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Abstract

Systems for recording address traces of operating system activity have fre-
quently relied on special-purpose hardware and microcode modifications for
data collection [1, 2, 10, 11, 30, 32]. In the last decade, changes in computer
systems design have made the implementation of such hardware and
microcode-based tracing systems impractical.  This paper documents the
evolution of a group of software methods to collect system traces.  The tools
require no special-purpose hardware and no hardware modifications. We
have applied these tools to three substantially different operating systems
and two processor architectures. This paper describes the instrumentation
techniques, the means used to assure the quality of the collected data, and
our evaluation of correctness and accuracy of traces. Our experience shows
that software methods can yield trace of very good quality, and can be used
to measure complex software systems.
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1. Introduction
Address tracing is an important technique for measuring the dynamic behavior of computer

software systems and the interactions between software and hardware on a computer system.
The two approaches to collecting address trace data (which we will sometimes call simply trace)
are hardware methods and software instrumentation.

Hardware methods involve the use of modified microcode or a special-purpose device to inter-
cept and record memory references as they occur.  With software methods, the program or
programs of interest are augmented with instrumentation code, such that address trace data is
generated as a side-effect of program execution.  This suggests three problems with software
methods:

• The instrumentation process is intrusive and can change the behavior of the traced
system in a substantial way.

• Trace from different address-spaces tends to be buffered independently and hence
partitioned on a per-address-space basis.

• Operating system code is difficult to instrument for address tracing.
Hardware methods avoid the problems of software instrumentation by intercepting trace infor-
mation at a very low level, such that all activity is captured indiscriminate of source, and the
behavior of software is unaffected. Unfortunately, several properties of current processor design
make hardware-based tracing difficult:

• Microcode-based designs are not useful because current processors do not use
reloadable microcode.

• Current processors tend to incorporate memory system components such as caches
and translation buffers into an integrated microprocessor package, such that the re-
quired address trace information is transferred on submicron-sized structures sealed
inside the computer chip.  This makes them impractical to access with a hardware
monitor.

• Modern high-performance computers operate at very high clock speeds. Con-
sequently, any monitoring device must also operate at a very high speed.  This
makes such a device difficult and expensive to build.

The problems with hardware tracing led us to take a harder look at software-based methods.  In
this paper we describe and discuss the three tracing systems we have implemented.  All are
variants of the Unix operating system.

• Traced Tunix: Tunix was derived from DEC Ultrix, version 4.1, and ran on the
DECWRL Titan [5].

• Traced Ultrix: A traced version of Ultrix version 4.2 for the DECstation 5000/200.

• Traced Mach 3.0: A traced version of Carnegie Mellon’s Mach 3.0 microkernel
(MK78) and UNIX server (UX39) for the DECstation 5000/200.

The remainder of the paper is structured as follows.  After discussing previous work, Section 3
discusses the design of the tracing system, beginning with instrumentation tools and fundamental
notions of system design, then going on to describe details on the Tunix, Ultrix, and Mach 3.0
tracing systems and how they differ.  Section 4 discusses sources of distortion in software-based
tracing systems and how we avoided them. Section 5 discusses measurements we made to estab-
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lish that the trace data was a reasonable indicator of real system behavior.  In the last section we
briefly summarize our conclusions.

2. Previous Work
Software methods have been applied extensively to study user-only traces, yielding results in

cache behavior [15, 16, 17, 26, 28], prefetching [6], the importance of long traces [5], the impact
of context switches [20], and studies of TLB and page behavior [9, 18, 29]. These user-only
studies are useful but limited, as system activity can have a large impact on overall performance
[2, 12, 30]. More recent work documenting significant performance problems for system execu-
tion on RISC-based computer systems [3, 24] suggests that system behavior needs more atten-
tion in performance studies and hardware design.

Clark and Emer were among the first to emphasize the importance of system activity when
modeling memory system behavior.  They used direct measurements of hardware to study cache
performance in the VAX 11/780 [10] and to evaluate the VAX 11/780 translation buffer [12].
They point out that direct measurement and simulation have complementary advantages and dis-
advantages. They also recognized the problem of distortion of system behavior due to tracing.

A review of more recent hardware tracing projects demonstrates how the obstacles of
hardware methods limit their applicability in current research.

In the ATUM system, the microcode of a DEC VAX 8200 was modified to record an address
trace of system and user execution [2]. The method was applied for both VMS and Ultrix sys-
tems to test a variety of cache configurations.  ATUM has several drawbacks.  The foremost is
that it can only be used on microcoded processors.  Also, long contiguous trace was not possible.
The ATUM designers proposed trace stitching to address this limitation.

Two interesting projects used hardware monitors to collect system traces of multiprocessor
workloads. Researchers at Carnegie Mellon University traced an Encore Multimax computer
[32]. Researchers at Stanford traced cache misses only [30]. Cache misses are less frequent
than memory references, and this eases the requirements of the hardware device.

Two recent hardware projects used address traces of uniprocessors.  The Monster system
[21] uses a logic analyzer to capture signals from the CPU chip of a DECstation 3100.  They
have applied their system to study TLB behavior [22] and the system issues for memory system
design [23]. The BACH system has been used to collect address trace on both Intel 80486 and
Motorola 68030 based machines [14]. To date they have not demonstrated the applicability of
their system to RISC based computers.

In our work we used two instrumentation tools, Mahler [34] and epoxie [35]. There are
numerous other software instrumentation tools [4, 13, 27], but none to our knowledge have been
used to collect address traces of operating system behavior.
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3. The WRL-CMU Tracing Systems

3.1. High-Level Design
The design of the tracing systems was motivated by the need for accurate simulations of the

large memory systems that are required by state-of-the-art processors.  This had the following
implications:

• The traces must be complete.  They must represent the kernel and multiple users as
they execute on a real machine.  The memory references must be interleaved as they
are during execution rather than being artificially interleaved separate traces.

• Traces must be accurate.  The mechanism used must not distort execution to the
extent that the behavior of the system is no longer realistic.

• Traces must be flexible.  It must be possible to pick and choose the processes to be
traced, optionally trace kernel execution, and turn tracing on and off at any time.

• The traces must be long enough to make possible the realistic simulation of very
large caches.  Since traces of the required length can outstrip storage capacity, trace
analysis that must be done off-line against stored traces is unacceptable.

Figure 1 shows a high-level diagram of the tracing system. The system involves three kinds of
entities: traced user processes, the traced kernel, and an analysis program which consumes the
trace. The kernel controls the tracing system.  Appropriate mechanisms are used to avoid tracing
kernel activity that occurs on behalf of the tracing system.

0x402018
0x1001f2ec
0x1001f2f0
0x1001f304
0x40202c
0x402054
.  .  .

Traced
user
workload

System
trace

Traced Operating System

Analysis
Program

0x80032014
0x80300120
0x80030124
0x80030128
0x80032060
0x80045cfc
0x80300200
0x8003020c
. . .

Figure 1: Overview of the tracing system.

At any instant during a tracing experiment the system is operating in one of two modes: trace-
generation or trace-analysis.  During trace-generation, trace from user-processes goes first into a
per-process buffer.  When that buffer becomes full, a kernel trap occurs and the per-process trace
is copied into the large in-kernel buffer.  When the in-kernel buffer becomes full, the system
switches from trace-generation to trace-analysis, during which an analysis program (such as a
memory system simulator) digests the trace. Analysis continues until all pending trace has been
analyzed and the in-kernel buffer is empty.
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In addition to copying trace from per-process buffers when they become full, available trace is
copied into the kernel each time the kernel is activated.  As the kernel is invoked between every
change of context, the interleaving of trace from all the various sources is preserved.

A certain number of kernel modifications were required to support user tracing, independent
of the generation of kernel trace.  An in-kernel trace buffer was set up. This is allocated stati-
cally at boot time and is never seen by the kernel memory management subsystem.  Exception
handlers were modified to copy trace from per-process buffers into the in-kernel buffer whenever
traced user processes are interrupted.  Further, a mechanism is provided for the analysis program
to extract trace from the in-kernel buffer.  In Tunix and Ultrix, a memory special file is used
(similar to /dev/kmem). In Mach 3.0, the in-kernel buffer is mapped into the virtual address
space of the analysis program.

A kernel call was added to both systems, to provide a mechanism for user-level analysis
programs to control tracing.  Process creation was modified to initialize tracing data structures.
Scheduler modifications were used to insure that traced processes are inactive during trace
analysis.

3.2. Software Instrumentation
This section describes the software instrumentation performed by the CMU version of a tool

called epoxie [35], which was used for the traced Ultrix and Mach 3.0 systems on the DECsta-
tion. The tools used for the traced Tunix system differ in several ways; in particular they were
integrated into the compiler/loader system, but the overall approach is similar to that used by
epoxie.

Epoxie is similar in spirit to the pixie tool from MIPS Computer Systems [27], which can be
used to insert address-tracing code into an executable.  Since the instrumentation code causes the
program text to expand considerably, addresses of procedures and branch targets change; address
references must be adjusted in the instrumented version if the program is to run correctly.  Pixie
does some of this address correction statically, when the original executable is rewritten as an
instrumented executable, but it must do part of it dynamically, by including a complete address
translation table in the instrumented executable and doing lookups in this table during execution
of the instrumented program.

Epoxie differs from pixie in that it rewrites object files at link time.  Modifying object code at
link time is easier than modifying an executable, because the symbol and relocation tables
present in object code allow epoxie to distinguish unambiguously between uses of addresses and
uses of coincidentally similar constants.  This information also allows all address correction to be
done statically, incurring no runtime overhead. The addition of address-tracing code results in a
significant increase in text segment size.  For this project, extensive modifications were made to

*epoxie to minimize text expansion.  The text growth factor ranges between 1.9 and 2.3 . This
compares very favorably with pixie, QPT [4], and the original epoxie, all of which expand the

*Actual growth depends on the length of basic blocks and the density of memory instructions.
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**text by a factor of 4-6 when used for address tracing . It should be noted that minimal text
growth was not a design objective for any of the earlier tools.

Note that the expansion of traced text does not affect the trace addresses generated, as the
addresses seen by the simulator corresponding to the uninstrumented binary.  The motivation for
this modification was to minimize the additional I/O and VM behavior that occurs as a result of
text growth.  I/O and VM effects are discussed in greater detail in Section 5.

A last crucial difference between epoxie and other instrumentation tools is that the other tools
work only for single application programs.  Epoxie has the flexibility to be used in a tracing
system with multi-process workloads, threaded tasks in Mach 3.0, and operating system kernels.

Epoxie inserts trace-collecting code at the beginning of each basic block and before every
memory instruction of the original program text. Figure 2 shows an example of a code sequence
before and after instrumentation.

      fopen:
i+0:  addiu sp,sp,-24
i+1:  sw    ra,20(sp)
i+2:  sw    a0,24(sp)
i+3:  jal   _findiop
i+4:  sw    a1,28(sp)

      fopen:
i’+0:  sw    ra, 124(xreg3)
i’+1:  jal   bbtrace
i’+2:  li    zero,4
i’+3:  addiu sp,sp,-24
i’+4:  jal   memtrace
i’+5:  addiu zero,sp,20
i’+6:  sw    ra,20(sp)
i’+7:  jal   memtrace
i’+8:  sw    a0,24(sp)
i’+9:  jal   memtrace
i’+10: sw    a1,28(sp)
i’+11: jal   _findiop
i’+12: nop

    a) Before Instrumentation     b) After Instrumentation

Figure 2: Instrumentation by epoxie

Each basic block is preceded by a three instruction sequence, as in instruction i’+0 . . i’+2.
The jump instruction at i’+1 is a call to a basic block trace routine bbtrace that will store the
jal’s return address into the trace buffer.  During trace analysis, the trace parsing library will
use static information about the binary image to map this address to the correct basic block ad-
dress in the original (uninstrumented) binary.

The jal instruction destroys the return address register ra, so instruction i’+0 saves ra in
the trace bookkeeping area before bbtrace is called. bbtrace and memtrace restore the
contents of ra before they return.  The delay slot of the jal bbtrace contains a special no-op
(instruction i’+2), a load-immediate to the read-only register zero, with the number of words
of trace generated by the basic block in the immediate field.  This will be used by bbtrace to
determine if there is enough room in the user trace buffer for trace from this basic block to be
stored.

**For a gcc binary with 688128 bytes of text, pixie -t gcc grows program text to 4131968 bytes. Epoxie
-t gcc grows text to 3780608 bytes.  QPT expands gcc text by a factor of 5.5 [19]. The modified epoxie grows
text to 1515520 bytes.
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The tracing system requires three registers for its own use, referred to symbolically as xreg1,
xreg2, and xreg3. Uses in the original binary of these stolen registers are replaced with se-
quences of instructions that use a ‘‘shadow’’ value for the register, in memory.

Memory instructions are typically expanded into a two instruction sequence, a jal
memtrace with the memory instruction in the delay slot, as with i+2 from Figure 2.
Memtrace partially decodes the instruction in the branch delay slot to compute the address of
the memory reference.  Certain hazard conditions sometimes make it impossible to put the ac-
tually memory instruction in the branch delay slot.  An example is instruction i+1 in the ex-
ample above, which reads the ra register. For such cases, a no-op with the same base register
and offset as the memory instruction is used in the delay slot, and the real memory instruction is
issued after the call to memtrace.

For a given input, a traced program executes many more instructions than the original binary,
so execution time is longer.  In Section 4 we discuss sources of distortion in the traced system
and how we have controlled them.

3.3. Tracing the Kernel
Features to facilitate complete system tracing are important in our design.  An example is the

trace format.  In the Ultrix and Mach 3.0 systems, a trace entry for a basic block or memory
reference is a single machine word.  This means that a single machine instruction records a com-
plete trace entry.  In this way, trace entries remain contiguous, with no locks or other protection
mechanisms required.  Another feature that helps accommodate system tracing is that control of
the tracing system resides in the kernel. This centralized control makes it possible to preserve
the interleaving of trace from various sources.  In systems like Pixie and QPT where trace is
managed at user level, preserving this interleaving is difficult.

Several peculiarities of operating system kernels make instrumentation a substantially dif-
ferent problem from instrumenting an application program. The foremost is the presence of
uninstrumented code.  Certain parts of the kernel are not rewritten by the instrumentation tool,
either because they are part of the tracing system and should not be traced, or because they are
too delicate to be rewritten mechanically. Uninstrumented code in the traced kernel must be
carefully handled so as to preserve and maintain the state of the tracing system.

A second problem with tracing the kernel is the need to manage the tracing system.  Traced
applications are serviced by the trace-control subsystem when their trace buffers become full,
with per-process user trace copied into the large in-kernel buffer. Trace of operating system
activity goes directly into the in-kernel buffer, so the in-kernel buffer can become full at an ar-
bitrary point during system activity.  However, servicing the full buffer is a complicated opera-
tion, and cannot be scheduled arbitrarily.  Provisions must be made for critical system operations
to complete before tracing is suspended.

A third problem is the concurrency introduced by interrupts and exceptions.  With traced user
activity, activity from concurrent traced user-level activities is always isolated by an invocation
of the kernel.  This provides an occasion for the kernel to maintain trace system state.  There is
no such opportunity for a traced kernel, as no intermediate party is available to maintain the
kernel’s tracing state when the kernel itself is interrupted by an exception. To address this
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problem, the exception handling mechanism in the kernel must be modified to correctly handle
trace state, and the trace-analysis system must correctly handle situations when arbitrary kernel
activity is interrupted by an exception.

All relevant parts of the kernel are traced.  Routines too delicate to be instrumented by epoxie
were instrumented by hand.  Certain code, executed only at boot time or after an unrecoverable
system error, is not instrumented.

3.4. Tunix on the Titan
Our first tracing system was implemented for the Titan [5], an early experimental RISC

workstation with a 45ns cycle time and different register sets for user and kernel.  The Titan ran
a modified version of Ultrix called Tunix.  Process and memory management functionality were
rewritten for Tunix.

All Titan compilers used a common intermediate language, Mahler, which defined a Mahler
abstract machine.  The Mahler implementation [33, 34] consists of a translator and an extended
linker. Object modules produced by Mahler contain sufficient supplementary information to
support the code modification required for address trace generation.  In particular, basic blocks
and their sizes are identifiable at link time.  The linker augmented code to be traced with in-
strumentation code so that traced programs record addresses and lengths of basic block and load
and store target addresses when executed.

A single large trace buffer was managed by the operating system and mapped into every ad-
dress space.  In traced workloads, the compiler reserved five of the 64 user registers for use by
the tracing system.  Since all tracing data was sent to the same buffer, trace data was correctly
interleaved for multiple processes and the kernel.

Only specially linked programs were traced.  Kernel tracing was turned off when the kernel
acted on behalf of an untraced program.  In particular, it was turned off while the trace analysis
program was running.

Tunix kernel tracing worked well enough to demonstrate that software-based kernel tracing
was possible.  Preliminary cache simulation experiments showed that kernel cycles per instruc-
tion (CPI) were three times user CPI, and had a significant effect on overall CPI.

Unfortunately, there were a number of problems.  As kernel address references were to physi-
cal addresses and user references were to virtual addresses, it was difficult to determine when a
user and a kernel address actually referred to the same memory location.  Also, portions of the
Tunix kernel, such as the software TLB miss handler, were not traced.  Finally, the internals of
Tunix were sufficiently different from commercial operating systems that we were reluctant to
draw general conclusions from the behavior of Tunix. The traced Tunix system established the
potential of software-based system tracing, and gave us the necessary experience to move our
techniques to a more mainstream operating system.  The Tunix tracing system also produced a
collection of single and multi-task user-level traces on tape, which were made available to the
community for use in memory system research.
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3.5. Ultrix on the DECstation 5000/200
Epoxie was used to instrument both Ultrix and Mach 3.0.  With the Titan machine architecture

and with the instrumentation tools integrated with the compiler system, it was straightforward in
Tunix to reserve registers for address tracing. In contrast, epoxie operates on binaries after com-
pilation, so registers reserved for tracing had to be ‘‘stolen.’’  The necessity of register-stealing
complicated the implementation of the tracing system, creating additional trace-system state to
be maintained and additional invariants to be observed.

Another source of added complexity in the DECstation tracing systems was the handling of
nested interrupts.  The Titan had only one interrupt level, so nested interrupts were impossible.
The nested interrupts on the DECstation require the tracing system to use a stack to maintain its
state during multiple nested system invocations.

An interesting change between traced Tunix and traced Ultrix is the handling of basic block
records. Mahler and Epoxie both generate static information describing each basic block (num-
ber of instructions, position of loads and stores).  This information is used when the trace is
analyzed, to determine the correct interleaving of instruction and data memory references. In
traced Tunix, the basic block records were written into the trace along with the traced addresses.
In the Ultrix system, only the basic block address is written.  A lookup table is used in the trace
parsing library to find static information for a given basic block address.  One advantage of this
technique is it makes the trace more concise, so the trace takes less space and less time to write.
Another advantage is that the basic block lookup creates an opportunity for implementing special
behaviors for a specific basic block address.  An example is hand-traced code.  The trace-parsing
system can recognize the basic block record of a hand-traced routine as special, and respond
accordingly. Another example is instruction counting, with flags in basic block records to start
and stop counters.  An example application of these counters is measuring activity in the idle-
loop.

3.6. Mach 3.0 on the DECstation 5000/200
Mach 3.0 is a microkernel that implements and exports a small number of low-level system

services, with higher-level services implemented in a user-level UNIX server.  The Mach 3.0
virtual memory interface [25] permitted a number of improvements in the implementation of the
tracing system.  In the analysis program, trace was extracted from the kernel by mapping the
in-kernel buffer into the analysis programs address space, eliminating copying and buffering of
trace data.

Another use of Mach 3.0 virtual memory primitives is dynamic allocation of the per-process
trace pages.  In the Ultrix system, a flag was set in the executable image to indicate that a process
was traced.  This flag is checked when a traced program is started.  Traced programs get per-
process trace pages, and are scheduled according to the state of the tracing system.  The Mach
3.0 system identifies traced programs by detecting references to the per-process trace pages.
This feature in Mach 3.0 is particularly important for the implementation of multiple traced
threads in a single address space, as independent trace pages are allocated for each thread.
Context-switching code in the kernel maps the correct per-thread pages when a new thread is
activated.
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4. Maintaining Trace Quality
Instrumenting the system involves substantial modifications to every instruction of active sys-

tem code. As such, one of the original goals in the design of the tracing system was to control
the impact of instrumentation on system behavior.

4.1. Avoiding Trace Distortion
Tracing with software methods induces two kinds of distortion on system behavior, memory

dilation and time dilation.

Memory Dilation
A program instrumented with epoxie is about a factor of two larger than its untraced counter-

part. This can affect paging and TLB miss behavior.  We avoid perturbations due to paging
behavior by collecting our traces on a machine with a large physical memory, such that pageouts
do not occur.  We feel this is a reasonable simplification, since the main utility of our tools is in
analyzing memory system performance, and most aspects of memory system performance be-
come irrelevant when significant paging activity is present.

TLB behavior is slightly more subtle.  The DECstation address spaces is divided into four
segments, two mapped and two unmapped.  All kernel text and most kernel data is referenced
through the unmapped segments; hence these references do not affect the TLB.  The two mapped
segments do require translations from the TLB, and each handles TLB misses differently.  A
miss to the user segment is called a UTLB miss and is handled in software via a dedicated excep-
tion vector and a nine-instruction miss handler routine.  A miss to the mapped kernel segment is
called a KTLB miss. They are handled through the general exception mechanism, which is much
slower (several hundred instructions).  Fortunately, KTLB misses are more rare.

Instrumentation causes the number of user text pages to grow by a factor of two.  With twice
as many text pages, UTLB miss behavior can differ substantially between traced and untraced
workloads. Because of the different behavior, trace from the actual user TLB miss handler
would not be representative of the untraced system.  Rather than tracing the UTLB miss handler,
we simulate the TLB, and use misses in the simulator to synthesize the activity of the UTLB
miss handler.

Mapped kernel memory is used primarily to map page table pages.  If instrumentation changed
the number of page table pages required to map user text, then KTLB miss behavior could be
affected. Fortunately, each page table page can map 4 megabytes of contiguous memory. As the
largest traced binary has less than 2 megabytes of text, the number of page table pages it requires
does not change, and the behavior of the KTLB miss handler is unaffected.

Time Dilation
The instructions added by software instrumentation cause traced programs to execute about

fifteen times more slowly than their untraced counterparts.  Temporal relationships for activity
that depends on the speed of CPU instruction execution are unaffected, as the slowdown for all
instrumented code is roughly the same.  Time dilation occurs because activities independent of
CPU speed appear to occur about fifteen times faster for the traced system.  For the workloads
we have considered, this affects clock interrupts and the latency of I/O operations.  Adjusting for
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clock interrupts was straightforward: we configured the system clock to interrupt at 1/15th the
standard rate.

We have not modified I/O behavior to account for time dilation, as this would require subtle
system changes that might themselves introduce other distortions.  Instead, we estimate I/O
delays using a count of the number of instructions executed while waiting in the system idle-
loop. We estimate I/O delays in the untraced system by multiplying idle time in the traced sys-
tem by a scaling factor of fifteen.  The approximation this gives is very rough, but largely ade-
quate for our purposes, as I/O delays are of little interest in memory system behavior.

Scheduler policy is also affected by time dilation, but is an issue we have chosen not to ad-
dress. Instead, we concentrate on workloads such as single process workloads and client-server
systems. For these workloads, all context switches are determined by client-server relationships,
and scheduler policy is irrelevant. For accurate traces of timesharing workloads, it would be
necessary to scale I/O delays and adjust scheduler policy to replicate untraced behavior.  It
should be possible to improve the behavior of the traced system, although perfect reproduction of
traced behavior is not a practical goal.  Given current trends toward single-user machines and
away from timesharing, the limitation of client-server systems leaves ample domain for our
research.

4.2. Page Mapping Policy
The virtual to physical page map is determined by policy implemented in operating system,

and can have significant impact on memory system behavior. [7, 18] An address trace obtained
through software methods contains virtual addresses, yet caches are often indexed by physical
addresses. A trace-based simulation of such a physical cache requires some virtual-to-physical
address translation.  The most straightforward approach is to implement the desired page map-
ping policy in the simulator. The traced Ultrix and Mach 3.0 kernels also provide the option of
extracting the page-map from the running system.

4.3. Defensive Tracing
When possible, the validity of tools was tested in isolation from the rest of the system.  The

system was further tuned and corrected by looking for anomalies in measured behavior.  In this
section we discuss redundancy and error modes built into the tracing system that are helpful for
avoiding certain kinds of errors.  In the next section we discuss our final means of evaluating the
quality of trace, measuring the ability of a trace driven simulation to predict measurements of an
uninstrumented system.

The following discussion applies primarily to the traced Ultrix and Mach 3.0 systems.

The correctness of trace generated by epoxie instrumentation was validated by comparing
epoxie trace for deterministic user programs to trace from a CPU simulator. The verification of
trace from epoxie against trace from an independently developed CPU simulator establishes with
a high degree of certainty the correctness of epoxie instrumentation.

In the operating system kernel, code rewritten by epoxie co-exists with hand-instrumented
code, as well as the uninstrumented code that implements certain parts of the tracing system.
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Unlike user code, the kernel is significantly involved in controlling the state of the tracing sys-
tem. A number of approaches were used to ascertain that tracing the kernel did not introduce
errors or unexpected trace distortion.

• The format of trace contains a significant degree of redundancy, such that missing
words of trace or erroneous writes into the trace are detected with a very high prob-
ability. Conditions checked include (i) that each instruction basic block address is
valid for the address space in question, and (ii) that in each basic block the expected
number of memory operations occurs.

• A large number of sanity checks were used to verify that trace was not being misin-
terpreted. For example, the simulator checks that all kernel instruction addresses are
in the kernel instruction address space.

• Reference counting tools were used to make a dynamic count of the number of times
each instruction in the kernel was executed.  In this way it was possible to identify
anomalous system activity caused by errors in the tracing system.

Each time the tracing system changes from trace-generation mode to trace-analysis mode, a
certain amount of ‘‘dirt’’ is introduced into the trace, where the activity reflected in the trace
does not accurately reflect a run of an uninstrumented system.  No user-level trace is lost, but it
is possible for some amount of errant system activity to be measured or ignored.  As an example,
an I/O request might be made during trace-generation mode, but complete during trace-analysis
mode. The trace from the completion of the I/O request would then be lost.  The approach taken
to minimize the inaccuracies introduced by these transitions was to be sure they are rare, by
making the in-kernel trace buffer large.  The current system uses a 64 megabyte buffer.  A buffer
of this size permits approximately 32 million instructions of continuous execution between trace
analysis phases.  For an untraced system, this corresponds about two seconds of continuous ex-
ecution.

4.4. Truths Revealed
In debugging the tracing system, a procedure used repeatedly was to identify anomalous be-

havior indicated by simulator output and trace it back to a bug in the simulator or simulation
model. Eventually, these investigations stopped revealing problems in the experimental system,
and began to expose unexpected behavior from the actual hardware and operating system im-
plementation. Some of these behaviors include:

• A bug in the instruction cache flushing routine caused an excessive number of un-
cached instruction references in Mach 3.0.

• System activity accounts for about 1% of execution time in tomcatv, but system
policy in the virtual-to-physical page selection can cause execution time to vary by
over 10%.

• Conservative write policies in Ultrix induces greatly increased I/O delays.
Overall, the ability of the tracing system to reveal these unexpected behaviors demonstrates that
the combined tracing/simulation system accurately reflects the behavior of the uninstrumented
system.
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5. Validation of Methods
This section describes how we measured the fidelity of the experimental system to real system

behavior. The measurements use the example workloads are described in Table 1.  Overall,
these measurements demonstrate that the tracing/simulation system is a good model for real sys-
tem behavior.

Workload Description

sed The UNIX stream editor run three times over the same 17K input file.

egrep The UNIX pattern search program run three times over a 27K input file.

yacc The LR(1) parser-generator run on an 11K grammar.

gcc The GNU C compiler (gcc) translating a 17K (preprocessed) source file into optimized
Sun-3 assembly code.

compress Data compression using Lempel-Ziv encoding.  A 100K file is compressed then uncompressed.

espresso A program that minimizes boolean function run on a 30K input file.

lisp The 8-queens problem solved in LISP.

eqntott A program that converts boolean equations to truth tables using a 1390 byte input file.

fpppp A program that does quantum chemistry analysis. This program is written in Fortran.

doduc Monte-Carlo simulation of the time evolution of a nuclear reactor component
described by 8K input file.  This program is written in Fortran.

liv The Livermore Loops benchmark.

tomcatv A program that generates a vectorized mesh.  This program is written in Fortran.

Table 1: Experimental workloads with execution times for a DECStation 5000/200.

Except where indicated, all programs are written in C. The bottom four workloads are
floating-point intensive.

5.1. Program Execution Time
We used a high resolution timer to measure execution times of the workloads.  In Table 2, we

compare the measured times with times predicted from a trace-driven simulation of the DECsta-
tion 5000/200 memory system.

The predicted times in Figure 2 include contributions from four different sources:

• CPU cycles

• memory system stalls

• arithmetic stalls

• I/O stalls
Each instruction executed contributes one CPU cycle to the total execution time. Memory sys-
tem stall cycles are calculated by multiplying counts of penalty events (cache read misses, un-
cached reads, and write-buffer stalls) by the number of stall cycles per event.  Pixie [27] was
used to estimate arithmetic stalls, as the tracing system does not measure these events.

The estimate of I/O stalls is derived from a count of idle-loop instruction references made
from the memory reference trace.  Information on idle-loop activity from the trace must be ad-
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Mach 3.0 Ultrixiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iworkload measured predicted measured predictediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

e
sed 0.58 0.48 0.48 0.54

grep 2.05 2.02 1.94 1.90
9yacc 1.70 1.68 1.80 1.7

gcc 2.26 3.21 4.10 4.16
1compress 1.38 1.17 1.26 1.1

espresso 6.03 6.21 6.43 6.40

e
lisp 62.0 56.6 53.3 53.6

qntott 66.1 65.7 65.6 65.8
7

d
fpppp 15.9 16.7 15.9 15.
oduc 20.7 21.4 21.7 21.2

6
t

liv 1.29 1.29 1.17 1.2
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Table 2: Run Times, measured and predicted, in seconds.

The predicted times are the sum of machine cycles from four different sources: instruction
execution, memory system stalls, I/O time, and arithmetic stalls.  The first three values are
measured by the tracing system.  Estimates for arithmetic stalls are as measured by pixie [27].
Execution times in this table are for runs with revision 3.0 of the floating point unit.  Also, the
buffer cache was warmed with executable text before program execution.

justed to compensate for the effects of time-dilation on the execution of idle loop.  As an ex-
ample, consider a workload that executes 15 million instructions in the idle loop while waiting
for completion of synchronous disk I/O.  This corresponds to some amount of real time required
for I/O operations by the disk.  Address tracing does not change the latency of disk operations,
but time dilation changes the execution rate of the idle-loop.  Suppose that instrumented code is
slower than uninstrumented code by a factor of fifteen.  Then only 1/15th as many or 1 million
idle-loop instructions will be recorded in the trace.  Idle-loop instruction counts from the trace
must be scaled to compensate for the slowdown in idle-loop execution.  For the predictions of
program execution time from trace data, 15 is used as an estimate of the effect of instrumentation
on the idle loop.

The running times from simulator data are rough estimates, and are subject to error from a
number of sources.

• Disk Latency and Idle time. The simulator’s model of disk delays is only an ap-
proximation of real behavior.  This approximation introduces distortions to time es-
timates in two ways.  First, Some system activity is missed when tracing is inter-
rupted during a disk request. Second, tracing changes the behavior of disk read
ahead. Some read-ahead requests which complete in the traced system don’t com-
plete in the standard system. This results in idle time for the standard system that
does not occur in the traced system.

• Lack of pipeline model. The simulation system does not model the CPU pipeline.
Although there is a mechanism to model the correct sequencing of instruction reads
and data reads and writes, two other behaviors are not modeled:

• Floating point latency can overlap with write buffer cycles and cache misses
in the DECstation 5000/200.  This overlapping is not modeled in the
simulator.

• The simulator does not account for cycles required to enter and exit exception
handlers.
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• Page mapping policy. Cache performance can vary significantly depending on the
virtual to physical page mapping in use.  This affects the repeatability of workload
behavior, particularly for the random page mapping policy used in Mach 3.0.

• Clock interrupt frequency on both systems was scaled by a factor of fifteen to com-
pensate for time dilation.  This is a coarse approximation.
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Figure 3: Error in predicted execution times for Ultrix.

The relatively large prediction errors for sed, compress, and liv are explained by inaccuracies
in the simulation model used for prediction.  See the text for a complete discussion.

Figure 3 shows percent error for predictions of execution time for twelve workloads running
***under Ultrix . Predictions for most of the workloads are quite good.  Three of the workloads

have errors greater than five percent.  The explanation for these errors give interesting insight
into the behavior of the tracing system:

• Sed has the shortest execution time of all the workloads, under 0.5 seconds for three
runs. The 12% error corresponds to 0.06 seconds. Such a short execution time
exaggerates the distortion introduced by disk latency approximations.

• Compress has the largest input file of all the workloads, 100K bytes, but its execu-
tion time is only 1.32 seconds.  The prediction error is mostly due to disk read-ahead
phenomena, where reads-ahead requests to disk complete in the traced system but
induce idle time in the untraced system. A comparison of idle time predicted by the

***Because of the large variability of running time induced by the Mach 3.0 page mapping policy, we do not
present error figures for Mach 3.0.
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trace/simulation system and idle time measured by the timing facility in the c-shell
[31] confirms that the simulator does under-estimate idle activity.

• Liv has the worst write-buffer behavior of all the workloads, and also has significant
floating point activity.  The prediction error is caused by the overlapping of write
buffer and floating point activity that is not modeled in the simulator.

Considering the known sources of error, the estimated execution times correlate well with
measurements of execution time made with an accurate timer. Estimates of idle time are one of
the dominant sources of error.  As idle time has a negligible effect on cache performance, this
source of error in execution-time predictions does not cause a significant distortion for simula-
tions of memory system behavior for the restricted class of workloads we consider.  Similarly,
the simulation does not model the overlap of floating point delays with memory delays, but this
has no impact on cache activity, as floating point delay has negligible impact on the pattern of
cache misses that occur.  Page mapping is another source of error, and the random policy used by
Mach 3.0 causes much greater variation in execution times, with a subsequent loss of precision
in time predictions.  The good estimates of running time for most of the workloads demonstrates
that the address trace collection is accurate, with errors in predicted execution time due primarily
to inaccuracies in the modeling of the system rather than error inherent in the trace.

5.2. User TLB Miss Count
Using a kernel with a user TLB miss counter, we compared the TLB miss counts predicted by

the simulator to TLB miss counts from an uninstrumented system (See Table 3).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Mach 3.0 Ultrixiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iworkload predicted measured predicted measurediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

e
sed 7493 6438 131 190

grep 6430 6122 164 191
8yacc 9270 7494 270 31

gcc 53389 48355 29057 29948
2compress 91706 89966 79682 7969

espresso 10351 7252 838 1006
9

e
lisp 28605 37919 110 17

qntott 717428 706915 675166 674579
4

d
fpppp 22816 21893 3256 189
oduc 48859 39129 6023 3510

3
t

liv 2753 2423 70 6
omcatv 340968 359976 317872 314950 i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3: TLB misses, measured and predicted.

One source of error in the TLB miss predictions is explicit TLB writes from the kernel.  The
kernel sometimes avoids a user TLB miss by writing the TLB explicitly, using tlbdropin()
in Ultrix or tlb_map_random() in Mach.  In the simulator, which does not know about these
writes, all TLB fills are caused by TLB misses. Kernel instruction reference counts for gcc
showed about 1800 calls to tlbdropin() for Ultrix, and 3700 calls to tlb_map_random()
for Mach.  Also observe that the TLB uses a random replacement policy.  The miss rates
predicted by the simulator demonstrate a certain amount of error.  Given the type of activity and
its small impact on overall performance, this error does not detract significantly from the quality
of overall measurements. These measurements demonstrate another end-to-end method that was
used to evaluate and improve the correlation between simulated and real behavior.
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6. Conclusions
Our experience demonstrate that software methods can be applied to collect full address

traces, with both system and user references.  We have demonstrated instrumentation tools, trace
formats and techniques that help insure trace quality, and measurements to establish that address
traces reflect true system behavior.  Traces from all three systems have already been applied to
numerous problems in memory system and software design research [5, 7, 8, 9, 18].
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