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Abstract

Many users need 64-bit architectures: 32-bit systems cannot support the largest
applications, and 64-bit systems perform better for some applications.  However,
performance on some other applications can suffer from the use of large pointers;
large pointers can also constrain feasible problem size.  Such applications are best
served by a 64-bit machine that supports the use of both 32-bit and 64-bit pointer
variables.

This paper analyzes several programs and programming techniques to under-
stand the performance implications of different pointer sizes.  Many (but not all)
programs show small but definite performance consequences, primarily due to
cache and paging effects.

This Research Report is an expansion of a paper to appear in the USENIX 1995 Technical
Conference.
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1. Introduction

There is only one mistake that can be made in computer design that is difficult to recover from--
not having enough address bits for memory addressing and memory management [4] (p. 2).

Smaller is faster [12] (p. 18).

Whenever someone has declared that a computer has more than enough addressing bits, time
(and not much of it) has proven otherwise.  Just when systems with 32-bit addresses have be-
come commonplace, many users have found this inadequate; their problems are too large to con-
veniently implement using 32-bit pointers.  While one can sometimes extend a 32-bit architec-
ture with tricks such as segmentation, ultimately the only efficient and clean solution is to use a
large, flat address space.  Experience suggests that only power-of-two pointer sizes make sense,
and indeed most major vendors are either shipping or planning 64-bit systems.

An increase in address size is a discontinuity:  the fraction of ‘‘interesting’’ bits in a pointer
shrinks a lot.  Programs that were pushing the limits of the old address space consume almost
none of the new address space.

While some programs will soon grow to need the new address space, many (if not most) will
not. A large fraction of the storage used for pointers often goes to waste.  A program that needs
33 bits of address space will not run at all on a 32-bit system, but a program that runs happily on
a 32-bit system will ‘‘waste’’ more than half of the bits in every 64-bit pointer.

Does this hurt performance? In this paper, we examine a number of ways in which pointer
size affects performance for programs that do not need addresses larger than 32 bits.  We will
show that the effects depend on many variables, including problem size, intensity of pointer use,
memory system design, and luck.  In many (perhaps most) cases, performance is independent of
pointer size, but sometimes, using too-large pointers can result in extra cache misses, TLB faults,
and paging.

64-bit systems not only support larger addresses; they also support larger integer data types
(most 32-bit systems already support 64-bit floating-point types).  Large integers are clearly use-
ful; for example, a 32-bit unsigned counter that increments every microsecond will overflow in
about one hour.  We will not, in this paper, examine the performance consequences of large
integers, because programmers have understood this issue for many years and because all 32-bit
and 64-bit systems allow programmers to control the size of integer variables.

Many programs really do need addresses larger than 32 bits, so 64-bit systems are essential
and inevitable.  We argue, on the evidence of the experiments reported on this paper, that the
best system design gives programmers a choice between 32-bit and 64-bit pointers, on a
program-by-program or even variable-by-variable basis.

2. Related work

Microsoft’s Windows system supports several different kinds of pointer, because the under-
lying Intel 80286 memory architecture does not directly support a 32-bit flat address space [16].
(Windows also runs on the Intel 80386, which has a flat 32-bit addressing model, but applica-
tions meant to be portable must be compiled to use the more restrictive 80286 model.)  80286
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addresses use a 16-bit segment number and a 16-bit offset, and Windows cannot guarantee that
data segments are contiguous. Thus, when a program uses a 32-bit pointer, the compiler
generates code to extract the segment number and offset, loads the segment register, and then
uses the offset to reference the memory object.  This makes 32-bit pointers far more expensive
than 16-bit pointers, but for reasons unrelated to the issues discussed in this paper.  (Programs
compiled for the Win32s interface use the 80386 addressing model, and so run more efficiently
but cannot be used on 80286 systems.)

Our comparison of applications using 32-bit and 64-bit pointers presupposes that one has the
option of using small pointers on a 64-bit system.  Some applications do use larger data sets than
can be addressed using 32-bit pointers.  Moreover, some research projects into operating system
design are using 64-bit addresses to accomplish other goals; this means that even the smallest
application must use 64-bit addresses.  Such systems rely on large addresses; 32-bit pointers
simply would not suffice.

Several research groups are examining the use of 64-bit architectures to build single-address-
space protected operating systems [6, 7, 28]. In such systems, all protected objects (processes, in
particular) share a single address space. The system prevents unauthorized access not by
modifying the virtual memory map on each context switch, but by hiding each object at a ran-
domly chosen location in a large, sparsely populated address space.  An object’s address acts as a
capability, since the full address space is too large for a malicious or buggy program to search
for an object whose location has not been obtained by proper means.

Carter et al. have proposed building a distributed shared memory (DSM) system using a large
address space to give a process direct access to memory objects spread across many nodes [5].
Although most current systems cannot support enough real memory to exhaust a 32-bit address
space, the aggregate memory of a large number of such systems could easily exceed the range of
a 32-bit address, especially if segmented for convenience in allocation and management.

3. Technical context

In this section, we discuss computer system technology as it relates to pointer sizes.  We use
Digital’s Alpha AXP architecture [24, 25], and implementations thereof, as a specific example.
In addition to architecture, we look at issues in hardware implementation and program compila-
tion. (Operating system features affect the cost of translation buffer and page faults, but those
issues are beyond the scope of this paper.)

3.1. Architecture

The Alpha AXP architecture is a load-store design with flat (unsegmented) 64-bit byte ad-
dresses. The architecture does single-instruction loads and stores of properly aligned 64-bit and
32-bit values; other values are accessed with multi-instruction sequences.

All instructions are 32 bits wide; load/store instructions specify memory addresses using a
general-purpose (64-bit) register and a 16-bit signed displacement.
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The architecture does not specify a single memory-system page size, but rather allows an
implementation’s basic page size to be 8 KB, 16 KB, 32 KB, or 64 KB. Page table entries may
use ‘‘granularity hints’’ to inform the Translation Buffer (TB, sometimes known as a Translation
Lookaside Buffer or TLB) that a block of pages can be mapped with a single TB entry; however,
in the experiments described in this paper, this feature is not used.

3.2. Hardware implementation

We did the experiments reported on in this paper on several workstations of relatively similar
design. Common elements include:

• DECchip 21064-AA CPU [8]

• 8 KB on-chip separate instruction and data caches
• Physically addressed, direct-mapped, write-through

• 32-byte blocks

• 4-entry 32-byte/entry on-chip write buffer

• 8 KB page size

• 32-entry on-chip fully-associative data TLB

• 8-entry on-chip fully-associative instruction TLB

• 2 MB board-level cache
• Direct-mapped, write-back

• 32-byte blocks

The specific systems differ in CPU clock rate, main memory size, and disk access time.  For
the tests reported in this paper, we used three different systems:

• System A, a DECstation 3000/600 (175 MHz clock, SPECint92 = 114.1), with
128 MB of main memory.

• System I, a DECstation 3000/800 (200 MHz clock, SPECint92 = 130.2), with 1024
MB of main memory.

• System N, a DECstation 3000/500 (150 MHz clock, SPECint92 = 84.4), with 64
MB of main memory.  (This system has a 512 KB board-level cache.)

3.3. Compilation system

All the programs described in this paper are coded in C, run on the DEC OSF/1 operating
system, and were compiled using the standard DEC OSF/1 V3.0 compilers.

The compiler supports several integer data types: ‘‘short’’ (16 bits), ‘‘int’’ (32 bits), and
‘‘long’’ (64 bits).  By default, pointers are 64 bits wide.  The compiler supports a #pragma
statement that allows the programmer to select 32-bit pointers.  The programmer can choose a
pointer size for an entire module, or for specific declarations within that module.  The program-
mer also specifies at compile time whether the pragma should be interpreted or ignored, so the
modified program source can optionally be compiled to use only 64-bit pointers.
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For example, this program:
char *lp;
#pragma pointer_size (short)
char *sp;

main()
{

printf("sizeof(sp) = %d, sizeof(lp) = %d\n",
sizeof(sp), sizeof(lp));

}

produces
sizeof(sp) = 4, sizeof(lp) = 8

32Normally, the linker arranges programs to start above address 2 ; this means that any attempt
to dereference a 32-bit value causes an addressing trap, which aids in the detection of portability

32problems. A program that uses 32-bit pointers clearly cannot be located above 2 , so at compile
time the programmer must tell the linker to use its ‘‘truncated address space option,’’ which
forces all program addresses to lie below that limit.  Of course, this cannot be used with

32programs requiring more than 2 bytes of virtual address space.

Note that the compiler used in these tests generates essentially the same type and number of
instructions for both 32-bit and 64-bit pointers.  The only difference is that loads and stores of
pointer variables read or write 32 bits of memory instead of 64 bits.  One could do somewhat
better than this for some uses of 32-bit pointers, so our measurements may not reflect the entire
potential effect of their use.

Because the programs we tested execute essentially the same instruction stream regardless of
pointer size, all of the performance effects shown in this paper reflect aspects of the memory
system (caches, RAM, TLB, and disk).

4. Results for a contrived program

What aspects of system design interact with pointer size to affect performance?  We wrote a
simple, contrived program (figure 1) to illustrate several of these aspects.  We designed the
program to emphasize the worst-case effects of using large pointers; it most certainly does not
represent real programs, and almost any other program will show smaller effects.

The program simply constructs a circular queue and then follows the pointer chain around the
queue. It takes three arguments: N, the number of queue elements; M, the number of iterations
(pointer dereferences); and P, the number of references between random ‘‘seeks’’ to a different
part of the queue.  If P = M, then no random seeks are done (after the first one); if P = 1, then
every reference is to a randomly-chosen element.

The program can be compiled to use either 32-bit pointers or 64-bit pointers.  We ran each
version with a pseudo-logarithmic series of values for N, large values of M (at least 10,000,000),
and two values of P (P = M, effectively sequential access, and P = 10, almost random access).
We measured the user-mode and kernel-mode CPU time, and the elapsed time, for each run.
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1 #include <stdio.h>
2
3 #pragma pointer_size (short)
4
5 struct QueueElement {
6 struct QueueElement *forward;
7 struct QueueElement *backward;
8 };
9
10 main(argc, argv)
11 int argc;
12 char **argv;
13 {
14 long N = atoi(argv[1]);
15 long M = atoi(argv[2]);
16 long P = 1000;
17 int rval;
18 int i, j;
19 struct QueueElement *qp;
20 struct QueueElement *qpstore;
21
22 if (argc > 3)
23 P = atoi(argv[3]);
24 qpstore =
25 (struct QueueElement *)malloc(sizeof(*qp) * N);
26 if (qpstore == NULL) {
27 perror("malloc");
28 exit(1);
29 }
30
31 qp = qpstore;
32
33 qp->forward = qp;
34 qp->backward = qp;
35
36 for (i = 0; i < N; i++) { /* make queue elements */
37 /* Insert next element after head of queue */
38 qp[i].forward = qp[0].forward;
39 qp[i].backward = &(qp[0]);
40 qp[i].backward->forward = &(qp[i]);
41 qp[i].forward->backward = &(qp[i]);
42 }
43
44 for (i = 0; i < M/P; i++) {
45 rval = random() % N;
46 qp = &(qpstore[rval]);
47 for (j = 0; j < P; j++) {
48 qp = qp->forward;  /* follow pointer */
49 }
50 }
51 }

Figure 1: Contrived test program
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We plotted the ratios of the times taken by the 32-bit version to the times taken by the 64-bit
version; this is more useful than a plot of the actual times, which vary widely.  Figure 2 shows
the ratios of user-mode CPU times; figure 3 shows the ratios of kernel CPU times; figure 4
shows the elapsed-time ratios.
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Figure 2: Ratios of user-mode CPU times for contrived program

From figure 2 one can see that for small working sets, the pointer size has little or no effect on
performance. Once the entire data set no longer fits in the 8 KB on-chip cache, however, the
cost of a memory reference increases significantly. Because 2000 32-bit pointers (1000 queue
elements) fit in 8 KB, but only 1000 64-bit pointers (500 queue elements) fit, the user-time ratio
drops precipitously at N = 500. It recovers somewhat at N = 2000 (where even with 32-bit
pointers the on-chip cache is too small), but because a cache block holds four queue elements
with 32-bit pointers, and only two queue elements with 64-bit pointers, in the sequential case the
64-bit version cache-misses about twice as often.

For the random-access case (P = 10), the cost of frequently generating random numbers par-
tially evens out the ratio of user-mode CPU times.  To show this effect, we include the curve in
figure 2 marked ‘‘Sequential, random overhead’’. This is for a version of the program that cal-
culates a new random value every 10th iteration, as in the P = 10 case, but then ignores this value
and runs through the queue sequentially.

The next obvious dip in the user-mode CPU time ratio comes when the working set no longer
fits into the 2 MB off-chip cache.  This cache holds about 256K queue elements with 32-bit
pointers, but only 128K elements with 64-bit pointers.
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Figure 3: Ratios of kernel-mode CPU times for contrived program

Figure 3 shows the ratios of kernel-mode CPU times, which are rather ‘‘noisy’’ because they
include extraneous system activity.  These ratios generally track the user-mode ratios until the
64-bit version starts paging, because both programs incur relatively constant kernel-mode over-

1heads of about 1%-2% . Once paging begins, the (kernel-mode) CPU cost of handling page
faults becomes comparable to the user-mode CPU time.  When the problem size is large enough
that both programs are paging, the kernel-mode ratio returns to about 50%, since the 32-bit ver-
sion page-faults half as often.

The elapsed time ratios, plotted in figure 4 on a log-log scale, show that cache-miss effects
dominate until the problem size exceeds the memory size, at which point paging latency be-
comes the bottleneck.  The ratio drops when the 64-bit version starts to page, then recovers (to
approximately 0.55) once the 32-bit version starts paging.

4.1. TLB effects

Each TLB miss causes invocation of a handler that runs with interrupts disabled, and thus does
not directly appear in the CPU time statistics sampled by the interrupt clock. We would expect
to see TLB miss costs reflected as an increase in the apparent user-mode CPU time.

1We believe this overhead is due to device interrupts in progress when the interrupt clock samples the CPU state.
This does not necessarily mean that the system spends 1%-2% of its time fielding interrupts [15].
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Figure 4: Ratios of elapsed times for contrived program

This should appear as the working set exceeds the span of the data TLB (32 entries mapping a
total of 256 KB), increasing the TLB fault rate.  The ratio curves should show a change at 16K
queue elements, but there is no such dip in the sequential-case curve in either of figures 2 or 3.
The random-case curve in figure 2 does show a small dip. Apparently, the cost of extra TLB
misses is insignificant even for this rather stressful program.

To help verify this conclusion, we simulated the TLB behavior of this test program, using the
ATOM program analysis system [9]. We simulated the data TLB of the 21064-AA CPU as ex-
actly as possible, differing only in the randomization algorithm used for doing replacement.

Figure 5 shows the data TLB miss rates for four sets of trials, using both random (P = 10) and
sequential access, and both 32-bit and 64-bit pointers.  The plotted curves begin at the point
where the miss rate became non-zero; for small enough problem sizes, these programs almost
never miss in the TLB.

The figure shows that, for the sequential case, neither version generates many TLB misses.
As we predicted, the miss rates do increase (above near-zero) as the working exceeds the TLB
span, but then stays nearly constant for larger problems (up to a point, as we discuss below).  The
miss rate for 32-bit pointers is almost exactly half that for 64-bit pointers, as one would expect.

In the random-access case, both pointer sizes generate much higher TLB miss rates, because
the program selects a new random position every 10 interations.  As the problem size increases,
this increase the likelihood that a randomly chosen position will fall on a page not currently
mapped by the TLB.  The TLB miss rate becomes nearly independent of pointer size as this
probability becomes nearly 1.
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Figure 5: Data TLB miss rates for entire contrived program

In both the sequential and random cases, therefore, TLB misses have little effect on the ratio
of overall performance. For the sequential case, the 32-bit version has half as many misses, but
neither sequential version misses often enough to matter. For the random case, the TLB miss
rates become quite high, but both versions miss at about the same rate.

In figure 5, the miss rate curves dip suddenly for problem sizes of 1 million elements or more,
and then decline gradually from then on.  The sudden dip is because we ran 100,000,000 itera-
tions for the smaller problems, but only 10,000,000 iterations for the larger problems.  This
meant that on the larger problems, the programs spent relatively more time in the initialization
loop, and less time in the pointer-following loop.  As the problem size increases, the number of
iterations done in these two loops becomes nearly equal.  Since the initialization loop does more
references (loads and stores) per iteration, it generates a lower data TLB miss rate than the
pointer-following loop, and so reduces the program’s overall miss rate.

ATOM easily allowed us to simulate the TLB references for only the pointer-following loop,
and not the rest of the program.  This also excludes any TLB references done by the random()
function, called in the inner loop.  Figure 6 shows the results for this simulation.  In this figure,
the curves for the sequential case have become horizontal lines, and the curves for the random
case have converged to a horizontal asymptote.  The miss rates here are exactly what one would
predict by analyzing the inner loop in the program source code.
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Figure 6: Data TLB miss rates for inner loop of contrived program

4.2. Dependence on data layout

The results we measured for this program depend entirely on how its data structures are laid
out. In fact, our first attempt at a test program, which allocated a separate chunk of memory for
each queue element (that is, made N calls to malloc() instead of one call), showed essentially no
difference between the 32-bit and 64-bit versions.  On this system, malloc(x) always consumes at
least 32 bytes of memory for any x <= 24, so both the 32-bit and 64-bit versions of the first-
attempt program consumed the same amount of space, and both versions put exactly one queue
element in each cache block.

4.3. Dependence on code scheduling

The contrived programs described above do nothing but follow pointers, and occasionally
generate random numbers.  Even the simplest real program usually does some computation on
the objects it finds while following pointers.  We modified the program in figure 1 by adding a
float data field to the QueueElement structure; this increased the size of the structure by
50%, for both 32-bit and 64-bit pointers.  We modified the inner loop (lines 47-49 in figure 1) in
two slightly different ways.  Version A is:

for (j = 0; j < P; j++) {
qp->data = (i + j + 3.3)/(j + 1.0);
qp = qp->forward;

}

Version B is:
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for (j = 0; j < P; j++) {
struct QueueElement *qpn = qp->forward;
qp->data = (i + j + 3.3)/(j + 1.0);
qp = qpn;

}

We then ran a set of trials of each program (with P = 10), and plotted the total CPU time (user
and kernel combined) in figure 7.
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Figure 7: Ratios of total CPU times for compute-intensive program

The performance of either version of the compute-intensive shows much less dependence on
pointer size than does the original, pointer-intensive program (note that the vertical scale in
figure 7 does not start at zero).  This should not be a surprise, since the compute-bound program
spends a smaller fraction of its time doing pointer operations.

This only explains part of the difference, however, since version B of the compute-bound
program shows a generally closer ratio than does version A (and version B is slightly faster, in
absolute terms).  Version B manages to bury some of the latency of loading qp->forward,
because it can do the arithmetic computation before it needs to use the loaded value.  The CPU
thus avoids some of the pipeline stall that would otherwise occur.  Even for version A the com-
piler manages to bury much of the load latency; the use of the auxiliary variable qpn simply
increases this effect slightly.

So, a real program may not see some or all of the additional load latency imposed by using
larger pointers.  This depends on the application, the quality of the compiler, and the architecture
and implementation of the CPU.  The trend in compiler and CPU technology is toward greater
tolerance of load latency [10], so one should expect the pointer-size effects to diminish over
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time. (Store latencies usually do not affect program performance, because modern CPUs and
caches can perform stores asynchronously, using mechanisms such as write-buffers and write-
back caches.)

4.4. Summary: contrived programs

To summarize what we learned from our contrived programs, with larger pointers:

• Cache misses may increase, as the same number of data items can require more
cache lines.

• TLB faults may increase, but probably not enough to worry about.

• Page faults may increase, as the working set increases.
Nevertheless, it is actually rather hard to contrive a program that displays any significant perfor-
mance dependence on pointer size.  Accidents of memory layout, and compiler or CPU tech-
niques to hide load latencies, can reduce or eliminate the cache-related performance effects.  The
remaining effect of larger pointers, the earlier onset of paging, afflicts only rather large
programs, but may be harder to ameliorate.

5. Results for real programs

Because the results for our contrived program may not represent what happens in real
programs, in this section we present measurements for a variety of more-or-less real programs.
All tests were run on System A, except where noted.

5.1. Selected SPEC integer benchmarks

The programs in the SPECint92 benchmark suite were intended to be reasonably realistic ex-
amples of programs that actual users run.  For most of the C-language programs in this suite, we
compiled and measured versions using both 32-bit pointers and 64-bit pointers.  We did not
measure gcc, because this program cannot easily be ported to use true 64-bit pointers. Also, we
made no attempt to recreate the compiler flags and measurement conditions used for the official
SPEC reports; one should not take our measurements as actual SPEC benchmark values.

The SPECint92 C-language programs are [21]:

• compress: A file compression program using Lempel-Ziv coding.  The same binary
is also used to uncompress files.

• eqntott: Translates a boolean equation into a truth table.

• espresso: Generates and optimizes Programmable Logic Arrays.

• li: Lisp interpreter running a recursive backtracking algorithm to solve the ‘‘nine
queens’’ problem.

• sc: A spread sheet program, calculating several different problems.
Table 1 reports our results, expressed as the ratio of times for the 32-bit version to times for the
64-bit version.  These timings include a little overhead for execution of measurement scripts, so
the actual ratios might be slightly larger than the reported ratios (the overhead is less than 1% of
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the user-mode CPU time, and somewhat larger for kernel-mode CPU time and elapsed time).
We report the mean times for at least 10 trials of each benchmark; in some cases, we had to run
many more trials, to get run times long enough for accurate measurement.

Application Number User-mode CPU Kernel-mode CPU Elapsed time
of trials time ratio time ratio ratio

compress 150 1.008 1.01 1.01

uncompress 150 1.005 1.00 1.01

eqntott 10 1.001 0.98 1.00

espresso 10 0.95 0.98 0.96

li 10 0.96 0.96 0.96

sc 10 0.98 0.98 0.98

Ratios are mean of 32-bit pointer time/64-bit pointer time

Table 1: Performance ratios for selected SPECInt92 programs

We include in figure 2 a few additional measurements of compress and uncompress (version
4.0) operating on a larger file than the 1 MB input used in the SPECint92 benchmark.  Note that
the use of 32-bit pointers slightly hurts performance on eqntott, uncompress and the SPEC-
related trials of compress, but improves the performance of compress applied to a larger file. We
ascribe this to cache access patterns, but have not yet confirmed that.

Application Input bytes Output bytes Number User-mode CPU Elapsed time
of trials time ratio ratio

compress 3397159 1488027 10 0.993 0.98

uncompress 1488027 3397159 10 1.008 1.05

Ratios are mean of 32-bit pointer time/64-bit pointer time
All output directed to /dev/null

Table 2: Performance ratios for compression of larger files

5.2. Late code modification

Compilers typically perform optimizations when compiling individual modules of a large
program. One can do certain additional optimizations only on the entire program as a whole. A
technique called ‘‘late code modification’’ performs these further optimizations at program link
time.

OM [26, 27] is an optimizing linker that does late code modification.  OM translates the object
code of the entire program into symbolic form, recovering the original structure of loops, con-
ditionals, case-statements, and procedures.  It then analyzes this symbolic form and transforms it
by instrumenting or optimizing it, and generates executable object code from the result.  OM
makes heavy use of pointers, because its internal representation of a program captures the many
relationships between program objects such as procedures, variables, basic blocks, etc.

We ran OM on a number of input programs:
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• scixl, a Scheme interpreter with X-library stubs (see section 5.4).

• fea, a finite element analysis tool.

• vcr, a VLSI circuit router.
The fea and vcr programs are pseudonyms for real programs with substantial market share; for
contractual reasons, we cannot give their actual names.

Program Test Number User-mode CPU Kernel-mode CPU Elapsed time
system of trials time ratio time ratio ratio

fea System I 10 0.94 0.90 0.93

System A 3 0.92 0.84 0.84

scixl System I 10 0.95 1.00 0.91

System A 3 0.96 0.85 0.87

vcr System I 10 0.93 1.00 0.89

System A 3 0.91 0.45 0.38

Ratios are mean of 32-bit pointer time/64-bit pointer time

Table 3: Performance ratios for OM-optimization of selected programs

Table 3 shows our measurements.  We ran trials both on System I, which has a lot of memory,
and System A, on which OM’s processing of fea and vcr exceed the available memory.  This
causes System A to page.  (It also increases the elapsed times from minutes to hours, and so we
could not run many trials on System A.) The kernel-CPU and elapsed time ratios in this table
may be somewhat inaccurate, since we could not easily eliminate other activity during these tri-
als.

Program Total object Space required Space required Space ratio Page-in ratio
file size using 32b pointers using 64b pointers

fea 48080 KB 242360 KB 289264 KB 0.84 0.83

scixl 7792 KB 33448 KB 40488 KB 0.83 None

vcr 27184 KB 128328 KB 155800 KB 0.83 0.34

Table 4: OM’s space requirements for selected target programs

Table 4 shows how much space OM requires to process each target program.  In general, the
elapsed time ratios in table 3 mirror the size ratios in table 4, except in one case. Why, for vcr on
System A, do 32-bit pointers outperform 64-bit pointers by so much, in terms of elapsed time?
System A has just under 128 MB of real memory; OM’s processing of vcr requires just a bit
more than that using 32-bit pointers, but quite a lot more using 64-bit pointers.  The 32-bit
pointer version does far less paging, and so completes much sooner.  For both pointer sizes,
System A does not page when processing scixl, and pages heavily when processing fea, so for
these programs the elapsed-time ratios correspond to the size ratios (although for fea, System A
is too slow to be feasible with either pointer size).

These results confirm the lessons of section 4, that smaller pointers usually perform slightly
better (and more generally, that performance ratios correspond to size ratios).  However, when
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larger pointers push the working set beyond the size of a cache or real memory, small pointers
may show a dramatic advantage.

5.3. Corner-stitching in the Magic CAD system

Many VLSI designers employ the Magic CAD system [19] to lay out and process their chips.
Most VLSI designs can be expressed as a set of rectangles; Magic represents these rectangles
and their positions using an algorithm called ‘‘corner-stitching’’ [18].

A Tile, the basic object in the corner-stitching algorithm, has this structure:

(x,y)

L,X

L,Y

H,X

H,Y

The data structure for a Tile stores the (x, y) coordinates of its lower left corner, and four
‘‘corner stitches’’: (L,X), (L,Y), (H,X), and (H,Y).  The ‘‘stitches’’ point to neighboring Tiles.
For example, the (H,Y) stitch points to the rightmost top neighbor of the Tile.  The data structure
must also store some information about the nature of the Tile (for example, its layer in the VLSI
design).

The minimal representation for a Tile requires four pointers and three integers.  Since all coor-
dinates are integral, the integers easily fit into 32 bits.  Using 32-bit pointers, a minimal Tile
takes 28 bytes; using 64-bit pointers, a minimal Tile takes 44 bytes, although a C compiler would
normally pad this to 48 bytes, to naturally align the 64-bit fields within the structure.  Thus, the
use of 64-bit pointers increases the minimal Tile size by about 70%.

Magic actually adds two pointers, rather than one integer, to the coordinates and stitches, for a
total of two integers and six pointers.  Therefore, in Magic a Tile requires 32 bytes using 32-bit
pointers, and 56 bytes using 64-bit pointers, for a net increase of 75%.

It takes many Tiles to represent a modern VLSI design.  For example, BIPS-0, a 32-bit MIPS
processor without floating point or virtual memory support [13], required about 3.6 million Tiles.
This would need about 112 MB for Tile storage using 32-bit pointers, and 197 MB using 64-bit
pointers.

We measured Magic performance on three much smaller designs, a communications interface
for a multiprocessor [23], a memory chip [1], and a mesh router chip [11].

We ‘‘flattened’’ the cell hierarchy of the communications interface before running it through
Magic; the flattened version requires 208801 Tiles.  These Tiles should occupy 6525 KB using
32-bit pointers, and 11419 KB using 64-bit pointers.  In fact, to represent and process this design
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using 32-bit pointers, Magic allocates 9408 KB in addition to its initial memory requirements;
using 64-bit pointers, it allocates 13392 KB.  Thus, the design-specific memory use increases by
only 42%, because Magic allocates quite a bit of non-Tile storage.  (Most of the rest of this
storage is not actually design-specific, but technology-specific: for example, design rules for the
specific CMOS process with which the chip will be fabricated.)  The total memory use increases
by only 26%, because Magic’s other memory use is essentially independent of pointer size.

We used Magic to do a ‘‘design-rule check’’ (DRC) on these three chips.  (Design rules
specify things such as minimums for rectangle width, spacing, and overlaps.)  A DRC spends
much of its time following corner-stitch pointers, and doing simple geometric calculations; it
should exhibit moderately good locality of reference.  In each trial, we had Magic do 50 DRCs of
the chip. Table 5 shows the mean results over 10 trials, expressed as the ratio of times for the
32-bit version to times for the 64-bit version.  The table also shows relative space requirements
for all three chips.

Design Total space Number Tile User-mode Kernel-mode Elapsed Page-fault
ratio of tiles space CPU CPU time ratio

ratio time ratio time ratio ratio

Communications 0.79 208801 0.70 0.95 0.93 0.95 0.83
interface

Memory 0.83 55904 0.73 0.96 0.96 0.96 0.87

Mesh router 0.85 25046 0.85 0.96 0.96 0.96 0.90

Ratios are mean of 32-bit pointer value/64-bit pointer value

Table 5: Performance ratios for design-rule checking in Magic

For the communications interface chip, the use of 64-bit pointers appears to reduce perfor-
mance (both user-mode CPU time, and elapsed time) by about 5%.  Kernel-mode CPU time
shows an even larger change, but has little effect on the elapsed time because it represents only
1.5% of the total CPU time.  For the memory chip, pointer size has a smaller effect on user-mode
CPU time, probably because far fewer Tiles are used.  Kernel-mode CPU time represents a larger
fraction (about 5%) of the total CPU time on this problem, so it contributes slightly more to the
change in elapsed time.

We believe that the additional kernel-mode time comes mostly from the additional page faults.
Almost none of these page faults involve the backing store, because we had plenty of main
memory on the test machine.  Most are ‘‘zero-fill’’ faults used to add new pages to the address
space, and the 64-bit version does about 22% more of these for the communications chip, and
about 6% more for the memory chip.

The use of 64-bit pointers appears to impose a relatively small CPU-time cost on Magic.
However, for the BIPS-0 design, Magic with 64-bit pointers needs almost 100 MB of additional
memory. Put another way, on a workstation with 128 MB of main memory, it would be feasible
to design-rule check BIPS-0 only using a 32-bit pointer version of Magic; with 64-bit pointers,
the system would page excessively. The most important effect of larger pointers is not the slight
increase in CPU time, but the much stricter constraint on feasible problem size.
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5.4. Garbage collection in Scheme

Some modern programming languages support ‘‘garbage collection’’ instead of explicit deal-
location of dynamic storage.  Garbage collection makes programs much simpler to write (one no
longer has to worry about forgetting to free a data item, or freeing it too many times, or at the
wrong time).  It also may improve the performance of code that manipulates complex structures,
since it obviates the need to maintain reference counts or to call explicit deallocation routines.
Here we examine the performance of garbage collection in an implementation of the Scheme
programming language [2, 20].

Garbage collection complicates the performance picture.  (For a full discussion of the cache-
related effects of garbage collection, see Reinhold [22].) This implementation uses a ‘‘mostly-
copying’’ algorithm [3], which requires that a pool of free space be kept available.  The total size
of the garbage-collected address space, including live storage and the overhead, is called the
‘‘heap.’’ When the heap gets too small, the cost of garbage collection becomes excessive.  Even
with enough headroom to work in, garbage collection has a run-time cost, which depends some-
what on the size of objects used.

Use of larger pointers can affect the performance of garbage collection:
1. It increases the storage-allocation rate (the rate at which address space is con-

sumed). This, in turn, increases the frequency of garbage collection.

2. It increases the cost of each garbage collection phase, since this cost is proportional
to the amount of live storage.

3. It reduces the number of structures that fit into a given amount of real memory, and
thus may cause the garbage collector to run out of headroom.

In the worst case, the first and second effects would each increase run-time linearly with the
increase in structure size. That is, if a change in pointer size adds 50% to the size of a garbage-
collected structure, one would expect the rate of address space consumption to increase by 50%.
Assuming that the number of live structures does not change, the amount of data copied during
the collection phase would also increase by 50%.

In practice, run-time costs increase less than linearly with pointer size.  Programs do things
besides consume address space. During garbage collection, the cost of copying an object in-
cludes fixed overheads not dependent on object size.  Larger objects may show better locality of
reference during copying.

The third effect, the loss of headroom available to the garbage collector, cannot be analyzed so
easily. For any given application working on a specific problem, some minimum amount of
memory is sufficient to support the garbage collector without excessive overhead.  When the
available memory is less than that amount, garbage-collection costs increase dramatically, and
may become effectively infinite.  (Normally, the garbage collector expands its heap as necessary,
but the user can limit the expansion to keep it from overflowing real memory; this would cause
the entire program to page excessively.)

We measured the performance of our Scheme system compiled to use either 64-bit pointers or
32-bit pointers for its primary data type (we kept all other pointers at 64 bits).  To maintain the
required 64-bit alignment for some data objects, the 32-bit version must in some cases pad the
pointer fields in its data objects to a 64-bit boundary.
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For a sample application, we ran the Scheme->C compiler [2], a Scheme implementation that
achieves high portability by using C as its intermediate language, and used it to compile the
largest source file in an application called ezd. Figure 8 shows the ratios of 32-bit times to 64-bit
times for elapsed time, garbage collection CPU time, and application (non-GC) CPU time.
These tests were run on System N.
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Figure 8: Time ratios for Scheme application

One can see from figure 8 that the application CPU time depends somewhat on pointer size
(use of 64-bit pointers costs about 5%), probably because Scheme programs manipulate pointers
heavily. The application CPU time varies little with heap size, because the heap size does not
really affect the nature of pointer references made during application execution.

The garbage-collection CPU time depends strongly on heap size, for heap sizes below a
threshold: about 7 MB for 32-bit pointers, and about 12 MB for 64-bit pointers.  In other words,
the use of larger pointers reduces the garbage-collection headroom.  Even for heap sizes large
enough to reduce the cost of garbage collection below one per cent of the total CPU time, the use
of larger pointers seems to add at least 23% to the cost of garbage collection.  We believe this
results from the increased size of ‘‘live’’ data copied during a garbage collection.

The total elapsed time depends mostly on garbage collection time, for heap sizes below the
headroom threshold.  For sufficiently large heaps, garbage collection minimally affects elapsed
time, and because the application does some I/O, the elapsed time ratio approaches unity.

In summary, for this application we found that the use of larger pointers increases the amount
of heap (main memory) required for reasonable performance, and slightly increases application
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CPU time. Large pointers do not significantly affect the running time of the application if suf-
ficient RAM is available for the garbage collector; otherwise, they seriously increase elapsed
time.

5.5. Sorting

Unnecessarily large pointers could also hurt the performance of pointer-based sorting on large
data sets.  A sort program spends a large part of its time exchanging the order of records. It can
do this by exchanging the records themselves, by exchanging the keys along with pointers to the
full records, or by exchanging just the pointers. Pointer sort may be the most efficient technique
if the keys are large, especially if the full array of pointers can fit into the CPU board-level data
cache. For keys of moderate size, it might be more efficient to use a key sort, which keeps the
keys and the pointers together (and so increases locality) [17]. Some phases of a key-based
QuickSort can run entirely in a small, on-chip cache [14].

If one is sorting less than a few billion bytes, a sort program has no need for 64-bit pointers.
Use of larger pointers than necessary will probably reduce the number of keys (or pointers) that
can fit into the CPU’s caches, and so reduces the size of the problem that can be sorted without
excessive cache-miss overheads.

In an environment that provides only 64-bit pointers, one could implement a pointer-based
sort using 32-bit record indices.  This requires the execution of several additional instructions
each time an index is converted to a pointer, but could be less costly than incurring the extra
cache misses imposed by use of 64-bit pointers.  It would also require one to maintain separate
source-code versions of the sorting program for 32-bit and 64-bit machines.

We do not have access to a state-of-the-art sorting program, but we did measure the perfor-
mance of the UNIX sort command applied to several large files.  This sort program manipu-
lates pointers rather than the actual key values.  Table 6 shows the results; the performance dif-
ferences of about 5% are consistent with results from other programs.

File size Number User-mode CPU Elapsed time
of trials time ratio ratio

9589500 bytes 10 0.975 0.96

95895000 bytes 1 0.948 0.95

Ratios are mean of 32-bit pointer time/64-bit pointer time
All output directed to /dev/null

Table 6: Performance ratios for sort program

6. Future work

The results we presented in section 5 suggest a minor but consistent advantage to the use of
smaller pointers, in those programs that heavily use pointers but do not need to address a huge
data set. However, we would not want to conclude from these results that small pointers are
inherently faster.  We suggest that future studies should include:
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• A wider set of large benchmark applications; the SPEC benchmarks are relatively
small, and most of the other applications we measured are not easily suited for use
as benchmarks.

• Additional architectures and CPU implementations; we only measured a single CPU
implementation of a single architecture, and some of our results may depend on
those particulars.

• Multiprocessor and perhaps distributed applications; pointer size could have sig-
nificantly different implications in such environments.

Programmers have understood for decades that their choice of integer and real variable size
can affect performance, and most modern programming languages allow such choices.  We do
not know of any careful studies quantifying these effects on modern computers, however, but we
believe that they could be at least as large, if not larger than, the effects of pointer size.

Given that pointer (and scalar numeric variable) size can effect performance, must the
programmer make the choice?  Compilers (and optimizers) have freed programmers from many
other performance-related decisions.  One could imagine a compilation environment (perhaps
including link-time optimization) in which the choice of pointer size was deferred until the com-
piler could determine the necessary range of each pointer variable. For some pointer variables,
the compiler might not be able to conservatively infer the necessary size without help from the
programmer (in the form of an assertion pragma); in others (for example, a program with
constant-sized buffers), the inference might be fairly easy (especially in a type-safe programming
language).

7. Summary and conclusions

We have shown that pointer size can affect application performance.  The effects depend on
pointer-use frequency, address reference patterns, memory system design, memory allocation
policy, and other aspects of both program and system, but our results for real programs are con-
sistent with what we learned from a contrived program: larger pointers put greater stress on the
memory system, and can greatly affect cache-hit ratios and paging frequency.

Since some applications really do need large pointers, and the performance of other applica-
tions does not depend on pointer size, we draw the lesson that programmers should use the
‘‘right’’ pointer size for the job.  On a 64-bit system, the compiler should give the programmer a
choice of pointer size, just as programmers have always had a choice of numeric variable size.
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