
M A R C H 1 9 9 5

WRL
Research Report 95/2

Recursive
Layout Generation

Louis M. Monier
Jeremy Dion

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Recursive Layout Generation

Louis M. Monier
Jeremy Dion

March, 1995

Abstract

We present a recursive method for generating layout for VLSI chips which com-
bines the flexibility of gate array and standard cell layout with the control and
density of custom layout. The method allows seamless integration of hand-drawn
and synthesized layout, so that hand layout need only be used where the increase
in density is justified. Layout is generated automatically with predictable results;
small changes in the source result in small changes of the overall layout. The
system is versatile enough to build dense VLSI microprocessor chips automati-
cally.

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

ii

Table of Contents
1. Introduction 1
2. The Annotated Hierarchical Netlist 1

2.1. Cell Generators 2
2.2. Netlist Traversal 5

3. Layout Generation 5
3.1. Hand-Drawn Cells 6
3.2. Leaf Cells 7
3.3. Composite Cells 8
3.4. Routing 9
3.5. Netlist Hierarchy Equals Layout Hierarchy? 10

4. Results 11
References 13

iii

iv

List of Figures
Figure 1: Cell schematics 3
Figure 2: A Cell Generator 3
Figure 3: Boolean Equations 4
Figure 4: A hand-drawn cell 6
Figure 5: A leaf cell after placement 7
Figure 6: The same leaf cell after routing 7
Figure 7: Layout by Corner Alignment 8
Figure 8: The BIPS-1 64-bit Floating-Point Divider 12
Figure 9: The BIPS-0 Microprocessor 12

v

vi

1. Introduction

Most effort in commercial electronic design tools concentrates on logic and layout synthesis
for semi-custom gate arrays, standard cell arrays and programmable arrays. Designs done this
way are highly modifiable, and can be done by small teams. But they suffer performance
penalties due to the use of restricted forms of circuits and layout. In high-performance design,
where wire and gate delay must be accounted for in every block of logic and memory, these tools
remove too much control from the designer and are fundamentally inadequate.

At the other extreme of the design spectrum are the full-custom tools used by an ever smaller
number of design teams. These tools are built around layout as a master representation, and the
layout editor as the main design tool. Such designs allow complete control over all aspects of
performance. Unfortunately, layout is a very rigid representation that is difficult to modify. This
leads to inflexible design methodologies in which functional partitions, interfaces and floorplans
are fixed too early in the design cycle. This design style is also very vulnerable to changes in the
underlying technology.

Recursive layout generation bridges the gap between semi-custom and full-custom design. It
requires no compromise on performance; the tools allow full control over circuit selection and
layout, and all tools work at the device level, not the gate level. Recursive layout generation also
produces modifiable designs. Large complicated designs are created once, but modified forever.
This system allows early and continual floorplanning, global performance tuning, and tracking of
technology changes.

Recursive layout has been reported before. Ayres [1] describes recursive layout of syn-
thesized PLA’s from a netlist described by a program. Barth et. al. [2] described the recursive
composition of hand-drawn cells connected by a channel router. The system described here is
novel in that it allows synthesized and hand-drawn layout to be combined easily and connected
automatically by a router to produce layouts which are virtually indistinguishable from those
made by hand.

The recursive layout system was designed in order to build high-performance ECL and BiCMOS

microprocessors [9]. Although we shall give examples of ECL circuits, almost nothing in the
layout generation system is specific to a particular VLSI technology. The full set of tools
developed for our microprocessor project also includes a switch-level bipolar timing verifier
based on ideas in [8], a switch-level bipolar simulator [10], electrical rules and noise margin
checkers [16], and extensions to the magic layout editor [12].

2. The Annotated Hierarchical Netlist

There is no single best way to describe circuits and logic. For analog circuits such as RAMs,
schematic drawings of interconnected transistors are the most concise specification. For control
logic, Boolean equations allow easiest debugging. For a parameterized n-bit adder a program is
the most flexible representation. Rather than attempting to mix several different forms of circuit
description, we chose to use their greatest common divisor, the program, and to translate
schematics and Boolean equations into programs. Programs are simultaneously the most expres-
sive and most modifiable descriptions we know of. We cast as much as possible of the design

1

Recursive Layout Generation

process as a problem in software development, and use all the standard programming tools to
change and debug our design. Many of our CAD tools are in libraries which can be linked and
run with the circuit design.

We explicitly decided not to develop a specific programming language for hardware descrip-
tion. Instead, we embedded our hardware descriptions in a common programming language,
C++. This entails some syntactic inconvenience, since wires, nets and cells are not base types in
the language, but this is a small price to pay for extensibility. We were able to extend and
change the hardware description language over the course of our project to add code for special
purposes easily, without having to undertake language and compiler changes. We were able to
debug our programs using standard tools. These advantages are compelling, and far outweigh
syntactic convenience of a specialized but inflexible language.

The use of C++ led us naturally to another choice. A netlist is not a file, nor a database. It is a
data structure in the virtual memory of a running program, the result of executing the cell genera-
tion code. Netlists for circuits with millions of devices can be generated in one or two minutes.
This is probably faster than they can be read from a file. This model sidesteps the problems of
versions of netlist files and consistent updates to databases which arise with other approaches.
Our netlists are never saved, but generated as needed. Our source is a program composed of
many files, and we maintain versions of them with standard revision control software.

2.1. Cell Generators

A circuit in our system is represented by a C++ program. A procedure in this program is a cell
generator. It can take arbitrary parameters, and returns the netlist - a pointer to a C++ object
called a Cell - for the requested cell. Many such generators take simple parameters, such as the
amount of current drive to provide in the outputs, or the number of bits in a register, but some are
quite complicated. For example, instead of having a library of OR-gates, we have an OR-gate
generator, to which we pass the number of inputs, and a description of the outputs required. At
this level, our form of description is quite like other hardware description languages. But our
netlist fulfills one other function - it is designed to capture all the information needed to generate
layout.

For circuits which are best described graphically, we use a conventional drawing editor for
1schematic capture. The editor has no specialized knowledge of schematics, just as text editors

have no knowledge of programs. These schematics drawings are "compiled" into C++ by our
drawing interpreter drip, which interprets lines as wires, and names as labels of wires and
devices. It uses only visible cues in the drawing to parse it into devices and wires, and can put
arbitrary code, such as loops and tests, into the generated procedure. The resulting procedure is
the equivalent structural description of interconnected devices. Two examples of schematics are
shown in figure 1. These two cells carry annotations for layout which will cause them to be laid
out by the Leaf cell synthesizer described below.

1Note to reviewers: if the companion paper on drip is accepted for the conference, this section will be simplified
and figure 1 deleted.

2

Recursive Layout Generation

Inputs:
L1 a;
L2 b;
signal Gnd, Vee1,
 Vcs,Vr1, Vr2;

Layout: "Leaf"

in

ISrc

Vr1

b

Res
r1

r0
Gnd

Vr2
e

Npnb
c

e

Npn b
c

(p)

(p)

(p)(p)

CELL: SimpleAnd2

:Power* p = MHP();

EFa b

Outputs:
L1 out;

a
e

Npnb
c

e

Npn b
c

(p)(p)

(p)

out

Inputs:
L1(n) a;
L2 b;
signal Gnd, Vee1,
 Vcs,Vr1, Vr2;

Layout: "Leaf"

in

ISrc

Vr1

b

Res
r1

r0

Gnd

Vr2
e

Npnb
c

e

Npn b
c

(p)

(p)

(p)(p)

CELL: AndOr(int n, Power* p)

EFa b

Outputs:
L1 out;

a[i]
e

Npnb
c

e

Npn b
c

(p)(p)

(p)

out

:for (int i=0; i<n; i++)

Gnd

Internals:
signal bot;

bot bot

:// An example of cell parameterized
// by number of inputs, and power level

Figure 1: Cell schematics

1 Cell* Register(int n, Power* p) {
2 char key[100];
3 sprintf(key, "Register_%d_%s", n, p->name);
4 CACHECELL;
5 INW(clock, L3DPair());
6 INW(select, L2(1));
7 INW(in, L1(n));
8 OUTW(out, L1(n));
9 POWER;

10 for (int i=0; i<n; i++) {
11 INST(MuxFFCell("T2", "T", "T", p));
12 BD(i, in->Sub(i));
13 BD(s, select);
14 BD(c, clock);
15 BD(o, out->Sub(i));
16 }
17 SLK(AbutUp);
18 ENDCELL

Figure 2: A Cell Generator

Most circuits are better described by programs rather than drawings. Programs are more con-
cise than drawings and much easier to modify. Figure 2 shows an example of a cell generator for
a register. This procedure was written by hand, but is very similar to the output of drip that
would be generated from the equivalent schematic. Functions in capitals are C++ macros,
provided for syntactic convenience. A cell is a self-contained block of logic with an interface of
named wires. Wires have types, analogous to arrays and structures in C++. Lines 5-9 describe
the cell’s interface, consisting of inputs (INW), outputs (OUTW), and power supplies (POWER).
Clock, for instance, is an input wire of type differential-pair-at-ECL-level-3, and is a structure
with two single-wire subfields true and complementary. Lines 10-16 describe the contents of the
cell in terms of instances of subcells, here all of the same type, a one-bit flip-flop with a mul-
tiplexor on its input. The parameters to MuxFFCell describe the number and logic levels of its
inputs and outputs, and the desired current drive. Lines 12-15 define how the named wires i, s, c,
o in the subcell instance are to be bound (BD) to wires in this cell; all bits get the same select and
clock wires, but the i’th bit gets the i’th input and output wires.

3

Recursive Layout Generation

The netlist distinguishes between a cell and an instance of the cell. Cells are shared, and there
is one copy of each unique cell. There is one instance for each use of the cell. In the example of
figure 2, only one MuxFFCell will be created, but there will be n instances of it. Cell sharing is
provided by the programming convention in all cell generators shown on lines 3-4. Each cell
generator computes a unique name for the required cell based on the procedure name and
parameter values. If the netlist for this cell already exists in a global cell cache, it is returned
immediately at line 4. Otherwise the generator constructs the netlist, and stores it in the cell
cache at line 18 before returning it to the caller. On subsequent calls with identical parameters,
the generator returns the cached netlist.

The advantages of a hierarchical netlist with shared cells are enormous, since all aspects of a
cell which are common between its many instances are shared. For instance, there is exactly one
RAM cell in the netlist, but thousands of instances of that cell. The RAM cell layout is generated
only once, but is then instantiated in many places in the chip layout. Cell sharing speeds up
layout generation by orders of magnitude.

The hierarchical netlist also carries annotations. Line 17 shows a layout method, the most
important annotation for the purpose of layout generation. A layout method completely
describes how the cell layout is to be generated. "SLK" means "set layout key" and AbutUp is a
particularly simple example; it lays out the instances in a cell from bottom to top in a column.
Simple layout methods like AbutUp are just the name of a C++ procedure, but more complex
layout methods described below carry associated data. The layout method is an integral part of
the definition of the cell, and is specified by the designer just like the wires defining the cell’s
interface. If the same circuit needs to be laid out in two different ways, it is described by a cell
generator accepting the layout method as a parameter. Two different cells will result from calls
supplying different layout method arguments. They will have identical netlists, but different
names and different layouts.

EQNCELL(FPDivCtl)
INPUT(ck, L3DPair());
INPUT(asign, L1());
INPUT(bsign, L1());
OUTPUT(sign, L1());
OUTPUT(start, L1());
. . .
start <<= op["div"] & ~abort & allowOp;
sign <<= FF(ck, start, asign ^ bsign);
. . .
SetStdCellLayout(cell, 3500, 250);

ENDEQNCELL

Figure 3: Boolean Equations

Another library of C++ functions provides the syntax of Boolean equations, which are exten-
sively used for control logic and for prototyping new blocks of logic. Figure 3 shows a small
example, whose layout is defined as a block of "standard cells" 3500 units wide with 250 units of
vertical space between each row. The library maps these equations into valid ECL gates (such as
n-input OR gates) during netlist generation. It makes use of three-level series gating, free inver-
sion, and wired-OR [6]. The result of calling a cell generator defined by Boolean equations is a
netlist identical to that which would be obtained by explicitly interconnecting a collection of
gates, flip-flops and multiplexors. We trust the equation mapper to make this translation on parts
of the circuit where precise selection of the gates used is not critical.

4

Recursive Layout Generation

To generate a netlist for an entire chip, we translate all schematics into C++. The C++ source
code for schematics, equations and hand-written cells is then compiled and linked with the CAD

libraries. We also include a short main program which calls the generator for the top-level cell
of the chip. A complete microprocessor having 4 million devices was described in 25K lines of
C++; 15K lines of CAD libraries were linked with the design, resulting in a 10MB executable.
The chip netlist was generated in a couple of minutes.

2.2. Netlist Traversal

When the main program calls the generator for the top-level cell in the circuit, it gets in return
the annotated netlist for the circuit. This netlist can then be traversed to produce input files for
simulators. We use SPICE for circuit simulation of analog circuits, and bisim [10] for switch-
level simulation of digital circuits. Each simulator requires its own input file format, so there is a
different traversal of the circuit netlist for each simulator. Writing the input file for a simulator
takes about as long as initial generation of the netlist.

3. Layout Generation

Layout generation is best seen as just another traversal of the in-memory netlist. It is a
bottom-up, batch process. No manual intervention is required, since all the information needed to
generate the layout is in the netlist and in the layout methods. Layout happens in the same way
for all cells. First, the subcells are laid out recursively. Then the cell’s layout method is used to
place the instances of the subcells. After placement, some connections may have been made by
abutment or overlap. Any which remain are completed by the Contour router [4]. Finally, con-
nectivity checks are made to detect shorts and opens. An electrical short of two nets is usually a
sign of overlapping subcells in an incorrect placement. Opens usually result from creating a
routing problem which is too difficult. Both of these problems are solved by editing the layout
method for the cell, and never ever by editing the generated layout directly. In this way we
maintain the rule that all information needed to generate the entire layout is recorded on the
netlist.

The representation of layout for a cell comes in two parts. The geometry of the instances of
the subcells is defined simply by the transformations of the subcell layout which place them in
the current cell. New rectangles defined in the layout of this cell - for example the wires and
vias added by the router - are stored in a set of tiling planes [14], one per layer in the VLSI
technology (usually one for each metal layer, and one for the active devices). Layout generation
is correct by construction - unless shorts and opens are detected and reported - and two invariants
are maintained for every cell:

• The layout represents the same circuit as the netlist. There are the same number of
devices of the same sizes, interconnected in the same way.

• The cell geometry in the tiling planes is maintained in an extracted form; each solid
tile is labelled with the net to which it belongs.

5

Recursive Layout Generation

3.1. Hand-Drawn Cells

The recursion ends at hand-drawn cells, which do not depend on layout of the subcells. These
cells have the layout method ReadMagic, and laying them out means reading a file of the same
name made with the magic layout editor. The use of a hand-drawn cell comes at a price; its
layout must be manually maintained over all future changes in technology or in pitch-matching
to other cells. Our system is no better at managing large tracts of hand layout than any other, so
hand-drawn cells are used either for analog cells such as pads, or for memory cells, where the
gain in density is compelling. Figure 4 shows the layout of two bits of register file.

Figure 4: A hand-drawn cell

The result of reading the magic file for the cell is a set of tiling planes full of rectangles.
Hand-drawn cells have no instances of subcells, so the entire geometry of the cell is represented
in the tiling planes. But the two layout invariants must be checked; the layout must represent the
same circuit as the netlist, and each rectangle has to be associated with its net in the netlist. First
the netlist represented by the layout is extracted by finding the transistors and resistors, and fol-
lowing their interconnections. Then this netlist is matched with the netlist specified for the cell
by a graph isomorphism method similar to gemini [5]. The matching is purely topological,
though labels in the hand layout can be used to disambiguate symmetries. If the graphs are
identical, each rectangle can be labelled with the correct net, and the layout has been proved to
match the netlist. In case of mismatch, an error is immediately reported.

Hand-drawn cells are also routed just like any other cell, since the extracted layout makes it
clear which nets are disconnected. Our router is able to make connections to arbitrary geometry
and route in obstructed areas, and the designer may choose to leave some of the wiring to the
router even in hand-drawn cells. A good example of this is a 64-bit decoder which has a 6-bit
input bus, in which it is extremely easy to make a wiring error. In this case, labelling the device
terminals and bus wires is less error-prone than wiring by hand.

6

Recursive Layout Generation

Figure 5: A leaf cell after placement

Figure 6: The same leaf cell after routing

3.2. Leaf Cells

Many small cells are synthesized using the Leaf layout method. Typically, these are gate-level
cells, containing up to a hundred transistors. Figure 5 shows a flip-flop with a 10-input in-
tegrated multiplexor after placement by Leaf. Figure 6 shows the same cell with the wiring
added by Contour.

Leaf is a general ECL cell synthesizer. It produces finished layout given the netlist of devices,
the layouts for the devices (they all have the ReadMagic layout method), and a vertical pitch.
This synthesizer is one of the few parts of the layout system dependent on ECL technology. The
placement uses no hints from the designer, but selects positions of the transistors and resistors
which maximize the number of connections which can be made using polysilicon interconnect.
The resulting placement is very close to the density of hand designs. In part this is due to the
regularity of current trees in ECL logic and the similar sizes of bipolar devices. The current
algorithm - the sixth and by far the best in the history of the project - is based on exhaustive
combinatorial search. It finds very good placements in milliseconds. The key ideas are to con-
sider the transistors in the right order (by current tree, then by closeness to the current source
within each current tree), and to avoid the use of a cost function to compare a large number
placements. In place of a cost function, the algorithm has a rejection criterion and an
acceptance criterion. The rejection criterion is used to prune the search tree by detecting partial
placements which can never lead to a good complete placement, perhaps because a current tree
can not be placed contiguously. The acceptance criterion is a strict definition of a good place-
ment. The first complete placement passing the criterion is accepted as the final solution.

7

Recursive Layout Generation

After placement, routing of leaf cells is done by our Contour router in polysilicon and up to
three levels of metal. Routing in second- and third-level metal is permitted but discouraged by
the cost parameters given to Contour. Complete layout generation for a typical leaf cell takes
from 1 to 50 seconds on a DECStation 5000/200.

This style of leaf cell synthesis may be contrasted with semi-custom design. In our system
there is no cell library, and we cannot predict in advance which 2000 or so of the enormous
number of legal ECL gates will actually be used. The particular gate selection is determined by
the parameters passed to the gate generator procedures during creation of the netlist. Each dis-
tinct gate is made exactly once - because of the sharing enforced by the cell cache during netlist
generation - and is instantiated one or more times. During layout generation therefore, each
unique ECL gate is placed and routed exactly once, and that layout is shared among all its in-
stances.

3.3. Composite Cells

Most higher-level cells are neither hand-drawn nor synthesized, and a variety of layout
methods are used for them. For completely regular cells such as multi-bit registers, simple
layout methods like AbutUp and AbutRight are used to arrange the subcells in rows or columns.
For completely random cells, such as blocks of control logic, StdCell, a fully automatic placer
based on the conjugate gradient method [11] generates rectangular blocks with minimal wire dis-
tance. For cells which are neither fully random, nor fully regular, a layout method based on
corner and edge alignment is used to place subcells to the last micron.

1 // four RAM cells in a symmetrical 2x2 square

2 CELL(RamQuad)
3 INW(wwl0, oneBit()); INW(wwl1, oneBit());
4 INW(rwl0, oneBit()); INW(rwl1, oneBit());
5 OUTW(rbl0, DiffPair()); OUTW(rbl1, DiffPair());
6 OUTW(wbl0, DiffPair()); OUTW(wbl0, DiffPair());
7 POWER;
8 AlignRegion quad("quad");

9 INST(RamBit());
10 BD(rwl, rwl0); BD(wwl, wwl0); BD(rbl, rbl0); BD(wbl, wbl0);
11 InstRegion bit0(instance); /* lower left */

12 INST(RamBit());
13 BD(rwl, rwl0); BD(wwl, wwl0); BD(rbl, rbl1); BD(wbl, wbl1);
14 InstRegion bit1(instance, TopToBottom);
15 quad.Align(bit1, LL, bit0, UL); /* upper left */

16 INST(RamBit());
17 BD(rwl, rwl1); BD(wwl, wwl1); BD(rbl, rbl0); BD(wbl, wbl0);
18 InstRegion bit2(instance, RightToLeft);
19 quad.Align(bit2, LL, bit0, LR); /* lower right */

20 INST(RamBit());
21 BD(rwl, rwl1); BD(wwl, wwl1); BD(rbl, rbl1); BD(wbl, wbl1);
22 InstRegion bit3(instance, Rotate180);
23 quad.Align(bit3, LL, bit0, UR); /* upper right */

24 SetLayout(cell, quad);
25 ENDCELL

Figure 7: Layout by Corner Alignment

8

Recursive Layout Generation

Figure 7 shows how corner alignment is used to assemble four RAM cells into a 2x2 array
which is symmetrical around both the horizontal and vertical center lines. This cell is the repeat-
ing unit of four bits in a cache RAM. Here, an AlignRegion object is declared at line 8, and
corner alignments are added to it at lines 15, 19 and 23. In line 24, the resulting data structure is
made the layout method of the cell. The instructions for generating the layout (lines 14-15: "flip
bit1 top to bottom, then align its lower left corner to the upper left of bit0") are simply recorded
as annotations on the cell during netlist generation. When layout is required for this cell, the
alignments are retrieved and executed.

Note that layout by corner and edge alignment is independent of the size of the underlying
RamBit cell. This is important; editing the hand-drawn RamBit cell will not invalidate this
layout. We contrast this with normal hand assembly of layout, in which the series of keystrokes
and mouse clicks to arrange the subcells is lost. If the RamBit changes size, these keystrokes and
mouse clicks must be repeated manually. With recursive layout generation, only a program
needs to be re-executed.

Integrating corner alignment directives with the netlist has proved very successful. It might be
objected that the layout directives obscure the connectivity of the netlist, but in practice this has
not been a problem. Having all the information about a cell in one place makes circuit modifica-
tions much easier. Whenever a cell’s netlist needs to be changed, it is usually quite easy to make
the corresponding layout changes, especially when the reward of a new color plot can be
generated quickly.

3.4. Routing

A large fraction of the development effort was spent on Contour, a general router based on a
hybrid maze/line search principles [3, 13, 7] and the corner-stitched data structure [14, 15].
Contour is used in each cell of the design to complete connections not made by placement. In
general, the router is adding wires to cells on top of wires already routed in the subcells. Routing
over the top of active logic is one of the characteristics of custom VLSI, and is largely responsible
for its density. For this reason conventional channel routers, which route only over unobstructed
rectangular channels, are unacceptable. Contour reads design rules from the same file used by
the design-rule checker. It can generate routing with minimum dimensions and clearances from
obstacles on all wiring layers simultaneously. Contour is used repeatedly at all levels of the
design, from routing polysilicon in the leaf cells to chip assembly. In fact, part of a layout
method is a set of directions to the router on the correct use of metal and/or polysilicon layers to
connect the nets.

Routing a cell is done by breaking each net into a spanning tree of pairwise connections be-
tween disconnected terminals. Terminals are not simple rectangular connection points, but ar-
bitrary collections of wires and devices - in general they are the result of previous routing in
subcells. These connections are then ordered by likely difficulty in order to produce a connection
schedule for the cell. The connections are then attempted in order of increasing difficulty. Each
connection is completed by finding a design-rule-correct path between its terminals. If a path
can be found, the next connection is attempted. In case of blockage, previously made connec-
tions are removed and re-routed later.

9

Recursive Layout Generation

Contour uses a breadth-first routing algorithm based on a single principle; postpone arbitrary
choices. When such choices arise, such as "should the connection start with a wire or a via?", or
"should we turn left or right around this obstacle?", all the alternatives are explicitly represented,
maintained and propagated until there is enough information to discriminate between them.
During early attempts to implement the router, we did not rigorously adhere to this principle,
believing it to be too complicated or too costly to implement. The result was always a router that
would surprise us by the paths it had chosen for some connections ("Why did it do that?"). Only
when we finally eliminated all arbitrary choices in the algorithm did the router choose exactly
the paths a person would.

3.5. Netlist Hierarchy Equals Layout Hierarchy?

Is the hierarchy described by the annotated netlist strictly the same as the hierarchy of the cells
which are laid out? Yes, but with a single exception. The layout method for any cell may choose
to flatten the netlist for its cell selectively. For the purposes of layout only, intermediate cells of
netlist may be exploded, and their instances promoted to be instances of the top-level cell. Two
uses of this flattening are in the layout methods StdCell and ReadMagic. StdCell, the "standard-
cell" layout method for random logic, removes some, but not all layers of its cell’s hierarchy. It
flattens the netlist until it contains only gate-level instances. So for instance, a 10-bit register
would be considered as ten independent bit layouts by StdCell. ReadMagic flattens its cell com-
pletely until it contains only bare devices; all intervening cells in the hierarchy are ignored for
this purpose. This flattened netlist can then be matched against the extracted hand-drawn layout.
Allowing ReadMagic to be used for complex cells is a kind of escape mechanism from the
failure of our automatic placement and routing; when all else fails, draw it by hand. We have
never used it this way to date.

Even though the netlist and layout hierarchies must be similar, we do not believe that this
results in an unnatural logical partitioning of circuits. In general, a piece of logic is defined as a
cell in our system whenever one or more of the following conditions holds:

• logical: the number of wires in the cell’s interface is much smaller than the number
of wires used to connect the instances of its subcells.

• sharing: there will be many instances of this cell in the circuit.

• layout: the cell represents a natural unit of layout.

• simulation: the cell carries a functional model for some level of simulation.

Very often, these conditions occur naturally together. A frequently used piece of logic with a
small interface is likely to be a natural unit of layout. When these conditions are kept in mind at
the start of a design, a netlist fulfilling the requirements of layout and simulation can be built just
as easily as any other. Imposing these conditions after the fact can be painful.

10

Recursive Layout Generation

4. Results

Figure 8 shows the floating-point divider from BIPS-1, a 4,000,000-device BiCMOS

microprocessor. The divider contains 20,000 transistors, and occupies about 5% of the chip area.
It consists of 118 unique cells, 97 of which are synthesized leaf cells, and 21 of which are com-
posite cells such as 64-bit registers or blocks of control logic. The large block on the left and
center is the mantissa data path. It consists of multiplexors and registers laid out by abutment
(the long dark horizontal bands) and three carry-lookahead adders assembled by corner align-
ment (the areas with irregular lower borders are the carry-lookahead trees). The exponent data
path, with one smaller adder, is on the upper right. The sequencer is the irregular block on the
lower right, laid out by StdCell. Assembly of the top-level cell was by corner alignment. The
divider was designed, simulated, laid out, and tuned for performance by two people in two
months, and survived several design-rule changes without further modification. Layout of the
divider takes 10 minutes on a DEC 3000/800 Alpha workstation.

Recursive layout generation has permitted a small team to design large chips. It was used to
construct BIPS-0, a bipolar processor [9], shown in figure 9. The entire design team for this chip
was twelve people, including two mechanical engineers and three people working entirely on
CAD. The layout generation of this complete 700,000-device circuit took ten hours with no
manual intervention. This allowed one complete iteration of the design per day.

11

Recursive Layout Generation

Figure 8: The BIPS-1 64-bit Floating-Point Divider

Figure 9: The BIPS-0 Microprocessor

12

Recursive Layout Generation

References
[1] R.M. Ayres. VLSI: Silicon Compilation and the Art of Automatic Microchip Design. Prentice-Hall, 1983.

[2] R. Barth, L. Monier, B. Serlet. Patchwork: Layout From Schematic Annotations. In 25th Design Automation
Conference, pages 250-255. Sydney, June, 1988.

[3] J. Dion. Fast Printed Circuit Board Routing. WRL Research Report 88/1, Digital Equipment Western Research
Laboratory, 1988.

[4] J. Dion, L.M. Monier. CONTOUR: A Tile-Based Gridless Router. submitted to ACM/IEEE Design Automation Conference
, 1995.

[5] C. Ebeling, O. Zajicek. Validating VLSI Layout by Wirelist Comparison. In IEEE International Conference on
Computer-Aided Design, pages 172-173. 1983.

[6] R.N. Mayo, H. Touati. Boolean Matching for Full-Custom ECL Gates. In Proc. IEEE/ACM International Conference on
Computer-Aided Design, pages 472-477. November, 1993.

[7] D. Hightower. A Solution to Line Routing Problems on the Continuous Plane. Proc. Design Automation Workshop
:1-24, 1969.

[8] N.P. Jouppi. Timing Analysis and Performance Improvement of MOS VLSI Designs. IEEE Transactions on Computer
Aided Design 6(4):650-665, 1987.

[9] N.P. Jouppi, P. Boyle, J. Dion, M.J. Doherty, A. Eustace, R.W. Haddad, R. Mayo, S. Menon, L.M. Monier, D. Stark,
S. Turrini, J.L. Yang, W.R. Hamburgen, J.S. Fitch, R. Kao. A 300-MHz 115-W 32-b Bipolar ECL Microprocessor. In

IEEE Journal of Solid-State Circuits. November, 1993.

[10] R. Kao, R. Alverson, M. Horowitz, D. Stark. Bisim: A Simulator for Custom ECL Circuits. In IEEE International
Conference on Computer-Aided Design, pages 62-65. Santa Clara, California, November, 1988.

[11] J.M. Kleinhans, G. Sigl, F.M. Johannes, K.J. Antreich. GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization. IEEE Transactions on Computer-aided Design 10(3):356-365, March, 1991.

[12] R.N. Mayo, M.H. Arnold, W.S. Scott, D. Stark, G.T. Hamachi. 1990 DECWRL/Livermore Magic Release. WRL
Research Report 90/7, Digital Equipment Western Research Laboratory, 1990. see also:
http://www.research.digital.com/wrl/magic/magic.html.

[13] E.F. Moore. Shortest Path Through a Maze. In Annals of the Computation Laboratory of Harvard University, pages
285-292. Harvard Univ. Press, Cambridge Mass., 1959.

[14] J.K. Ousterhout. Corner Stitching: A Data Structuring Technique for VLSI Layout Tools. IEEE Transactions on
Computer-Aided Design CAD-3(1):87-89, January, 1984.

[15] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G.S. Taylor. The Magic VLSI Layout System. IEEE Design and
Test of Computers 2(1):19-30, February, 1985.

[16] D. Stark. Analysis of Power Supply Networks in VLSI Circuits. WRL Research Report 91/3, Digital Equipment Western
Research Laboratory, 1991.

13

Recursive Layout Generation

14

Recursive Layout Generation

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘The USENET Cookbook: an Experiment in

Michael J. K. Nielsen. Electronic Publication.’’

WRL Research Report 86/1, September 1986. Brian K. Reid.

WRL Research Report 87/7, December 1987.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘MultiTitan: Four Architecture Papers.’’

WRL Research Report 86/3, October 1986. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.
‘‘Optimal Finned Heat Sinks.’’ WRL Research Report 87/8, April 1988.
William R. Hamburgen.

WRL Research Report 86/4, October 1986. ‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/1, March 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 87/1, August 1987. Roots.’’

Joel F. Bartlett.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/2, February 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘The Experimental Literature of The Internet: An

J. Accetta. Annotated Bibliography.’’

WRL Research Report 87/2, November 1987. Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.
‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul. ‘‘Measured Capacity of an Ethernet: Myths and

WRL Research Report 87/3, December 1987. Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher
‘‘Cache Coherence in Distributed Systems.’’ A. Kent.
Christopher A. Kent. WRL Research Report 88/4, September 1988.
WRL Research Report 87/4, December 1987.

‘‘Visa Protocols for Controlling Inter-Organizational
‘‘Register Windows vs. Register Allocation.’’ Datagram Flow: Extended Description.’’
David W. Wall. Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
WRL Research Report 87/5, December 1987. Kamaljit Anand.

WRL Research Report 88/5, December 1988.
‘‘Editing Graphical Objects Using Procedural

Representations.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
Paul J. Asente. Joel F. Bartlett.
WRL Research Report 87/6, November 1987. WRL Research Report 89/1, January 1989.

15

Recursive Layout Generation

‘‘Optimal Group Distribution in Carry-Skip Ad- ‘‘The Distribution of Instruction-Level and Machine

ders.’’ Parallelism and Its Effect on Performance.’’

Silvio Turrini. Norman P. Jouppi.

WRL Research Report 89/2, February 1989. WRL Research Report 89/13, July 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’ ‘‘Long Address Traces from RISC Machines:

William R. Hamburgen. Generation and Analysis.’’

WRL Research Report 89/3, February 1989. Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.
‘‘Simple and Flexible Datagram Access Controls for WRL Research Report 89/14, September 1989.

Unix-based Gateways.’’

Jeffrey C. Mogul. ‘‘Link-Time Code Modification.’’

WRL Research Report 89/4, March 1989. David W. Wall.

WRL Research Report 89/17, September 1989.
‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ ‘‘Noise Issues in the ECL Circuit Family.’’

V. Srinivasan and Jeffrey C. Mogul. Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 89/5, May 1989. WRL Research Report 90/1, January 1990.

‘‘Available Instruction-Level Parallelism for Super- ‘‘Efficient Generation of Test Patterns Using

scalar and Superpipelined Machines.’’ Boolean Satisfiablilty.’’

Norman P. Jouppi and David W. Wall. Tracy Larrabee.

WRL Research Report 89/7, July 1989. WRL Research Report 90/2, February 1990.

‘‘A Unified Vector/Scalar Floating-Point Architec- ‘‘Two Papers on Test Pattern Generation.’’

ture.’’ Tracy Larrabee.

Norman P. Jouppi, Jonathan Bertoni, and David WRL Research Report 90/3, March 1990.

W. Wall.
‘‘Virtual Memory vs. The File System.’’WRL Research Report 89/8, July 1989.
Michael N. Nelson.

‘‘Architectural and Organizational Tradeoffs in the WRL Research Report 90/4, March 1990.

Design of the MultiTitan CPU.’’
‘‘Efficient Use of Workstations for Passive Monitor-Norman P. Jouppi.

ing of Local Area Networks.’’WRL Research Report 89/9, July 1989.
Jeffrey C. Mogul.

‘‘Integration and Packaging Plateaus of Processor WRL Research Report 90/5, July 1990.

Performance.’’
‘‘A One-Dimensional Thermal Model for the VAXNorman P. Jouppi.

9000 Multi Chip Units.’’WRL Research Report 89/10, July 1989.
John S. Fitch.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces- WRL Research Report 90/6, July 1990.

sor with High Ratio of Sustained to Peak Perfor-
‘‘1990 DECWRL/Livermore Magic Release.’’mance.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,Norman P. Jouppi and Jeffrey Y. F. Tang.

Don Stark, Gordon T. Hamachi.WRL Research Report 89/11, July 1989.
WRL Research Report 90/7, September 1990.

16

Recursive Layout Generation

‘‘Pool Boiling Enhancement Techniques for Water at ‘‘Interleaved Fin Thermal Connectors for Multichip

Low Pressure.’’ Modules.’’

Wade R. McGillis, John S. Fitch, William William R. Hamburgen.

R. Hamburgen, Van P. Carey. WRL Research Report 91/9, August 1991.

WRL Research Report 90/9, December 1990.
‘‘Experience with a Software-defined Machine Ar-

‘‘Writing Fast X Servers for Dumb Color Frame Buf- chitecture.’’

fers.’’ David W. Wall.

Joel McCormack. WRL Research Report 91/10, August 1991.

WRL Research Report 91/1, February 1991.
‘‘Network Locality at the Scale of Processes.’’

‘‘A Simulation Based Study of TLB Performance.’’ Jeffrey C. Mogul.

J. Bradley Chen, Anita Borg, Norman P. Jouppi. WRL Research Report 91/11, November 1991.

WRL Research Report 91/2, November 1991.
‘‘Cache Write Policies and Performance.’’

‘‘Analysis of Power Supply Networks in VLSI Cir- Norman P. Jouppi.

cuits.’’ WRL Research Report 91/12, December 1991.

Don Stark.
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’WRL Research Report 91/3, April 1991.
William R. Hamburgen, John S. Fitch.

‘‘TurboChannel T1 Adapter.’’ WRL Research Report 92/1, March 1992.

David Boggs.
‘‘Observing TCP Dynamics in Real Networks.’’WRL Research Report 91/4, April 1991.
Jeffrey C. Mogul.

‘‘Procedure Merging with Instruction Caches.’’ WRL Research Report 92/2, April 1992.

Scott McFarling.
‘‘Systems for Late Code Modification.’’WRL Research Report 91/5, March 1991.
David W. Wall.

‘‘Don’t Fidget with Widgets, Draw!.’’ WRL Research Report 92/3, May 1992.

Joel Bartlett.
‘‘Piecewise Linear Models for Switch-Level Simula-WRL Research Report 91/6, May 1991.

tion.’’

‘‘Pool Boiling on Small Heat Dissipating Elements in Russell Kao.

Water at Subatmospheric Pressure.’’ WRL Research Report 92/5, September 1992.

Wade R. McGillis, John S. Fitch, William
‘‘A Practical System for Intermodule Code Optimiza-R. Hamburgen, Van P. Carey.

tion at Link-Time.’’WRL Research Report 91/7, June 1991.
Amitabh Srivastava and David W. Wall.

‘‘Incremental, Generational Mostly-Copying Gar- WRL Research Report 92/6, December 1992.
bage Collection in Uncooperative Environ-

‘‘A Smart Frame Buffer.’’ments.’’
Joel McCormack & Bob McNamara.G. May Yip.
WRL Research Report 93/1, January 1993.WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

17

Recursive Layout Generation

‘‘Tradeoffs in Two-Level On-Chip Caching.’’ ‘‘Complexity/Performance Tradeoffs with Non-

Norman P. Jouppi & Steven J.E. Wilton. Blocking Loads.’’

WRL Research Report 93/3, October 1993. Keith I. Farkas, Norman P. Jouppi.

WRL Research Report 94/3, March 1994.
‘‘Unreachable Procedures in Object-oriented

Programing.’’ ‘‘A Better Update Policy.’’

Amitabh Srivastava. Jeffrey C. Mogul.

WRL Research Report 93/4, August 1993. WRL Research Report 94/4, April 1994.

‘‘An Enhanced Access and Cycle Time Model for ‘‘Boolean Matching for Full-Custom ECL Gates.’’

On-Chip Caches.’’ Robert N. Mayo, Herve Touati.

Steven J.E. Wilton and Norman P. Jouppi. WRL Research Report 94/5, April 1994.

WRL Research Report 93/5, July 1994.
‘‘Software Methods for System Address Tracing:

‘‘Limits of Instruction-Level Parallelism.’’ Implementation and Validation.’’

David W. Wall. J. Bradley Chen, David W. Wall, and Anita Borg.

WRL Research Report 93/6, November 1993. WRL Research Report 94/6, September 1994.

‘‘Fluoroelastomer Pressure Pad Design for ‘‘Performance Implications of Multiple Pointer

Microelectronic Applications.’’ Sizes.’’

Alberto Makino, William R. Hamburgen, John Jeffrey C. Mogul, Joel F. Bartlett, Robert N. Mayo,

S. Fitch. and Amitabh Srivastava.

WRL Research Report 93/7, November 1993. WRL Research Report 94/7, December 1994.

‘‘A 300MHz 115W 32b Bipolar ECL Microproces- ‘‘How Useful Are Non-blocking Loads, Stream Buf-

sor.’’ fers, and Speculative Execution in Multiple Issue

Norman P. Jouppi, Patrick Boyle, Jeremy Dion, Mary Processors?.’’

Jo Doherty, Alan Eustace, Ramsey Haddad, Keith I. Farkas, Norman P. Jouppi, and Paul Chow.

Robert Mayo, Suresh Menon, Louis Monier, Don WRL Research Report 94/8, December 1994.

Stark, Silvio Turrini, Leon Yang, John Fitch, Wil-
‘‘Recursive Layout Generation.’’liam Hamburgen, Russell Kao, and Richard Swan.
Louis M. Monier, Jeremy Dion.WRL Research Report 93/8, December 1993.
WRL Research Report 95/2, March 1995.

‘‘Link-Time Optimization of Address Calculation on
‘‘Contour: A Tile-based Gridless Router.’’a 64-bit Architecture.’’
Jeremy Dion, Louis M. Monier.Amitabh Srivastava, David W. Wall.
WRL Research Report 95/3, March 1995.WRL Research Report 94/1, February 1994.

‘‘The Case for Persistent-Connection HTTP.’’‘‘ATOM: A System for Building Customized
Jeffrey C. Mogul.Program Analysis Tools.’’
WRL Research Report 95/4, May 1995.Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.
‘‘Network Behavior of a Busy Web Server and its

Clients.’’

Jeffrey C. Mogul.
WRL Research Report 95/5, June 1995.

18

Recursive Layout Generation

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Brian K. Reid and Christopher A. Kent. sures’’

WRL Technical Note TN-4, September 1988. Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.
‘‘TCP/IP PrintServer: Server Architecture and Im- WRL Technical Note TN-23, January 1992.

plementation.’’

Christopher A. Kent. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-7, November 1988. Techniques for Die Attach’’

John S. Fitch.
‘‘Smart Code, Stupid Memory: A Fast X Server for a WRL Technical Note TN-24, January 1992.

Dumb Color Frame Buffer.’’

Joel McCormack. ‘‘TurboChannel Versatec Adapter’’

WRL Technical Note TN-9, September 1989. David Boggs.

WRL Technical Note TN-26, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Recovery Protocol For Spritely NFS’’

John Ousterhout. Jeffrey C. Mogul.

WRL Technical Note TN-11, October 1989. WRL Technical Note TN-27, April 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘Electrical Evaluation Of The BIPS-0 Package’’

Generations and C++.’’ Patrick D. Boyle.

Joel F. Bartlett. WRL Technical Note TN-29, July 1992.

WRL Technical Note TN-12, October 1989.
‘‘Transparent Controls for Interactive Graphics’’

‘‘The Effect of Context Switches on Cache Perfor- Joel F. Bartlett.

mance.’’ WRL Technical Note TN-30, July 1992.

Jeffrey C. Mogul and Anita Borg.
‘‘Design Tools for BIPS-0’’WRL Technical Note TN-16, December 1990.
Jeremy Dion & Louis Monier.

‘‘MTOOL: A Method For Detecting Memory Bot- WRL Technical Note TN-32, December 1992.
tlenecks.’’

‘‘Link-Time Optimization of Address Calculation onAaron Goldberg and John Hennessy.
a 64-Bit Architecture’’WRL Technical Note TN-17, December 1990.

Amitabh Srivastava and David W. Wall.

‘‘Predicting Program Behavior Using Real or Es- WRL Technical Note TN-35, June 1993.

timated Profiles.’’
‘‘Combining Branch Predictors’’David W. Wall.
Scott McFarling.WRL Technical Note TN-18, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘Cache Replacement with Dynamic Exclusion’’
‘‘Boolean Matching for Full-Custom ECL Gates’’Scott McFarling.
Robert N. Mayo and Herve Touati.WRL Technical Note TN-22, November 1991.
WRL Technical Note TN-37, June 1993.

19

Recursive Layout Generation

‘‘Ramonamap - An Example of Graphical Group-

ware’’

Joel F. Bartlett.

WRL Technical Note TN-43, December 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS’’

Norman P. Jouppi, Suresh Menon, and Stefanos

Sidiropoulos.

WRL Technical Note TN-45, March 1994.

‘‘Experience with a Wireless World Wide Web

Client’’

Joel F. Bartlett.

WRL Technical Note TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs’’

Kathy J. Richardson.

WRL Technical Note TN-47, April 1995.

‘‘Attribute caches’’

Kathy J. Richardson, Michael J. Flynn.

WRL Technical Note TN-48, April 1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers’’

Jeffrey C. Mogul.

WRL Technical Note TN-49, May 1995.

20

