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Abstract

The elastic properties of gum rubber and fluoroelastomers were studied by
a variety of numerical and experimental methods. Results were applied to
the design of flat pressure pads for microelectronic applications. The goal
was to develop an understanding sufficient that designers could quickly de-
velop acceptable fluoroelastomer pressure pads without further detailed
studies. The effort centered on optimizing the performance of a 14 mm
square by 0.8 mm thick pad under a fixed normal force.  The primary op-
timization criterion was minimization of the maximum normal contact
stresses applied by the pad to a rigid surface.

Judicious perforation of flat pads greatly reduced adverse contact stress
gradients. The preferred design used four 1.2 mm holes symmetrically ar-
rayed in a 4 mm square grid centered on the pad. Compared to an unper-
forated pad, this arrangement yielded a 28% reduction in maximum contact
stresses.
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Nomenclature

cij : Cauchy deformation tensor
eij : Eulerian finite deformation tensor
l0 : original gage length in a test sample
ls : deformed gage length in a test sample
n : number of experimental data points
p : arbitrary hydrostatic traction, inflation pressure
r : radius of curvature in an inflated membrane
t0 : initial thickness in a test sample
ts : thickness in a deformed sample
ui, uj : displacements
xi;A : deformation gradient tensor

Cijk, Cij : material constants in a series expansion of W
CAB : Green deformation tensor
EAB : Lagrangian finite deformation tensor
Fi;A : deformation gradient tensor
I1, I2, I3 : invariants of the stretches
W , W (I1; I2; I3) : potential strain energy density function

c : Cauchy deformation tensor
ii : basis vector of the deformed configuration
n : unit vector associated with the current configuration
x : position vector of a point after a finite deformation

C : Green deformation tensor
IA : basis vector of the undeformed configuration
N : unit vector associated with the original configuration
X : position vector of a point in the undeformed configuration

�i : material constants in Ogden’s strain energy function
�ij , �AB : Kroenecker delta
" : engineering strain
"ij : strains (infinitesimal theory)
� : angle subtended by a deformed gage length ls
�, �i : stretch ratio
�1, �2, �3 : stretch ratios along three orthogonal directions
�n : stretch ratio along n
�i : material constants in Ogden’s strain energy function
� : membrane stresses
�ij : true (Cauchy) stresses

ΛN : stretch ratio along N
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1 Introduction

Flat sheets of rubber are frequently used to transfer a load from one planar surface to another.
Such pads serve to reduce local pressure nonuniformities due to point defects (bumps and voids),
as well as large scale distortions (warp, bow, waviness). But owing to the incompressibility of
rubber, the pressure applied by a pad is not truly uniform, rather it tends to be highest at the center
of the pad, decreasing toward the edges. In some microelectronic applications, such as when
the pad contacts the active surface of a silicon microcircuit (die), this pressure nonuniformity is
of tremendous importance. Rubber pad use in packaging can be temporary or permanent. An

Pad

Substrate

Die

Heatsink

Pressure plate

Spring

Ball pivot

Spring
follower

Adhesive

Figure 1: High pressure adhesive die attach process.

example of temporary application occurs when a pad is used to load the adhesive joint during
high pressure die attach as shown in Fig.1. The ball pivot keeps the spring force centered on the
die, while the rubber pad distributes the force preventing excessive or spatially varying normal
contact stresses which may cause die cracking or a nonuniform adhesive thickness distribution
[1]. An example of permanent rubber pad application is depicted in Fig.2, where the pad is
used in a package to press the die against a heatsink in order to form a pressure contact joint.
A similar approach was used for a recent Siemens mainframe computer [2, 3]. In this case,
contact stress gradients can lead to corresponding temperature gradients. Figure 2 also shows
the importance of understanding pad deformation; if the edges of the pad bulge excessively,
bondwire damage may occur. And in both cases, shear tractions applied to the active surface
of the die may damage it.

Our laboratory had previously designed such pads by empirical methods, but we wanted to
move toward higher pressures for both die attach and pressure contact heat transfer applications.
We were concerned about the effects of contact pressure nonuniformity, and decided to embark
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Figure 2: Pressure contact die attach with bondwires.

on the current study.
The force distribution could be modified by using a pad with a 3-D surface profile rather than

a flat surface. To reduce costs and lead times, we chose instead to investigate the limitations
of shapes stamped from flat stock with low cost punches and steel-rule dies. The Siemens
mainframe is also reported to have used perforated pads [4].

We chose two elastomers for our investigation. The first was pure gum rubber, since it is
one of the materials whose properties have been most widely reported in the open literature.
The second was VitonTM [Du Pont], the fluoroelastomer we had already selected for our end
use applications. Viton has excellent chemical resistance and tolerates high temperatures 1 .
And while it is much more expensive than conventional compounds, it is a fraction of the cost
of fully fluorinated elastomers such as KalrezTM [Du Pont] and ChemrazTM [Green, Tweed,
& Co.]. Viton is also readily available in sheet form in both commercial and MIL-SPEC
grades; this proved to be an important distinction. Viton is the commercial name of copolymers
of vinylidene fluoride. Several types are available: Viton “A” is a dipolymer of vinylidene
fluoride and hexafluoropropylene, Viton “B” and “F” are terpolymers of vinylidene fluoride
and combinations of hexafluoropropylene and tetrafluoroethylene [5]. The main difference is
their chemical resistance to aggressive substances. The elongation at break is rather low (about
200%) and these compounds are generally stiffer than other rubber-like materials [6].

The goal of our research was to develop a sufficient understanding of the behavior of small
Viton pads, so that designers could quickly develop acceptable pressure pad designs without
further detailed studies. Both numerical and experimental methods were used. Our work
centered on optimizing the behavior a 14 mm square by 0.8 mm thick pad under a fixed normal
force. Our primary optimization criteria was minimization of the maximum normal contact
stresses applied by the pad surface.

1Viton has a long service life even with continuous exposure to 200�C [6]. Typical applications include seals
for automotive fuel lines, hydraulic pumps, and flue gas ducts in the power generation industry.

2
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2 Rubber Elasticity

2.1 Finite Elasticity

Rubber and rubber-like materials have the unique capability to withstand large deformations
and still be able to fully recover their original dimensions. These materials owe their unusual
properties to their molecular structure, which consists of long hydrocarbon chains (often with Cl
or Fl substitutions) with a tangled shape and freely rotating links. The hydrocarbon molecules
are interlocked in such a way that they form a three dimensional network able to sustain large
deformations as chains straighten (Treloar [7] p.12.) Natural and syntehtic rubbers and their
derivatives can achieve strains as high as 500%-1000%. In this case “strain” is defined as the
percentage change in original length L,

" =
∆L
L
� 100 (1)

By contrast, most other engineering materials are only able to recover their initial dimensions
for strains of at most a few tenths of a percent in uniaxial extension. Within those limits,
both rubber and other solids behave elastically, which implies not only the recovery from any
imposed deformations but also independence of stresses on previous deformation history.

Engineering materials such as crystalline metals are classified as linear elastic solids whereas

ε

σ

Strain

S
tr

es
s

ε ε

σ σ

(a) Elastic (b) Nonlinear elastic (c) Inelastic

εbεa

unloading

loading

Figure 3: Types of stress-strain responses

rubber-like materials are considered nonlinear elastic solids. The difference is the type of stress-
strain behavior as shown in Fig.3. These curves represent the stress-strain response to unixial
loading. Figure 3(a) depicts the constant slope response associated with a linear isotropic
Hookean material, a class to which most metals belong. Figure 3(b) depicts a behavior typical
of rubber-like solids, in which stresses cannot be described as a linear function of strains. In
both cases however, the curves during loading and unloading follow the same path; the stress is
a unique function of the strain or deformation. Figure 3(c) depicts a third case where the stresses
are not a single-valued function of the strains. Stresses during loading and unloading follow

3
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different paths. For a given strain, such as "b, there are two possible stress values depending on
previous loading history. Also, note that upon unloading to zero stress, the material has acquired
a permanent deformation "a. This is called inelastic behavior, and is typical of materials when
the elastic limit is exceeded.

Deformations in metals loaded within the elastic limits are much less than unity and therefore
their behavior can usually be adequately characterized with either a strength of materials
approach or its more refined counterpart, the infinitesimal theory of elasticity. Rubber-like
materials can exhibit strains that are several orders of magnitude higher, and the same approach
cannot be used. The more general finite elasticity theory is needed. All measures, such as
strains and stresses, defined for linear isotropic elastic solids have to be recast in the context
of a finite deformation theory. It is noted that the infinitesimal theory constitutes a limiting
case of the finite deformation theory. Only the fundamental concepts of finite elasticity will be
presented here; the interested reader is referred to the many excellent treatises on continuum
mechanics and nonlinear elasticity such as Malvern [8], Green and Adkins [9], and Green and
Zerna [10].

One of the main differences between the infinitesimal and finite deformation theories is the
location at which the stress and strain measures are defined. When deformations are large, the
initial and final locations of a particular point such as P in Fig.30 (Appendix A, page 39) may be
widely separated. In such cases, motions, strains, and stresses could be defined in two different
ways, by referencing them to the initial undeformed configuration or to the current deformed
configuration. These are the Lagrangian and Eulerian descriptions [8]. When deformations are
small compared to unity, as with metals, this distinction becomes unnecessary and all stress
and strain measures collapse into the definitions of the infinitesimal theory. The strain tensor,
defined in the infinitesimal theory in terms of displacement gradients as

"ij =
1
2

 
@ui
@xj

+
@uj
@xi

!
(2)

where
"ij : strains
ui, uj : displacements

is replaced in finite elasticity theory by either the Lagrangian or Eulerian finite strain tensor,
EAB or eij (see Appendix A, page 40 and ref.[8]).

Although it is possible to analyze rubber-like materials using finite strains, it is customary
to instead use a stretch ratio, �, defined in the deformed configuration as the ratio of the original
and current relative lengths (see Fig.30, page 39, and derivation in page 40),

1
�

=
dX

dx
(3)

The only differences are the values at zero deformation, where the stretch ratio is � = 1 but the
Lagrangian and Eulerian strains are E = e = 0. A stretch ratio of � = 2 in a given direction
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indicates that the final dimension is twice the original one. The use of stretch ratios in finite
elasticity is a matter of convenience due to the magnitude of the deformations. By contrast,
using stretch ratios in the infinitesimal theory would be cumbersome at best. For example,
an object with an original length of 1 mm and a final length of 1.001 mm, is much easier to
describe using engineering strains (" = 0:1%).

Stress measures in finite elasticity theory center around the Cauchy or true stresses which
are defined in the deformed configuration 2 .

2.2 Stresses and Constitutive Equations

In most engineering design problems, the load acting on an object is known, or can be assumed
to fall within in a certain range. Based on this, the analyst seeks to determine the corresponding
effects in the interior of a solid, i.e., investigate stresses and their distribution. Stresses cannot
be measured directly and must instead be related to measurable quantities such as strains or
stretch ratios through the use of constitutive equations which describe the relationship between
stresses and stretch ratios or strains. The independence of stresses on previous deformation
history and the reversibility of imposed deformations in elastic materials allows us to prove that
constitutive relations for both linear and nonlinear elastic solids can be derived from a strain
energy potential function. This argument is very similar to the path independent work done
on a particle in a potential field where the forces can be derived from a differentiable potential
function [11]. By analogy, if stresses take the place of forces, a differentiable potential function
must exist3 that it is a function only of the deformations. In such cases stresses can be expressed
as

�ij =
dW (e)

deij
(4)

where

�ij : true (Cauchy) stresses
W (e) : potential strain energy density function (strain energy per unit volume)
e : any deformation measure (e.g., finite Eulerian strain tensor, stretches)

Any material for which such a potential strain energy function exists is called a Green-elastic or
hyperelastic material [8]. In the strictest terms, both linear and nonlinear elastic materials are
hyperelastic. In practice however, the term hyperelastic is generally applied only to rubber-like
materials. From the mathematical standpoint, there are two ways to apply Eq.4 to obtain a
constitutive relation. One is to assume small strains, take a series expansion and consider only

2Stresses can also be referenced to the initial undeformed configuration (e.g. the first Piola-Kirchhoff stress
tensor). This distinctionis necessary due to changes in areas associated with the current and original configurations.

3The existence of this function is not always assured.
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the linear terms. This leads to the familiar Hooke’s law for linear elastic solids. The other
is to assume finite strains and construct a suitable strain energy function. The success of any
analytical or numerical effort in hyperelastic solids depends closely on the ability of the chosen
strain energy function to reproduce the actual material behavior.

In spite of their compliant appearance, most rubbers are incompressible or nearly incom-
pressible solids. This makes them capable of withstanding large hydrostatic tractions without
any change in volume and implies that deformations alone cannot describe stress states in the
interior of such materials. For example, imagine a rubber ball deep in the ocean. It is subjected
to homogeneous external tractions p = �gh (�: water density, g: acceleration of gravity, h:
depth), yet due to its imcompressibility, it has the same dimensions as at sea level. This incom-
pressibilty condition can be expressed as a function of the stretch ratios along three orthogonal
directions,

�1�2�3 = 1 (5)

Our focus here will be on homogenous deformations, those in which the deformation gradient
Fi;A does not depend on the original configuration X (see Appendix A, page 40). Such
deformations can be completely characterized with only three stretch ratios along orthogonal
directions. The hydrostatic state of the ball in the ocean example is one case. Another is
a sample subjected to biaxial extension along two orthogonal axes. Since the unit vectors
associated with the original and deformed configurations (N and n) do not change orientation
in a homogeneous deformation, there is only one stretch measure (see Appendix A, page 41).

In the general case of an isotropic hyperelastic solid, the strain energy density function W

must be a symmetrical function of the stretch ratios �1, �2, and �3 (see Rivlin [12] and Treloar
[7].) It follows that W can be defined in terms of the three invariants defined as (see Eq.52,
Appendix A page 42),

I1 = �2
1 + �2

2 + �2
3

I2 = �2
1�

2
2 + �2

2�
2
3 + �2

1�
2
3 (6)

I3 = �2
1�

2
2�

2
3

Thus,

W = W (I1; I2; I3) (7)

The choice of W can be arbitrary as long as it does not violate any of the principles of
continuum mechanics (for example, it must predict zero stress at zero deformation). A suitable
general form is a power series of the invariants I1, I2, and I3

W (I1; I2; I3) =
1X

i=0;j=0;k=0

Cijk(I1 � 3)i(I2 � 3)j(I3 � 1)k (8)

where

6
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Cijk : material constants

This function is zero at zero deformation as long as C000=0. Also note that by Eq.6, I1 = I2 = 3
and I3 = 1 for �1 = �2 = �3 = 1, and the correct zero stress is predicted by Eq.4.

When the incompressibility condition is introduced, I3 = 1 for any stress state, and the
terms affected by it drop from Eq.8 giving

W (I1; I2) =
1X

i=0;j=0

Cij(I1 � 3)i(I2 � 3)j (9)

where
Cij : material constants

Again, C00=0 in order to have zero stresses at zero deformation. Generally the first few terms in
the series dominate, and we can consider W to be given by the two-term approximation which
includes only the linear terms in I1 and I2 (i = 1; j = 0 and i = 0; j = 1),

W (I1; I2) = C10(I1 � 3) + C01(I2 � 3) (10)

This is perhaps the form most widely used in rubber elasticity and is known as the Mooney-
Rivlin strain energy function, first proposed by Mooney in 1940 [13, 12]. The Mooney-Rivlin
form has been found to reproduce the behavior of most natural and synthetic rubbers for
moderate deformations (� � 4). For higher stretch ratios it is less successful, and over the
years, a number of other forms for the strain energy function have been proposed in response
to the need to characterize a variety of rubber-like materials. Some of these are higher order
approximations of Eq.9 and others have been formulated along rather different lines, among
them:

� Neo-Hookean form [7]

W = C10(I1 � 3) (11)

Used only for certain vulcanized rubbers swollen with organic solvents [11]. It gives a
poorer fit of experimental data than Mooney-Rivlin’s form.

� Rivlin-Saunders form [14]

W = C10(I1 � 3) + F (I2 � 3) (12)

where F (I2 � 3) is a function of I2. Intended for a general rubber-like material.

� Klosner and Segal [15] cubic form for F (I2 � 3)

W = C10(I1 � 3) + C01(I2 � 3) + C02(I2 � 3)2 + C03(I2 � 3)3 (13)

Tested on natural rubber.
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� Ishihara et.al. form [16]

W = C10(I1 � 3) + C20(I1 � 3)2 + C01(I2 � 3) (14)

Obtained from non-Gaussian molecular theory considerations. It exhibits poor correlation
with uniaxial experimental data on 8% sulfur rubber, Alexander [17].

� Second order deformation form [37]

W = C10(I1 � 3) + C01(I2 � 3) + C20(I1 � 3)2 +

C11(I1 � 3)(I2 � 3) + C02(I2 � 3)2 (15)

General use. Included in some finite element programs.

� Third order deformation form [18, 19]

W = C10(I1 � 3) + C01(I2 � 3) + C20(I1 � 3)2 +

C11(I1 � 3)(I2 � 3) + C30(I1 � 3)3 (16)

General use. Included in some finite element programs.

� Yeoh form [20]

W = C10(I1 � 3) + C20(I1 � 3)2 + C30(I1 � 3)3 (17)

Used for carbon black filled rubber vulcanizates in which material constants have a
strain-history dependency. Of interest in the automotive tire industry.

� Hart-Smith and Crisp [21, 22] exponential-hyperbolic form,

W = C
�Z

ek1(I1�3)2
+ k2ln

I2

3

�
(18)

where C , k1, and k2 are material constants. Tested on sulfur rubber and cast latex. It
does not give good agreement in “Neoprene” (polychloroprene) film under equibiaxial
stresses [17].

� Alexander form [17]

W = C1

Z
ek(I1�3)2

dI1 + C2ln

 
I2 � 3 + k1

k1

!
+ C01(I2 � 3) (19)

where C1, C2, k, and k1 are material constants. Good agreement on “Neoprene” film.

8



Fluoroelastomer Pressure Pad Design for Microelectronic Applications

� Hutchinson, Becker, and Landel form [11]

W = C10(I1 � 3) + C20(I1 � 3)2 +B1(1� ek1(I2�3)) +B2(1� ek2(I2�3)) (20)

where B1, B2, k1, and k2 are material constants. Good agreement for uniaxial and biaxial
tests on filled dimethyl siloxane (silicone) rubber.

� Ogden form [23]

W =
1X
i=1

�i
�i

(��i

1 + ��i

2 + ��i

3 � 3) (21)

where �i, �i are material constants. Intended for general use.

The Ogden form, Eq.21, is a more general expression than the expansion in Eq.9. It redefines
the first two invariants given by Eq.6 as

I1 = (��1
1 + ��1

2 + ��1
3 � 3)

I2 = (��2
1 + ��2

2 + ��2
3 � 3) (22)

where the exponents are not necessarily integers. When �1 = 2 and �2 = �2, a two-term
Ogden formulation is identical to the Mooney-Rivlin strain energy function, Eq.10.

The choice of a strain energy function depends heavily on the material and the stretch
ratios to which it will be subjected. For relatively small stretch ratios, say � < 2, a linear
approximation such as Mooney-Rivlin’s is usually quite adequate, but for high stretch ratio
ranges, a higher order approximation may be needed.

Once a strain energy function is chosen, one must still determine the material constants Cij ,
�i, etc., and the expression for the stresses. Considering stretch ratios as deformation measures,
the stresses are expressed using Eq.4,

�ij�ij = �i
@W (I1; I2)

@�i
+ p (23)

where

�ij : Kroenecker delta
p : hydrostatic pressure
W : strain energy density function

9
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The additional term, p, can be considered a Lagrange multiplier needed to comply with the
incompressibility condition and accounts for any hydrostatic tractions. For example, a uniaxial
loading along the first axis can be described by the stretch ratios

�1 = �; �2 = �3 =
1p
�

(since �1 is imposed, �2 and �3 are considered to be equal and obtained from the imcompress-
ibility condition, �1�2�3 = 1). If a Mooney-Rivlin material and zero hydrostatic tractions are
assumed, then the stresses from Eq.23 are

�11 = �

 
@W

@I1

@I1

@�
+
@W

@I2

@I2

@�

!
(24)

The invariants are (see Appendix A, page 42),

I1 = �2
1 + �2

2 + �2
3 = �2 + 2

1
�

I2 =
1
�2

1
+

1
�2

2
+

1
�2

3
= 2�+

1
�2

Substituting the derivatives of the invariants and the Mooney-Rivlin strain energy function into
Eq.24 gives,

�11 = 2

 
�2 � 1

�

! 
C10 +

1
�
C01

!
(25)

Similar expresssions can be obtained for equibiaxial loadings

�1 = �2 = �; �3 =
1
�2

(26)

�11 = �22 = 2

 
�2 � 1

�4

!�
C10 + �2C01

�
(27)

2.3 Application to Pad Design

The objective of our investigation was to optimize the contact stress distribution in flat Viton
pads under a specified normal load. If contact at the pad faces were frictionless, the problem
would reduce to one of equibiaxial loading. The pad would expand uniformly, maintaining its
original shape, and the contact stresses would be uniform. But in real assemblies the contact is
not frictionless. As a bounding case, one can assume perfect friction or adhesion at the pad faces.
Since rubber-like materials experience nearly isochoric (volume preserving) deformations, any
kinematic constraints that tend to confine the whole or part of the material cause stress gradients.
When friction is introduced, Fig.4, the central part of the pad experiences a stiffening response
to the lateral confinement. By contrast, portions near the edges are still able to move relatively

10
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Frictional forces
on the interface

Rigid Plates

Rubber-like
material

Compressive load

Figure 4: Effect of a finite friction coefficient on material confinement.

freely. This gives rise to substantial radial stress gradients. Placing a hole or perforation in the
zone where confinement is expected allows the surrounding material to flow toward the hole’s
free edge, relieving contact stresses in the vicinity. Our investigation was intended to explore
the combined effects of hole placement and size on the contact stress distribution and to reduce
its peak value.

In spite of their deceptively simple appearance, the closed form calculation of stresses from
the analytical expressions presented so far can be made only in a limited number of cases
with simple geometries, boundary conditions, and homogeneous deformations. Experimental
methods can be used instead if the time and expense are justified. For example, the contact stress
distribution in compressed rubber cylinders has been successfully analyzed by such a method
[24]. However, in the vast majority of design cases where direct solutions are not possible
the widespread availability of numerical methods such as nonlinear finite element analysis has
reduced the need for experimental methods. Commercial codes that include several hyperelastic
constitutive models are routinely used in the tire and automotive industries [19]. We chose
the same approach to evaluate our pad designs. But first, we needed to determine the material
constants for Viton.

3 Material Characterization

In order to use the constitutive models offered by finite element codes, it is necessary to provide
values for the various material constants (Cij) defined in the previous section. Unfortunately,
there is a wide variation in the properties of synthetic rubbers owing to the large number
of compounding variants. The few material constants that have been published in the open
literature are for commonly used products such as natural and vulcanized rubbers and pure gum
rubber [11]. In practice, it is necessary to characterize each material of interest. This is done
by recording the stress-stretch ratio response for simple loading cases and performing a least-
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squares fit of the data to an appropriate constitutive relationship. Since different loading modes
have slightly different stress-stretch ratio responses, the test loading must be representative
of the problem under consideration. It would be incorrect to use material constants obtained,
say from an extension test, in a finite element model loaded under pure shear. If the primary
loading mode is unknown, then several tests under different loading types are needed and the
constitutive model fitted to all experimental points. 4

The most common homogeneous deformation tests are

� Uniaxial extension

� Equibiaxial extension

� Pure shear

However, the primary loading mode of interest in the design of pressure pads is uniaxial
compression. Curiously enough, the superposition principle can be used to show that uniaxial
compression of a wide sheet (e.g. a pressure pad) is equivalent to uniform equibiaxial extension.
To visualize this, consider the sheet in Fig.5(a), which is subjected to equibiaxial tractions�, and
also subjected to a hydrostatic stress state ��. By the superposition principle, the hydrostatic
tractions at the edge of the sheet exactly cancel the tractions imposed by the equibiaxial
extension. But the faces of the sheet are still subjected to the hydrostatic tractions. The net
result is a sheet loaded in uniaxial compression. Hence, we choose an equibiaxial test as the

(a) biaxial extension (b) hydrostatic compression (c) uniaxial compression+ =

σ σ

−σ

−σ

−σ

Figure 5: Equivalency of uniform biaxial extension and uniaxial compression

primary means for obtaining material constants for Viton pressure pads.
There are several ways to obtain biaxial extension. One of them involves stretching a sheet

of rubber in two orthogonal directions. However, there are a number of problems with this
method: the difficulty of maintaining a constant 1:1 load ratio on the two loading directions and
the clamping method. Clamping must usually be done with strings in order to avoid nonuniform
transmission of the imposed load to the sheet. The load ratio problem can be solved by using

4Opinions are still divided on the need for multiple tests. See James et al. [18] for a brief discussion.
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dead weights, springs, or a feedback control system with active loading devices. An additional
problem is to maintain the load alignment with respect to the deforming sheet (remember the
large deformations that rubber can attain). A detailed description of the experimental aspects
of this method can be found in refs.[15, 25] 5 .

3.1 Inflation Test

An alternative biaxial extension method, the inflation test, is much simpler to implement. A
circular sheet is clamped at its edge and subjected to internal pressurization. When inflated,
the sheet acquires a balloon-like shape and as long as its radius of curvature is much greater
than its thickness, it can be analyzed as a membrane . If only small areas are considered, say
near the pole of the inflated shape, curvature effects can be safely ignored and the sheet can
be considered to be under a uniform biaxial load. Historically, this was the first test used to
characterize rubber behavior. Treloar and Rivlin and co-workers [26, 27, 28, 14] used it not
only to find material constants but also to check the validity of a number of analytical solutions
for the membrane inflation problem. Nowadays, the inflation test is used in almost all rubber-
like material characterization cases related to numerical solutions and nonlinear finite element
analysis [22, 29, 30]. It is also one of the most widely described tests for other applications
such as mold filling problems [31]. The objective of an inflation test is to record the stretch
ratios as a function of inflation pressure. The stretch ratio vs. pressure data is then processed to
calculate material constants.

Three different materials were tested: natural latex, pure gum rubber, and Viton. The 0.8
mm (nominal) thick pure gum and natural latex sheets were used to gauge the validity of our
methods by comparing results with published values. Mooney-Rivlin constants for pure gum
rubber were previously obtained by Oden and Kubitza [29]. Our 0.8 mm nominal thickness
Viton sheets were procured from three different sources6 in order to evaluate the variability
of material constants. One source provided commercial grade sheets while two other vendors
provided material conforming to MIL-R-83248 Type 2, class 1 specifications.

Sample preparation consisted of cutting circular sheets 81 mm in diameter from the un-
deformed material 7 and marking gage lines as indicated in Fig.6. Gage lengths of l0 = 6
mm were used for Viton and l0 = 3 mm for natural latex and pure gum rubber. Longer gage
lengths were more appropriate for Viton samples due to their relatively low ultimate elongation
values (approximately 150% per ASTM D 412 [32]). While other investigators recommended
using the finest possible gage lines [14], we found this unnecessary since we were able to make

5The investigations reported in these references by Treloar and Klosner and Segal were concerned with biaxial
loadings with ratios other than 1:1. Such biaxial tests are an alternative to a purely unixial test.

6See supplier list in App.B, page 44.
7This did not correspond to the diameter of the free area able to deform during inflation, the free area is

indicated with dashed lines in Fig.6.
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 81mm∅

l0

Free area 
after clamping

       35mm
  or 53.5mm

∅

Gage lines

Figure 6: Gage length tracing on a circular sheet

accurate measurements to the edges of the lines. A solvent-based metallic “silver marker” was
found to give the best color contrast against the normally dark Viton. A 0.25mm drafting pen
with water-based black ink was used to mark both the amber colored natural latex and light
brown pure gum rubber. Ink adhesion proved to be very important, especially at large stretch
ratios (� > 4) when lines tended to lose cohesion and “blur” due to the highly extended state
of the material. An optical stage with an attached straight edge was used to accurately mark the
gage lines. We also evaluated Nd:YAG laser marking, but found that visible marks damaged
the material, particularly the heavily loaded Viton.

The apparatus used to perform the inflation tests consisted of a circular pressure chamber
capped by the test sample and sealed with an annular clamp, Fig.7. Dry compressed air was
used as the pressurizing fluid. The base and clamps were machined from 6061 aluminum stock.
The base included ports for pressure measurements and to admit and vent air. Air inlet control
was via a needle valve. Pressure measurements were made with a 0-344 kPa (0-50 psi) pressure
transducer for Viton and a precision 0-206 kPa (0-30 psi) Bourdon gage for natural latex and
pure gum rubber. Both instruments were calibrated against mercury and water manometers.
Both pressure gages could be connected at the same time. A second needle valve was used
to deflate the membrane while recording the corresponding stretch ratio response. The entire
apparatus was designed to fit on the x� y stage of a Nikon universal measurement microscope.

Two clamp sizes were used for the tests. Natural latex and pure gum rubbers were tested
with a clamp allowing for a 35mm diameter free zone. However, due to its low ultimate
elongation, Viton required a larger 53.5mm diameter clamp in order to achieve a sufficiently
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Belleville
spring washer

Clamp

Base

Pressure 
chamber

Air inlet

Test sample

Pressure
measurement

Gage lines

Figure 7: Inflation test apparatus.

large radius of curvature in the inflated shape. Both clamps were machined with a beveled
edge as depicted in Fig.7 to allow for free deformation of the inflated sheet. Belleville spring
washers under the clamping bolts proved useful in preventing air leaks over the entire range of
pressures. Insufficient clamping forces can allow slipping of the sheet between the clamp and
base at high stretch ratios and be a source of experimental errors as noted by Hart-Smith and
Crisp [22].

As the sample inflates, the original gage length l0 adopts a curved shape, so that direct
measurements of the stretched gage length ls are not possible. Instead, measurement of the
(x; y; z) coordinates of three points, a, b, and c, indicated in Fig.8 enables first computing the
radius of curvature and finally the stretched gage length, ls. The stretch ratio at a given inflation
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a
b c

A
B C

l   =ABC0

ls

Inflated shape

Undeformed shape

(x,y,z)c

(x,y,z)b

(x,y,z)a

xy

z

Figure 8: Inflated shape and deformed gage length.

pressure is then

� =
ls
l0

(28)

It is not absolutely necessary that the deformed gage length be centered at the pole of the
inflated shape. The location of point (x; y; z)b in the neighborhood of the pole is enough to
ensure the validity of a biaxial stress state assumption. The ability to track the location of
the deformed gage length ls is more important. The (x; y; z) coordinates were determined by
translating the test apparatus under the microscope objective and focusing the crosshairs on
the measurement point. The (x; y) values were obtained to �1�m resolution from the digital
readout of linear encoders attached to the microscope stage. The extremely shallow depth of
focus of the microscope allowed z-axis measurements repeatable to within �0:5�m, as taken
from a second digital readout attached to the microscope objective’s rack. All three coordinate
values were written simultaneously to a text file through an RS-232 interface. Pressure values
were recorded manually when using the 0-206 kPa (0-30 psi.) Bourdon gage and written to
a separate text file when employing the 0-344 kPa (0-50 psi.) pressure transducer. The test
procedure is summarized below:

1 - Measure original gage length.

2 - Admit air.

3 - Measure coordinates at three points along the gage length.
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4 - Measure pressure.

5 - Repeat steps 2-4 until the preset maximum pressure.

6 - Vent air in steps and repeat measurement to assess hysteresis.

Viton exhibited a noticeable viscoelastic behavior, which complicated testing. Upon a step
pressurization, the membrane would not immediately assume an equilibrium position. Before
making a measurement, it was necessary to wait between 5 and 30 min. depending on the
stretch ratios.

At high pressures, the gage lines tended to blur due to the separation of the ink particles.
This made it difficult to locate measurement points through the microscope. In the case of
natural latex, the line blurring problem was exacerbated by membrane thinning at high stretch
ratios. By Eq.26, the thickness ts of the latex membrane subjected to the maximum stretch ratio
�1 = �2 = � = 4:86 achieved during the test is

ts =
t0

�2
=

1
23:6

t0 = 32:2�m (29)

(�3 = ts=t0 where t0 =0.762 mm was the original undeformed thickness). At this thickness
natural latex becomes almost translucent, reducing the contrast of the gage lines. Changing
the microscope magnification from 20� to 5�, and reducing lighting helped to mitigate the
problem.

One of the peculiarities of rubber-like materials is the nonmonotonic form of the measured
inflation pressure vs. stretch ratio curve, shown in Fig.9 for natural latex. At a certain value
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Figure 9: Measured inflation pressure vs. stretch ratio curve for natural latex.

of �, the addition of air causes the pressure to decrease rather than to increase. The material
becomes more compliant and the added air mass is translated into further deformation without
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Figure 10: Measured inflation pressure vs. stretch ratio curve for Viton.

raising the internal pressure 8. As still more air is added, the internal pressure stabilizes and
then starts increasing again, indicating less compliance to deformations. This apparent strain
hardening is attributed to crystalization phenomena in rubber-like materials [33]. As shown
in Fig.10, Viton did not exhibit pressure stabilization, rather it burst shortly after a slight drop
in inflation pressure. The non-monotonicity of the inflation pressure represents an unstable
bifurcation behavior 9 since more than one stretch ratio is possible for a given inflation pressure
[11, 29]. This problem was extensively studied due to its influence on flight prediction of
meteorological balloons, Alexander [33] and Needleman [34]. A leak-free test assembly has
proven necessary in order to accurately discern the onset of this phenomenon.

3.2 Data Reduction and Calculation of Material Constants

The inflation test yields a series of measurements of grid line mark positions vs. inflation
pressure. This data is reduced by the following steps to yield true membrane stress vs. stretch
ratios:

1 - convert coordinate measurements to radii of curvature.

2 - calculate of deformed gage lengths using radii of curvature and (x; y; z) coordinates.

3 - calculate stretch ratios.

4 - calculate the biaxial true (Cauchy) stresses in the neighborhood of the measurement
points.

8This phenomenon is familiar to anyone who has ever tried to inflate a balloon. It is difficult to get the balloon
started, but once it reaches a certain size it fills the rest of the way more easily.

9See Green and Adkins [9] p.170 for a mathematical proof.
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Assuming that the original and deformed gage lengths are coplanar, the radius of curvature
r of the curve a� b� c (Fig.11) can be obtained by trigonometric relations as

r2 =
1
4
(∆x2

1 + ∆z2
1)(∆x2

2 + ∆z2
2)[(∆x1 + ∆x2)2 + (∆z1 � ∆z2)2]

(∆x1∆z2 + ∆z1∆x2)2
(30)

where all quantities are defined in Fig.11. This was the approach used by Rivlin and Saunders
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x   = x  - xab1   x   = x  - x bc2

z   = z  - zab1
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r

θ

Deformed gage length

Figure 11: Computation of deformed gage lengths from coordinate measurements.

[14] 10 . The angle � subtended by the deformed gage length ls is

� = 2sin�1 1
2r

q
(∆x1 + ∆x2)2 + (∆z1 � ∆z2)2 (31)

Since r >> ls the deformed length ls can be found as

ls = r� (32)

And by Eq.28, the stretch ratio is

� =
ls
l0

10An alternative expression can be derived using shell theory and by assuming a nearly spherical inflated shape
[22]
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The true stresses in the neighborhood of the pole of the inflated shape can be found from
the well-known expression for the stresses in a membrane under uniform pressure,

� = �11 = �22 =
pr

2ts
(33)

where

�11, �22 : stresses
p : inflation pressure
r : radius of curvature
ts : thickness in the deformed state

Except for ts, all quantities on the right hand side of this expression can be measured or
computed. By Eq.29, ts is a function of the original thickness and the stretch ratio. The stresses
are then

�11 = �22 =
pr

2t0
�2 (34)

At this point, the experimental data have been converted into pairs of � vs. � values. A sample
plot obtained for pure gum rubber is shown in Fig.12. The next step is to choose a strain energy
function and determine the material constants.
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Figure 12: Experimental data points, � vs. � for pure gum rubber

We chose the Mooney-Rivlin strain energy function for our study of Viton pads for two
main reasons: (a) it is the most commonly used form for which published values are available
and (b) the anticipated maximum stretch ratio does not exceed 1.5 for our intended application.

Finding the material constants is a matter of solving an overdetermined system of equations
represented by the experimental points. The least squares method provides a means to solve
the problem. The usual procedure is to assume any convenient interpolating polynomial and
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to calculate the coefficients that minimize the error in fitting the experimental data points such
as those indicated in Fig.12. In this case, instead of choosing any function, the analytical
expression for the stresses according to Eq.27 is taken as the interpolating function.

f̂ (�j) = 2

 
�2
j �

1
�4
j

!
C10 + 2

 
�4
j �

1
�2
j

!
C01 = �j (35)

where

f̂(�j) : interpolating function
�j : jth true stress from the experimental data
�j : corresponding stretch ratio

The unknowns are the Mooney-Rivlin constants C10 and C01. Note that Eq.35 is linear in C10

and C01, which allows the use of a linear least squares procedure (by contrast, Ogden’s strain
energy function, Eq.21, is nonlinear in the material constants �i and requires a nonlinear least
squares procedure, Twizell and Ogden [35].) The goal is to minimize the following function
(see for example, ref.[36] p.258),

F (C10; C01) =
nX

j=1

[C10'1(�j) + C01'2(�j)� �j]
2 (36)

where

n : number of experimental data points

and

'1(�j) = 2

 
�2
j �

1
�4
j

!

'2(�j) = 2

 
�4
j �

1
�2
j

!

The points �j that comply with Eq.36 must satisfy the conditions

@F (C10; C01)

@C10
= 0

@F (C10; C01)

@C01
= 0

i.e.,

2
nX

j=1

[C10'1(�j) + C01'2(�j)� �j]'1(�j) = 0

2
nX

j=1

[C10'1(�j) + C01'2(�j)� �j]'2(�j) = 0
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which can be arranged as a system of two linear equations from which C10 and C01 can be
readily obtained,8>>>>>><

>>>>>>:

2
4 nX
j=1

'2
1(�j)

3
5C10 +

2
4 nX
j=1

'1(�j)'2(�j)

3
5C01 =

nX
j=1

'1(�j)�j2
4 nX
j=1

'1(�j)'2(�j)

3
5C10 +

2
4 nX
j=1

'2
2(�j)

3
5C01 =

nX
j=1

'2(�j)�j

(37)

An example of this calculation for pure gum rubber can be found in Appendix B, page 46;
the results are plotted in Fig.13 with the fitting function superposed on the experimental data
points. Table 1 compares the resulting material constants with those obtained by Oden and
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Figure 13: Example of least squares fit of the Mooney-Rivlin form to experimental data.

Kubitza [29] for a similar material. The results are in reasonable agreement in spite of the fact
the tests were performed with markedly different specimen sizes.

Table 1
Mooney-Rivlin Constants for Pure Gum Rubber

C10 C01

Present results 134.36 kPa 12.49 kPa
(D=35mm, t0=0.78mm) (1.37 kg/cm2) (0.127 kg/cm2)
Oden-Kubitza[29] 111.79 kPa 13.73 kPa
(D=381mm, t0=1.78mm) (1.14 kg/cm2) (0.14 kg/cm2)
D: diameter free to inflate, t0: initial thickness
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Table 2
Mooney-Rivlin Constants for VitonTM

Supplier (dimensions) C10 C01

McMaster-Carr 1194.6 kPa 163.0 kPa
(D=53.5mm t0=0.863mm) (12.18 kg/cm2) (1.66 kg/cm2)
West American Rubber 1329.2 kPa 263.0 kPa
(D=53.5mm t0=0.838mm) (13.55 kg/cm2) (2.69 kg/cm2)
D: diameter free to inflate, t0: initial thickness

NOTE: MIL-R-83248 Type 2, class 1 material specifications

Table 2 shows the material constants for MIL-SPEC grade Viton test samples obtained from
two different vendors. These values turned out to be considerably higher than the constants for
pure gum rubber. A third commercial-grade Viton sample was not tested due to its extremely
low elongation at break (estimated at less than 130%) and its chemical susceptibility to the
solvent-based marker used to trace the gage lines.

The values for C10 and C01 listed for the first sample of Viton were checked with a simple
four-element finite element model of a flat sheet intended to simulate the zone near the pole of
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Figure 14: Comparison of experimental data with a finite element model.

the inflated shape (by neglecting again curvature effects). A series of prescribed displacements
in two orthogonal directions were imposed in steps to reproduce the values of stretch ratios
obtained from the test data. A comparison of the true stress vs. stretch ratio evolution obtained
both from the finite element modeling and the experimental data is shown in Fig.14. This
simple check served as a qualification of the finite modeling with the experimentally obtained
data. The validity of the Mooney-Rivlin constants is of course limited to the loading mode
from which they were derived. In the present investigation of a flat pad under compression,
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these constants are assumed to be valid as long as the deformation remains “as homogeneous
as possible.”

4 Finite Element Modeling of the Proposed Shapes

A commercial finite element modeling program, Abaqus v.5-2 [37], was chosen to qualify
our experimental results and to evaluate proposed pad designs. Abaqus includes strain energy
functions valid for several hyperelastic constitutive models:

� Mooney-Rivlin’s form (Eq.10)

� Second order deformation form (Eq.15)

� Ogden’s form (Eq.21)

It also includes the Neo-Hookean form since it can be obtained as a particular case of the
Mooney-Rivlin form with C01 = 0. Ogden’s strain energy function can be formulated with
up to a six term (n=6) approximation of Eq.21. In addition, any of the constitutive models
presented previously can be included through a user-defined subroutine (UHYPER).

A Digital Equipment Corporation Alpha AXP-based workstation was used to run all finite
element models. Typical CPU times ranged from a few minutes to several hours depending on
the loading level and degree of mesh refinement. With the exception of a few simple models,
Patran v.3 [38] was used for mesh generation.

4.1 Model Description

The pressure pad problem was modeled with the following assumptions,

1 - Perfect adhesion of the pad faces to the compressing surfaces (once in contact, the pad
faces do not separate). This assumption is usually valid for the high pressure die attach
process where one side the pad is held by the rough active surface of the die and the other
side is glued to the pressure plate (see Fig.1).

2 - Constant load applied by the compressing surfaces (as opposed to constant normal trac-
tions).

3 - Perfect rigidity of the compressing surfaces. This assumption is not strictly valid for the
high pressure die attach process in which the adhesive acts as an elastic foundation below
the die, Fig.1.
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A typical mesh used to model a square pad with a central hole will be used as an example
to describe the finite element modeling. A three-dimensional model was adopted since the
objective was to study contact stresses and visualize their distribution on the pad faces. Due to
the symmetry of the geometry, boundary conditions, and loads, the modeling can be done on
one eighth of the actual square pad. The effect of the rest of the pad can be modeled by imposing
the appropriate boundary conditions to the model as indicated in Fig.15. The midsurface nodes
are constrained to remain on the same x� y plane at all times during the loading history (when
uz displacements occur, these nodes move as a whole, but independent movements in the x

and y directions are still possible). Again, by symmetry considerations only one of the rigid
compressing surfaces is modeled.

Three-dimensional eight-node linear-interpolation mixed-formulation elements were used

x

y
z

1   model
8

u   =0y

u   =0x
       the same for 
all nodes at model 
upper surface
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t/2
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Figure 15: Pressure pad modeling and boundary conditons.

throughout the modeling (Abaqus element type C3D8H). When necessary, six-node mixed-
formulation triangular prism elements (Abaqus element type C3D6H) were used as mesh fillers.
The use of these mixed-formulationelements were mandated by the incompressibility of rubber-
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like materials for which the stresses cannot be uniquely determined from the displacements 11.
Three hundred and ninety 3-D elements were defined for the example in Fig.16. Only three
elements were used along the thickness to maintain an adequate aspect ratio in the entire model.
The height of all elements were the same, but an alternative “pre-distorted” mesh for extremely
high loads may consider unequal element heights. Such a mesh is generated in a way that
“negates” unfavorable distortions under loads, by making the original element shapes as if they
were deformed in the opposite direction.

x

y

z

C3D8H
3-D elements

C3D6H
triangular
prism
elements
(mesh fillers)

2.4 x 10   m-3

7 x 10   m-3

P

0

Figure 16: Mesh modeling a pad with a central hole.

A different type of element was used to model the interaction of the lower pad face with the
rigid compressing surface. The three dimensional C3D8H elements in the mesh of Fig.17 were
overlaid on the lower surface with interface elements IRS4 capable of detecting contact with a
separately defined rigid surface. The lateral edges were also covered with interface elements to
model possible bulging and contact with the rigid surface. However, only two rows of lateral
interface elements were defined. The C3D8H elements adjacent to the midsurface of the actual
pad (upper surface of the model) did not include them due to the kinematic constraint defined
on its constituent nodes (they always remain in the same x � y plane). If interface elements
were defined there, the contact force would become undetermined if actual contact occured.
Fortunately, extreme lateral bulging was not expected to occur with the loads of the case under
study (if it were, the problem could be solved by defining more elements along the thickness).
Interface elements also have the ability to deform with the 3-D elements to which they are
attached and thus give the true (Cauchy) contact stresses on the rigid surface. The plots shown
in the next subsection that describe the distribution of contact stresses are actually describing

11Traditional displacement-based elements have only displacements as field variables and calculate stresses
from displacement gradients. Such elements cannot model rubber-like materials since they can be subjected to
stresses with no nodal displacements. Mixed formulation elements have both stresses and displacements as field
variables.
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Figure 17: Use of interface elements to detect contact stresses.

tractions applied by the rubber pad to the interface elements. Friction between the interface
elements and the rigid surface was considered to be infinite (perfect adhesion) but could have
been modeled with any values from 0 to1.

A concentrated constant load P was applied in the �z direction to the upper surface of
the mesh (midsurface of the actual pad), Fig.16. This load was automatically considered by
Abaqus as uniformly distributed over the entire upper surface due to the kinematic constraint
of its nodes (which are prescribed to remain in the same x� y plane).

The model depicted in Fig.16 consists of 610 nodes and 592 elements including the interface
elements and has an RMS wavefront of 395 after internal optimization performed by Abaqus.
The input file corresponding to this example is included in Appendix C, page 47.

4.2 Finite Element Modeling Results

Due to the kinematic constraints imposed by a large friction coefficient, the contact stresses
originated by the compression of a solid rubber pad against a rigid surface are nonuniform,
as shown in Fig.18(a). This plot was obtained by modeling one eighth of a 14�14 square by
0.8mm thick solid sheet of Viton subjected to uniform compressive tractions of 400 kPa and
using the Mooney-Rivlin constants for the first sample material of Table 2 (C10= 1194.6 kPa,
C01= 163 kPa). The contact stresses have a peak value of 816 kPa at the center of the pad and
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decrease toward the edges reaching a value of 71.3 kPa at the corners 12 . The distribution of
contact shear stresses in the x-axis direction is also nonuniform as shown in Fig.18(b). In this
case there is a sign reversal, with a peak contact shear stress of +85.6 kPa at the right edge
and a minimum of -207 kPa along the vertical axis. Note that there are also contact shear

0

628

kPa

314

816

-207

-94.5

+18

+85.6

kPa

y

x

y

x

xx+σ

xx−σ

(a) (b) 
Figure 18: Normal (a) and shear (b) contact stresses applied by a 14�14�0.8mm solid Viton
pad. One-eighth finite element model with a 19.6 N normal load (uniform compressive tractions
of 400kPa).
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Figure 19: Distribution of normal contact stresses in a 14�14�0.8mm perforated pad. Hole
diameter: 1.2mm. One-eighth finite element model with a 19.6 N normal load.

stresses in the y-axis direction, whose distribution is the mirror image of Fig.18(b). Therefore,
the true peak values differ from these values and must be found pointwise by performing the

12The contact stresses reported here follow Abaqus’ sign convention in which tractions and stresses are positive
if they act “against” a surface and negative if they “pull” away from a surface. For example, a rubber ball subjected
to hydrostatic compression is modeled in Abaqus with positive tractions. Therefore, a positive contact stress means
tractions acting “against” a rigid surface. Note that this is opposite to the convention used in elasticity theory.
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corresponding transformation. An upper bound on the true peak value is
p

2 times the maximum
contact shear stress along a given axis. The signs refer to the direction of the contact shear
stresses, positive along the +x direction and negative otherwise. At this load, the amount of
lateral bulging at the midsurface of the pad is minimal (7:6� 10�3 mm). The mesh used to
model the solid pad is shown in Fig.20. It models one-eighth of the pad and consists of 162
three-dimensional C3D8H elements and 99 IRS4 interface elements. The normal load applied
to the upper surface of the model (midsurface of the actual pad) was 19.6 N, which is equivalent
to 400 kPa when distributed over the entire model’s surface.

As noted on page 11, the introduction of a small through hole in the pad relieves the normal
contact stresses in its vicinity since the surrounding material is able to deform with relative
freedom. If only one hole is placed in the center of the pad while maintaining the same normal
load and pad dimensions, the distribution of normal contact stress changes as shown in Fig.19.
With a hole of 1.2mm in diameter, the region of peak stresses shifts to a roughly annular zone

P

x

y

z

7 x 10   m
-3

7 x 10   m
-3

Figure 20: Mesh modeling a solid square pad.

surrounding the central hole and the maximum value drops 20% to 650 kPa. Note that the
normal load applied to the finite element model was the same used for the solid square pad
(19.6N) which implies that the average stress is higher than the previous case due to the loss of
cross sectional area at the hole. By contrast, the peak values for contact shear stresses increase
to +104 kPa and -606 kPa. The finite element model used for this case is similar to the one
described in section 4.1. The hole diameter can be increased with a slight reduction of the peak
normal contact stress but eventually it begins to increase again due to the effect of the reduced
cross sectional area.

Further reductions in the normal contact stresses can be achieved with a multi-hole approach.
Four holes can be arrayed symmetrically about the center of the pad as indicated in Fig.21. The
maximum contact stress with the same normal load decreases to 589 kPa, 28% less than for the
original unperforated pad.
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Figure 21: Pad perforated with a symmetrical array of four holes.
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Figure 22: Comparison of peak normal and shear contact stresses for different hole diameters
and placement.
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Figure 24: Shear contact stresses for various hole diameters and placement
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For a symmetrical four-hole array, the placement as well as the diameters of holes can
be changed. Peak normal and shear contact stresses for all cases are summarized in Fig.22.
Complete plots for normal and shear contact stresses are shown in Figs.23-24. It is noted
that no attempt has been made to consider viscoelastic effects in the finite element modeling.
Therefore, the long term values of the peak contact stresses are predicted to fall from the values
listed in Fig.22 when a viscoelastic constitutive model is included. However, the stress values
predicted without considering viscoelasticity are still valid as upper bounds in any given design.

5 Experimental Verification

To verify our finite element modeling of Viton pad deformation and contact stress distribution,
and to investigate the effect of interfacial friction, we built a pad test apparatus that allowed

Viewport

Short stroke
air cylinder

Load
cell

Optical flat

x,y
measurement 
stage

Test sample

Ball pivot
Pressure 
plate

Signal

Air 
supply

Load cell 
shaft

Figure 25: Pad test apparatus.

direct observation and measurement of samples under a specified load (Fig 25). Like the
inflation test apparatus, the entire pad test assembly fit on the calibrated stage of our universal
microscope. An air cylinder with a pressure-regulated source supplied the required load. A 0

33



Fluoroelastomer Pressure Pad Design for Microelectronic Applications

to 4450 N load cell attached to the piston gave a direct indication of the load. The load cell
contacted a ball on the pressure plate assembly, the ball serving to center the load on the sample
pad without lateral thrust. A piece of glass was bonded to the pressure plate. The sample pad
was then placed on the optically flat surface of the glass. A second piece of glass covered the
pad. This 28 mm square� 5 mm thick viewing glass was optically flat on both surfaces. It was
held in place by a pocket in an aluminum plate with a viewing hole in the center. The pad could
be aligned with the center of the assembly by looking through this viewing port and the glass.

As the air pressure was turned up and the pad was squeezed, the deformations could be
measured through the glass by the microscope and its x; y; z positioning stage.

For some experiments, the contacting surfaces were coated with glycerin to minimize
interfacial friction. For others, to approximate a large friction coefficient, the contacting glass
surfaces were blasted with aluminum oxide. Prior to grit blasting, the viewing glass was masked
at 12 places with 0.8 mm wide strips of tape. These strips crossed the pad edge at a right angle,
beginning 1mm inside the original pad outline. This minimized the effect of low friction near
the measurement location.

Measurements were taken at the corners and at several edge locations while the load was
incrementally increased up to roughly 1000N. The bulging edge of the pad was used for the
point of measurement in all cases where it could be seen clearly. With a large friction coefficient,
the contacted edge of the pad did not move significantly, and visible deformation was limited to
edge bulging. For the glycerin cases, the bulge was not significant and therefore, the contacted
edge of the pad was measured.

A 15�15�0.86mm Viton pad with a 4.7mm diameter center hole was coated with glycerin,
tested with a 890N load, and results compared with a finite element model that assumed a
zero friction coefficient. The corners moved 1.89mm, versus the predicted 2.27mm, and the
midpoints of the edges moved an average of 1.40mm versus the predicted 1.609mm, Fig.26. The
central hole shrank approximately 1mm in diameter during the test, while the finite element
model predicted a 1.03mm increase in diameter. The agreement within 20% for the edge
displacements seemed reasonable since the actual coefficient of friction was certainly larger
than zero, as evidenced by the dissimilar behavior at the central hole.

The same test was conducted using the grit blasted glass surfaces with a 1183N load to
simulate a large friction coefficient. In this case, the measurements correspond to the outline of
the bulging edges. The midpoints moved an average of 0.252mm versus the 0.141mm predicted
by finite element modeling assuming an infinite friction coefficient. By contrast, the corners
exhibit a wide variation between experimental and predicted displacements as shown in Fig.27.
The experimental errors were certainly larger in this test due to the small magnitude of the
measured displacements and the uncertainty about the value of the actual friction coefficient.

A qualitative test was run to determine the degree of agreement of the finite element model’s
normal contact stress results with the actual pads. A “pressure indicating” paper was used to
record the normal contact stresses originated by compression of test pads. This paper consists
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of two coated polyester sheets assembled face-to-face 13 . The first sheet is coated with a
microencapsulated dye and the second with a color developing layer. The microcapsules break
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Figure 26: Comparison of experimental and finite element displacements in a perforated Viton
pad with glycerin (small friction coefficient)
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Figure 27: Comparison of experimental and finite element displacements in a perforated Viton
pad, large friction coefficient

in a controlled fashion when the film is compressed, leaving an image with intensity proportional
to the local pressure. While quantitative measurements are possible with a densitometer, we
limited our evaluation to qualitative comparisons. Several film types are offered, we chose the

13Pressurex (Fuji) pressure indicating film, supplied by: Sensor Products, Inc., East Hannover, NJ.
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“SL” grade, with a 480-2400 kPa pressure range. The paper was placed between the pad and
the viewport. A load of 1000N was applied and photographs taken. Three 14�14�0.8mm
square pad designs were tested: pad with no holes, pad with one 2.4mm diameter central hole,
and pad with four 1.2mm diameter holes arranged in a 4mm square grid (see Fig.21). The test
load was determined to impose average compressive tractions of 5 MPa over the unperforated
14�14mm square pad. The experimental results are shown in Fig.28 and the corresponding
finite element results under a 996N load in Fig.29.

(a) (b) (c)

Figure 28: Normal contact stresses registered by a pressure indicating paper on three pad
designs. (a) No hole, (b) one 2.4mm diameter hole, and (c) four 1.2mm diameter holes. Normal
load: 1000N, pad dimensions: 14�14�0.86mm, supplier: McMaster-Carr

0 MPa 3.40 7.74 10 0 MPa 2.71 6.03 7.84 0 MPa 2.89 5.67 7.37

Figure 29: Normal contact stresses from a finite element analysis of the three pad designs of
Fig.28. Normal load of 996N in all cases.

Experiment and prediction are in good qualitative agreement. The pad with no holes has
normal contact stresses that are high at its center, and very low at the edges. Adding a single
center hole shifts the region of normal contact stresses to the surrounding region as predicted

36



Fluoroelastomer Pressure Pad Design for Microelectronic Applications

by finite element modeling. Low contact stresses are evident next to the edge of the hole. Four
holes spread the contact stresses out more uniformly. The edge of the pad has a reasonable
value of contact stresses.

6 Conclusions

Elastic properties of gum rubber, natural latex, and Viton were obtained using experimental
methods. Inflation tests were conducted to derive material constants for a Mooney-Rivlin
constitutive model. This correlated well for modest deformations in the case of Viton. The
results were used in a finite element model to evaluate flat, perforated pressure pads for
microelectronic applications. Properties of the Viton samples tested varied significantly with
supplier.

Using the Mooney-Rivlin strain energy function, finite element methods were used to study
pad deformations under compression and the corresponding distribution of contact stresses on
a rigid surface. A number of competing perforated pad designs were evaluated. For the base
case, a solid 14mm square by 0.8mm thick pad, the maximum normal contact stress occurred
at the center with a peak value of more than twice the average over the entire pad.

Pad deformations under load were measured optically, compared with the displacements
of a finite element model, and found to be in reasonable agreement. Uncertainty of interfacial
friction was the largest component of this error. Direct measurements of the pads’ normal
contact stress distributions were made using a pressure-indicating film. These tests showed
good qualitative agreement with the finite element modeling.

Judicious perforation of flat pads was found to greatly reduce the variation and maximum
value of normal stresses. Our preferred design for a 14 mm square by 0.8 mm thick Viton
pad, used four 1.2 mm holes symmetrically arrayed in a 4 mm square grid, centered on the
pad (Fig.21). Compared to an unperforated pad, the finite element modeling indicated a 28%
reduction in the maximum normal contact stress. However, this reduction was obtained at the
expense of an increase in the contact shear stresses. While a great deal of intuition was gained
in the course of this work, detailed finite element models are still required to truly optimize pad
perforation patterns.
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Appendix A
Deformation Measures in Finite Elasticity Theory

Following is a brief development of deformation and its measures in finite elasticity theory.
For a more thorough treatment, see [8, 39]. To derive measures of deformation in finite
elasticity, consider a collection of points in an initially unstressed configuration indicated by
C0 in Fig.30. After a finite deformation, this same collection of points occupies configuration
C1. Points in the two configurations are referenced to different coordinate systems, Xi for the
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Figure 30: Initial and final configurations

initial state and xi for the deformed state. The description of the deformation will depend on
the reference configuration chosen for the analysis. If the Lagrangian description is chosen,
the attention is centered on what happens to a point say initially at P . By contrast, the
Eulerian description emphasizes what happens at a particular point in space such as p. Both
configurations, undeformed and deformed, are related by a mapping� between corresponding
position vectors that can be expressed as [8, 39]

x = �(X) (38)

where

X : position vector of a point in the undeformed configuration
x : position vector of the same point after a deformation

By convention, quantities associated with the undeformed configuration are capitalized. A
particular relative length, e.g. PQ, is defined by its differential length

dX = dXAIA (39)

where
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IA : basis vector of the undeformed configuration

After a deformation, the relative length between the homologous points, p and q, can be
described in the deformed configuration basis as

dx = dxiii (40)

where

ii : basis vector of the deformed configuration

The differential quantity dxi can be expressed as

dxi =
@xi
@XA

dXA = xi;AdXA (41)

where xi;A indicates derivatives with respect to XA and is called deformation gradient tensor
(xi;A = Fi;A). Similarly,

dXA =
@XA

@xi
dxi = XA;idxi (42)

A measure of deformation can be expressed by the difference of the squares of the differential
lengths, i.e.,

(dxi)
2 � (dXA)

2 = dxidxi � dXAdXA (43)

This expression can be put in terms of the undeformed configuration by substituting Eqs.40 and
41,

(dxi)
2 � (dXA)

2 = (xi;AdXA)(xi;BdXB)� �ABdXAdXB

= (xi;Axi;B � �AB)dXAdXB (44)

= (CAB � �AB)dXAdXB

where

�AB : Kroenecker delta
CAB : Green deformation tensor

The symmetric tensor EAB defined by

2EAB = CAB � �AB (45)

is the Lagrangian deformation tensor.

The same deformation measure (Eq.43) can be expressed in terms of the deformed configuration
as well,

(dxi)
2 � (dXA)

2 = (dxidxj�ij)�XA;iXA;jdxidxj

= (�ij � cij)dxidxj (46)

where
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�ij : Kroenecker delta

Now, cij is the Cauchy deformation tensor and eij the Eulerian finite deformation tensor,

cij = XA;iXA;j

2eij = �ij � cij (47)

Note that this tensor is completely described by the subscripts associated with the current
(deformed) configuration.

The use of these tensors is dictated by the purpose of a specific application. Alternative
measures of deformations may be based on the stretch ratios, defined in the current configuration
as

1
�n

=
dX

dx
(48)

where

�n : stretch ratio along n

dX : original relative length

dx : current relative length

The subscript in �n indicates that the stretch ratio is associated with a particular direction
aligned with the unit vector n = dx=dx referenced to the current configuration. The same
quantity can be defined in the original configuration along the unit vector N = dX=X as

ΛN =
dx

dX
(49)

where

ΛN : stretch ratio along N

In the particular case where the deformation is such that bothN and n are pointing in the same
direction, both stretches are the same and can be treated much in the way as the engineering
strain was defined in Eq.1.

Even though stretch ratios were not specifically defined as tensorial quantities, they can be
considered as such due to their relationship with the Green and Cauchy deformation tensors
given by [39],

1
�2
N

= n � c � n

Λ2
N

= N �C �N
(50)

where
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C : Green deformation tensor
c : Cauchy deformation tensor

This implies that the invariants of the Green and Cauchy deformation tensors are also the
invariants of the stretches. Assuming homogenous deformations where the orientation of the
unit vectors (N and n) do not change, both stretch measures are the same and can be stated as

� = �� =

2
4 �2

1 0 0
0 �2

2 0
0 0 �2

3

3
5 (51)

Its invariants are expressed as,

I1 = tr[�] = �2
1 + �2

2 + �2
3

I2 = (tr[�])2 � (tr[��]) = �2
1�

2
2 + �2

2�
2
3 + �2

1�
2
3 (52)

I3 = det[�] = �2
1�

2
2�

2
3

When a material is incompressible, �1�2�3 = 1, regardless of the external tractions. Under
these conditions, only two of the stretches are independent. If �1 and �2 are chosen, then

�3 =
1

�1�2
(53)

and the invariants are

I1 = �2
1 + �2

2 + �2
3

I2 =
1
�2

1
+

1
�2

2
+

1
�2

3
(54)

I3 = 1

42



Fluoroelastomer Pressure Pad Design for Microelectronic Applications

Appendix B

Experimental data and Results

p: inflation pressure, r: radius of curvature, �: stretch ratio, �: membrane stress

Table B.1
Inflation Test

Pure Gum Rubber
Thickness (t0): 0.787 mm
Gage length (nom.) l0: 3 mm
Gage length (meas.) l0: 2.932 mm
Clamp diam.: 35mm
Gage type: 0-206 kPa (Bourdon)
Supplier: Pacific States Felt
Marking: drafting pen

Table B.2
Inflation Test
Natural Latex

Thickness (t0): 0.762 mm
Gage length (nom.) l0: 3 mm
Gage length (meas.) l0: 3.017 mm
Clamp diam.: 35mm
Gage type: 0-206 kPa (Bourdon)
Supplier: McMaster-Carr
Marking: drafting pen

p r � �
kPa mm - MPa
6.89 30.18 1.07 0.150

20.68 22.36 1.18 0.409
27.58 20.12 1.26 0.562
34.47 19.27 1.42 0.846
39.99 17.72 1.81 1.474
41.37 17.96 2.42 2.773
40.68 19.11 2.59 3.320
40.33 18.65 2.72 3.547
39.99 20.00 3.03 4.675
39.30 21.52 3.25 5.679
38.96 20.85 3.52 6.389
38.61 24.59 3.73 8.389
38.27 25.22 3.97 9.673
38.96 30.46 4.31 13.970
39.30 31.39 4.45 15.490

p r � �
kPa mm - MPa
6.89 33.37 1.06 0.1705

17.24 23.27 1.14 0.3435
27.58 21.16 1.25 0.5973
34.47 18.72 1.37 0.8005
37.92 18.79 1.50 1.052
39.64 19.04 1.61 1.285
41.02 16.81 1.77 1.418
41.71 17.27 2.02 1.923
41.92 18.54 2.32 2.752
41.37 17.84 2.63 3.345
39.99 19.52 3.01 4.655
38.96 18.84 3.39 5.524
37.92 21.00 3.68 7.085
36.54 22.62 4.00 8.698
36.20 23.42 4.23 9.942
35.85 27.20 4.32 11.94
35.16 25.58 4.59 12.44
34.82 31.11 4.76 16.09
35.16 28.96 4.86 15.76

C10 = 134.36 kPa
(=1.37 kg/cm2 = 19.48 psi)
C01 = 12.49 kPa
(=0.127 kg/cm2 = 1.81 psi)

C10 = 181.52 kPa
(=1.85 kg/cm2 = 26.32 psi)
C01 = 6.506 kPa
(=0.066 kg/cm2 = 0.94 psi)
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Table B.3
Inflation Test

VitonTM

Thickness (t0): 0.863 mm
Gage length (nom.) l0: 6 mm
Gage length (meas.) l0: 6.084 mm
Clamp diam.: 53.5 mm
Gage type: 0-344 kPa (transducer)
Supplier: McMaster-Carr
Specs: MIL-R-83248 Type 2, Class 1
Marking: silver marker

Table B.4
Inflation Test

VitonTM

Thickness (t0): 0.838 mm
Gage length (nom.) l0: 6 mm
Gage length (meas.) l0: 6.09 mm
Clamp diam.: 53.5 mm
Gage type: 0-344 kPa (transducer)
Supplier: West American Rubber
Specs: MIL-R-83248 Type 2, Class 1
Marking: silver marker

p r � �
kPa mm - MPa
36.24 42.19 1.11 1.091
69.76 33.41 1.23 2.042

105.2 30.17 1.37 3.447
135.7 33.11 1.48 5.695
171.7 30.12 1.63 7.966
198.4 30.68 1.84 11.94
222.9 32.82 2.17 19.90
233.7 33.75 2.48 28.07
222.5 33.49 2.59 29.00

p r � �
kPa mm - MPa
35.97 41.95 1.08 1.048
70.38 39.58 1.16 2.223

103.7 32.33 1.24 3.088
138.8 33.7 1.34 5.008
171. 31.9 1.43 6.651
214.2 30.82 1.62 10.37
232.8 30.83 1.75 13.13
247.2 31.88 1.89 16.77
258.5 30.76 2.1 20.83

C10 = 1194.6 kPa
(=12.18 kg/cm2 = 173.2 psi)
C01 = 163 kPa
(=1.66 kg/cm2 = 23.64 psi)

C10 = 1329.2 kPa
(=13.55 kg/cm2 = 192.7 psi)
C01 = 263 kPa
(=2.69 kg/cm2 = 38.2 psi)

Suppliers:

McMaster-Carr Supply Co., Santa Fe Springs, CA 90670
West American Rubber Co. Inc., Orange, CA 92668
Pacific States Felt & Mfg. Co., Hayward, CA 94545
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Figure 31: Least squares fit of the experimental data for the tested Viton samples.
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Least Squares Fit Example for Pure Gum Rubber

The least squares fit problem expressed by Eq.37 can be set up for a pure gum rubber test by
using the fifteen data points listed in Table B.1:

15X
j=1

'2
1(�j) = 6; 704:4

15X
j=1

'1(�j)'2(�j) = 102; 148

15X
j=1

'2
2(�j) = 1; 680; 320

15X
j=1

'1(�j)�j = 2:1773� 109Pa

15X
j=1

'2(�j)�j = 3:4724� 1010Pa

where

'1(�j) = 2

 
�2
j �

1
�4
j

!

'2(�j) = 2

 
�4
j �

1
�2
j

!

The Mooney-Rivlin coefficients are obtained by solving the following linear system

"
6704:4 102148
102148 1680320

# (
C10

C01

)
=

(
2:1773
34:724

)
� 109[Pa] (55)

i.e.,

C10 = 134:36kPa
C01 = 12:49kPa
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Appendix C

Sample Abaqus Input File for a Perforated Pad

An Abaqus input file for running a finite element model of a 14�14�0.8mm square pad with
a central hole of diameter 4.8mm is shown in the listing on page 48. The numbering scheme
for the first layer of nodes is shown in Fig.32, page 52. This input file was generated manually
but it could have been obtained with Patran as well. Lines that begin with * indicate Abaqus
keywords, while those which begin with ** are comment lines. The rest of the lines are
user-defined input values.

The input file is loosely organized into five sections,

� Node definitions.

� Kinematic constraints imposition.

� Element definition.

� Material properties definition.

� Loading imposition and output requests.

No explicit units are indicated in the file, however, all quantities are understood to be
expressesd in SI units (dimensions in meters, forces in Newtons, and material constants in
Pascals). The results are thus obtained in SI units (stresses in Pascals, displacements in meters).

The analysis has been set up with a 1
8 model of the actual pad due to symmetry consid-

erations. The lower surface of the pad is compressed against a perfectly rigid surface by a
concentrated force acting from above the midsurface of the model. The nodes in the midsurface
are constrained to remain on the same x� y plane with a multipoint constraint imposed with
*EQUATION. A dummy node, numbered 1000, is used to formulate this kinematic constraint.
The rigid surface is defined with the *RIGID SURFACE keyword which requires additional
input to place a local coordinate system and the generator of a plane surface (START and
LINE keywords). It is important that the local coordinate system be defined with its third axis
“towards” the 3-D model (the normals of the rigid surfaces and elements in the model must have
opposite directions). Otherwise, contact will not be detected. Interface elements associated
with the lower rigid surface detect the contact stresses produced by the pad’s compression.

A Mooney-Rivlin material with user provided constants is defined with the *HYPER-

ELASTIC,N=1 option (N=2 defines a second order deformation form). Perfect friction (infinite
friction coefficient) is indicated with*FRICTION,ROUGH, while *SURFACE CONTACT,NO

SEPARATION indicates that once an interface element contacts the rigid surface it remains
attached to it for the rest of the analysis.
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The *STEP keyword initiates the loading definition and output requests. The *NLGEOM
option is turned on to indicate the existence of geometric nonlinearities (large deformations).
A maximum number of 400 increments (INCR=400) is allowed in the *STEP line and the
imposed load is applied according to a ramp function (AMPLITUDE=RAMP). Ramping the load
is a requirement for nonlinear cases where convergence of the solution in a given increment
may become very difficult to attain.

A “*RESTART” file is written every 5 increments during the analysis. This file allows the
user to restart an analysis or to perform post-processing of the final and intermediate results
using Abaqus/Post [40]. The results, stresses, their invariants, and the nodal displacements are
also written to binary files using the *NODE FILE and *EL FILE keywords (Patran accepts
only this file type for post-processing).

Abaqus Input File Listing

*****************************************************************
** FINITE ELEMENT MODELING OF A 14x14x0.8MM SQUARE PERFORATED **
** FLUOROELASTOMER PAD WRL-9/1993 **
** ABAQUS v.5.2-1 **
*****************************************************************
*HEADING
PERFORATED VITON PAD D=4.8MM APPLIED FORCE=-19.6N
**DATA CHECK
*********************
** NODE DEFINITION **
*********************
*NODE,NSET=NX1
81,2.4E-3,0,0
101,3E-3,0,0
121,3.65E-3,0,0
141,4.4E-3,0,0
161,5.2E-3,0,0
181,6E-3,0,0
201,7E-3,0,0
99,0,2.4E-3,0
119,0,3E-3,0
139,0,3.65E-3,0
159,0,4.4E-3,0
179,0,5.2E-3,0
199,0,6E-3,0
219,0,7E-3,0
** NODE ASSOCIATED WITH A RIGID SURFACE
*NODE,NSET=RSURFN
1900,0,0,0
*NGEN,LINE=C,NSET=NX2
81,99,1,1900
101,119,1,1900
121,139,1,1900
141,159,1,1900
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161,179,1,1900
181,199,1,1900
201,219,1,1900
*NGEN,LINE=C,NSET=NX2
81,99,1,1900
101,119,1,1900
121,139,1,1900
141,159,1,1900
161,179,1,1900
181,199,1,1900
201,219,1,1900
*NODE,NSET=NX3
202,7E-3,0.6E-3,0
203,7E-3,1.25E-3,0
217,1.25E-3,7E-3,0
218,0.6E-3,7E-3,0
224,7E-3,1.87E-3,0
225,7E-3,2.5E-3,0
226,7E-3,3.25E-3,0
227,7E-3,4.01E-3,0
228,0.00663513,0.00464597,0
229,0.00620496,0.00520658,0
230,0.00572756,0.00572756,0
231,0.00520658,0.00620496,0
232,0.00464597,0.00663513,0
233,4.01E-3,7E-3,0
234,3.25E-3,7E-3,0
235,2.5E-3,7E-3,0
236,1.87E-3,7E-3,0
248,7E-3,4.85E-3,0
249,7E-3,5.8E-3,0
250,6.4E-3,6.4E-3,0
251,5.8E-3,7E-3,0
252,4.85E-3,7E-3,0
270,7E-3,7E-3,0
** DUMMY NODE FOR EQUATION
4000,0,0,0.4E-3
*NCOPY,CHANGE NUMBER=900,OLD SET=NL1,SHIFT,NEW SET=NL4
0,0,0.40E-3
,,,,,,,
*NFILL
NL1,NL4,3,300
*NSET,NSET=XBC,GENERATE
381,501,20
681,801,20
981,1101,20
*NSET,NSET=YBC,GENERATE
399,519,20
699,819,20
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999,1119,20
*************************************
** KINEMATIC CONSTRAINT IMPOSITION **
*************************************
*EQUATION
2
NL1,3,1,4000,3,-1
*BOUNDARY
XBC,2
YBC,1
RSURFN,1,6
** RIGID SURFACE DEFINITION
*RIGID SURFACE,TYPE=CYLINDER,ELSET=CONTAC
0,0,0,10E-3,0,0
0,10E-3,0
START,0,0
LINE,9E-3,0
************************
** ELEMENT DEFINITION **
************************
*ELEMENT,TYPE=C3D8H
81,81,101,102,82,381,401,402,382
204,204,224,225,205,504,524,525,505
228,228,248,249,229,528,548,549,529
*ELEMENT,TYPE=C3D6H
203,203,224,204,503,524,504
250,250,270,251,550,570,551
*ELGEN,ELSET=EL1
81,18,1,1,6,20,20,3,300,300
204,12,1,1,3,300,300
228,4,1,1,3,300,300
203,2,24,24,3,300,300
227,2,22,22,3,300,300
250,2,-18,-18,3,300,300
232,2,-16,-16,3,300,300
** INTERFACE ELEMENT DEFINITION (DETECTION OF
** CONTACT WITH RIGID SURFACE)
*ELEMENT,TYPE=IRS4
** LOWER PAD SURFACE 2081,81,101,102,82,1900
2204,204,224,225,205,1900
2228,228,248,249,229,1900
** LATERAL,HOLE
3081,81,381,382,82,1900
** LATERAL,EDGE
3201,201,202,502,501,1900
3203,203,224,524,503,1900
3224,224,225,525,524,1900
3218,219,519,518,218,1900
3236,217,517,536,236,1900
3235,236,536,535,235,1900
*ELEMENT,TYPE=IRS3
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2203,203,224,204,1900
2250,250,270,251,1900
*ELGEN,ELSET=CONTAC
** LOWER PAD SURFACE
2081,18,1,1,6,20,20
2204,12,1,1
2228,4,1,1
2203,2,24,24
2227,2,22,22
2250,2,-18,-18
2232,2,-16,-16
** LATERAL,HOLE
3081,18,1,1,2,300,30
** LATERAL,EDGE
3201,2,1,1,2,300,300
3203,2,24,24,2,300,300
3224,3,1,1,2,300,300
3226,2,22,22,2,300,300
3227,2,22,22,2,300,300
3218,2,-1,-1,2,300,300
3236,2,16,16,2,300,300
3235,3,-1,-1,2,300,300
3233,2,18,18,2,300,300
3252,2,18,18,2,300,300
***************************************************
** MATERIAL PROPERTIES DEFINITION, MOONEY-RIVLIN **
** HYPERELASTIC C10=1.194MPa C01=0.163MPa **
***************************************************
*MATERIAL,NAME=VITON
*HYPERELASTIC,N=1
1.194E6,0.163E6
*SOLID SECTION,ELSET=EL1,MATERIAL=VITON
*INTERFACE,ELSET=CONTAC
*FRICTION,ROUGH
*SURFACE CONTACT,NO SEPARATION
***********************************
** LOADING AND OUTPUT DEFINITION **
***********************************
*RESTART,WRITE,FREQUENCY=5
*STEP,NLGEOM,INC=400,AMPLITUDE=RAMP
*STATIC
0.1,1,1E-20,0.1
*CLOAD
1049,3,-19.6
*PRINT,CONTACT=YES
*EL PRINT,ELSET=EL1,POSITION=AVERAGED AT NODES,FREQUENCY=5
S,MISES
E
*EL PRINT,ELSET=CONTAC,POSITION=AVERAGED AT NODES,FREQUENCY=5
S
*NODE PRINT,FREQUENCY=5
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U
*NODE FILE
COORD
U
*EL FILE
S,SINV
*END STEP
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Figure 32: Numbering scheme for the first layer of nodes (z=0).
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