
N O V E M B E R 1 9 9 3

WRL
Research Report 93/6

Limits of
Instruction-Level
Parallelism

David W. Wall

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There two other research laboratories located in Palo Alto, the Network Systems
Laboratory (NSL) and the Systems Research Center (SRC). Other Digital research groups
are located in Paris (PRL) and in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Limits of Instruction-Level Parallelism

David W. Wall

November 1993

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Growing interest in ambitious multiple-issue machines and heavily-
pipelined machines requires a careful examination of how much instruction-
level parallelism exists in typical programs. Such an examination is compli-
cated by the wide variety of hardware and software techniques for increasing
the parallelism that can be exploited, including branch prediction, register
renaming, and alias analysis. By performing simulations based on instruc-
tion traces, we can model techniques at the limits of feasibility and even
beyond. This paper presents the results of simulations of 18 different test
programs under 375 different models of available parallelism analysis.

This paper replaces Technical Note TN-15, an earlier version of the same
material.

i

Author’s note

Three years ago I published some preliminary results of a simulation-based study of instruction-
level parallelism [Wall91]. It took advantage of a fast instruction-level simulator and a computing
environment in which I could use three or four dozen machines with performance in the 20-30
MIPS range every night for many weeks. But the space of parallelism techniques to be explored
is very large, and that study only scratched the surface.

The report you are reading now is an attempt to fill some of the cracks, both by simulating
more intermediate models and by considering a few ideas the original study did not consider. I
believe it is by far the most extensive study of its kind, requiring almost three machine-years and
simulating in excess of 1 trillion instructions.

The original paper generated many different opinions1. Some looked at the high parallelism
available from very ambitious (some might say unrealistic) models and proclaimed the millen-
nium. My own opinion was pessimistic: I looked at how many different things you have to
get right, including things this study doesn’t address at all, and despaired. Since then I have
moderated that opinion somewhat, but I still consider the negative results of this study to be at
least as important as the positive.

This study produced far too many numbers to present them all in the text and graphs, so the
complete results are available only in the appendix. I have tried not to editorialize in the selection
of which results to present in detail, but a careful study of the numbers in the appendix may well
reward the obsessive reader.

In the three years since the preliminary paper appeared, multiple-issue architectures have
changed from interesting idea to revealed truth, though little hard data is available even now. I
hope the results in this paper will be helpful. It must be emphasized, however, that they should
be treated as guideposts and not mandates. When one contemplates a new architecture, there is
no substitute for simulations that include real pipeline details, a likely memory configuration, and
a much larger program suite than a study like this one can include.

1Probably exactly as many opinions as there were before it appeared.

1

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

1 Introduction

In recent years there has been an explosion of interest in multiple-issue machines. These are
designed to exploit, usually with compiler assistance, the parallelism that programs exhibit at
the instruction level. Figure 1 shows an example of this parallelism. The code fragment in 1(a)
consists of three instructions that can be executed at the same time, because they do not depend
on each other’s results. The code fragment in 1(b) does have dependencies, and so cannot be
executed in parallel. In each case, the parallelism is the number of instructions divided by the
number of cycles required.

r1 := 0[r9] r1 := 0[r9]
r2 := 17 r2 := r1 + 17
4[r3] := r6 4[r2] := r6

(a) parallelism=3 (b) parallelism=1

Figure 1: Instruction-level parallelism (and lack thereof)

Architectures have been proposed to take advantage of this kind of parallelism. A superscalar
machine [AC87] is one that can issue multiple independent instructions in the same cycle. A
superpipelined machine [JW89] issues one instruction per cycle, but the cycle time is much
smaller than the typical instruction latency. A VLIW machine [NF84] is like a superscalar
machine, except the parallel instructions must be explicitly packed by the compiler into very long
instruction words.

Most “ordinary” pipelined machines already have some degree of parallelism, if they have
operations with multi-cycle latencies; while these instructions work, shorter unrelated instructions
can be performed. We can compute the degree of parallelism by multiplying the latency of each
operation by its relative dynamic frequency in typical programs. The latencies of loads, delayed
branches, and floating-point instructions give the DECstation2 5000, for example, a parallelism
equal to about 1.5.

A multiple-issue machine has a hardware cost beyond that of a scalar machine of equivalent
technology. This cost may be small or large, depending on how aggressively the machine pursues
instruction-level parallelism. In any case, whether a particular approach is feasible depends on
its cost and the parallelism that can be obtained from it.

But how much parallelism is there to exploit? This is a question about programs rather than
about machines. We can build a machine with any amount of instruction-level parallelism we
choose. But all of that parallelism would go unused if, for example, we learned that programs
consisted of linear sequences of instructions, each dependent on its predecessor’s result. Real
programs are not that bad, as Figure 1(a) illustrates. How much parallelism we can find in a
program, however, is limited by how hard we are willing to work to find it.

2DECStation is a trademark of Digital Equipment Corporation.

2

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

A number of studies [JW89, SJH89, TF70] dating back 20 years show that parallelism within
a basic block rarely exceeds 3 or 4 on the average. This is unsurprising: basic blocks are typically
around 10 instructions long, leaving little scope for a lot of parallelism. At the other extreme is a
study by Nicolau and Fisher [NF84] that finds average parallelism as high as 1000, by considering
highly parallel numeric programs and simulating a machine with unlimited hardware parallelism
and an omniscient scheduler.

There is a lot of space between 3 and 1000, and a lot of space between analysis that looks
only within basic blocks and analysis that assumes an omniscient scheduler. Moreover, this
space is multi-dimensional, because parallelism analysis consists of an ever-growing body of
complementary techniques. The payoff of one choice depends strongly on its context in the other
choices made. The purpose of this study is to explore that multi-dimensional space, and provide
some insight about the importance of different techniques in different contexts. We looked at the
parallelism of 18 different programs at more than 350 points in this space.

The next section describes the capabilities of our simulation system and discusses the various
parallelism-enhancing techniques it can model. This is followed by a long section looking at
some of the results; a complete table of the results is given in an appendix. Another appendix
gives details of our implementation of these techniques.

2 Our experimental framework

We studied the instruction-level parallelism of eighteen test programs. Twelve of these were taken
from the SPEC92 suite; three are common utility programs, and three are CAD tools written at
WRL. These programs are shown in Figure 2. The SPEC benchmarks were run on accompanying
test data, but the data was usually an official “short” data set rather than the reference data set, and
in two cases we modified the source to decrease the iteration count of the outer loop. Appendix
2 contains the details of the modifications and data sets. The programs were compiled for a
DECStation 5000, which has a MIPS R30003 processor. The Mips version 1.31 compilers were
used.

Like most studies of instruction-level parallelism, we used oracle-driven trace-based simu-
lation. We begin by obtaining a trace of the instructions executed.4 This trace also includes the
data addresses referenced and the results of branches and jumps. A greedy scheduling algorithm,
guided by a configurable oracle, packs these instructions into a sequence of pending cycles.
The resulting sequence of cycles represents a hypothetical execution of the program on some
multiple-issue machine. Dividing the number of instructions executed by the number of cycles
required gives the average parallelism.

The configurable oracle models a particular combination of techniques to find or enhance the
instruction-level parallelism. Scheduling to exploit the parallelism is constrained by the possibility
of dependencies between instructions. Two instructions have a dependency if changing their order
changes their effect, either because of changes in the data values used or because one instruction’s
execution is conditional on the other.

3R3000 is a trademark of MIPS Computer Systems, Inc.
4In our case by simulating it on a conventional instruction-level simulator.

3

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

sed 1683 1462487 Stream editor

egrep 762 13721780 File search

yacc 1856 30297973 Compiler-compiler

metronome 4673 71273955 Timing verifier

grr 7241 144442216 PCB router

eco 3349 27397304 Recursive tree comparison

gcc1 78782 22753759 First pass of GNU C compiler

espresso 12934 134435218 Boolean function minimizer

li 6102 263742027 Lisp interpreter

fpppp 2472 244278269 Quantum chemistry benchmark

doduc 5333 284421280 Hydrocode simulation

tomcatv 195 301622982 Vectorized mesh generation

source
lines

instructions
executed remarks

hydro2d 4458 8235288 Astrophysical simulation

compress 1401 88277866 Lempel-Ziv file compaction

ora 427 212125692 Ray tracing

swm256 484 301407811 Shallow water simulation

alvinn 223 388973837 Neural network training

mdljsp2 3739 393078251 Molecular dynamics model

Figure 2: The eighteen test programs

Figure 3 illustrates the different kinds of dependencies. Some dependencies are real, reflecting
the true flow of the computation. Others are false dependencies, accidents of the code generation
or our lack of precise knowledge about the flow of data. Two instructions have a true data
dependency if the result of the first is an operand of the second. Two instructions have an anti-
dependency if the first uses the old value in some location and the second sets that location to
a new value. Similarly, two instructions have an output dependency if they both assign a value
to the same location. Finally, there is a control dependency between a branch and an instruction
whose execution is conditional on it.

The oracle uses an actual program trace to make its decisions. This lets it “predict the
future,” basing its scheduling decisions on its foreknowledge of whether a particular branch will
be taken or not, or whether a load and store refer to the same memory location. It can therefore
construct an impossibly perfect schedule, constrained only by the true data dependencies between
instructions, but this does not provide much insight into how a real machine would perform. It is
more interesting to hobble the oracle in ways that approximate the capabilities of a real machine
and a real compiler system.

We can configure our oracle with different levels of expertise, ranging from nil to impossibly
perfect, in several different kinds of parallelism enhancement.

4

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

(a) true data dependency

r1 := 20[r4]

...

r2 := r1 + 1

(b) anti-dependency

r2 := r1 + r4

r1 := r17 - 1

...

(c) output dependency

r1 := r2 * r3

r1 := 0[r7]

...

(d) control dependency

 if r17 = 0 goto L
 ...
 r1 := r2 + r3
 ...
L:

Figure 3: Dependencies

2.1 Register renaming

Anti-dependencies and output dependencies on registers are often accidents of the compiler’s
register allocation technique. In Figures 3(b) and 3(c), using a different register for the new value
in the second instruction would remove the dependency. Register allocation that is integrated
with the compiler’s instruction scheduler [BEH91, GH88] could eliminate many of these. Current
compilers often do not exploit this, preferring instead to reuse registers as often as possible so
that the number of registers needed is minimized.

An alternative is the hardware solution of register renaming, in which the hardware imposes
a level of indirection between the register number appearing in the instruction and the actual
register used. Each time an instruction sets a register, the hardware selects an actual register
to use for as long as that value is needed. In a sense the hardware does the register allocation
dynamically. Register renaming has the additional advantage of allowing the hardware to include
more registers than will fit in the instruction format, further reducing false dependencies.

We can do three kinds of register renaming: perfect, finite, and none. For perfect renaming,
we assume that there are an infinite number of registers, so that no false register dependencies
occur. For finite renaming, we assume a finite register set dynamically allocated using an LRU
discipline: when we need a new register we select the register whose most recent use (measured
in cycles rather than in instruction count) is earliest. Finite renaming works best, of course,
when there are a lot of registers. Our simulations most often use 256 integer registers and 256
floating-point registers, but it is interesting to see what happens when we reduce this to 64 or
even 32, the number on our base machine. For no renaming, we simply use the registers specified
in the code; how well this works is of course highly dependent on the register strategy of the
compiler we use.

5

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

2.2 Alias analysis

Like registers, memory locations can also carry true and false dependencies. We make the
assumption that renaming of memory locations is not an option, for two reasons. First, memory
is so much larger than a register file that renaming could be quite expensive. More important,
though, is that memory locations tend to be used quite differently from registers. Putting a value
in some memory location normally has some meaning in the logic of the program; memory is not
just a scratchpad to the extent that the registers are.

Moreover, it is hard enough just telling when a memory-carried dependency exists. The
registers used by an instruction are manifest in the instruction itself, while the memory location
used is not manifest and in fact may be different for different executions of the instruction. A
multiple-issue machine may therefore be forced to assume that a dependency exists even when it
might not. This is the aliasing problem: telling whether two memory references access the same
memory location.

Hardware mechanisms such as squashable loads have been suggested to help cope with the
aliasing problem. The more conventional approach is for the compiler to perform alias analysis,
using its knowledge of the semantics of the language and the program to rule out dependencies
whenever it can.

Our system provides four levels of alias analysis. We can assume perfect alias analysis, in
which we look at the actual memory address referenced by a load or store; a store conflicts with
a load or store only if they access the same location. We can also assume no alias analysis, so
that a store always conflicts with a load or store. Between these two extremes would be alias
analysis as a smart vectorizing compiler might do it. We don’t have such a compiler, but we have
implemented two intermediate schemes that may give us some insight.

One intermediate scheme is alias by instruction inspection. This is a common technique in
compile-time instruction-level code schedulers. We look at the two instructions to see if it is
obvious that they are independent; the two ways this might happen are shown in Figure 4.

r1 := 0[r9] r1 := 0[fp]
4[r9] := r2 0[gp] := r2

(a) (b)

Figure 4: Alias analysis by inspection

The two instructions in 4(a) cannot conflict, because they use the same base register but
different displacements. The two instructions in 4(b) cannot conflict, because their base registers
show that one refers to the stack and the other to the global data area.

The other intermediate scheme is called alias analysis by compiler even though our own
compiler doesn’t do it. Under this model, we assume perfect analysis of stack and global
references, regardless of which registers are used to make them. A store to an address on the
stack conflicts only with a load or store to the same address. Heap references, on the other hand,
are resolved by instruction inspection.

6

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

The idea behind our model of alias analysis by compiler is that references outside the heap
can often be resolved by the compiler, by doing dataflow and dependency analysis over loops
and arrays, whereas heap references are often less tractable. Neither of these assumptions is
particularly defensible. Many languages allow pointers into the stack and global areas, rendering
them as difficult as the heap. Practical considerations such as separate compilation may also
keep us from analyzing non-heap references perfectly. On the other side, even heap references
may not be as hopeless as this model assumes [CWZ90, HHN92, JM82, LH88]. Nevertheless,
our range of four alternatives should provide some intuition about the effects of alias analysis on
instruction-level parallelism.

2.3 Branch prediction

Parallelism within a basic block is usually quite limited, mainly because basic blocks are usually
quite small. The approach of speculative execution tries to mitigate this by scheduling instructions
across branches. This is hard because we don’t know which way future branches will go and
therefore which path to select instructions from. Worse, most branches go each way part of the
time, so a branch may be followed by two possible code paths. We can move instructions from
either path to a point before the branch only if those instructions will do no harm (or if the harm can
be undone) when we take the other path. This may involve maintaining shadow registers, whose
values are not committed until we are sure we have correctly predicted the branch. It may involve
being selective about the instructions we choose: we may not be willing to execute memory
stores speculatively, for example, or instructions that can raise exceptions. Some of this may
be put partly under compiler control by designing an instruction set with explicitly squashable
instructions. Each squashable instruction would be tied explicitly to a condition evaluated in
another instruction, and would be squashed by the hardware if the condition turns out to be false.
If the compiler schedules instructions speculatively, it may even have to insert code to undo its
effects at the entry to the other path.

The most common approach to speculative execution uses branch prediction. The hardware
or the software predicts which way a given branch will most likely go, and speculatively schedules
instructions from that path.

A common hardware technique for branch prediction [LS84, Smi81] maintains a table of
two-bit counters. Low-order bits of a branch’s address provide the index into this table. Taking a
branch causes us to increment its table entry; not taking it causes us to decrement. These two-bit
counters are saturating: we do not wrap around when the table entry reaches its maximum or
minimum. We predict that a branch will be taken if its table entry is 2 or 3. This two-bit prediction
scheme mispredicts a typical loop only once, when it is exited. Two branches that map to the same
table entry interfere with each other; no “key” identifies the owner of the entry. A good initial
value for table entries is 2, just barely predicting that each branch will be taken. Figure 5 shows
how well this two-bit counter scheme works for different table sizes, on the eighteen programs
in our test suite. For most programs, the prediction success levels off by the time the table has
about 512 two-bit entries. Increasing the number of bits, either by making the counters bigger or
by having more of them, has little effect.

Branches can be predicted statically with comparable accuracy by obtaining a branch profile,

7

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

4 186 8 10 12 14 16
0.5

1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

pr
ed

ic
tio

n
su

cc
es

s
ra

te

tomcatv
swm256
alvinn
sed
doduc
yacc
mdljsp2
fpppp
met
hydro2d
eco
gcc1
egrep
compress
li
espresso
ora
grr

harmonic mean

 16 64 256 1K 4K 16K 64K 256K

Figure 5: Fraction of branches predicted correctly using two-bit
counter prediction, as a function of the total number of bits in the
predictor

which tells for each branch what fraction of its executions it was taken. Like any profile, a branch
profile is obtained by inserting counting code into a test program, to keep track of how many
times each branch goes each way. We use a branch profile by seeing which way a given branch
goes most often, and scheduling instructions from that path. If there is some expense in undoing
speculative execution when the branch goes the other way, we might impose a threshold so that
we don’t move instructions across a branch that is executed only 51% of the time.

Recent studies have explored more sophisticated hardware prediction using branch histo-
ries [PSR92, YP92, YP93]. These approaches maintain tables relating the recent history of the
branch (or of branches in the program as a whole) to the likely next outcome of the branch. These
approaches do quite poorly with small tables, but unlike the two-bit counter schemes they can
benefit from much larger predictors.

An example is the local-history predictor [YP92]. It maintains a table of n-bit shift registers,
indexed by the branch address as above. When the branch is taken, a 1 is shifted into the table
entry for that branch; otherwise a 0 is shifted in. To predict a branch, we take its n-bit history
and use it as an index into a table of 2n 2-bit counters like those in the simple counter scheme
described above. If the counter is 2 or 3, we predict taken; otherwise we predict not taken. If the
prediction proves correct, we increment the counter; otherwise we decrement it. The local-history
predictor works well on branches that display a regular pattern of small period.

Sometimes the behavior of one branch is correlated with the behavior of another. A global-
history predictor [YP92] tries to exploit this effect. It replaces the table of shift registers with a
single shift register that records the outcome of the n most recently executed branches, and uses
this history pattern as before, to index a table of counters. This allows it to exploit correlations in
the behaviors of nearby branches, and allows the history to be longer for a given predictor size.

8

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

4 206 8 10 12 14 16 18
0.7

1

0.75

0.8

0.85

0.9

0.95

pr
ed

ic
tio

n
su

cc
es

s
ra

te

counter

ctr/gsh
loc/gsh

 16 64 256 1K 4K 16K 64K 256K 1M

Figure 6: Fraction of branches predicted correctly by three different
prediction schemes, as a function of the total number of bits in the
predictor

An interesting variation is the gshare predictor [McF93], which uses the identity of the branch
as well as the recent global history. Instead of indexing the array of counters with just the global
history register, the gshare predictor computes the xor of the global history and branch address.

McFarling [McF93] got even better results by using a table of two-bit counters to dynamically
choose between two different schemes running in competition. Each predictor makes its prediction
as usual, and the branch address is used to select another 2-bit counter from a selector table; if
the selector value is 2 or 3, the first prediction is used; otherwise the second is used. When the
branch outcome is known, the selector is incremented or decremented if exactly one predictor
was correct. This approach lets the two predictors compete for authority over a given branch, and
awards the authority to the predictor that has recently been correct more often. McFarling found
that combined predictors did not work as well as simpler schemes when the predictor size was
small, but did quite well indeed when large.

Figure 6 shows the success rate for the three different hardware predictors used in this study,
averaged over the eighteen programs in our suite. The first is the traditional two-bit counter
approach described above. The second is a combination of a two-bit counter predictor and a
gshare predictor with twice as many elements; the selector table is the same size as the counter
predictor. The third is a combination of a local predictor and a gshare predictor; the two local
tables, the gshare table, and the selector table all have the same number of elements. The x-axis
of this graph is the total size of the predictor in bits. The simple counter predictor works best
for small sizes, then the bimodal/gshare predictor takes over the lead, and finally for very large
predictors the local/gshare predictor works best, delivering around 98% accuracy in the limit.

In our simulator, we modeled several degrees of branch prediction. One extreme is perfect
prediction: we assume that all branches are correctly predicted. Next we can assume any of

9

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

ctrs ctrs ctrs ctrs ctr/gsh loc/gsh loc/gsh prof sign taken
4b 8b 16b 64b 2kb 16kb 152k

egrep 0.75 0.78 0.77 0.87 0.90 0.95 0.98 0.90 0.65 0.80
sed 0.75 0.81 0.74 0.92 0.97 0.98 0.98 0.97 0.42 0.71
yacc 0.74 0.80 0.83 0.92 0.96 0.97 0.98 0.92 0.60 0.73
eco 0.57 0.61 0.64 0.77 0.95 0.97 0.98 0.91 0.46 0.61
grr 0.58 0.60 0.65 0.73 0.89 0.92 0.94 0.78 0.54 0.51
metronome 0.70 0.73 0.73 0.83 0.95 0.97 0.98 0.91 0.61 0.54
alvinn 0.86 0.84 0.86 0.89 0.98 1.00 1.00 0.97 0.85 0.84
compress 0.64 0.73 0.75 0.84 0.89 0.90 0.90 0.86 0.69 0.55
doduc 0.54 0.53 0.74 0.84 0.94 0.96 0.97 0.95 0.76 0.45
espresso 0.72 0.73 0.78 0.82 0.93 0.95 0.96 0.86 0.62 0.63
fpppp 0.62 0.59 0.65 0.81 0.93 0.97 0.98 0.86 0.46 0.58
gcc1 0.59 0.61 0.63 0.70 0.87 0.91 0.94 0.88 0.50 0.57
hydro2d 0.69 0.75 0.79 0.85 0.94 0.96 0.97 0.91 0.51 0.68
li 0.61 0.69 0.71 0.77 0.95 0.96 0.98 0.88 0.54 0.46
mdljsp2 0.82 0.84 0.86 0.94 0.95 0.96 0.97 0.92 0.31 0.83
ora 0.48 0.55 0.61 0.79 0.91 0.98 0.99 0.87 0.54 0.51
swm256 0.97 0.97 0.98 0.98 1.00 1.00 1.00 0.98 0.98 0.91
tomcatv 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.62 0.99
hmean 0.68 0.71 0.75 0.84 0.94 0.96 0.97 0.90 0.55 0.63

Figure 7: Success rates of different branch prediction techniques

the three hardware prediction schemes shown in Figure 6 with any predictor size. We can also
assume three kinds of static branch prediction: profiled branch prediction, in which we predict
that the branch will go the way it went most frequently in a profiled previous run; signed branch
prediction, in which we predict that a backward branch will be taken but a forward branch will
not, and taken branch prediction, in which we predict that every branch will always be taken.
And finally, we can assume that no branch prediction occurs; this is the same as assuming that
every branch is predicted wrong.

Figure 7 shows the actual success rate of prediction using different sizes of tables. It also
shows the success rates for the three kinds of static prediction. Profiled prediction routinely beats
64-bit counter-based prediction, but it cannot compete with the larger, more advanced techniques.
Signed or taken prediction do quite poorly, about as well as the smallest of dynamic tables; of the
two, taken prediction is slightly the better. Signed prediction, however, lends itself better to the
compiler technique of moving little-used pieces of conditionally executed code out of the normal
code stream, improving program locality and thereby the cache performance.

The effect of branch prediction on scheduling is easy to state. Correctly predicted branches
have no effect on scheduling (except for register dependencies involving their operands). Instruc-
tions appearing later than a mispredicted branch cannot be scheduled before the branch itself,
since we do not know we should be scheduling them until we find out that the branch went
the other way. (Of course, both the branch and the later instruction may be scheduled before
instructions that precede the branch, if other dependencies permit.)

Note that we generally assume no penalty for failure other than the inability to schedule later
instructions before the branch. This assumption is optimistic; in most real architectures, a failed
prediction causes a bubble in the pipeline, resulting in one or more cycles in which no execution
whatsoever can occur. We will return to this topic later.

10

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

2.4 Branch fanout

Rather than try to predict the destinations of branches, we might speculatively execute instructions
along both possible paths, squashing the wrong path when we know which it is. Some of our
hardware parallelism capability is guaranteed to be wasted, but we will never miss out completely
by blindly taking the wrong path. Unfortunately, branches happen quite often in normal code, so
for large degrees of parallelism we may encounter another branch before we have resolved the
previous one. Thus we cannot continue to fan out indefinitely: we will eventually use up all the
machine parallelism just exploring many parallel paths, of which only one is the right one. An
alternative if the branch probability is available, as from a profile, is to explore both paths if the
branch probability is near 0.5 but explore the likely path when its probability is near 1.0.

Our system allows the scheduler to explore in both directions past branches. Because the
scheduler is working from a trace, it cannot actually schedule instructions from the paths not
taken. Since these false paths would use up hardware parallelism, we model this by assuming
that there is an upper limit on the number of branches we can look past. We call this upper limit
the fanout limit. In terms of our simulator scheduling, branches where we explore both paths are
simply considered to be correctly predicted; their effect on the schedule is identical, though of
course they use up part of the fanout limit.

In some respects fanout duplicates the benefits of branch prediction, but they can also work
together to good effect. If we are using dynamic branch prediction, we explore both paths up to
the fanout limit, and then explore only the predicted path beyond that point. With static branch
prediction based on a profile we go still further. It is easy to implement a profiler that tells us
not only which direction the branch went most often, but also the frequency with which it went
that way. This lets us explore only the predicted path if its predicted probability is above some
threshold, and use our limited fanout ability to explore both paths only when the probability of
each is below the threshold.

2.5 Indirect-jump prediction

Most architectures have two kinds of instructions to change the flow of control. Branches
are conditional and have a destination that is some specified offset from the PC. Jumps are
unconditional, and may be either direct or indirect. A direct jump is one whose destination is
given explicitly in the instruction, while an indirect jump is one whose destination is expressed as
an address computation involving a register. In principle we can know the destination of a direct
jump well in advance. The destination of an indirect jump, however, may require us to wait until
the address computation is possible. Predicting the destination of an indirect jump might pay off
in instruction-level parallelism.

We consider two jump prediction strategies, which can often be used simultaneously.
The first strategy is a simple cacheing scheme. A table is maintained of destination addresses.

The address of a jump provides the index into this table. Whenever we execute an indirect jump,
we put its destination address in the table entry for the jump. To predict a jump, we extract the
address in its table entry. Thus, we predict that an indirect jump will go where it went last time.
As with branch prediction, however, we do not prevent two jumps from mapping to the same

11

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

n-element return ring 2K-ring plus n-element table prof
1 2 4 8 16 2K 2 4 8 16 32 64

egrep 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
sed 0.27 0.46 0.68 0.68 0.68 0.68 0.97 0.97 0.97 0.97 0.97 0.97 0.97
yacc 0.68 0.85 0.88 0.88 0.88 0.88 0.92 0.92 0.92 0.92 0.92 0.92 0.71
eco 0.48 0.66 0.76 0.77 0.77 0.78 0.82 0.82 0.82 0.82 0.82 0.82 0.56
grr 0.69 0.84 0.92 0.95 0.95 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.65
met 0.76 0.88 0.96 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.65
alvinn 0.33 0.43 0.63 0.90 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.75
compress 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
doduc 0.64 0.75 0.88 0.94 0.94 0.94 0.96 0.99 0.99 0.99 1.00 1.00 0.62
espresso 0.76 0.89 0.95 0.96 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 0.54
fpppp 0.55 0.71 0.73 0.74 0.74 0.74 0.99 0.99 0.99 0.99 0.99 0.99 0.80
gcc1 0.46 0.61 0.71 0.74 0.74 0.74 0.81 0.82 0.82 0.83 0.83 0.84 0.60
hydro2d 0.42 0.50 0.57 0.61 0.62 0.62 0.72 0.72 0.76 0.77 0.80 0.82 0.64
li 0.44 0.57 0.72 0.81 0.84 0.86 0.91 0.91 0.93 0.93 0.93 0.93 0.69
mdljsp2 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.98
ora 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.46
swm256 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.26
tomcatv 0.41 0.48 0.59 0.63 0.63 0.63 0.71 0.71 0.77 0.78 0.85 0.85 0.72
hmean 0.56 0.69 0.80 0.84 0.84 0.85 0.92 0.92 0.93 0.93 0.94 0.95 0.63

Figure 8: Success rates of different jump prediction techniques

table entry and interfering with each other.
The second strategy involves procedure returns, the most common kind of indirect jump. If

the machine can distinguish returns from other indirect jumps, it can do a better job of predicting
their destinations, as follows. The machine maintains a small ring buffer of return addresses.
Whenever it executes a subroutine call instruction, it increments the buffer pointer and enters the
return address in the buffer. A return instruction is predicted to go to the last address in this buffer,
and then decrements the buffer pointer. Unless we do tail-call optimization or setjmp/longjmp,
this prediction will always be right if the machine uses a big enough ring buffer. Even if it cannot
distinguish returns from other indirect jumps, their predominance might make it worth predicting
that any indirect jump is a return, as long as we decrement the buffer pointer only when the
prediction succeeds.

Our system allows several degrees of each kind of jump prediction. We can assume that
indirect jumps are perfectly predicted. We can use the cacheing prediction, in which we predict
that a jump will go wherever it went last time, with a table of any size. Subroutine returns can be
predicted with this table, or with their own return ring, which can also be any desired size. We
can also predict returns with a return ring and leave other indirect jumps unpredicted. Finally, we
can assume no jump prediction whatsoever.

As with branches, a correctly predicted jump has no effect on the scheduling. A mispredicted
or unpredicted jump may be moved before earlier instructions, but no later instruction can be
moved before the jump.

Figure 8 shows the actual success rates of jump prediction using a return ring alone, of a return
ring along with a last-destination table, and finally of prediction using a most-common-destination
profile. Even a one-element return ring is enough to predict more than half the indirect jumps,
and a slightly larger ring raises that to more than 80%. Adding a small last-destination table to

12

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

predict non-returns produces a substantial improvement, although the success rate does not rise
much as we make the table bigger. With only an 8-element return ring and a 2-element table,
we can predict more than 90% of the indirect jumps. The most-common-destination profile, in
contrast, succeeds only about two thirds of the time.

2.6 Window size and cycle width

The window size is the maximum number of instructions that can appear in the pending cycles at
any time. By default this is 2048 instructions. We can manage the window either discretely or
continuously. With discrete windows, we fetch an entire window of instructions, schedule them
into cycles, issue those cycles, and then start fresh with a new window. A missed prediction also
causes us to start over with a full-size new window. With continuous windows, new instructions
enter the window one at a time, and old cycles leave the window whenever the number of
instructions reaches the window size. Continuous windows are the norm for the results described
here, although to implement them in hardware is more difficult. Smith et al. [SJH89] assumed
discrete windows.

The cycle width is the maximum number of instructions that can be scheduled in a given
cycle. By default this is 64. Our greedy scheduling algorithm works well when the cycle width
is large: a small proportion of cycles are completely filled. For cycle widths of 2 or 4, however,
a more traditional approach [HG83, JM82] would be more realistic.

Along with cycles of a fixed finite size, we can specify that cycles are unlimited in width.
In this case, there is still an effective limit imposed by the window size: if one cycle contains
a window-full of instructions, it will be issued and a new cycle begun. As a final option, we
therefore also allow both the cycle width and the window size to be unlimited.5

2.7 Latency

For most of our experiments we assumed that every operation had unit latency: any result
computed in cycle n could be used as an operand in cycle n + 1. This can obviously be
accomplished by setting the machine cycle time high enough for even the slowest of operations
to finish in one cycle, but in general this is an inefficient use of the machine. A real machine
is more likely to have a cycle time long enough to finish most common operations, like integer
add, but let other operations (e.g. division, multiplication, floating-point operations, and memory
loads) take more than one cycle to complete. If an operation in cycle t has latency L, its result
cannot be used until cycle t+ L.

Earlier we defined parallelism as the number of instructions executed divided by the number
of cycles required. Adding non-unit latency requires that we refine that definition slightly. We
want our measure of parallelism to give proper credit for scheduling quick operations during times
when we are waiting for unrelated slow ones. We will define the total latency of a program as the
sum of the latencies of all instructions executed, and the parallelism as the total latency divided

5The final possibility, limited cycle width but unlimited window size, cannot be implemented without using a
data structure that can attain a size proportional to the length of the instruction trace. We deemed this impractical
and did not implement it.

13

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

(a) multi-cycle instruction is on critical path (b) multi-cycle instruction is not on critical path

r9:=r2+r8

r10:=12[r9]

r11:=r10+1

r12:=r11-r7

r13:=r12<<2

r4:=r1+r13

r1:=r2/r3

r9:=12[r1] r10:=r1+1

r1:=r2/r3

r11:=r9+r10

Figure 9: Effects of increasing latency on parallelism

model A model B model C model D model E
int add/sub, logical 1 1 1 1 1

load 1 1 2 2 3
int mult 1 2 2 3 5

int div 1 2 3 4 6
single-prec add/sub 1 2 3 4 4

single-prec mult 1 2 3 4 5
single-prec div 1 2 3 5 7

double-prec add/sub 1 2 3 4 4
double-prec mult 1 2 3 4 6

double-prec div 1 2 3 5 10

Figure 10: Operation latencies in cycles, under five latency models

by the number of cycles required. If all instructions have a latency of 1, the total latency is just
the number of instructions, and the definition is the same as before. Notice that with non-unit
latencies it is possible for the instruction-level parallelism to exceed the cycle width; at any given
time we can be working on instructions issued in several different cycles, at different stages in
the execution pipeline.

It is not obvious whether increasing the latencies of some operations will tend to increase or
decrease instruction-level parallelism. Figure 9 illustrates two opposing effects. In 9(a), we have
a divide instruction on the critical path; if we increase its latency we will spend several cycles
working on nothing else, and the parallelism will decrease. In 9(b), in contrast, the divide is not
on the critical path, and increasing its latency will increase the parallelism. Note that whether the
parallelism increases or not, it is nearly certain that the time required is less, because an increase
in the latency means we have decreased the cycle time.

We implemented five different latency models. Figure 10 lists them. We assume that the
functional units are completely pipelined, so that even multi-cycle instructions can be issued
every cycle, even though the result of each will not be available until several cycles later. Latency
model A (all unit latencies) is the default used throughout this paper unless otherwise specified.

14

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

none

perfect

inspectnone

perfect

64

256

none

perfect

16-addr ring,
 no table

2K-addr ring,
2K-addr table

16-addr ring,
 8-addr table

none

perfect

152Kb loc/gsh

64b counter

2Kb ctr/gsh

16Kb loc/gsh

fanout 4, then
152Kb loc/gsh

Poor

Fair

Good

Great

Superb

Perfect

predict
branch

analysis
alias

renaming
registerjump

predict

Stupid

Poor

Fair

Good

Great

Superb

Stupid

Perfect

Figure 11: Seven increasingly ambitious models

3 Results

We ran our eighteen test programs under a wide range of configurations. We will present some
of these to show interesting trends; the complete results appear in an appendix. To provide
a framework for our exploration, we defined a series of seven increasingly ambitious models
spanning the possible range. These seven are specified in Figure 11; in all of them the window
size is 2K instructions, the cycle width is 64 instructions, and unit latencies are assumed. Many
of the results we present will show the effects of variations on these standard models. Note that
even the “Poor” model is fairly ambitious: it assumes rudimentary alias analysis and a branch
predictor that is 85% correct on average, and like all seven models it allows our generous default
window size and cycle width.

15

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
doduc
egrep
swm256
hydro2d
espresso
gcc1
mdljsp2
grr
compress
sed
met
yacc
eco
li

ora
alvinn

harmonic mean
2

3

4
5
6
7
8

20

30

40
50

 Stupid Poor Fair Good Great Superb Perfect 701 704702 703
1

12

10

tomcatv

fpppp
swm256

hydro2d
doduc
met
mdljsp2
li
sed
ora
yacc
espresso
grr
eco
gcc1
egrep
compress
alvinn

2

3

4

5

6

7
8

 Stupid Poor Fair Good

Figure 12: Parallelism under the seven models, full-scale (left) and
detail (right)

3.1 Parallelism under the seven models

Figure 12 shows the parallelism of each program for each of the seven models. The numeric
programs are shown as dotted lines, the harmonic mean by a series of circles. Unsurprisingly,
the Stupid model rarely exceeds 3, and exceeds 2 only for some of the numeric programs.
The lack of branch prediction means that it finds only intra-block parallelism, and the lack of
renaming and alias analysis means it won’t find much of that. Moving up to Poor helps the
worst programs quite a lot, almost entirely because of the branch prediction, but the mean is still
under 3. Moving to Fair increases the mean to 4, mainly because we suddenly assume perfect
alias analysis. The Good model doubles the mean parallelism, mostly because it introduces
some register renaming. Increasing the number of available registers in the Great model takes us
further, though the proportional improvement is smaller. At this point the effectiveness of branch
prediction is topping out, so we add 4-way branch fanout to the Great model to get the Superb
model. Its performance, however, is disappointing; we had hoped for more of an improvement.
The parallelism of the Superb model is less than half that of the Perfect model, mainly because
of the imperfection of its branch prediction. A study using the Perfect model alone would lead
us down a dangerous garden path, as would a study that included only fpppp and tomcatv.

16

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

0 5010 20 30 40
time (megacycles)

1

64

pa
ra

lle
lis

m 10

alvinn...

swm256

tomcatv

ora
mdljsp2

0 5010 20 30 40
time (megacycles)

1

64

10

alvinn...

swm256
tomcatv

ora
mdljsp2

Figure 13: Parallelism under the Good model over intervals of 0.2
million cycles (left) and 1 million cycles (right)

3.2 Effects of measurement interval

We analyzed the parallelism of entire program executions because it avoided the question of
what constitutes a “representative” interval. To select some smaller interval of time at random
would run the risk that the interval was atypical of the program’s execution as a whole. To
select a particular interval where the program is at its most parallel would be misleading and
irresponsible. Figure 13 shows the parallelism under the Good model during successive intervals
from the execution of some of our longer-running programs. The left-hand graph uses intervals of
200,000 cycles, the right-hand graph 1 million cycles. In each case the parallelism of an interval
is computed exactly like that of a whole program: the number of instructions executed during
that interval is divided by the number of cycles required.

Some of the test programs are quite stable in their parallelism. Others are quite unstable. With
200K-cycle intervals (which range from 0.7M to more than 10M instructions), the parallelism
within a single program can vary widely, sometimes by a factor of three. Even 1M-cycle intervals
see variation by a factor of two. The alvinn program has parallelism above 12 for 4 megacycles,
at which point it drops down to less than half that; in contrast, the swm256 program starts quite
low and then climbs to quite a respectable number indeed.

It seems clear that intervals of a million cycles would not be excessive, and even these should
be selected with care. Parallelism measurements for isolated intervals of fewer than a million
cycles should be viewed with suspicion and even derision.

17

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

128

pa
ra

lle
lis

m

10

100 tomcatv
doduc
fpppp
egrep
hydro2d
swm256
espress
gcc1
mdljsp2
grr
compres
sed
met
yacc
eco
li

ora
alvinn

harmonic mean
2

3

4
5
6
7
8

20

30

40
50
60
70
80

 Stupid Poor Fair Good Great Superb Perfect 701 707702 703 704 705 706
1

2

ra
tio

 t
o

 d
ef

au
lt

 Stupid Poor Fair Good Great Superb Perfect

tomcatv
doduc

hydro2d

fpppp

espress
swm256
egrep
gcc1
yacc
mdljsp2
grr
OTHERS

Figure 14: Parallelism under the seven models with cycle width of
128 instructions (left), and the ratio of parallelism for cycles of 128
to parallelism for cycles of 64 (right)

1 72 3 4 5 6
1

128

pa
ra

lle
lis

m

10

100 doduc
tomcatv
fpppp
hydro2d
egrep
swm256
espresso
gcc1
mdljsp2
grr
compress
sed
met
yacc
eco
li

ora
alvinn

2

3

4
5
6
7
8

20

30

40
50
60
70
80

 Stupid Poor Fair Good Great Superb Perfect 1 72 3 4 5 6
1

2

ra
tio

 t
o

 d
ef

au
lt

 Stupid Poor Fair Good Great Superb Perfect

doduc

tomcatv

hydro2d

fpppp

espress
swm256
egrep
gcc1
yacc
mdljsp2
grr
OTHERS

Figure 15: Parallelism under the seven models with unlimited cycle
width (left), and the ratio of parallelism for unlimited cycles to
parallelism for cycles of 64 (right)

18

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

3.3 Effects of cycle width

Tomcatv and fpppp attain very high parallelism with even modest machine models. Their average
parallelism is very close to the maximum imposed by our normal cycle width of 64 instructions;
under the Great model more than half the cycles of each are completely full. This suggests that
even more parallelism might be obtained by widening the cycles. Figure 14 shows what happens
if we increase the maximum cycle width from 64 instructions to 128. The right-hand graph
shows how the parallelism increases when we go from cycles of 64 instructions to cycles of 128.
Doubling the cycle width improves four of the numeric programs appreciably under the Perfect
model, and improves tomcatv by 20% even under the Great model. Most programs, however, do
not benefit appreciably from such wide cycles even under the Perfect model.

Perhaps the problem is that even 128-instruction cycles are too small. If we remove the limit
on cycle width altogether, we effectively make the cycle width the same as the window size, in
this case 2K instructions. The results are shown in Figure 15. Parallelism in the Perfect model
is a bit better than before, but outside the Perfect model we see that tomcatv is again the only
benchmark to benefit significantly.

Although even a cycle width of 64 instructions is quite a lot, we did not consider smaller
cycles. This would have required us to replace our quick and easy greedy scheduling algorithm
with a slower conventional scheduling technique[GM86, HG83], limiting the programs we could
run to completion. Moreover, these techniques schedule a static block of instructions, and it is
not obvious how to extend them to the continuous windows model.

19

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

2 113 4 5 6 7 8 9 10
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
espresso
hydro2d
met
sed
grr
li
egrep
mdljsp2
gcc1
yacc
ora
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 4 8 16 32 64 128 256 512 1K 2K 2 113 4 5 6 7 8 9 10
1

64

10
hydro2d
tomcatv
sed
met
yacc
li
doduc
compress
ora
eco
egrep
grr
espresso
gcc1
fpppp
swm256
alvinn
mdljsp2

2

3

4
5
6
7
8

20

30

40
50

 4 8 16 32 64 128 256 512 1K 2K

Figure 16: Parallelism for different sizes of continuously-managed
windows under the Superb model (left) and the Fair model (right)

2 113 4 5 6 7 8 9 10
1

64

pa
ra

lle
lis

m 10

tomcatv
fpppp
swm256

doduc
espresso
hydro2d
met
sed
li
grr
egrep
mdljsp2
gcc1
yacc
ora
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 4 8 16 32 64 128 256 512 1K 2K 2 113 4 5 6 7 8 9 10
1

64

10
hydro2d
tomcatv
sed
met
yacc
li
doduc
compress
ora
eco
egrep
grr
espresso
gcc1
fpppp
swm256
alvinn
mdljsp2

2

3

4
5
6
7
8

20

30

40
50

 4 8 16 32 64 128 256 512 1K 2K

Figure 17: Parallelism for different sizes of discretely-managed win-
dows under the Superb model (left) and the Fair model (right)

20

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

700

pa
ra

lle
lis

m

10

100

swm256

hydro2d
tomcatv
doduc
alvinn
yacc
egrep
fpppp
espresso
gcc1
mdljsp2
grr
compress
met
sed
eco
li
ora

2

3
4
5
6
7

20

30
40
50
60
70

200

300
400
500
600

 Stupid Poor Fair Good Great Superb Perfect 701 707702 703 704 705 706
1

15

ra
tio

 t
o

 d
ef

au
lt

 10

 Stupid Poor Fair Good Great Superb Perfect

alvinn
swm256

yacc
hydro2d

tomcatv

doduc
gcc1
espress
egrep
grr
fpppp
mdljsp2
met
li
eco
compres
OTHERS

Figure 18: Parallelism under the seven models with unlimited win-
dow size and cycle width (left), and the ratio of parallelism for unlim-
ited windows and cycles to parallelism for 2K-instruction windows
and 64-instruction cycles (right)

3.4 Effects of window size

Our standard models all have a window size of 2K instructions: the scheduler is allowed to keep
that many instructions in pending cycles at one time. Typical superscalar hardware is unlikely to
handle windows of that size, but software techniques like trace scheduling for a VLIW machine
might. Figure 16 shows the effect of varying the window size from 2K instructions down to 4,
for the Superb and Fair models. Under the Superb model, most programs do about as well with a
128-instruction window as with a larger one. Below that, parallelism drops off quickly. The Poor
model’s limited analysis severely restricts the mobility of instructions; parallelism levels off at a
window size of only 16 instructions.

A less ambitious parallelism manager would manage windows discretely, by getting a window
full of instructions, scheduling them relative to each other, executing them, and then starting over
with a fresh window. This would tend to result in lower parallelism than in the continuous
window model we used above. Figure 17 shows the same models as Figure 16, but assumes
discrete windows rather than continuous. As we might expect, discretely managed windows
need to be larger to be at their best: most curves don’t level off until a window size of 512
instructions (for Superb) or 64 instructions (for Poor) is reached. As with continuous windows,
sizes above 512 instructions do not seem to be necessary. If we have very small windows,
continuous management does as much good as multiplying the window size by 4.

If we eliminate the limit on both the window size and the cycle width, we get the results shown
in Figure 18. Here we finally see the kind of high parallelism reported in studies like Nicolau and

21

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Fisher’s [NF84], reaching as high as 500 for swm256 in the Perfect model. It is interesting to
note that under even slightly more realistic models, the maximum parallelism drops to around 50,
and the mean parallelism to around 10. The advantage of unlimited window size and cycle width
outside the Perfect model shows up only on tomcatv, and even there the advantage is modest.

3.5 Effects of loop unrolling

Loop unrolling is an old compiler optimization technique that can also increase parallelism. If
we unroll a loop ten times, thereby removing 90% of its branches, we effectively increase the
basic block size tenfold. This larger basic block may hold parallelism that had been unavailable
because of the branches or the inherent sequentiality of the loop control.

We studied the parallelism of unrolled code by manually unrolling four inner loops in three
of our programs. In each case these loops constituted a sizable fraction of the original program’s
total runtime. Figure 19 displays some details.

Alvinn has two inner loops, the first of which is an accumulator loop: each iteration computes
a value on which no other iteration depends, but these values are successively added into a
single accumulator variable. To parallelize this loop we duplicated the loop body n times (with i
successively replaced by i+1, i+2, and so on wherever it occurred), collapsed then assignments to
the accumulator into a single assignment, and then restructured the resulting large right-hand-side
into a balanced tree expression.

alvinn

input_hidden

hidden_input

line 109 of
backprop.c

line 192 of
backprop.c

accumulator

independent

39.5%

39.5%

swm256

tomcatv

CALC2

main

line 325 of
swm256.f

line 86 of
tomcatv.f

14

14

independent

independent

62

258

37.8%

67.6%

procedure loop location type of loop instrs % of execution

Figure 19: Four unrolled loops

The remaining three loops are perfectly parallelizable: each iteration is completely indepen-
dent of the rest. We unrolled these in two different ways. In the first, we simply duplicated the
loop body n times (replacing i by i + 1, i + 2, and so on). In the second, we duplicated the
loop body n times as before, changed all assignments to array members into assignments to local
scalars followed by moves from those scalars into the array members, and finally moved all the
assignments to array members to the end of the loop. The first model should not work as well
as the second in simple models with poor alias analysis, because the array loads from successive
unrolled iterations are separated by array stores; it is difficult to tell that it is safe to interleave parts

22

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

for i := 1 to N do
 accum := accum + f(i);
end

for i := 1 to N by 4 do
 accum := accum
 + ((f(i) + f(i+1))
 + (f(i+2) + f(i+3))
);
end

for i := 1 to N do
 a[i] := f(i);
 b[i] := g(i);
end

for i := 1 to N by 4 do
 a[i] := f(i);
 b[i] := g(i);
 a[i+1] := f(i+1);
 b[i+1] := g(i+1);
 a[i+2] := f(i+2);
 b[i+2] := g(i+2);
 a[i+3] := f(i+3);
 b[i+3] := g(i+3);
end

for i := 1 to N by 4 do
 a00 := f(i);
 b00 := g(i);
 a01 := f(i+1);
 b01 := g(i+1);
 a02 := f(i+2);
 b02 := g(i+2);
 a03 := f(i+3);
 b03 := g(i+3);
 a[i] := a00;
 b[i] := b00;
 a[i+1] := a01;
 b[i+1] := b01;
 a[i+2] := a02;
 b[i+2] := b02;
 a[i+3] := a03;
 b[i+3] := b03;
end

Accum
 loop

for
sophisticated

models

for
simple

models

Figure 20: Three techniques for loop unrolling

of successive iterations. On the other hand, leaving the stores in place means that the lifetimes
of computed values are shorter, allowing the compiler to do a better job of register allocation:
moving the stores to the end of the loop means the compiler is more likely to start using memory
locations as temporaries, which removes these values from the control of the register renaming
facility available in the smarter models.

Figure 20 shows examples for all three transformations. We followed each unrolled loop by a
copy of the original loop starting where the unrolled loop left off, to finish up in the cases where
the loop count was not a multiple of the unrolling factor.

In fact there was very little difference between these methods for the poorer models, and the
differences for the better models were not all in the same direction. In the results reported below,
we always used the larger parallelism obtained using the two different methods. Figure 21 shows
the result. Unrolling made a profound difference to alvinn under the better models, though the

23

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 705702 703 704
1

64

pa
ra

lle
lis

m 10

tom-perf
swm-perf
alv-perf

tom-good
swm-good
alv-good

tom-stup
swm-stup
alv-stup

2

3

4
5
6
7
8

20

30

40
50

 U0 U2 U4 U8 U16

Figure 21: Effects of loop unrolling

effect decreased as the unrolling factor increased. It made little difference in the other cases,
and even hurt the parallelism in several instances. This difference is probably because the inner
loop of alvinn is quite short, so it can be replicated several times without creating great register
pressure or otherwise giving the compiler too many balls to juggle.

Moreover, it is quite possible for parallelism to go down while performance goes up. The
rolled loop can do the loop bookkeeping instructions in parallel with the meat of the loop body,
but an unrolled loop gets rid of at least half of that bookkeeping. Unless the unrolling creates
new opportunities for parallelism (which is of course the point) this will cause the net parallelism
to decrease.

Loop unrolling is a good way to increase the available parallelism, but it is not a silver bullet.

3.6 Effects of branch prediction

We saw earlier that new techniques of dynamic history-based branch prediction allow us to benefit
from quite large branch predictor, giving success rates that are still improving slightly even when
we are using a 1-megabit predictor. It is natural to ask how much this affects the instruction-level
parallelism. Figure 22 answers this question for the Fair and Great models. The Fair model is
relatively insensitive to the size of the predictor, though even a tiny 4-bit predictor improves the
mean parallelism by 50%. A tiny 4-bit table doubles the parallelism under the Great model, and
increasing that to a huge quarter-megabit table more than doubles it again.

Even under the Great model, the three most parallel programs are quite insensitive to the size
of the predictor. These are exactly the programs in which conditional branches account for no
more than 2% of the instructions executed; the nearest contender is doduc with 6%. We can mask
this effect by plotting these results not as a function of the predictor size, but as a function of

24

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

0 182 4 6 8 10 12 14 16
1

64

pa
ra

lle
lis

m 10
hydro2d
sed
tomcatv
met
yacc
li
egrep
doduc
compress
ora
eco
grr
gcc1
espresso
fpppp
swm256
alvinn
mdljsp2

2

3

4
5
6
7
8

20

30

40
50

 0 4 16 64 256 1K 4K 16K 64K 256K 0 182 4 6 8 10 12 14 16
1

64

10

fpppp
tomcatv
swm256

doduc
hydro2d
espresso
met
sed
li
mdljsp2
egrep
yacc
ora
grr
gcc1
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 0 4 16 64 256 1K 4K 16K 64K 256K

Figure 22: Parallelism for different sizes of dynamic branch-
prediction table under the Fair model (left) and the Great model
(right)

2 144 6 8 10 12
1

64

pa
ra

lle
lis

m 10
hydro2d
sed
tomcatv
met
yacc
li
egrep
doduc
compress
ora
eco
grr
gcc1
espresso
fpppp
swm256
alvinn
mdljsp2

2

3

4
5
6
7
8

20

30

40
50

 4 16 64 256 1K 4K 16K 2 144 6 8 10 12
1

64

10

fpppp
tomcatv
swm256

doduc
hydro2d
espresso
met
sed
li
mdljsp2
egrep
yacc
ora
grr
gcc1
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 4 16 64 256 1K 4K 16K

Figure 23: Parallelism as a function of the mean number of instruc-
tions between mispredicted branches, under the Fair model (left) and
the Great model (right)

25

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 705702 703 704
1

64

pa
ra

lle
lis

m 10

tomcatv
fpppp
swm256

doduc
mdljsp2
hydro2d
met
espresso
ora
li
sed
grr
gcc1
compress
yacc
eco
egrep
alvinn

2

3

4
5
6
7
8

20

30

40
50

 B0 B2 B4 B6 B8 0 2 4 6 8 701 705702 703 704
1

64

10

fpppp
tomcatv
swm256

doduc
espresso
hydro2d
met
grr
sed
egrep
li
mdljsp2
gcc1
yacc
compress
ora
eco
alvinn

2

3

4
5
6
7
8

20

30

40
50

 B0 B2 B4 B6 B8 0 2 4 6 8

Figure 24: Parallelism for the Great model with different levels
of fanout scheduling across conditional branches, with no branch
prediction (left) and with branch prediction (right) after fanout is
exhausted

701 705702 703 704
1

64

pa
ra

lle
lis

m 10
hydro2d
sed
compress
tomcatv
met
egrep
yacc
li
doduc
ora
grr
gcc1
eco
espresso
fpppp
swm256
mdljsp2
alvinn

2

3

4
5
6
7
8

20

30

40
50

 B0 B2 B4 B6 B8 0 2 4 6 8 701 705702 703 704
1

64

10
hydro2d
sed
compress
yacc
tomcatv
met
li
egrep
doduc
ora
grr
gcc1
eco
espresso
fpppp
swm256
mdljsp2
alvinn

2

3

4
5
6
7
8

20

30

40
50

 B0 B2 B4 B6 B8 0 2 4 6 8

Figure 25: Parallelism for the Fair model with different levels of
fanout scheduling across conditional branches, with no branch pre-
diction (left) and with branch prediction (right) after fanout is ex-
hausted

26

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

the average number of instructions executed between mispredicted branches. Figure 23 shows
these results. These three numeric programs still stand out as anomalies; evidently there is more
involved in their parallelism than the infrequency and predictability of their branches.

3.7 Effects of fanout

Figures 24 and 25 show the effects of adding various levels of fanout to the Great and Fair
models. The left-hand graphs assume that we look along both paths out of the next few conditional
branches, up to the fanout limit, but that we do not look past branches beyond that point. The
right-hand graphs assume that after we reach the fanout limit we use dynamic prediction (at the
Great or Fair level) to look for instructions from the one predicted path to schedule. In each graph
the leftmost point represents no fanout at all. We can see that when fanout is followed by good
branch prediction, the fanout does not buy us much. Without branch prediction, on the other
hand, even modest amounts of fanout are quite rewarding: adding fanout across 4 branches to the
Fair model is about as good as adding Fair branch prediction.

Fisher [Fis91] has proposed using fanout in conjunction with profiled branch prediction. In
this scheme they are both under software control: the profile gives us information that helps us to
decide whether to explore a given branch using the fanout capability or using a prediction. This is
possible because a profile can easily record not just which way a branch most often goes, but also
how often it does so. Fisher combines this profile information with static scheduling information
about the payoff of scheduling each instruction early on the assumption that the branch goes in
that direction.

Our traces do not have the payoff information Fisher uses, but we can investigate a simpler
variation of the idea. We pick some threshold to partition the branches into two classes: those
we predict because they are very likely to go one way in particular and those at which we fan out
because they are not. We will call this scheme profile-guided integrated prediction and fanout.

We modified the Perfect model to do profile-guided integrated prediction and fanout. Figure 26
shows the parallelism for different threshold levels. Setting the threshold too low means that we
use the profile to predict most branches and rarely benefit from fanout: a threshold of 0.5 causes
all branches to be predicted with no use of fanout at all. Setting the threshold too high means that
you fan out even on branches that nearly always go one way, wasting the hardware parallelism
that fanout enables. Even a very high threshold is better than none, however; some branches
really do go the same way all or essentially all of the time. The benefit is not very sensitive to
the threshold we use: between 0.75 and 0.95 most of the curves are quite flat; this holds as well
if we do the same experiment using the Great model or the Fair model. The best threshold seems
to be around 0.92.

Figure 27 shows the parallelism under variations of the Fair and Superb models, first with the
profile-integrated scheme and next with the hardware approach of fanout followed by prediction.
Profile-guided integration works about as well as the simple hardware approach under the Fair
model, in spite of the fact that the Fair model has a predictor that is about 5% better than a profile
predictor. The better hardware branch prediction of the Superb model, however, completely
outclasses the profile-integrated approach.

27

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

0.5 10.6 0.7 0.8 0.9
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
mdljsp2
hydro2d
sed
li
met
gcc1
eco
ora
espresso
yacc
alvinn
grr
compress
egrep

2

3

4
5
6
7
8

20

30

40
50

0.5 10.6 0.7 0.8 0.9
1

64

10

fpppp
tomcatv
swm256

doduc
mdljsp2
hydro2d
li
sed
gcc1
met
espresso
eco
yacc
ora
grr
compress
alvinn
egrep

2

3

4
5
6
7
8

20

30

40
50

Figure 26: Parallelism for the Perfect model with profile-guided
integrated prediction and fanout, for fanout 2 (left) and fanout 4
(right)

Fair Superb
fanout 2 fanout 4 fanout 2 fanout 4

Integr Hardware Integr Hardware Integr Hardware Integr Hardware
egrep 4.7 4.4 4.9 4.7 6.5 10.4 7.8 10.8
sed 5.0 5.1 5.0 5.2 10.3 10.9 10.3 11.7
yacc 4.7 4.7 4.8 4.9 7.7 9.7 8.6 9.9
eco 4.2 4.2 4.2 4.2 6.9 8.2 7.4 8.5
grr 4.0 4.1 4.2 4.2 7.0 10.7 8.5 11.6
metronome 4.8 4.9 4.8 4.9 9.2 12.5 10.1 12.6
alvinn 3.3 3.3 3.3 3.3 5.5 5.5 5.5 5.6
compress 4.6 4.8 5.0 5.1 6.6 8.1 8.0 8.4
doduc 4.6 4.6 4.7 4.6 15.7 16.2 16.8 16.4
espresso 3.8 3.9 3.9 4.0 8.8 13.4 10.7 14.7
fpppp 3.5 3.5 3.5 3.5 47.6 49.3 48.8 49.4
gcc1 4.1 4.0 4.2 4.2 8.0 9.8 9.3 10.4
hydro2d 5.7 5.6 5.8 5.7 11.6 12.8 12.3 13.3
li 4.7 4.8 4.8 4.8 9.4 11.3 10.1 11.5
mdljsp2 3.3 3.3 3.3 3.3 10.1 10.2 10.8 10.7
ora 4.2 4.2 4.2 4.2 8.6 9.0 9.0 9.0
swm256 3.4 3.4 3.4 3.4 42.8 43.0 42.8 43.3
tomcatv 4.9 4.9 4.9 4.9 45.3 45.4 45.3 45.4
har. mean 4.2 4.2 4.3 4.3 9.5 11.5 10.5 11.9

Figure 27: Parallelism under Fair and Superb models with fanout 2
or 4, using either profile-guided integrated fanout and prediction or
the unintegrated hardware technique

28

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
espresso
hydro2d
met
mdljsp2
egrep
yacc
ora
li
grr
gcc1
sed
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none 1-ring 2-ring 4-ring 8-ring 16-ring inf-ring 701 707702 703 704 705 706
1

64

10

tomcatv
fpppp
egrep
doduc
swm256
espresso
mdljsp2
hydro2d
grr
compress
yacc
met
sed
gcc1
eco
li
ora
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none 1-ring 2-ring 4-ring 8-ring 16-ring inf-ring

Figure 28: Parallelism for varying sizes of return-prediction ring
with no other jump prediction, under the Great model (left) and the
Perfect model (right)

3.8 Effects of jump prediction

Subroutine returns are easy to predict well, using the return-ring technique discussed in
Section 2.5. Figure 28 shows the effect on the parallelism of different sizes of return ring and no
other jump prediction. The leftmost point is a return ring of no entries, which means no jump
prediction at all. A small return-prediction ring improves some programs a lot, even under the
Great model. A large return ring, however, is not much better than a small one.

We can also predict indirect jumps that are not returns by cacheing their previous destinations
and predicting that they will go there next time. Figure 29 shows the effect of predicting returns
with a 2K-element return ring and all other indirect jumps with such a table. The mean behavior
is quite flat as the table size increases, but a handful of programs do benefit noticeably even from
a very small table.

29

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
hydro2d
espresso
met
sed
li
mdljsp2
egrep
yacc
ora
grr
gcc1
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none 2-tab 4-tab 8-tab 16-tab 32-tab 64-tab 701 707702 703 704 705 706
1

64

10

fpppp
tomcatv
doduc
egrep
swm256
espresso
hydro2d
mdljsp2
grr
compress
sed
met
yacc
gcc1
li
eco
ora
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none 2-tab 4-tab 8-tab 16-tab 32-tab 64-tab

Figure 29: Parallelism for jump prediction by a huge return ring
and a destination-cache table of various sizes, under the Great model
(left) and the Perfect model (right)

3.9 Effects of a penalty for misprediction

Even when branch and jump prediction have little effect on the parallelism, it may still be
worthwhile to include them. In a pipelined machine, a branch or jump predicted incorrectly (or
not at all) results in a bubble in the pipeline. This bubble is a series of one or more cycles in which
no execution can occur, during which the correct instructions are fetched, decoded, and started
down the execution pipeline. The size of the bubble is a function of the pipeline granularity,
and applies whether the prediction is done by hardware or by software. This penalty can have a
serious effect on performance. Figure 30 shows the degradation of parallelism under the Poor and
Good models, assuming that each mispredicted branch or jump addsN cycles with no instructions
in them. The Poor model deteriorates quickly because it has limited branch prediction and no
jump prediction. The Good model is less affected because its prediction is better. Under the Poor
model, the negative effect of misprediction can be greater than the positive effects of multiple-
issue, resulting in a parallelism under 1.0. Without the multiple issue, of course, the behavior
would be even worse.

The most parallel numeric programs stay relatively horizontal over the entire range. As
shown in Figure 31, this is because they make fewer branches and jumps, and those they make are
comparatively predictable. Increasing the penalty degrades these programs less than the others
because they make relatively few jumps; in tomcatv, fewer than one instruction in 30000 is an
indirect jump. For most programs, however, a high misprediction penalty can result in “speedups”
that are negligible, even when the non-bubble cycles are highly parallel.

30

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 711702 703 704 705 706 707 708 709 710
1

64

pa
ra

lle
lis

m 10

2

3

4
5
6
7
8

20

30

40
50

 0 1 2 3 4 5 6 7 8 9 10

tomcatv
fpppp
swm256
doduc
hydro2d
mdljsp2
alvinn
ora
yacc
egrep
sed
compress
espresso
met
grr
eco
gcc1
li

701 711702 703 704 705 706 707 708 709 710
1

64

10

tomcatv

swm256
fpppp

doduc
ora
met
mdljsp2
hydro2d
sed
alvinn
yacc
espresso
li
eco
grr
egrep
gcc1
compress

2

3

4
5
6
7
8

20

30

40
50

 0 1 2 3 4 5 6 7 8 9 10

Figure 30: Parallelism as a function of misprediction penalty for the
Poor model (left) and the Good model (right)

branches jumps
egrep 19.3% 0.1%
yacc 23.2% 0.5%
sed 20.6% 1.3%
eco 15.8% 2.2%
grr 10.9% 1.5%
met 12.3% 2.1%
alvinn 8.6% 0.2%
compress 14.9% 0.3%
doduc 6.3% 0.9%
espresso 15.6% 0.5%
fpppp 0.7% 0.1%
gcc1 15.0% 1.6%
hydro2d 9.8% 0.7%
li 15.7% 3.7%
mdljsp2 9.4% 0.03%
ora 7.0% 0.7%
swm256 2.2% 0.1%
tomcatv 1.8% 0.003%

Figure 31: Dynamic ratios of conditional branches and indirect
jumps to all instructions

31

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 704702 703
1

64

pa
ra

lle
lis

m 10

tomcatv
fpppp
swm256
hydro2d
doduc
met
mdljsp2
li
sed
ora
yacc
espresso
grr
eco
gcc1
egrep
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none insp comp perf 701 704702 703
1

64

10

fpppp
tomcatv
swm256

doduc
espresso
hydro2d
met
sed
grr
li
egrep
mdljsp2
gcc1
yacc
ora
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none insp comp perf

Figure 32: Parallelism for different levels of alias analysis, under the
Good model (left) and the Superb model (right)

3.10 Effects of alias analysis

Figure 32 shows that “alias analysis by inspection” is better than none, though it rarely increased
parallelism by more than a quarter. “Alias analysis by compiler” was (by definition) identical
to perfect alias analysis on programs that do not use the heap. On programs that do use the
heap, it improved the parallelism by 75% or so (by 90% under the Superb model) over alias
analysis by inspection. Perfect analysis improved these programs by another 15 to 20 percent
over alias analysis by compiler, suggesting that there would be a payoff from further results on
heap disambiguation.

32

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 706702 703 704 705
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

mdljsp2
doduc
hydro2d
espresso
met
sed
li
yacc
ora
grr
gcc1
egrep
eco
alvinn
compress

2

3

4
5
6
7
8

20

30

40
50

 none 32 64 128 256 perfect 701 706702 703 704 705
1

64

pa
ra

lle
lis

m 10

fpppp
tomcatv
swm256

doduc
mdljsp2
hydro2d
espresso
met
sed
li
grr
egrep
gcc1
yacc
ora
eco
compress
alvinn

2

3

4
5
6
7
8

20

30

40
50

 none 32 64 128 256 perfect

Figure 33: Parallelism for different numbers of dynamically-
renamed registers, under the Good model (left) and the Superb model
(right)

3.11 Effects of register renaming

Figure 33 shows the effect of register renaming on parallelism. Dropping from infinitely many
registers to 128 CPU and 128 FPU had little effect on the parallelism of the non-numerical
programs, though some of the numerical programs suffered noticeably. Even 64 of each did not
do too badly.

The situation with 32 of each, the actual number on the DECstation 5000 to which the code
was targeted, is interesting. Adding renaming did not improve the parallelism much, and in fact
degraded it in a few cases. With so few real registers, hardware dynamic renaming offers little
over a reasonable static allocator.

33

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 707702 703 704 705 706
1

64

pa
ra

lle
lis

m 10

tomcatv
swm256
doduc
fpppp
egrep
hydro2d
espresso
gcc1
mdljsp2
grr
compress
sed
met
yacc
eco
li

alvinn
ora

2

3

4
5
6
7
8

20

30

40
50

 Stupid Poor Fair Good Great Superb Perfect 701 707702 703 704 705 706
1

64

10

tomcatv
swm256

doduc
hydro2d
fpppp
egrep
espresso
gcc1
mdljsp2
met
grr
yacc
compress
sed
li
eco

alvinn

ora

2

3

4
5
6
7
8

20

30

40
50

 Stupid Poor Fair Good Great Superb Perfect

Figure 34: Parallelism under the seven standard models with latency
model B (left) and latency model D (right)

3.12 Effects of latency

Figure 34 shows the parallelism under our seven models for two of our latency models, B and D.
As discussed in Section 2.7, increasing the latency of some operations could act either to increase
parallelism or to decrease it. In fact there is surprisingly little difference between these graphs, or
between either and Figure 12, which is the default (unit) latency model A. Figure 35 looks at this
picture from another direction, considering the effect of changing the latency model but keeping
the rest of the model constant. The bulk of the programs are insensitive to the latency model, but
a few have either increased or decreased parallelism with greater latencies.

Doduc and fpppp are interesting. As latencies increase, the parallelism oscillates, first de-
creasing, then increasing, then decreasing again. This behavior probably reflects the limited
nature of our assortment of latency models: they do not represent points on a single spectrum but
a small sample of a vast multi-dimensional space, and the path they represent through that space
jogs around a bit.

4 Conclusions

Superscalar processing has been acclaimed as “vector processing for scalar programs,” and
there appears to be some truth in the claim. Using nontrivial but currently known techniques,
we consistently got parallelism between 4 and 10 for most of the programs in our test suite.
Vectorizable or nearly vectorizable programs went much higher.

Speculative execution driven by good branch prediction is critical to the exploitation of more

34

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

701 705702 703 704
1

64

pa
ra

lle
lis

m 10

tomcatv
swm256
fpppp
hydro2d
sed
met
yacc
li
espresso
doduc
mdljsp2
egrep
grr
gcc1
eco
compress
alvinn
ora

2

3

4
5
6
7
8

20

30

40
50

 A B C D E 701 705702 703 704
1

64

10

swm256
tomcatv

fpppp

hydro2d
mdljsp2
espresso
doduc
sed
met
li
egrep
yacc
grr
gcc1
compress
eco
alvinn
ora

2

3

4
5
6
7
8

20

30

40
50

 A B C D E

Figure 35: Parallelism under the Good model (left) and the Superb
model (right), under the five different latency models

than modest amounts of instruction-level parallelism. If we start with the Perfect model and
remove branch prediction, the median parallelism plummets from 30.6 to 2.2, while removing
alias analysis, register renaming, or jump prediction results in more acceptable median parallelism
of 3.4, 4.8, or 21.3, respectively. Fortunately, good branch prediction is not hard to do. The mean
time between misses can be multiplied by 10 using only two-bit prediction with a modestly sized
table, and software can do about as well using profiling. We can obtain another factor of 5 in the
mean time between misses if we are willing to devote a large chip area to the predictor.

Complementing branch prediction with simultaneous speculative execution across different
branching code paths is the icing on the cake, raising our observed parallelism of 4–10 up to
7–13. In fact, parallel exploration to a depth of 8 branches can remove the need for prediction
altogether, though this is probably not an economical substitute in practice.

Though these numbers are grounds for optimism, we must remember that they are themselves
the result of rather optimistic assumptions. We have assumed unlimited resources, including as
many copies of each functional unit as we need and a perfect memory system with no cache
misses. Duplicate functional units take up chip real estate that might be better spent on more
on-chip cache, especially as processors get faster and the memory bottleneck gets worse. We
have for the most part assumed that there is no penalty, in pipeline refill cycles or in software-
controlled undo and catch-up instructions, for a missed prediction. These wasted cycles lower
the overall parallelism even if the unwasted cycles are as full as ever, reducing the advantage of
an instruction-parallel architecture. We have assumed that all machines modeled have the same
cycle time, even though adding superscalar capability will surely not decrease the cycle time
and may in fact increase it. And we have assumed that all machines are built with comparable

35

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

technology, even though a simpler machine may have a shorter time-to-market and hence the
advantage of newer, faster technology. Any one of these considerations could reduce the expected
payoff of an instruction-parallel machine by a third; together they could eliminate it completely.

Appendix 1. Implementation details

The parallelism simulator used for this paper is conceptually simple. A sequence of pending cycles
contains sets of instructions that can be issued together. We obtain a trace of the instructions
executed by the benchmark, and we place each successive instruction into the earliest cycle that
is consistent with the model we are using. When the first cycle is full, or when the total number of
pending instructions exceeds the window size, the first cycle is retired. When a new instruction
cannot be placed even in the latest pending cycle, we must create a new (later) cycle.

A simple algorithm for this would be to take each new instruction and consider it against each
instruction already in each pending cycle, starting with the latest cycle and moving backward in
time. When we find a dependency between them, we place the instruction in the cycle after that.
If the proper cycle is already full, we place the instruction in the first non-full cycle after that.

Since we are typically considering models with windows of thousands of instructions, doing
this linear search for every instruction in the trace could be quite expensive. The solution is
to maintain a sort of reverse index. We number each new cycle consecutively and maintain a
data structure for all the individual dependencies an instruction might have with a previously-
scheduled instruction. This data structure tells us the cycle number of the last instruction that
can cause each kind of dependency. To schedule an instruction, we consider each dependency it
might have, and we look up the cycle number of the barrier imposed by that dependency. The
latest of all such barriers tells us where to put the instruction. Then we update the data structure
as needed, to reflect the effects this instruction might have on later ones.

Some simple examples should make the idea clear. An assignment to a register cannot be
exchanged with a later use of that register, so we maintain a timestamp for each register. An
instruction that assigns to a register updates that register’s timestamp; an instruction that uses a
register knows that no instruction scheduled later than the timestamp can conflict because of that
register. Similarly, if our model specifies no alias analysis, then we maintain one timestamp for
all of memory, updated by any store instruction; any new load or store must be scheduled after
that timestamp. On the other hand, if our model specifies perfect alias analysis, two instructions
conflict only if they refer to the same location in memory, so we maintain a separate timestamp
for each word in memory. Other examples are more complicated.

Each of the descriptions that follow has three parts: the data structure used, the code to be
performed to schedule the instruction, and the code to be performed to update the data structure.

Three final points are worth making before we plunge into the details.
First, the parallelism simulator is not responsible for actually orchestrating an execution. It

is simply consuming a trace and can therefore make use of information available much later than
a real system could. For example, it can do perfect alias analysis simply by determining which
memory location is accessed, and scheduling the instruction into a pending cycle as if we had
known that all along.

36

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

a mod b The number in the range [0..b-1] obtained
by subtracting a multiple of b from a

a INDEX b (a >> 2) mod b
i.e. the byte address a used as an index to a table of size b.

UPDOWN a PER b if (b and a<3) then a := a + 1
elseif (not b and a>0) then a := a - 1

UPDOWN a PER b1, b2 if (b1 and not b2 and a<3) then a := a + 1
elseif (not b1 and b2 and a>0) then a := a - 1

SHIFTIN a BIT b MOD n s := ((s<<1) + (if b then 1 else 0)) mod n

AFTER t Schedule this instruction after cycle t.
Applying all such constraints tells us the earliest possible time.

BUMP a TO b

if (a<b) then a := b.
This is used to maintain a timestamp as the latest occurrence
of some event; a is the latest so far, and b is a new occurrence,
possibly later than a.

Figure 36: Abbreviations used in implementation descriptions

Second, the algorithm used by the simulator is temporally backwards. A real multiple-issue
machine would be in a particular cycle looking ahead at possible future instructions to decide
what to execute now. The simulator, on the other hand, keeps a collection of cycles and pushes
each instruction (in the order from the single-issue trace) as far back in time as it legally can.
This backwardness can make the implementation of some configurations unintuitive, particularly
those with fanout or with imperfect alias analysis.

Third, the R3000 architecture requires no-op instructions to be inserted wherever a load
delay or branch delay cannot be filled with something more useful. This often means that 10%
of the instructions executed are no-ops. These no-ops would artificially inflate the program
parallelism found, so we do not schedule no-ops in the pending cycles, and we do not count them
as instructions executed.

We now consider the various options in turn. In describing the implementations of the different
options, the abbreviations given in Figure 36 will be helpful.

37

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:

jumpbarrier cycle of last jump machine mispredicted
ring[0..nring-1] return ring
iring wraparound index to ring
jpredict[0..njpredict-1] last-destination table
jprofile[a] most frequent destination of jump at address a

To schedule:

AFTER jumpbarrier

To bookkeep, after scheduling the instruction in cycle t:

if instruction is call then
if CALLRING then

iring := (iring + 1) mod nring
ring[iring] := returnAddress

end
end
if instruction is indirect jump then

addr := "address of jump"
destination := "address jumped to, according to trace"
if PERFECT then

isbadjump := false
else if instruction is return and CALLRING then

if ring[iring] = destination then
iring := (iring - 1) mod nring

else
isbadjump := true

end
else if JTABLE then

i := addr INDEX njpredict
isbadjump := (jpredict[i] != destination)
jpredict[i] := destination

else if JPROFILE then
isbadjump := (jprofile[addr] != destination)

else
isbadjump := true

end
end
if isbadjump then

BUMP jumpbarrier TO t
end

Figure 37: Jump prediction

Jump prediction

The simulator has two ways of predicting indirect jumps in hardware. One is the return ring, and
the other is the last-destination table. It also supports software jump prediction from a profile. In
any case, a successfully predicted jump is the same as a direct jump: instructions from after the
jump in the trace can move freely as if the jump had been absent. A mispredicted jump may move
before earlier instructions, but all later instructions must be scheduled after the mispredicted jump.
Since the trace tells us where each indirect jump went, the simulator simply does the prediction
by whatever algorithm the model specifies and then checks to see if it was right.

38

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

A mispredicted jump affects all subsequent instructions, so it suffices to use a single timestamp
jumpbarrier.

The last-destination table is a table jpredict[0..njpredict-1] containing code ad-
dresses, where the model specifies the table size. If the next instruction in the trace is an
indirect jump, we look up the table entry whose index is the word address of the jump, modulo
njpredict. We predict that the jump will be to the code address in that table entry. After the
jump, we replace the table entry by the actual destination.

The return ring is a circular table ring[0..nring-1] containing code addresses, where
the model specifies the ring size. We index the ring with a wraparound counteriring in the range
[0..nring-1]: incrementing nring-1 gives zero, and decrementing 0 gives nring-1. If
the next instruction in the trace is a return, we predict that its destination is ring[iring] and
then we decrement iring. If the next instruction in the trace is a call, we increment iring and
store the return address for the call into ring[iring].

Our instruction set does not have an explicit return instruction. An indirect jump via r31 is
certainly a return (at least with the compilers and libraries we used), but a return via some other
register is allowed. We identify a return via some register other than r31 by the fact that the
return ring correctly predicts it. (This is not realistic, of course, but use of the return ring assumes
that returns can be identified, either through compiler analysis or through use of a specific return
instruction; we don’t want the model to be handicapped by a detail of the R3000.)

A jump profile is a table obtained from an identical previous run, with an entry for each
indirect jump in the program, telling which address was the most frequent destination of that
jump. We predict a jump by looking up its entry in this table, and we are successful if the actual
destination is the same.

This leaves the two trivial cases of perfect jump prediction and no jump prediction. In either
case we ignore what the trace says and simply assume success or failure.

Branch prediction and fanout

Branch prediction is analogous to jump prediction. A correctly predicted conditional branch is
just like an unconditional branch: instructions from after the branch can move freely before the
branch. As with jumps, no later instruction may be moved before an incorrectly predicted branch.
The possibility of fanout, however, affects what we consider an incorrectly predicted branch.

The simple counter-based predictor uses a tablectrtab[0..nctrtab-1] containing two-
bit counter in the range [0..3], where the model specifies the table size. These two-bit counters
are saturating: incrementing 3 gives 3 and decrementing 0 gives 0. If the next instruction in
the trace is a conditional branch, we look up the counter whose index is the word address of the
branch, modulo nctrtab. If the counter is at least 2, we predict that the branch will be taken,
otherwise that it will not. After the branch, we increment the counter if the branch really was
taken and decrement it if it was not, subject to saturation in either case. The other two hardware
predictors are combined techniques, but they work similarly.

A branch profile is a table obtained from an identical previous run, with an entry for each
conditional branch in the program, telling the fraction of the times the branch was executed in
which it was taken. If this fraction is more than half, we predict that the branch is taken; otherwise

39

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:

branchbarrier cycle of last branch machine mispredicted
ctrtab[0..nctrtab-1] 2-bit counters for counter predictor
gbltab[0..ngbltab-1] 2-bit counters for gshare predictor
loctab[0..nloctab-1] 2-bit counters for local predictor
select[0..nselect-1] 2-bit counters for choosing in combined predictor
globalhist (log2 ngbltab)-bit history shift register
localhist[0..nlocalhist-1] (log2 nloctab)-bit history shift registers
bprofile[a] frequency that branch at address a is taken
bqueue[f+1] queue of cycles of f+1 previous branches

To schedule:

AFTER branchbarrier

To bookkeep, after scheduling the instruction in cycle t:

if instruction is conditional branch then
addr := "address of branch"
branchto := "address branch would go to if taken"
taken := "trace says branch is taken"
if not BPREDICT then

isbadbranch := true
else if BTAKEN then

isbadbranch := not taken;
else if BSIGN then

isbadbranch := (taken = (branchto > addr))
else if BTABLE then

if BTECHNIQUE = counters then
i := addr INDEX nctrtab
pred = (ctrtab[i] >= 1)
isbadbranch := (pred != taken)
UPDOWN ctrtab[i] PER taken

elsif BTECHNIQUE = counters/gshare then
i := addr INDEX nctrtab
pred1 := (ctrtab[i] >= 2)
UPDOWN brctrˆ[i] PER taken
i := globalhist xor (addr INDEX gtablesize)
pred2 := (gbltab[i] >= 2)
UPDOWN gbltab[i] PER taken
SHIFTIN globalhist BIT taken MOD ngbltab
i := addr INDEX nselect
pred := (if select[i] >= 2 then pred1 else pred2)
isbadbranch := (pred != taken)
UPDOWN select[i] PER (taken=pred1), (taken=pred2)

elsif BTECHNIQUE = local/gshare then
histi := addr INDEX nlocalhist
i := localhist[histi]
pred1 := (loctab[i] >= 2)
UPDOWN loctab[i] PER taken
SHIFTIN localhist[histi] BIT taken MOD nloctab
i := globalhist xor (addr INDEX gtablesize)
pred2 := (gbltab[i] >= 2)
UPDOWN gbltab[i] PER taken
SHIFTIN globalhist BIT taken MOD ngbltab
i := addr INDEX nselect
pred := (if select[i] >= 2 then pred1 else pred2)
isbadbranch := (pred != taken)
UPDOWN select[i] PER (taken=pred1), (taken=pred2)

Figure 38: Branch prediction

40

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

else if BPROFILE then
isbadbranch := (taken = (bprofile[addr] < 0.5))

else
isbadbranch := false

end
if BPROFILE and PROFILEINTEGRATION then

if bprofile[addr]<threshold and 1.0-bprofile[addr]<threshold then
remove head of bqueue, append t to bqueue
if isbadbranch then

BUMP branchbarrier TO head of bqueue
end

elsif isbadbranch then
fill all elements of bqueue with t
BUMP branchbarrier TO t

end
else

remove head of bqueue, append t to bqueue
if isbadbranch then

BUMP branchbarrier TO head of bqueue
end

end
end

Figure 38 continued

we predict that it is not taken.
If the model specifies “signed branch prediction” we see if the address of the branch is less

than the address of the (possible) destination. If so, this is a forward branch and we predict that
it will not be taken; otherwise it is a backward branch and we predict that it will be taken.

If the model specifies “taken branch prediction” we always predict that the branch will be
taken. If it is, we are successful.

Perfect branch prediction and no branch prediction are trivial: we simply assume that we are
always successful or always unsuccessful.

If the model does not include fanout, we deal with success or failure just as we did with
jumps. A successfully predicted branch allows instructions to be moved back in time unhindered;
a mispredicted branch acts as a barrier preventing later instructions from being moved before it.

If the model includes fanout of degreef, the situation is a little more complicated. We assume
that in each cycle the hypothetical multiple-issue machine looks ahead on both possible paths
past the first f conditional branches it encounters, and after that point looks on only one path
using whatever form of branch prediction is specified. Thus a given branch may sometimes be a
fanout branch and sometimes be a predicted branch, depending on how far ahead the machine is
looking when it encounters the branch. From the simulator’s temporally backward point of view,
this means we must tentatively predict every branch. We can move an instruction backward over
any number of successfully predicted branches, followed by f more branches whether predicted
successfully or not. In other words, an unsuccessfully predicted branch means the barrier is
situated at the cycle of the branch f branches before this one. (Notice that if f=0, that branch is
this branch, and we reduce to the previous case.)

To do this, we maintain a queue bqueue[0..f] containing the timestamps of the previous

41

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

f+1 branches. If the next instruction in the trace is a branch, we remove the first element of
bqueue and append the timestamp of the new branch. If the branch prediction is successful, we
do nothing else. If it is unsuccessful, we impose the barrier at the cycle whose timestamp is in
the first element of bqueue.

Profile-guided integration of prediction and fanout works a little differently. If the next
instruction is a conditional branch, we look it up in the profile to find out its probability of being
taken. If its probability of being taken (or not taken) is greater than the model’s threshold, we call
it a “predictable” branch and predict that it will be taken (or not taken). Otherwise we call it an
“unpredictable” branch and use one level of fanout. (Note that this terminology is independent of
whether it is actually predicted correctly in a given instance.) From the simulator’s point of view,
this means we can move backward past any number of predictable branches that are successfully
predicted, interspersed with f unpredictable branches. Fanout does us no good, however, on a
branch that we try unsuccessfully to predict.

Thus we again maintain the queue bqueue[0..f], but this time we advance it only on
unpredictable branches. As before, we tentatively predict every branch. If we mispredict an
unpredictable branch, we impose the barrier f unpredictable branches back, which the head of
bqueue tells us. If we mispredict a predictable branch, we must impose the barrier after the
current branch, because the profile would never have let us try fanout on that branch.

42

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Register renaming

The idea behind register renaming is to reduce or eliminate the false dependencies that arise from
re-using registers. Instructions appear to use the small set of registers implied by the size of the
register specifier, but these registers are really only register names, acting as placeholders for a
(probably) larger set of actual registers. This allows two instructions with an anti-dependency to
be executed in either order, if the actual registers used are different.

When an instruction assigns to a register name, we allocate an actual register to hold the
value.6 This actual register is then associated with the register name until some later instruction
assigns a new value to that register name. At this point we know that the actual register has in fact
been dead since its last use, and we can return it to the pool of available registers. We keep track
of the cycle in which an available register was last used so that we can allocate the least-recently
used of the available registers when we need a new one; this lets the instructions that use it be
pushed as far back in time as possible.

If the next instruction uses registers, we look the names up in the areg mapping to find out
which actual registers are used. If the instruction sets a register, use whenavail to allocate the
available actual register r that became available in the earliest cycle. Update the areg mapping
to reflect this allocation. This means that the register rr that was previously mapped to this
register name became free after its last use, so we record the time it actually became available; i.e.
the time it was last referenced, namely whensetorused[rr]. Conversely, we want to mark
the allocated register r as unavailable, so we change whenavail[r] to an infinitely late value.

If the instruction uses some actual registerr, then it must be issued in or afterwhenready[r].
If the instruction sets some actual registerr, then it must be issued in or afterwhensetorused[r]
and also in or after whenready[r], unless the model specifies perfect register renaming.

Once we have considered all the timing constraints on the instruction and have determined
that it must be issued in some cycle t, we update the dependency barriers. If the instruction sets
an actual register r, we record in whenready[r] the time when the result will actually be ac-
cessible — usually the next instruction, but later if the instruction has a non-unit latency.7 We also
update whensetorused[r]; for this we don’t care about the latency, because the setting time
will be relevant only if this register immediately becomes available because the value assigned is
never used. If the instruction uses an actual register r, we update whensetorused[r].

As stated so far, this algorithm is still fairly expensive, because the allocation of a new actual
register requires a search of the whenavail table to find the earliest available register. We
speed this up by maintaining a tournament tree on top of whenavail that lets us find the earliest
entry in constant time by looking in the root. Whenever we change some entry in whenavail,
we update the tournament tree path from this register to the root, which takes time logarithmic in
the number of actual registers.

This discussion has also ignored the fact that there are two disjoint register sets for CPU and

6The R3000 implicitly uses special registers called hi and lo in division operations; we treat these as if they had
been named explicitly in the instruction, and include them in the renaming system.

7We don’t use BUMP for this because under perfect register renaming previous values in this actual register are
irrelevant. This doesn’t hurt us under imperfect renaming because this register assignment won’t be able to move
before previous uses.

43

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:

areg[rn] Actual register associated with register name rn
whenready[r] First cycle in which the value in r can be used
whensetorused[r] Last cycle in which register r was set or used
whenavail[r] Cycle when register r became available.
root Pointer to root of tournament tree
leaf[r] Pointer to r’s leaf entry in tournament tree

Tournament tree records are:
reg register described by this record
avail time when the register became available
parent pointer to parent record
sib pointer to sibling record

Each record identifies the child with the smaller value of avail.

procedure Oldest()
return rootˆ.reg

procedure UpdateOldest (r)
p := leaf[r]
pˆ.avail := whenavail[r]
repeat

parent := pˆ.parent
sib := pˆ.sib
parentˆ.avail := mininimum of pˆ.avail and sibˆ.avail
parentˆ.reg := pˆ.reg or sibˆ.reg, whichever had min avail
p := parent

until p = root

To schedule:

if instruction sets or uses a register name rn then
use areg[rn] to determine the actual register currently mapped

end
if REGSRENUMBER then

if instruction sets a register name rn then
rr := areg[rn]
r := Oldest()
areg[rn] := r
whenavail[r] := +Infinity
UpdateOldest(r)
whenavail[rr] := whensetorused[rr]
UpdateOldest(rr)

end
end
if instruction uses actual register r then

AFTER whenready[r]-1
end
if not REGSPERFECT then

if instruction sets actual register r then
AFTER whensetorused[r]-1
AFTER whenready[r]-1

end
end

Figure 39: Register renaming

44

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

To bookkeep, after scheduling the instruction in cycle t:

if instruction sets actual register r then
whenready[r] := t + latencyOfOperation
BUMP whensetorused[r] TO t

end
if instruction uses actual register r then

BUMP whensetorused[r] TO t
end

Figure 39 continued

FPU registers. We therefore really need two instances of these data structures and algorithms,
one for each register set.

If the model specifies perfect renaming, we assign one actual register to each register name
and never change it. We maintain only the whenready table, exactly as described above; the
instruction using register r must be scheduled in or after whenready[r].

If the model specifies no renaming, we again assign one actual register to each register name
and never change it. We maintain whenready and whensetorused as with renaming, and
an instruction that uses register r must be scheduled in or after the later of whenready[r] and
whensetorused[r].

Alias analysis

If the model specifies no alias analysis, then a store cannot be exchanged with a load or a store.
Any store establishes a barrier to other stores and loads, and any load establishes a barrier to any
store, so we maintain only laststore and lastload.

If the model specifies perfect alias analysis, a load or store can be exchanged with a store only
if the two memory locations referenced are different. Thus there are barriers associated with each
distinct memory location; we set up a table lasststoreat[a] and lastloadat[a] with
an entry for each word in memory. (This is feasible because we know how much memory these
benchmarks need; we need not cover the entire address space with this table. We assume that the
granularity of memory is in 32-bit words, so byte-stores to different bytes of the same word are
deemed to conflict.) The program trace tells us which address a load or store actually references.

Alias analysis “by inspection” is more complicated. A store via a base register r can be
exchanged with a load or store via the same base register if the displacement is different and the
value of the base register hasn’t been changed in the meantime. They can be exchanged even
when the base registers are different, as long as one is manifestly a stack reference (i.e. the base
register is sp or fp) and the other manifestly a static data reference (i.e. the base register is gp).8

In terms of barriers, however, we must state this not as what pairs can be exchanged but as what
blocks an instruction from moving farther back in time.

We first consider instructions with different base registers. For each register, we use

8This analysis is most likely done by a compile-time scheduler. If register renaming is in effect, we therefore use
the register name in the instruction rather than the actual register from the renaming pool for this analysis.

45

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:

laststore Cycle of last store
laststoreat[a] Cycle of last store to word at address a
laststorevia[r] Cycle of the last store via r
laststorebase Base register in last store via r

other than gp, fp, sp
laststorebase2 Base register in last store via r

other than gp, fp, sp, laststorebase
oldstore[r] Cycle of last store via r that was

followed by a change to r
lastload Cycle of last load
lastloadat[a] Cycle of last load from word at address a
lastloadvia[r] Cycle of the last load via r
lastloadbase Base register in last load via r

other than gp, fp, sp
lastloadbase2 Base register in last load via r

other than gp, fp, sp, lastloadbase
oldload[r] Cycle of last load via r that was

followed by a change to r

procedure AliasConflict (R, old, lastvia, lastbase, lastbase2)
AFTER old[R]
if R = fp then

AFTER lastvia[sp], lastvia[lastbase]
else if R = sp then

AFTER lastvia[fp], lastvia[lastbase]
else if R = gp then

AFTER lastvia[lastbase]
else if R = lastbase then

AFTER lastvia[sp], lastvia[fp],
lastvia[gp], lastvia[lastbase2]

else
AFTER lastvia[sp], lastvia[fp],

lastvia[gp], lastvia[lastbase]
end

procedure UpdateLastbase (R, t, lastvia, lastbase, lastbase2)
if R is not fp, sp, or gp then

if t > lastvia[lastbase] then
if R <> lastbase then

lastbase2 := lastbase
lastbase := R

end
else if t > lastvia[lastbase2] then

if R <> lastbase2 then
lastbase2 := R

end
end

end

To schedule:

if ALIASNONE then
if loads or stores memory then

AFTER laststore
end
if stores memory then

AFTER lastload
end

Figure 40: Alias analysis

46

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

else if ALIASPERFECT then
if loads or stores memory at location A then

AFTER laststoreat[A]
end
if stores memory at location A then

AFTER lastloadat[A]
end

else if ALIASINSPECT then
if loads or stores memory location A via base register R then

AFTER laststoret[A]
AliasConflict (R, oldstore, laststorevia, laststorebase, laststorebase2)

end
if stores memory location A via base register R then

AFTER lastloadat[A]
AliasConflict (R, oldload, lastloadvia, lastloadbase, lastloadbase2)

end
else if ALIASCOMP then

if loads or stores memory location A via base register R then
AFTER laststoreat[A]
if A is in the heap then

AliasConflict (R, oldstore, laststorevia, laststorebase, laststorebase2)
end

end
if stores memory location A via base register R then

AFTER lastloadat[A]
if A is in the heap then

AliasConflict (R, oldload, lastloadvia, lastloadbase, lastloadbase2)
end

end
end

To bookkeep, after scheduling the instruction in cycle t:

if instruction sets register R and R is an allowable base register then
BUMP oldstore[r] TO laststorevia[r]
BUMP oldload[r] TO lastloadvia[r]

end
if instruction stores to memory location A via base register R then

BUMP laststore to t
if ALIASPERFECT or ALIASINSPECT or ALIASCOMP then

BUMP laststore[A] TO t
end
if ALIASINSPECT or (ALIASCOMP and A is in the heap) then

BUMP laststorevia[R] TO t
UpdateLastbase (R, t, laststorevia, laststorebase, laststorebase2)

end
end
if instruction loads from memory location A via base register R then

BUMP lastload to t
if ALIASPERFECT or ALIASINSPECT or ALIASCOMP then

BUMP lastload[A] TO t
end
if ALIASINSPECT or (ALIASCOMP and A is in the heap) then

BUMP lastloadvia[R] TO t
UpdateLastbase (R, t, lastloadvia, lastloadbase, lastloadbase2)

end
end

Figure 40 continued

47

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

laststorevia and lastloadvia to keep track of the most recent load and store for which it
was the base register. We also keep track of the two base registers other than gp, sp, and fp used
most recently in a load and in a store. This information lets us find the most recent conflicting
load or store by looking at no more than four members of laststorevia or lastloadvia.

Next there is the case of two instructions that use the same base register, with the value of that
base register changed in between. If the model specifies no register renaming, this point is moot,
because the instruction that assigns to the base register will be blocked by the earlier use, and the
later use will be blocked in turn by the register assignment. Register renaming, however, allows
the register assignment to move before the previous use, leaving nothing to prevent the two uses
from being exchanged even though they may well reference the same location. To handle this, we
maintain tables oldstore[r] and oldload[r]. These contain the cycle of the latest store
or load via r that has been made obsolete by a redefinition of r.

Finally, a load or store can also be blocked by a store via the same base register if the
value of the base register hasn’t changed and the displacements are the same. In this case the
two instructions are actually referencing the same memory location. So we account for this
possibility just as we did with perfect alias analysis, by maintaining lasststoreat[a] and
lastloadat[a] to tell us the last time location a was stored or loaded.

Alias analysis “by compiler” is similar, but we assume the compiler can perfectly disambiguate
two non-heap references or a heap reference and a non-heap reference, but must rely on inspection
to disambiguate two heap references. We recognize a heap reference by range-checking the actual
data address, and proceed just as with alias analysis by inspection except that we ignore non-heap
references beyond checking them for actual address conflicts.

48

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Latency models, cycle width, and window size

Latency models are easy; we already covered them as part of register renaming. When the
instruction scheduled into cycle t sets a register r, we modify whenready[r] to show when
the result can be used by another instruction. If the instruction has unit latency, this is t+1; if the
latency is k, this is t+k.

For most of our models we assume an upper limit of 64 instructions that can be issued in a
single cycle. There is no fundamental reason for the limit to have this value; it doesn’t even affect
the amount of memory the simulator needs for its data structures. The limit is there only as a
generous guess about the constraints of real machines, and doubling it to 128 is just a matter of
relaxing the test.

We keep track of the number of instructions currently in each pending cycle, as well as the
total in all pending cycles. When the total reaches the window size, we flush early cycles until
the total number is again below it. If the window is managed discretely rather than continuously,
we flush all pending cycles when the total reaches the window size.

In either case, we always flush cycles up to the cycle indexed by jumpbarrier and
branchbarrier, since no more instructions can be moved earlier. This has no effect on
continuously managed windows, but serves as a fresh start for discretely managed windows,
allowing more instructions to be considered before a full window forces a complete flush.

Removing the limit on cycle width is trivial: we must still keep track of how full each pending
cycle is, but we no longer have to look past a “full” cycle to schedule an instruction that would
normally go there. Given that, removing the limit on window size simply means that we stop
maintaining any description at all of the pending cycles. We determine when an instruction should
be scheduled based on the existing barriers, and we update the barriers based on the time decided
upon.

49

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Appendix 2. Details of program runs

This section specifies the data and command line options used for each program, along with any
changes made to the official versions the programs to reduce the runtime.

sed:
sed -e ’s/\/*/(*/g’ -e ’s/*\//*)/g’ -e ’s/fprintf(\(.*\));/DEBUG \1 ;/g’ sed0.c > test.out

egrep:
egrep ’ˆ...$|regparse|ˆ[a-z]|if .*{$’ regexp.c > test.out

eco:
eco -i tna.old tna.new -o tna.eco > test.out

yacc:
yacc -v grammar
grammar has 450 non-blank lines

metronome:
met dma.tuned -c 100k.cat pal.cat dc.cat misc.cat teradyne.cat > output

grr:
grr -i mc.unroute -l mc.log mc.pcb -o mc.route

hydro2d:
hydro2d < short.in > short.out

gcc1:
gcc1 cexp.i -quiet -O -o cexp.s > output

compress:
compress < ref.in > ref.out

espresso:
espresso -t opa > opa.out

ora:
ora < short.in > short.out

fpppp:
fpppp < small > small.out

li:
li dwwtiny.lsp > dwwtiny.out (dwwtiny.lsp is the 7-queens problem)

doduc:
doduc < small >small.out

swm256:
cat swm256.in | sed ’s/1200/30/’ | swm256 > swm256.out

tomcatv:
Change initial value of LMAX on line 22 from 100 to 15
tomcatv > output

alvinn:
Change definition of macro NUM_EPOCHS on line 23 from 200 to 10
alvinn > result.out

mdljsp2:
mv short.mdlj2.dat mdlj2.dat
mdljsp2 < input.file > short.out

50

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Appendix 3. Parallelism under many models

This appendix lists the results from running the test programs under more than 350 different
configurations, and then lists the configurations used in each of the figures in the main body of
the report. The configurations are keyed by the following abbreviations:

?+ perfect branch prediction, 100% correct
?cnn loc/gsh predictor
?cnn:mm fanout next mm branches, loc/gsh predictor thereafter
?bnn ctr/gsh predictor
?bnn:mm fanout next mm branches, ctr/gsh predictor thereafter
?ann ctr predictor
?P:mm(ff) integrated mm-way fanout and profile-prediction with threshold ff
?P predict all branches from profile
?Taken predict all branches taken
?Sign predict backward branches taken, forward branches not taken
?-:mm fanout next mm branches, no prediction thereafter
?- no branch prediction; all miss
j+ perfect indirect jump prediction, 100% correct
jnn+mm predict returns with nn-element ring, other jumps from mm-elt. last-dest table
jnn predict returns with nn-element ring, don’t predict other jumps
j- no jump prediction; all miss
r+ perfect register renaming; infinitely many registers
rnn register renaming with nn cpu and nn fpu registers
r- no register renaming; use registers as compiled
a+ perfect alias analysis; use actual addresses to distinguish conflicts
aComp alias analysis “by compiler”
aInsp alias analysis “by inspection”
a- no alias analysis; stores conflict with all memory references
i*2 allow cycles to issue 128 instructions, not 64
i+ allow unlimited cycle width
wnn continuous window of nn instructions, default 2K
dwnn discrete window of nn instructions
w+ unlimited window size and cycle width
Lmodel use specified latency model; default is A

The size of each of the three hardware branch predictors is specified by a single integer
parameter. A counter predictor with parameter n consists of a table of 2n 2-bit counters. A
counter/gshare predictor with parameter n consists of 2n 2-bit counters for the first predictor, one
(n + 1)-bit global history register and 2n+1 2-bit counters for the second predictor, and 2n 2-bit
counters for the selector. A local/gshare predictor with parameter n consists of 2n n-bit history
registers and 2n 2-bit counters for the first predictor, one n-bit global history register and 2n 2-bit
counters for the second predictor, and 2n 2-bit counters for the selector.

51

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

1

?
+

j
+

r
+

a
+

5
4
.
0

2
4
.
5

2
2
.
0

1
7
.
3

2
8
.
0

2
3
.
2

7
.
5

2
5
.
7

5
7
.
9

4
0
.
5

6
0
.
9

3
5
.
2

4
4
.
8

1
6
.
4

3
3
.
3

9
.
0

4
8
.
9

5
9
.
9

2
3
.
6

1
2

2

?
+

j
+

r
+

a
+

w
+

7
7
.
7

2
4
.
5

9
3
.
5

1
8
.
8

3
5
.
2

2
5
.
3

9
7
.
5

2
6
.
2

1
1
8
.
7

6
2
.
6

7
5
.
2

5
4
.
8

1
7
5
.
2

1
7
.
9

3
8
.
8

9
.
0

5
6
4
.
8

1
5
0
.
1

3
6
.
2

1
8
a

3

?
+

j
+

r
+

a
+

i
I
n
f

5
8
.
1

2
4
.
5

2
2
.
4

1
7
.
3

2
8
.
2

2
3
.
3

7
.
5

2
5
.
7

9
1
.
6

4
5
.
5

7
4
.
1

3
7
.
0

6
2
.
0

1
6
.
4

3
3
.
5

9
.
0

5
3
.
1

8
7
.
8

2
4
.
6

1
5
a

4

?
+

j
+

r
+

a
+

i
*
2

5
8
.
0

2
4
.
5

2
2
.
3

1
7
.
3

2
8
.
2

2
3
.
3

7
.
5

2
5
.
7

8
4
.
4

4
4
.
8

7
4
.
1

3
6
.
8

5
6
.
8

1
6
.
4

3
3
.
5

9
.
0

5
3
.
1

8
7
.
3

2
4
.
5

1
4
a

5

?
+

j
+

r
+

a
+

L
B

5
4
.
0

2
4
.
5

2
2
.
0

1
7
.
4

2
8
.
1

2
3
.
2

7
.
4

2
5
.
7

6
0
.
2

4
0
.
5

5
8
.
4

3
5
.
3

4
6
.
7

1
6
.
4

3
4
.
1

6
.
3

6
9
.
2

7
3
.
8

2
2
.
5

3
4
a

6

?
+

j
+

r
+

a
+

L
C

5
5
.
0

2
2
.
9

2
3
.
7

1
6
.
3

2
7
.
1

2
7
.
7

7
.
5

2
3
.
2

7
3
.
3

4
0
.
9

6
3
.
5

3
6
.
2

5
8
.
3

2
0
.
9

3
3
.
6

5
.
7

1
0
0
.
3

1
0
9
.
0

2
2
.
9

7

?
+

j
+

r
+

a
+

L
D

5
5
.
0

2
2
.
9

2
3
.
7

1
6
.
3

2
7
.
1

2
7
.
7

7
.
4

2
3
.
2

7
0
.
9

4
0
.
9

5
6
.
5

3
6
.
2

5
9
.
0

2
0
.
9

3
3
.
8

4
.
8

1
1
9
.
9

1
2
2
.
6

2
2
.
0

3
4
b

8

?
+

j
+

r
+

a
+

L
E

5
4
.
1

2
2
.
0

2
5
.
1

1
5
.
6

2
5
.
9

2
9
.
3

8
.
2

2
1
.
6

7
3
.
5

4
0
.
5

6
8
.
0

3
6
.
5

7
2
.
4

2
5
.
2

3
5
.
0

4
.
5

1
4
0
.
2

1
5
7
.
5

2
2
.
3

9

?
+

j
+

r
+

a
-

7
.
4

4
.
3

6
.
0

2
.
8

3
.
0

2
.
9

2
.
5

3
.
4

4
.
0

5
.
1

3
.
4

3
.
4

4
.
4

3
.
1

2
.
7

4
.
2

3
.
5

3
.
5

3
.
6

1
0

?
+

j
+

r
2
5
6

a
+

2
2
.
8

2
2
.
3

1
4
.
5

1
6
.
0

2
0
.
8

1
8
.
0

5
.
7

1
9
.
3

2
1
.
1

2
4
.
2

5
0
.
6

2
6
.
1

1
6
.
4

1
5
.
7

1
1
.
6

9
.
0

4
4
.
2

4
6
.
1

1
6
.
9

1
1

?
+

j
+

r
-

a
+

5
.
0

6
.
0

5
.
0

4
.
9

4
.
3

5
.
0

3
.
3

5
.
2

4
.
7

4
.
0

3
.
5

4
.
7

6
.
2

5
.
5

3
.
4

4
.
2

3
.
4

4
.
9

4
.
5

1
2

?
+

j
2
K
+
2
K

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
1
.
0

2
7
.
6

2
2
.
7

7
.
5

2
5
.
7

5
7
.
2

4
0
.
5

6
0
.
9

1
7
.
3

3
4
.
1

1
2
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

2
1
.
1

1
3

?
+

j
2
K
+
2
K

r
2
5
6

a
+

2
2
.
8

2
1
.
1

1
4
.
2

1
0
.
4

2
0
.
6

1
7
.
7

5
.
7

1
9
.
3

2
1
.
0

2
4
.
2

5
0
.
6

1
5
.
1

1
4
.
4

1
2
.
1

1
1
.
6

9
.
0

4
4
.
2

4
6
.
1

1
5
.
5

1
4

?
+

j
2
K
+
6
4

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
5

2
2
.
7

7
.
5

2
5
.
7

5
7
.
2

4
0
.
5

6
0
.
8

1
7
.
1

3
3
.
4

1
2
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

2
1
.
0

2
9
b

1
5

?
+

j
2
K
+
3
2

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
5

2
2
.
7

7
.
5

2
5
.
7

5
7
.
2

4
0
.
5

6
0
.
8

1
6
.
5

3
2
.
5

1
2
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

2
1
.
0

2
9
b

1
6

?
+

j
2
K
+
1
6

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
5

2
2
.
7

7
.
5

2
5
.
7

5
7
.
1

4
0
.
5

6
0
.
8

1
6
.
4

3
1
.
2

1
2
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

2
0
.
9

2
9
b

1
7

?
+

j
2
K
+
8

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
4

2
2
.
7

7
.
5

2
5
.
7

5
7
.
0

4
0
.
5

6
0
.
8

1
6
.
2

3
1
.
2

1
2
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

2
0
.
9

2
9
b

1
8

?
+

j
2
K
+
4

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
4

2
2
.
7

7
.
5

2
5
.
7

5
7
.
0

4
0
.
5

6
0
.
8

1
6
.
1

2
9
.
9

1
1
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

2
0
.
7

2
9
b

1
9

?
+

j
2
K
+
2

r
+

a
+

5
4
.
0

2
4
.
5

2
1
.
5

1
0
.
9

2
7
.
2

2
2
.
5

7
.
5

2
5
.
7

5
3
.
3

4
0
.
5

6
0
.
8

1
5
.
7

3
0
.
1

1
1
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

2
0
.
6

2
9
b

2
0

?
+

j
2
K

r
+

a
+

5
4
.
0

1
9
.
4

2
1
.
5

1
0
.
4

2
6
.
2

2
1
.
2

7
.
5

2
5
.
7

5
1
.
4

4
0
.
4

5
8
.
5

1
3
.
6

2
8
.
2

9
.
9

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
9
.
6

2
8
b

2
9
b

2
1

?
+

j
1
6

r
+

a
+

5
4
.
0

1
9
.
4

2
1
.
5

1
0
.
3

2
6
.
2

2
1
.
2

7
.
5

2
5
.
7

5
1
.
4

4
0
.
4

5
8
.
5

1
3
.
6

2
8
.
2

9
.
9

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
9
.
5

2
8
b

2
2

?
+

j
8

r
+

a
+

5
3
.
9

1
9
.
4

2
1
.
5

1
0
.
2

2
6
.
1

2
1
.
2

7
.
5

2
5
.
7

5
1
.
4

4
0
.
4

5
8
.
5

1
3
.
6

2
8
.
0

9
.
8

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
9
.
5

2
8
b

2
3

?
+

j
4

r
+

a
+

5
3
.
9

1
9
.
3

2
1
.
5

1
0
.
1

2
5
.
8

2
1
.
1

7
.
5

2
5
.
7

4
9
.
8

4
0
.
3

5
8
.
5

1
3
.
3

2
7
.
3

9
.
5

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
9
.
3

2
8
b

2
4

?
+

j
2

r
+

a
+

5
3
.
9

1
6
.
7

2
1
.
5

9
.
7

2
4
.
5

1
9
.
7

7
.
5

2
5
.
7

4
0
.
6

3
9
.
9

5
8
.
5

1
2
.
8

2
6
.
9

9
.
0

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
8
.
7

2
8
b

2
5

?
+

j
1

r
+

a
+

5
3
.
9

1
5
.
5

2
1
.
3

9
.
1

2
0
.
5

1
7
.
6

7
.
5

2
5
.
7

3
8
.
6

3
8
.
7

5
7
.
9

1
2
.
2

2
6
.
2

8
.
3

3
3
.
3

9
.
0

4
8
.
9

5
9
.
7

1
7
.
9

2
8
b

2
6

?
+

j
P

r
+

a
+

5
3
.
9

2
4
.
5

2
1
.
7

1
0
.
3

1
8
.
5

1
5
.
8

7
.
5

2
5
.
7

5
0
.
0

3
8
.
4

6
0
.
6

1
6
.
5

2
9
.
3

1
1
.
4

3
3
.
3

9
.
0

4
8
.
9

5
9
.
8

1
9
.
7

2
7

?
+

j
-

r
+

a
+

5
3
.
8

1
3
.
4

1
9
.
7

7
.
8

1
4
.
3

1
0
.
8

7
.
5

2
5
.
6

3
4
.
4

3
5
.
6

5
7
.
4

1
0
.
5

2
3
.
0

6
.
8

3
3
.
3

9
.
0

4
8
.
8

5
9
.
6

1
5
.
7

2
8
b

2
8

?
c
1
3
:
8

j
+

r
+

a
+

1
3
.
1

1
3
.
5

1
0
.
6

1
3
.
0

1
3
.
1

1
3
.
6

7
.
4

1
0
.
0

3
2
.
0

1
6
.
5

5
9
.
8

1
5
.
8

2
8
.
1

1
5
.
5

3
0
.
0

9
.
0

4
6
.
6

5
3
.
8

1
5
.
5

2
9

?
c
1
3
:
8

j
2
K
+
2
K

r
2
5
6

a
+

1
2
.
2

1
2
.
5

1
0
.
3

8
.
9

1
2
.
9

1
3
.
4

5
.
6

1
0
.
0

1
7
.
5

1
5
.
7

4
9
.
8

1
1
.
3

1
3
.
5

1
1
.
8

1
1
.
4

9
.
0

4
3
.
5

4
5
.
6

1
2
.
6

2
4
b

3
0

?
c
1
3
:
6

j
+

r
+

a
+

1
2
.
2

1
2
.
8

1
0
.
4

1
2
.
5

1
2
.
5

1
3
.
1

7
.
4

9
.
6

3
0
.
7

1
6
.
0

5
9
.
9

1
4
.
9

2
7
.
0

1
5
.
2

2
9
.
5

9
.
0

4
6
.
5

5
4
.
0

1
5
.
0

3
1

?
c
1
3
:
6

j
2
K
+
2
K

r
2
5
6

a
+

1
1
.
5

1
1
.
9

1
0
.
2

8
.
6

1
2
.
3

1
2
.
9

5
.
6

9
.
6

1
7
.
0

1
5
.
3

4
9
.
6

1
0
.
8

1
3
.
3

1
1
.
7

1
1
.
1

9
.
0

4
3
.
4

4
5
.
7

1
2
.
2

2
4
b

3
2

?
c
1
3
:
4

j
+

r
+

a
+

1
1
.
3

1
2
.
6

1
0
.
1

1
2
.
2

1
1
.
8

1
2
.
8

7
.
3

8
.
4

2
8
.
8

1
5
.
3

5
9
.
4

1
4
.
1

2
6
.
3

1
5
.
0

2
8
.
4

9
.
0

4
6
.
4

5
3
.
6

1
4
.
4

3
3

?
c
1
3
:
4

j
+

r
2
5
6

a
+

1
0
.
8

1
2
.
1

1
0
.
1

1
2
.
1

1
1
.
7

1
2
.
8

5
.
6

8
.
4

1
6
.
5

1
4
.
7

4
9
.
4

1
3
.
7

1
4
.
9

1
4
.
6

1
0
.
7

9
.
0

4
3
.
3

4
5
.
5

1
2
.
6

3
4

?
c
1
3
:
4

j
2
K
+
2
K

r
+

a
+

1
1
.
3

1
2
.
1

9
.
9

8
.
6

1
1
.
7

1
2
.
7

7
.
3

8
.
4

2
8
.
6

1
5
.
3

5
9
.
4

1
0
.
7

2
2
.
2

1
1
.
8

2
8
.
4

9
.
0

4
6
.
4

5
3
.
5

1
3
.
5

3
3
b

3
5

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
4

1
4
.
7

4
9
.
4

1
0
.
4

1
3
.
3

1
1
.
5

1
0
.
7

9
.
0

4
3
.
3

4
5
.
4

1
1
.
9

1
2

1
6
a

2
4
b

2
7
.
.
.

3
6

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
+

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
6

1
4
.
8

5
1
.
5

1
0
.
4

1
3
.
6

1
1
.
5

1
0
.
7

9
.
0

4
3
.
5

5
6
.
2

1
1
.
9

1
8
a

.
.
.
3
2
b
.
.
.

3
7

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
1
K

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
4

1
4
.
7

4
9
.
2

1
0
.
4

1
3
.
2

1
1
.
5

1
0
.
7

9
.
0

4
3
.
3

4
5
.
4

1
1
.
9

1
6
a

.
.
.
3
3
b

3
5
b

3
8

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
5
1
2

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
4

1
4
.
7

4
8
.
5

1
0
.
4

1
3
.
1

1
1
.
5

1
0
.
7

9
.
0

4
3
.
3

4
5
.
4

1
1
.
9

1
6
a

3
9

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
2
5
6

1
0
.
7

1
1
.
6

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
2

1
4
.
6

4
6
.
7

1
0
.
3

1
2
.
3

1
1
.
5

1
0
.
7

9
.
0

4
2
.
7

4
4
.
5

1
1
.
8

1
6
a

4
0

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
1
2
8

1
0
.
0

1
0
.
8

9
.
7

8
.
2

1
0
.
9

1
2
.
1

5
.
4

8
.
3

1
4
.
8

1
2
.
9

3
4
.
7

9
.
8

1
1
.
2

1
1
.
4

1
0
.
7

9
.
0

4
1
.
0

3
3
.
7

1
1
.
2

1
6
a

4
1

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
6
4

8
.
9

9
.
5

9
.
3

7
.
7

9
.
4

1
1
.
0

5
.
3

7
.
6

1
1
.
7

1
0
.
3

2
2
.
4

8
.
9

1
0
.
2

1
0
.
7

9
.
0

8
.
7

2
5
.
3

2
2
.
2

9
.
9

1
6
a

4
2

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
3
2

7
.
2

8
.
3

8
.
4

6
.
7

7
.
2

9
.
1

5
.
1

6
.
8

8
.
8

7
.
9

1
3
.
6

7
.
5

8
.
7

8
.
8

6
.
7

8
.
0

1
4
.
2

1
4
.
2

8
.
1

1
6
a

4
3

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
1
6

5
.
4

7
.
1

6
.
6

5
.
3

5
.
2

6
.
3

4
.
4

5
.
7

6
.
5

5
.
8

8
.
3

5
.
8

6
.
7

6
.
3

4
.
9

6
.
0

8
.
1

8
.
7

6
.
1

1
6
a

4
4

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
8

3
.
8

4
.
8

4
.
1

4
.
0

3
.
5

4
.
1

3
.
6

4
.
1

4
.
3

3
.
8

5
.
2

4
.
0

4
.
6

4
.
4

3
.
5

4
.
2

4
.
9

5
.
5

4
.
2

1
6
a

4
5

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

w
4

2
.
2

2
.
9

2
.
5

2
.
7

2
.
4

2
.
6

2
.
8

2
.
6

2
.
8

2
.
4

3
.
2

2
.
6

2
.
9

2
.
9

2
.
3

2
.
8

3
.
2

3
.
3

2
.
7

1
6
a

4
6

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
2
K

1
0
.
8

1
1
.
7

9
.
8

8
.
5

1
1
.
5

1
2
.
5

5
.
6

8
.
4

1
5
.
9

1
4
.
6

4
1
.
7

1
0
.
3

1
2
.
9

1
1
.
5

1
0
.
6

9
.
0

3
8
.
1

4
4
.
0

1
1
.
7

1
7
a

4
7

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
1
K

1
0
.
8

1
1
.
6

9
.
8

8
.
4

1
1
.
3

1
2
.
1

5
.
4

8
.
4

1
4
.
9

1
3
.
5

3
9
.
8

1
0
.
3

1
2
.
3

1
1
.
3

1
0
.
5

8
.
8

3
4
.
2

4
2
.
9

1
1
.
5

1
7
a

4
8

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
5
1
2

1
0
.
1

1
0
.
8

9
.
5

8
.
3

1
0
.
5

1
1
.
1

5
.
3

8
.
4

1
3
.
0

1
2
.
4

3
4
.
6

9
.
8

1
1
.
1

1
0
.
8

1
0
.
2

8
.
6

2
8
.
1

4
0
.
5

1
0
.
9

1
7
a

4
9

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
2
5
6

8
.
9

9
.
4

8
.
8

7
.
6

8
.
9

9
.
5

5
.
0

7
.
7

1
0
.
2

1
0
.
6

2
5
.
4

8
.
6

9
.
5

9
.
9

9
.
0

7
.
5

2
0
.
5

1
8
.
8

9
.
4

1
7
a

5
0

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
1
2
8

7
.
2

8
.
1

7
.
8

6
.
2

6
.
8

7
.
6

4
.
7

7
.
0

7
.
2

8
.
3

1
1
.
0

7
.
2

7
.
8

8
.
4

6
.
7

6
.
5

1
2
.
9

1
2
.
0

7
.
5

1
7
a

5
1

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
6
4

5
.
4

6
.
5

6
.
5

5
.
2

5
.
1

5
.
8

4
.
3

5
.
6

5
.
4

6
.
0

7
.
5

5
.
7

6
.
2

6
.
5

4
.
7

5
.
3

7
.
7

8
.
7

5
.
8

1
7
a

5
2

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
3
2

3
.
9

5
.
3

4
.
9

4
.
2

3
.
7

4
.
2

3
.
7

4
.
5

4
.
2

4
.
2

5
.
3

4
.
3

4
.
7

4
.
9

3
.
6

4
.
0

4
.
8

5
.
9

4
.
4

1
7
a

5
3

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
1
6

2
.
8

4
.
1

3
.
4

3
.
3

2
.
8

3
.
1

3
.
0

3
.
3

3
.
3

3
.
0

3
.
9

3
.
2

3
.
6

3
.
8

2
.
8

3
.
2

3
.
3

4
.
1

3
.
3

1
7
a

5
4

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
8

2
.
0

2
.
7

2
.
4

2
.
6

2
.
1

2
.
4

2
.
5

2
.
4

2
.
6

2
.
2

3
.
1

2
.
4

2
.
8

2
.
8

2
.
1

2
.
6

2
.
7

3
.
2

2
.
5

1
7
a

5
5

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

d
w
4

1
.
6

2
.
0

1
.
7

1
.
9

1
.
7

1
.
8

2
.
0

1
.
9

2
.
2

1
.
7

2
.
4

1
.
9

2
.
3

2
.
1

1
.
7

2
.
0

2
.
5

2
.
6

2
.
0

1
7
a

52

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

5
6

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

i
I
n
f

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
6

1
4
.
8

5
1
.
5

1
0
.
4

1
3
.
6

1
1
.
5

1
0
.
7

9
.
0

4
3
.
5

5
6
.
2

1
1
.
9

1
5
a

5
7

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

i
*
2

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
6

5
.
6

8
.
4

1
6
.
6

1
4
.
8

5
1
.
5

1
0
.
4

1
3
.
6

1
1
.
5

1
0
.
7

9
.
0

4
3
.
5

5
6
.
2

1
1
.
9

1
4
a

5
8

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

L
B

1
0
.
8

1
1
.
7

9
.
9

8
.
5

1
1
.
6

1
2
.
7

5
.
4

8
.
4

1
4
.
6

1
4
.
7

4
2
.
7

1
0
.
4

1
4
.
2

1
1
.
5

1
3
.
2

6
.
3

6
1
.
3

5
5
.
8

1
1
.
6

3
4
a

3
5
b

5
9

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

L
C

1
1
.
7

1
3
.
2

1
0
.
9

8
.
0

1
1
.
5

1
3
.
2

5
.
5

8
.
4

1
5
.
7

1
5
.
0

4
5
.
1

1
0
.
1

1
7
.
2

1
2
.
4

1
6
.
5

5
.
7

7
5
.
8

6
9
.
5

1
2
.
0

3
5
b

6
0

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

L
D

1
1
.
7

1
3
.
2

1
0
.
9

8
.
0

1
1
.
5

1
3
.
2

5
.
4

8
.
4

1
4
.
4

1
5
.
0

4
0
.
5

1
0
.
2

1
7
.
7

1
2
.
4

1
7
.
7

4
.
8

7
3
.
2

6
9
.
5

1
1
.
7

3
4
b

3
5
b

6
1

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
+

L
E

1
2
.
4

1
4
.
3

1
1
.
8

7
.
7

1
1
.
3

1
3
.
4

5
.
9

8
.
5

1
4
.
4

1
5
.
1

4
3
.
9

1
0
.
0

2
0
.
5

1
2
.
7

1
9
.
1

4
.
5

7
3
.
6

7
2
.
3

1
2
.
0

3
5
b

6
2

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
C
o
m
p

1
0
.
8

1
1
.
7

8
.
3

5
.
6

1
0
.
9

9
.
2

5
.
5

7
.
7

1
6
.
4

6
.
5

4
9
.
4

6
.
8

1
2
.
2

8
.
5

1
0
.
7

9
.
0

4
3
.
3

4
5
.
4

9
.
9

3
2
b

6
3

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
I
n
s
p

6
.
1

4
.
7

5
.
5

3
.
5

3
.
5

3
.
4

2
.
6

3
.
7

5
.
6

4
.
9

4
.
2

3
.
9

4
.
5

4
.
4

2
.
6

4
.
3

3
.
5

4
.
7

4
.
0

3
2
b

6
4

?
c
1
3
:
4

j
2
K
+
2
K

r
2
5
6

a
-

6
.
0

4
.
0

5
.
0

2
.
7

2
.
9

2
.
9

2
.
5

3
.
4

3
.
7

4
.
8

3
.
4

3
.
2

4
.
1

3
.
0

2
.
5

4
.
2

3
.
5

3
.
5

3
.
4

3
2
b

6
5

?
c
1
3
:
4

j
2
K
+
2
K

r
1
2
8

a
+

1
0
.
2

1
0
.
6

9
.
8

8
.
3

1
1
.
0

1
2
.
2

5
.
5

8
.
2

1
5
.
1

1
2
.
7

3
5
.
2

9
.
9

1
2
.
7

1
1
.
5

1
0
.
7

9
.
0

4
1
.
0

4
4
.
2

1
1
.
4

3
3
b

6
6

?
c
1
3
:
4

j
2
K
+
2
K

r
6
4

a
+

8
.
9

9
.
4

9
.
4

7
.
8

9
.
0

1
1
.
0

5
.
3

7
.
5

1
1
.
0

9
.
8

2
0
.
4

8
.
7

1
1
.
4

1
0
.
9

1
0
.
3

8
.
8

2
1
.
0

2
7
.
7

1
0
.
0

3
3
b

6
7

?
c
1
3
:
4

j
2
K
+
2
K

r
3
2

a
+

5
.
5

7
.
1

5
.
7

5
.
4

4
.
4

6
.
1

4
.
6

6
.
3

5
.
3

4
.
7

5
.
4

4
.
9

6
.
0

5
.
8

4
.
1

5
.
9

6
.
4

6
.
6

5
.
5

3
3
b

6
8

?
c
1
3
:
4

j
2
K
+
2
K

r
-

a
+

4
.
9

5
.
9

4
.
9

4
.
3

4
.
3

5
.
0

3
.
3

5
.
1

4
.
7

4
.
0

3
.
5

4
.
3

6
.
0

5
.
2

3
.
3

4
.
2

3
.
4

4
.
9

4
.
4

3
3
b

6
9

?
c
1
3
:
2

j
+

r
+

a
+

1
1
.
0

1
1
.
5

1
0
.
0

1
1
.
5

1
0
.
9

1
2
.
8

6
.
7

8
.
1

2
8
.
1

1
3
.
9

5
9
.
4

1
3
.
2

2
4
.
9

1
4
.
5

2
7
.
4

9
.
0

4
6
.
1

5
3
.
6

1
3
.
8

7
0

?
c
1
3
:
2

j
2
K
+
2
K

r
2
5
6

a
+

1
0
.
4

1
0
.
9

9
.
7

8
.
2

1
0
.
7

1
2
.
5

5
.
5

8
.
1

1
6
.
2

1
3
.
4

4
9
.
3

9
.
8

1
2
.
8

1
1
.
3

1
0
.
2

9
.
0

4
3
.
0

4
5
.
4

1
1
.
5

2
4
b

2
7

7
1

?
c
1
3

j
+

r
+

a
+

1
0
.
3

1
1
.
4

9
.
4

1
0
.
9

9
.
1

1
1
.
5

6
.
7

6
.
2

2
6
.
1

1
3
.
0

5
8
.
4

1
1
.
3

2
3
.
2

1
3
.
8

2
4
.
3

9
.
0

4
5
.
9

5
3
.
6

1
2
.
7

7
2

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
8

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
8

1
2
.
6

1
0
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
5

1
0
.
7

1
2

2
2
b

2
3
b

2
4
b

7
3

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

w
+

9
.
8

1
0
.
8

9
.
1

7
.
8

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
7

1
2
.
4

5
0
.
6

8
.
8

1
2
.
9

1
0
.
7

9
.
9

9
.
0

4
2
.
9

5
5
.
9

1
0
.
8

1
8
a

7
4

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

i
I
n
f

9
.
8

1
0
.
8

9
.
1

7
.
8

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
7

1
2
.
4

5
0
.
6

8
.
8

1
2
.
9

1
0
.
7

9
.
9

9
.
0

4
2
.
9

5
5
.
9

1
0
.
8

1
5
a

7
5

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

i
*
2

9
.
8

1
0
.
8

9
.
1

7
.
8

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
7

1
2
.
4

5
0
.
6

8
.
8

1
2
.
9

1
0
.
7

9
.
9

9
.
0

4
2
.
9

5
5
.
9

1
0
.
8

1
4
a

7
6

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

L
B

9
.
8

1
0
.
8

9
.
1

7
.
8

9
.
0

1
1
.
4

5
.
4

6
.
2

1
3
.
9

1
2
.
4

4
2
.
1

8
.
8

1
3
.
4

1
0
.
7

1
2
.
1

6
.
3

6
0
.
7

5
5
.
8

1
0
.
5

3
4
a

7
7

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

L
C

1
0
.
7

1
2
.
2

1
0
.
1

7
.
3

8
.
9

1
1
.
8

5
.
4

6
.
3

1
5
.
0

1
2
.
7

4
4
.
4

8
.
6

1
6
.
1

1
1
.
1

1
5
.
1

5
.
7

7
5
.
6

6
9
.
6

1
0
.
9

7
8

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

L
D

1
0
.
7

1
2
.
2

1
0
.
1

7
.
3

8
.
9

1
1
.
8

5
.
3

6
.
3

1
3
.
8

1
2
.
7

3
9
.
9

8
.
6

1
6
.
5

1
1
.
1

1
6
.
0

4
.
8

7
3
.
1

6
9
.
6

1
0
.
6

3
4
b

7
9

?
c
1
3

j
2
K
+
2
K

r
2
5
6

a
+

L
E

1
1
.
4

1
3
.
3

1
0
.
8

7
.
0

8
.
7

1
2
.
0

5
.
9

6
.
3

1
3
.
8

1
2
.
8

4
3
.
1

8
.
4

1
9
.
0

1
1
.
3

1
7
.
2

4
.
5

7
3
.
5

7
2
.
4

1
0
.
8

8
0

?
c
1
3

j
2
K
+
2
K

r
6
4

a
+

8
.
0

8
.
9

8
.
6

7
.
1

7
.
5

1
0
.
0

5
.
3

5
.
8

1
0
.
6

8
.
6

2
0
.
2

7
.
5

1
0
.
9

1
0
.
0

9
.
4

8
.
8

2
0
.
8

2
7
.
7

9
.
1

8
1

?
c
1
3

j
2
K
+
6
4

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
7

1
2
.
5

1
0
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
5

1
0
.
7

2
9
a

8
2

?
c
1
3

j
2
K
+
3
2

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
6

1
2
.
4

1
0
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
5

1
0
.
7

2
9
a

8
3

?
c
1
3

j
2
K
+
1
6

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
6

1
2
.
2

1
0
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
7

2
9
a

8
4

?
c
1
3

j
2
K
+
8

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
5

1
2
.
2

1
0
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
7

2
9
a

8
5

?
c
1
3

j
2
K
+
4

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
5

1
2
.
0

1
0
.
0

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
6

2
9
a

8
6

?
c
1
3

j
2
K
+
2

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
3

5
.
6

6
.
2

1
5
.
1

1
2
.
4

4
8
.
5

8
.
4

1
2
.
0

1
0
.
0

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
6

2
9
a

8
7

?
c
1
3

j
2
K

r
2
5
6

a
+

9
.
8

7
.
7

9
.
0

7
.
4

8
.
8

1
1
.
1

5
.
6

6
.
2

1
4
.
9

1
2
.
4

4
7
.
3

7
.
8

1
2
.
0

8
.
8

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
2

2
8
a

2
9
a

8
8

?
c
1
3

j
1
6
+
8

r
2
5
6

a
+

9
.
8

1
0
.
8

9
.
1

7
.
7

9
.
0

1
1
.
4

5
.
6

6
.
2

1
5
.
5

1
2
.
4

4
8
.
5

8
.
5

1
2
.
2

1
0
.
6

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
6

8
9

?
c
1
3

j
1
6
+
8

r
6
4

a
+

8
.
0

8
.
9

8
.
6

7
.
1

7
.
4

1
0
.
0

5
.
3

5
.
8

1
0
.
6

8
.
6

2
0
.
2

7
.
4

1
0
.
6

1
0
.
0

9
.
5

8
.
8

2
0
.
2

2
7
.
7

9
.
1

9
0

?
c
1
3

j
1
6

r
2
5
6

a
+

9
.
8

7
.
7

9
.
0

7
.
3

8
.
8

1
1
.
1

5
.
6

6
.
2

1
4
.
9

1
2
.
4

4
7
.
3

7
.
8

1
2
.
0

8
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
1

2
8
a

9
1

?
c
1
3

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
7

4
.
1

3
.
9

4
.
8

3
.
3

4
.
4

4
.
6

3
.
8

3
.
5

3
.
9

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
2
a

2
3
a

9
2

?
c
1
3

j
8

r
2
5
6

a
+

9
.
8

7
.
7

9
.
0

7
.
3

8
.
8

1
1
.
1

5
.
6

6
.
2

1
4
.
9

1
2
.
4

4
7
.
3

7
.
8

1
1
.
9

8
.
7

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
1

2
8
a

9
3

?
c
1
3

j
4

r
2
5
6

a
+

9
.
8

7
.
7

9
.
0

7
.
3

8
.
7

1
1
.
0

5
.
5

6
.
2

1
4
.
9

1
2
.
3

4
7
.
3

7
.
8

1
1
.
8

8
.
4

9
.
9

9
.
0

4
2
.
8

4
5
.
4

1
0
.
1

2
8
a

9
4

?
c
1
3

j
2

r
2
5
6

a
+

9
.
8

7
.
3

9
.
0

7
.
0

8
.
6

1
0
.
7

5
.
5

6
.
2

1
4
.
7

1
2
.
3

4
7
.
3

7
.
6

1
1
.
8

8
.
1

9
.
9

9
.
0

4
2
.
8

4
5
.
4

9
.
9

2
8
a

9
5

?
c
1
3

j
1

r
2
5
6

a
+

9
.
8

7
.
0

8
.
9

6
.
7

8
.
2

1
0
.
1

5
.
5

6
.
2

1
4
.
6

1
2
.
1

4
7
.
2

7
.
4

1
1
.
6

7
.
4

9
.
9

9
.
0

4
2
.
8

4
5
.
4

9
.
7

2
8
a

9
6

?
c
1
3

j
P

r
2
5
6

a
+

9
.
8

1
0
.
9

9
.
1

7
.
4

8
.
2

9
.
6

5
.
6

6
.
2

1
5
.
2

1
1
.
9

4
8
.
4

8
.
6

1
2
.
2

9
.
9

9
.
9

9
.
0

4
2
.
8

4
5
.
5

1
0
.
4

9
7

?
c
1
3

j
-

r
2
5
6

a
+

9
.
7

6
.
7

8
.
5

6
.
0

7
.
2

8
.
0

5
.
5

5
.
8

1
4
.
3

1
1
.
5

4
7
.
1

6
.
8

1
1
.
0

6
.
2

9
.
9

9
.
0

4
2
.
8

4
5
.
4

9
.
0

2
8
a

9
8

?
c
1
2

j
2
K
+
2
K

r
2
5
6

a
+

8
.
6

1
0
.
6

9
.
0

7
.
7

8
.
8

1
1
.
2

5
.
6

6
.
2

1
5
.
2

1
2
.
2

4
8
.
3

8
.
4

1
2
.
4

1
0
.
3

9
.
9

9
.
0

4
2
.
8

4
5
.
5

1
0
.
5

2
2
b

2
3
b

9
9

?
c
1
2

j
1
6

r
-

a
+

4
.
5

5
.
0

4
.
6

4
.
1

3
.
9

4
.
7

3
.
3

4
.
4

4
.
6

3
.
8

3
.
5

3
.
9

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

2
2
a

2
3
a

1
0
0

?
c
1
1

j
2
K
+
2
K

r
2
5
6

a
+

7
.
7

1
0
.
6

8
.
8

7
.
5

8
.
5

1
1
.
0

5
.
6

6
.
2

1
4
.
9

1
1
.
9

4
8
.
2

8
.
0

1
2
.
1

1
0
.
1

9
.
8

8
.
9

4
2
.
8

4
5
.
4

1
0
.
2

2
2
b

2
3
b

1
0
1

?
c
1
1

j
1
6

r
-

a
+

4
.
4

5
.
0

4
.
6

4
.
1

3
.
8

4
.
7

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
8

5
.
7

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

2
2
a

2
3
a

1
0
2

?
c
1
0

j
2
K
+
2
K

r
2
5
6

a
+

7
.
2

1
0
.
4

8
.
7

7
.
4

8
.
1

1
0
.
8

5
.
6

6
.
1

1
4
.
5

1
1
.
6

4
8
.
0

7
.
5

1
1
.
9

9
.
8

9
.
7

8
.
6

4
2
.
8

4
5
.
4

1
0
.
0

2
2
b

2
3
b

1
0
3

?
c
1
0

j
2
K
+
2
K

r
6
4

a
+

6
.
5

8
.
8

8
.
3

6
.
9

7
.
0

9
.
6

5
.
3

5
.
7

1
0
.
2

8
.
3

2
0
.
2

6
.
8

1
0
.
6

9
.
3

9
.
2

8
.
5

2
1
.
0

2
7
.
3

8
.
7

1
0
4

?
c
1
0

j
1
6
+
8

r
+

a
+

7
.
3

1
0
.
7

8
.
7

7
.
3

8
.
1

1
0
.
8

6
.
7

6
.
1

2
2
.
8

1
2
.
0

5
7
.
5

7
.
5

1
6
.
7

9
.
9

2
2
.
8

8
.
6

4
5
.
8

5
3
.
4

1
0
.
9

3
3
a

1
0
5

?
c
1
0

j
1
6
+
8

r
2
5
6

a
+

7
.
2

1
0
.
4

8
.
7

7
.
3

8
.
1

1
0
.
8

5
.
6

6
.
1

1
4
.
5

1
1
.
6

4
8
.
0

7
.
4

1
1
.
6

9
.
7

9
.
7

8
.
6

4
2
.
8

4
5
.
4

9
.
9

3
3
a

1
0
6

?
c
1
0

j
1
6
+
8

r
1
2
8

a
+

7
.
0

9
.
7

8
.
6

7
.
2

7
.
9

1
0
.
4

5
.
4

6
.
1

1
3
.
5

1
0
.
3

3
4
.
5

7
.
2

1
1
.
2

9
.
7

9
.
7

8
.
6

4
0
.
6

4
4
.
1

9
.
6

3
3
a

1
0
7

?
c
1
0

j
1
6
+
8

r
6
4

a
+

6
.
5

8
.
8

8
.
3

6
.
9

7
.
0

9
.
6

5
.
3

5
.
7

1
0
.
2

8
.
3

2
0
.
2

6
.
7

1
0
.
3

9
.
2

9
.
2

8
.
5

2
0
.
0

2
7
.
3

8
.
7

1
2

1
3

2
7
b

3
2
a
.
.
.

1
0
8

?
c
1
0

j
1
6
+
8

r
6
4

a
+

w
+

6
.
5

8
.
8

8
.
3

6
.
9

7
.
0

9
.
6

5
.
3

5
.
7

1
0
.
2

8
.
3

2
0
.
2

6
.
7

1
0
.
3

9
.
2

9
.
2

8
.
5

2
0
.
0

2
7
.
3

8
.
7

1
8
a

.
.
.
3
3
a

3
5
a

1
0
9

?
c
1
0

j
1
6
+
8

r
6
4

a
+

i
I
n
f

6
.
5

8
.
8

8
.
3

6
.
9

7
.
0

9
.
6

5
.
3

5
.
7

1
0
.
2

8
.
3

2
0
.
2

6
.
7

1
0
.
3

9
.
2

9
.
2

8
.
5

2
0
.
0

2
7
.
3

8
.
7

1
5
a

1
1
0

?
c
1
0

j
1
6
+
8

r
6
4

a
+

i
*
2

6
.
5

8
.
8

8
.
3

6
.
9

7
.
0

9
.
6

5
.
3

5
.
7

1
0
.
2

8
.
3

2
0
.
2

6
.
7

1
0
.
3

9
.
2

9
.
2

8
.
5

2
0
.
0

2
7
.
3

8
.
7

1
4
a

53

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

1
1
1

?
c
1
0

j
1
6
+
8

r
6
4

a
+

L
B

6
.
5

8
.
8

8
.
2

6
.
8

6
.
9

9
.
6

5
.
1

5
.
7

8
.
1

8
.
3

1
5
.
7

6
.
7

1
0
.
5

9
.
2

7
.
7

6
.
0

1
7
.
7

2
3
.
1

8
.
1

3
4
a

3
5
a

1
1
2

?
c
1
0

j
1
6
+
8

r
6
4

a
+

L
C

6
.
8

9
.
4

8
.
9

6
.
4

6
.
8

9
.
6

5
.
2

5
.
6

8
.
2

8
.
2

1
5
.
8

6
.
5

1
1
.
7

9
.
1

7
.
7

5
.
4

1
6
.
5

2
2
.
0

8
.
1

3
5
a

1
1
3

?
c
1
0

j
1
6
+
8

r
6
4

a
+

L
D

6
.
8

9
.
4

8
.
9

6
.
4

6
.
8

9
.
6

5
.
1

5
.
6

7
.
3

8
.
2

1
4
.
1

6
.
5

1
1
.
5

9
.
1

7
.
0

4
.
5

1
5
.
1

2
0
.
2

7
.
8

3
4
b

3
5
a

1
1
4

?
c
1
0

j
1
6
+
8

r
6
4

a
+

L
E

7
.
0

9
.
8

9
.
2

6
.
1

6
.
7

9
.
6

5
.
4

5
.
6

7
.
3

8
.
1

1
5
.
3

6
.
4

1
2
.
5

8
.
9

7
.
1

4
.
2

1
5
.
7

2
1
.
3

7
.
8

3
5
a

1
1
5

?
c
1
0

j
1
6
+
8

r
6
4

a
C
o
m
p

6
.
5

8
.
8

7
.
3

5
.
1

6
.
8

7
.
5

5
.
2

5
.
7

1
0
.
2

5
.
3

2
0
.
2

5
.
1

9
.
8

7
.
0

9
.
2

8
.
5

2
0
.
1

2
7
.
3

7
.
7

3
2
a

1
1
6

?
c
1
0

j
1
6
+
8

r
6
4

a
I
n
s
p

4
.
7

4
.
4

5
.
0

3
.
3

3
.
2

3
.
3

2
.
6

3
.
3

5
.
1

4
.
3

4
.
1

3
.
4

4
.
4

4
.
2

2
.
5

4
.
3

3
.
5

4
.
7

3
.
7

3
2
a

1
1
7

?
c
1
0

j
1
6
+
8

r
6
4

a
-

4
.
6

3
.
7

4
.
6

2
.
6

2
.
7

2
.
8

2
.
5

3
.
0

3
.
6

4
.
2

3
.
4

2
.
9

3
.
9

2
.
9

2
.
4

4
.
2

3
.
5

3
.
5

3
.
3

3
2
a

1
1
8

?
c
1
0

j
1
6
+
8

r
3
2

a
+

4
.
7

6
.
7

5
.
3

5
.
1

4
.
0

5
.
7

4
.
6

5
.
0

5
.
1

4
.
4

5
.
4

4
.
3

5
.
7

5
.
4

3
.
9

5
.
5

6
.
4

7
.
6

5
.
1

3
3
a

1
1
9

?
c
1
0

j
1
6
+
8

r
-

a
+

4
.
3

5
.
6

4
.
6

4
.
2

3
.
8

4
.
8

3
.
3

4
.
4

4
.
6

3
.
7

3
.
5

3
.
9

5
.
7

4
.
9

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
3
a

1
2
0

?
c
1
0

j
1
6

r
6
4

a
+

6
.
5

6
.
7

8
.
2

6
.
5

6
.
9

9
.
4

5
.
3

5
.
7

1
0
.
1

8
.
3

2
0
.
0

6
.
3

1
0
.
2

7
.
8

9
.
2

8
.
5

2
0
.
1

2
7
.
3

8
.
3

1
2
1

?
c
1
0

j
1
6

r
-

a
+

4
.
3

5
.
0

4
.
6

4
.
1

3
.
8

4
.
7

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
8

5
.
7

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

2
2
a

2
3
a

1
2
2

?
c
9

j
2
K
+
2
K

r
2
5
6

a
+

6
.
3

1
0
.
4

8
.
4

7
.
2

7
.
7

1
0
.
4

5
.
6

6
.
1

1
4
.
1

1
0
.
9

4
7
.
5

6
.
9

1
1
.
6

9
.
3

9
.
7

8
.
3

4
2
.
8

4
5
.
4

9
.
6

2
2
b

2
3
b

1
2
3

?
c
9

j
1
6

r
-

a
+

4
.
1

5
.
0

4
.
6

4
.
1

3
.
7

4
.
7

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

2
2
a

2
3
a

1
2
4

?
c
8

j
2
K
+
2
K

r
2
5
6

a
+

5
.
8

1
0
.
3

8
.
1

7
.
0

7
.
2

9
.
9

5
.
5

6
.
1

1
3
.
8

1
0
.
4

4
6
.
9

6
.
2

1
1
.
3

8
.
5

9
.
6

8
.
2

4
2
.
8

4
5
.
4

9
.
2

1
2
5

?
c
8

j
1
6

r
-

a
+

4
.
0

5
.
0

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
3

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
2
6

?
c
7

j
2
K
+
2
K

r
2
5
6

a
+

5
.
3

8
.
2

7
.
7

6
.
4

6
.
8

9
.
1

5
.
5

6
.
0

1
3
.
4

9
.
6

4
6
.
0

5
.
5

1
0
.
8

8
.
1

9
.
5

7
.
8

4
2
.
8

4
5
.
4

8
.
7

1
2
7

?
c
7

j
1
6

r
-

a
+

3
.
9

4
.
9

4
.
4

3
.
9

3
.
6

4
.
6

3
.
3

4
.
3

4
.
5

3
.
6

3
.
5

3
.
4

5
.
5

4
.
4

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
2
8

?
c
6

j
2
K
+
2
K

r
2
5
6

a
+

5
.
0

8
.
0

7
.
3

5
.
9

6
.
2

7
.
8

5
.
3

5
.
8

1
2
.
8

8
.
8

4
4
.
8

4
.
9

1
0
.
2

7
.
1

9
.
4

7
.
4

4
2
.
8

4
5
.
4

8
.
1

1
2
9

?
c
6

j
1
6

r
-

a
+

3
.
8

4
.
9

4
.
4

3
.
8

3
.
5

4
.
4

3
.
3

4
.
2

4
.
5

3
.
6

3
.
5

3
.
3

5
.
4

4
.
2

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

1
3
0

?
c
5

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

6
.
4

6
.
8

5
.
0

5
.
4

6
.
8

5
.
0

5
.
5

1
2
.
0

7
.
9

4
3
.
7

4
.
4

9
.
9

5
.
9

9
.
2

7
.
3

4
2
.
8

4
5
.
3

7
.
3

1
3
1

?
c
5

j
1
6

r
-

a
+

3
.
7

4
.
6

4
.
2

3
.
6

3
.
3

4
.
2

3
.
2

4
.
2

4
.
4

3
.
5

3
.
5

3
.
1

5
.
3

3
.
9

3
.
2

3
.
9

3
.
4

4
.
9

3
.
8

1
3
2

?
c
4

j
2
K
+
2
K

r
2
5
6

a
+

4
.
0

6
.
2

6
.
5

4
.
4

4
.
6

6
.
0

4
.
7

5
.
1

1
0
.
2

7
.
0

4
2
.
5

4
.
1

9
.
4

5
.
1

8
.
8

6
.
5

4
2
.
8

4
5
.
3

6
.
6

1
3
3

?
c
4

j
1
6

r
-

a
+

3
.
4

4
.
5

4
.
1

3
.
4

3
.
1

4
.
0

3
.
1

4
.
0

4
.
2

3
.
4

3
.
5

3
.
0

5
.
2

3
.
6

3
.
1

3
.
7

3
.
4

4
.
9

3
.
7

1
3
4

?
b
1
3

j
2
K
+
2
K

r
2
5
6

a
+

6
.
7

9
.
7

8
.
7

7
.
3

8
.
8

1
0
.
2

5
.
5

6
.
1

1
5
.
1

1
2
.
2

4
8
.
1

8
.
6

1
2
.
3

1
0
.
3

9
.
6

7
.
6

4
2
.
8

4
5
.
5

1
0
.
0

1
3
5

?
b
1
3

j
1
6

r
-

a
+

4
.
2

4
.
9

4
.
6

4
.
1

3
.
9

4
.
7

3
.
3

4
.
4

4
.
6

3
.
8

3
.
5

3
.
9

5
.
7

4
.
6

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
3
6

?
b
1
2

j
2
K
+
2
K

r
2
5
6

a
+

6
.
3

9
.
7

8
.
6

7
.
3

8
.
5

1
0
.
1

5
.
5

6
.
1

1
4
.
9

1
2
.
0

4
8
.
1

8
.
3

1
2
.
1

1
0
.
3

9
.
6

7
.
7

4
2
.
8

4
5
.
5

9
.
8

1
3
7

?
b
1
2

j
1
6

r
-

a
+

4
.
1

4
.
9

4
.
6

4
.
1

3
.
9

4
.
7

3
.
3

4
.
4

4
.
6

3
.
8

3
.
5

3
.
9

5
.
7

4
.
6

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
3
8

?
b
1
1

j
2
K
+
2
K

r
2
5
6

a
+

5
.
8

9
.
6

8
.
6

7
.
2

8
.
3

1
0
.
0

5
.
5

6
.
1

1
4
.
8

1
1
.
8

4
7
.
9

7
.
9

1
1
.
9

9
.
9

9
.
5

7
.
7

4
2
.
8

4
5
.
5

9
.
7

1
3
9

?
b
1
1

j
1
6

r
-

a
+

4
.
0

4
.
9

4
.
6

4
.
1

3
.
8

4
.
7

3
.
3

4
.
4

4
.
6

3
.
7

3
.
5

3
.
8

5
.
7

4
.
6

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
4
0

?
b
1
0

j
2
K
+
2
K

r
2
5
6

a
+

5
.
3

9
.
6

8
.
4

7
.
1

8
.
0

9
.
6

5
.
4

6
.
0

1
4
.
5

1
1
.
5

4
7
.
7

7
.
5

1
1
.
7

9
.
9

9
.
5

7
.
6

4
2
.
8

4
5
.
4

9
.
4

1
4
1

?
b
1
0

j
1
6

r
-

a
+

3
.
9

4
.
9

4
.
6

4
.
1

3
.
8

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
8

5
.
7

4
.
6

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
4
2

?
b
9

j
2
K
+
2
K

r
2
5
6

a
+

5
.
1

9
.
6

8
.
3

6
.
8

7
.
7

9
.
3

5
.
4

6
.
0

1
4
.
1

1
1
.
1

4
7
.
4

6
.
9

1
1
.
5

9
.
6

9
.
5

7
.
7

4
2
.
8

4
5
.
4

9
.
2

2
2
b

2
3
b

1
4
3

?
b
9

j
1
6

r
-

a
+

3
.
9

4
.
9

4
.
5

4
.
1

3
.
8

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

2
2
a

2
3
a

1
4
4

?
b
8
:
8

j
1
6

r
-

a
+

4
.
9

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
2

4
.
7

4
.
0

3
.
5

4
.
2

5
.
8

4
.
9

3
.
4

4
.
2

3
.
4

4
.
9

4
.
3

2
5
b

1
4
5

?
b
8
:
6

j
1
6

r
-

a
+

4
.
9

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
1

4
.
7

4
.
0

3
.
5

4
.
2

5
.
8

4
.
8

3
.
4

4
.
2

3
.
4

4
.
9

4
.
3

2
5
b

1
4
6

?
b
8
:
4

j
1
6

r
-

a
+

4
.
7

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
1

4
.
6

4
.
0

3
.
5

4
.
2

5
.
7

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
5
b

2
7

1
4
7

?
b
8
:
2

j
1
6

r
-

a
+

4
.
4

5
.
1

4
.
7

4
.
2

4
.
1

4
.
9

3
.
3

4
.
8

4
.
6

3
.
9

3
.
5

4
.
0

5
.
6

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

2
5
b

2
7

1
4
8

?
b
8

j
2
K
+
2
K

r
2
5
6

a
+

4
.
9

9
.
5

8
.
0

6
.
6

7
.
2

8
.
9

5
.
4

6
.
0

1
3
.
8

1
0
.
3

4
6
.
8

6
.
3

1
1
.
2

9
.
2

9
.
4

7
.
7

4
2
.
8

4
5
.
4

8
.
9

2
2
b

2
3
b

1
4
9

?
b
8

j
2
K
+
6
4

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
7

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
0

?
b
8

j
2
K
+
3
2

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
1

?
b
8

j
2
K
+
1
6

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
2

?
b
8

j
2
K
+
8

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
3

?
b
8

j
2
K
+
4

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
7

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
4

?
b
8

j
2
K
+
2

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
7

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
5

?
b
8

j
2
K

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
5
6

?
b
8

j
1
6
+
8

r
6
4

a
+

4
.
7

8
.
2

7
.
8

6
.
4

6
.
5

8
.
5

5
.
2

5
.
6

1
0
.
0

7
.
9

2
0
.
0

5
.
9

9
.
9

8
.
6

9
.
0

7
.
7

2
0
.
1

2
7
.
7

8
.
0

1
5
7

?
b
8

j
1
6
+
8

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
1

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
6

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
5
8

?
b
8

j
1
6

r
6
4

a
+

4
.
7

6
.
4

7
.
7

6
.
1

6
.
4

8
.
3

5
.
2

5
.
6

9
.
9

7
.
9

1
9
.
9

5
.
6

9
.
8

7
.
4

9
.
0

7
.
7

2
1
.
0

2
7
.
7

7
.
7

1
5
9

?
b
8

j
1
6

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
2

1
6
b

2
2
a
.
.
.

1
6
0

?
b
8

j
1
6

r
-

a
+

w
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
8
a

.
.
.
2
3
a

2
5
b

1
6
1

?
b
8

j
1
6

r
-

a
+

w
1
K

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
6
b

1
6
2

?
b
8

j
1
6

r
-

a
+

w
5
1
2

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
6
b

1
6
3

?
b
8

j
1
6

r
-

a
+

w
2
5
6

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
6
b

1
6
4

?
b
8

j
1
6

r
-

a
+

w
1
2
8

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
6
b

1
6
5

?
b
8

j
1
6

r
-

a
+

w
6
4

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
5

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
6
b

54

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

1
6
6

?
b
8

j
1
6

r
-

a
+

w
3
2

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
3

4
.
5

3
.
2

4
.
0

3
.
4

4
.
9

4
.
0

1
6
b

1
6
7

?
b
8

j
1
6

r
-

a
+

w
1
6

3
.
7

4
.
8

4
.
3

4
.
0

3
.
6

4
.
5

3
.
3

4
.
3

4
.
3

3
.
6

3
.
5

3
.
5

4
.
9

4
.
4

3
.
2

3
.
8

3
.
4

4
.
9

3
.
9

1
6
b

1
6
8

?
b
8

j
1
6

r
-

a
+

w
8

3
.
1

4
.
1

3
.
5

3
.
5

3
.
0

3
.
6

3
.
2

3
.
6

3
.
7

3
.
2

3
.
4

3
.
1

4
.
1

3
.
8

2
.
9

3
.
3

3
.
4

4
.
4

3
.
5

1
6
b

1
6
9

?
b
8

j
1
6

r
-

a
+

w
4

2
.
1

2
.
8

2
.
4

2
.
5

2
.
3

2
.
5

2
.
8

2
.
5

2
.
7

2
.
3

3
.
1

2
.
4

2
.
8

2
.
7

2
.
2

2
.
7

3
.
0

3
.
2

2
.
6

1
6
b

1
7
0

?
b
8

j
1
6

r
-

a
+

d
w
2
K

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
7
b

1
7
1

?
b
8

j
1
6

r
-

a
+

d
w
1
K

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
5

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
7
b

1
7
2

?
b
8

j
1
6

r
-

a
+

d
w
5
1
2

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
5

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
5

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
7
b

1
7
3

?
b
8

j
1
6

r
-

a
+

d
w
2
5
6

3
.
8

4
.
8

4
.
4

4
.
0

3
.
6

4
.
5

3
.
3

4
.
4

4
.
4

3
.
6

3
.
4

3
.
6

5
.
3

4
.
5

3
.
1

4
.
0

3
.
4

4
.
9

4
.
0

1
7
b

1
7
4

?
b
8

j
1
6

r
-

a
+

d
w
1
2
8

3
.
7

4
.
7

4
.
3

4
.
0

3
.
6

4
.
3

3
.
2

4
.
3

4
.
3

3
.
5

3
.
4

3
.
5

5
.
0

4
.
4

3
.
1

3
.
8

3
.
4

4
.
8

3
.
9

1
7
b

1
7
5

?
b
8

j
1
6

r
-

a
+

d
w
6
4

3
.
5

4
.
5

4
.
0

3
.
8

3
.
4

4
.
0

3
.
2

4
.
1

4
.
0

3
.
4

3
.
4

3
.
4

4
.
6

4
.
2

2
.
9

3
.
6

3
.
3

4
.
6

3
.
7

1
7
b

1
7
6

?
b
8

j
1
6

r
-

a
+

d
w
3
2

3
.
1

4
.
1

3
.
5

3
.
5

3
.
0

3
.
5

3
.
0

3
.
9

3
.
6

3
.
0

3
.
2

3
.
2

4
.
0

3
.
9

2
.
7

3
.
1

3
.
2

4
.
2

3
.
4

1
7
b

1
7
7

?
b
8

j
1
6

r
-

a
+

d
w
1
6

2
.
5

3
.
4

2
.
9

3
.
0

2
.
5

2
.
8

2
.
8

3
.
1

3
.
1

2
.
6

3
.
1

2
.
7

3
.
4

3
.
3

2
.
4

2
.
8

3
.
0

3
.
7

2
.
9

1
7
b

1
7
8

?
b
8

j
1
6

r
-

a
+

d
w
8

2
.
0

2
.
6

2
.
2

2
.
5

2
.
0

2
.
3

2
.
5

2
.
3

2
.
5

2
.
1

2
.
8

2
.
2

2
.
7

2
.
7

2
.
0

2
.
4

2
.
7

3
.
2

2
.
4

1
7
b

1
7
9

?
b
8

j
1
6

r
-

a
+

d
w
4

1
.
5

1
.
9

1
.
7

1
.
9

1
.
7

1
.
8

1
.
9

1
.
8

2
.
1

1
.
7

2
.
4

1
.
8

2
.
2

2
.
0

1
.
7

2
.
0

2
.
5

2
.
6

1
.
9

1
7
b

1
8
0

?
b
8

j
1
6

r
-

a
+

i
I
n
f

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
5
a

1
8
1

?
b
8

j
1
6

r
-

a
+

i
*
2

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
4
a

1
8
2

?
b
8

j
1
6

r
-

a
+

L
B

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

2
.
8

4
.
4

3
.
3

3
.
7

2
.
9

3
.
6

4
.
6

4
.
5

2
.
6

3
.
2

2
.
6

3
.
9

3
.
6

3
4
a

1
8
3

?
b
8

j
1
6

r
-

a
+

L
C

3
.
1

4
.
2

4
.
0

3
.
8

3
.
6

4
.
4

2
.
5

4
.
1

3
.
1

3
.
4

2
.
9

3
.
5

4
.
4

4
.
2

2
.
5

3
.
0

2
.
5

3
.
8

3
.
4

1
8
4

?
b
8

j
1
6

r
-

a
+

L
D

3
.
1

4
.
2

4
.
0

3
.
8

3
.
6

4
.
3

2
.
2

4
.
1

2
.
7

3
.
4

2
.
7

3
.
5

3
.
9

4
.
2

2
.
3

2
.
6

2
.
3

3
.
3

3
.
2

3
4
b

1
8
5

?
b
8

j
1
6

r
-

a
+

L
E

2
.
8

3
.
7

3
.
5

3
.
6

3
.
5

4
.
2

2
.
1

3
.
8

2
.
7

3
.
2

2
.
6

3
.
4

3
.
8

4
.
0

2
.
4

2
.
4

2
.
3

3
.
4

3
.
1

1
8
6

?
b
8

j
1
6

r
-

a
I
n
s
p

3
.
3

3
.
5

3
.
6

2
.
9

2
.
6

3
.
0

2
.
5

3
.
2

3
.
7

2
.
9

2
.
9

2
.
7

3
.
8

3
.
4

2
.
4

3
.
5

2
.
7

3
.
8

3
.
1

1
8
7

?
b
8

j
8

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
8
8

?
b
8

j
4

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
5

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
8
9

?
b
8

j
2

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
7

4
.
5

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
6

4
.
4

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
9
0

?
b
8

j
1

r
-

a
+

3
.
8

4
.
7

4
.
5

4
.
0

3
.
7

4
.
5

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
6

5
.
5

4
.
3

3
.
2

4
.
1

3
.
4

4
.
9

4
.
0

1
9
1

?
b
8

j
P

r
-

a
+

3
.
8

5
.
5

4
.
5

4
.
2

3
.
7

4
.
6

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
7

5
.
7

4
.
8

3
.
2

4
.
1

3
.
4

4
.
9

4
.
1

1
9
2

?
b
8

j
-

r
-

a
+

3
.
8

4
.
6

4
.
4

3
.
9

3
.
6

4
.
4

3
.
3

4
.
4

4
.
5

3
.
7

3
.
5

3
.
5

5
.
5

4
.
1

3
.
2

4
.
0

3
.
4

4
.
9

4
.
0

1
9
3

?
b
8

j
-

r
-

a
I
n
s
p

3
.
3

3
.
3

3
.
5

2
.
8

2
.
6

2
.
8

2
.
5

3
.
1

3
.
7

2
.
9

2
.
9

2
.
6

3
.
7

3
.
2

2
.
4

3
.
4

2
.
7

3
.
8

3
.
0

1
9
4

?
b
7

j
2
K
+
2
K

r
2
5
6

a
+

4
.
8

7
.
7

7
.
7

6
.
3

6
.
7

8
.
4

5
.
3

6
.
0

1
3
.
4

9
.
6

4
6
.
3

5
.
8

1
0
.
7

8
.
5

9
.
4

7
.
7

4
2
.
8

4
5
.
4

8
.
5

2
2
b

2
3
b

1
9
5

?
b
7

j
1
6

r
-

a
+

3
.
8

4
.
8

4
.
5

4
.
0

3
.
6

4
.
5

3
.
3

4
.
4

4
.
5

3
.
6

3
.
5

3
.
5

5
.
5

4
.
4

3
.
2

4
.
0

3
.
4

4
.
9

4
.
0

2
2
a

2
3
a

1
9
6

?
b
6

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

7
.
5

7
.
4

5
.
8

6
.
1

7
.
9

5
.
2

5
.
7

1
2
.
8

8
.
9

4
5
.
2

5
.
2

1
0
.
3

7
.
8

9
.
3

7
.
5

4
2
.
8

4
5
.
4

8
.
1

2
2
b

2
3
b

1
9
7

?
b
6

j
1
6

r
-

a
+

3
.
8

4
.
8

4
.
4

3
.
9

3
.
5

4
.
4

3
.
2

4
.
2

4
.
5

3
.
6

3
.
5

3
.
3

5
.
5

4
.
3

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

2
2
a

2
3
a

1
9
8

?
b
5

j
2
K
+
2
K

r
2
5
6

a
+

4
.
3

7
.
0

7
.
0

5
.
2

5
.
4

7
.
3

5
.
1

5
.
5

1
1
.
8

7
.
8

4
4
.
1

4
.
6

9
.
9

7
.
0

9
.
1

7
.
5

4
2
.
8

4
5
.
3

7
.
5

1
9
9

?
b
5

j
1
6

r
-

a
+

3
.
7

4
.
7

4
.
3

3
.
7

3
.
4

4
.
3

3
.
2

4
.
2

4
.
4

3
.
5

3
.
5

3
.
2

5
.
4

4
.
2

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

2
0
0

?
b
4

j
2
K
+
2
K

r
2
5
6

a
+

4
.
0

6
.
1

6
.
6

4
.
7

4
.
9

6
.
4

4
.
8

5
.
3

1
0
.
9

6
.
9

4
3
.
3

4
.
3

9
.
5

5
.
6

8
.
8

6
.
9

4
2
.
8

4
5
.
3

6
.
9

2
0
1

?
b
4

j
1
6

r
-

a
+

3
.
5

4
.
5

4
.
2

3
.
5

3
.
2

4
.
1

3
.
1

4
.
1

4
.
3

3
.
4

3
.
5

3
.
1

5
.
3

3
.
8

3
.
1

3
.
9

3
.
4

4
.
9

3
.
7

2
0
2

?
a
9

j
2
K
+
2
K

r
2
5
6

a
+

4
.
4

9
.
3

7
.
4

5
.
8

5
.
6

7
.
6

5
.
2

5
.
7

1
3
.
2

6
.
9

4
6
.
3

5
.
7

1
0
.
2

6
.
4

9
.
2

7
.
7

4
2
.
2

4
5
.
4

7
.
9

2
0
3

?
a
9

j
1
6

r
-

a
+

3
.
7

4
.
8

4
.
4

3
.
9

3
.
4

4
.
4

3
.
2

4
.
3

4
.
5

3
.
5

3
.
5

3
.
5

5
.
5

4
.
1

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

2
0
4

?
a
8

j
2
K
+
2
K

r
2
5
6

a
+

4
.
4

9
.
3

7
.
3

5
.
6

5
.
6

7
.
4

5
.
2

5
.
7

1
3
.
0

6
.
9

4
5
.
5

5
.
3

1
0
.
1

6
.
4

9
.
2

7
.
7

4
2
.
2

4
5
.
3

7
.
8

2
0
5

?
a
8

j
1
6

r
-

a
+

3
.
7

4
.
8

4
.
4

3
.
8

3
.
4

4
.
4

3
.
2

4
.
3

4
.
5

3
.
5

3
.
5

3
.
4

5
.
4

4
.
1

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

2
0
6

?
a
7

j
2
K
+
2
K

r
2
5
6

a
+

4
.
4

7
.
5

7
.
1

5
.
4

5
.
5

6
.
8

5
.
0

5
.
7

1
2
.
5

6
.
7

4
5
.
0

5
.
0

9
.
8

6
.
2

9
.
2

7
.
7

4
2
.
2

4
5
.
3

7
.
5

2
2
b

2
3
b

2
0
7

?
a
7

j
1
6

r
-

a
+

3
.
7

4
.
7

4
.
4

3
.
7

3
.
4

4
.
3

3
.
2

4
.
3

4
.
5

3
.
4

3
.
5

3
.
3

5
.
4

4
.
1

3
.
2

4
.
0

3
.
4

4
.
9

3
.
9

2
2
a

2
3
a

2
0
8

?
a
6

j
2
K
+
2
K

r
2
5
6

a
+

4
.
3

7
.
2

6
.
8

5
.
0

5
.
1

6
.
6

4
.
9

5
.
5

1
1
.
4

6
.
4

4
3
.
9

4
.
6

9
.
1

5
.
8

9
.
2

7
.
1

4
2
.
2

4
5
.
3

7
.
2

2
2
b

2
3
b

2
0
9

?
a
6

j
1
6

r
-

a
+

3
.
7

4
.
7

4
.
3

3
.
6

3
.
3

4
.
2

3
.
2

4
.
2

4
.
4

3
.
4

3
.
5

3
.
2

5
.
2

4
.
0

3
.
2

4
.
0

3
.
4

4
.
9

3
.
8

2
2
a

2
3
a

2
1
0

?
a
5

j
2
K
+
2
K

r
2
5
6

a
+

3
.
9

6
.
3

6
.
5

4
.
5

4
.
7

5
.
8

4
.
8

5
.
2

1
0
.
3

5
.
7

4
3
.
3

4
.
3

8
.
9

5
.
1

9
.
1

7
.
1

4
2
.
1

4
5
.
3

6
.
6

2
2
b

2
3
b

2
1
1

?
a
5

j
1
6

r
-

a
+

3
.
6

4
.
6

4
.
2

3
.
4

3
.
2

4
.
0

3
.
1

4
.
1

4
.
2

3
.
3

3
.
5

3
.
1

5
.
2

3
.
8

3
.
1

4
.
0

3
.
4

4
.
9

3
.
7

2
2
a

2
3
a

2
1
2

?
a
5

j
1
6

r
-

a
I
n
s
p

3
.
1

3
.
3

3
.
4

2
.
6

2
.
4

2
.
7

2
.
4

3
.
0

3
.
5

2
.
7

2
.
9

2
.
4

3
.
7

3
.
0

2
.
3

3
.
2

2
.
7

3
.
8

2
.
9

2
1
3

?
a
5

j
-

r
-

a
+

3
.
6

4
.
4

4
.
1

3
.
3

3
.
1

3
.
8

3
.
1

4
.
0

4
.
2

3
.
2

3
.
5

3
.
0

5
.
1

3
.
4

3
.
1

3
.
9

3
.
4

4
.
9

3
.
6

2
1
4

?
a
5

j
-

r
-

a
I
n
s
p

3
.
1

3
.
2

3
.
3

2
.
5

2
.
3

2
.
5

2
.
4

2
.
9

3
.
5

2
.
6

2
.
9

2
.
4

3
.
6

2
.
7

2
.
3

3
.
2

2
.
7

3
.
8

2
.
8

1
2

2
7
a

2
1
5

?
a
5

j
-

r
-

a
I
n
s
p

w
+

3
.
1

3
.
2

3
.
3

2
.
5

2
.
3

2
.
5

2
.
4

2
.
9

3
.
5

2
.
6

2
.
9

2
.
4

3
.
6

2
.
7

2
.
3

3
.
2

2
.
7

3
.
8

2
.
8

1
8
a

2
1
6

?
a
5

j
-

r
-

a
I
n
s
p

i
I
n
f

3
.
1

3
.
2

3
.
3

2
.
5

2
.
3

2
.
5

2
.
4

2
.
9

3
.
5

2
.
6

2
.
9

2
.
4

3
.
6

2
.
7

2
.
3

3
.
2

2
.
7

3
.
8

2
.
8

1
5
a

2
1
7

?
a
5

j
-

r
-

a
I
n
s
p

i
*
2

3
.
1

3
.
2

3
.
3

2
.
5

2
.
3

2
.
5

2
.
4

2
.
9

3
.
5

2
.
6

2
.
9

2
.
4

3
.
6

2
.
7

2
.
3

3
.
2

2
.
7

3
.
8

2
.
8

1
4
a

2
1
8

?
a
5

j
-

r
-

a
I
n
s
p

L
B

3
.
1

3
.
2

3
.
3

2
.
5

2
.
3

2
.
5

2
.
1

2
.
9

2
.
8

2
.
6

2
.
6

2
.
3

3
.
3

2
.
7

2
.
1

2
.
7

2
.
2

3
.
2

2
.
6

3
4
a

2
1
9

?
a
5

j
-

r
-

a
I
n
s
p

L
C

2
.
7

2
.
9

2
.
9

2
.
4

2
.
3

2
.
5

2
.
0

2
.
8

2
.
7

2
.
5

2
.
7

2
.
3

3
.
3

2
.
6

2
.
0

2
.
6

2
.
2

3
.
2

2
.
5

2
2
0

?
a
5

j
-

r
-

a
I
n
s
p

L
D

2
.
7

2
.
9

2
.
9

2
.
4

2
.
3

2
.
5

1
.
8

2
.
8

2
.
4

2
.
5

2
.
5

2
.
3

3
.
1

2
.
6

1
.
9

2
.
2

2
.
0

2
.
9

2
.
4

3
4
b

55

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

2
2
1

?
a
5

j
-

r
-

a
I
n
s
p

L
E

2
.
4

2
.
7

2
.
6

2
.
4

2
.
2

2
.
4

1
.
8

2
.
7

2
.
4

2
.
4

2
.
5

2
.
2

3
.
0

2
.
5

1
.
9

2
.
1

2
.
1

2
.
9

2
.
4

2
2
2

?
a
5

j
-

r
-

a
-

3
.
1

2
.
8

3
.
1

2
.
1

2
.
0

2
.
2

2
.
3

2
.
8

2
.
9

2
.
6

2
.
6

2
.
1

3
.
3

2
.
1

2
.
3

3
.
0

2
.
7

3
.
0

2
.
5

2
2
3

?
a
4

j
2
K
+
2
K

r
2
5
6

a
+

3
.
6

5
.
9

6
.
2

3
.
9

4
.
3

5
.
5

4
.
6

5
.
1

9
.
5

5
.
5

4
2
.
4

4
.
0

8
.
3

5
.
1

6
.
7

6
.
5

4
2
.
1

4
5
.
3

6
.
2

2
2
b

2
3
b

2
2
4

?
a
4

j
1
6

r
-

a
+

3
.
4

4
.
5

4
.
1

3
.
2

3
.
0

3
.
8

3
.
1

4
.
1

4
.
1

3
.
2

3
.
5

3
.
0

5
.
0

3
.
7

2
.
9

3
.
9

3
.
4

4
.
9

3
.
6

2
2
a

2
3
a

2
2
5

?
a
3

j
2
K
+
2
K

r
2
5
6

a
+

3
.
5

4
.
7

4
.
4

3
.
7

4
.
1

4
.
7

4
.
6

4
.
5

8
.
5

5
.
1

4
0
.
4

3
.
8

7
.
9

4
.
9

6
.
6

6
.
4

4
2
.
1

4
5
.
2

5
.
7

2
2
b

2
3
b

2
2
6

?
a
3

j
1
6

r
-

a
+

3
.
3

3
.
7

3
.
2

3
.
1

3
.
0

3
.
5

3
.
1

3
.
8

4
.
0

3
.
1

3
.
4

2
.
9

4
.
8

3
.
7

2
.
9

4
.
1

3
.
4

4
.
9

3
.
5

2
2
a

2
3
a

2
2
7

?
a
2

j
2
K
+
2
K

r
2
5
6

a
+

3
.
5

5
.
1

4
.
0

3
.
5

3
.
8

4
.
7

4
.
5

4
.
4

7
.
9

4
.
6

3
9
.
4

3
.
8

7
.
5

4
.
5

5
.
9

6
.
0

4
0
.
3

4
5
.
2

5
.
4

2
2
b

2
3
b

2
2
8

?
a
2

j
1
6

r
-

a
+

3
.
3

3
.
9

3
.
0

3
.
0

2
.
8

3
.
5

3
.
1

3
.
7

3
.
8

2
.
9

3
.
4

2
.
9

4
.
7

3
.
5

2
.
8

3
.
7

3
.
4

4
.
9

3
.
4

2
2
a

2
3
a

2
2
9

?
a
1

j
2
K
+
2
K

r
2
5
6

a
+

3
.
3

5
.
0

3
.
9

3
.
3

3
.
8

4
.
4

4
.
6

4
.
2

8
.
1

4
.
5

3
9
.
3

3
.
7

6
.
9

4
.
0

5
.
8

5
.
6

4
0
.
3

4
4
.
9

5
.
2

2
2
b

2
3
b

2
3
0

?
a
1

j
1
6

r
-

a
+

3
.
1

4
.
0

2
.
6

2
.
9

2
.
8

3
.
4

3
.
1

3
.
5

3
.
9

3
.
0

3
.
4

2
.
8

4
.
5

3
.
1

2
.
8

3
.
3

3
.
4

4
.
9

3
.
3

2
2
a

2
3
a

2
3
1

?
P
:
4
(
1
.
0
0
)

j
+

r
+

a
+

6
.
7

1
1
.
7

8
.
7

9
.
6

8
.
2

1
0
.
0

7
.
1

7
.
6

2
4
.
9

9
.
8

5
6
.
1

1
0
.
8

2
0
.
2

1
3
.
1

2
1
.
7

8
.
7

4
5
.
8

5
3
.
5

1
1
.
8

2
6
b

2
3
2

?
P
:
4
(
1
.
0
0
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
7

1
1
.
0

8
.
5

7
.
2

8
.
2

9
.
9

5
.
5

7
.
6

1
6
.
7

9
.
7

4
7
.
7

8
.
9

1
1
.
9

1
0
.
4

1
0
.
6

8
.
7

4
3
.
3

4
5
.
4

1
0
.
2

2
3
3

?
P
:
4
(
1
.
0
0
)

j
1
6

r
-

a
+

4
.
7

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
0

4
.
7

3
.
9

3
.
5

4
.
2

5
.
7

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
3
4

?
P
:
4
(
0
.
9
8
)

j
+

r
+

a
+

7
.
2

1
2
.
9

9
.
0

1
0
.
2

8
.
4

1
0
.
6

7
.
2

8
.
2

2
8
.
4

1
0
.
2

5
6
.
1

1
1
.
3

2
0
.
5

1
2
.
7

2
1
.
6

8
.
7

4
5
.
2

5
3
.
3

1
2
.
3

2
6
b

2
3
5

?
P
:
4
(
0
.
9
8
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
1

1
2
.
0

8
.
8

7
.
6

8
.
4

1
0
.
5

5
.
5

8
.
2

1
6
.
9

1
0
.
1

4
8
.
0

9
.
2

1
2
.
0

1
0
.
1

1
0
.
6

8
.
7

4
2
.
8

4
5
.
3

1
0
.
5

2
3
6

?
P
:
4
(
0
.
9
8
)

j
1
6

r
-

a
+

4
.
9

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
0

4
.
7

3
.
9

3
.
5

4
.
2

5
.
7

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
3
7

?
P
:
4
(
0
.
9
6
)

j
+

r
+

a
+

7
.
9

1
2
.
8

8
.
9

1
0
.
3

8
.
4

1
0
.
6

7
.
1

8
.
2

2
8
.
1

1
0
.
6

5
7
.
2

1
1
.
3

2
0
.
3

1
2
.
7

2
2
.
8

8
.
7

4
5
.
2

5
3
.
2

1
2
.
4

2
6
b

2
3
8

?
P
:
4
(
0
.
9
6
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
1
.
9

8
.
7

7
.
6

8
.
4

1
0
.
5

5
.
5

8
.
2

1
6
.
7

1
0
.
6

4
8
.
7

9
.
2

1
1
.
9

1
0
.
1

1
1
.
0

8
.
7

4
2
.
8

4
5
.
3

1
0
.
6

2
3
9

?
P
:
4
(
0
.
9
6
)

j
1
6

r
-

a
+

4
.
9

5
.
2

4
.
9

4
.
2

4
.
2

4
.
9

3
.
3

5
.
0

4
.
7

4
.
0

3
.
5

4
.
2

5
.
7

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
4
0

?
P
:
4
(
0
.
9
4
)

j
+

r
+

a
+

7
.
9

1
1
.
9

8
.
9

1
0
.
3

8
.
5

1
0
.
3

7
.
1

8
.
2

2
8
.
5

1
0
.
7

5
7
.
8

1
1
.
5

2
0
.
5

1
2
.
7

2
3
.
0

9
.
0

4
5
.
2

5
3
.
2

1
2
.
4

2
6
b

2
4
1

?
P
:
4
(
0
.
9
4
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
1
.
2

8
.
7

7
.
6

8
.
4

1
0
.
2

5
.
5

8
.
2

1
6
.
7

1
0
.
7

4
8
.
8

9
.
2

1
1
.
9

1
0
.
1

1
1
.
0

9
.
0

4
2
.
8

4
5
.
3

1
0
.
6

2
4
2

?
P
:
4
(
0
.
9
4
)

j
1
6

r
-

a
+

4
.
9

5
.
1

4
.
8

4
.
2

4
.
2

4
.
9

3
.
3

5
.
0

4
.
7

3
.
9

3
.
5

4
.
2

5
.
7

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
4
3

?
P
:
4
(
0
.
9
2
)

j
+

r
+

a
+

7
.
9

1
0
.
9

8
.
9

1
0
.
1

8
.
6

1
0
.
2

7
.
1

8
.
1

2
8
.
5

1
0
.
8

5
7
.
8

1
1
.
5

2
0
.
9

1
2
.
7

2
2
.
9

9
.
0

4
5
.
2

5
3
.
2

1
2
.
3

2
6
b

2
4
4

?
P
:
4
(
0
.
9
2
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
3

8
.
6

7
.
4

8
.
5

1
0
.
1

5
.
5

8
.
0

1
6
.
8

1
0
.
7

4
8
.
8

9
.
3

1
2
.
3

1
0
.
1

1
0
.
8

9
.
0

4
2
.
8

4
5
.
3

1
0
.
5

2
7

2
4
5

?
P
:
4
(
0
.
9
2
)

j
1
6

r
-

a
+

4
.
9

5
.
0

4
.
8

4
.
2

4
.
2

4
.
8

3
.
3

5
.
0

4
.
7

3
.
9

3
.
5

4
.
2

5
.
8

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
7

2
4
6

?
P
:
4
(
0
.
9
0
)

j
+

r
+

a
+

7
.
9

1
0
.
9

8
.
8

9
.
9

8
.
6

1
0
.
2

7
.
1

8
.
0

2
5
.
9

1
0
.
6

5
7
.
9

1
1
.
5

2
0
.
8

1
2
.
7

2
1
.
8

9
.
0

4
5
.
2

5
3
.
2

1
2
.
2

2
6
b

2
4
7

?
P
:
4
(
0
.
9
0
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
3

8
.
6

7
.
3

8
.
5

1
0
.
1

5
.
5

8
.
0

1
5
.
6

1
0
.
6

4
8
.
9

9
.
3

1
2
.
2

1
0
.
1

1
0
.
4

9
.
0

4
2
.
8

4
5
.
3

1
0
.
5

2
4
8

?
P
:
4
(
0
.
9
0
)

j
1
6

r
-

a
+

4
.
9

5
.
0

4
.
8

4
.
2

4
.
2

4
.
8

3
.
3

5
.
0

4
.
6

3
.
9

3
.
5

4
.
2

5
.
8

4
.
8

3
.
3

4
.
2

3
.
4

4
.
9

4
.
3

2
4
9

?
P
:
4
(
0
.
8
8
)

j
+

r
+

a
+

7
.
9

1
0
.
9

8
.
7

9
.
8

8
.
6

1
0
.
2

7
.
1

7
.
4

2
6
.
6

1
0
.
5

5
7
.
9

1
1
.
6

2
0
.
2

1
2
.
6

1
8
.
0

9
.
0

4
5
.
2

5
3
.
2

1
2
.
0

2
6
b

2
5
0

?
P
:
4
(
0
.
8
8
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
3

8
.
5

7
.
2

8
.
5

1
0
.
1

5
.
5

7
.
4

1
5
.
6

1
0
.
4

4
8
.
9

9
.
3

1
2
.
1

1
0
.
1

9
.
2

9
.
0

4
2
.
8

4
5
.
3

1
0
.
3

2
5
1

?
P
:
4
(
0
.
8
8
)

j
1
6

r
-

a
+

4
.
9

5
.
0

4
.
8

4
.
1

4
.
2

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
2

5
.
8

4
.
8

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
5
2

?
P
:
4
(
0
.
8
6
)

j
+

r
+

a
+

8
.
0

1
0
.
8

8
.
7

9
.
7

8
.
6

1
0
.
2

7
.
1

7
.
4

2
6
.
8

1
0
.
4

5
7
.
8

1
1
.
5

1
9
.
9

1
2
.
6

1
8
.
2

9
.
0

4
5
.
2

5
3
.
2

1
2
.
0

2
6
b

2
5
3

?
P
:
4
(
0
.
8
6
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
9

1
0
.
2

8
.
4

7
.
1

8
.
5

1
0
.
1

5
.
5

7
.
4

1
5
.
6

1
0
.
4

4
8
.
6

9
.
3

1
2
.
0

1
0
.
1

9
.
0

9
.
0

4
2
.
8

4
5
.
3

1
0
.
2

2
5
4

?
P
:
4
(
0
.
8
6
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
8

4
.
1

4
.
2

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
2

5
.
7

4
.
8

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
5
5

?
P
:
4
(
0
.
8
4
)

j
+

r
+

a
+

8
.
0

1
0
.
8

8
.
8

9
.
6

8
.
6

1
0
.
2

7
.
1

7
.
4

2
6
.
7

1
0
.
3

5
7
.
5

1
1
.
5

1
9
.
2

1
3
.
0

1
8
.
2

9
.
0

4
5
.
2

5
3
.
2

1
2
.
0

2
6
b

2
5
6

?
P
:
4
(
0
.
8
4
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
9

1
0
.
2

8
.
6

7
.
1

8
.
5

1
0
.
1

5
.
5

7
.
4

1
5
.
5

1
0
.
2

4
8
.
4

9
.
2

1
1
.
7

1
0
.
3

9
.
0

9
.
0

4
2
.
8

4
5
.
3

1
0
.
2

2
5
7

?
P
:
4
(
0
.
8
4
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
7

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
1

5
.
7

4
.
8

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
5
8

?
P
:
4
(
0
.
8
2
)

j
+

r
+

a
+

8
.
0

1
0
.
8

8
.
8

9
.
5

8
.
6

1
0
.
3

7
.
1

7
.
4

2
6
.
7

1
0
.
3

5
7
.
6

1
1
.
5

1
9
.
0

1
2
.
6

1
8
.
3

9
.
0

4
5
.
2

5
3
.
2

1
2
.
0

2
6
b

2
5
9

?
P
:
4
(
0
.
8
2
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
9

1
0
.
2

8
.
5

7
.
0

8
.
5

1
0
.
2

5
.
5

7
.
4

1
5
.
5

1
0
.
2

4
8
.
3

9
.
2

1
1
.
7

1
0
.
1

8
.
9

9
.
0

4
2
.
8

4
5
.
3

1
0
.
2

2
6
0

?
P
:
4
(
0
.
8
2
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
7

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
1

5
.
7

4
.
8

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
6
1

?
P
:
4
(
0
.
8
0
)

j
+

r
+

a
+

8
.
0

1
0
.
8

8
.
7

9
.
5

8
.
6

1
0
.
3

7
.
1

7
.
4

2
6
.
7

1
0
.
2

5
6
.
9

1
1
.
4

1
9
.
0

1
2
.
5

1
8
.
3

9
.
0

4
5
.
2

5
3
.
2

1
1
.
9

2
6
b

2
6
2

?
P
:
4
(
0
.
8
0
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
2

8
.
4

7
.
0

8
.
5

1
0
.
2

5
.
5

7
.
4

1
5
.
4

1
0
.
2

4
7
.
8

9
.
1

1
1
.
7

9
.
9

8
.
9

9
.
0

4
2
.
8

4
5
.
3

1
0
.
2

2
6
3

?
P
:
4
(
0
.
8
0
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
7

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
1

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
6
4

?
P
:
4
(
0
.
7
8
)

j
+

r
+

a
+

8
.
0

1
0
.
8

8
.
5

9
.
4

8
.
4

1
0
.
3

7
.
2

7
.
4

2
6
.
5

1
0
.
1

5
7
.
1

1
1
.
3

1
9
.
0

1
2
.
5

1
8
.
3

9
.
0

4
5
.
2

5
3
.
2

1
1
.
9

2
6
b

2
6
5

?
P
:
4
(
0
.
7
8
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
2

8
.
3

7
.
0

8
.
3

1
0
.
2

5
.
5

7
.
4

1
5
.
4

1
0
.
0

4
7
.
9

9
.
0

1
1
.
7

9
.
9

8
.
9

9
.
0

4
2
.
8

4
5
.
3

1
0
.
1

2
6
6

?
P
:
4
(
0
.
7
8
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
6

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
9

3
.
5

4
.
1

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
6
7

?
P
:
4
(
0
.
7
6
)

j
+

r
+

a
+

7
.
9

1
0
.
8

8
.
4

9
.
4

8
.
2

1
0
.
0

7
.
2

6
.
9

2
5
.
2

9
.
9

5
6
.
6

1
1
.
2

1
8
.
9

1
2
.
5

1
8
.
3

9
.
0

4
5
.
2

5
3
.
2

1
1
.
7

2
6
b

2
6
8

?
P
:
4
(
0
.
7
6
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
8

1
0
.
2

8
.
2

6
.
9

8
.
1

9
.
9

5
.
5

6
.
9

1
5
.
0

9
.
9

4
7
.
1

8
.
9

1
1
.
6

9
.
9

8
.
9

9
.
0

4
2
.
8

4
5
.
3

1
0
.
0

2
6
9

?
P
:
4
(
0
.
7
6
)

j
1
6

r
-

a
+

4
.
8

5
.
0

4
.
6

4
.
1

4
.
1

4
.
7

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
7
0

?
P
:
4
(
0
.
7
4
)

j
+

r
+

a
+

7
.
4

1
0
.
8

8
.
3

9
.
3

8
.
2

9
.
9

7
.
2

6
.
9

2
5
.
1

9
.
3

5
6
.
4

1
0
.
8

1
8
.
8

1
2
.
3

1
7
.
7

9
.
0

4
5
.
9

5
3
.
2

1
1
.
5

2
6
b

2
7
1

?
P
:
4
(
0
.
7
4
)

j
2
K
+
2
K

r
2
5
6

a
+

7
.
3

1
0
.
2

8
.
1

6
.
9

8
.
1

9
.
8

5
.
5

6
.
9

1
5
.
0

9
.
3

4
6
.
9

8
.
5

1
1
.
6

9
.
9

8
.
7

9
.
0

4
2
.
8

4
5
.
3

9
.
8

2
7
2

?
P
:
4
(
0
.
7
4
)

j
1
6

r
-

a
+

4
.
7

5
.
0

4
.
6

4
.
1

4
.
1

4
.
7

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
0

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

2
7
3

?
P
:
4
(
0
.
7
2
)

j
+

r
+

a
+

4
.
7

1
0
.
8

8
.
2

9
.
0

7
.
9

9
.
8

6
.
4

6
.
9

2
5
.
1

9
.
1

5
6
.
1

1
0
.
5

1
8
.
5

1
2
.
3

1
7
.
7

9
.
0

4
5
.
9

5
3
.
2

1
0
.
7

2
6
b

2
7
4

?
P
:
4
(
0
.
7
2
)

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

1
0
.
2

8
.
0

6
.
8

7
.
8

9
.
7

5
.
4

6
.
9

1
5
.
0

9
.
1

4
6
.
8

8
.
4

1
1
.
5

9
.
9

8
.
7

9
.
0

4
2
.
8

4
5
.
3

9
.
4

2
7
5

?
P
:
4
(
0
.
7
2
)

j
1
6

r
-

a
+

3
.
9

5
.
0

4
.
6

4
.
1

4
.
0

4
.
7

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
0

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

56

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

2
7
6

?
P
:
4
(
0
.
7
0
)

j
+

r
+

a
+

4
.
7

1
0
.
8

8
.
1

9
.
0

7
.
9

9
.
7

6
.
4

6
.
9

2
5
.
1

9
.
1

5
6
.
1

1
0
.
3

1
8
.
3

1
1
.
9

1
7
.
7

9
.
0

4
5
.
9

5
3
.
2

1
0
.
7

2
6
b

2
7
7

?
P
:
4
(
0
.
7
0
)

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

1
0
.
2

7
.
9

6
.
8

7
.
8

9
.
6

5
.
4

6
.
9

1
5
.
0

9
.
0

4
6
.
8

8
.
2

1
1
.
4

9
.
6

8
.
7

9
.
0

4
2
.
8

4
5
.
3

9
.
3

2
7
8

?
P
:
4
(
0
.
7
0
)

j
1
6

r
-

a
+

3
.
9

5
.
0

4
.
6

4
.
1

3
.
9

4
.
7

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
0

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

2
7
9

?
P
:
4
(
0
.
6
8
)

j
+

r
+

a
+

4
.
7

1
0
.
9

7
.
8

8
.
4

7
.
9

9
.
4

6
.
4

6
.
5

2
4
.
5

8
.
8

5
6
.
1

1
0
.
2

1
8
.
2

1
1
.
9

1
6
.
5

9
.
0

4
5
.
9

5
3
.
2

1
0
.
5

2
6
b

2
8
0

?
P
:
4
(
0
.
6
6
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
7

8
.
4

7
.
6

9
.
1

6
.
4

6
.
5

2
4
.
3

8
.
4

5
5
.
3

1
0
.
0

1
7
.
8

1
1
.
5

1
6
.
5

9
.
0

4
5
.
9

5
3
.
2

1
0
.
3

2
6
b

2
8
1

?
P
:
4
(
0
.
6
4
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
6

8
.
2

7
.
5

8
.
6

6
.
4

6
.
5

2
4
.
3

8
.
1

5
5
.
2

9
.
9

1
7
.
0

1
0
.
5

1
6
.
5

9
.
0

4
5
.
9

5
3
.
2

1
0
.
1

2
6
b

2
8
2

?
P
:
4
(
0
.
6
2
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
6

8
.
1

7
.
3

8
.
2

6
.
4

6
.
5

2
4
.
0

7
.
9

5
5
.
0

9
.
8

1
6
.
9

1
0
.
3

1
6
.
5

9
.
0

4
5
.
9

5
3
.
2

1
0
.
0

2
6
b

2
8
3

?
P
:
4
(
0
.
6
0
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
6

8
.
0

7
.
3

8
.
1

6
.
3

6
.
5

2
3
.
9

7
.
1

5
4
.
6

9
.
6

1
6
.
5

1
0
.
2

1
6
.
0

9
.
0

4
5
.
9

5
3
.
2

9
.
9

2
6
b

2
8
4

?
P
:
4
(
0
.
5
8
)

j
+

r
+

a
+

4
.
7

9
.
9

7
.
6

7
.
9

7
.
3

8
.
0

6
.
3

6
.
5

2
3
.
9

6
.
7

5
4
.
1

9
.
4

1
6
.
0

1
0
.
2

1
6
.
0

9
.
0

4
5
.
9

5
3
.
2

9
.
8

2
6
b

2
8
5

?
P
:
4
(
0
.
5
6
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
1

7
.
9

6
.
4

7
.
8

6
.
2

5
.
6

2
3
.
7

6
.
6

5
4
.
0

9
.
1

1
6
.
0

9
.
9

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

9
.
2

2
6
b

2
8
6

?
P
:
4
(
0
.
5
4
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
1

7
.
6

6
.
1

7
.
8

6
.
2

5
.
6

2
3
.
5

6
.
6

5
3
.
9

8
.
6

1
6
.
0

8
.
1

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

9
.
0

2
6
b

2
8
7

?
P
:
4
(
0
.
5
2
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
0

7
.
4

5
.
8

7
.
7

6
.
2

5
.
6

2
3
.
4

6
.
5

5
3
.
9

7
.
7

1
5
.
9

8
.
0

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

8
.
9

2
6
b

2
8
8

?
P
:
2
(
1
.
0
0
)

j
+

r
+

a
+

5
.
6

1
1
.
3

7
.
6

8
.
5

6
.
9

9
.
6

7
.
2

6
.
8

2
2
.
5

7
.
9

5
4
.
7

9
.
2

1
7
.
8

1
1
.
1

1
8
.
9

8
.
4

4
5
.
8

5
3
.
5

1
0
.
5

2
6
a

2
8
9

?
P
:
2
(
1
.
0
0
)

j
2
K
+
2
K

r
2
5
6

a
+

5
.
5

1
0
.
7

7
.
4

6
.
7

6
.
9

9
.
5

5
.
5

6
.
8

1
5
.
2

7
.
9

4
6
.
5

7
.
7

1
0
.
9

9
.
1

9
.
6

8
.
4

4
3
.
0

4
5
.
3

9
.
2

2
9
0

?
P
:
2
(
1
.
0
0
)

j
1
6

r
-

a
+

4
.
4

5
.
2

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

4
.
6

4
.
6

3
.
7

3
.
5

4
.
1

5
.
6

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

2
9
1

?
P
:
2
(
0
.
9
8
)

j
+

r
+

a
+

5
.
9

1
1
.
7

8
.
0

9
.
1

6
.
9

9
.
6

7
.
2

6
.
6

2
2
.
7

8
.
6

5
4
.
5

9
.
5

1
8
.
2

1
1
.
5

1
9
.
1

8
.
4

4
5
.
2

5
3
.
2

1
0
.
8

2
6
a

2
9
2

?
P
:
2
(
0
.
9
8
)

j
2
K
+
2
K

r
2
5
6

a
+

5
.
8

1
1
.
0

7
.
8

7
.
0

6
.
9

9
.
5

5
.
5

6
.
6

1
5
.
3

8
.
6

4
6
.
5

8
.
0

1
1
.
1

9
.
4

9
.
7

8
.
4

4
2
.
8

4
5
.
3

9
.
4

2
9
3

?
P
:
2
(
0
.
9
8
)

j
1
6

r
-

a
+

4
.
5

5
.
2

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

2
9
4

?
P
:
2
(
0
.
9
6
)

j
+

r
+

a
+

6
.
5

1
1
.
7

7
.
9

9
.
1

7
.
1

9
.
6

7
.
2

6
.
6

2
3
.
5

8
.
7

5
6
.
4

9
.
6

1
8
.
4

1
1
.
5

1
9
.
2

8
.
4

4
5
.
2

5
3
.
2

1
0
.
9

2
6
a

2
9
5

?
P
:
2
(
0
.
9
6
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

1
1
.
0

7
.
7

7
.
0

7
.
1

9
.
5

5
.
5

6
.
6

1
5
.
6

8
.
7

4
7
.
7

8
.
0

1
1
.
1

9
.
4

1
0
.
0

8
.
4

4
2
.
8

4
5
.
3

9
.
6

2
9
6

?
P
:
2
(
0
.
9
6
)

j
1
6

r
-

a
+

4
.
7

5
.
2

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

2
9
7

?
P
:
2
(
0
.
9
4
)

j
+

r
+

a
+

6
.
5

1
1
.
3

7
.
9

9
.
1

7
.
1

9
.
4

7
.
2

6
.
6

2
4
.
0

8
.
8

5
5
.
9

9
.
6

1
8
.
5

1
1
.
5

1
9
.
4

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

2
9
8

?
P
:
2
(
0
.
9
4
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

1
0
.
7

7
.
7

7
.
0

7
.
0

9
.
3

5
.
5

6
.
6

1
5
.
7

8
.
8

4
7
.
6

8
.
0

1
1
.
2

9
.
4

1
0
.
1

8
.
6

4
2
.
8

4
5
.
3

9
.
6

2
9
9

?
P
:
2
(
0
.
9
4
)

j
1
6

r
-

a
+

4
.
7

5
.
1

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

3
0
0

?
P
:
2
(
0
.
9
2
)

j
+

r
+

a
+

6
.
5

1
0
.
9

7
.
9

9
.
1

7
.
1

9
.
3

7
.
2

6
.
6

2
6
.
6

8
.
8

5
5
.
9

9
.
6

1
9
.
0

1
1
.
5

1
9
.
9

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

3
0
1

?
P
:
2
(
0
.
9
2
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

1
0
.
3

7
.
7

6
.
9

7
.
0

9
.
2

5
.
5

6
.
6

1
5
.
7

8
.
8

4
7
.
6

8
.
0

1
1
.
6

9
.
4

1
0
.
1

8
.
6

4
2
.
8

4
5
.
3

9
.
5

2
7

3
0
2

?
P
:
2
(
0
.
9
2
)

j
1
6

r
-

a
+

4
.
7

5
.
0

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

4
.
6

4
.
6

3
.
8

3
.
5

4
.
1

5
.
7

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

2
7

3
0
3

?
P
:
2
(
0
.
9
0
)

j
+

r
+

a
+

6
.
5

1
0
.
9

7
.
9

9
.
2

7
.
1

9
.
3

7
.
2

7
.
3

2
5
.
3

8
.
7

5
5
.
8

9
.
7

1
9
.
0

1
1
.
6

1
9
.
8

8
.
6

4
5
.
2

5
3
.
2

1
1
.
1

2
6
a

3
0
4

?
P
:
2
(
0
.
9
0
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

1
0
.
3

7
.
7

6
.
9

7
.
0

9
.
2

5
.
5

7
.
3

1
5
.
2

8
.
7

4
7
.
6

8
.
0

1
1
.
6

9
.
4

1
0
.
1

8
.
6

4
2
.
8

4
5
.
3

9
.
6

3
0
5

?
P
:
2
(
0
.
9
0
)

j
1
6

r
-

a
+

4
.
7

5
.
0

4
.
7

4
.
2

4
.
0

4
.
8

3
.
3

5
.
0

4
.
6

3
.
8

3
.
5

4
.
1

5
.
7

4
.
7

3
.
3

4
.
2

3
.
4

4
.
9

4
.
2

3
0
6

?
P
:
2
(
0
.
8
8
)

j
+

r
+

a
+

6
.
5

1
0
.
9

7
.
8

9
.
0

7
.
1

9
.
3

7
.
2

7
.
0

2
5
.
0

8
.
7

5
5
.
8

9
.
7

1
8
.
8

1
1
.
5

1
7
.
3

8
.
6

4
5
.
2

5
3
.
2

1
0
.
9

2
6
a

3
0
7

?
P
:
2
(
0
.
8
8
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

1
0
.
3

7
.
6

6
.
8

7
.
0

9
.
2

5
.
5

7
.
0

1
5
.
2

8
.
6

4
7
.
6

8
.
1

1
1
.
6

9
.
4

9
.
0

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
0
8

?
P
:
2
(
0
.
8
8
)

j
1
6

r
-

a
+

4
.
7

5
.
0

4
.
7

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
8

3
.
5

4
.
1

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
0
9

?
P
:
2
(
0
.
8
6
)

j
+

r
+

a
+

6
.
7

1
0
.
8

7
.
8

9
.
2

7
.
1

9
.
3

7
.
2

7
.
0

2
4
.
9

8
.
7

5
6
.
1

9
.
7

1
8
.
9

1
1
.
5

1
7
.
4

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

3
1
0

?
P
:
2
(
0
.
8
6
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
6

6
.
8

7
.
1

9
.
2

5
.
5

7
.
0

1
5
.
2

8
.
6

4
7
.
5

8
.
1

1
1
.
6

9
.
4

9
.
0

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
1
1

?
P
:
2
(
0
.
8
6
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
7

4
.
1

4
.
1

4
.
8

3
.
3

4
.
7

4
.
6

3
.
8

3
.
5

4
.
1

5
.
7

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
1
2

?
P
:
2
(
0
.
8
4
)

j
+

r
+

a
+

6
.
7

1
0
.
8

8
.
1

9
.
1

7
.
2

9
.
3

7
.
2

7
.
0

2
4
.
9

8
.
6

5
6
.
4

9
.
8

1
8
.
5

1
1
.
6

1
7
.
4

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

3
1
3

?
P
:
2
(
0
.
8
4
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
9

6
.
8

7
.
2

9
.
2

5
.
5

7
.
0

1
5
.
2

8
.
5

4
7
.
7

8
.
1

1
1
.
4

9
.
4

9
.
0

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
1
4

?
P
:
2
(
0
.
8
4
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
7

4
.
1

4
.
0

4
.
8

3
.
3

4
.
7

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
1
5

?
P
:
2
(
0
.
8
2
)

j
+

r
+

a
+

6
.
7

1
0
.
8

8
.
1

9
.
1

7
.
3

9
.
4

7
.
2

7
.
0

2
4
.
9

8
.
6

5
6
.
4

9
.
8

1
8
.
4

1
1
.
5

1
7
.
4

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

3
1
6

?
P
:
2
(
0
.
8
2
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
9

6
.
8

7
.
2

9
.
3

5
.
5

7
.
0

1
5
.
2

8
.
5

4
7
.
4

8
.
0

1
1
.
4

9
.
4

8
.
9

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
1
7

?
P
:
2
(
0
.
8
2
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
7

4
.
1

4
.
0

4
.
8

3
.
3

4
.
7

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
7

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
1
8

?
P
:
2
(
0
.
8
0
)

j
+

r
+

a
+

6
.
6

1
0
.
8

8
.
0

9
.
1

7
.
3

9
.
4

7
.
2

7
.
0

2
4
.
9

8
.
5

5
6
.
2

9
.
8

1
8
.
5

1
1
.
4

1
7
.
4

8
.
6

4
5
.
2

5
3
.
2

1
1
.
0

2
6
a

3
1
9

?
P
:
2
(
0
.
8
0
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
8

6
.
8

7
.
2

9
.
3

5
.
5

7
.
0

1
5
.
1

8
.
5

4
7
.
2

8
.
0

1
1
.
5

9
.
3

8
.
9

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
2
0

?
P
:
2
(
0
.
8
0
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
6

4
.
1

4
.
0

4
.
8

3
.
3

4
.
7

4
.
6

3
.
8

3
.
5

4
.
1

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
2
1

?
P
:
2
(
0
.
7
8
)

j
+

r
+

a
+

6
.
6

1
0
.
8

8
.
0

9
.
0

7
.
2

9
.
4

7
.
1

7
.
0

2
4
.
8

8
.
5

5
6
.
0

9
.
7

1
8
.
4

1
1
.
4

1
7
.
4

8
.
6

4
5
.
2

5
3
.
2

1
0
.
9

2
6
a

3
2
2

?
P
:
2
(
0
.
7
8
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
8

6
.
7

7
.
2

9
.
3

5
.
5

7
.
0

1
5
.
1

8
.
5

4
7
.
0

8
.
0

1
1
.
4

9
.
3

8
.
9

8
.
6

4
2
.
8

4
5
.
3

9
.
5

3
2
3

?
P
:
2
(
0
.
7
8
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
6

4
.
1

4
.
0

4
.
8

3
.
3

4
.
7

4
.
6

3
.
7

3
.
5

4
.
0

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
2
4

?
P
:
2
(
0
.
7
6
)

j
+

r
+

a
+

6
.
6

1
0
.
8

7
.
9

8
.
9

7
.
1

9
.
3

7
.
1

6
.
8

2
4
.
0

8
.
4

5
5
.
7

9
.
6

1
8
.
3

1
1
.
4

1
7
.
4

8
.
8

4
5
.
2

5
3
.
2

1
0
.
9

2
6
a

3
2
5

?
P
:
2
(
0
.
7
6
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
6

1
0
.
2

7
.
7

6
.
7

7
.
1

9
.
2

5
.
5

6
.
8

1
4
.
9

8
.
4

4
6
.
5

7
.
9

1
1
.
4

9
.
3

8
.
9

8
.
7

4
2
.
8

4
5
.
3

9
.
4

3
2
6

?
P
:
2
(
0
.
7
6
)

j
1
6

r
-

a
+

4
.
6

5
.
0

4
.
6

4
.
1

4
.
0

4
.
7

3
.
3

4
.
6

4
.
6

3
.
7

3
.
5

4
.
0

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
2
7

?
P
:
2
(
0
.
7
4
)

j
+

r
+

a
+

6
.
4

1
0
.
8

7
.
8

8
.
9

7
.
1

9
.
2

7
.
1

6
.
8

2
3
.
9

8
.
2

5
5
.
6

9
.
5

1
8
.
2

1
1
.
7

1
7
.
4

8
.
8

4
5
.
1

5
3
.
2

1
0
.
8

2
6
a

3
2
8

?
P
:
2
(
0
.
7
4
)

j
2
K
+
2
K

r
2
5
6

a
+

6
.
3

1
0
.
2

7
.
6

6
.
7

7
.
1

9
.
1

5
.
5

6
.
8

1
4
.
8

8
.
2

4
6
.
4

7
.
8

1
1
.
3

9
.
5

8
.
7

8
.
7

4
2
.
8

4
5
.
3

9
.
3

3
2
9

?
P
:
2
(
0
.
7
4
)

j
1
6

r
-

a
+

4
.
5

5
.
0

4
.
6

4
.
1

4
.
0

4
.
7

3
.
3

4
.
6

4
.
6

3
.
7

3
.
5

4
.
0

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
2

3
3
0

?
P
:
2
(
0
.
7
2
)

j
+

r
+

a
+

4
.
7

1
0
.
8

7
.
7

8
.
7

7
.
2

9
.
1

6
.
3

6
.
8

2
3
.
9

8
.
0

5
5
.
4

9
.
4

1
8
.
1

1
1
.
7

1
7
.
4

8
.
8

4
5
.
1

5
3
.
2

1
0
.
3

2
6
a

57

e
g
r
e

s
e
d
d

y
a
c
c

e
c
o

g
r
r

m
e
t

a
l
v
i

c
o
m
p

d
o
d
u

e
s
p
r

f
p
p
p

g
c
c
1

h
y
d
r

l
i

m
d
l
j

o
r
a

s
w
m

t
o
m
c

H
M
E
A
N

F
i
g
u
r
e
s

3
3
1

?
P
:
2
(
0
.
7
2
)

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

1
0
.
2

7
.
5

6
.
6

7
.
2

9
.
1

5
.
4

6
.
8

1
4
.
8

8
.
0

4
6
.
3

7
.
8

1
1
.
3

9
.
5

8
.
7

8
.
7

4
2
.
8

4
5
.
3

9
.
1

3
3
2

?
P
:
2
(
0
.
7
2
)

j
1
6

r
-

a
+

3
.
9

5
.
0

4
.
6

4
.
1

3
.
9

4
.
7

3
.
3

4
.
6

4
.
6

3
.
7

3
.
5

4
.
0

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

3
3
3

?
P
:
2
(
0
.
7
0
)

j
+

r
+

a
+

4
.
7

1
0
.
8

7
.
6

8
.
7

7
.
2

9
.
0

6
.
3

6
.
8

2
3
.
9

8
.
0

5
5
.
4

9
.
4

1
7
.
8

1
1
.
4

1
7
.
4

8
.
8

4
5
.
1

5
3
.
2

1
0
.
3

2
6
a

3
3
4

?
P
:
2
(
0
.
7
0
)

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

1
0
.
2

7
.
4

6
.
6

7
.
2

8
.
9

5
.
4

6
.
8

1
4
.
8

8
.
0

4
6
.
3

7
.
7

1
1
.
2

9
.
3

8
.
7

8
.
7

4
2
.
8

4
5
.
3

9
.
0

3
3
5

?
P
:
2
(
0
.
7
0
)

j
1
6

r
-

a
+

3
.
9

5
.
0

4
.
5

4
.
1

3
.
9

4
.
7

3
.
3

4
.
6

4
.
6

3
.
7

3
.
5

4
.
0

5
.
6

4
.
6

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

3
3
6

?
P
:
2
(
0
.
6
8
)

j
+

r
+

a
+

4
.
7

1
0
.
9

7
.
4

8
.
2

7
.
2

8
.
8

6
.
3

6
.
5

2
3
.
9

7
.
9

5
5
.
4

9
.
4

1
7
.
7

1
1
.
4

1
6
.
4

8
.
8

4
5
.
1

5
3
.
2

1
0
.
1

2
6
a

3
3
7

?
P
:
2
(
0
.
6
6
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
4

8
.
2

6
.
8

8
.
7

6
.
3

6
.
5

2
3
.
8

7
.
8

5
5
.
0

9
.
3

1
7
.
4

1
1
.
3

1
6
.
4

8
.
8

4
5
.
1

5
3
.
2

1
0
.
0

2
6
a

3
3
8

?
P
:
2
(
0
.
6
4
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
3

8
.
0

6
.
8

8
.
4

6
.
3

6
.
5

2
3
.
8

7
.
6

5
4
.
9

9
.
2

1
6
.
9

1
0
.
2

1
6
.
4

8
.
8

4
5
.
1

5
3
.
2

9
.
9

2
6
a

3
3
9

?
P
:
2
(
0
.
6
2
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
3

7
.
9

6
.
6

8
.
2

6
.
3

6
.
5

2
3
.
5

7
.
5

5
4
.
9

9
.
2

1
6
.
8

1
0
.
2

1
6
.
4

8
.
8

4
5
.
1

5
3
.
2

9
.
8

2
6
a

3
4
0

?
P
:
2
(
0
.
6
0
)

j
+

r
+

a
+

4
.
7

1
0
.
2

7
.
3

7
.
9

6
.
6

8
.
1

6
.
2

6
.
5

2
3
.
4

7
.
0

5
4
.
6

9
.
0

1
6
.
4

1
0
.
1

1
5
.
9

8
.
8

4
5
.
1

5
3
.
2

9
.
7

2
6
a

3
4
1

?
P
:
2
(
0
.
5
8
)

j
+

r
+

a
+

4
.
7

9
.
9

7
.
3

7
.
8

6
.
6

7
.
9

6
.
2

6
.
5

2
3
.
4

6
.
7

5
4
.
1

8
.
9

1
6
.
0

1
0
.
1

1
5
.
9

8
.
8

4
5
.
1

5
3
.
2

9
.
6

2
6
a

3
4
2

?
P
:
2
(
0
.
5
6
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
1

7
.
8

6
.
1

7
.
8

6
.
2

5
.
6

2
3
.
3

6
.
6

5
4
.
0

8
.
6

1
6
.
0

9
.
9

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

9
.
2

2
6
a

3
4
3

?
P
:
2
(
0
.
5
4
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
0

7
.
6

5
.
8

7
.
8

6
.
2

5
.
6

2
3
.
3

6
.
5

5
3
.
9

8
.
3

1
6
.
0

8
.
1

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

9
.
0

2
6
a

3
4
4

?
P
:
2
(
0
.
5
2
)

j
+

r
+

a
+

4
.
7

9
.
9

6
.
0

7
.
4

5
.
7

7
.
6

6
.
2

5
.
6

2
3
.
3

6
.
5

5
3
.
9

7
.
7

1
5
.
9

7
.
9

1
5
.
9

7
.
7

4
1
.
8

5
3
.
2

8
.
9

2
6
a

3
4
5

?
P

j
+

r
+

a
+

4
.
7

9
.
9

5
.
9

7
.
3

5
.
2

7
.
5

6
.
2

5
.
6

2
1
.
8

6
.
3

5
3
.
6

7
.
4

1
5
.
6

7
.
6

1
5
.
6

7
.
6

4
1
.
8

5
3
.
2

8
.
7

2
6
a

2
6
b

3
4
6

?
P

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

9
.
4

5
.
8

5
.
8

5
.
1

7
.
5

5
.
3

5
.
6

1
4
.
0

6
.
3

4
5
.
4

6
.
4

1
0
.
3

6
.
5

8
.
4

7
.
6

4
1
.
0

4
5
.
2

7
.
8

3
4
7

?
T
a
k
e
n

j
2
K
+
2
K

r
2
5
6

a
+

3
.
8

4
.
2

3
.
7

3
.
5

3
.
4

3
.
5

4
.
4

3
.
2

5
.
7

3
.
6

3
7
.
8

3
.
6

6
.
6

3
.
4

5
.
8

6
.
9

3
4
.
6

4
4
.
8

4
.
8

3
4
8

?
S
i
g
n

j
2
K
+
2
K

r
2
5
6

a
+

2
.
3

3
.
0

2
.
6

3
.
0

3
.
5

3
.
7

4
.
7

3
.
9

8
.
6

3
.
4

3
4
.
3

3
.
1

4
.
7

3
.
6

3
.
8

5
.
4

4
0
.
9

2
2
.
1

4
.
2

3
4
9

?
-
:
8

j
+

r
+

a
+

6
.
5

8
.
0

7
.
2

8
.
1

7
.
9

8
.
9

5
.
1

7
.
2

1
5
.
1

8
.
4

4
9
.
1

8
.
2

1
5
.
0

9
.
2

1
4
.
8

8
.
2

4
5
.
5

4
9
.
9

9
.
7

3
5
0

?
-
:
8

j
2
K
+
2
K

r
2
5
6

a
+

6
.
5

7
.
9

7
.
1

6
.
6

7
.
8

8
.
9

5
.
1

7
.
2

1
4
.
0

8
.
4

4
5
.
2

7
.
2

1
0
.
8

8
.
0

1
1
.
1

8
.
2

4
3
.
4

4
5
.
5

9
.
1

2
4
a

3
5
1

?
-
:
6

j
+

r
+

a
+

5
.
7

7
.
5

6
.
7

7
.
3

7
.
0

7
.
6

5
.
0

6
.
8

1
3
.
4

7
.
3

4
7
.
3

7
.
2

1
3
.
3

8
.
1

1
0
.
9

7
.
8

4
4
.
6

4
7
.
0

8
.
8

3
5
2

?
-
:
6

j
2
K
+
2
K

r
2
5
6

a
+

5
.
7

7
.
4

6
.
6

6
.
1

7
.
0

7
.
6

5
.
0

6
.
8

1
2
.
7

7
.
2

4
3
.
4

6
.
4

1
0
.
2

7
.
2

1
0
.
1

7
.
8

4
3
.
2

4
5
.
4

8
.
4

2
4
a

3
5
3

?
-
:
4

j
+

r
+

a
+

4
.
7

6
.
3

5
.
0

6
.
0

6
.
0

6
.
2

4
.
9

5
.
6

1
1
.
3

5
.
7

4
5
.
1

6
.
0

1
0
.
8

6
.
7

1
0
.
1

7
.
7

4
3
.
5

4
2
.
3

7
.
4

3
5
4

?
P

j
1
6

r
-

a
+

3
.
9

4
.
8

3
.
9

3
.
9

3
.
3

4
.
4

3
.
3

4
.
3

4
.
5

3
.
4

3
.
5

3
.
7

5
.
5

4
.
1

3
.
1

3
.
9

3
.
4

4
.
9

3
.
9

3
5
5

?
-
:
4

j
2
K
+
2
K

r
2
5
6

a
+

4
.
7

6
.
3

4
.
9

5
.
4

6
.
0

6
.
1

4
.
9

5
.
6

1
0
.
9

5
.
7

4
1
.
5

5
.
5

9
.
1

6
.
2

8
.
3

7
.
6

4
3
.
0

4
2
.
2

7
.
2

2
4
a

3
5
6

?
-
:
2

j
+

r
+

a
+

3
.
4

4
.
7

3
.
3

4
.
8

4
.
5

4
.
3

4
.
7

4
.
0

8
.
6

4
.
3

4
1
.
1

4
.
4

7
.
8

5
.
1

7
.
0

6
.
5

4
0
.
1

3
4
.
8

5
.
6

3
5
7

?
T
a
k
e
n

j
1
6

r
-

a
+

3
.
5

3
.
5

2
.
6

3
.
0

2
.
6

3
.
0

3
.
1

2
.
9

3
.
3

2
.
7

3
.
4

2
.
8

4
.
4

3
.
0

2
.
8

4
.
0

3
.
4

4
.
9

3
.
2

3
5
8

?
-
:
2

j
2
K
+
2
K

r
2
5
6

a
+

3
.
4

4
.
7

3
.
3

4
.
4

4
.
5

4
.
2

4
.
7

4
.
0

8
.
3

4
.
3

3
8
.
2

4
.
2

7
.
3

4
.
8

6
.
4

6
.
5

4
0
.
0

3
4
.
8

5
.
5

2
4
a

3
5
9

?
-

j
+

r
+

a
+

1
.
3

2
.
0

1
.
4

2
.
2

2
.
1

2
.
1

3
.
2

2
.
1

4
.
1

1
.
8

2
9
.
9

2
.
1

3
.
4

2
.
3

3
.
0

4
.
2

1
9
.
5

1
8
.
6

2
.
6

3
6
0

?
S
i
g
n

j
1
6

r
-

a
+

2
.
2

2
.
5

2
.
5

2
.
7

2
.
8

3
.
0

3
.
1

3
.
3

4
.
0

2
.
6

3
.
4

2
.
6

3
.
5

2
.
9

2
.
2

3
.
4

3
.
4

4
.
4

2
.
9

3
6
1

?
-

j
2
K
+
2
K

r
2
5
6

a
+

1
.
3

2
.
0

1
.
4

2
.
1

2
.
1

2
.
1

3
.
2

2
.
1

4
.
1

1
.
8

2
8
.
5

2
.
0

3
.
3

2
.
3

2
.
9

4
.
2

1
9
.
5

1
8
.
6

2
.
6

2
2
b

2
3
b

2
4
a

3
6
2

?
-
:
8

j
1
6

r
-

a
+

4
.
9

5
.
2

4
.
8

4
.
2

4
.
2

4
.
9

3
.
3

5
.
1

4
.
6

4
.
0

3
.
5

4
.
2

5
.
7

4
.
8

3
.
4

4
.
2

3
.
4

4
.
9

4
.
3

2
5
a

3
6
3

?
-
:
6

j
1
6

r
-

a
+

4
.
7

5
.
2

4
.
7

4
.
2

4
.
2

4
.
9

3
.
3

5
.
0

4
.
6

3
.
9

3
.
5

4
.
1

5
.
6

4
.
7

3
.
4

4
.
2

3
.
4

4
.
9

4
.
3

2
5
a

3
6
4

?
-
:
4

j
1
6

r
-

a
+

4
.
3

4
.
8

4
.
0

4
.
1

4
.
0

4
.
8

3
.
3

4
.
6

4
.
4

3
.
7

3
.
5

3
.
9

5
.
4

4
.
5

3
.
2

4
.
2

3
.
4

4
.
9

4
.
1

2
5
a

3
6
5

?
-
:
2

j
1
6

r
-

a
+

3
.
3

3
.
7

3
.
1

3
.
7

3
.
5

3
.
8

3
.
2

3
.
8

4
.
0

3
.
2

3
.
5

3
.
4

4
.
8

3
.
9

3
.
0

3
.
9

3
.
4

4
.
8

3
.
6

2
5
a

3
6
6

?
-

j
1
6

r
-

a
+

1
.
3

1
.
8

1
.
4

2
.
0

2
.
0

2
.
0

2
.
9

2
.
1

2
.
7

1
.
7

3
.
4

1
.
9

2
.
8

2
.
1

2
.
0

3
.
0

3
.
4

4
.
4

2
.
2

2
2
a

2
3
a

2
5
a

3
6
7

?
-

j
-

r
-

a
I
n
s
p

1
.
3

1
.
6

1
.
3

1
.
6

1
.
6

1
.
6

2
.
2

1
.
9

2
.
4

1
.
5

2
.
9

1
.
6

2
.
4

1
.
8

1
.
6

2
.
3

2
.
7

3
.
5

1
.
8

3
6
8

?
-

j
-

r
-

a
-

1
.
3

1
.
5

1
.
3

1
.
5

1
.
4

1
.
4

2
.
2

1
.
9

2
.
1

1
.
5

2
.
5

1
.
5

2
.
3

1
.
5

1
.
6

2
.
3

2
.
7

2
.
8

1
.
7

1
2

3
6
9

?
-

j
-

r
-

a
-

w
+

1
.
3

1
.
5

1
.
3

1
.
5

1
.
4

1
.
4

2
.
2

1
.
9

2
.
1

1
.
5

2
.
5

1
.
5

2
.
3

1
.
5

1
.
6

2
.
3

2
.
7

2
.
8

1
.
7

1
8
a

3
7
0

?
-

j
-

r
-

a
-

i
I
n
f

1
.
3

1
.
5

1
.
3

1
.
5

1
.
4

1
.
4

2
.
2

1
.
9

2
.
1

1
.
5

2
.
5

1
.
5

2
.
3

1
.
5

1
.
6

2
.
3

2
.
7

2
.
8

1
.
7

1
5
a

3
7
1

?
-

j
-

r
-

a
-

i
*
2

1
.
3

1
.
5

1
.
3

1
.
5

1
.
4

1
.
4

2
.
2

1
.
9

2
.
1

1
.
5

2
.
5

1
.
5

2
.
3

1
.
5

1
.
6

2
.
3

2
.
7

2
.
8

1
.
7

1
4
a

3
7
2

?
-

j
-

r
-

a
-

L
B

1
.
3

1
.
5

1
.
3

1
.
5

1
.
4

1
.
4

1
.
9

1
.
9

2
.
0

1
.
5

2
.
3

1
.
5

2
.
2

1
.
5

1
.
5

2
.
1

2
.
2

2
.
7

1
.
7

3
4
a

3
7
3

?
-

j
-

r
-

a
-

L
C

1
.
3

1
.
5

1
.
2

1
.
5

1
.
5

1
.
5

1
.
9

1
.
8

2
.
1

1
.
5

2
.
6

1
.
5

2
.
4

1
.
5

1
.
5

2
.
1

2
.
2

2
.
8

1
.
7

3
7
4

?
-

j
-

r
-

a
-

L
D

1
.
3

1
.
5

1
.
2

1
.
5

1
.
5

1
.
5

1
.
8

1
.
8

2
.
0

1
.
5

2
.
4

1
.
5

2
.
3

1
.
5

1
.
5

1
.
9

2
.
0

2
.
6

1
.
7

3
4
b

3
7
5

?
-

j
-

r
-

a
-

L
E

1
.
3

1
.
5

1
.
2

1
.
5

1
.
5

1
.
5

1
.
7

1
.
8

2
.
0

1
.
5

2
.
4

1
.
5

2
.
3

1
.
5

1
.
6

1
.
9

2
.
1

2
.
7

1
.
7

58

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Figure 12 Figure 17a
368 ?- j- r- a- 55 ?c13:4 j2K+2K r256 a+ dw4
214 ?a5 j- r- aInsp 54 ?c13:4 j2K+2K r256 a+ dw8
159 ?b8 j16 r- a+ 53 ?c13:4 j2K+2K r256 a+ dw16
107 ?c10 j16+8 r64 a+ 52 ?c13:4 j2K+2K r256 a+ dw32
72 ?c13 j2K+2K r256 a+ 51 ?c13:4 j2K+2K r256 a+ dw64
35 ?c13:4 j2K+2K r256 a+ 50 ?c13:4 j2K+2K r256 a+ dw128
1 ?+ j+ r+ a+ 49 ?c13:4 j2K+2K r256 a+ dw256

48 ?c13:4 j2K+2K r256 a+ dw512
Figure 13 47 ?c13:4 j2K+2K r256 a+ dw1K

107 ?c10 j16+8 r64 a+ 46 ?c13:4 j2K+2K r256 a+ dw2K

Figure 14a Figure 17b
371 ?- j- r- a- i*2 179 ?b8 j16 r- a+ dw4
217 ?a5 j- r- aInsp i*2 178 ?b8 j16 r- a+ dw8
181 ?b8 j16 r- a+ i*2 177 ?b8 j16 r- a+ dw16
110 ?c10 j16+8 r64 a+ i*2 176 ?b8 j16 r- a+ dw32
75 ?c13 j2K+2K r256 a+ i*2 175 ?b8 j16 r- a+ dw64
57 ?c13:4 j2K+2K r256 a+ i*2 174 ?b8 j16 r- a+ dw128
4 ?+ j+ r+ a+ i*2 173 ?b8 j16 r- a+ dw256

172 ?b8 j16 r- a+ dw512
Figure 15a 171 ?b8 j16 r- a+ dw1K

370 ?- j- r- a- iInf 170 ?b8 j16 r- a+ dw2K
216 ?a5 j- r- aInsp iInf
180 ?b8 j16 r- a+ iInf Figure 18a
109 ?c10 j16+8 r64 a+ iInf 369 ?- j- r- a- w+
74 ?c13 j2K+2K r256 a+ iInf 215 ?a5 j- r- aInsp w+
56 ?c13:4 j2K+2K r256 a+ iInf 160 ?b8 j16 r- a+ w+
3 ?+ j+ r+ a+ iInf 108 ?c10 j16+8 r64 a+ w+

73 ?c13 j2K+2K r256 a+ w+
Figure 16a 36 ?c13:4 j2K+2K r256 a+ w+

45 ?c13:4 j2K+2K r256 a+ w4 2 ?+ j+ r+ a+ w+
44 ?c13:4 j2K+2K r256 a+ w8
43 ?c13:4 j2K+2K r256 a+ w16 Figure 22a
42 ?c13:4 j2K+2K r256 a+ w32 366 ?- j16 r- a+
41 ?c13:4 j2K+2K r256 a+ w64 230 ?a1 j16 r- a+
40 ?c13:4 j2K+2K r256 a+ w128 228 ?a2 j16 r- a+
39 ?c13:4 j2K+2K r256 a+ w256 226 ?a3 j16 r- a+
38 ?c13:4 j2K+2K r256 a+ w512 224 ?a4 j16 r- a+
37 ?c13:4 j2K+2K r256 a+ w1K 211 ?a5 j16 r- a+
35 ?c13:4 j2K+2K r256 a+ 209 ?a6 j16 r- a+

207 ?a7 j16 r- a+
Figure 16b 197 ?b6 j16 r- a+

169 ?b8 j16 r- a+ w4 195 ?b7 j16 r- a+
168 ?b8 j16 r- a+ w8 159 ?b8 j16 r- a+
167 ?b8 j16 r- a+ w16 143 ?b9 j16 r- a+
166 ?b8 j16 r- a+ w32 123 ?c9 j16 r- a+
165 ?b8 j16 r- a+ w64 121 ?c10 j16 r- a+
164 ?b8 j16 r- a+ w128 101 ?c11 j16 r- a+
163 ?b8 j16 r- a+ w256 99 ?c12 j16 r- a+
162 ?b8 j16 r- a+ w512 91 ?c13 j16 r- a+
161 ?b8 j16 r- a+ w1K
159 ?b8 j16 r- a+

59

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Figure 22b Figure 24a
361 ?- j2K+2K r256 a+ 361 ?- j2K+2K r256 a+
229 ?a1 j2K+2K r256 a+ 358 ?-:2 j2K+2K r256 a+
227 ?a2 j2K+2K r256 a+ 355 ?-:4 j2K+2K r256 a+
225 ?a3 j2K+2K r256 a+ 352 ?-:6 j2K+2K r256 a+
223 ?a4 j2K+2K r256 a+ 350 ?-:8 j2K+2K r256 a+
210 ?a5 j2K+2K r256 a+
208 ?a6 j2K+2K r256 a+ Figure 24b
206 ?a7 j2K+2K r256 a+ 72 ?c13 j2K+2K r256 a+
196 ?b6 j2K+2K r256 a+ 70 ?c13:2 j2K+2K r256 a+
194 ?b7 j2K+2K r256 a+ 35 ?c13:4 j2K+2K r256 a+
148 ?b8 j2K+2K r256 a+ 31 ?c13:6 j2K+2K r256 a+
142 ?b9 j2K+2K r256 a+ 29 ?c13:8 j2K+2K r256 a+
122 ?c9 j2K+2K r256 a+
102 ?c10 j2K+2K r256 a+ Figure 25a
100 ?c11 j2K+2K r256 a+ 366 ?- j16 r- a+
98 ?c12 j2K+2K r256 a+ 365 ?-:2 j16 r- a+
72 ?c13 j2K+2K r256 a+ 364 ?-:4 j16 r- a+

363 ?-:6 j16 r- a+
Figure 23a 362 ?-:8 j16 r- a+

366 ?- j16 r- a+
230 ?a1 j16 r- a+ Figure 25b
228 ?a2 j16 r- a+ 159 ?b8 j16 r- a+
226 ?a3 j16 r- a+ 147 ?b8:2 j16 r- a+
224 ?a4 j16 r- a+ 146 ?b8:4 j16 r- a+
211 ?a5 j16 r- a+ 145 ?b8:6 j16 r- a+
209 ?a6 j16 r- a+ 144 ?b8:8 j16 r- a+
207 ?a7 j16 r- a+
197 ?b6 j16 r- a+ Figure 26a
195 ?b7 j16 r- a+ 345 ?P j+ r+ a+
159 ?b8 j16 r- a+ 344 ?P:2(0.52) j+ r+ a+
143 ?b9 j16 r- a+ 343 ?P:2(0.54) j+ r+ a+
123 ?c9 j16 r- a+ 342 ?P:2(0.56) j+ r+ a+
121 ?c10 j16 r- a+ 341 ?P:2(0.58) j+ r+ a+
101 ?c11 j16 r- a+ 340 ?P:2(0.60) j+ r+ a+
99 ?c12 j16 r- a+ 339 ?P:2(0.62) j+ r+ a+
91 ?c13 j16 r- a+ 338 ?P:2(0.64) j+ r+ a+

337 ?P:2(0.66) j+ r+ a+
Figure 23b 336 ?P:2(0.68) j+ r+ a+

361 ?- j2K+2K r256 a+ 333 ?P:2(0.70) j+ r+ a+
229 ?a1 j2K+2K r256 a+ 330 ?P:2(0.72) j+ r+ a+
227 ?a2 j2K+2K r256 a+ 327 ?P:2(0.74) j+ r+ a+
225 ?a3 j2K+2K r256 a+ 324 ?P:2(0.76) j+ r+ a+
223 ?a4 j2K+2K r256 a+ 321 ?P:2(0.78) j+ r+ a+
210 ?a5 j2K+2K r256 a+ 318 ?P:2(0.80) j+ r+ a+
208 ?a6 j2K+2K r256 a+ 315 ?P:2(0.82) j+ r+ a+
206 ?a7 j2K+2K r256 a+ 312 ?P:2(0.84) j+ r+ a+
196 ?b6 j2K+2K r256 a+ 309 ?P:2(0.86) j+ r+ a+
194 ?b7 j2K+2K r256 a+ 306 ?P:2(0.88) j+ r+ a+
148 ?b8 j2K+2K r256 a+ 303 ?P:2(0.90) j+ r+ a+
142 ?b9 j2K+2K r256 a+ 300 ?P:2(0.92) j+ r+ a+
122 ?c9 j2K+2K r256 a+ 297 ?P:2(0.94) j+ r+ a+
102 ?c10 j2K+2K r256 a+ 294 ?P:2(0.96) j+ r+ a+
100 ?c11 j2K+2K r256 a+ 291 ?P:2(0.98) j+ r+ a+
98 ?c12 j2K+2K r256 a+ 288 ?P:2(1.00) j+ r+ a+
72 ?c13 j2K+2K r256 a+

60

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Figure 26b Figure 29a
345 ?P j+ r+ a+ 87 ?c13 j2K r256 a+
287 ?P:4(0.52) j+ r+ a+ 86 ?c13 j2K+2 r256 a+
286 ?P:4(0.54) j+ r+ a+ 85 ?c13 j2K+4 r256 a+
285 ?P:4(0.56) j+ r+ a+ 84 ?c13 j2K+8 r256 a+
284 ?P:4(0.58) j+ r+ a+ 83 ?c13 j2K+16 r256 a+
283 ?P:4(0.60) j+ r+ a+ 82 ?c13 j2K+32 r256 a+
282 ?P:4(0.62) j+ r+ a+ 81 ?c13 j2K+64 r256 a+
281 ?P:4(0.64) j+ r+ a+
280 ?P:4(0.66) j+ r+ a+ Figure 29b
279 ?P:4(0.68) j+ r+ a+ 20 ?+ j2K r+ a+
276 ?P:4(0.70) j+ r+ a+ 19 ?+ j2K+2 r+ a+
273 ?P:4(0.72) j+ r+ a+ 18 ?+ j2K+4 r+ a+
270 ?P:4(0.74) j+ r+ a+ 17 ?+ j2K+8 r+ a+
267 ?P:4(0.76) j+ r+ a+ 16 ?+ j2K+16 r+ a+
264 ?P:4(0.78) j+ r+ a+ 15 ?+ j2K+32 r+ a+
261 ?P:4(0.80) j+ r+ a+ 14 ?+ j2K+64 r+ a+
258 ?P:4(0.82) j+ r+ a+
255 ?P:4(0.84) j+ r+ a+ Figure 27a
252 ?P:4(0.86) j+ r+ a+ 214 ?a5 j- r- aInsp
249 ?P:4(0.88) j+ r+ a+
246 ?P:4(0.90) j+ r+ a+ Figure 27b
243 ?P:4(0.92) j+ r+ a+ 107 ?c10 j16+8 r64 a+
240 ?P:4(0.94) j+ r+ a+
237 ?P:4(0.96) j+ r+ a+ Figure 32a
234 ?P:4(0.98) j+ r+ a+ 117 ?c10 j16+8 r64 a-
231 ?P:4(1.00) j+ r+ a+ 116 ?c10 j16+8 r64 aInsp

115 ?c10 j16+8 r64 aComp
Figure 27 107 ?c10 j16+8 r64 a+

302 ?P:2(0.92) j16 r- a+
147 ?b8:2 j16 r- a+ Figure 32b
245 ?P:4(0.92) j16 r- a+ 64 ?c13:4 j2K+2K r256 a-
146 ?b8:4 j16 r- a+ 63 ?c13:4 j2K+2K r256 aInsp
301 ?P:2(0.92) j2K+2K r256 a+ 62 ?c13:4 j2K+2K r256 aComp
70 ?c13:2 j2K+2K r256 a+ 35 ?c13:4 j2K+2K r256 a+

244 ?P:4(0.92) j2K+2K r256 a+
35 ?c13:4 j2K+2K r256 a+ Figure 33a

119 ?c10 j16+8 r- a+
Figure 28a 118 ?c10 j16+8 r32 a+

97 ?c13 j- r256 a+ 107 ?c10 j16+8 r64 a+
95 ?c13 j1 r256 a+ 106 ?c10 j16+8 r128 a+
94 ?c13 j2 r256 a+ 105 ?c10 j16+8 r256 a+
93 ?c13 j4 r256 a+ 104 ?c10 j16+8 r+ a+
92 ?c13 j8 r256 a+
90 ?c13 j16 r256 a+ Figure 33b
87 ?c13 j2K r256 a+ 68 ?c13:4 j2K+2K r- a+

67 ?c13:4 j2K+2K r32 a+
Figure 28b 66 ?c13:4 j2K+2K r64 a+

27 ?+ j- r+ a+ 65 ?c13:4 j2K+2K r128 a+
25 ?+ j1 r+ a+ 35 ?c13:4 j2K+2K r256 a+
24 ?+ j2 r+ a+ 34 ?c13:4 j2K+2K r+ a+
23 ?+ j4 r+ a+
22 ?+ j8 r+ a+
21 ?+ j16 r+ a+
20 ?+ j2K r+ a+

61

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Figure 34a Figure 35a
372 ?- j- r- a- LB 107 ?c10 j16+8 r64 a+
218 ?a5 j- r- aInsp LB 111 ?c10 j16+8 r64 a+ LB
182 ?b8 j16 r- a+ LB 112 ?c10 j16+8 r64 a+ LC
111 ?c10 j16+8 r64 a+ LB 113 ?c10 j16+8 r64 a+ LD
76 ?c13 j2K+2K r256 a+ LB 114 ?c10 j16+8 r64 a+ LE
58 ?c13:4 j2K+2K r256 a+ LB
5 ?+ j+ r+ a+ LB Figure 35b

35 ?c13:4 j2K+2K r256 a+
Figure 34b 58 ?c13:4 j2K+2K r256 a+ LB

374 ?- j- r- a- LD 59 ?c13:4 j2K+2K r256 a+ LC
220 ?a5 j- r- aInsp LD 60 ?c13:4 j2K+2K r256 a+ LD
184 ?b8 j16 r- a+ LD 61 ?c13:4 j2K+2K r256 a+ LE
113 ?c10 j16+8 r64 a+ LD
78 ?c13 j2K+2K r256 a+ LD
60 ?c13:4 j2K+2K r256 a+ LD
7 ?+ j+ r+ a+ LD

References

[AC87] Tilak Agarwala and John Cocke. High performance reduced instruction set processors.
IBM Thomas J. Watson Research Center Technical Report #55845, March 31, 1987.

[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register allocation
and instruction scheduling for RISCs. Fourth International Symposium on Architectural
Support for Programming Languages and Operating Systems, pp. 122–131, April 1991.
Published as Computer Architecture News 19 (2), Operating Systems Review 25 (special
issue), SIGPLAN Notices 26 (4).

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. Proceedings of the SIGPLAN ’90 Conference on Programming Language
Design and Implementation, pp. 296–310. Published as SIGPLAN Notices 25 (6), June
1990.

[Fis91] J. A. Fisher. Global code generation For instruction-level parallelism: trace scheduling-
2. Technical Report #HPL-93-43, Hewlett-Packard Laboratories, Palo Alto, California,
1993.

[GM86] Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. Proceedings of the SIGPLAN ’86 Symposium on Compiler Con-
struction, pp. 11–16. Published as SIGPLAN Notices 21 (7), July 1986.

[GH88] James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation in
large basic blocks. International Conference on Supercomputing, pp. 442–452, July
1988.

[HHN92] Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolai. Abstractions for recur-
sive pointer data structures: Improving the analysis and transformation of imperative
programs. Proceedings of the SIGPLAN ’92 Conference on Programming Language

62

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Design and Implementation, pp. 249–260. Published as SIGPLAN Notices 27 (7), July
1992.

[HG83] John Hennessy and Thomas Gross. Postpass code optimization of pipeline constraints.
ACM Transactions on Programming Languages and Systems 5 (3), pp. 422–448, July
1983.

[JM82] Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. Ninth Annual ACM Symposium
on Principles of Programming Languages, pp. 66–74, Jan. 1982.

[JW89] Norman P. Jouppi and David W. Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines. Third International Symposium on Architectural
Support for Programming Languages and Operating Systems, pp. 272–282, April 1989.
Published as Computer Architecture News 17 (2), Operating Systems Review 23 (special
issue), SIGPLAN Notices 24 (special issue). Also available as WRL Research Report
89/7.

[LH88] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure accesses.
Proceedings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation, pp. 21–34. Published as SIGPLAN Notices 23 (7), July 1988.

[LS84] Johnny K. F. Lee and Alan J. Smith. Branch prediction strategies and branch target
buffer design. Computer 17 (1), pp. 6–22, January 1984.

[McF93] Scott McFarling. Combining branch predictors. WRL Technical Note TN-36, June
1993. Digital Western Research Laboratory, 250 University Ave., Palo Alto, CA.

[NF84] Alexandru Nicolau and Joseph A. Fisher. Measuring the parallelism available for very
long instruction word architectures. IEEE Transactions on Computers C-33 (11), pp.
968–976, November 1984.

[PSR92] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the accuracy of dynamic
branch prediction using branch correlation. Fifth International Symposium on Architec-
tural Support for Programming Languages and Operating Systems, 76–84, September
1992. Published as Computer Architecture News 20 (special issue), Operating Systems
Review 26 (special issue), SIGPLAN Notices 27 (special issue).

[Smi81] J. E. Smith. A study of branch prediction strategies. Eighth Annual Symposium on
Computer Architecture, pp. 135–148. Published as Computer Architecture News 9 (3),
1986.

[SJH89] Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on multiple instruc-
tion issue. Third International Symposium on Architectural Support for Programming
Languages and Operating Systems, pp. 290–302, April 1989. Published as Computer
Architecture News 17 (2), Operating Systems Review 23 (special issue), SIGPLAN
Notices 24 (special issue).

63

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

[TF70] G. S. Tjaden and M. J. Flynn. Detection and parallel execution of parallel instructions.
IEEE Transactions on Computers C-19 (10), pp. 889–895, October 1970.

[Wall91] David W. Wall. Limits of instruction-level parallelism. Fourth International Symposium
on Architectural Support for Programming Languages and Operating Systems, 176–
188, April 1991. Also available as WRL Technical Note TN-15, and reprinted in David
J. Lilja, Architectural Alternatives for Exploiting Parallelism, IEEE Computer Society
Press, 1991.

[YP92] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branch
prediction. Nineteenth Annual International Symposium on Computer Architecture,
124–134, May 1992. Published as Computer Architecture News 20(2).

[YP93] Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors that use
two levels of branch history. Twentieth Annual International Symposium on Computer
Architecture, 257–266, May 1993.

64

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

65

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’‘‘Spritely NFS: Implementation and Performance of
Jeffrey Y.F. Tang and J. Leon Yang.Cache-Consistency Protocols.’’
WRL Research Report 90/1, January 1990.V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.
‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’‘‘Available Instruction-Level Parallelism for Super-
Tracy Larrabee.scalar and Superpipelined Machines.’’
WRL Research Report 90/2, February 1990.Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.
‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.‘‘A Unified Vector/Scalar Floating-Point Architec-
WRL Research Report 90/3, March 1990.ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David
‘‘Virtual Memory vs. The File System.’’W. Wall.
Michael N. Nelson.WRL Research Report 89/8, July 1989.
WRL Research Report 90/4, March 1990.

‘‘Architectural and Organizational Tradeoffs in the
‘‘Efficient Use of Workstations for Passive Monitor-Design of the MultiTitan CPU.’’

ing of Local Area Networks.’’Norman P. Jouppi.
Jeffrey C. Mogul.WRL Research Report 89/9, July 1989.
WRL Research Report 90/5, July 1990.

‘‘Integration and Packaging Plateaus of Processor
‘‘A One-Dimensional Thermal Model for the VAXPerformance.’’

9000 Multi Chip Units.’’Norman P. Jouppi.
John S. Fitch.WRL Research Report 89/10, July 1989.
WRL Research Report 90/6, July 1990.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
‘‘1990 DECWRL/Livermore Magic Release.’’sor with High Ratio of Sustained to Peak Perfor-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,mance.’’

Don Stark, Gordon T. Hamachi.Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 90/7, September 1990.WRL Research Report 89/11, July 1989.

‘‘Pool Boiling Enhancement Techniques for Water at‘‘The Distribution of Instruction-Level and Machine
Low Pressure.’’Parallelism and Its Effect on Performance.’’

Wade R. McGillis, John S. Fitch, WilliamNorman P. Jouppi.
R. Hamburgen, Van P. Carey.WRL Research Report 89/13, July 1989.

WRL Research Report 90/9, December 1990.

‘‘Long Address Traces from RISC Machines:
‘‘Writing Fast X Servers for Dumb Color Frame Buf-Generation and Analysis.’’

fers.’’Anita Borg, R.E.Kessler, Georgia Lazana, and David
Joel McCormack.W. Wall.
WRL Research Report 91/1, February 1991.WRL Research Report 89/14, September 1989.

66

‘‘A Simulation Based Study of TLB Performance.’’ ‘‘Cache Write Policies and Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi. Norman P. Jouppi.

WRL Research Report 91/2, November 1991. WRL Research Report 91/12, December 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’cuits.’’
William R. Hamburgen, John S. Fitch.Don Stark.
WRL Research Report 92/1, March 1992.WRL Research Report 91/3, April 1991.

‘‘Observing TCP Dynamics in Real Networks.’’‘‘TurboChannel T1 Adapter.’’
Jeffrey C. Mogul.David Boggs.
WRL Research Report 92/2, April 1992.WRL Research Report 91/4, April 1991.

‘‘Systems for Late Code Modification.’’‘‘Procedure Merging with Instruction Caches.’’
David W. Wall.Scott McFarling.
WRL Research Report 92/3, May 1992.WRL Research Report 91/5, March 1991.

‘‘Piecewise Linear Models for Switch-Level Simula-‘‘Don’t Fidget with Widgets, Draw!.’’
tion.’’Joel Bartlett.

Russell Kao.WRL Research Report 91/6, May 1991.
WRL Research Report 92/5, September 1992.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William ‘‘A Practical System for Intermodule Code Optimiza-
R. Hamburgen, Van P. Carey. tion at Link-Time.’’

WRL Research Report 91/7, June 1991. Amitabh Srivastava and David W. Wall.

WRL Research Report 92/6, December 1992.
‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ- ‘‘A Smart Frame Buffer.’’
ments.’’ Joel McCormack & Bob McNamara.

G. May Yip. WRL Research Report 93/1, January 1993.
WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
‘‘Interleaved Fin Thermal Connectors for Multichip Jeffrey C. Mogul.

Modules.’’ WRL Research Report 93/2, June 1993.
William R. Hamburgen.

WRL Research Report 91/9, August 1991. ‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.
‘‘Experience with a Software-defined Machine Ar- WRL Research Report 93/3, October 1993.

chitecture.’’

David W. Wall. ‘‘Unreachable Procedures in Object-oriented
WRL Research Report 91/10, August 1991. Programing.’’

Amitabh Srivastava.
‘‘Network Locality at the Scale of Processes.’’ WRL Research Report 93/4, August 1993.
Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991. ‘‘Limits of Instruction-Level Parallelism.’’
David W. Wall.

WRL Research Report 93/6, November 1993.

67

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Predicting Program Behavior Using Real or Es-

Brian K. Reid and Christopher A. Kent. timated Profiles.’’

WRL Technical Note TN-4, September 1988. David W. Wall.

WRL Technical Note TN-18, December 1990.
‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’ ‘‘Cache Replacement with Dynamic Exclusion’’

Christopher A. Kent. Scott McFarling.

WRL Technical Note TN-7, November 1988. WRL Technical Note TN-22, November 1991.

‘‘Smart Code, Stupid Memory: A Fast X Server for a ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Dumb Color Frame Buffer.’’ sures’’

Joel McCormack. Wade R. McGillis, John S. Fitch, William

WRL Technical Note TN-9, September 1989. R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Comparison of Acoustic and Infrared Inspection

John Ousterhout. Techniques for Die Attach’’

WRL Technical Note TN-11, October 1989. John S. Fitch.

WRL Technical Note TN-24, January 1992.
‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’ ‘‘TurboChannel Versatec Adapter’’

Joel F. Bartlett. David Boggs.

WRL Technical Note TN-12, October 1989. WRL Technical Note TN-26, January 1992.

‘‘The Effect of Context Switches on Cache Perfor- ‘‘A Recovery Protocol For Spritely NFS’’

mance.’’ Jeffrey C. Mogul.

Jeffrey C. Mogul and Anita Borg. WRL Technical Note TN-27, April 1992.
WRL Technical Note TN-16, December 1990.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

‘‘MTOOL: A Method For Detecting Memory Bot- Patrick D. Boyle.

tlenecks.’’ WRL Technical Note TN-29, July 1992.
Aaron Goldberg and John Hennessy.

‘‘Transparent Controls for Interactive Graphics’’WRL Technical Note TN-17, December 1990.
Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

68

‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.

WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’

Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.

69

