
M A R C H  1 9 9 4

WRL
Research Report 94/2

ATOM:
A System for Building
Customized Program
Analysis Tools

Amitabh Srivastava
Alan Eustace

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes.  This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us.  You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.



ATOM: A System for Building Customized Program
Analysis Tools

Amitabh Srivastava
Alan Eustace

March 1994

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



i

Abstract

ATOM (Analysis Tools with OM) is a single framework for building a
wide range of customized program analysis tools.  It provides the common
infrastructure present in all code-instrumenting tools; this is the difficult and
time-consuming part. The user simply defines the tool-specific details in in-
strumentation and analysis routines.  Building a basic block counting tool
like Pixie with ATOM requires only a page of code.

ATOM, using OM link-time technology, organizes the final executable
such that the application program and user’s analysis routines run in the
same address space.  Information is directly passed from the application
program to the analysis routines through simple procedure calls instead of
inter-process communication or files on disk. ATOM takes care that analysis
routines do not interfere with the program’s execution, and precise infor-
mation about the program is presented to the analysis routines at all times.
ATOM uses no simulation or interpretation.

ATOM has been implemented on the Alpha AXP under OSF/1.  It is ef-
ficient and has been used to build a diverse set of tools for basic block count-
ing, profiling, dynamic memory recording, instruction and data cache
simulation, pipeline simulation, evaluating branch prediction, and instruc-
tion scheduling.

This paper will appear at the SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation.  It replaces Technical Note TN-41, an earlier
version of the same material.



1 Introduction

Program analysis tools are extremely important for understanding program behavior. Computer

architects need such tools to evaluate how well programs will perform on new architectures.

Software writers need tools to analyze their programs and identify critical pieces of code. Compiler

writers often use such tools to find out how well their instruction scheduling or branch prediction

algorithm is performing or to provide input for profile-driven optimizations.

Over the past decade three classes of tools for different machines and applications have

been developed. The first class consists of basic block counting tools like Pixie[9], Epoxie[14]

and QPT[8] that count the number of times each basic block is executed. The second class

consists of address tracing tools that generate data and instruction traces. Pixie and QPT also

generate address traces and communicate trace data to analysis routines through inter-process

communication. Tracing and analysis on the WRL Titan[3] communicated via shared memory

but required operating system modifications. MPTRACE [6] is also similar to Pixie but it collects

traces for multiprocessors by instrumenting assembly code. ATUM [1] generates address traces

by modifying microcode and saves a compressed trace in a file that is analyzed offline. The

third class of tools consists of simulators. Tango Lite[7] supports multiprocessor simulation by

instrumenting assembly language code. PROTEUS[4] also supports multiprocessor simulation

but instrumentation is done by the compiler. g88[2] simulates Motorola 88000 using threaded

interpreter techniques. Shade[5] attempts to address the problem of large address traces by

allowing selective generation of traces but has to resort to instruction-level simulation.

These existing tools have several limitations.

First, most tools are designed to perform a single specific type of instrumentation, typically

block counting or address tracing. Modifying these tools to produce more detailed or less detailed

information is difficult. A tool generating insufficient information is of no use to the user.

Second, most address tracing tools compute detailed address information. However, too much

computed information renders the tool inefficient for the user. For example, a user interested

in branch behavior has to sift through the entire instruction trace, even though only conditional

branches need to be examined. The instruction and address traces are extremely large even for

small programs and typically run into gigabytes.

Third, tools based on instruction-level simulation add large overheads to the processing time.

Several techniques have been used to make the simulation faster, such as in the Shade system,

but simulation nevertheless makes the programs run many times slower.

Fourth, tools such as Tango Lite, which instrument assembly language code, change the

1



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

application program’s heap addresses. Instrumenting library routines is inconvenient as all

libraries have to be available in assembly language form.

Finally, most address tracing tools provide trace data collection mechanisms. Data in form of

address traces is communicated to the data analysis routines through inter-process communication,

or files on disk. Both are expensive, and the large size of address traces further aggravates this

problem. Using a shared buffer reduces this expense but still requires a lot of process switching

and sometimes can be implemented efficiently only with changes to the operating system.

ATOM overcomes these limitations by providing the principal ingredient in building perfor-

mance tools. The important features that distinguish it from previous systems are listed below.

� ATOM is a tool-building system. A diverse set of tools ranging from basic block counting

to cache modeling can be easily built.

� ATOM provides the common infrastructure in all code-instrumenting tools, which is the

cumbersome part. The user simply specifies the tool details.

� ATOM allows selective instrumentation. The user specifies the points in the application

program to be instrumented, the procedure calls to be made, and the arguments to be passed.

� The communication of data is through procedure calls. Information is directly passed from

the application program to the specified analysis routine with a procedure call instead of

through interprocess communication, files on disk, or a shared buffer with central dispatch

mechanism.

� Even though the analysis routines run in the same address space as the application, precise

information about the application program is presented to analysis routines at all times.

� As ATOM works on object modules, it is independent of compiler and language systems.

In this paper, we describe the design and implementation of ATOM. We show through a real

example how to build tools. Finally, we evaluate the system’s performance.

2 Design of ATOM

The design of ATOM is based on the observation that although tasks like basic block counting

and cache simulation appear vastly different, all can be accomplished by instrumenting a program

at a few selected points. For example, basic block counting tools instrument the beginning of

2



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

application
     data

application
   output

analysis
  output

standard
   linker

    custom
instrumenting
       tool

    custom
instrumented
  application

     user
application

   user
analysis
   code

     generic
object modifier

      user
instrumenting
      code

Figure 1: The ATOM Process

each basic block, data cache simulators instrument each load and store instruction, and branch

prediction analyzers instrument each conditional branch instruction. Therefore, ATOM allows a

procedure call to be inserted before or after any program, procedure, basic block, or instruction.

A program is viewed as a linear collection of procedures, procedures as a collection of basic

blocks, and basic blocks as a collection of instructions.

Furthermore, ATOM separates the tool-specific part from the common infrastructure needed

in all tools. It provides the infrastructure for object-code manipulation and a high-level view of the

program in object-module form. The user defines the tool-specific part in instrumentation routines

by indicating the points in the application program to be instrumented, the procedure calls to be

made, and the arguments to be passed. The user also provides code for these procedures in the

analysis routines. The analysis routines do not share any procedures or data with the application

program; if both the application program and the analysis routines use the same library procedure,

like printf, there are two copies of printf in the final executable, one in the application

program and the other in the analysis routines.

ATOM1 internally works in two steps, as shown in Figure 1.

In the first step, common machinery is combined with the user’s instrumentation routines to

1Externally, the user specifies: atom prog inst.c anal.c -o prog.atom
to produce the instrumented program prog.atom.

3



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

build a custom tool. This tool will instrument an application program at points specified by the

user’s instrumentation routines.

In the second step, this custom tool is applied to the application program to build an in-

strumented application program executable. The instrumented executable is organized so that

information from application program is communicated directly to procedures in the analysis

routines through procedure calls. The data is passed as arguments to the handling routine in the

requested form, and does not have to go through a central dispatch mechanism.

To reduce the communication to a procedure call, the application program and the analysis

routines run in the same address space. ATOM partitions the symbol name space and places the

application and analysis routines in the executable such that they do not interfere with each other’s

execution. More importantly, the analysis routine is always presented with the information (data

and text addresses) about the application program as if it was executing uninstrumented. Section

4 describes how the system guarantees the precise information.

ATOM, built using OM[11], is independent of any compiler and language system because it

operates on object-modules. Since OM is designed to work with different architectures2, ATOM

can be applied to other architectures.

3 Building Customized Tools:
An Example

In this section we show how to build a simple tool that counts how many times each conditional

branch in the program is taken and how many times it is not taken. The final results are written

to a file.

The user provides three files to ATOM: the application program object module that is to

be instrumented, a file containing the instrumentation routines, and a file containing the analysis

routines. The instrumentation routines specify where the application program is to be instrumented

and what procedure calls are to be made. The user provides code for these procedures in the

analysis routines. The next two sections show how to write the instrumentation and analysis

routines for our example tool.

2OM was initially implemented on the DECStations running under ULTRIX and was ported to Alpha AXP
running under OSF/1. ULTRIX, DECStation and Alpha AXP are trademarks of Digital Equipment Corporation.

4



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Instrument(int iargc, char **iargv)
f
Proc *p;
Block *b;
Inst *inst;
int nbranch = 0;

AddCallProto(“OpenFile(int)”);
AddCallProto(“CondBranch(int, VALUE)”);
AddCallProto(“PrintBranch(int, long)”);
AddCallProto(“CloseFile()”);

for(p=GetFirstProc(); p!=NULL;p=GetNextProc(p))f
for(b=GetFirstBlock(p);b!=NULL;b=GetNextBlock(b))f

inst = GetLastInst(b);
if(IsInstType(inst, InstTypeCondBr))f

AddCallInst(inst, InstBefore, “CondBranch”,
nbranch,BrCondValue);

AddCallProgram(ProgramAfter, “PrintBranch”,
nbranch, InstPC(inst));

nbranch++;
g

g
g

AddCallProgram(ProgramBefore, “OpenFile”, nbranch);
AddCallProgram(ProgramAfter, “CloseFile”);
g

Figure 2: Instrumentation Routines: Branch Counting Tool

5



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Defining Instrumentation Routines

Our branch counting tool needs to examine all the conditional branches in the program. We

traverse the program a procedure at a time, and examine each basic block in the procedure. If

the last instruction in the basic block is a conditional branch, we instrument the instruction. The

instrumentation routines are given in Figure 2.

ATOM starts the instrumentation process by invoking the Instrument procedure3. All

instrumentation modules contain the Instrument procedure. The instrumentation process

begins by defining the prototype of each procedure in the analysis routine that will be called

from the application program. This enables ATOM to correctly interpret the arguments. The

AddCallProto primitive is used to define the prototypes. In our example, prototypes of four

analysis proceduresOpenFile, CondBranch,PrintBranch, and CloseFile are defined.

Besides the standard C data types as arguments, ATOM supports additional types such as REGV

and VALUE. If the argument type is REGV, the actual argument is not an integer but a register

number, and the run-time contents of the specified register are passed. For the VALUE argument

type, the actual argument may beEffAddrValueorBrCondValue. EffAddrValuepasses

the memory address being referenced by load and store instructions. BrCondValue is used for

conditional branches and passes zero if the run-time branch condition evaluates to a false and a

non-zero value if the condition evaluates to true. CondBranch uses the argument type VALUE.

ATOM allows the user to traverse the whole program by modeling a program as consisting

of a sequence of procedures, basic blocks and instructions. GetFirstProc returns the first

procedure in the program, and GetNextProc returns the next procedure. The outermost for

loop traverses the program a procedure at a time. In each procedure, GetFirstBlock returns

the first basic block and GetNextBlock returns the next basic block. Using these primitives

the inner loop traverses all the basic blocks of a procedure.

In this example, we are interested only in conditional branch instructions. We find the last

instruction in the basic block using the GetLastInst primitive and check if it is a condi-

tional branch using the IsInstType primitive. All other instructions are ignored. With the

AddCallInst primitive, a call to the analysis procedure CondBranch is added at the con-

ditional branch instruction. The InstBefore argument specifies that the call is to be made

before the instruction is executed. The two arguments to be passed to CondBranch are the

linear number of the branch and its condition value. The condition value specifies whether the

3The Instrument procedure takes argc and argv as arguments which can be optionally passed from the atom
command line.

6



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

branch will be taken.

The AddCallProgram is used to insert calls before (ProgramBefore) the application

program starts executing and after (ProgramAfter) the application program finishes executing.

These calls are generally used to initialize analysis routine data and print results at the end,

respectively. A call to OpenFile before the application program starts executing creates the

branch statistics array and opens the output file. We insert calls for each branch to print its PC

(program counter) and its accumulated count at the end. Note that these calls are made only once

for each conditional branch after the application program has finished executing4. Finally, the

CloseFile procedure is executed which closes the output file. If more than one procedure is to

be called at a point, the calls are made in the order in which they were added by the instrumentation

routines.

Defining Analysis Routines

The analysis routines contain code and data for all procedures needed to analyze information

that is passed from the application program. These include procedures that were specified in the

instrumentation routines but may contain other procedures that these procedures may call. The

analysis routines do not share the code for any procedure with the application program, including

library routines.

Code for procedures OpenFile, CondBranch, PrintBranch, and CloseFile whose

prototypes were defined in instrumentation routines are given in Figure 3. The OpenFile uses

its argument containing the number of branches to allocate the branch statistics array. It also opens

a file to print results. The CondBranch routine increments the branch taken or branch not taken

counters for the specified branch by examining the condition value argument. PrintBranch

prints the PC of the branch, the number of times the branch is taken and number of times it is not

taken. CloseFile closes the output file.

Collecting Program Statistics

To find the branch statistics, ATOM is given as input the fully linked application program in

object-module format, the instrumentation routines, and the analysis routines. The output is

the instrumented program executable. When this instrumented program is executed, the branch

statistics are produced as a side effect of the normal program execution.

4Another method would be to store the PC of each branch in an array and pass the array at the end to be printed
along with the counts. ATOM allows passing of arrays as arguments.

7



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

#include <stdio.h>
File *file

struct BranchInfof
long taken;
long notTaken;

g *bstats;

void OpenFile(int n)f
bstats = (structBranchInfo *)

malloc (n * sizeof(struct BranchInfo));
file = fopen(“btaken.out”, “w”);
fprintf(file, “PC nt Taken nt Not Taken nn”);

g

void CondBranch(int n, long taken)f
if (taken)

bstats[n].taken++;
else

bstats[n].notTaken++;
g

void PrintBranch(int n, long pc)f
fprintf(file, “0x%lx nt %d nt %dnn”,

pc, bstats[n].taken, bstats[n].notTaken);
g

void CloseFile()f
fclose(file);

g

Figure 3: Analysis Routines: Branch Counting Tool

8



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

4 Implementation of ATOM

ATOM is built using OM[11], a link-time code modification system. OM takes as input a

collection of object files and libraries that make up a complete program, builds a symbolic

intermediate representation, applies instrumentation and optimizations[12, 13] to the intermediate

representation, and finally outputs an executable.

ATOM starts by linking the user’s instrumentation routines with OM using the standard linker

to produce a custom tool. This tool is given as input the application program and the analysis

routines. It uses OM’s infrastructure to build symbolic representations of the application program

and the analysis routines. The traversal and query primitives interface with the intermediate

representation of the program to provide the information requested. More details of OM’s

intermediate representation and how it is built are described in [11]. We extended the OM’s

representation so it can be conveniently annotated for procedure call insertions.

OM’s code generation pass builds the instrumented executable from the intermediate repre-

sentation. This pass is modified to organize the data and text sections in a specific order because

ATOM has to ensure that precise information about the application is presented to the analysis

routines at all times.

In this section, we first describe the extensions to the intermediate representation and the

insertion of procedure calls. Next, we discuss how we minimize the number of registers that need

to be saved and restored. Finally, we describe how ATOM organizes the final executable.

Inserting Procedure Calls

We extended the intermediate representation of OM to have a slot for actions that may be

performed before or after the entity is executed. The entity may be a procedure, basic block,

instruction or an edge5. The AddCall primitives annotate the intermediate representation by

adding a structure to the action slot describing the call to be inserted, arguments to be passed, and

indicating when the call is to be made. Currently, adding calls to edges is not implemented. The

prototype of the procedure must already have been added with the AddCallProto primitive,

and ATOM verifies that. The action slot contains a linked list of all such actions to be performed

as multiple calls can be added at a point. The order in which they are added is maintained so that

calls will be made in the order they were specified.

After the intermediate representation has been fully annotated, the procedure calls are inserted.

5An edge connects two basic blocks and represents the transfer of control between them.

9



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

This process is easy because all insertion is done on OM’s intermediate representation and no

address fixups are needed. ATOM, like QPT, does not steal any registers from the application

program6. It allocates space on the stack before the call, saves registers that may be modified

during the call, restores the saved registers after the call and deallocates the stack space. This

enables a number of mechanisms such as signals, setjmp and vfork to work correctly without

needing any special attention.

The calling conventions are followed in setting up calls to analysis routines. The first six

arguments are passed in registers and the rest are passed on the stack. The number of instructions

needed to set up an argument depends on the type of the argument. For example, a 16-bit integer

constant can be built in 1 instruction, a 32-bit constant in two instructions, a 64-bit program

counter in 3 instructions and so on. Passing contents of a register takes 1 instruction.

To make the call, a pc-relative subroutine branch instruction7 is used if the analysis routine is

within range, otherwise, the value of the procedure is loaded in a register and a jsr instruction

is used for the procedure call. The return address register is always modified when a call is made

so we always save the return address register. This register becomes a scratch register; it is used

for holding the procedure’s address for the jsr instruction.

Reducing Procedure Call Overhead

The application program may have been compiled with interprocedural optimizations and may

contain routines that do not follow the calling conventions8. Therefore, all registers that may be

modified in the call to the analysis routines need to be saved. The analysis routines, on the other

hand, have to follow the calling conventions9 as they have to allow arbitrary procedures to be

linked in. The calling conventions define some registers as callee-save registers that are preserved

across procedure calls, and others as caller-save registers that are not preserved across procedure

calls. All the caller-save registers need to be saved before the call to the analysis routine and

restored on return from the analysis routines. This is necessary to maintain the execution state of

the application program. The callee-save registers would automatically be saved and restored in

6Pixie steals three registers away from the application program for its own use. Pixie maintains three memory
locations that have the values of these three registers, and replaces the use of these registers by uses of the memory
locations.

7Alpha[10] has a signed 21-bit pc-relative subroutine branch instruction.
8The application may contain hand-crafted assembly language code that often does not follow standard conven-

tions. ATOM can handle such programs.
9Analysis routines are analogous to standard library routines that have to follow calling conventions so they can

be linked with programs.

10



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

analysis routines if they are used by them. Two issues need to be addressed here: where to save

these caller-save registers, and which caller-save registers to save.

Saving registers in the application code, where the call is being inserted, is not a good idea

if there are more than a few registers to be saved, as it may cause code explosion. We create

a wrapper routine for each analysis procedure. The wrapper routine saves and restores the

necessary registers, and makes the call to the analysis routine. The application program now

calls the wrapper routine instead of the analysis routine. Unfortunately, this creates an indirection

in calls to analysis routines. However, this has the advantage that it makes no changes to the

analysis code so it works well with a debugger like dbx. This is the default mechanism.

ATOM provides an additional facility in which the saves and restores of caller-save registers

are added to the analysis routines. No wrapper routines are created in this case. The extra space

is allocated in the analysis routine’s stack frame. This requires bumping the stack frame and

fixing stack references in the analysis routines as needed. This is more work but is more efficient

as analysis routines are called directly. Since this modifies the analysis routines, it hampers

source-level debugging. This mechanism is available as a higher optimization option.

The number of registers that need to be saved and restored is reduced by examining the

analysis routines. The data flow summary information of the analysis routines determines all the

registers that may be modified when the control reaches a particular analysis procedure. Only

these registers need to be saved and restored. We use register renaming to minimize the number

of different caller-save registers used in the analysis routines.

Moreover, if an analysis routine contains procedure calls to other analysis routines, we save

only the registers directly used in this analysis routine and delay the saves of other registers to

procedures that may be called. We only do this if none of the procedure calls occur in a loop.

Thus we distribute the cost of saving registers; the overhead now depends on the path the program

takes. This helps analysis routines that normally return if their argument is valid but otherwise

raise an error. Raising an error typically involves printing an error message and touching a lot

more registers. For such routines, the common case of a valid argument has low overhead as few

registers are saved. This optimization is available in the current implementation.

The number of registers that need to be saved may be further reduced by computing live

registers in the application program. OM can do interprocedural live variable analysis[11] and

compute all registers live at a point. Only the live registers need to be saved and restored to

preserve the state of the program execution. Optimizations such as inlining further reduce the

overhead of procedure calls at the cost of increasing the code size. These refinements have not

been added to the current system.

11



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

old  datastart

program  gp

new datastart

textstart

program data
initialized

uninitialized
program data

read-only data

Stack

program  text

M
em

ory

Uninstrumented
Program
Layout

Heap

program data
initialized

uninitialized
program data

read-only data
exception data

analysis  text

analysis data
initialized

uninit - init to 0
analysis data

instrumented
program  text

Program
Data
Addresses
Unchanged

Program
Text
Addresses
Changed

analysis gp

Instrumented
Program
Layout

Stack

Heap

exception data

Figure 4: Memory layout

12



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Keeping Pristine Behavior

One major goal of ATOM is to avoid perturbing the addresses in the application program.

Therefore, the analysis routines are put in the space between the application program’s text

and data segments. Analysis routines do not share any procedures or data with the application

program; they contain data and code for all procedures including library routines that they may

need.

The data sections of the application program are not moved, so the data addresses in the

application program are unchanged. The initialized and uninitialized data of analysis routines

is put in the space between the application program’s text and data segments. In an executable,

all initialized data must be located before all uninitialized data, so the uninitialized data of the

analysis routines is converted to initialized data by initializing it with zero. The start of the stack

and heap10 are unchanged, so all stack and heap addresses are same as before. This is shown in

Figure 4.

The text addresses of the application program have changed because of the addition of

instrumented code. However, we statically know the map from the new to original addresses. If

an analysis routine asks for the PC of an instruction in the application program, the original PC

is simply supplied. This works well for most of the tools.

However, if the address of a procedure in the application program is taken, its address may

exist in a register. If the analysis routine asks for the contents of such a register, the value supplied

is not the original text address. We have not implemented in our current system the ability to

return original text address in such cases.

Analysis routines may dynamically allocate data on heap. Since analysis routines and the

application program do not share any procedures, there are two sbrk11 routines, one in the

application program and the other in the analysis routines that allocate space on the same heap.

ATOM provides two options for tools that must allocate dynamic memory.

The first method links the variables of the two sbrks, so both allocate space on the same

heap without stepping on each other. Each starts where the other left off. This method is useful

for tools that are not concerned with the heap addresses being same as in the uninstrumented

version of the program. Such tools include basic block counting, branch analysis, inline analysis

and so on. This method is also sufficient for tools such as cache modeling that require precise

heap addresses but do not allocate dynamic memory in analysis routines. This is the default

10On the Alpha AXP under OSF/1 stack begins at start of text segment and grows towards low memory, and heap
starts at end of uninitialized data and grows towards high memory.

11sbrk routines allocate more data space for the program.

13



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Analysis Tool Tool Description Time to instrument Average
SPEC92 suite Time

branch prediction using 2-bit history table 110.46 secs 5.52 secs
cache model direct mapped 8k byte cache 120.58 secs 6.03 secs
dyninst computes dynamic instruction counts 126.31 secs 6.32 secs
gprof call graph based profiling tool 113.24 secs 5.66 secs
inline finds potential inlining call sites 146.50 secs 7.33 secs
io input/output summary tool 121.60 secs 6.08 secs
malloc histogram of dynamic memory 97.93 secs 4.90 secs
pipe pipeline stall tool 257.48 secs 12.87 secs
prof Instruction profiling tool 122.53 secs 6.13 secs
syscall system call summary tool 120.53 secs 6.03 secs
unalign unalign access tool 135.61 secs 6.78 secs

Figure 5: Time taken by ATOM to instrument 20 SPEC92 benchmark programs

behavior.

The second method is for tools that allocate dynamic memory and also require heap addresses

to be same as in the uninstrumented version of the application program. To keep the application

heap addresses as before, the heap is partitioned between the application and the analysis routines.

The application heap starts at the same address but the analysis heap is now made to start at a

higher address. The user supplies the offset by which the start of analysis heap is changed. ATOM

modifies the sbrk in analysis routines to start at the new address; the two sbrks are not linked

this time. The disadvantage of this method is that there is no runtime check if the application

heap grows and enters into the analysis heap.

5 Performance

To find how well ATOM performs, two measurements are of interest: how long ATOM takes

to instrument a program, and how the instrumented program’s execution time compares to the

uninstrumented program’s execution time.

We used ATOM to instrument 20 SPEC92 programs with 11 tools. The tools are briefly

described in Figure 5. The time taken to instrument a program is the sum of the ATOM’s

processing time and the time taken by the user’s instrumentation routines. The time taken by

a tool varies as each tool does different amounts of processing. For example, the malloc tool

14



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Analysis Tool Instrumentation Number of Time taken by
points Arguments Instrumented Program

branch each conditional branch 3 3.03x
cache each memory reference 1 11.84x
dyninst each basic block 3 2.91x
gprof each procedure/each basic block 2 2.70x
inline each call site 1 1.03x
io before/after write procedure 4 1.01x
malloc before/after malloc procedure 1 1.02x
pipe each basic block 2 1.80x
prof each procedure/each basic block 2 2.33x
syscall before/after each system call 2 1.01x
unalign each basic block 3 2.93x

Figure 6: Execution time of Instrumented SPEC92 Programs as compared to uninstrumented
SPEC92 programs

simply asks for the malloc procedure and instruments it; the processing time is very small. The

pipe tool does static CPU pipeline scheduling for each basic block at instrumentation time and

takes more time to instrument an application. The time taken to instrument 20 SPEC92 programs

with each tool is also shown in Figure 5.

The execution time of the instrumented program is the sum of the execution time of the

uninstrumented application program, the procedure call setup, and the time spent in the analysis

routines. This total time represents the time needed by the user to get the final answers. Many

systems process the collected data offline and do not include those numbers as part of data

collecting statistics. The time spent in analysis routines is analogous to the postprocessing time

required by other systems.

We compared each instrumented program’s execution time to the uninstrumented program’s

execution time for each tool. Figure 6 shows the ratios for the SPEC92 programs. The procedure

call overhead is dependent on the code in the analysis routines, and the number and type of

arguments that are passed. ATOM uses the data flow summary information along with register

renaming to find the necessary registers to save. The contribution of procedure call overhead in

the instrumented program execution time is also dependent on the number of times the procedure

calls take place. The inline tool instruments only procedure call sites; the total overhead is much

less than the cache tool, which instruments each memory reference. The amount of work the

15



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

analysis routines do when the control reaches them is totally dependent on information the user

is trying to compute. Although the communication overhead is small, we expect it to decrease

further when we implement live register analysis and inlining.

All measurements were done on Digital Alpha AXP 3000 Model 400 with 128 Mb memory.

6 Status

ATOM is built using OM and currently runs on Alpha AXP under OSF/1. It has been used with

programs compiled with Fortran, C++ and two different C compilers. The system currently works

on non-shared library modules. Work is in progress for adding support for shared libraries.

ATOM has been used both in hardware and software projects. Besides the SPEC92 bench-

marks, it has successfully instrumented real applications of up to 96 Megabytes. The system is

being used extensively inside Digital and at a few universities12.

Our focus until now has mainly been on functionality. Few optimizations have been added

to reduce the procedure call overhead. Currently, reduction in register saves has been obtained

by computing data flow summary information of analysis routines. We plan to implement live

register analysis along with inlining to further improve the performance. We are just starting to

instrument the operating system.

7 Conclusion

By separating object-module modification details from tool details and by presenting a high-level

view of the program, ATOM has transferred the power of building tools to hardware and software

designers. A tool designer concentrates only on what information is to be collected and how to

process it. Tools can be built with few pages of code and they compute only what the user asks

for. ATOM’s fast communication between application and analysis means that there is no need to

record traces as all data is immediately processed, and final results are computed in one execution

of the instrumented program. Thus, one can process long-running programs. It has already been

used to build a wide variety of tools to solve hardware and software problems. We hope ATOM

will continue to be an effective platform for studies in software and architectural design.

12ATOM is available to external users. If you would like a copy, please contact the authors.

16



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

Acknowledgements

Great many people have helped us bring ATOM to its current form. Jim Keller, Mike Burrows,

Roger Cruz, John Edmondson, Mike McCallig, Dirk Meyer, Richard Swan and Mike Uhler were

our first users and they braved through a mine field of bugs and instability during the early

development process. Jeremy Dion, Ramsey Haddad, Russel Kao, Greg Lueck and Louis Monier

built popular tools with ATOM. Many people, too many to name, gave comments, reported bugs,

and provided encouragement. Roger Cruz, Jeremy Dion, Ramsey Haddad, Russell Kao, Jeff

Mogul, Louis Monier, David Wall, Linda Wilson and anonymous PLDI reviewers gave useful

comments on the earlier drafts of this paper. Our thanks to all.

References

[1] Anant Agarwal, Richard Sites, and Mark Horwitz. ATUM: A New Technique for

Capturing Address Traces Using Microcode. Proceedings of the 13th International

Symposium on Computer Architecture, June 1986.

[2] Robert Bedichek. Some Efficient Architectures Simulation Techniques. Winter 1990

USENIX Conference, January 1990.

[3] Anita Borg, R.E. Kessler, Georgia Lazana, and David Wall. Long Address Traces from

RISC Machines: Generation and Analysis, Proceedings of the 17th Annual Symposium

on Computer Architecture, May 1990, also available as WRL Research Report 89/14,

Sep 1989.

[4] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl.

PROTEUS: A High-Performance Parallel-Architecture Simulator. MIT/LCS/TR-516,

MIT, 1991.

[5] Robert F. Cmelik and David Keppel, Shade: A Fast Instruction-Set Simulator for

Execution Profiling. Technical Report UWCSE 93-06-06, University of Washington.

[6] Susan J. Eggers, David R. Keppel, Eric J. Koldinger, and Henry M. Levy. Techniques for

Efficient Inline Tracing on a Shared-Memory Multiprocessor. SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, vol 8, no 1, May 1990.

17



ATOM: A SYSTEM FOR BUILDING CUSTOMIZED PROGRAM ANALYSIS TOOLS

[7] Stephen R. Goldschmidt and John L. Hennessy, The Accuracy of Trace-Driven Simu-

lations of Multiprocessors. CSL-TR-92-546, Computer Systems Laboratory, Stanford

University, September 1992.

[8] James R. Larus and Thomas Ball. Rewriting executable files to measure program

behavior. Software, Practice and Experience, vol 24, no. 2, pp 197-218, February 1994.

[9] MIPS Computer Systems, Inc. Assembly Language Programmer’s Guide, 1986.

[10] Richard L. Sites, ed. Alpha Architecture Reference Manual Digital Press, 1992.

[11] Amitabh Srivastava and David W. Wall. A Practical System for Intermodule Code

Optimization at Link-Time. Journal of Programming Language, 1(1), pp 1-18, March

1993. Also available as WRL Research Report 92/6, December 1992.

[12] Amitabh Srivastava and David W. Wall. Link-Time Optimization of Address Calcu-

lation on a 64-bit Architecture. Proceedings of the SIGPLAN’94 Conference on Pro-

gramming Language Design and Implementation, to appear. Also available as WRL

Research Report 94/1, February 1994.

[13] Amitabh Srivastava. Unreachable procedures in object-oriented programming, ACM

LOPLAS, Vol 1, #4, pp 355-364, December 1992. Also available as WRL Research

Report 93/4, August 1993.

[14] David W. Wall. Systems for late code modification. In Robert Giegerich and Susan L.

Graham, eds, Code Generation - Concepts, Tools, Techniques, pp. 275-293, Springer-

Verlag, 1992. Also available as WRL Research Report 92/3, May 1992.

18



19

WRL Research Reports

‘‘Titan System Manual.’’

Michael J. K. Nielsen.

WRL Research Report 86/1, September 1986.

‘‘Global Register Allocation at Link Time.’’

David W. Wall.

WRL Research Report 86/3, October 1986.

‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen.

WRL Research Report 86/4, October 1986.

‘‘The Mahler Experience: Using an Intermediate

Language as the Machine Description.’’

David W. Wall and Michael L. Powell.

WRL Research Report 87/1, August 1987.

‘‘The Packet Filter: An Efficient Mechanism for

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael

J. Accetta.

WRL Research Report 87/2, November 1987.

‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987.

‘‘Cache Coherence in Distributed Systems.’’

Christopher A. Kent.

WRL Research Report 87/4, December 1987.

‘‘Register Windows vs. Register Allocation.’’

David W. Wall.
WRL Research Report 87/5, December 1987.

‘‘Editing Graphical Objects Using Procedural
Representations.’’

Paul J. Asente.

WRL Research Report 87/6, November 1987.

‘‘The USENET Cookbook: an Experiment in

Electronic Publication.’’
Brian K. Reid.

WRL Research Report 87/7, December 1987.

‘‘MultiTitan: Four Architecture Papers.’’

Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.

‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.

WRL Research Report 88/1, March 1988.

‘‘Compacting Garbage Collection with Ambiguous

Roots.’’

Joel F. Bartlett.

WRL Research Report 88/2, February 1988.

‘‘The Experimental Literature of The Internet:  An

Annotated Bibliography.’’

Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.

‘‘Measured Capacity of an Ethernet:  Myths and

Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.

WRL Research Report 88/4, September 1988.

‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow:  Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,

Kamaljit Anand.

WRL Research Report 88/5, December 1988.

‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett.
WRL Research Report 89/1, January 1989.

‘‘Optimal Group Distribution in Carry-Skip Ad-
ders.’’

Silvio Turrini.

WRL Research Report 89/2, February 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’

William R. Hamburgen.
WRL Research Report 89/3, February 1989.



20

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak Perfor-

mance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’

Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.

WRL Research Report 89/14, September 1989.

‘‘Link-Time Code Modification.’’

David W. Wall.

WRL Research Report 89/17, September 1989.

‘‘Noise Issues in the ECL Circuit Family.’’

Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 90/1, January 1990.

‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’

Tracy Larrabee.

WRL Research Report 90/2, February 1990.

‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.

WRL Research Report 90/3, March 1990.

‘‘Virtual Memory vs. The File System.’’

Michael N. Nelson.

WRL Research Report 90/4, March 1990.

‘‘Efficient Use of Workstations for Passive Monitor-

ing of Local Area Networks.’’

Jeffrey C. Mogul.

WRL Research Report 90/5, July 1990.

‘‘A One-Dimensional Thermal Model for the VAX

9000 Multi Chip Units.’’

John S. Fitch.
WRL Research Report 90/6, July 1990.

‘‘1990 DECWRL/Livermore Magic Release.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,

Don Stark, Gordon T. Hamachi.

WRL Research Report 90/7, September 1990.



21

‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Research Report 90/9, December 1990.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-

fers.’’

Joel McCormack.

WRL Research Report 91/1, February 1991.

‘‘A Simulation Based Study of TLB Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi.

WRL Research Report 91/2, November 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-

cuits.’’

Don Stark.

WRL Research Report 91/3, April 1991.

‘‘TurboChannel T1 Adapter.’’

David Boggs.

WRL Research Report 91/4, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’

Joel Bartlett.

WRL Research Report 91/6, May 1991.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Research Report 91/7, June 1991.

‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ-

ments.’’
G. May Yip.

WRL Research Report 91/8, June 1991.

‘‘Interleaved Fin Thermal Connectors for Multichip

Modules.’’

William R. Hamburgen.

WRL Research Report 91/9, August 1991.

‘‘Experience with a Software-defined Machine Ar-

chitecture.’’

David W. Wall.

WRL Research Report 91/10, August 1991.

‘‘Network Locality at the Scale of Processes.’’

Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991.

‘‘Cache Write Policies and Performance.’’

Norman P. Jouppi.

WRL Research Report 91/12, December 1991.

‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

William R. Hamburgen, John S. Fitch.

WRL Research Report 92/1, March 1992.

‘‘Observing TCP Dynamics in Real Networks.’’

Jeffrey C. Mogul.

WRL Research Report 92/2, April 1992.

‘‘Systems for Late Code Modification.’’

David W. Wall.

WRL Research Report 92/3, May 1992.

‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’

Russell Kao.

WRL Research Report 92/5, September 1992.

‘‘A Practical System for Intermodule Code Optimiza-

tion at Link-Time.’’

Amitabh Srivastava and David W. Wall.
WRL Research Report 92/6, December 1992.

‘‘A Smart Frame Buffer.’’

Joel McCormack & Bob McNamara.

WRL Research Report 93/1, January 1993.



22

‘‘Recovery in Spritely NFS.’’

Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.

WRL Research Report 93/3, October 1993.

‘‘Unreachable Procedures in Object-oriented

Programing.’’

Amitabh Srivastava.

WRL Research Report 93/4, August 1993.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Research Report 93/6, November 1993.

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

‘‘Link-Time Optimization of Address Calculation on

a 64-bit Architecture.’’

Amitabh Srivastava, David W. Wall.

WRL Research Report 94/1, February 1994.

‘‘ATOM: A System for Building Customized

Program Analysis Tools.’’

Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.



23

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘The Effect of Context Switches on Cache Perfor-

mance.’’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’

Aaron Goldberg and John Hennessy.
WRL Technical Note TN-17, December 1990.

‘‘Predicting Program Behavior Using Real or Es-
timated Profiles.’’

David W. Wall.

WRL Technical Note TN-18, December 1990.

‘‘Cache Replacement with Dynamic Exclusion’’

Scott McFarling.
WRL Technical Note TN-22, November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-

sures’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.

‘‘A Comparison of Acoustic and Infrared Inspection

Techniques for Die Attach’’

John S. Fitch.

WRL Technical Note TN-24, January 1992.

‘‘TurboChannel Versatec Adapter’’

David Boggs.

WRL Technical Note TN-26, January 1992.

‘‘A Recovery Protocol For Spritely NFS’’

Jeffrey C. Mogul.

WRL Technical Note TN-27, April 1992.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

Patrick D. Boyle.

WRL Technical Note TN-29, July 1992.

‘‘Transparent Controls for Interactive Graphics’’

Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.
WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’
Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.


