attempting to
validate older instances would be answered with a full copy of the resource.

• The server might store all prior instances, allowing it to provide a delta response for
any client request.

• The server might store only a subset of the prior instances, which we call ‘‘base
instances.’’

The server might not have to store prior instances explicitly. It might, instead, store just the
deltas between specific base instances and subsequent instances (or the inverse deltas between
base instances and prior instances). This approach might be integrated with a cache of computed
deltas.

None of these approaches necessarily requires additional protocol support. However, suppose
that a server administrator wants to store only a subset of the prior instances, but would like the
server to be able to respond using deltas as often as possible.

We identify two additional protocol changes to help solve this problem, although neither of
them is fully elaborated here.

The first approach uses an existing feature of the ‘‘If-None-Match’’ header, its ability to carry
more than one entity-tag. This feature was included in HTTP/1.1 to support efficient caching of
multiple variants of a resource, but it is not restricted to that use.

Suppose that a client has kept more than one instance of a resource in its cache. That is, not
only does it keep the most recent instance, but it also holds onto copies of one or more prior,

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

37

invalid instances. (Alternatively, it might retain sufficient delta or inverse-delta information to
reconstruct older instances.) In this case, it could use its conditional request to tell the server
about all of the instances it could apply a delta to. For example, the client might send:

GET /foo.html HTTP/1.1
If-None-Match: "123xyz", "337pey", "489uhw"
Accept-Encoding: diff-e, vdelta

to indicate that it has three instances of this resource in its cache. If the server is able to generate
a delta from any of these prior versions, it can select the appropriate base version, compute the
delta, and return the result to the client.

In this case, however, the server must also tell the client which base instance to use, and so we
need to define a response-header for this purpose. For example, the server might reply:

HTTP/1.1 266 Delta
ETag: "1acl059"
Content-Encoding: vdelta
Delta-base: "337pey"

This response tells the client to apply the delta, using the vdelta encoding, to the cached response
with entity tag ‘‘337pey’’, and to associate the entity tag ‘‘1acl059’’ with the result. (It may be
desirable to include a Delta-base value in every delta-encoded response, even when the client
supplies only one entity tag.)

Of course, if the server has retained more than one of the prior instances identified by the
client, this could complicate the problem of choosing the optimal delta to return, since now the
server has a choice not only of the delta algorithm, but also of the base instance to use.

We also believe that it might be useful to allow the server to tell the client, in advance of a
conditional request, which instances of a resource are useful base instances for deltas. That is, if
the server intends to retain certain instances and not others, it could label the responses that
transmit the retained instances. This would help the client manage its cache, since it would not
have to retain all prior versions on the possibility that only some of them might be useful later.
The label would be a ‘‘hint’’ to the client, not a promise that the server will indefinitely retain an
instance.

Such labeling could be done through the use of yet another response header, but it might be
more efficient to simply add a directive to the existing ‘‘Cache-control’’ header. For example, in
response to an unconditional request, the server might send:

HTTP/1.1 200 OK
ETag: "337pey"
Cache-control: retain

to tell a delta-capable client to retain this version. The ‘‘retain’’ directive could also appear in a
delta response:

HTTP/1.1 266 Delta
ETag: "1acl059"
Cache-control: retain
Content-Encoding: vdelta
Delta-base: "337pey"

In practice, the ‘‘Cache-control’’ response-header field might already be present, so the cost (in
bytes) of sending this directive might be smaller than this example implies.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

38

7.6. Deltas and intermediate caches

Although we have designed the delta-encoded responses so that they will not be stored by
naive proxy caches, if a proxy does understand the delta mechanism, it might be beneficial for it
to participate in sending and receiving deltas.

A proxy could participate in several independent ways:

• In addition to forwarding a delta-encoded response, it might store it, and then use it
to reply to a subsequent request with a compatible ‘‘If-None-Match’’ field (i.e., one
that is either a superset of the corresponding field of the request that first elicited the
response, or one that includes the ‘‘Delta-base’’ value in the cached response), and
with a compatible ‘‘Content-encoding’’ field (one that includes the actual delta-
encoding used in the response.) Of course, such uses are subject to all of the other
HTTP rules concerning the validity of cache entries.

• In addition to forwarding a delta-encoded response, it might apply the delta to the
appropriate entry in its own cache, which could then be used for later responses
(even from non-delta-capable clients).

• When it receives a conditional request from a delta-capable client, and it has a com-
plete copy of an up-to-date (‘‘fresh,’’ in HTTP/1.1 terminology) response in its
cache, it could generate a delta locally and return it to the requesting client. (Or it
might decide that it would be more efficient to return the entire response from its
cache, rather than forwarding the delta request over a busy network.)

• When it receives a request from a non-delta-capable client, it might convert this into
a delta request before forwarding it to the server, and then (after applying a resulting
delta response to one of its own cache entries) it would return a full-body response
to the client.

All of these techniques increase proxy software complexity, and might increase proxy storage or
CPU requirements. However, if applied carefully, they should help to reduce the latencies seen
by end users, and load on the network. Generally, CPU speed and disk costs are improving
faster than network latencies, so we expect to see increasing value available from complex proxy
implementations.

Because it is possible for a proxy to store a delta-encoded response and then return it for a
subsequent request, we believe that the server must always specify the delta-encoding method in
a delta-encoded response, even if the client has only offered one possibly encoding algorithm.
Otherwise, it may be impossible to know if the response is compatible with the delta-capable
request from a different client.

7.7. Quantifying the protocol overhead

The proposed protocol changes increase the size of the HTTP message headers slightly. In the
simplest case, the request headers for conditional requests (i.e., those for which the client already
has a cache entry) would be about 24 bytes longer, or about 9% of the observed mean request

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

39

size5. Because a client must have an existing cache entry to use as a base for a delta-encoded
response, it would never send ‘‘Accept-encoding: vdelta’’ for unconditional requests. Also, un-
less it supports a delta-encoding suitable for use with images, the client would presumably omit
this request-header field for image content-types. Therefore, the mean increase in request header
size would be much less than 9%.

Delta-encoded responses would carry slightly longer headers (about 24 bytes in the simplest
case), but this would be insignificant compared to the reduction in body size: about 1% of the
median reduction shown in table 5-8. The header size for non-delta-encoded responses would
not change.

7.8. Ensuring data integrity

When a recipient reassembles a complete HTTP response from several individual messages, it
might be necessary to check the integrity of the complete response. For example, the client’s
cache might be corrupt, or the implementation of delta-encoding (either at client or server) might
have a bug.

HTTP/1.1 includes mechanisms for ensuring the integrity of individual messages. A message
may include a ‘‘Content-MD5’’ response header, which provides an MD5 message digest of the
body of the message (but not the headers). The Digest Authentication mechanism [8] provides a
similar message-digest function, except that it includes certain header fields. Neither of these
mechanisms makes any provision for covering a set of data transmitted over several messages, as
would be the case for the result of applying a delta-encoded response.

It might therefore be necessary to define a new message header, ‘‘Delta-MD5’’, which carries
an MD5 message digest of the final reassembled response value, rather than of the delta value.
One might still want to use the Digest Authentication mechanism, or something stronger, to
protect delta messages against tampering.

7.9. Implementation experience

To verify the feasibility of these HTTP extensions, we implemented a somewhat simplified
version of the extended protocol.

For the server, we started with Apache (version 1.2b7). Apache is the most widely used server
on the Internet, and is freely available in source form. The original code is roughly 30,000 lines
of C code. Our changes added roughly 400 lines. 100 of these lines were changes to Apache
source and header files, and the rest were in a library to interface between Apache and several
algorithms for delta-encoding and compression. The vdelta algorithm itself is implemented in
about 1900 lines of C code; we used external programs for gzip and diff.

5This might be significantly reduced by using a proposed ‘‘sticky header’’ mechanism: when multiple HTTP
messages are sent on a single TCP connection, headers that would be repeated verbatim in each message could, in
principle, be suppressed.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

40

Because our changes were small, localized, and triggered only when specific HTTP headers
were present in incoming requests, there was no appreciable difference in the performance of the
server when the new features were not used. We have not gathered comparative performance
data on the various differencing and compression algorithms.

We are currently working on a client implementation of these HTTP extensions. This work is
based on the ‘‘bimodal proxy’’ software described by Banga et al. [2].

8. Future work

We have not been able to explore all aspects of delta encoding in this study. Here we briefly
discuss several issues that could be addressed using a trace-based analysis. Of course, the most
important proof of the delta-encoding design would be to implement it and measure its utility in
practice, but because many variations of the basic design are feasible, additional trace-based
studies might be necessary to establish the most effective protocol design. (The previous
studies [2, 9] did implementations, but using a double-proxy-based approach that adds store-and-
forward delays.)

We also note that all of our analyses would benefit from a more accurate model for the trans-
fer time. This might include more precise measurements in the traces, a model of the slow-start
state of the TCP stream, and perhaps even a model of network congestion.

8.1. Delta algorithms for images

A significant fraction of the responses in our traces (or logged but not traced by the proxy),
and an even larger fraction of the response body bytes, were of content-type ‘‘image/*’’ (i.e.,
GIF, JPEG, or other image formats). Delta-eligible image responses are relatively rare, but if
these could be converted to small deltas, that would still save bandwidth. While vdelta appears
capable of extracting deltas from some pairs of these image files, it performs much worse than it
does on text files. We also have evidence that vdelta does poorly on images generated by
cameras, such as the popular ‘‘WebCam’’ sites, many of which are updated at frequent intervals.
MPEG compression of video streams relies on efficient deltas between frames, so we have some
hopes for a practical image-delta algorithm.

8.2. Effect of cache size on effectiveness of deltas

Our trace analyses assumed that a client (or proxy) could use any previously traced response
as the base instance for a delta. Although in many cases the two responses involved appear close
together in the trace, in some cases the interval might be quite large. This implies that, in order
to obtain the full benefits of delta encoding shown in our analyses, the client or proxy might have
to retain many GBytes of cached responses. If so, this would clearly be infeasible for most
clients.

It would be fairly simple to analyze the traces using a maximum time-window (e.g., 1 hour or
24 hours) rather than looking all the way back to the beginning of the trace when searching for a
base instance. By plotting the average improvement as a function of the time-window length,

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

41

one could see how this parameter affects performance. It might be somewhat harder to model
the effect of a limited cache size. The preliminary analysis of time intervals in section 5.7 sug-
gests that, in reality, the storage requirements might be quite modest.

8.3. Deltas between non-contiguous responses

Our analyses of delta-eligible responses looked only at the most recent status-200 response
preceding the one for which a delta was computed. This policy simplifies the analysis, and
would also simplify both the client and server implementations, since it limits the number of
previous instances that must be stored at each end.

It is possible, however, that reductions in the delta sizes might be possible by computing deltas
between the current instance and several previous instances, and then sending the shortest. The
complexity and space and time overheads of this policy are significant, but the policy would not
be hard to support in the protocol design (see section 7.5). We could modify our trace analysis
tools to evaluate the best-case savings of such policies.

8.4. Avoiding the cost of creating deltas

The response-time benefits of delta encoding are tempered by the costs of creating and apply-
ing deltas. However, as shown in section 6, the cost of creating a delta is usually much larger
than the cost of applying it.

Fortunately, it may be possible to avoid or hide the cost of creating deltas, in many cases.
Whenever a server receives several requests that would be answered with the same delta-
encoded responses, it could avoid the computation cost of delta-creation by simply caching the
delta. We could estimate the savings from this technique by counting the number of status-304
(Not Modified) and unchanged responses for a given URL, following a delta-eligible response
for that URL in the trace. (The estimate would be conservative, unless the trace included the
server’s entire reference stream.)

Even when a delta is used only once, it may be possible for the server to hide the cost of
creating it by precomputing and caching the delta when the resource is actually changed, rather
than waiting for a request to arrive. While this might substantially increase the CPU and disk
load at the server (because it would probably result in the creation of many deltas that will never
be used), it should reduce the latency seen by the client, especially when the original files are
large. Many studies have shown that Web server loads are periodic and bursty at many time
scales (e.g., [1]). If the server sometimes has background cycles to spare, why not spend them to
precompute some deltas?

8.5. Decision procedures for using deltas or compression

While our results show that deltas and compression improve overall performance, for any
given request the server’s decision to use delta encoding, compression, or simply to send the
unmodified resource value may not be a trivial one. It would not make much sense for the server
to spend a lot more time deciding which approach to use than it would take to transfer the un-

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

42

modified value. The decision might depend on the size and type of the file, the network
bandwidth to the client, perhaps the presence of a compressing modem on that path (see section
6.1), and perhaps the past history of the resource. We believe that a simple decision algorithm
would be useful, but we do not yet know how it should work.

9. Summary and conclusions

Previous studies have described how delta encoding and compression could be useful. In this
study, we quantified the utility based on traces of actual Web users. We found that, using the
best known delta algorithm, for the proxy trace 77% of the delta-eligible response-body bytes
and 22% of all response-body bytes could have been saved; at least 37% of the transfer time for
delta-eligible responses and 11% of the total transfer time could have been avoided. For the
packet-level trace, we showed even more savings for delta-eligible responses (82% of response-
body bytes), although the overall improvement (8% of response-body bytes) was much less im-
pressive. We confirmed that data compression can significantly reduce bytes transferred and
transfer time, for some content-types. We showed that the added overheads for encoding and
decoding are reasonable, and support for deltas would add minimal complexity to the HTTP
protocol. We conclude that delta encoding should be used when possible, and compression
should be used otherwise.

The goal for a well-designed distributed system should be to take maximal advantage of
caches, and to transmit the minimum number of bits required by information theory, given ac-
ceptable processing costs. delta encoding and compression together will help meet these goals.

Acknowledgments
We would like to thank Kiem-Phong Vo for discussions relating to vdelta, Glenn Fowler for

discussions regarding diff -e update problems, Guy Jacobson for discussions regarding vdelta
compression, and Manolis Tsangaris and Steven Bellovin for discussions relating to modem
compression. We would also like to thank Kathy Richardson and Jason Wold, for help in obtain-
ing traces; Gaurav Banga and Deborah Wallach, for proofreading; and the SIGCOMM ’97
reviewers, for valuable suggestions.

References
[1] Martin F. Arlitt and Carey L. Williamson. Web Server Workload Characterization: The
Search for Invariants (Extended Version). DISCUS Working Paper 96-3, Dept. of Computer
Science, University of Saskatchewan, March, 1996.
ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z.

[2] Gaurav Banga, Fred Douglis, and Michael Rabinovich. Optimistic Deltas for WWW
Latency Reduction. In Proc. 1997 USENIX Technical Conference, pages 289-303. Anaheim,
CA, January, 1997.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol -- HTTP/1.0.
RFC 1945, HTTP Working Group, May, 1996.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

43

[4] Fred Douglis. On the Role of Compression in Distributed Systems. In Proc. Fifth ACM
SIGOPS European Workshop. Mont St.-Michel, France, September, 1992. Also appears in
Operating Systems Review 27(2):88-93, April, 1993.

[5] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey Mogul. Rate of
Change and Other Metrics: a Live Study of the World Wide Web. In Proc. Symposium on
Internet Technologies and Systems. USENIX, Monterey, CA, December, 1997. To appear.

[6] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, and Tim Berners-
Lee. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2068, HTTP Working Group, January,
1997.

[7] Armando Fox, Steven D. Gribble, Eric A. Brewer, and Elan Amir. Adapting to Network
and Client Variation via On-Demand Dynamic Transcoding. In Proc. ASPLOS VII, pages
160-170. Cambridge, MA, October, 1996.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, L. Stewart. An
Extension to HTTP: Digest Access Authentication. RFC 2069, HTTP Working Group, January,
1997.

[9] Barron C. Housel and David B. Lindquist. WebExpress: A System for Optimizing Web
Browsing in a Wireless Environment. In Proc. 2nd Annual Intl. Conf. on Mobile Computing and
Networking, pages 108-116. ACM, Rye, New York, November, 1996.
http://www.networking.ibm.com/art/artwewp.htm.

[10] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. An Empirical Study of Delta Al-
gorithms. In IEEE Soft. Config. and Maint. Workshop. 1996.

[11] Van Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 1144,
Network Working Group, February, 1990.

[12] Glenn Fowler, David Korn, Stephen North, Herman Rao, and Kiem-Phong Vo. Libraries
and File System Architecture. In Balachander Krishnamurthy (editor), Practical Reusable UNIX
Software, chapter 2. John Wiley & Sons, New York, 1995.

[13] Debra A. Lelewer and Daniel S. Hirschberg. Data Compression. ACM Computing Sur-
veys 19(3):261-296, 1987.

[14] Steven McCanne and Van Jacobson. An Efficient, Extensible, and Portable Network
Monitor. Work in progress.

[15] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric Prud’hommeaux,
Hakon Wium Lie, and Chris Lilley. Network Performance Effects of HTTP/1.1, CSS1,

and PNG. In Proc. SIGCOMM ’97. Cannes, France, September, 1997.

[16] PointCast Corporation. What is the PointCast Network? http://www.pointcast.com/.
1997

[17] W. Tichy. RCS - A System For Version Control. Software - Practice and Experience
15(7):637-654, July, 1985.

[18] Stephen Williams. Personal communication.
June, 1996. http://ei.cs.vt.edu/~williams/DIFF/prelim.html.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

44

[19] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, and Edward
A. Fox . Removal Policies in Network Caches for World-Wide Web Documents. In

Proc. SIGCOMM ’96, pages 293-305. Stanford, CA, August, 1996.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

45

WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen.
WRL Research Report 86/1, September 1986.

‘‘Global Register Allocation at Link Time.’’ David
W. Wall. WRL Research Report 86/3, October

1986.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4,

October 1986.

‘‘The Mahler Experience: Using an Intermediate

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL

Research Report 87/1, August 1987.

‘‘The Packet Filter: An Efficient Mechanism for

User-level Network Code.’’ Jeffrey C. Mogul,
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987.

‘‘Fragmentation Considered Harmful.’’ Christopher
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987.

‘‘Cache Coherence in Distributed Systems.’’

Christopher A. Kent. WRL Research Report

87/4, December 1987.

‘‘Register Windows vs. Register Allocation.’’ David
W. Wall. WRL Research Report 87/5, December

1987.

‘‘Editing Graphical Objects Using Procedural

Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987.

‘‘The USENET Cookbook: an Experiment in

Electronic Publication.’’ Brian K. Reid. WRL
Research Report 87/7, December 1987.

‘‘MultiTitan: Four Architecture Papers.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael
J. K. Nielsen. WRL Research Report 87/8, April

1988.

‘‘Fast Printed Circuit Board Routing.’’ Jeremy
Dion. WRL Research Report 88/1, March 1988.

‘‘Compacting Garbage Collection with Ambiguous

Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.

‘‘The Experimental Literature of The Internet: An

Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Measured Capacity of an Ethernet: Myths and

Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

88/4, September 1988.

‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
Tsudik, Kamaljit Anand. WRL Research

Report 88/5, December 1988.

‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,

January 1989.

‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report

89/2, February 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

February 1989.

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
and Jeffrey C. Mogul. WRL Research Report

89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’ Norman
P. Jouppi and David W. Wall. WRL Research
Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
and David W. Wall. WRL Research Report

89/8, July 1989.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

46

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’ Norman
P. Jouppi. WRL Research Report 89/9, July

1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’ Norman P. Jouppi. WRL

Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey
Y. F. Tang. WRL Research Report 89/11, July

1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’

Norman P. Jouppi. WRL Research Report

89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’ Anita Borg,
R.E.Kessler, Georgia Lazana, and David
W. Wall. WRL Research Report 89/14, Septem-

ber 1989.

‘‘Link-Time Code Modification.’’ David W. Wall.
WRL Research Report 89/17, September 1989.

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey
Y.F. Tang and J. Leon Yang. WRL Research

Report 90/1, January 1990.

‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL

Research Report 90/2, February 1990.

‘‘Two Papers on Test Pattern Generation.’’ Tracy
Larrabee. WRL Research Report 90/3, March

1990.

‘‘Virtual Memory vs. The File System.’’ Michael
N. Nelson. WRL Research Report 90/4, March

1990.

‘‘Efficient Use of Workstations for Passive Monitor-

ing of Local Area Networks.’’ Jeffrey C. Mogul.
WRL Research Report 90/5, July 1990.

‘‘A One-Dimensional Thermal Model for the VAX

9000 Multi Chip Units.’’ John S. Fitch. WRL
Research Report 90/6, July 1990.

‘‘1990 DECWRL/Livermore Magic Release.’’

Robert N. Mayo, Michael H. Arnold, Walter
S. Scott, Don Stark, Gordon T. Hamachi.
WRL Research Report 90/7, September 1990.

‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’ Wade R. McGillis, John
S. Fitch, William R. Hamburgen, Van
P. Carey. WRL Research Report 90/9, December

1990.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-

fers.’’ Joel McCormack. WRL Research Report

91/1, February 1991.

‘‘A Simulation Based Study of TLB Performance.’’

J. Bradley Chen, Anita Borg, Norman
P. Jouppi. WRL Research Report 91/2, Novem-

ber 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-

cuits.’’ Don Stark. WRL Research Report 91/3,

April 1991.

‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

Research Report 91/4, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling. WRL Research Report 91/5,

March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.
WRL Research Report 91/6, May 1991.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’ Wade
R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey. WRL Research

Report 91/7, June 1991.

‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ-

ments.’’ G. May Yip. WRL Research Report

91/8, June 1991.

‘‘Interleaved Fin Thermal Connectors for Multichip
Modules.’’ William R. Hamburgen. WRL

Research Report 91/9, August 1991.

‘‘Experience with a Software-defined Machine Ar-
chitecture.’’ David W. Wall. WRL Research

Report 91/10, August 1991.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

47

‘‘Network Locality at the Scale of Processes.’’

Jeffrey C. Mogul. WRL Research Report 91/11,

November 1991.

‘‘Cache Write Policies and Performance.’’ Norman
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991.

‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

William R. Hamburgen, John S. Fitch. WRL

Research Report 92/1, March 1992.

‘‘Observing TCP Dynamics in Real Networks.’’

Jeffrey C. Mogul. WRL Research Report 92/2,

April 1992.

‘‘Systems for Late Code Modification.’’ David
W. Wall. WRL Research Report 92/3, May

1992.

‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5,

September 1992.

‘‘A Practical System for Intermodule Code Optimiza-

tion at Link-Time.’’ Amitabh Srivastava and
David W. Wall. WRL Research Report 92/6,

December 1992.

‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
McNamara. WRL Research Report 93/1,

January 1993.

‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.
WRL Research Report 93/2, June 1993.

‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993.

‘‘Unreachable Procedures in Object-oriented

Programing.’’ Amitabh Srivastava. WRL

Research Report 93/4, August 1993.

‘‘An Enhanced Access and Cycle Time Model for

On-Chip Caches.’’ Steven J.E. Wilton and Nor-
man P. Jouppi. WRL Research Report 93/5,

July 1994.

‘‘Limits of Instruction-Level Parallelism.’’ David
W. Wall. WRL Research Report 93/6, November

1993.

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’ Alberto
Makino, William R. Hamburgen, John
S. Fitch. WRL Research Report 93/7, November

1993.

‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
Jeremy Dion, Mary Jo Doherty, Alan Eustace,
Ramsey Haddad, Robert Mayo, Suresh Menon,
Louis Monier, Don Stark, Silvio Turrini, Leon
Yang, John Fitch, William Hamburgen, Rus-
sell Kao, and Richard Swan. WRL Research

Report 93/8, December 1993.

‘‘Link-Time Optimization of Address Calculation on

a 64-bit Architecture.’’ Amitabh Srivastava,
David W. Wall. WRL Research Report 94/1,

February 1994.

‘‘ATOM: A System for Building Customized

Program Analysis Tools.’’ Amitabh Srivastava,
Alan Eustace. WRL Research Report 94/2,

March 1994.

‘‘Complexity/Performance Tradeoffs with Non-

Blocking Loads.’’ Keith I. Farkas, Norman
P. Jouppi. WRL Research Report 94/3, March

1994.

‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.

‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research

Report 94/5, April 1994.

‘‘Software Methods for System Address Tracing:
Implementation and Validation.’’ J. Bradley
Chen, David W. Wall, and Anita Borg. WRL

Research Report 94/6, September 1994.

‘‘Performance Implications of Multiple Pointer

Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,
Robert N. Mayo, and Amitabh Srivastava.
WRL Research Report 94/7, December 1994.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

48

‘‘How Useful Are Non-blocking Loads, Stream Buf-

fers, and Speculative Execution in Multiple Issue

Processors?.’’ Keith I. Farkas, Norman
P. Jouppi, and Paul Chow. WRL Research

Report 94/8, December 1994.

‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey
W. Haddad. WRL Research Report 95/1, March

1995.

‘‘Recursive Layout Generation.’’ Louis M. Monier,
Jeremy Dion. WRL Research Report 95/2,

March 1995.

‘‘Contour: A Tile-based Gridless Router.’’ Jeremy
Dion, Louis M. Monier. WRL Research Report

95/3, March 1995.

‘‘The Case for Persistent-Connection HTTP.’’

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995.

‘‘Network Behavior of a Busy Web Server and its

Clients.’’ Jeffrey C. Mogul. WRL Research

Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh Srivas-

tava. WRL Research Report 95/6, October 1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

‘‘Eliminating Receive Livelock in an Interrupt-driven

Kernel.’’ Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report

95/8, December 1995.

‘‘Memory Consistency Models for Shared-Memory

Multiprocessors.’’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘‘Register File Design Considerations in Dynamically

Scheduled Processors.’’ Keith I. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research

Report 95/10, November 1995.

‘‘Optimization in Permutation Spaces.’’ Silvio Tur-

rini. WRL Research Report 96/1, November

1996.

‘‘Shasta: A Low Overhead, Software-Only Approach

for Supporting Fine-Grain Shared Memory.’’

Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research

Report 96/2, November 1996.

‘‘Efficient Procedure Mapping using Cache Line

Coloring.’’ Amir H. Hashemi, David R. Kaeli,
and Brad Calder. WRL Research Report 96/3,

October 1996.

‘‘Optimizations and Placement with the Genetic

Workbench.’’ Silvio Turrini. WRL Research

Report 96/4, November 1996.

‘‘Memory-system Design Considerations for

Dynamically-scheduled Processors.’’ Keith
I. Farkas, Paul Chow, Norman P. Jouppi, and
Zvonko Vranesic. WRL Research Report 97/1,

February 1997.

‘‘Performance of the Shasta Distributed Shared

Memory Protocol.’’ Daniel J. Scales and
Kourosh Gharachorloo. WRL Research Report

97/2, February 1997.

‘‘Fine-Grain Software Distributed Shared Memory

on SMP Clusters.’’ Daniel J. Scales, Kourosh
Gharachorloo, and Anshu Aggarwal. WRL

Research Report 97/3, February 1997.

‘‘Potential benefits of delta encoding and data com-

pression for HTTP.’’ Jeffrey C. Mogul, Fred
Douglis, Anja Feldmann, and Balachander
Krishnamurthy. WRL Research Report 97/4,

July 1997.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

49

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian
K. Reid and Christopher A. Kent. WRL Tech-

nical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’ Christopher A. Kent. WRL

Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ Joel McCormack.
WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?.’’ John Ousterhout. WRL

Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’ Joel F. Bartlett. WRL

Technical Note TN-12, October 1989.

‘‘Characterization of Organic Illumination Systems.’’

Bill Hamburgen, Jeff Mogul, Brian Reid, Alan
Eustace, Richard Swan, Mary Jo Doherty, and
Joel Bartlett. WRL Technical Note TN-13, April

1989.

‘‘Improving Direct-Mapped Cache Performance by

the Addition of a Small Fully-Associative Cache

and Prefetch Buffers.’’ Norman P. Jouppi.
WRL Technical Note TN-14, March 1990.

‘‘Limits of Instruction-Level Parallelism.’’ David
W. Wall. WRL Technical Note TN-15, Decem-

ber 1990.

‘‘The Effect of Context Switches on Cache Perfor-

mance.’’ Jeffrey C. Mogul and Anita Borg.
WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’ Aaron Goldberg and John Hen-

nessy. WRL Technical Note TN-17, December
1990.

‘‘Predicting Program Behavior Using Real or Es-

timated Profiles.’’ David W. Wall. WRL Tech-

nical Note TN-18, December 1990.

‘‘Cache Replacement with Dynamic Exclusion.’’

Scott McFarling. WRL Technical Note TN-22,

November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-

sures.’’ Wade R. McGillis, John S. Fitch, Wil-
liam R. Hamburgen, Van P. Carey. WRL

Technical Note TN-23, January 1992.

‘‘A Comparison of Acoustic and Infrared Inspection

Techniques for Die Attach.’’ John S. Fitch.
WRL Technical Note TN-24, January 1992.

‘‘TurboChannel Versatec Adapter.’’ David Boggs.
WRL Technical Note TN-26, January 1992.

‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey
C. Mogul. WRL Technical Note TN-27, April

1992.

‘‘Electrical Evaluation Of The BIPS-0 Package.’’

Patrick D. Boyle. WRL Technical Note TN-29,

July 1992.

‘‘Transparent Controls for Interactive Graphics.’’

Joel F. Bartlett. WRL Technical Note TN-30,

July 1992.

‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis
Monier. WRL Technical Note TN-32, December

1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture.’’ Amitabh Srivastava
and David W. Wall. WRL Technical Note

TN-35, June 1993.

‘‘Combining Branch Predictors.’’ Scott McFarling.
WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo and Herve Touati. WRL

Technical Note TN-37, June 1993.

‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,
Mark Horowitz. WRL Technical Note TN-40,

December 1993.

‘‘Speculative Execution and Instruction-Level Paral-
lelism.’’ David W. Wall. WRL Technical Note

TN-42, March 1994.

POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

50

‘‘Ramonamap - An Example of Graphical Group-

ware.’’ Joel F. Bartlett. WRL Technical Note

TN-43, December 1994.

‘‘ATOM: A Flexible Interface for Building High Per-

formance Program Analysis Tools.’’ Alan Eus-
tace and Amitabh Srivastava. WRL Technical

Note TN-44, July 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS.’’ Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,

March 1994.

‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note

TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-

nical Note TN-47, April 1995.

‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note

TN-49, May 1995.

‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

Technical Note TN-50, July 1995.

‘‘Simultaneous Multithreading: A Platform for Next-

generation Processors.’’ Susan J. Eggers, Joel
Emer, Henry M. Levy, Jack L. Lo, Rebecca
Stamm and Dean M. Tullsen. WRL Technical

Note TN-52, March 1997.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

