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Abstract

Compilers for new machines with 64-bit addresses must generate code that
works when the memory used by the program is large.  Procedures and
global variables are accessed indirectly via global address tables, and calling
conventions include code to establish the addressability of the appropriate
tables. In the common case of a program that does not require a lot of
memory, all of this can be simplified considerably, with a corresponding
reduction in program size and execution time.

We have used our link-time code modification system OM to perform
program transformations related to global address use on the Alpha AXP.
Though simple, many of these are whole-program optimizations that can be
done only when we can see the entire program at once, so link-time is an
ideal occasion to perform them.

This paper describes the optimizations performed and shows their effects
on program size and performance.  Relatively modest transformations, pos-
sible without moving code, improve the performance of SPEC benchmarks
by an average of 1.5%.  More ambitious transformations, requiring an un-
derstanding of program structure that is thorough but not difficult at link-
time, can do even better, reducing program size by 10% or more, and im-
proving performance by an average of 3.8%.

Even a program compiled monolithically with interprocedural optimiza-
tion can benefit nearly as much from this technique, if it contains statically-
linked pre-compiled library code.  When the benchmark sources were com-
piled in this way, we were still able to improve their performance by 1.35%
with the modest transformations and 3.4% with the ambitious transfor-
mations.

This paper will appear at the SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation.  It replaces Technical Note TN-35, an earlier
version of the same material.



1 Introduction

Obtaining addresses of procedures or global data on a new 64-bit RISC machine such as the Alpha

AXP [4] presents an elementary but unavoidable problem. Traditional 32-bit RISCs have evaded

the worst aspects of the problem by using various architectural tricks, such as special-format

instructions like the SPARC Call [2], which packs a 2-bit opcode and a 30-bit word address

into a 32-bit instruction, or special-purpose instructions like the MIPS Load-Upper-Immediate

(LUI) [3], which facilitates the construction of a 32-bit address from two 16-bit immediate fields.

These techniques break down when we move to machines with 64-bit addresses and 32-bit

instructions.

The solution used by the Alpha AXP compilers running Alpha/OSF is a typical one for the

coming generation of 64-bit machines. Global addresses are collected together into one or more

global address tables (GATs). Each separately-compiled module has its own GAT, but at link-time

the GATs are collected together into one GAT section. The generated code accesses the GAT via a

dedicated register called the global pointer (GP) together with a 16-bit immediate displacement.

Accessing a program object then involves two steps. First, the address of the object is loaded

from the GAT section. We refer to this load as an address load, to distinguish it from the traditional

Load-Address operation, which adds a literal displacement to a base register and does not access

memory at all. The address obtained by this address load is then used to load or store the variable,

or jump to the procedure, that it refers to.

In general, each routine must have an associated value for the global pointer, which may differ

from the value for some other routine. There are two reasons for this. First, for large programs,

the global address table may be so large that it cannot be accessed via a single unchanging global

pointer. Second, a module from a dynamically-linked shared library must have its own global

address table, which may be mapped to an address far from the table for the rest of the program.1

A compiler looking at a single module does not know whether the complete program is large

or small, nor whether the module is destined to be part of a shared library. It must generate

code that will work regardless, even if this general code is not the fastest code in some cases.

Improving this code is straightforward, but in general requires analysis and code generation that

1It might seem that procedures in the same compilation unit would always use the same GP, but the semantics
of shared libraries means that a call that the compiler thinks is intra-unit might turn out to be inter-unit at dynamic-
link-time. In particular, a module with exported routines P1 and P2 can be dynamically linked with a program even
though a different implementation of P1 is already present in the executable; if P2 calls P1, it gets the version already
present, not the one in the same module [1]. Under static linking, of course, this situation would result in a link error
because the symbol P1 is multiply-defined. Note that it is possible to optimize a call to an unexported routine in the
same module at compile-time.
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crosses module boundaries; a thorough job requires this to include even library routines, which

usually were compiled long before a particular application.

Link-time code optimization can be very helpful in dealing with this problem. At link-time, the

optimizer can analyze the entire program, see how big the address table needs to be, and simplify

address calculation when possible. How thoroughly the linker can do this depends primarily on

how hard it is willing to work. Some improvement is possible even for a “traditional” linker that

limits each change to the replacement of one instruction by another. Even more improvement

is obtained by giving the linker the ability to move instructions around, because it can therefore

exploit optimization opportunities better than the traditional linker, and also find opportunities

the traditional linker could not.

This paper describes our tool for link-time address optimization, and shows how much per-

formance improvement is achieved. We start by detailing our assumptions about code generation

on 64-bit machines, and on the Alpha AXP in particular. We then discuss how the resulting code

can be improved, and describe our system for doing so. Finally we present the static and dynamic

measurements of how much we were able to improve the code.

2 Generating code for 64-bit machines

Our model for compiling on a 64-bit processor follows from the considerations described above.

We assume that a reference to a procedure or variable is generally done by loading the address from

a global address table (GAT) and following the resulting pointer to get to the object in question.

A dedicated register called the global pointer (GP) is used to maintain the addressability of the

global address table. The different GATs need not be adjacent in memory (though they may be);

in particular, modules linked dynamically from shared libraries may have their code, GAT, and

data in memory far from the statically linked part of the program. At link-time, each separately-

compiled module has one or more GATs used by the procedures in that module. When the linker

combines these modules, it treats these GATs as literal pools, removing duplicate addresses and

merging the individual GATs into a single large GAT if possible.

All values in a GAT must be accessible via its GP value and a machine-dependent displacement,

so merging into one large GAT will not always be possible. As a result, procedure-calling

conventions must suppose that the caller and callee will need different values of GP, and must

therefore include code to set up a new value for GP when a procedure is called, and code to restore

the GP value for the caller upon return. Either of these pieces of code may be conventionally

done by either the caller or the callee.
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ldah  gp := pv + 8192<<16
lda   gp := gp + 28576
 . . .

load  pv := 144(gp)
jsr   ra,(pv)

ldah  gp := ra + 8192<<16
lda   gp := gp + 28524

ldah  gp := pv + 216<<16
lda   gp := gp + 12036

lda   sp := sp - 32
 . . .

lda   sp := sp + 32

return

Figure 1: Calling conventions on the Alpha AXP

On the AXP under Alpha/OSF, each procedure is responsible for setting up its own proper

GP value, both when the procedure is entered and when control returns to the procedure after it

makes a call. It does this by adding a 32-bit displacement to a register containing a nearby code

address. Calling conventions ensure that such a register exists, and memory layout conventions

ensure that a procedure’s GAT is close enough. Adding a 32-bit displacement to a register value

can be done in two instructions: the Load-Address-High (LDAH), which adds the upper 16 bits

of the displacement, and an ordinary Load-Address (LDA) to add the lower 16 bits.

Figure 1 shows a typical AXP calling sequence. The routine on the left sets its GP on entry

and resets it after return from the contained call. On entry it computes the GP from the value of

the PV register, which by convention contains the procedure entry address; after the return it uses

the return address register RA. The 32-bit displacement is different between these two operations

by exactly the difference between the two code addresses on which the computation is based. The

called procedure sets its own GP in the same way, and need not save the caller’s GP. The address

of the destination procedure is obtained by loading it from the GAT as we described previously.

The AXP has a limited-range call instruction whose destination is specified by a 21-bit word

displacement from the program counter. If the destination is near enough in the same compilation

unit, the compiler can use this BSR instruction instead of the more general JSR. The BSR does

not require us to load the destination address into PV, but the compiled code normally does so

anyway, because the called procedure needs the PV in order to set up its value for GP.

With the calling conventions properly setting the GP, accessing global variables is easy.

Obtaining the address of a variable is done by an address load from the GAT, in the same way that

load  r1 := 188(gp) load  r1 := 188(gp)
load  r2 := 0(r1)

load  r1 := 188(gp)
store 0(r1) := r2

(a)  get address of V (b) fetch value of V (c) assign value to V

Figure 2: Global variable access on the Alpha AXP
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we obtain the address of the destination procedure in a call. A fetch from or assignment to the

variable consists of the address load followed by a load or store through the address just loaded.

Figure 2 shows these three code fragments.

3 Improving the compiled code

The code generation conventions described above are conservative: the compiler does not know

how big the eventual program will be, so it generates code that will work regardless. In a typical

reasonably-size program, however, the resulting code may be slower than necessary. If we can

see the whole program at once, there are several ways to improve this code.

First, the GAT section is often small enough that nearby user variables can be referenced

directly via the GP, rather than indirectly through addresses in the GAT. (This is even more

effective if the compiler segregates the small data into its own data section, even if the compiled

code accesses small and large data identically.)

Second, most programs are small enough that a few distinct GATs suffice; most often one is

enough. We can omit GP-resetting after calls between routines that use the same GAT.

Third, we can replace the general call instruction by the BSR instruction, if the destination

procedure is near enough. If the two procedures also share the same GAT, we can change the

destination of the BSR to skip the GP-setting instructions in the destination procedure prolog.

This in turn means that we have no more use for the destination address in the PV, and can omit

that address load.

Fourth, removing address loads for the above reasons means that we can remove many

addresses from the GAT altogether. This GAT-reduction acts to increase data locality, but also

means that the GAT gets smaller, perhaps enabling a fresh round of the other improvements.

Finally, optimizations cause widespread changes to the program code, including the removal

of many multi-cycle load instructions. The code we started with had been pipeline scheduled at

compile-time, based in part on the presence of these loads. It is reasonable to suppose that we

can improve the code still further by performing pipeline scheduling as a final step.

Most of these modifications are examples of whole-program optimizations. They can be done

only if we can examine the entire program at once, or at least (if shared libraries are used) the

entire statically-linked part of it. Otherwise, for example, we do not know how big the GAT and

data sections will eventually be, and therefore cannot change GAT-based variable references into

GP-based references. Even a compiler that can compile and optimize many modules together

will be unable to perform these optimizations, if the program contains modules in other source
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languages or library modules compiled at an earlier time.

We therefore advocate doing these optimizations at link-time. This requires the linker to

have a rather deeper understanding of the program control flow than has hitherto been typical for

linkers, but this analysis is not difficult, especially since the loader format normally provides us

with a few hints. References to the GAT section must be marked for relocation, because otherwise

normal linking will not work. For similar reasons, the AXP compilers include links between an

instruction that loads an address and the subsequent instructions that use it. Finally, the loader

format identifies procedure boundaries and specifies the correct value of GP for each procedure.

4 Our study

We have built an optimizing linker for the Alpha AXP using our object-code modification system

OM. A more complete description of how OM works appears in our previous paper [6]. The OM

linker translates the object code of the entire program into symbolic form, recovering the original

structure of loops, conditionals, case-statements, and procedures. It then analyzes this symbolic

form and transforms it by instrumenting or optimizing it, and generates executable object code

from the result. It can be thorough but still conservative in understanding the input object code

because it can use the loader symbol table and the relocation tables to clarify the code.

The key idea behind OM is the translation into symbolic form and back. This means that we

can perform interesting transformations like code optimization on object code without having to

keep track of the effects of these transformations on address constants and branch displacements.

(The symbolic form is also rather more amenable to dataflow and other analysis, though these

were not needed in this study.)

Because OM lets us work with a symbolic form, we can easily delete and reorder instructions.

Both of these capabilities are important. Deletion lets us get rid of the instructions we don’t

need. Reordering lets us create opportunities that would not exist otherwise. For example, the

instructions to set the GP on entry to a procedure are often moved later in the code by the compile-

time pipeline scheduling, preventing us from changing the BSR instruction to skip them; if we

can restore them to their logical place at the beginning of the procedure, we can avoid executing

them on most or all of the calls.

On the other hand, translation to a symbolic form is rather more work than a “traditional”

linker normally does. If we are unwilling to delete or reorder the code, there are still gains to

be had. Instead of deleting unneeded instructions, we can replace them by no-ops. This has

two benefits. First, changing normal instructions to no-ops removes data dependencies. A no-op
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might cost nothing even if we don’t delete it, because it might fit into some other instruction’s

latency delay or in a multiple-issue slot unavailable to the original instruction. Second, replacing

address loads with no-ops removes the danger of a cache miss or page fault. The GAT might

be used consistently enough to stay resident, but removing a reference altogether renders the

question moot.

For this study, we have therefore used OM to implement two different levels of address

optimization: OM-full and OM-simple.

OM-simple consists of the address-calculation optimizations that a traditional linker can do

using only local analysis and no code motion. Unneeded instructions are removed by changing

them to no-ops, and the order of the remaining instructions is never changed. If a variable is

sufficiently close to the GAT, we change references to it into GP-relative references; this includes

even references within the reach only via a 32-bit displacement, because the LDAH instruction

lets us make a direct GP-relative reference in the same number of instructions as an indirect

reference via the GAT. When possible, we change GP-swapping instructions to no-ops and call

instructions to BSRs. We sort the common symbols by size and place them with the small data

sections near the GAT, and use a simple heuristic to pick a good value for the GP.

OM-full consists of the full set of address-calculation optimizations discussed previously.

These require OM to understand the control structure of the program, finding all the transfers of

controls and all the places where code addresses are used either explicitly or implicitly. OM-

full can optionally include rescheduling the code after all the other optimizations are finished.

Rescheduling includes quadword-aligning instructions that are the targets of backward branches,

which is intended to improve the behavior of the AXP’s dual-issue and cache.

We applied OM-simple and OM-full to code produced by the standard Alpha/OSF optimizing

compilers.2 The only changes OM made to the code were the address-calculation optimizations

described above. OM’s analysis and optimization encompassed all the modules in a program,

including user modules and non-shared versions of all library modules, because we wanted to

maximize the performance improvement and because OM does not yet support shared libraries.

The programs we used are the SPEC92 suite with the exception of gcc, which we could obtain

only in 32-bit mode.

2DEC Fortran v3.3 for Alpha/OSF, and the DEC OSF/1 T1.3-1 (Rev. 19.3) C compiler.
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5 Results

We measured OM’s effectiveness on two different versions of each benchmark, which we call

compile-each and compile-all.

Compile-each was obtained by compiling the benchmark’s source files separately with only

intraprocedural global optimization.3 We used OM to link the resulting object files and the

standard libraries, performing either OM-simple or OM-full in the process. We then took static

and dynamic measurements of the resulting code, and compared them to measurements of code

produced by linking the compile-each version with no link-time optimizations.

The compile-all version was obtained by linking all of the benchmark’s source files together

into a single object file with the maximum level of compile-time optimization.4 This optimization

level does both intraprocedural and interprocedural optimization, including some of the address-

calculation optimizations OM does. As before, OM then linked the compile-all version with

the pre-compiled standard libraries, performing either OM-simple or OM-full. We took static

and dynamic measurements of the resulting code, and compared them to measurements of code

produced by linking the compile-all version with no link-time optimizations.

Finally, we measured the processing time required by OM and by the standard linker for the

supported levels of optimization.

5.1 Static measurements

We measured three static properties of the test suite after optimization by OM-simple and OM-

full, compared to the original program. We first measured how many address loads appeared. We

then measured how often the various parts of the procedure-calling conventions were required.

Finally we simply measured the total number of instructions.

We first counted how many address loads were eliminated by OM-simple and OM-full. An

address load can be eliminated in the two ways we discussed earlier. It can be converted: changed

to a load-address operation in the form of an LDA or LDAH. Or it can be nullified: changed to

a no-op (in OM-simple) or deleted altogether (in OM-full). Figure 3 shows the static fraction of

address loads that were eliminated for each program. The two leftmost bars give the changes for

the compile-each versions of the programs, the two rightmost for the compile-all versions. The

dark part of each bar shows how many address loads were converted, and the light part shows how

3Compiler option -O2.
4Compiler option -O4 for Fortran and -O3 -Hb for C.
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Figure 3: Static fraction of address loads removed, whether converted (dark) or nullified (light)

many were nullified. The bar lengths in the large key to the left show the unweighted arithmetic

means of the values in the 19 test programs.

OM-simple finds essentially all of the available opportunities for converting address loads

to load-addresses. (This should happen for any program whose static data area is less than 232

bytes.) On average about the same number of address loads are nullified into no-ops. About half

of all address loads are either converted or nullified.

OM-full manages to eliminate nearly all of the address loads. The number of address loads

converted to load-addresses decreases slightly: GAT-reduction lets us reach more of the data via

the GP, so OM-full can nullify distant references that OM-simple can only convert.

An important source of improvement is the bookkeeping code involved in procedure calls.

An unoptimized call site has four instructions: one to load the PV with the destination address,

one for the JSR, and two to reset the GP after returning. In the right circumstances, OM can

change the JSR to a BSR and nullify the other three instructions. Figure 4 shows how well it

could do this.

The compiler itself can perform these transformations for calls to an unexported procedure in

the same compilation unit, but the “no OM” results show that there are few such calls. Even when

the benchmark source files are compiled together with interprocedural optimization, statically

around 85% of the calls still require all the bookkeeping code.

In contrast, even OM-simple can change essentially all JSRs in the test programs to BSRs;
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Figure 4: Static fraction of calls requiring PV-loads (top) and GP-reset code (bottom)
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this requires no analysis at all except to look up destinations in the GAT and see if they are close

enough. If the GP-setting instructions of the called procedure appeared first, it would also be

easy to change the BSR to skip them. Unfortunately, compile-time scheduling often moved them,

preventing OM-simple from doing this. This in turn prevents OM-simple from nullifying the

PV-load at the call site, because the PV is needed so that the GP-setting code in the callee will

do the right thing. OM-full removes all but a few PV-loads; those remaining are in calls through

procedure variables, preventing us from examining the destination procedure.

OM-simple does a better job at nullifying the two GP-resetting instructions. It can usually

change them to no-ops even if they were moved by compile-time scheduling. OM-full does a

little better, using its understanding of the control structure to find a few cases OM-simple misses.

Surprisingly, the results without using OM show that there is little difference in these measures

between code that was interprocedurally optimized by the compiler (compile-all) and code that

was not (compile-each). Compile-time interprocedural optimization can improve calls from one

user routine to another, but cannot help calls to previously compiled library routines.5

The combination of improvements to variable-access code and to procedure-calling overhead

results in a substantial reduction in the static number of useful instructions required. Figure 5

shows that OM nullifies a substantial fraction of the code. Each graph shows first how well

OM-simple and OM-full did on the compile-each version of the program, and then how well they

did on the compile-all version. Again, the key on the left side shows the unweighted arithmetic

means over the set of programs.

Even OM-simple nullifies (but does not delete) around 6% of the instructions. OM-full deletes

an astonishing eleven percent of the instructions on average, and often more.

OM’s ability to improve the code is not dependent on whether the code was originally compiled

with interprocedural optimization: the average improvement of compile-all code was nearly equal

to that of compile-each code. Compile-time interprocedural optimization does not have access to

the whole program and can therefore do nothing to improve access to variables. Moreover, while

it can improve calls from one user routine to another, it cannot be as helpful on calls to previously

compiled library routines. These calls are in fact quite common; in the spice benchmark, for

example, statically half the calls are from one library routine to another!

OM-full reduced the size of the GAT by an entire order of magnitude, reducing it to between

5This lack of difference is partly irrelevant. One effect of interprocedural optimization is the inlining of user
routines; if a multiply-inlined user routine contains a library call then that call will be replicated. This should not
harm performance because the library routine will be called the same dynamic number of times, but it will tend to
increase the static number of calls that cannot be improved.
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Figure 5: Static fraction of instructions nullified
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3% and 15% of its original size. In was slightly more effective on compile-each versions than on

compile-all versions, because compile-all does a little GAT-reduction of its own before OM gets

a chance.

5.2 Dynamic measurements

We ran the different versions of the benchmarks on a DECstation 3000 Model 400 AXP, a dual-

issue machine, and measured the user and system time according to the system clock as measured

by the systime facility. To provide standards to compare to, we first linked the compile-each and

compile-all version of each benchmark with no link-time optimization at all, and timed the result.

We then linked using OM-simple and OM-full, and compared the resulting execution time to the

corresponding standard time.

Figure 6 shows the improvement of code optimized by OM at link-time over code not

optimized at link-time. As before, each graph shows first how well OM-simple and OM-full did

at improving the compile-each version of the program, and then how well they did at improving

the compile-all version. The key on the left side shows the unweighted arithmetic means over the

set of programs.

The dynamic improvements were smaller than the static improvements, for a couple of

reasons: cache misses and page faults mean that many cycles are spent doing things other than

user instructions, and the dual issue of this model of the AXP means that some instructions come

“free” so that deleting them does not help. Nevertheless the results are satisfying given how easy

they are to attain.

OM-simple improved the performance of the compile-each programs by 1.5% on average.

Seven benchmarks improved by more than 1%; the median was 0.6%. OM-full did considerably

better, improving the code by 3.8% on the average and by more than 5% in six cases; the

median was 2.8%. Unfortunately, OM-full made the code slightly slower in two cases. This was

probably because of cache or paging effects, since loop alignment and scheduling didn’t eliminate

the problem.

OM’s payoff was nearly as high even on the compile-all versions. OM-simple improved code

by an average of 1.35%, and OM-full by 3.4%; this is 90% of the improvement seen on the

compile-each versions. Again, OM-full improved six programs by more than 5%, and the median

was again 2.8%. Even if interprocedural optimization speeds up the program, it still leaves plenty

for a link-time address-calculation optimizer to find.

We expected that rescheduling the code after finishing the address-calculation optimizations

12
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Figure 6: Improvement in performance relative to program without link-time optimization

would greatly improve the performance. Although the code OM starts with was scheduled at

compile-time, the scheduling was done in the presence of a large number of address loads that

OM later removed. Load operations have a significant latency even when they hit in the cache,

and removing that latency allows the instructions that fill it to be used for other kinds of latency.

To take advantage of this, OM quadword-aligned instructions that were the targets of backward

branches and then scheduled each basic block using a version of the standard AXP/OSF scheduler6

very similar to the scheduler used by the assembler and thus indirectly by the OSF C compiler.

To our surprise, however, scheduling made only a small difference, raising the average

improvement given by OM-full from 3.8% to 4.2% for compile-each code, and from 3.4% to

3.6% for interprocedurally optimized compile-all code. We are still unsure why this is so. It may

be that the initial schedule is still good enough even after our changes. Also, the schedulers used

by either compiler make some use of memory alias information that is unavailable to us unless

we do an expensive data flow analysis, so it may also be that our scheduler is just inferior to the

compile-time schedulers.

6Thanks to Mike Rickabaugh for providing this.
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In two cases, scheduling noticeably degraded performance. In the ear benchmark, the loop-

target alignment is at fault; when we scheduled it without alignment the performance was im-

proved. In nasa7 even the unscheduled code was degraded; we suspect this is because deleting

unnecessary code caused two parts of the program to fight over the cache.

5.3 Processing time

Figure 7 shows the time required to build each benchmark in a variety of ways. The first column

shows the time to do a traditional link using the standard linker on separately compiled object files

and standard libraries. The second column shows the time to build the benchmark from its source

files, by compiling them with interprocedural optimization and linking them with the standard

libraries. The next four columns show the time to link the benchmark using OM on separately

compiled object files and standard libraries, with no OM optimization, OM-simple, OM-full, and

OM-full with scheduling.

OM’s technique of working on a symbolic intermediate form is intended to support a variety

of link-time whole-program optimizations. Using OM does introduce some overhead, as we

can see by comparing the processing time for OM without optimization to that of a standard

link. Nevertheless, OM’s processing time is not extravagant. Even OM-full can handle any of

these programs in a couple of seconds. A rebuild using interprocedural compiler optimization, in

contrast, often takes many tens of seconds.

Link-time scheduling proved to be rather expensive, particularly for applications like fpppp

and doduc with very large basic blocks. This is not tremendously surprising; scheduling is

usually a superlinear process, since it essentially requires sorting the instructions in a basic block

according to a dependency relation. The minor payoff we saw from scheduling suggests that

rescheduling is often not worth the cost.

A full compile from sources with interprocedural optimization is nearly always more ex-

pensive than OM. This is unsurprising (and not entirely fair), since this kind of compilation

does much more analysis and optimization than OM needs for the address-calculation optimiza-

tions. Nonetheless, it suggests that address-calculation optimizations are quite cheap and could

profitably be done without bringing a full interprocedural optimizer to bear.

14
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standard interproc OM linker
link build no opt simple full w/sched

alvinn 0.07 2.12 0.28 0.29 0.33 1.72
compress 0.06 6.12 0.20 0.20 0.22 1.22
doduc 0.28 41.49 1.34 1.43 1.64 18.58
ear 0.12 10.12 0.39 0.41 0.47 2.59
espresso 0.19 67.84 0.88 0.92 1.02 5.46
eqntott 0.08 12.27 0.28 0.29 0.33 1.77
fpppp 0.25 16.77 1.19 1.25 1.43 68.12
hydro2d 0.26 19.66 1.23 1.29 1.48 8.71
li 0.15 54.67 0.55 0.59 0.64 3.09
mdljdp2 0.27 9.95 1.23 1.29 1.48 8.44
mdljsp2 0.28 9.48 1.23 1.29 1.47 8.39
nasa7 0.27 11.38 1.22 1.28 1.45 9.03
ora 0.24 2.21 1.03 1.09 1.26 7.05
sc 0.21 42.16 0.94 1.00 1.11 5.83
spice 0.35 84.38 1.89 2.00 2.31 17.90
su2cor 0.27 25.81 1.32 1.40 1.61 10.68
swm256 0.24 4.61 1.08 1.14 1.29 7.45
tomcatv 0.20 2.95 0.94 0.99 1.13 6.48
wave5 0.28 57.86 1.47 1.57 1.81 12.95

Figure 7: Build times in seconds for ld from objects, compile from
sources with maximum optimization, and OM from objects
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6 Discussion

The whole-program optimizations discussed here require us to examine the entire statically-linked

part of the program at once.7 It is not coincidental, therefore, that we describe these as link-time

optimizations: only when we are sure that there is no more code to be included can we know

whether these optimizations can be performed. The program we examine must contain everything

that will be included in the final executable, including any statically-linked library code. Without

this assurance, for example, we do not know how big the GAT and data sections will eventually

be, and therefore cannot change GAT-based variable references into GP-based references.

Given that we need to examine the entire statically-linked part of the program, it seems quite

natural to do it in the linker. There are alternatives, but each has considerable drawbacks. The

following sections discuss them in turn.

Monolithic compilation

Monolithic compilation is an old technique with a venerable history. We give the compiler

the ability to compile several modules at once, producing a single big object file. To perform

whole-program optimizations, the monolithic compile would have to include the sources files

for all the modules being linked, including library modules. In other words, we would have to

do all our compilation just prior to linking, thus making compile-time and link-time essentially

synonymous. Monolithic compilation may be a good approach for some kinds of very aggressive

interprocedural optimization, because high level structure like declarations, types, pragmas, and

other information about the programmer’s intent are readily available. Nevertheless, for whole-

program optimizations it has three problems.

First, monolithic compilation can be very expensive. Recompiling all of the source modules

can take one or two orders of magnitude more time than even a very ambitious optimizing link.

Monolithic compilation might be able to improve the code more than an optimizing linker can,

but the address-calculation optimizations we discuss here are very cheap to do at link-time, and a

user might quite reasonably want to have them but not be willing to pay the price of a full-blown

global optimization.

7Though OM does not currently support calls to shared libraries, there is no fundamental problem with doing
so, since the code and data for shared routines is dynamically linked in to a different part of the address space than
the statically-linked part. Supporting such calls requires maintaining the right symbolic information, but it does not
affect our analysis of the statically-linked part. Barring run-time optimization, however, calls to dynamically linked
library routines cannot be optimized as statically linked calls can.
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Second, monolithic compilation can be awkward. If any libraries are statically-linked, the

compilation must include the sources of the library modules. These sources may not even be

available to a user, and even if they are it is a genuine burden to have to pick through them finding

exactly those library modules needed. In practice libraries are rarely included in monolithic

compiles.8 As a result, monolithic compilation can be used for interprocedural optimization, but

not for whole-program optimization.

Third, in some cases it really is easier for a processor outside the compiler to do a complete

job. Some compilers include machine-independent phases that are insulated from the machine-

dependent parts. Others compile into an abstract assembly language, relying on the assembler

for low-level instruction selection and pipeline scheduling. At the other extreme, many programs

have modules in more than one language. Even if a monolithic compilation system can accept

a collection of modules in different languages and can compile it all the way down to the final

machine language, the possibility remains that an unexpected language or compiler will emerge

that isn’t included in the scheme. A third-party C++ compiler, for example, has no way of

benefiting from optimizations that an in-house monolithic compiler performs.

Intermediate-language linking

A second alternative to link-time optimization is intermediate-language linking. At compile-time,

individual modules are compiled only as far as an intermediate language. “Object files” are then

really IL-files, libraries are full of IL-modules rather than true object modules, and the final code

generation is always done at link-time.

In its pure form, this approach is usually expensive as well. Postponing all code generation

until link-time shortens compile time but greatly increases link time. This lessens the advantages

of separate compilation and makes a fast build nearly impossible even when the user has no need

for intermodule optimization. As a result, this approach is rarely followed in its pure form. Two

different compromises are common. In one, parallel versions of each library are maintained, one

in IL-form and one in object-form, requiring twice the disk space and encouraging inconsistencies

and error. In the other, IL-linking is done by recompiling all the user modules into IL-form and

IL-linking the results, which reduces this to the case of monolithic compilation.

8We followed this practice when we measured OM’s improvement of compile-time interprocedurally optimized
code: all of the benchmark sources were compiled as a unit, but not the library sources. In fact, we have no sources
for the library routines, so we could not have included them in any case. This situation is typical of most users.
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Optimistic compilation

A third alternative to link-time optimization is what we might call optimistic compilation. To

compile a module, we make optimistic assumptions about the results of hypothetical link-time

optimizations, and compile the code to match these results. Then all the linker must do is

confirm that the assumptions were true. If they were not, the linker reports the fact (and refuses

to link) perhaps presenting advice about the switches that will tell the compiler to make less

optimistic assumptions. The -G option of MIPS-based compilers is an example of this: modules

are compiled such that variables with sizes below a certain default threshold are included in the

quickly-accessed “small” sections, but if there are too many such variables the program will not

link, and recompilation with a lower threshold is required.

Optimistic compilation has several disadvantages. First, selecting a set of optimistic assump-

tions is difficult; the best set of assumptions differs from program to program. Picking a default set

that are usually satisfied means that final executables seldom run as fast as they could. Program-

mers whose programs violate the default assumptions are burdened with the need to understand

messy details about how the compilers and linker work. In essence it places responsibility on

the programmer to make tradeoffs that an optimizing linker is in a better position to make, and

requires the development of an interface to let those tradeoffs be made. The programmer’s task

is complicated further by the likely need to specify different assumptions for different modules.

What’s left?

We know of no other alternative approaches in wide use. Link-time optimization has several

advantages over these alternatives. First, whole-program optimization can be done in one place,

essentially independent of the compiler and source language. Second, even optimizations that

do not require the whole program to be present, such as conversion of JSRs to BSRs, can be

done more safely by the linker: the compiler must be told whether the compiled code will be

statically-linked or included in a shared library, but the linker already knows. Third, statically-

linked library code can be included in whole-program optimization in the most natural way,

since the linker handles it in exactly the same way that it handles user code. Fourth, when the

compiler has important information to offer, it can pass it to the linker through relocation or

symbol tables; getting information from the linker back to the compiler is rather messier. Finally,

this approach opens the door to other use link-time transformations, such as the movement of

very small pieces of loop-invariant code across procedure boundaries [6], or flexible program

instrumentation tools [5].
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Every program build includes a link step. One naturally wants a linker to be fast under normal

circumstances: we probably do not want the linker routinely to perform expensive optimizations

that require flow analysis or other “compiler-style” algorithms. The optimizations discussed

here are not of this kind: they are cheap, fast optimizations that should be available to the user

routinely, even during the build-debug-rebuild cycle of a program under development.

7 Conclusions

The conservative address-calculation code that a compiler must generate on 64-bit architectures

can be measurably improved by link-time optimization. Even a quite modest approach can make

a difference; this approach never moves instructions and therefore fits well in a standard linker.

Bigger gains are possible at low cost by being willing to move code. In particular, programs can be

made 10 percent smaller and several percent faster by bringing to bear relatively simple analysis

of the program’s control structure. Moreover, this machinery in turn enables more sophisticated

link-time optimizations [6] that can improve the code still further over what is possible through

compile-time optimization alone.
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