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Abstract

Some file systems can delay writing modified data to disk, in order to reduce
disk traffic and overhead.  Prudence dictates that such delays be bounded, in case
the system crashes.  We refer to an algorithm used to decide when to write
delayed data back to disk as an update policy. Traditional UNIX systems use a
periodic update policy, writing back all delayed-write data once every 30
seconds. Periodic update is easy to implement but performs quite badly in some
cases. This paper describes an approximate implementation of an interval peri-
odic update policy, in which each individual delayed-write block is written when
its age reaches a threshold. Interval periodic update adds little code to the kernel
and can perform much better than periodic update. In particular, interval periodic
update can avoid the huge variances in read response time caused by using peri-
odic update with a large buffer cache.

This Research Report is a preprint of a paper to appear in the Summer 1994 USENIX Conference.
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1. Introduction

File systems usually cache data and meta-data in a main memory buffer cache, in order to
improve performance.  When a modification is made, the file system may write the new infor-
mation to stable storage (e.g., disk) immediately, or it may delay the write.  This leads to a
tradeoff: delaying writes reduces the load on the disk and system overhead, but the data could be
lost if the system crashes before the write occurs.  In many cases, users can tolerate this vul-
nerability, and welcome the performance advantages of delayed writes.

UNIX systems have traditionally supported delayed writes, from the earliest C-language
version [13, 14] up through 4.3BSD [6] and its derivatives.  In these systems, a modification of a
partially-filled data block results in a delayed write, while a modification that fills a block results
in an immediate, although asynchronous, write.  The ULTRIX operating system can be con-
figured to be even more aggressive, delaying all writes of modified data.

Without some bound on the age of a delayed-write block, a system crash could cause loss of
arbitrary data.  Users would not tolerate this, so the file system does push delayed-write data out
to disk, after a while. We use the term update policy to describe the algorithm that decides what
to write out, and when.

UNIX systems have traditionally used a simple periodic update (or ‘‘PU’’) policy:  once every
30 seconds, all dirty blocks in the file system’s buffer cache are placed on the output queue for
the appropriate disk.  Recent analytical and simulation results, presented by Carson and Setia [2],
showed that the PU policy actually performs worse in many cases than the write-through (WT)
policy (in which all writes are immediate).  Their analysis showed that PU causes increased
mean response times for read operations; the results presented in this paper show that PU can
also increase the variance in read response time.

Because so many systems use the now suspect PU policy, it seemed like a good idea to
validate the results of Carson and Setia on actual systems; their analyses and simulations, while
careful, had to use certain simplifying assumptions.  Carson and Setia suggested that several
other update policies would provide better performance, so it also seemed useful to implement
one of these and measure its performance.

In this paper, after discussing the theoretical background in some more detail, I describe an
implementation of the interval periodic update (IPU) policy.  I also present the results of some
simple measurements of PU and IPU made using an actual implementation, rather than a model.
The results appear to bear out the basic conclusions of Carson and Setia.  What I found is that
although use of delayed writes can improve mean response time, combining delayed writes with
periodic update increases the variance in response time, but using interval periodic update both
the mean and variance are improved.

2. Theoretical background

In this section, I discuss the previous simulation study, the possible alternative update policies,
the choice of an update interval, and how this problem will scale with changes in technology.
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2.1. Carson and Setia’s results for Periodic Update

The study done by Carson and Setia showed that the periodic update (PU) policy, while easily
implemented, can perform quite badly. By dumping all the dirty blocks into the disk queue at
once, PU can cause lengthy queueing delays.  Latency-sensitive synchronous operations, such as
file reads or synchronous writes, are forced to wait behind latency-insensitive asynchronous
operations in the queue.  If the system were to use a write-through (WT) policy instead, disk
write operations would normally be spread out more over time, and the queues would be shorter.

Carson and Setia show that the relative performance of WT and PU, measured in terms of
mean read-response time, depends on several parameters:

Read load
The ratio of read operation arrival rate to the rate that the disk can support.  A read load of
1.0 is one that the disk could just barely keep up with, if no writes were done.

Write load
The ratio of write operation arrival rate to the rate that the disk can support.

Cache hit ratio for writes
The fraction of write operations that are satisfied by modifying already-dirty blocks in the
buffer cache.

They expressed their results in tables showing, for a given read load and write load, what write-
hit ratio PU requires in order to match or exceed the performance of WT.  (Since WT causes disk
writes to occur almost immediately, it cannot benefit from write hits in the cache.)

They found that:

• When the disk is not overloaded, ‘‘the cache must eliminate 80-90 % of all write
accesses before the PU policy pays off.’’

• Under heavy loads, the PU policy gets some benefit from write-hits in the cache,
and thus reduces the overall disk load.  In cases where the WT policy would saturate
the disk, the PU policy gives a lower mean read-response time.

Cache hit rates vary, depending on cache size, application, and replacement policy, but we are
unlikely to achieve average write-hit rates exceeding 80%. For example, Baker et al. [1] traced
user-level file access patterns in a distributed system and found that 88% of the bytes written
were written sequentially; if the applications in question used traditional buffering strategies,
most of these sequential writes would not have hit already-dirty buffer-cache blocks, and so the
write-hit rate must have been quite low.

Carson and Setia found an analytical model for the mean response time.  Their simulations
were used to validate this result, but they apparently did not investigate other statistics besides
the mean.  As section 4 will show, PU is especially bad for worst-case response time, and for
overall variance in response time.  It is not hard to construct a situation where PU can lead to
worst-case read response times of many seconds.
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2.2. Proposed alternative policies

PU performs poorly because it generates long queues at periodic intervals, and subsequent
synchronous requests get stuck at the ends of these queues.  Perhaps one could improve read-
response times by changing the queueing mechanism.

UNIX systems typically maintain a single, unprioritized operation queue for each disk.  Sup-
pose that read operations were given priority over asynchronous operations already in the queue.
Then, read operations would not ‘‘see’’ a queueing delay caused by the queued delayed writes.
Carson and Setia analyzed this periodic update with read priority (PURP) policy, and showed
that it mostly solves the read-response time problem.  I found PURP unsatisfactory, however, for
several reasons:

• Modification of the existing disk queue mechanism would require changes to
numerous kernel modules, including all disk drivers and many of their clients (file
systems, virtual memory systems, etc.)

• Modern disk controllers and drives can queue several operations in their internal
buffers. One would either have to accept the resulting queueing delays, or somehow
modify the hardware to support the new queueing mechanism.

• Carson and Setia point out that fixed-priority schemes such as PURP introduce the
potential for infinite delays of delayed writes, if the read load is enough to saturate
the disk.  Peacock [12] reported that adding PURP to System V Release 4 does seem
to hurt benchmark performance, although it substantially increases single-file write
throughput.

Although implementation of a prioritized queueing scheme should be helpful in general, it is
neither a complete solution to the bursty-update problem, nor is it the simplest solution.

Carson and Setia also proposed the interval periodic update (IPU) policy, in which each dirty
block is written out when its age reaches a threshold.  If file modifications are nicely spread out
in time, this means that the delayed writes back to the disk will also be spread out. As with PU
and PURP, IPU uses the buffer cache to eliminate some disk writes that would be done by WT.
Unlike PU and PURP, IPU normally avoids creating large bursts of writes, and so avoids the
associated queueing delays.  Carson and Setia show that IPU never gives worse mean read
response time than WT or PU, although in some situations it may perform worse than PURP.

Anna Hac [3] describes algorithms meant for deciding when to move dirty blocks from the
buffer cache to a disk queue.  In essence these replace the time-driven update policies with
dynamic algorithms, which choose when to schedule disk writes based on the system load and
disk queue length.  Such adaptive algorithms may perform better than any of the open-loop al-
gorithms described in this paper, but they require more extensive changes to the operating sys-
tem. I do not have anything useful to say about them, and they merit additional study.

2.3. Choice of update interval

UNIX systems have traditionally used a 30-second interval between writes generated by the
PU policy.  This means that, ignoring brief queueing delays, no information will be vulnerable to
a crash for longer than 30 seconds.  (Applications that depend on reliable data storage should
arrange to write their data synchronously, using the fsync() system call.  Many other applications,
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such as compilers, can afford to use delayed writes because their output can easily be
reconstructed, or because if the system crashes during a run, the resulting partial output is useless
anyway.)

Under the assumption that modifications occur more or less uniformly over time, the average
age of a delayed-write block, when it is written to disk, is 15 seconds.

The IPU policy also has a characteristic time scale, the age at which a dirty buffer is scheduled
for writing to the disk.  If we set this to 30 seconds, then (again ignoring queueing delays), by
definition, no information will be vulnerable to a crash for longer than 30 seconds.  Also by
definition, the average age of a block, when written to disk, is 30 seconds.

If we choose to set the update delay for IPU the same as the update interval for PU, then both
policies expose modified data to exactly the same worst-case vulnerability.  Doing so, however,
means that the mean age of dirty blocks is roughly twice as it would be with the PU policy.  This
suggests that IPU should see a higher write-hit ratio, and might avoid a few more disk write
operations.

Carson and Setia showed that, as the update interval was increased, the write-hit ratio at which
PU began to pay off had to increase as well.  We do expect this ratio to increase, but does it
increase fast enough?  Carson and Setia cite other work suggesting that it might [10] (see also a
more recent study [1]). Unfortunately, I know of no actual test of this hypothesis.  Still, one
might suspect that the increased average lifetime of dirty blocks, when the IPU policy is used,
might account for some performance advantage. (Note that the experiments reported in sections
4.1 and 4.2 carefully avoid repeated writes to the same block during an update interval, and so
should encounter abnormally low cache hit ratios.)

2.4. Scaling properties

1One might ask why, if PU performs so badly, has this not been a problem in practice . The
answer is that buffer cache sizes and disk speeds are improving at different rates, which changes
the ratio of disk queue length to disk service latency.

4.2BSD and related systems only delay partial-block writes.  Since most files are written se-
quentially, most blocks are filled quickly, and pending delayed writes of partial blocks are turned
into asynchronous immediate writes of filled blocks.  If the buffer cache is not large enough to
hold many entire files, then it makes little sense to delay writes of full blocks, since these blocks
are unlikely to be referenced again quickly.

Memory chips get larger: this is one of the most reliable laws of recent history. One can
quibble over whether the doubling time is 18 months or two years, but main memory sizes do
increase (at roughly constant cost) as the years pass, and no other technology trend is quite so
steep [5].

1Some systems have indeed exhibited poor behavior resulting from disk queues containing many asynchronous
write requests [12].
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This trend means that, if the fraction of main memory used as a buffer cache remains constant,
the absolute size of buffer caches is increasing with time.  (Many systems, including Mach,
Sprite, and recent UNIX implementations, no longer allocate a fixed fraction of main memory for
the buffer cache, so it can grow to fill all of memory.)  Since mean file sizes do not seem to be
increasing as rapidly [1], perhaps as main memories get larger, using delayed writes would in-
creasingly reduce disk traffic because of write-hits in the cache. (Traces do show that a few
large files are getting much larger [1], and so caching algorithms should perhaps switch to write-
through for any file larger than a certain size.)

Although increasing DRAM densities lead to larger buffer caches and perhaps more use of
delayed writes, disk technology trends are less encouraging.  Disk access times have improved
by perhaps one-third in ten years.  Disk densities are increasing more rapidly, doubling every
three years [5]. Disk bandwidths tend to scale as the square root of disk density (since density
improvements come from both higher signal rates and smaller track spacings), and also benefit
from small increases in rotation rate (from 3600 RPM to 5400 RPM), so over the past decade
they have improved by perhaps a factor of six.

This means that the time it takes to write the entire buffer cache to disk is growing, in absolute
terms. This is the key problem for the PU update policy: the queueing delays caused by its burst
of write requests will get worse in the future.

Delayed writes typically are queued in no particular order.  If the disk driver does nothing to
schedule the write operations more carefully, the rate at which the queue can be drained depends
mostly on the disk’s average access time.  In table 1, I show how long it takes to write the entire
buffer cache (assuming this is 10% of main memory) for systems typical of 1983 and 1993, and I
rashly project current trends 10 years into the future.

Year RAM size Buffer Number of Avg. disk Time to write
size buffers access time all buffers

1983 1 MB 512 B 205 35 msec 7.2 sec

1993 64 MB 4 KB 1638 15 msec 26 sec

2003 4 GB 64 KB 6554 6 msec 39 sec

Table 1: Scaling for random write of entire buffer cache

Year RAM size Buffer cache Disk Time to write
size Bandwidth all buffers

1983 1 MB 103 KB 1 MB/s 0.1 sec

1993 64 MB 6554 KB 5.5 MB/s 1.2 sec

2003 4 GB 410 MB 30 MB/s 13.6 sec

Table 2: Scaling for sequential write of entire buffer cache

If the disk drive system can optimize the order of writes in the queue, in the best case the
queue can be drained at full disk bandwidth. (Many UNIX disk drivers do sort requests to avoid
seeks [6], and some modern disk drives themselves reorder requests.)  In table 2, I show how the
delays for this process scale over time.  These numbers are much better than those in table 1, but
they are probably unattainable, and in any case they are also getting worse.
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3. Implementation

In this section, I discuss the implementation of various update policies, including the original
UNIX implementation of PU, my approximate implementation of IPU, and Sprite’s implemen-
tation of a similar policy.

3.1. 4.2BSD implementation of the PU policy

Before describing how I implemented the IPU policy, I will describe the ULTRIX implemen-
tation of the PU policy.  My code is a simple modification of the ULTRIX implementation.

Every 30 seconds, a daemon process (/etc/update) wakes up and does a sync() system
call. This system call schedules writes for certain file system meta-data (the superblock, for
example), and then calls the bflush() routine to update delayed writes.

In the original 4.2BSD implementation, bflush() traversed a queue containing all of the valid
blocks in the buffer cache, and scheduled an immediate write for each delayed-write block.
Once a block was written and removed from the queue, the algorithm started again from the
beginning of the queue; this is done because the queue could be manipulated by another process
while the bflush() is waiting for the write to complete.  Thus, in the worst case this required time
proportional almost to the square of the size of the buffer cache, and as memories grew larger,
the /etc/update process started to consume a large fraction of the CPU.

Recent versions of ULTRIX solve this problem by keeping a separate list of delayed-write
blocks (i.e., blocks that are dirty and have not yet been queued for the disk).  The bflush() routine
simply traverses this list once; it need not examine clean blocks, nor does it have to examine any
block more than once.

3.2. Implementation of the IPU policy

Carson and Setia point out that to implement a pure IPU policy would require a somewhat
complex timer mechanism.  Since the timers in the UNIX kernel are quantized, if one wants to
issue write operations in the same order as the blocks are dirtied, then one also needs to maintain
a separate ordered queue.  The overhead of the queue and timers may not be onerous, but it does
complicate the kernel.

But why implement pure IPU?  If a practical implementation must use quantized time, why
not use a relative coarse grain?  If the algorithm that moves delayed-write blocks onto the disk
queues runs, say, once per second, then the queues will receive bursts of writes, but the bursts
will (on average) be about 3% as large as they would be with the PU policy and a 30-second
update interval. There will also be a 1-second quantization error in the maximum vulnerable
period for a dirty block, but who cares?

I chose to implement this kind of approximate IPU (or ‘‘AIPU’’).  I created an alternative
version of the sync() system call, smoothsync(), that takes as its parameter the age at which a
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2dirty block should be written to disk . The smoothsync() system call invokes a modified version
of the bflush() routine, called bflush_smooth(). The main difference is that bflush_smooth() only
schedules a buffer for writing if it has been dirty for longer than the specified threshold.

I replaced the usual /etc/update program, which simply calls sync() once every thirty
seconds, with one that calls smoothsync(30) once a second.  This program also forces the file
system meta-data to disk once every 30 seconds.

The system must also record the time at which a buffer becomes dirty, using a timestamp field
in the header associated with each buffer.  I did this by adding a few lines of code to a routine
called brelse(), which is the only place where a buffer is placed on the delayed-write list.  At this
point, if the timestamp field is zero, then it is set to the current time; otherwise, it is left alone.
The brelse() routine is also the only place where buffers are placed on the list of clean buffers; at
this point, the timestamp field is set to zero.

Thus, a clean buffer always has a zero timestamp.  A dirty buffer always has a timestamp
reflecting when it was first dirtied. Further modifications of a dirty block do not update the
timestamp; otherwise, a block that was touched more often than once every 30 seconds would
never be written to the disk.

ULTRIX already includes a timestamp field, busy_time, in the buffer header.  This is used only
when a buffer is busy (i.e., on a disk operation queue), and so is never used when a buffer is on
the delayed-write list.  Therefore, it can be ‘‘time-shared’’ between these two uses.  Other
operating systems, including 4.xBSD, do not have such a timestamp field, and so the implemen-
tation of IPU would require its addition.  The space overhead is small; using modular arithmetic,
a one-byte field would allow maximum ages under 255 seconds.

2This modification re-introduces the possibility of N behavior in the worst case (that is, when
about half of the buffer cache is due to be written during a single interval).  I solved this by using
an extra queue.  The bflush_smooth() routine starts by traversing the delayed-write queue and
moving ready-to-write buffers from there onto a pending-write queue; this can be done without
blocking, and in time linear in the size of the buffer cache.  In the second phase, bflush_smooth()
writes the blocks on the pending-write queue.  It could block during this phase, but because it
simply pulls the first entry off of the pending-write queue, the algorithm is linear in the number
of ready-to-write blocks, and so is also linear in the size of the buffer cache, even in the worst
case.

3.3. Sprite’s implementation of an IPU policy

The Sprite operating system [9] implements an approximate IPU policy, although somewhat
different from the one I implemented.  Sprite keeps track of the first-dirty time for the oldest
dirty block of each file.  Every five seconds, it scans all the dirty files in its cache, and if a file’s
oldest dirty block is more than 30 seconds old, all of the file’s dirty blocks are written back [4].

2Actually, instead of creating a true system call, I added an ioctl request, since this involved writing less code.
The net effect should be identical.  I added one more ioctl, to write file system meta-data to disk; this can be called
once every 30 seconds, to preserve existing sync() semantics.
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Because this policy can in theory cause write-backs of fairly young blocks, it may perform some-
what differently from IPU or AIPU. However, since most files are open for only brief
periods [1], and so normally all writes to a file happen more or less simultaneously, the average
lifetime of a dirty block should be close to 30 seconds.

4. Results

In this section, I describe some simple measurements comparing my implementation of IPU
against the original PU policy.  All of these measurements were done using a modified ULTRIX
version 4.3 kernel, running on either of two DECstation systems; the hardware is summarized in
table 3. The SCSI disk drives used apparently do not reorder requests, and the ULTRIX version
4.3 SCSI device driver does not sort requests before issuing them.

Description CPU type SPECMark Disk Average Bandwidth
rating type access time

Faster system DECstation 5000 18.5 RZ58 18 msec 3.8-5.0 Mbyte/sec
model 200

Slower system DECstation 3100 11.3 RZ57 23 msec 2.2 Mbyte/sec

Table 3: Systems used for measurements

In all of the experiments in sections 4.1 and 4.2, two processes ran simultaneously:

• A write-load generator, configured to dirty half the blocks in the buffer cache every
30 seconds, at a rate set so that no block would be touched twice in one minute.
This means that none of the writes would hit a dirty block in the cache.

• A read-load generator, which read 10,000 randomly chosen blocks from a large file,
measured the read-response time for each block, and generated a histogram of the
delays.

On the faster system, the buffer cache held 1228 blocks, and the read-load generator used a 34
Mbyte file. On the slower system, the buffer cache held 614 blocks, and the read-load generator
used a 32 Mbyte file.  Both the generators used files stored on the same disk.

I varied the system configuration, enabling or disabling the use of delayed writes for full data
blocks, and changing the update policy.  Six trials were done for each configuration. I did not
measure a pure write-through configuration, since I do not expect any modern system to use pure
WT, given its known poor behavior.

4.1. Local tests

The first set of tests show how the update policy and use of delayed writes affects response
time for reads when the disk is local to the generating host.  Figures 1 and 2 show the results for
the faster and slower systems, respectively.

The figures show a point for each trial, plotted with mean read response time on the horizontal
axis, and the standard deviation of read response time on the vertical axis. Open squares show
results for the default configuration (asynchronous writes, PU policy):  moderately high mean
response time, but low variance.  When I enabled delayed writes without changing the update
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policy, the mean response time dropped somewhat, but the variance increased tremendously
(open circles).  I then switched to the AIPU policy (filled circles), which reduced the variance
without markedly increasing the mean.  One could also use the AIPU policy without delayed
writes (filled squares); this results in about the same mean as the default configuration, but
slightly less variance.
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Figure 1: Local random reads, fast system
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Figure 2: Local random reads, slow system
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At first, it seemed strange that the mean read response time is lower for delayed writes, since
the write-load generator was constructed to avoid dirty-block cache hits; that is, the total number
of write operations should be the same in either case.  However, the generator does its writes
sequentially, which means that when a group of delayed writes is sent to the disk, they are likely
to be directed at nearby disk locations, and many end up in the same cylinder group.  This
reduces the average number of disk seeks per write (relative to non-delayed writes), and so
reduces the load on the disk.  Since the read-load generator issues random-access reads as fast as
possible, disk seeks are probably the rate-limiting bottleneck, and a reduction in the number of
write-related seeks leaves more disk-seek capacity to be used for reads.  Also, issuing multiple
writes to the same region of the disk may reduce rotational latencies.

For example, figure 1 shows that without delayed writes, the system can support about 32
reads/sec., and the write-load generator in this case issues about 20 writes/sec., for a total load of
about 52 disk operations/sec.  Based on the average access time shown in table 3, the disk drive
should support about 56 random-access operations/sec, which corresponds closely.  With
delayed writes, the read rate increases to about 38 reads/sec., which means that the disk should
only be doing about 14-17 random writes/sec.  This suggests that some fraction of the 20 blocks
written are being combined with neighbors.

Figures 1 and 2 show the standard deviation of the response times, but this hides how truly
awful things can be with the PU policy.  Figures 3 and 4 show histograms of response time for
the faster and slower systems, respectively.  In these histograms, all six trials for each configura-
tion have been combined, and the x-axis has been divided into logarithmic buckets.

The danger of combining delayed writes and the PU policy now shows up clearly (open circles
on the histograms).  Because the PU policy puts all the dirty delayed-write blocks on the queue
at once, which in these trials could be as high as about 600 blocks, some reads will be delayed by
up to 8 or 9 seconds. A significant number are delayed by longer than one second.

With the AIPU policy (filled circles), however, only one thirtieth of the dirty blocks show up
on the disk queue at any one time.  The graph in figure 3 shows a small peak in read-response
time at about 300 msec.  Since we expect 20 blocks (600/30) to be queued once a second, this
implies a mean write-delay of about 15 msec, which corresponds closely with the RZ58’s
specified average access time of 18 msec.  More important, this configuration shows a maximum
delay of 746 msec, and all but one of the 60,000 samples are below 450 msec.  AIPU clearly
improves upon PU, in this experiment.

Even when I disabled delayed writes, the PU policy still lead to occasional long delays (up to
five or six seconds).  In other words, AIPU performs better than PU even if one does not want to
abandon the improved safety of using asynchronous writes.

4.2. Remote tests

Most NFS client implementations, to ensure cache consistency and detection of write errors,
force delayed writes to the server when a file is closed.  This means that NFS clients get little
advantage from delayed writes, and do not depend much on the update policy. More recent file
service protocols, however, such as Sprite [9], Spritely NFS [15], and NQNFS [7], use explicit
cache-consistency protocols and so can benefit from delayed writes.
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I ran a set of experiments using Spritely NFS to access a remote disk, using the ‘‘slower’’
system as the client, and the ‘‘faster’’ system as the server.  Both the read-load and write-load
generators ran on the same client host.  The server host supports PrestoServe non-volatile
RAM (NVRAM).  I ran six trials in each of six configurations, as shown in figure 5, using
random-access reads.  I also ran six trials in each of four configurations, as shown in figure 6,
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using sequential reads; in this set of trials, delayed writes were always used.  The sequential-read
generator cycled through the blocks of a file much larger than the buffer cache on either the
client or server, so no reads were satisfied by the caches.
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Figure 5: Remote random reads
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Figure 6: Remote sequential reads

These experiments showed less conclusive results than the local-disk experiments.  For ran-
dom reads (figure 5), delayed write combined with PU results in slightly poorer read response
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time than delayed write with AIPU, although several AIPU trials exhibited much higher variance
than any other trials.  PrestoServe also seems to be generally beneficial.

For sequential reads (figure 6), AIPU seems mostly to reduce the variation between trials.  The
mean response time is slightly worse for AIPU than for PU without PrestoServe, and slightly
better with PrestoServe.

4.3. Kernel-build benchmark

To see if the update policy had any effect on a ‘‘real’’ application, I measured the time it took
to compile and link the entire ULTRIX V4.3 kernel, under different combinations of update policy
and write policy.  These tests were all run on the ‘‘faster’’ system, with all kernel source and
object files on the local disk.  This process creates about 43 MB of object files, and a similar
amount of temporary file data. I ran three trials in each configuration; the means of the results
are shown in table 4.

Periodic Approx. interval Relative
update periodic update elapsed time

Asynch writes 3280 sec. elapsed 3234 sec. elapsed 0.986
40548 writes 37854 writes

Delayed writes 3298 sec. elapsed 3206 sec. elapsed 0.972
31523 writes 25966 writes

Mean values for 3 trials

Table 4: Elapsed time on kernel-build benchmark

The AIPU policy shows a small but clear advantage over the PU policy, especially when using
delayed writes.  In fact, when using delayed writes with the PU policy, the net elapsed time is
actually slightly worse than the normal ULTRIX configuration. The combination of delayed
writes and AIPU is about 2.1% faster than the asynch write/PU combination.  Note that this
benchmark is rather CPU-bound; on these trials, the CPU idle time averaged between 12% and
14%. I would expect AIPU to show a larger benefit on a more I/O-bound application.

The table also shows the number of disk writes charged to the processes involved in the build.
The kernel charges a process the first time a block is dirtied; subsequent writes to a dirty block
are not counted.  We see that while use of delayed writes substantially decreases the write count,
by increasing the chance that a write will hit a dirty block, the AIPU policy provides another big
decrease, probably by increasing the average lifetime of a dirty block. The combination of
delayed writes and AIPU eliminates over 35% of the disk write operations; AIPU by itself ac-
counts for less than half of the improvement.

The table does not show the number of read I/Os charged, since this hardly varies at all with
the update policy, and only a few per cent with the use of delayed writes.
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4.4. CPU costs of update mechanism

Does the update policy have any effect on the CPU-time cost of doing the updates? The AIPU
policy scans the list of dirty blocks 30 times more often than the PU policy does, so one might
expect it to consume more CPU time.

I measured the CPU time charged to the /etc/update update process during the kernel-
build benchmark.  This includes both user-mode time (which should be nearly zero) and kernel-
mode time (which accounts for all CPU time spent in the bflush() routine, as well as other ac-
tivity). It does not include kernel-mode time spent as a result of disk interrupts.  The results are
shown in table 5; note that the underlying measurements were done with 1-second resolution,
and so small variations in the results are not significant.

The table shows that, not surprisingly, aggressive use of delayed writes does increase the CPU
time spent in finding delayed-write blocks and scheduling them for disk I/O.  Contrary to my
expectation, however, AIPU actually reduces the CPU cost of doing updates (although the total
cost is in either case insignificant).

I cannot provide a definite explanation, but I suspect that the cause may be the difference in
the number of delayed-write blocks actually written to disk.  Both algorithms scan every
delayed-write block in the buffer cache, and since the AIPU algorithm does this 30 times more
often, this suggests that the cost of actually scanning blocks does not dominate the CPU time; the

3time is probably spent in the device driver . I ran additional trials using AIPU with a 30-second
interval between updates (but still using a 30-second age threshold for writing back dirty blocks).
This took more CPU time than AIPU with a 1-second interval, but still less than PU.

PU, PU, AIPU-1, AIPU-1, AIPU-30, AIPU-30,
async writes delayed writes async writes delayed writes async writes delayed writes

CPU time used 4.3 sec. 6.0 sec. 2.0 sec. 2.3 sec. 2.7 sec. 2.7 sec.
by /etc/update
(mean of 3 trials)

Blocks scanned 9531 16749 290214 508448 14593 25847
by /etc/update

Blocks written 9531 16749 5375 10023 5266 9519
by /etc/update

Dirty blocks modified 391K 419K 393K 426K 405K 426K
during benchmark

biowait() sleep events 8234 8274 7607 8121 7496 7751
during benchmark

Table 5: Statistics for kernel-build benchmark

Table 5 shows that AIPU scans far more blocks than PU, because PU scans each block exactly
once, but AIPU may scan a dirty block many times before deciding that it is old enough to write

3Note that for the kernel-build benchmark, PU with delayed writes scans 16749 blocks in 6.0 CPU seconds,
placing a lower bound of 6/16.7 = 0.36 msec per block scanned.  This corresponds to several hundred instruction
executions, much more than could be accounted for by the scanning loop itself, so most of this time must be spent in
the disk driver.
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to disk.  However, AIPU actually writes fewer blocks than PU, because AIPU allows the average
dirty block to stay in the cache longer.  Recall that with PU, the average age of a block when
written to disk is 15 seconds, but with AIPU the average is 30 seconds, assuming a uniform rate
of file writes.  (AIPU-30, with a 30-second threshold and a 30-second interval between updates,
yields an average age of 45 seconds, and so does slightly fewer writes than AIPU-1).

A dirty block that stays in the cache for a longer time is more likely to be modified again
before being written to disk, which results in fewer modifications of clean blocks, and hence
fewer writes to disk.  I counted the number of modifications of currently dirty blocks (in the
brelse() routine); the numbers are shown in table 5.  AIPU with delayed writes results in
moderately more dirty-block modifications (426K vs. 419K for PU); the difference in dirty-block
modifications is roughly the same as the difference in delayed-write disk I/Os.

The reduction in actual disk I/Os, caused by longer cache lifetimes and more dirty-block
modifications, may account for all of the elapsed-time advantage of AIPU over PU on the
kernel-build benchmark. As table 5, with AIPU-1 and especially AIPU-30, the kernel ‘‘sleeps’’
less often for disk I/O than it does with PU (although I could not measure the total sleep time).
However, this effect should not contribute to the random-access results in sections 4.1 and 4.2,
since these experiments were constructed to avoid any cache hits on file writes.

4.5. Burstiness of file writes

The advantage of AIPU over PU is that the latter clumps together all delayed writes from a
30-second period into a single burst of writes, while the former preserves the original spacing of
the file writes (with 1-second resolution).  If the file writes themselves arrive in bursts, this
eliminates AIPU’s advantage.  In the worst case, when all file writes during a 30-second period
occur nearly at once, both policies should perform the same.

In the experiments reported in sections 4.1 and 4.2, the write-load generator distributed file
writes uniformly over time, which is the best case for AIPU.  The kernel-build benchmark should
be more representative of real use; how bursty is its file-write pattern?  (Note that this kind of
single-user benchmark is more likely to exhibit burstiness than a multi-user benchmark, because
the latter will tend to spread out the file-system load among several jobs.)

I modified the bflush() and bflush_smooth() routines to keep a histogram of the number of
blocks they queue for the disk on each invocation.  I then ran one trial of the kernel-build
benchmark for each of PU, AIPU-1, and AIPU-30.  In all cases, the update period (age at which
a block is queued to the disk) was 30 seconds.

With AIPU-1, since blocks are queued 30 seconds after the corresponding file write, the
burstiness in queue-batch size directly mirrors the burstiness in the file-write pattern (with 1-
second granularity).

The results are shown in figure 7, in the form of cumulative distributions for the number of
blocks written as a function of the burst size. Each policy writes a different number of blocks
(see table 5), so the curves do not end at the same ordinate.  For AIPU-1 (with 1 second between
updates and a 30-second period), 95% of all delayed-write blocks written were queued by
bflush_smooth() in bursts of 40 blocks or fewer.  The largest burst contained 104 blocks.  In
other words, the application delivered relatively small bursts of writes to the file system.
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Figure 7: Burst-size distributions for writes during kernel-build benchmark

For PU (with 30 seconds between updates), 95% of the delayed-write blocks queued were in
bursts of more than 62 blocks, and 50% were queued in bursts of more than 182 blocks.  The
largest burst contained 344 blocks, which (assuming an 18 msec. mean access time) delayed any
subsequent synchronous operation by over 6 seconds.

To summarize figure 7, the kernel-build benchmark does indeed spread out its writes over
periods longer than a second.  This results in far smaller disk-queue bursts when AIPU-1 is used
than when PU is used.

5. Future work

Carson and Setia proposed using a periodic update with read priority (PURP) policy.  Al-
though I resisted implementing PURP, because of its greater complexity, in the general case one
cannot avoid long disk queues even with IPU or an approximation.  For example, if an applica-
tion manages to dirty the entire buffer cache within a second or so, thirty seconds later an IPU
policy will schedule writes for all those blocks, and the effect will be the same as with the PU
policy. In other words, IPU depends on a relatively uniform distribution of file writes (across
time) to achieve its more uniform distribution of disk writes.

If long disk queues are inevitable, and most of the entries on such queues are inherently
asynchronous, then giving priority to reads and synchronous writes should improve response
time. I suspect that, even with a priority scheme, an IPU policy could outperform PU.  Suppose
the buffer cache is entirely filled by dirty blocks; then, a read operation must wait until the sys-
tem cleans a block before it can complete. The IPU policy generates clean blocks once a second
or so (assuming a uniform distribution of disk writes, across time), but the PU policy only does
this every 30 seconds. Thus, with PU, reads would be more likely to block waiting for a free
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buffer. This is speculation; we need experiments, simulation, or more formal analysis to dis-
cover the truth.

Peacock [11, 12] has described several systems that use PURP, but apparently did not explore
modified update policies.  He found that adding read priority to System V Release 4, in which
the buffer cache can be quite large, actually reduced benchmark performance by preventing
asynchronous requests from getting a sufficient share of the disk.

My experiments have all used a 30-second period for PU and for the lifetime of dirty blocks in
IPU, and a one-second granularity for IPU.  I suspect that use of different periods and
granularities, within reasonable limits, will not make a big difference, but this should be the
subject of additional experiments.

Some UNIX file system implementations attempt to cluster several blocks together when per-
forming a disk write [8, 11]. That is, if the cache contains several dirty blocks that are adjacent
on disk, the file system or disk driver attempts to write them all at once, which improves
throughput by eliminating seeks and rotational delays.  Clustering can be done in several dif-
ferent ways, and may interact with the delayed write policy (that is, are all data writes delayed,
or only partially-filled blocks?) and with the update policy.  The ULTRIX systems tested in sec-
tion 4 use a clustering algorithm; I have not done experiments to see if this affects the relative
performance of update policies.

6. Summary and conclusions

The experiments described in this paper show that

• Use of delayed writes can improve overall file system performance, including read
response times, on both synthetic and actual workloads,

• But when delayed writes are combined with the traditional periodic update policy,
variance in read response time increases significantly, and benchmark performance
may decrease,

• So one should use a better update policy, such as interval periodic update or an ap-
proximation, whenever one uses a delayed write policy.

I also showed that one can easily implement an approximate interval periodic update policy,
with remarkably limited changes to the kernel of a traditional operating system.
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