NOVEMBER 1993

WRL
Resear ch Report 93/6

Limits of
| nstruction-Level
Parallelism

David W. Wall

mn@nan Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using rea systems. The systems we build
are research prototypes; they are not intended to become products.

There two other research laboratories located in Palo Alto, the Network Systems
Laboratory (NSL) and the Systems Research Center (SRC). Other Digital research groups
arelocated in Paris (PRL) and in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore awide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution

DEC Western Research Laboratory, WRL-2
250 University Avenue

Palo Alto, California94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL: : WRL- TECHREPCORTS
Internet; WRL- Techreport s@ecw | . dec. com
UUCP: decw | !wl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘*hel p’’ in the Subject line; you will receive detailed instruc-
tions.

Limits of I nstruction-L evel Parallelism

David W. Wall

November 1993

ﬂﬂmnan Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Growing interest in ambitious multiple-issue machines and heavily-
pipelined machines requires a careful examination of how much instruction-
level parallelism existsin typical programs. Such an examination is compli-
cated by the wide variety of hardware and softwar e techniques for increasing
the parallelism that can be exploited, including branch prediction, register
renaming, and alias analysis. By performing simulations based on instruc-
tion traces, we can model techniques at the limits of feasibility and even
beyond. This paper presents the results of simulations of 18 different test
programsunder 375 different models of available parallelism analysis.

This paper replaces Technical Note TN-15, an earlier version of the same
material.

Author’s note

Three years ago | published some preliminary results of asimulation-based study of instruction-
level parallelism [Wall91]. It took advantage of afast instruction-level simulator and acomputing
environment in which | could use three or four dozen machines with performance in the 20-30
MIPS range every night for many weeks. But the space of parallelism techniques to be explored
isvery large, and that study only scratched the surface.

The report you are reading now is an attempt to fill some of the cracks, both by simulating
more intermediate models and by considering a few ideas the original study did not consider. |
believeitisby far the most extensive study of its kind, requiring almost three machine-years and
simulating in excess of 1 trillion instructions.

The original paper generated many different opinions'. Some looked at the high parallelism
available from very ambitious (some might say unrealistic) models and proclaimed the millen-
nium. My own opinion was pessmistic: | looked at how many different things you have to
get right, including things this study doesn’'t address at al, and despaired. Since then | have
moderated that opinion somewhat, but | still consider the negative results of this study to be at
least as important as the positive.

This study produced far too many numbersto present them all in the text and graphs, so the
completeresultsareavailable only in the appendix. | havetried not to editorializein the selection
of which resultsto present in detail, but a careful study of the numbersin the appendix may well
reward the obsessive reader.

In the three years since the preliminary paper appeared, multiple-issue architectures have
changed from interesting idea to revealed truth, though little hard datais available even now. |
hope the results in this paper will be helpful. 1t must be emphasized, however, that they should
be treated as guideposts and not mandates. When one contemplates a new architecture, there is
no substitute for ssimulationsthat includereal pipeline details, alikely memory configuration, and
amuch larger program suite than a study like this one can include.

IProbably exactly as many opinions as there were before it appeared.

1

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

1 Introduction

In recent years there has been an explosion of interest in multiple-issue machines. These are
designed to exploit, usually with compiler assistance, the parallelism that programs exhibit at
the instruction level. Figure 1 shows an example of this paralelism. The code fragment in 1(a)
consists of three instructions that can be executed at the same time, because they do not depend
on each other’s results. The code fragment in 1(b) does have dependencies, and so cannot be
executed in paralel. In each case, the paralelism is the number of instructions divided by the
number of cycles required.

rl:=0[r9] rl:=0[r9
r2:=17 r2:=rl+17
4[r3] :=r6 4[r2] :=r6

(a) parallelism=3 (b) parallelism=1

Figure 1: Instruction-level parallelism (and lack thereof)

Architectures have been proposed to take advantage of thiskind of parallelism. A superscalar
machine [AC87] is one that can issue multiple independent instructions in the same cycle. A
superpipelined machine [JW89] issues one instruction per cycle, but the cycle time is much
smaller than the typical instruction latency. A VLIW machine [NF84] is like a superscalar
machine, except the parallel instructions must be explicitly packed by the compiler into very long
instruction words.

Most “ordinary” pipelined machines already have some degree of parallelism, if they have
operationswith multi-cyclelatencies; whiletheseinstructionswork, shorter unrelated instructions
can be performed. We can compute the degree of parallelism by multiplying the latency of each
operation by itsrelative dynamic frequency in typical programs. The latencies of loads, delayed
branches, and floating-point instructions give the DECstation? 5000, for example, a parallelism
egual to about 1.5.

A multiple-issue machine has a hardware cost beyond that of a scalar machine of equivalent
technology. Thiscost may be small or large, depending on how aggressively the machine pursues
instruction-level parallelism. In any case, whether a particular approach is feasible depends on
its cost and the parallelism that can be obtained fromiit.

But how much paralelism is there to exploit? Thisis a question about programs rather than
about machines. We can build a machine with any amount of instruction-level parallelism we
choose. But al of that parallelism would go unused if, for example, we learned that programs
consisted of linear sequences of instructions, each dependent on its predecessor’s result. Real
programs are not that bad, as Figure 1(a) illustrates. How much parallelism we can find in a
program, however, islimited by how hard we are willing to work to find it.

2DECStation is atrademark of Digital Equipment Corporation.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

A number of studies[JW89, SJH89, TF70] dating back 20 years show that parallelism within
abasic block rarely exceeds 3 or 4 onthe average. Thisisunsurprising: basic blocksaretypically
around 10 instructionslong, leaving little scope for alot of parallelism. At the other extremeisa
study by Nicolau and Fisher [NF84] that finds average parallelism as high as 1000, by considering
highly parallel numeric programs and simulating a machine with unlimited hardware parallelism
and an omniscient scheduler.

Thereis alot of space between 3 and 1000, and a lot of space between analysis that looks
only within basic blocks and analysis that assumes an omniscient scheduler. Moreover, this
space is multi-dimensional, because parallelism analysis consists of an ever-growing body of
complementary techniques. The payoff of one choice depends strongly on its context in the other
choices made. The purpose of this study is to explore that multi-dimensional space, and provide
some insight about the importance of different techniquesin different contexts. We looked at the
parallelism of 18 different programs at more than 350 points in this space.

The next section describes the capabilities of our simulation system and discusses the various
parallelism-enhancing techniques it can model. This is followed by along section looking at
some of the results; a complete table of the results is given in an appendix. Another appendix
gives details of our implementation of these techniques.

2 Our experimental framework

We studied theinstruction-level parallelism of eighteen test programs. Twelve of theseweretaken
from the SPEC92 suite; three are common utility programs, and three are CAD tools written at
WRL. These programsare shown in Figure 2. The SPEC benchmarkswere run on accompanying
test data, but the datawas usually an official “short” data set rather than the reference data set, and
in two cases we modified the source to decrease the iteration count of the outer loop. Appendix
2 contains the details of the modifications and data sets. The programs were compiled for a
DECStation 5000, which has a MIPS R30002 processor. The Mips version 1.31 compilers were
used.

Like most studies of instruction-level parallelism, we used oracle-driven trace-based simu-
lation. We begin by obtaining a trace of the instructions executed.* This trace aso includes the
data addresses referenced and the results of branchesand jumps. A greedy scheduling algorithm,
guided by a configurable oracle, packs these instructions into a sequence of pending cycles.
The resulting sequence of cycles represents a hypothetical execution of the program on some
multiple-issue machine. Dividing the number of instructions executed by the number of cycles
required gives the average parallelism.

The configurable oracle models a particular combination of techniquesto find or enhance the
instruction-level parallelism. Schedulingto exploit the parallelismisconstrained by thepossibility
of dependencies betweeningtructions. Two instructionshave adependency if changing their order
changestheir effect, either because of changesin the datavalues used or because oneinstruction’s
execution is conditional on the other.

3R3000 is a trademark of MIPS Computer Systems, Inc.
4In our case by simulating it on a conventional instruction-level simulator.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

source instructions

lines executed remarks
egrep 762 13721780 File search
sed 1683 1462487 Stream editor
yacc 1856 30297973 Compiler-compiler
€co 3349 27397304 Recursive tree comparison
arr 7241 144442216 PCB router
metronome 4673 71273955 Timing verifier
alvinn 223 388973837 Neural network training
compress 1401 88277866 Lempel-Ziv file compaction
doduc 5333 284421280 Hydrocode simulation
espresso 12934 134435218 Boolean function minimizer
fpppp 2472 244278269 Quantum chemistry benchmark
gcecl 78782 22753759 First pass of GNU C compiler
hydro2d 4458 8235288 Astrophysical simulation
li 6102 263742027 Lisp interpreter
mdljsp2 3739 393078251 Molecular dynamics model
ora 427 212125692 Ray tracing
swm256 484 301407811 Shallow water simulation
tomcatv 195 301622982 V ectorized mesh generation

Figure 2: The eighteen test programs

Figure3illustratesthe different kinds of dependencies. Some dependenciesarereal, reflecting
the true flow of the computation. Others are fal se dependencies, accidents of the code generation
or our lack of precise knowledge about the flow of data. Two instructions have a true data
dependency if the result of the first is an operand of the second. Two instructions have an anti-
dependency if the first uses the old value in some location and the second sets that location to
anew value. Similarly, two instructions have an output dependency if they both assign a value
to the same location. Finally, there is a control dependency between a branch and an instruction
whose execution is conditional on it.

The oracle uses an actual program trace to make its decisions. This lets it “predict the
future,” basing its scheduling decisions on its foreknowledge of whether a particular branch will
be taken or not, or whether aload and store refer to the same memory location. It can therefore
construct an impossibly perfect schedule, constrained only by the true data dependencies between
instructions, but this does not provide much insight into how areal machine would perform. Itis
more interesting to hobble the oracle in ways that approximate the capabilities of areal machine
and areal compiler system.

We can configure our oracle with different levels of expertise, ranging from nil to impossibly
perfect, in several different kinds of parallelism enhancement.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

(a) true data dependency (b) anti-dependency
::r2*r3 (f)r17 = 0 goto L
::0[r7] L

(c) output dependency (d) control dependency

Figure 3: Dependencies

2.1 Register renaming

Anti-dependencies and output dependencies on registers are often accidents of the compiler’s
register allocation technique. In Figures 3(b) and 3(c), using adifferent register for the new value
in the second instruction would remove the dependency. Register allocation that is integrated
with the compiler’sinstruction scheduler [BEH91, GH88] could eliminate many of these. Current
compilers often do not exploit this, preferring instead to reuse registers as often as possible so
that the number of registers needed is minimized.

An alternativeis the hardware solution of register renaming, in which the hardware imposes
alevel of indirection between the register number appearing in the instruction and the actual
register used. Each time an ingtruction sets a register, the hardware selects an actual register
to use for as long as that value is needed. In a sense the hardware does the register allocation
dynamically. Register renaming has the additional advantage of allowing the hardwareto include
more registers than will fit in the instruction format, further reducing fal se dependencies.

We can do three kinds of register renaming: perfect, finite, and none. For perfect renaming,
we assume that there are an infinite number of registers, so that no false register dependencies
occur. For finite renaming, we assume afinite register set dynamically allocated using an LRU
discipline: when we need a new register we select the register whose most recent use (measured
in cycles rather than in instruction count) is earliest. Finite renaming works best, of course,
when there are alot of registers. Our ssimulations most often use 256 integer registers and 256
floating-point registers, but it is interesting to see what happens when we reduce this to 64 or
even 32, the number on our base machine. For no renaming, we simply use the registers specified
in the code; how well this works is of course highly dependent on the register strategy of the
compiler we use.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

2.2 Aliasanalysis

Like registers, memory locations can also carry true and false dependencies. We make the
assumption that renaming of memory locations is not an option, for two reasons. First, memory
is so much larger than a register file that renaming could be quite expensive. More important,
though, is that memory locations tend to be used quite differently from registers. Putting avalue
in some memory location normally has some meaning in the logic of the program; memory is not
just a scratchpad to the extent that the registers are.

Moreover, it is hard enough just telling when a memory-carried dependency exists. The
registers used by an instruction are manifest in the instruction itself, while the memory location
used is not manifest and in fact may be different for different executions of the instruction. A
multiple-issue machine may therefore be forced to assume that a dependency exists even when it
might not. Thisisthe aliasing problem: telling whether two memory references access the same
memory location.

Hardware mechanisms such as squashable loads have been suggested to help cope with the
aliasing problem. The more conventional approach isfor the compiler to perform alias analysis,
using its knowledge of the semantics of the language and the program to rule out dependencies
whenever it can.

Our system provides four levels of alias analysis. We can assume perfect alias analysis, in
which we look at the actual memory address referenced by aload or store; a store conflicts with
aload or store only if they access the same location. We can also assume no alias analysis, so
that a store always conflicts with a load or store. Between these two extremes would be alias
anaysis asa smart vectorizing compiler might do it. We don’t have such acompiler, but we have
implemented two intermediate schemes that may give us some insight.

One intermediate scheme is alias by instruction inspection. This is a common technique in
compile-time instruction-level code schedulers. We look at the two instructions to see if it is
obviousthat they are independent; the two ways this might happen are shown in Figure 4.

rl:=0[r9] rl:=0[fp]
4[r9] :=r2 O[gp] :=r2
€Y (b)

Figure 4. Alias analysis by inspection

The two ingtructions in 4(a) cannot conflict, because they use the same base register but
different displacements. The two instructionsin 4(b) cannot conflict, because their base registers
show that one refers to the stack and the other to the global data area.

The other intermediate scheme is called alias analysis by compiler even though our own
compiler doesn’'t do it. Under this model, we assume perfect analysis of stack and global
references, regardless of which registers are used to make them. A store to an address on the
stack conflicts only with aload or store to the same address. Heap references, on the other hand,
are resolved by instruction inspection.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

The idea behind our model of alias analysis by compiler is that references outside the heap
can often be resolved by the compiler, by doing dataflow and dependency analysis over loops
and arrays, whereas heap references are often less tractable. Neither of these assumptions is
particularly defensible. Many languages allow pointersinto the stack and global areas, rendering
them as difficult as the heap. Practical considerations such as separate compilation may aso
keep us from analyzing non-heap references perfectly. On the other side, even heap references
may not be as hopeless as this model assumes [CWZ90, HHN92, IM82, LH88]. Nevertheless,
our range of four alternatives should provide some intuition about the effects of alias analysis on
instruction-level parallelism.

2.3 Branch prediction

Parallelism within abasic block is usually quite limited, mainly because basic blocks are usually
guitesmall. Theapproach of speculative execution triesto mitigatethisby schedulinginstructions
across branches. This is hard because we don’t know which way future branches will go and
therefore which path to select instructions from. Worse, most branches go each way part of the
time, so a branch may be followed by two possible code paths. We can move instructions from
either path to apoint beforethe branch only if thoseinstructionswill do no harm (or if the harm can
be undone) when we take the other path. This may involve maintaining shadow registers, whose
values are not committed until we are sure we have correctly predicted the branch. It may involve
being selective about the instructions we choose: we may not be willing to execute memory
stores speculatively, for example, or instructions that can raise exceptions. Some of this may
be put partly under compiler control by designing an instruction set with explicitly squashable
instructions. Each sguashable instruction would be tied explicitly to a condition evaluated in
another instruction, and would be squashed by the hardware if the condition turns out to be false.
If the compiler schedules instructions speculatively, it may even have to insert code to undo its
effects at the entry to the other path.

The most common approach to speculative execution uses branch prediction. The hardware
or the software predictswhichway agiven branch will most likely go, and speculatively schedules
instructions from that path.

A common hardware technique for branch prediction [LS84, Smi81] maintains a table of
two-bit counters. Low-order bits of abranch’s address provide theindex into thistable. Taking a
branch causes usto increment its table entry; not taking it causes usto decrement. These two-bit
counters are saturating: we do not wrap around when the table entry reaches its maximum or
minimum. We predict that abranch will betaken if itstableentry is2 or 3. Thistwo-bit prediction
scheme mispredictsatypical loop only once, whenitisexited. Two branchesthat map to the same
table entry interfere with each other; no “key” identifies the owner of the entry. A good initial
value for table entriesis 2, just barely predicting that each branch will be taken. Figure 5 shows
how well this two-bit counter scheme works for different table sizes, on the eighteen programs
in our test suite. For most programs, the prediction success levels off by the time the table has
about 512 two-hit entries. Increasing the number of bits, either by making the counters bigger or
by having more of them, haslittle effect.

Branches can be predicted statically with comparable accuracy by obtaining a branch profile,

LIMITS OF INSTRUCTION-LEVEL PARALLELISM
tomcatv.
256

vinn
1

e
[[sp2
= Fﬁ Sp
gggrOZd

&9
\ e
I'esso

it
grr

AN

0.95

0.9

0.85

il

o

0.8

0.75

0.7

prediction success rate

0.65

e e e harmonic mean
06]

0.55 _

05 { 1 1 1 1 1
16 64 256 1K 4K 16K 64K 256K

Figure 5: Fraction of branches predicted correctly using two-bit
counter prediction, as a function of the total number of bitsin the
predictor

which tellsfor each branch what fraction of itsexecutionsit wastaken. Like any profile, abranch
profile is obtained by inserting counting code into a test program, to keep track of how many
times each branch goes each way. We use a branch profile by seeing which way a given branch
goes most often, and scheduling instructions from that path. If thereis some expense in undoing
speculative execution when the branch goes the other way, we might impose a threshold so that
we don’t move instructions across a branch that is executed only 51% of the time.

Recent studies have explored more sophisticated hardware prediction using branch histo-
ries [PSR92, YP92, YPO3]. These approaches maintain tables relating the recent history of the
branch (or of branchesin the program as awhole) to the likely next outcome of the branch. These
approaches do quite poorly with small tables, but unlike the two-bit counter schemes they can
benefit from much larger predictors.

An exampleisthelocal-history predictor [YP92]. It maintains atable of n-bit shift registers,
indexed by the branch address as above. When the branch is taken, a 1 is shifted into the table
entry for that branch; otherwise a 0 is shifted in. To predict a branch, we take its n-bit history
and use it as an index into atable of 2" 2-bit counters like those in the smple counter scheme
described above. If the counter is2 or 3, we predict taken; otherwise we predict not taken. If the
prediction provescorrect, weincrement the counter; otherwisewe decrement it. Thelocal-history
predictor works well on branches that display a regular pattern of small period.

Sometimes the behavior of one branch is correlated with the behavior of another. A global-
history predictor [YP92] tries to exploit this effect. It replaces the table of shift registers with a
single shift register that records the outcome of the n most recently executed branches, and uses
thishistory pattern as before, to index atable of counters. Thisallowsit to exploit correlationsin
the behaviors of nearby branches, and allows the history to be longer for a given predictor size.

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

loc/gsh
ctr/gsh

counter

prediction success rate

o N N N N R B
16 64 256 1K 4K 16K 64K 256K M

Figure 6: Fraction of branches predicted correctly by three different
prediction schemes, as a function of the total number of bitsin the
predictor

Aninteresting variation isthe gshare predictor [McF93], which uses theidentity of the branch
aswell asthe recent global history. Instead of indexing the array of counterswith just the global
history register, the gshare predictor computesthe xor of the global history and branch address.

McFarling [McF93] got even better results by using atable of two-bit countersto dynamically
choose between two different schemesrunningin competition. Each predictor makesitsprediction
as usual, and the branch address is used to select another 2-bit counter from a selector table; if
the selector value is 2 or 3, the first prediction is used; otherwise the second is used. When the
branch outcome is known, the selector is incremented or decremented if exactly one predictor
was correct. This approach letsthetwo predictors compete for authority over agiven branch, and
awards the authority to the predictor that has recently been correct more often. McFarling found
that combined predictors did not work as well as smpler schemes when the predictor size was
small, but did quite well indeed when large.

Figure 6 shows the success rate for the three different hardware predictors used in this study,
averaged over the eighteen programs in our suite. The first is the traditional two-bit counter
approach described above. The second is a combination of a two-bit counter predictor and a
gshare predictor with twice as many elements; the selector table is the same size as the counter
predictor. The third is a combination of alocal predictor and a gshare predictor; the two local
tables, the gshare table, and the selector table all have the same number of elements. The x-axis
of this graph is the total size of the predictor in bits. The simple counter predictor works best
for small sizes, then the bimodal/gshare predictor takes over the lead, and finally for very large
predictors the local/gshare predictor works best, delivering around 98% accuracy in the limit.

In our simulator, we modeled several degrees of branch prediction. One extreme is perfect
prediction: we assume that all branches are correctly predicted. Next we can assume any of

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

ctrs ctrs ctrs ctrs ctr/gsh loc/gsh loc/gsh | prof sign taken
4b 8b 16b 64b 2kb 16kb 152k

egrep 075 078 0.77 087 0.90 0.95 0.98 090 065 0.80
sed 075 081 074 092 0.97 0.98 0.98 097 042 071
yacc 0.74 080 0.83 092 0.96 0.97 0.98 092 060 0.73
eco 057 061 064 077 0.95 0.97 0.98 091 046 061
grr 058 060 065 073 0.89 0.92 0.94 0.78 054 051
metronome | 0.70 0.73 0.73 0.83 0.95 0.97 0.98 091 061 054
alvinn 086 084 086 0.89 0.98 1.00 1.00 097 085 084
compress 064 073 075 084 0.89 0.90 0.90 086 069 055
doduc 054 053 074 084 0.94 0.96 0.97 095 076 045
espresso 072 073 078 0.82 0.93 0.95 0.96 086 062 0.63
fpppp 062 059 065 081 0.93 0.97 0.98 086 046 058
gccl 059 061 063 0.70 0.87 0.91 0.94 088 050 057

hydro2d 069 075 079 0.85 0.94 0.96 0.97 091 051 0.68
li 061 069 071 077 0.95 0.96 0.98 088 054 046
mdljsp2 082 084 086 094 0.95 0.96 0.97 092 031 083

ora 048 055 061 079 0.91 0.98 0.99 087 054 051
swm256 097 097 098 098 1.00 1.00 1.00 098 098 091
tomcatv 099 099 099 0.99 1.00 1.00 1.00 099 062 099
hmean 068 071 075 084 0.94 0.96 0.97 090 055 0.63

Figure 7. Success rates of different branch prediction techniques

the three hardware prediction schemes shown in Figure 6 with any predictor size. We can also
assume three kinds of static branch prediction: profiled branch prediction, in which we predict
that the branch will go the way it went most frequently in a profiled previous run; signed branch
prediction, in which we predict that a backward branch will be taken but a forward branch will
not, and taken branch prediction, in which we predict that every branch will always be taken.
And finally, we can assume that no branch prediction occurs; this is the same as assuming that
every branch is predicted wrong.

Figure 7 shows the actual success rate of prediction using different sizes of tables. It also
shows the success rates for the three kinds of static prediction. Profiled prediction routinely beats
64-bit counter-based prediction, but it cannot compete with the larger, more advanced techniques.
Signed or taken prediction do quite poorly, about as well as the smallest of dynamic tables; of the
two, taken prediction is dlightly the better. Signed prediction, however, lends itself better to the
compiler technique of moving little-used pieces of conditionally executed code out of the normal
code stream, improving program locality and thereby the cache performance.

The effect of branch prediction on scheduling is easy to state. Correctly predicted branches
have no effect on scheduling (except for register dependenciesinvolving their operands). Instruc-
tions appearing later than a mispredicted branch cannot be scheduled before the branch itself,
since we do not know we should be scheduling them until we find out that the branch went
the other way. (Of course, both the branch and the later instruction may be scheduled before
instructions that precede the branch, if other dependencies permit.)

Note that we generally assume no penalty for failure other than the inability to schedule later
instructions before the branch. This assumption is optimistic; in most real architectures, afailed
prediction causes a bubble in the pipeline, resulting in one or more cycles in which no execution
whatsoever can occur. We will return to this topic | ater.

10

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

2.4 Branch fanout

Rather than try to predict the destinations of branches, we might specul atively executeinstructions
along both possible paths, squashing the wrong path when we know which it is. Some of our
hardware parallelism capability is guaranteed to be wasted, but we will never miss out completely
by blindly taking the wrong path. Unfortunately, branches happen quite often in normal code, so
for large degrees of parallelism we may encounter another branch before we have resolved the
previous one. Thus we cannot continue to fan out indefinitely: we will eventually use up all the
machine parallelism just exploring many parallel paths, of which only one is the right one. An
aternative if the branch probability is available, as from a profile, is to explore both pathsif the
branch probability is near 0.5 but explore the likely path when its probability is near 1.0.

Our system allows the scheduler to explore in both directions past branches. Because the
scheduler is working from a trace, it cannot actually schedule instructions from the paths not
taken. Since these false paths would use up hardware parallelism, we model this by assuming
that there is an upper limit on the number of branches we can look past. We call this upper limit
the fanout limit. In termsof our simulator scheduling, branches where we explore both paths are
simply considered to be correctly predicted; their effect on the schedule is identical, though of
course they use up part of the fanout limit.

In some respects fanout duplicates the benefits of branch prediction, but they can also work
together to good effect. If we are using dynamic branch prediction, we explore both paths up to
the fanout limit, and then explore only the predicted path beyond that point. With static branch
prediction based on a profile we go still further. It is easy to implement a profiler that tells us
not only which direction the branch went most often, but also the frequency with which it went
that way. This lets us explore only the predicted path if its predicted probability is above some
threshold, and use our limited fanout ability to explore both paths only when the probability of
each is below the threshold.

2.5 Indirect-jump prediction

Most architectures have two kinds of instructions to change the flow of control. Branches
are conditional and have a destination that is some specified offset from the PC. Jumps are
unconditional, and may be either direct or indirect. A direct jump is one whose destination is
given explicitly in theinstruction, while an indirect jump is one whose destination is expressed as
an address computation involving aregister. In principle we can know the destination of a direct
jump well in advance. The destination of an indirect jump, however, may require us to wait until
the address computation is possible. Predicting the destination of an indirect jump might pay off
in instruction-level paralelism.

We consider two jump prediction strategies, which can often be used simultaneousdly.

Thefirst strategy isasimple cacheing scheme. A tableis maintained of destination addresses.
The address of ajump providesthe index into this table. Whenever we execute an indirect jump,
we put its destination address in the table entry for the jump. To predict ajump, we extract the
address in itstable entry. Thus, we predict that an indirect jump will go where it went last time.
As with branch prediction, however, we do not prevent two jumps from mapping to the same

11

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

n-element return ring 2K-ring plus n-element table prof
1 2 4 8 16 2K 2 4 8 16 32 64

egrep 099 099 099 099 100 100 | 1.00 100 100 100 100 1.00 | 0.99
sed 027 046 068 068 068 068|097 097 097 097 097 097 | 097
yacc 068 08 088 08 08 083|092 092 092 092 092 092|071
€co 048 066 076 077 077 078 | 08 082 08 082 08 082|056
grr 069 084 092 09 09 095|098 098 098 098 098 098 | 0.65
met 076 088 09 097 097 097 | 099 099 099 099 099 099 | 0.65

alvinn 033 043 063 09 09 09 | 100 100 100 100 100 1.00 | 0.75
compress | 1.00 100 100 100 100 100 | 1.00 100 100 100 100 1.00 | 1.00
doduc 064 075 088 094 094 094 | 09% 099 099 099 100 1.00 | 0.62
espresso | 0.76 089 095 09 09 09 | 1.00 100 100 100 100 1.00 | 054
fpppp 055 071 073 074 074 074|099 099 099 099 099 099 | 0.80
gcel 046 061 071 074 074 074|081 082 082 083 083 084 | 0.60
hydro2d 042 050 057 061 062 062 | 072 072 076 077 080 082 | 0.64
li 044 057 072 081 084 086 | 091 091 093 093 093 093 | 0.69
mdljsp2 097 098 099 099 099 099 | 099 099 099 099 100 1.00 | 0.98
ora 097 100 100 100 100 100 | 100 100 100 100 100 1.00 | 0.46
swm256 | 099 099 099 099 099 099 | 1.00 100 100 100 100 1.00 | 0.26
tomcatv 041 048 059 063 063 063 | 071 071 077 078 08 085 | 0.72
hmean 056 069 08 084 084 085|092 092 093 093 094 095 | 0.63

Figure 8. Success rates of different jump prediction techniques

table entry and interfering with each other.

The second strategy involves procedure returns, the most common kind of indirect jump. If
the machine can distinguish returns from other indirect jumps, it can do a better job of predicting
their destinations, as follows. The machine maintains a small ring buffer of return addresses.
Whenever it executes a subroutine call instruction, it increments the buffer pointer and entersthe
return addressin thebuffer. A returninstructionis predicted to go to thelast addressin this buffer,
and then decrements the buffer pointer. Unless we do tail-call optimization or setjmp/longjmp,
this prediction will always beright if the machine uses a big enough ring buffer. Evenif it cannot
distinguish returnsfrom other indirect jumps, their predominance might make it worth predicting
that any indirect jump is a return, as long as we decrement the buffer pointer only when the
prediction succeeds.

Our system allows several degrees of each kind of jump prediction. We can assume that
indirect jumps are perfectly predicted. We can use the cacheing prediction, in which we predict
that ajump will go wherever it went last time, with atable of any size. Subroutine returns can be
predicted with this table, or with their own return ring, which can also be any desired size. We
can aso predict returns with areturn ring and leave other indirect jumps unpredicted. Finally, we
can assume no jump prediction whatsoever.

Aswith branches, acorrectly predicted jump has no effect on the scheduling. A mispredicted
or unpredicted jump may be moved before earlier instructions, but no later instruction can be
moved before the jump.

Figure 8 showsthe actual success rates of jump prediction using areturnringalone, of areturn
ring along with alast-destination table, and finally of prediction using amost-common-destination
profile. Even a one-element return ring is enough to predict more than half the indirect jumps,
and a dightly larger ring raises that to more than 80%. Adding a small last-destination table to

12

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

predict non-returns produces a substantial improvement, although the success rate does not rise
much as we make the table bigger. With only an 8-element return ring and a 2-element table,
we can predict more than 90% of the indirect jumps. The most-common-destination profile, in
contrast, succeeds only about two thirds of the time.

2.6 Window size and cyclewidth

The window size is the maximum number of instructions that can appear in the pending cycles at
any time. By default thisis 2048 instructions. We can manage the window either discretely or
continuoudly. With discrete windows, we fetch an entire window of instructions, schedule them
into cycles, issue those cycles, and then start fresh with anew window. A missed prediction also
causes usto start over with afull-size new window. With continuous windows, new instructions
enter the window one at a time, and old cycles leave the window whenever the number of
instructions reaches the window size. Continuouswindows are the norm for the results described
here, although to implement them in hardware is more difficult. Smith et a. [SJH89] assumed
discrete windows.

The cycle width is the maximum number of instructions that can be scheduled in a given
cycle. By default thisis 64. Our greedy scheduling algorithm works well when the cycle width
islarge: asmall proportion of cycles are completely filled. For cycle widths of 2 or 4, however,
amoretraditional approach [HG83, IM82] would be more redistic.

Along with cycles of a fixed finite size, we can specify that cycles are unlimited in width.
In this case, there is still an effective limit imposed by the window size: if one cycle contains
a window-full of instructions, it will be issued and a new cycle begun. As afinal option, we
therefore also allow both the cycle width and the window size to be unlimited.®

2.7 Latency

For most of our experiments we assumed that every operation had unit latency: any result
computed in cycle n could be used as an operand in cycle n + 1. This can obvioudy be
accomplished by setting the machine cycle time high enough for even the lowest of operations
to finish in one cycle, but in general thisis an inefficient use of the machine. A real machine
is more likely to have a cycle time long enough to finish most common operations, like integer
add, but let other operations (e.g. division, multiplication, floating-point operations, and memory
loads) take more than one cycle to complete. If an operation in cycle ¢ has latency L, its result
cannot be used until cyclet + L.

Earlier we defined parallelism as the number of instructions executed divided by the number
of cycles required. Adding non-unit latency requires that we refine that definition dightly. We
want our measure of parallelismto give proper credit for scheduling quick operationsduring times
when we are waiting for unrelated sow ones. We will definethe total latency of a program as the
sum of the latencies of al instructions executed, and the parallelism as the total latency divided

5The final possibility, limited cycle width but unlimited window size, cannot be implemented without using a
data structure that can attain a size proportional to the length of the instruction trace. We deemed thisimpractical
and did not implement it.

13

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

ri:=r2/r3 ri:=r2/r3 r9:=r2+r8
r10: =12[r 9]
ril: =r10+1
r9:=12[r1] ri10: =r1+1 ri2:=rl1l1-r7
ril: =r9+r10 ri3: =r12<<2
rd:=rl+r13
(a) multi-cycle instruction is on critical path (b) multi-cycle instruction is not on critical path

Figure 9: Effects of increasing latency on parallelism

model A model B model C modelD model E
1

int add/sub, logical
load

int mult

int div

single-prec add/sub
single-prec mult
single-prec div
double-prec add/sub
double-prec mult
double-prec div

=

PRRRPRPRPRPRPPRR
NNNRNNNNN R
WWWWwWwwwN NP
(I NN B N NN
SorNobroower

Figure 10: Operation latenciesin cycles, under five latency models

by the number of cyclesrequired. If al instructions have alatency of 1, the total latency is just
the number of instructions, and the definition is the same as before. Notice that with non-unit
latenciesit ispossiblefor the instruction-level parallelism to exceed the cycle width; at any given
time we can be working on instructions issued in several different cycles, at different stages in
the execution pipeline.

It is not obvious whether increasing the latencies of some operations will tend to increase or
decrease instruction-level parallelism. Figure 9 illustrates two opposing effects. In 9(a), we have
a divide instruction on the critical path; if we increase its latency we will spend several cycles
working on nothing else, and the parallelism will decrease. 1n 9(b), in contrast, the divide is not
on thecritical path, and increasing its latency will increase the parallelism. Note that whether the
parallelism increases or not, it is nearly certain that the time required is less, because an increase
in the latency means we have decreased the cycle time.

We implemented five different latency models. Figure 10 lists them. We assume that the
functiona units are completely pipelined, so that even multi-cycle instructions can be issued
every cycle, even though the result of each will not be available until several cycleslater. Latency
model A (all unit latencies) isthe default used throughout this paper unless otherwise specified.

14

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

branch jump register alias
predict predict renaming analysis
Stupid none none
none T
Poor 64b counter none inspect
] 16-addr ring,
Fair 2Kb ctr/gsh no table
16-addr ring,
Good 16Kb loc/gsh 8-addr table 64
Great 152Kb loc/gsh] perfect
2K-addr ring, 256
fanout 4, then 2K-addr table
Superb | 155K} loc/gsh
Perfect perfect perfect perfect
Figure 11: Seven increasingly ambitious models
3 Reaults

We ran our eighteen test programs under a wide range of configurations. We will present some
of these to show interesting trends; the complete results appear in an appendix. To provide
a framework for our exploration, we defined a series of seven increasingly ambitious models
spanning the possible range. These seven are specified in Figure 11; in al of them the window
sizeis 2K instructions, the cycle width is 64 instructions, and unit latencies are assumed. Many
of the results we present will show the effects of variations on these standard models. Note that
even the “Poor” model is fairly ambitious: it assumes rudimentary alias analysis and a branch
predictor that is 85% correct on average, and like all seven modelsit allows our generous default

window size and cycle width.

15

Stupid
Poor
Fair
Good
Great
Superb

Perfect

parallelism

f
. g
50 7 Z Z Z E ‘/// — %;[rﬁggg
4| —— epres
30 —— gféﬁmz
< Compress
20 A =]
= yacc
\ ﬁco
0= —— ora
§: —— alvinn
6 o
5_
4_
3_
A e e e harmonic mean
2F E
s | | | | | | |

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Good Great Superb Perfect Sjtupid Poor Fair Good
Figure 12: Parallelism under the seven models, full-scale (left) and

detail (right)

3.1 Parallelism under the seven models

Figure 12 shows the parallelism of each program for each of the seven models. The numeric
programs are shown as dotted lines, the harmonic mean by a series of circles. Unsurprisingly,
the Stupid model rarely exceeds 3, and exceeds 2 only for some of the numeric programs.
The lack of branch prediction means that it finds only intra-block parallelism, and the lack of
renaming and alias analysis means it won't find much of that. Moving up to Poor helps the
worst programs quite alot, almost entirely because of the branch prediction, but the mean is till
under 3. Moving to Fair increases the mean to 4, mainly because we suddenly assume perfect
dlias analyss. The Good model doubles the mean paralelism, mostly because it introduces
some register renaming. Increasing the number of available registersin the Great model takes us
further, though the proportional improvement issmaller. At this point the effectiveness of branch
prediction is topping out, so we add 4-way branch fanout to the Great model to get the Superb
model. Its performance, however, is disappointing; we had hoped for more of an improvement.
The parallelism of the Superb model is less than half that of the Perfect model, mainly because
of the imperfection of its branch prediction. A study using the Perfect model alone would lead
us down a dangerous garden path, as would a study that included only fpppp and tomcatv.

16

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

64 64

- I I - I I I b

tomcatv 7] N tomeaty 7]

swmz256 - L swmz256 _

OE 10 %I\VF; mdjs2

=] z v v ora -

- - avinn... 4

| avinn... _| L -

1 | | | | 1 | | | |
0 10 20 30 40 50 0 10 20 30 40 50
time (megacycles) time (megacycles)

Figure 13: Parallelism under the Good model over intervals of 0.2
million cycles (left) and 1 million cycles (right)

3.2 Effects of measurement interval

We analyzed the parallelism of entire program executions because it avoided the question of
what constitutes a “representative” interval. To select some smaller interval of time at random
would run the risk that the interval was atypical of the program’s execution as a whole. To
select a particular interval where the program is at its most parallel would be mideading and
irresponsible. Figure 13 showsthe parallelism under the Good model during successive intervals
from the execution of some of our longer-running programs. Theleft-hand graph usesintervalsof
200,000 cycles, the right-hand graph 1 million cycles. In each case the parallelism of an interval
is computed exactly like that of a whole program: the number of instructions executed during
that interval isdivided by the number of cycles required.

Some of thetest programsare quite stablein their parallelism. Othersare quite unstable. With
200K -cycle intervals (which range from 0.7M to more than 10M instructions), the parallelism
within asingle program can vary widely, sometimes by afactor of three. Even 1M-cycleintervals
see variation by afactor of two. The avinn program has parallelism above 12 for 4 megacycles,
at which point it drops down to less than half that; in contrast, the swm256 program starts quite
low and then climbsto quite a respectable number indeed.

It seems clear that intervals of amillion cycles would not be excessive, and even these should
be selected with care. Parallelism measurements for isolated intervals of fewer than a million
cycles should be viewed with suspicion and even derision.

17

parallelism

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

128 oty 2
100 [— — % Of ﬁcv .
BE 1= g@p
O+ . _= o] = '02d l
5ol = svm256
ol S — e |
V| — %C&jspz
30 —— grr |
= Sggnpres
20 - \ mar;étC | |
N i — e
10 — o i]
§ C —_— glr\‘r;linn ! |
g: o % i B /| — hydro2d
41+ z | - | —— foppp
3k 2 "
e e e harmonic mean 2 / ;
2F E gL oA Simoee
] S p—
) | | | | L) U G (P S = tidisp2
Stupid Poor Far Good Great Superb Perfect Supid Poor Far Good Grea Supab Perfect ~ OTHERS
Figure 14: Paralelism under the seven models with cycle width of
128 instructions (left), and the ratio of parallelism for cycles of 128
to paralelismfor cycles of 64 (right)
128 2
mcatv -]
dbed
s |]
= | .
i
—— ctompress — | —— doduc
B [l —— tomeatv
B ! | —— hydro2d
s L I
3 | T 1 {— fpppp
o S
° '
g L
Lk | | | | |] ; l l
Stupid Poor Fair Good Great Superb Perfect Stupid Poor Fair

Figure 15: Parallelism under the seven models with unlimited cycle
width (left), and the ratio of parallelism for unlimited cycles to
parallelism for cycles of 64 (right)

18

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

3.3 Effectsof cyclewidth

Tomcatv and fpppp attain very high parallelism with even modest machine models. Their average
paralelismisvery close to the maximum imposed by our normal cycle width of 64 instructions;
under the Great model more than half the cycles of each are completely full. This suggests that
even more parallelism might be obtained by widening the cycles. Figure 14 shows what happens
if we increase the maximum cycle width from 64 instructions to 128. The right-hand graph
shows how the parallelism increases when we go from cycles of 64 instructionsto cycles of 128.
Doubling the cycle width improves four of the numeric programs appreciably under the Perfect
model, and improves tomcatv by 20% even under the Great model. Most programs, however, do
not benefit appreciably from such wide cycles even under the Perfect model.

Perhaps the problem isthat even 128-instruction cycles are too small. If we remove the limit
on cycle width altogether, we effectively make the cycle width the same as the window size, in
this case 2K instructions. The results are shown in Figure 15. Parallelism in the Perfect model
is a bit better than before, but outside the Perfect model we see that tomcatv is again the only
benchmark to benefit significantly.

Although even a cycle width of 64 instructions is quite a lot, we did not consider smaller
cycles. Thiswould have required us to replace our quick and easy greedy scheduling algorithm
with adower conventional scheduling technique[GM 86, HG83], limiting the programswe could
run to completion. Moreover, these techniques schedule a static block of instructions, and it is
not obvious how to extend them to the continuous windows mode!.

19

parallelism

parallelism

88 R

30

20

=

w N oTo~Nw O

88 R

30

20

=

w N oTo~Nw O
T

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

64 =
_ .~ _ 4 _— fpppp 50

~Z 22z =z << -|— tomcayv
7 - swm256 40
doduc 30F

€espresso

| Z%@rom 0k

SR

Ik

vinn

Z—
=

0

\ e g
ora

€C0 6

S cpmpress 5

4

3

I Y N N N S g1 1+ 1 1 |

32 64 128 256 512 1K 2K 4 8 16 32 64 128 256 512

Figure 16: Parallelism for different sizes of continuously-managed
windows under the Superb model (left) and the Fair model (right)

K 2K

Z—

—1~ 0

I Y N N N S g1 1+ 1 1 |

32 64 128 256 512 1K 2 128 256 512

~
IN
©
=
o
w
R
R

Figure17: Parallelismfor different sizes of discretely-managed win-
dows under the Superb model (left) and the Fair model (right)

20

K 2K

‘%90

/!
'%j

hydro2d
tomcatv

met
acc

Aoduc
compress
ora

ecrep
%r
ccl

56
alvinn
mdljsp2

hydro2d
tomcatv

met
acc

Aoduc
compress
ra

&rep
gqrar
ccl
IS5

alvinn
mdljsp2

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

il - 15
500 [~ 7 Swm256 —— alvinn
400 -] | —— swm256
ol i hydrozd ° [7
=r = [,,’:
" /| = avin i i
100 — A = vace B J4
- A =— FID - 4
B = _
3 = - Jow
30| B —
—— compress " ydro2d
~—
20 ~m .
0 \ sle§ B)
10 — ora g ! g tomcatv
é - 2 - ’//,,7d0dfc
4 °] / Chress
3 B © <~ edrep
) T |~ T,
E L P = -] 2
1) S W W S S
Stupid Poor Fair Good Great Superb Perfect Stupid Poor Fair Good Great Superb Perfe& SPERS

Figure 18: Parallelism under the seven models with unlimited win-
dow sizeand cyclewidth (left), and theratio of parallelismfor unlim-
ited windows and cycles to parallelism for 2K-instruction windows
and 64-instruction cycles (right)

3.4 Effectsof window size

Our standard models all have awindow size of 2K instructions. the scheduler is allowed to keep
that many instructionsin pending cycles at onetime. Typical superscalar hardwareis unlikely to
handle windows of that size, but software techniques like trace scheduling for a VLIW machine
might. Figure 16 shows the effect of varying the window size from 2K instructions down to 4,
for the Superb and Fair models. Under the Superb model, most programs do about as well with a
128-instruction window aswith alarger one. Below that, parallelism drops off quickly. The Poor
model’s limited analysis severely restricts the mobility of instructions; parallelism levels off at a
window size of only 16 instructions.

A less ambitiousparallelism manager would manage windowsdiscretely, by getting awindow
full of instructions, scheduling them relative to each other, executing them, and then starting over
with a fresh window. This would tend to result in lower paralelism than in the continuous
window model we used above. Figure 17 shows the same models as Figure 16, but assumes
discrete windows rather than continuous. As we might expect, discretely managed windows
need to be larger to be at their best: most curves don't level off until a window size of 512
instructions (for Superb) or 64 instructions (for Poor) is reached. As with continuous windows,
sizes above 512 instructions do not seem to be necessary. If we have very small windows,
continuous management does as much good as multiplying the window size by 4.

If we eliminatethelimit on both the window size and the cycle width, we get the results shown
in Figure 18. Herewe finally see thekind of high parallelism reported in studies like Nicolau and

21

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Fisher’s [NF84], reaching as high as 500 for swm256 in the Perfect model. It is interesting to
note that under even dightly more realistic models, the maximum parallelism dropsto around 50,
and the mean parallelism to around 10. The advantage of unlimited window size and cycle width
outside the Perfect model shows up only on tomcatv, and even there the advantage is modest.

3.5 Effectsof loop unrolling

Loop unrolling is an old compiler optimization technique that can also increase parallelism. If
we unroll a loop ten times, thereby removing 90% of its branches, we effectively increase the
basic block size tenfold. Thislarger basic block may hold parallelism that had been unavailable
because of the branches or the inherent sequentiality of the loop control.

We studied the parallelism of unrolled code by manually unrolling four inner loops in three
of our programs. In each case these loops constituted a sizable fraction of the original program’s
total runtime. Figure 19 displays some details.

Alvinn hastwo inner loops, the first of whichisan accumulator loop: each iteration computes
a value on which no other iteration depends, but these values are successively added into a
single accumulator variable. To parallelize thisloop we duplicated the loop body » times (with ¢
successively replaced by :+ 1, 7+ 2, and so on wherever it occurred), coll apsed the . assignmentsto
the accumulator into asingle assignment, and then restructured the resulting large right-hand-side
into a balanced tree expression.

procedure loop location type of loop instrs % of execution
input_hidden Itl)g?:l}p?r?)p?]:: accumulator 14 39.5%
alvinn
hidden_input It')geéklp%%;fc independent 14 39.5%
SWm256 CALC2 line 325 of independent 62 37.8%
tomcatv main ltlgr% (?aGt\?; independent 258 67.6%

Figure 19: Four unrolled loops

The remaining three loops are perfectly parallelizable: each iteration is completely indepen-
dent of the rest. We unrolled these in two different ways. In the first, we ssimply duplicated the
loop body n times (replacing by ¢ + 1, ¢ 4+ 2, and so on). In the second, we duplicated the
loop body n times as before, changed all assignments to array membersinto assignmentsto local
scalars followed by moves from those scalars into the array members, and finally moved all the
assignments to array members to the end of the loop. The first model should not work as well
as the second in simple models with poor alias analysis, because the array loads from successive
unrollediterations are separated by array stores; itisdifficulttotell that it issafeto interleave parts

22

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Accum
loop for i :=11to Nby 4 do
for i :=1to Ndo accum : = acum . . i
- Fi() — A GIONERI(E)
end accum : = accum + f(i);)+.(f(|+2) + f(i+3))
end
for i :=1to Nby 4 do
afi] = f(i);
bli] :=g(i);
ali+1] = f(i+1);
b[i+1] := g(i+1);
ali+2] = f(i+2);
b[i+2] := g(i+2);
a[i+3] := f(i+3);
- for b[i+3] := g(i+3);
sophisticated end
models
i for i :=1to Nby 4 do
for i :=1to Ndo a00 := f(i);
afi] :=f(i); b00 := g(i);
b[i] := g(i) a0l := f(i+1);
end bo1 := g(i+1);
a02 = f(i+2);
b02 : = g(i+2);
a03 := f(i+3);
simple b03 : = g(i+3);
models a[i] := a00;
b[i] := b0O;
ali+1] := a01;
b[i+1] := b01;
ali+2] := a0z
b[i+2] := b02;
ali+3] := a0g3;
b[i+3] := b03;
end

Figure 20: Three techniquesfor loop unrolling

of successive iterations. On the other hand, leaving the stores in place means that the lifetimes
of computed values are shorter, allowing the compiler to do a better job of register allocation:
moving the storesto the end of the loop means the compiler is morelikely to start using memory
locations as temporaries, which removes these values from the control of the register renaming
facility available in the smarter models.

Figure 20 shows examplesfor all threetransformations. We followed each unrolled loop by a
copy of the original loop starting where the unrolled loop left off, to finish up in the cases where
the loop count was not amultiple of the unrolling factor.

In fact there was very little difference between these methods for the poorer models, and the
differencesfor the better models were not all in the same direction. I1n the results reported below,
we always used the larger parallelism obtained using the two different methods. Figure 21 shows
the result. Unrolling made a profound difference to avinn under the better models, though the

23

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

tom-good
swm-good
alv-good

parallelism

w N oo~Nw O

tom-stup
swm-stup

1 av-stup

uo u2 U4 us uU16

Figure 21: Effects of loop unrolling

effect decreased as the unrolling factor increased. It made little difference in the other cases,
and even hurt the parallelism in several instances. This differenceis probably because the inner
loop of alvinn is quite short, so it can be replicated several times without creating great register
pressure or otherwise giving the compiler too many balls to juggle.

Moreover, it is quite possible for parallelism to go down while performance goes up. The
rolled loop can do the loop bookkeeping instructions in parallel with the meat of the loop body,
but an unrolled loop gets rid of at least half of that bookkeeping. Unless the unrolling creates
new opportunitiesfor parallelism (whichis of course the point) thiswill cause the net parallelism
to decrease.

Loop unrollingisagood way to increase the available parallelism, but it is not asilver bullet.

3.6 Effectsof branch prediction

We saw earlier that new techniques of dynamic history-based branch prediction allow usto benefit
from quite large branch predictor, giving success rates that are still improving sightly even when
we are using a 1-megabit predictor. It isnatural to ask how much this affectsthe instruction-level
parallelism. Figure 22 answers this question for the Fair and Great models. The Fair model is
relatively insensitive to the size of the predictor, though even atiny 4-bit predictor improvesthe
mean parallelism by 50%. A tiny 4-bit table doubles the parallelism under the Great model, and
increasing that to a huge quarter-megabit table more than doubles it again.

Even under the Great model, the three most parallel programs are quite insensitive to the size
of the predictor. These are exactly the programs in which conditional branches account for no
morethan 2% of the instructions executed; the nearest contender is doduc with 6%. We can mask
this effect by plotting these results not as a function of the predictor size, but as a function of

24

parallelism

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

64 64
I I I I I I I [I I I I I I I [
50 - 7 50 - = = —_-Z ZZ Iz = e fpppp
40 . 40 [i I B — tS(J)VnI:I]’l256
| - F -
7/
/ oguc
20} - 20 - / %rr
10 = = = emggcsp
o ; NS
18 I N}
R] 1N g
3k :::—:—f—f—f—f—f—f—f—f—f—f—_
2F .
L N N T Y A O N B L T T Y N N B B
0 4 16 64 256 1K 4K 16K 64K 256K 0 4 16 64 256 1K 4K 16K 64K 256K
Figure 22: Parallelism for different sizes of dynamic branch-
prediction table under the Fair model (left) and the Great model
(right)
64 = = 64 = =
or i or e, -1
40 - - 40 - e P - - swm256
0k - 0k PR -
20+ . 20+ . ig
/’//// gd i
hydro2d - rIndI'SpZ
= tomcatv 0 :_ e _:i e%}}ép
] met 8 Iéra
B /acc T] rr
. i N 6 - B ccl
ok o TN gmpress
ora
eco
T geer 3]
§ resso
3\ dess 2F E
avinn F
mdljsp2 I
.k I I I I I
16K 4 16 64 256 1K 4K 16K

Figure 23: Parallelism as a function of the mean number of instruc-
tions between mispredicted branches, under the Fair model (left) and
the Great model (right)

25

parallelism

parallelism

88 R

=

w N o~Nw O

50

30

20

=

w N o~Nw O
-

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

k-7

20p°

— tomcatv

\
[I
-

¢35
35
NOT
a
(2]

Figure 25: Paralelism for the Fair model with different levels of
fanout scheduling across conditional branches, with no branch pre-
diction (left) and with branch prediction (right) after fanout is ex-
hausted

26

[
; ; _| % ::el L
Y S
E \ ggcm1 ress g:
] \ L5 T]
ahimn
3 -
z 2E E
i | | 5 Ri | | |
0 4 6 8 0 2 4 6
Figure 24: Pardlelism for the Great model with different levels
of fanout scheduling across conditional branches, with no branch
prediction (left) and with branch prediction (right) after fanout is
exhausted
- 64 =
- - 50 - -
- 40 -
- - 30 - -
- - 20 - -
Q&?rozd
10
% met 8
e
or? 4
:
2 F
i | | Ri | | |
0 4 6 8 0 2 4 6

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

the average number of instructions executed between mispredicted branches. Figure 23 shows
these results. These three numeric programs still stand out as anomalies; evidently thereis more
involved in their parallelism than the infrequency and predictability of their branches.

3.7 Effectsof fanout

Figures 24 and 25 show the effects of adding various levels of fanout to the Great and Fair
models. Theleft-hand graphsassumethat welook along both paths out of the next few conditional
branches, up to the fanout limit, but that we do not look past branches beyond that point. The
right-hand graphs assume that after we reach the fanout limit we use dynamic prediction (at the
Great or Fair level) to look for instructionsfrom the one predicted path to schedule. In each graph
the leftmost point represents no fanout at all. We can see that when fanout is followed by good
branch prediction, the fanout does not buy us much. Without branch prediction, on the other
hand, even modest amounts of fanout are quite rewarding: adding fanout across 4 branchesto the
Fair model isabout as good as adding Fair branch prediction.

Fisher [Fis91] has proposed using fanout in conjunction with profiled branch prediction. In
this scheme they are both under software control: the profile gives usinformation that helps usto
decide whether to explore agiven branch using the fanout capability or using aprediction. Thisis
possible because a profile can easily record not just which way a branch most often goes, but also
how often it does so. Fisher combines this profileinformation with static scheduling information
about the payoff of scheduling each instruction early on the assumption that the branch goes in
that direction.

Our traces do not have the payoff information Fisher uses, but we can investigate a ssimpler
variation of the idea. We pick some threshold to partition the branches into two classes. those
we predict because they are very likely to go one way in particular and those at which we fan out
because they are not. We will call this scheme profile-guided integrated prediction and fanout.

We modified the Perfect model to do profile-guided integrated prediction and fanout. Figure 26
shows the parallelism for different threshold levels. Setting the threshold too low means that we
use the profile to predict most branches and rarely benefit from fanout: athreshold of 0.5 causes
al branchesto be predicted with no use of fanout at all. Setting the threshold too high means that
you fan out even on branches that nearly always go one way, wasting the hardware parallelism
that fanout enables. Even a very high threshold is better than none, however; some branches
really do go the same way all or essentially all of the time. The benefit is not very sensitive to
the threshold we use: between 0.75 and 0.95 most of the curves are quite flat; this holds as well
if we do the same experiment using the Great model or the Fair model. The best threshold seems
to be around 0.92.

Figure 27 shows the parallelism under variations of the Fair and Superb models, first with the
profile-integrated scheme and next with the hardware approach of fanout followed by prediction.
Profile-guided integration works about as well as the smple hardware approach under the Fair
model, in spite of the fact that the Fair model has a predictor that is about 5% better than a profile
predictor. The better hardware branch prediction of the Superb model, however, completely
outclasses the profile-integrated approach.

27

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

R T f R -
F T e, T T
4OF- "~
30
20 o
10
8
7
i
5_
4_
3_
g 3 2F
: | | | |] Lk | |
.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7

0.8

0.9

Figure 26: Pardlelism for the Perfect model with profile-guided
integrated prediction and fanout, for fanout 2 (left) and fanout 4

(right)
Fair Superb
fanout 2 fanout 4 fanout 2 fanout 4
Integr Hardware | Integr Hardware || Integr Hardware | Integr Hardware
egrep 47 44 49 47 6.5 104 7.8 10.8
sed 5.0 51 5.0 52 10.3 10.9 10.3 117
yacc 47 47 48 49 7.7 9.7 8.6 9.9
€co 42 42 42 42 6.9 82 74 85
grr 4.0 41 42 42 7.0 10.7 85 116
metronome 438 49 48 49 9.2 125 10.1 12.6
alvinn 33 33 33 33 55 55 55 56
compress 46 48 5.0 51 6.6 81 8.0 84
doduc 46 46 47 46 15.7 16.2 16.8 16.4
espresso 38 39 39 4.0 8.8 134 10.7 14.7
fpppp 35 35 35 35 476 493 488 494
geel 41 4.0 42 42 8.0 9.8 9.3 104
hydro2d 57 56 58 57 11.6 12.8 123 133
li 47 48 48 48 94 11.3 10.1 115
mdljsp2 33 33 33 33 10.1 10.2 10.8 10.7
ora 42 42 42 42 8.6 9.0 9.0 9.0
swm256 34 34 34 34 428 43.0 428 433
tomcatv 49 49 49 49 453 454 453 454
har. mean 42 42 43 43 9.5 115 10.5 11.9

Figure 27: Parallelism under Fair and Superb models with fanout 2
or 4, using either profile-guided integrated fanout and prediction or

the unintegrated hardware technique

28

il

7N

parallelism

30 -

20 -

=

w N o~Nw O
TR T
il
bl
N\l
e |

I

|

1

\

1

|

[

I

1

1

1

! 1

! 1

! I

1

1

I

)

1

1

I

w N oo~Nw O
T

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

LB | | | |

—

\

none 1-ring 2-ring 4-ring 8-ring 16-ring inf-ring

f]
oMLy

(elc?n ress
an n

N
TTTTT

b

none

1-ring 2-ring 4-ring 8-ring 16-ring inf-ring

Figure 28: Parallelism for varying sizes of return-prediction ring
with no other jump prediction, under the Great model (left) and the

Perfect model (right)

3.8 Effectsof jump prediction

Subroutine returns are easy to predict well, using the return-ring technique discussed in
Section 2.5. Figure 28 shows the effect on the parallelism of different sizes of return ring and no
other jump prediction. The leftmost point is a return ring of no entries, which means no jump
prediction at all. A small return-prediction ring improves some programs a lot, even under the
Great model. A large return ring, however, is not much better than a small one.

We can also predict indirect jumpsthat are not returns by cacheing their previous destinations
and predicting that they will go there next time. Figure 29 shows the effect of predicting returns
with a 2K-element return ring and all other indirect jumps with such atable. The mean behavior
isquiteflat asthetable size increases, but a handful of programs do benefit noticeably even from

avery small table.

29

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

f
1Bty
- 3 ; 64 == - - T F=—==F - F-———F——""4 é dOPUC
50 E_E E E ; :7 :7 :7 :7 :7 :7 :7 :7 :7 :7 :7 :7 5 ; ,: 5 ,; ,i ,: ,i; p— tgr%p(:%[v 50 e B %%56
40 - swm256 40 — ?rr%?g
30k | o] I T i (ﬂJSpZ
— —t press
d — &
20 - _/ ﬁOdﬁg&d 06— O 0 (] v - _§ et
esso acc
I e / % T 50(:1
********* e — % | — i
10 - s _——— ¢ ¢ & - mc?l Sp2 10 1 gg
—ee O/]
?- :§¥{?1 ?:************************:7alvinn
6F_ - - _ - __________-_-_----_-___—/- é:cc 6 —
0
51 . x compress S .
4 i avinn 4 .
3t = 3t .
2k E 2k .
.k | | | | | 1 .k | | | | |
none 2-tab 4-tab 8-tab 16-tab 32-tab 64-tab none 2-tab 4-tab 8-tab 16-tab 32-tab 64-tab

Figure 29: Parallelism for jump prediction by a huge return ring
and a destination-cachetable of various sizes, under the Great model
(Ieft) and the Perfect model (right)

3.9 Effectsof a penalty for misprediction

Even when branch and jump prediction have little effect on the parallelism, it may till be
worthwhile to include them. In a pipelined machine, a branch or jump predicted incorrectly (or
not at all) resultsin abubblein the pipeline. Thisbubbleisaseriesof oneor more cyclesinwhich
no execution can occur, during which the correct instructions are fetched, decoded, and started
down the execution pipeline. The size of the bubble is a function of the pipeline granularity,
and applies whether the prediction is done by hardware or by software. This penalty can have a
serious effect on performance. Figure 30 showsthe degradation of parallelism under the Poor and
Good model's, assuming that each mispredicted branch or jump adds N cycleswith noinstructions
in them. The Poor model deteriorates quickly because it has limited branch prediction and no
jump prediction. The Good model is less affected because its prediction is better. Under the Poor
model, the negative effect of misprediction can be greater than the positive effects of multiple-
issue, resulting in a parallelism under 1.0. Without the multiple issue, of course, the behavior
would be even worse.

The most parallel numeric programs stay relatively horizontal over the entire range. As
shown in Figure 31, thisis because they make fewer branches and jumps, and those they make are
comparatively predictable. Increasing the penalty degrades these programs less than the others
because they make relatively few jumps; in tomcatv, fewer than one instruction in 30000 is an
indirect jump. For most programs, however, ahigh misprediction penalty can resultin * speedups”
that are negligible, even when the non-bubble cycles are highly paralel.

30

parallelism

U1 O N0

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Figure 30: Parallelism as a function of misprediction penalty for the

50

301

20

10 E

N

=
o Ty

]
3
g
<

w A 01O~
:

Poor model (left) and the Good model (right)

branches jumps
egrep 19.3% 0.1%
yacc 23.2% 0.5%
sed 20.6% 1.3%
eco 15.8% 2.2%
arr 10.9% 1.5%
met 12.3% 2.1%
alvinn 8.6% 0.2%
compress 14.9% 0.3%
doduc 6.3% 0.9%
espresso 15.6% 0.5%
fpppp 0.7% 0.1%
geel 15.0% 1.6%
hydro2d 9.8% 0.7%
li 15.7% 3.7%
mdljsp2 9.4% 0.03%
ora 7.0% 0.7%
swm256 2.2% 0.1%
tomcatv 1.8% 0.003%

Figure 31: Dynamic ratios of conditional branches and indirect

jumpsto al instructions

31

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

B i [i f
> 50 mzzzZzZ=z=zz=z= i tgre\e:%tv
20+ _ 40 /0 -+ T swm256
0 e — tomcav [/0 doduc
/7 resso
N fpr%%S 20 /! i / @roZd
ro2: /| m
met-C S T / S?E
) 1o O e
K = ke
— & e N
%Er \ yac
= €co
T QR
avitn
2F E 2k]
1 l l] 1 | |
none insp comp perf none insp comp perf

Figure 32: Paralelismfor different levelsof adiasanalyss, under the
Good model (left) and the Superb model (right)

3.10 Effectsof aliasanalysis

Figure 32 shows that “alias analysis by inspection” is better than none, though it rarely increased
parallelism by more than a quarter. “Alias analysis by compiler” was (by definition) identical
to perfect alias analysis on programs that do not use the heap. On programs that do use the
heap, it improved the parallelism by 75% or so (by 90% under the Superb model) over alias
analysis by inspection. Perfect analysis improved these programs by another 15 to 20 percent
over alias analysis by compiler, suggesting that there would be a payoff from further results on
heap disambiguation.

32

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

— f
ey
m25

_ -z = I
- - -== 22 -H— swm

| = mdl]sp2

V.
6
40

50

30

droZd
€SS0

N
%8%@?;
=070
.83 e
parallelism

w B~ 0o~ 8

avinn - =
compress 4 t———

N
T
|
N
TTTTTT
|

Lk | | | |] Lk | | | |

none 32 64 128 256 perfect none 32 64 128 256 perfect

Figure 33: Pardlelism for different numbers of dynamically-
renamed registers, under the Good model (left) and the Superb model
(right)

3.11 Effectsof register renaming

Figure 33 shows the effect of register renaming on parallelism. Dropping from infinitely many
registers to 128 CPU and 128 FPU had little effect on the parallelism of the non-numerical
programs, though some of the numerical programs suffered noticeably. Even 64 of each did not
do too badly.

The situation with 32 of each, the actual number on the DECstation 5000 to which the code
was targeted, isinteresting. Adding renaming did not improve the parallelism much, and in fact
degraded it in afew cases. With so few real registers, hardware dynamic renaming offers little
over areasonable static allocator.

33

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

_— tomcatv
7 T swm256

—— doduc
5 h A
1=
" / r
_ ﬂ%ﬁspz
= gr
§ ggl‘:rcpre&
B BICO
- — avinn
—— ora
Lk | | | | |] Lk | | | | |
Stupid Poor Fair Good Great Superb Perfect Stupid Poor Fair Good Great Superb Perfect

Figure 34: Parallelism under the seven standard modelswith latency
model B (left) and latency model D (right)

3.12 Effectsof latency

Figure 34 shows the parallelism under our seven models for two of our latency models, B and D.
Asdiscussed in Section 2.7, increasing the latency of some operations could act either to increase
parallelism or to decreaseit. Infact thereissurprisingly little difference between these graphs, or
between either and Figure 12, which isthe default (unit) latency model A. Figure 35 looksat this
picture from another direction, considering the effect of changing the latency model but keeping
the rest of the model constant. The bulk of the programs are insensitive to the latency model, but
afew have either increased or decreased parallelism with greater latencies.

Doduc and fpppp are interesting. As latencies increase, the parallelism oscillates, first de-
creasing, then increasing, then decreasing again. This behavior probably reflects the limited
nature of our assortment of latency models: they do not represent points on asingle spectrum but
asmall sample of avast multi-dimensional space, and the path they represent through that space
jogs around a bit.

4 Conclusons

Superscalar processing has been acclaimed as “vector processing for scalar programs,” and
there appears to be some truth in the claim. Using nontrivial but currently known techniques,
we consistently got parallelism between 4 and 10 for most of the programs in our test suite.
Vectorizable or nearly vectorizable programs went much higher.

Speculative execution driven by good branch predictionis critical to the exploitation of more

34

parallelism

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

f] o :
“or 7 Wbk T T oo -] feomp
30} i ol i
o tomcaty, / m/éilrozg
DF - -7 m256 20 - /_/SJ[%O
/%gw %
————— DR] G =—e———————
10 = _Ziacc " \e%%p
8F R * . ‘1/3%3{ 8F :\grr
77777777 _— UC \ l
7 == t%r Sp2 r ‘\egmpress
R —t\ lig L =S %0
>r -\ ccl 5k SR Bl
41+ - 0 ak]
compress
\alwn

B E ora 3k |

2F . Sk .

1 l l l 1 1 | | |

A B C D E A B c D E

Figure 35: Paralelism under the Good model (left) and the Superb
model (right), under the five different latency models

than modest amounts of instruction-level parallelism. If we start with the Perfect model and
remove branch prediction, the median parallelism plummets from 30.6 to 2.2, while removing
aliasanalysis, register renaming, or jJump prediction resultsin more acceptable median parallelism
of 3.4, 4.8, or 21.3, respectively. Fortunately, good branch prediction isnot hard to do. The mean
time between misses can be multiplied by 10 using only two-bit prediction with amodestly sized
table, and software can do about as well using profiling. We can obtain another factor of 5inthe
mean time between misses if we are willing to devote alarge chip areato the predictor.

Complementing branch prediction with simultaneous speculative execution across different
branching code paths is the icing on the cake, raising our observed parallelism of 4-10 up to
7-13. Infact, parallel exploration to a depth of 8 branches can remove the need for prediction
altogether, though thisis probably not an economical substitute in practice.

Though these numbers are groundsfor optimism, we must remember that they are themselves
the result of rather optimistic assumptions. We have assumed unlimited resources, including as
many copies of each functional unit as we need and a perfect memory system with no cache
misses. Duplicate functional units take up chip real estate that might be better spent on more
on-chip cache, especially as processors get faster and the memory bottleneck gets worse. We
have for the most part assumed that there is no penalty, in pipeline refill cycles or in software-
controlled undo and catch-up instructions, for a missed prediction. These wasted cycles lower
the overall parallelism even if the unwasted cycles are as full as ever, reducing the advantage of
an ingtruction-parallel architecture. We have assumed that all machines modeled have the same
cycle time, even though adding superscalar capability will surely not decrease the cycle time
and may in fact increase it. And we have assumed that all machines are built with comparable

35

- - _ . —— swm256
o oo - —— tomcatv

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

technology, even though a ssmpler machine may have a shorter time-to-market and hence the
advantage of newer, faster technology. Any one of these considerations could reduce the expected
payoff of an instruction-parallel machine by athird; together they could eliminate it completely.

Appendix 1. Implementation details

The paralelismsimulator used for thispaper isconceptually smple. A sequence of pending cycles
contains sets of instructions that can be issued together. We obtain a trace of the instructions
executed by the benchmark, and we place each successive instruction into the earliest cycle that
is consistent with the model we are using. When thefirst cycleisfull, or when the total number of
pending instructions exceeds the window size, the first cycle isretired. When a new instruction
cannot be placed even in the latest pending cycle, we must create a new (later) cycle.

A smplealgorithm for thiswould beto take each new instruction and consider it against each
instruction already in each pending cycle, starting with the latest cycle and moving backward in
time. When we find a dependency between them, we place the instruction in the cycle after that.
If the proper cycleis already full, we place the instruction in the first non-full cycle after that.

Since we are typically considering models with windows of thousands of instructions, doing
this linear search for every instruction in the trace could be quite expensive. The solution is
to maintain a sort of reverse index. We number each new cycle consecutively and maintain a
data structure for all the individual dependencies an instruction might have with a previoudly-
scheduled instruction. This data structure tells us the cycle number of the last instruction that
can cause each kind of dependency. To schedule an instruction, we consider each dependency it
might have, and we look up the cycle number of the barrier imposed by that dependency. The
latest of al such barrierstells us where to put the instruction. Then we update the data structure
as needed, to reflect the effects thisinstruction might have on later ones.

Some simple examples should make the idea clear. An assignment to a register cannot be
exchanged with a later use of that register, so we maintain a timestamp for each register. An
instruction that assigns to a register updates that register’s timestamp; an instruction that uses a
register knows that no instruction scheduled later than the timestamp can conflict because of that
register. Similarly, if our model specifies no alias analysis, then we maintain one timestamp for
al of memory, updated by any store instruction; any new load or store must be scheduled after
that timestamp. On the other hand, if our model specifies perfect alias analysis, two instructions
conflict only if they refer to the same location in memory, so we maintain a separate timestamp
for each word in memory. Other examples are more complicated.

Each of the descriptions that follow has three parts. the data structure used, the code to be
performed to schedule the instruction, and the code to be performed to update the data structure.

Three final points are worth making before we plunge into the details.

First, the parallelism ssimulator is not responsible for actually orchestrating an execution. It
issimply consuming atrace and can therefore make use of information available much later than
areal system could. For example, it can do perfect alias analysis smply by determining which
memory location is accessed, and scheduling the instruction into a pending cycle as if we had
known that all along.

36

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

a mod b The number in the range [0..b-1] obtained
by subtracting amultiple of b from a

a I NDEX b i(%?t;?byTeogdgress a used as an index to atable of size b.

UPDOM a PER b glégf?r?o?zgggggg):?hae;r; =a-1

wooma per o v LS

SH FTIN a BIT b MDD n s:=((s<<1) + (if bthen 1 else 0)) mod n

Schedule this instruction after cyclet.

AFTER 1 Applying all such constraints tells us the earliest possible time.
if (a<b) thena:=b.
BUVP a TO b Thisis used to maintain a timestamp as the latest occurrence

of some event; a isthelatest sofar, and b isanew occurrence,
possibly later than a.

Figure 36: Abbreviations used in implementation descriptions

Second, the algorithm used by the smulator is temporally backwards. A real multiple-issue
machine would be in a particular cycle looking ahead at possible future instructions to decide
what to execute now. The ssimulator, on the other hand, keeps a collection of cycles and pushes
each instruction (in the order from the single-issue trace) as far back in time as it legally can.
This backwardness can make the implementation of some configurations unintuitive, particularly
those with fanout or with imperfect alias anaysis.

Third, the R3000 architecture requires no-op instructions to be inserted wherever a load
delay or branch delay cannot be filled with something more useful. This often means that 10%
of the instructions executed are no-ops. These no-ops would artificially inflate the program
parallelism found, so we do not schedule no-opsin the pending cycles, and we do not count them
as instructions executed.

We now consider thevariousoptionsinturn. Indescribing theimplementationsof thedifferent
options, the abbreviations given in Figure 36 will be helpful.

37

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:
jumpbarrier cycle of last junmp machi ne nispredicted
ring[0..nring-1] return ring
iring wr aparound i ndex to ring
jpredict[O0..njpredict-1] | ast-destination table
jprofile[a] most frequent destination of junp at address a
To schedule:

AFTER j unpbarri er
To bookkeep, after scheduling the instructionin cyclet :

if instruction is call then
if CALLRI NG t hen

iring := (iring + 1) nmod nring
ring[iring] := returnAddress
end
end
if instruction is indirect junp then
addr := "address of jump"
destination := "address junped to, according to trace"

i f PERFECT then
i sbadj ump : = fal se
else if instruction is return and CALLRI NG t hen
if ring[iring] = destination then
iring := (iring - 1) nod nring
el se
i sbadj unp : = true
end
el se if JTABLE then
i := addr | NDEX nj predict
isbadjump := (jpredict[i] != destination)
jpredict[i] := destination
el se if JPROFILE then
isbadjunmp := (jprofile[addr] != destination)
el se
i sbadj unp : = true
end
end
if isbadjunmp then
BUWP j unpbarrier TO t
end

Figure 37: Jump prediction

Jump prediction

The simulator has two ways of predicting indirect jumpsin hardware. One isthe returnring, and
the other isthe last-destination table. It also supports software jJump prediction fromaprofile. In
any case, a successfully predicted jump is the same as a direct jump: instructions from after the
jump in thetrace can movefreely asif the jump had been absent. A mispredicted jump may move
beforeearlier instructions, but al later instructions must be schedul ed after the mispredicted jump.
Since the trace tells us where each indirect jJump went, the simulator simply does the prediction
by whatever algorithm the model specifies and then checks to seeif it wasright.

38

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

A mispredicted jump affectsall subsequent instructions, so it sufficesto use asingletimestamp
j unpbarrier.

The last-destination table isatablej predi ct [0. . nj predi ct - 1] containing code ad-
dresses, where the model specifies the table size. If the next instruction in the trace is an
indirect jump, we look up the table entry whose index is the word address of the jump, modulo
nj predi ct . We predict that the jJump will be to the code address in that table entry. After the
jump, we replace the table entry by the actual destination.

Thereturnringisacircular tableri ng[0. . nri ng- 1] containing code addresses, where
themodel specifiesthering size. Weindex theringwithawraparound counteri r i ng intherange
[0..nring-1]:incrementingnri ng- 1 giveszero, and decrementing O givesnri ng- 1. If
the next instruction in the trace is areturn, we predict that its destinationisri ng[i ri ng] and
thenwedecrementi r i ng. If the next instruction in thetraceisacall, weincrementi r i ng and
storethe return address for the call intori ng[i ri ng] .

Our instruction set does not have an explicit return instruction. An indirect jump viar 31 is
certainly areturn (at least with the compilers and libraries we used), but a return via some other
register is alowed. We identify a return via some register other than r 31 by the fact that the
return ring correctly predictsit. (Thisisnot realistic, of course, but use of the return ring assumes
that returns can be identified, either through compiler analysis or through use of a specific return
instruction; we don’t want the model to be handicapped by a detail of the R3000.)

A jump profile is a table obtained from an identical previous run, with an entry for each
indirect jump in the program, telling which address was the most frequent destination of that
jump. We predict ajump by looking up its entry in thistable, and we are successful if the actual
destination is the same.

This leaves the two trivial cases of perfect jump prediction and no jump prediction. In either
case we ignore what the trace says and simply assume success or failure.

Branch prediction and fanout

Branch prediction is analogous to jump prediction. A correctly predicted conditional branch is
just like an unconditional branch: instructions from after the branch can move freely before the
branch. Aswithjumps, no later instruction may be moved before an incorrectly predicted branch.
The possibility of fanout, however, affects what we consider an incorrectly predicted branch.

Thesimplecounter-based predictor usesatablect rt ab[0. . nct rt ab- 1] containingtwo-
bit counter in the range [0..3], where the model specifies the table size. These two-bit counters
are saturating: incrementing 3 gives 3 and decrementing O gives 0. If the next instruction in
the trace is a conditional branch, we look up the counter whose index is the word address of the
branch, modulo nct r t ab. If the counter is at least 2, we predict that the branch will be taken,
otherwise that it will not. After the branch, we increment the counter if the branch really was
taken and decrement it if it was not, subject to saturation in either case. The other two hardware
predictors are combined techniques, but they work similarly.

A branch profile is a table obtained from an identical previous run, with an entry for each
conditional branch in the program, telling the fraction of the times the branch was executed in
whichit wastaken. If thisfractionismorethan half, we predict that the branch istaken; otherwise

39

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:
branchbarri er cycle of last branch machi ne m spredicted
ctrtab[0..nctrtab-1] 2-bit counters for counter predictor
gbl t ab[0. . ngbl t ab- 1] 2-bit counters for gshare predictor
| octab[0. .nl oct ab-1] 2-bit counters for local predictor
sel ect[0..nsel ect-1] 2-bit counters for choosing in conbined predictor
gl obal hi st (log2 ngbltab)-bit history shift register
I ocal hi st[0..nlocal hist-1] (log2 nloctab)-bit history shift registers
bprofile[a] frequency that branch at address a is taken
bqueuel f +1] queue of cycles of f+1 previous branches

To schedule:

AFTER branchbarri er
To bookkeep, after scheduling the instructionin cyclet :

if instruction is conditional branch then
addr := "address of branch"
branchto : = "address branch would go to if taken"
taken := "trace says branch is taken"
i f not BPREDI CT then
i sbadbranch : = true
el se if BTAKEN then
i sbadbranch : = not taken;
else if BSIGN then
i sbadbranch := (taken = (branchto > addr))
el se if BTABLE then
if BTECHNI QUE = counters then
i 1= addr INDEX nctrtab
pred = (ctrtab[i] >= 1)
i sbadbranch := (pred ! = taken)
UPDOM ctrtab[i] PER taken
el sif BTECHNI QUE = counters/gshare then
i 1= addr INDEX nctrtab
predl := (ctrtab[i] >= 2)
UPDOM brctr”[i] PER taken
i := global hist xor (addr |NDEX gtabl esize)
pred2 := (gbltab[i] >= 2)
UPDOM gbltab[i] PER taken
SHI FTI' N gl obal hi st BIT taken MOD ngbltab
i = addr | NDEX nsel ect
pred := (if select[i] >= 2 then predl el se pred2)
i sbadbranch := (pred ! = taken)
UPDOM sel ect[i] PER (taken=predl), (taken=pred2)
el sif BTECHNI QUE = | ocal / gshare then
hi sti := addr | NDEX nl ocal hi st
i :=localhist[histi]
predl := (loctab[i] >= 2)
UPDOM | octab[i] PER taken
SHI FTIN | ocal hist[histi] BIT taken MOD nl octab
i := global hist xor (addr |NDEX gtabl esize)
pred2 := (gbltab[i] >= 2)
UPDOMN gbltab[i] PER taken
SHI FTI N gl obal hi st BIT taken MOD ngbl tab
i = addr | NDEX nsel ect
pred := (if select[i] >= 2 then predl el se pred2)
i sbadbranch := (pred ! = taken)
UPDOM sel ect[i] PER (taken=predl), (taken=pred2)

Figure 38: Branch prediction

40

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

el se if BPROFILE then
i sbadbranch := (taken = (bprofile[addr] < 0.5))
el se
i sbadbranch : = fal se
end
i f BPROFILE and PROFI LEI NTEGRATI ON t hen
if bprofile[addr]<threshold and 1.0-bprofile[addr]<threshold then
remove head of bqueue, append t to bqueue
i f isbadbranch then
BUWP branchbarrier TO head of bqueue
end
el sif isbadbranch then
fill all elenments of bqueue with t
BUWMP branchbarrier TO t
end
el se
remove head of bqueue, append t to bqueue
i f isbadbranch then
BUWP branchbarrier TO head of bqueue
end
end
end

Figure 38 continued

we predict that it is not taken.

If the model specifies “signed branch prediction” we see if the address of the branch is less
than the address of the (possible) destination. If so, thisis aforward branch and we predict that
it will not be taken; otherwiseit is abackward branch and we predict that it will be taken.

If the model specifies “taken branch prediction” we always predict that the branch will be
taken. If itis, we are successful.

Perfect branch prediction and no branch prediction are trivial: we simply assume that we are
always successful or always unsuccessful.

If the model does not include fanout, we deal with success or failure just as we did with
jumps. A successfully predicted branch allows instructionsto be moved back in time unhindered,;
amispredicted branch acts as a barrier preventing later instructions from being moved beforeit.

If the model includesfanout of degreef , the situation isalittle more complicated. We assume
that in each cycle the hypothetical multiple-issue machine looks ahead on both possible paths
past the first f conditional branches it encounters, and after that point looks on only one path
using whatever form of branch prediction is specified. Thus a given branch may sometimes be a
fanout branch and sometimes be a predicted branch, depending on how far ahead the machineis
looking when it encounters the branch. From the smulator’stemporally backward point of view,
this means we must tentatively predict every branch. We can move an instruction backward over
any number of successfully predicted branches, followed by f more branches whether predicted
successfully or not. In other words, an unsuccessfully predicted branch means the barrier is
situated at the cycle of the branch f branches before thisone. (Noticethat if f =0, that branchis
this branch, and we reduce to the previous case.)

To do this, we maintain aqueue bqueue[0. . f] containing the timestamps of the previous

41

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

f +1 branches. If the next instruction in the trace is a branch, we remove the first element of
bqueue and append the timestamp of the new branch. If the branch prediction is successful, we
do nothing else. If it is unsuccessful, we impose the barrier at the cycle whose timestamp isin
thefirst element of bqueue.

Profile-guided integration of prediction and fanout works a little differently. If the next
instruction is a conditional branch, we look it up in the profile to find out its probability of being
taken. If itsprobability of being taken (or not taken) is greater than the model’ sthreshold, we call
it a“predictable” branch and predict that it will be taken (or not taken). Otherwise we call it an
“unpredictable” branch and use one level of fanout. (Notethat thisterminology isindependent of
whether it isactually predicted correctly in agiveninstance.) From the simulator’s point of view,
this means we can move backward past any number of predictable branchesthat are successfully
predicted, interspersed with f unpredictable branches. Fanout does us no good, however, on a
branch that we try unsuccessfully to predict.

Thus we again maintain the queue bqueue[0. . f], but this time we advance it only on
unpredictable branches. As before, we tentatively predict every branch. If we mispredict an
unpredictable branch, we impose the barrier f unpredictable branches back, which the head of
bqueue tellsus. If we mispredict a predictable branch, we must impose the barrier after the
current branch, because the profile would never have let us try fanout on that branch.

42

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Register renaming

Theideabehind register renaming isto reduce or eliminate the fal se dependenciesthat arise from
re-using registers. Instructions appear to use the small set of registersimplied by the size of the
register specifier, but these registers are really only register names, acting as placeholders for a
(probably) larger set of actual registers. This allows two instructions with an anti-dependency to
be executed in either order, if the actual registers used are different.

When an instruction assigns to a register name, we alocate an actual register to hold the
value.® This actual register isthen associated with the register name until some later instruction
assignsanew valueto that register name. At this point we know that the actual register hasin fact
been dead since itslast use, and we can return it to the pool of available registers. We keep track
of the cycle in which an available register was last used so that we can allocate the least-recently
used of the available registers when we need a new one; this lets the instructions that use it be
pushed as far back in time as possible.

If the next instruction uses registers, we look the names up in the ar eg mapping to find out
which actual registers are used. If the instruction sets aregister, usewhenavai | to allocate the
available actual register r that became available in the earliest cycle. Update the ar eg mapping
to reflect this allocation. This means that the register r r that was previousy mapped to this
register name became free after itslast use, so werecord the timeit actually became available; i.e.
the time it was last referenced, namely whenset or used[rr] . Conversely, we want to mark
theallocated register r as unavailable, so we changewhenavai | [r] toaninfinitely late value.

If theinstruction usessomeactual registerr , thenit must beissuedinor afterwhenr eady[r] .
If theinstruction setssomeactual register r , thenit must beissuedinor afterwhenset or used| r |
and also in or after whenr eady| r] , unless the model specifies perfect register renaming.

Once we have considered all the timing constraints on the instruction and have determined
that it must be issued in some cyclet , we update the dependency barriers. If theinstruction sets
an actual register r , werecord inwhenr eady|[r] the timewhen the result will actually be ac-
cessible— usually the next instruction, but later if theinstruction has anon-unit latency.” Wealso
updatewhenset or used| r] ; for thiswe don’'t care about the latency, because the setting time
will berelevant only if thisregister immediately becomes available because the value assigned is
never used. If the instruction uses an actual register r , we updatewhenset or used[r] .

As stated so far, thisalgorithm is still fairly expensive, because the allocation of anew actual
register requires a search of the whenavai | table to find the earliest available register. We
speed thisup by maintaining atournament tree on top of whenavai | that letsusfind the earliest
entry in constant time by looking in the root. Whenever we change some entry inwhenavai | ,
we update the tournament tree path from this register to the root, which takes time logarithmicin
the number of actual registers.

This discussion has also ignored the fact that there are two digoint register setsfor CPU and

5The R3000 implicitly uses special registerscalled hi and | o indivision operations; we treat these asif they had
been named explicitly in theinstruction, and include them in the renaming system.

"We don’t use BUMP for this because under perfect register renaming previousvalues in this actual register are
irrelevant. This doesn’'t hurt us under imperfect renaming because this register assignment won’t be able to move
before previous uses.

43

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:

areg[rn]

whenr eady|[r]
whenset orused[r]
whenavail [r]

r oot

leaf[r]

Tour nanent tree records
reg
avai |
par ent
sib

Actual register associated with register name rn

First cycle in which the value in r can be used
Last cycle in which register r was set or used
Cycl e when register r becane avail abl e.

Pointer to root of tournament tree

Pointer to r's leaf entry in tournament tree

are:
regi ster described by this record

time when the register becane avail abl e
pointer to parent record

pointer to sibling record

Each record identifies the child with the smaller value of avail.

procedure O dest ()
return root”.reg

procedure Updat ed dest (r)

p :=leaf[r]
p~.avail := whenavail[r]
r epeat

parent := p°.parent

sib :=p°.sib
parent”. avai l
parent”.reg
p := parent
until p = root

To schedule:

if instruction sets or

u

m ni ni mum of p~.avail and sib”.avail
p~.reg or sib”.reg, whichever had min avail

ses a register nane rn then

use areg[rn] to determine the actual register currently mapped

end
i f REGSRENUMBER t hen

if instruction sets a register name rn then

rr = areg[rn]
r := ddest()
areg[rn] :=r

whenavail [r] :=
Updat ed dest (r)
whenavail [rr]
Updat ed dest (rr
end
end

)

+Hnfinity

whenset orused[rr]

if instruction uses actual register r then
AFTER whenready[r]-1

end
i f not REGSPERFECT then

if instruction sets actual register r then
AFTER whensetorused[r]-1
AFTER whenready[r]-1

end
end

Figure 39: Register renaming

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

To bookkeep, after scheduling the instructionin cyclet :

if instruction sets actual register r then
whenready[r] :=1t + latencyOf Operation
BUWP whensetorused[r] TO t

end

if instruction uses actual register r then
BUWP whensetorused[r] TO t

end

Figure 39 continued

FPU registers. We therefore really need two instances of these data structures and algorithms,
one for each register set.

If the model specifies perfect renaming, we assign one actual register to each register name
and never change it. We maintain only the whenr eady table, exactly as described above; the
instruction using register r must be scheduled in or after whenr eady|[r] .

If the model specifies no renaming, we again assign one actual register to each register name
and never change it. We maintain whenr eady and whenset or used as with renaming, and
an instruction that usesregister r must be scheduled in or after the later of whenr eady[r] and
whenset orused[r].

Aliasanalysis

If the model specifies no alias analysis, then a store cannot be exchanged with a load or a store.
Any store establishes a barrier to other stores and loads, and any load establishes a barrier to any
store, sowe maintainonly | ast st ore and| ast | oad.

If the model specifies perfect aliasanalysis, aload or store can be exchanged with a store only
if thetwo memory locationsreferenced are different. Thusthere are barriersassociated with each
distinct memory location; we set up atablel asst st oreat [a] and| ast| oadat [a] with
an entry for each word in memory. (Thisis feasible because we know how much memory these
benchmarks need; we need not cover the entire address space with this table. We assume that the
granularity of memory isin 32-bit words, so byte-stores to different bytes of the same word are
deemed to conflict.) The program trace tells us which address aload or store actually references.

Alias analysis “by inspection” is more complicated. A store via a base register r can be
exchanged with aload or store viathe same base register if the displacement is different and the
value of the base register hasn’'t been changed in the meantime. They can be exchanged even
when the base registers are different, as long as one is manifestly a stack reference (i.e. the base
register issp or f p) and the other manifestly a static datareference (i.e. the baseregister isgp).2
In terms of barriers, however, we must state this not as what pairs can be exchanged but as what
blocks an instruction from moving farther back in time.

We first consider instructions with different base registers. For each register, we use

8Thisanalysisis most likely done by a compile-time scheduler. If register renaming isin effect, we therefore use
the register name in the instruction rather than the actua register from the renaming pool for thisanalysis.

45

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Data structure:
| aststore Cycle of last store
| ast storeat[a] Cycle of last store to word at address a
| aststorevia[r] Cycle of the last store viar
| ast st or ebase Base register in last store viar
other than gp, fp, sp
| ast st or ebase2 Base register in last store viar
other than gp, fp, sp, |aststorebase
ol dstore[r] Cycle of last store via r that was
foll owed by a change to r
| ast| oad Cycl e of last |oad
| ast| oadat [a] Cycle of last load fromword at address a
| astl oadvia[r] Cycle of the last load via r
| ast| oadbase Base register in last load viar
other than gp, fp, sp
| ast | oadbase2 Base register in last load viar
other than gp, fp, sp, |astloadbase
ol dl oad[r] Cycle of last load via r that was

foll owed by a change to r

procedure AliasConflict (R old, lastvia, |astbase, |astbase2)
AFTER ol d[R]
if R=fp then
AFTER | astvi a[sp], |astvia[l astbase]
else if R= sp then
AFTER | astvia[fp], |astvia[lastbase]
else if R= gp then
AFTER | astvi a[| ast base]
else if R = lastbase then
AFTER | astvi a[sp], lastvia[fp],
lastvia[gp], lastvia[l astbase?2]
el se
AFTER | astvi a[sp], lastvia[fp],
lastvia[gp], lastvia[lastbase]
end

procedure UpdateLastbase (R t, lastvia, |astbase, |astbase2)
if Ris not fp, sp, or gp then
if t > lastvia[lastbase] then
if R<> lastbase then
| ast base2 : = | ast base
| astbase : = R
end
else if t > lastvia[lastbase2] then
if R<> lastbase2 then
| astbase2 : = R
end
end
end

To schedule:

i f ALI ASNONE t hen
if loads or stores nenory then
AFTER | aststore
end
if stores nenory then
AFTER | ast | oad
end

Figure 40: Alias analysis

46

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

el se i f ALI ASPERFECT t hen
if loads or stores nenory at location A then
AFTER | aststoreat[A]
end
if stores nenory at location A then
AFTER | ast | oadat [A]
end
el se i f ALI ASI NSPECT t hen
if loads or stores nenory |location A via base register R then
AFTER | aststoret[A]
AliasConflict (R oldstore, laststorevia, |aststorebase, |aststorebase?2)
end
if stores nenory location A via base register R then
AFTER | ast| oadat [A]
AliasConflict (R, oldload, |astloadvia, |astloadbase, |astloadbase2)
end
el se i f ALI ASCOW t hen
if loads or stores nenory |location A via base register R then
AFTER | aststoreat[A]
if Ais in the heap then
AliasConflict (R oldstore, |laststorevia, |aststorebase, |aststorebase?2)
end
end
if stores nenory location A via base register R then
AFTER | ast| oadat [A]
if Ais in the heap then
AliasConflict (R oldload, |astloadvia, |astloadbase, |astloadbase2)
end
end
end

To bookkeep, after scheduling the instructionin cyclet :

if instruction sets register Rand Ris an allowabl e base register then
BUWP ol dstore[r] TO | aststorevia[r]
BUWP ol dl oad[r] TO | astloadvia[r]

end
if instruction stores to nmenory |ocation A via base register R then
BUWP | aststore to t
i f ALI ASPERFECT or ALI ASI NSPECT or ALl ASCOWP then
BUWP | aststore[A] TOt
end
i f ALl ASI NSPECT or (ALI ASCOWP and A is in the heap) then
BUWP | aststorevia[R] TO't
Updat eLastbase (R, t, laststorevia, |aststorebase, |aststorebase2)
end
end
if instruction |loads frommenory |location A via base register R then
BUWP | astload to t
i f ALI ASPERFECT or ALI ASI NSPECT or ALI ASCOWP then
BUWP | astload[A] TO t
end
i f ALI ASI NSPECT or (ALI ASCOWP and A is in the heap) then
BUWP | astl oadvia[R] TO't
Updat eLastbase (R, t, lastloadvia, |astloadbase, |astloadbase2)
end
end

Figure 40 continued

a7

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

| ast st orevi aandl ast | oadvi atokeeptrack of the most recent load and storefor which it
was the base register. We also keep track of the two base registers other than gp, sp, and f p used
most recently in aload and in a store. This information lets us find the most recent conflicting
load or store by looking at no more than four membersof | ast st orevi aorl ast| oadvi a.

Next thereisthe case of two instructionsthat use the same base register, with the value of that
base register changed in between. If the model specifies no register renaming, this point is moot,
because the instruction that assigns to the base register will be blocked by the earlier use, and the
later use will be blocked in turn by the register assignment. Register renaming, however, allows
the register assignment to move before the previous use, leaving nothing to prevent the two uses
from being exchanged even though they may well referencethe samelocation. To handlethis, we
maintain tables ol dst ore[r] and ol dl oad[r] . These contain the cycle of the latest store
or load viar that has been made obsolete by aredefinition of r .

Finally, a load or store can also be blocked by a store via the same base register if the
value of the base register hasn’'t changed and the displacements are the same. In this case the
two instructions are actually referencing the same memory location. So we account for this
possibility just as we did with perfect alias analysis, by maintaining | asst st or eat [a] and
| ast | oadat [a] totell usthelast timelocation a was stored or loaded.

Aliasanalysis“by compiler” issimilar, but we assumethe compiler can perfectly disambiguate
two non-heap references or aheap referenceand anon-heap reference, but must rely on inspection
to disambiguate two heap references. We recognize a heap reference by range-checking the actual
dataaddress, and proceed just aswith alias analysis by inspection except that we ignore non-heap
references beyond checking them for actual address conflicts.

48

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

L atency models, cycle width, and window size

Latency models are easy; we aready covered them as part of register renaming. When the
instruction scheduled into cyclet setsaregister r , we modify whenr eady|[r] to show when
the result can be used by another instruction. If the instruction has unit latency, thisist +1; if the
latency isk, thisist +k.

For most of our models we assume an upper limit of 64 instructions that can be issued in a
singlecycle. Thereisno fundamental reason for thelimit to have thisvalue; it doesn’t even affect
the amount of memory the simulator needs for its data structures. The limit is there only as a
generous guess about the constraints of real machines, and doubling it to 128 is just a matter of
relaxing the test.

We keep track of the number of instructions currently in each pending cycle, as well as the
total in al pending cycles. When the total reaches the window size, we flush early cycles until
the total number isagain below it. If the window is managed discretely rather than continuoudly,
we flush al pending cycles when the total reaches the window size.

In either case, we always flush cycles up to the cycle indexed by j unpbarri er and
branchbarri er, since no more instructions can be moved earlier. This has no effect on
continuously managed windows, but serves as a fresh start for discretely managed windows,
allowing more instructions to be considered before a full window forces a complete flush.

Removing thelimit on cyclewidthistrivial: wemust still keep track of how full each pending
cycleis, but we no longer have to look past a“full” cycle to schedule an instruction that would
normally go there. Given that, removing the limit on window size ssimply means that we stop
maintaining any description at all of the pending cycles. We determinewhen aninstruction should
be scheduled based on the existing barriers, and we update the barriers based on the time decided
upon.

49

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Appendix 2. Details of program runs

This section specifies the data and command line options used for each program, along with any
changes made to the official versions the programs to reduce the runtime.

sed:
sed -e "s/\/*/(*/g -e 's/I*\//*)]/g -e 's/fprintf(\(.*\));/DEBUG\1 ;/g sed0.c > test.out

egrep:

egrep '"...$|regparse|"[a-z]|if .*{$ regexp.c > test.out
eco:

eco -i tna.old tna.new -0 tna.eco > test. out

yacc:

yacc -v grammar
grammar has 450 non-bl ank |ines

net r onone:
met dma. tuned -c 100k.cat pal.cat dc.cat misc.cat teradyne.cat > output

grr:
grr -i nc.unroute -1 nt.log nc.pcb -o nc.route

hydr o2d:
hydro2d < short.in > short. out

gccl:
gccl cexp.i -quiet -O -0 cexp.s > output

conpr ess:
conpress < ref.in > ref. out

espresso:
espresso -t opa > opa.out

ora:
ora < short.in > short. out

f pppp:
fpppp < snmall > small. out

li:
Ii dwwtiny.lsp > dwatiny. out (dwatiny.lsp is the 7-queens problen)

doduc:
doduc < small >snmll. out

SWnR56:
cat swr56.in | sed 's/1200/30/" | swrk56 > swrR56. out

toncatv:
Change initial value of LMAX on line 22 from 100 to 15
tontatv > out put

al vi nn:
Change definition of nmacro NUM EPCCHS on |line 23 from 200 to 10
alvinn > result. out

mdl j sp2:

mv short. mdlj2. dat ndlj 2. dat
mdl j sp2 < input.file > short. out

50

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Appendix 3. Parallelism under many models

This appendix lists the results from running the test programs under more than 350 different
configurations, and then lists the configurations used in each of the figures in the main body of
the report. The configurations are keyed by the following abbreviations:

?+ perfect branch prediction, 100% correct

?2cnn loc/gsh predictor

2cnn: mm fanout next mm branches, loc/gsh predictor thereafter

?bnn ctr/gsh predictor

?bnn: mm fanout next mm branches, ctr/gsh predictor thereafter

?ann ctr predictor

?P: mm(ff) | integrated mm-way fanout and profil e-prediction with threshold ff
?P predict al branches from profile

?Taken predict al branches taken

?Si gn predict backward branches taken, forward branches not taken
?-:mm fanout next mm branches, no prediction thereafter

?- no branch prediction; all miss

j+ perfect indirect jump prediction, 100% correct

j nn+mm predict returns with nn-element ring, other jumps from mm-elt. last-dest table
j nn predict returns with nn-element ring, don’t predict other jumps
j- no jump prediction; all miss

r+ perfect register renaming; infinitely many registers

r nn register renaming with nn cpu and nn fpu registers

r- no register renaming; use registers as compiled

a+ perfect alias analysis; use actual addresses to distinguish conflicts
aConp alias analysis“by compiler”

al nsp alias analysis“by inspection”

a- no alias analysis; stores conflict with all memory references

i *2 allow cycles to issue 128 instructions, not 64

i+ allow unlimited cycle width

wnn continuouswindow of nn instructions, default 2K

dwnn discrete window of nn instructions

WH unlimited window size and cycle width

Lmodel use specified latency model; default is A

The size of each of the three hardware branch predictors is specified by a single integer
parameter. A counter predictor with parameter n consists of a table of 2" 2-bit counters. A
counter/gshare predictor with parameter n consists of 2" 2-bit countersfor thefirst predictor, one
(n + 1)-bit global history register and 2"+ 2-bit counters for the second predictor, and 2" 2-bit
counters for the selector. A local/gshare predictor with parameter » consists of 2" n-bit history
registersand 2™ 2-bit countersfor thefirst predictor, one n-bit global history register and 2" 2-bit
countersfor the second predictor, and 2" 2-bit counters for the selector.

51

tont HVEAN Fi gures

swm

ora

ml |

conp dodu espr fppp gccl hydr

met al vi
54.0 24.5 22.0 17.3 28.0 23.2 7.5 25.7 57.9 40.5 60.9 35.2 44.8 16.4 33.3 9.0 48.9 59.9 23.6 12

grr

eco

egre sedd yacc

r+
r+
r+

+
j+
+

2+

77.7 24.5 93.5 18.8 35.2 25.3 97.5 26.2 118.7 62.6 75.2 54.8 175.2 17.9 38.8 9.0 564.8 150.1 36.2 18a
58.1 24.5 22.4 17.3 28.2 23.3 7.5 25.7 91.6 45.5 74.1 37.0 62.0 16.4 33.5 9.0 53.1 87.8 24.6 15a

+
©

?+
2+

58.0 24.5 22.3 17.3 28.2 23.3 7.5 25.7 84.4 44.8 74.1 36.8 56.8 16.4 33.5 9.0 53.1 87.3 24.5 l4a

N
*
+
[

r+
r+

+

j+

2+

54.0 24.5 22.0 17.4 28.1 23.2 7.4 25.7 60.2 40.5 58.4 35.3 46.7 16.4 34.1 6.3 69.2 73.8 22.5 34a
55.0 22.9 23.7 16.3 27.1 27.7 7.5 23.2 73.3 40.9 63.5 36.2 58.3 20.9 33.6 5.7 100.3 109.0 22.9

nOOouWw
R R R B |
+ + + +
© © ©©

?+
2+

?+

55.0 22.9 23.7 16.3 27.1 27.7 7.4 23.2 70.9 40.9 56.5 36.2 59.0 20.9 33.8 4.8 119.9 122.6 22.0 34b

54.122.0 25.1 15.6 25.9 29.3 8.2 21.6 73.5 40.5 68.0 36.5 72.4 25.2 35.0 4.5 140.2 157.5 22.3

r+
r+

+ +

6
7

r+
r+

?+
2+

?+

+
+
j+

22.8 22.3 14.5 16.0 20.8 18.0 5.7 19.3 21.1 24.2 50.6 26.1 16.4 15.7 11.6 9.0 44.2 46.1 16.9

r256 a+

10

at+

?+
2+

2+

54.0 24.5 21.5 11.0 27.6 22.7 7.5 25.7 57.2 40.5 60.9 17.3 34.1 12.5 33.3 9.0 48.9 59.8 21.1

at

j 2K+2K 1+

22.8 21.1 14.2 10.4 20.6 17.7 5.7 19.3 21.0 24.2 50.6 15.1 14.4 12.1 11.6 9.0 44.2 46.1 15.5

j 2K+2K r256 a+
j 2K+64 1+
j2K+32 r+

54.0 24.5 21.5 10.9 27.5 22.7 7.5 25.7 57.2 40.5 60.8 17.1 33.4 12.5 33.3 9.0 48.9 59.8 21.0 2%
54.0 24.5 21.5 10.9 27.5 22.7 7.5 25.7 57.2 40.5 60.8 16.5 32.5 12.5 33.3 9.0 48.9 59.8 21.0 29

at+

?+
2+

2+

at

54.0 24.5 21.5 10.9 27.5 22.7 7.5 25.7 57.1 40.5 60.8 16.4 31.2 12.5 33.3 9.0 48.9 59.8 20.9 29
54.0 24.5 21.5 10.9 27.4 22.7 7.5 25.7 57.0 40.5 60.8 16.2 31.2 12.5 33.3 9.0 48.9 59.8 20.9 29

54.0 24.5 21.5 10.9 27.4 22.7 7.5 25.7 57.0 40.5 60.8 16.1 29.9 11.5 33.3 9.0 48.9 59.7 20.7 29

at
at+

j 2K+16 r+
j 2K+8
j 2K+4
j 2K+2

r+
r+
r+
r+

?+
2+

?+

17
18

at

54.0 24.5 21.5 10.9 27.2 22.5 7.5 25.7 53.3 40.5 60.8 15.7 30.1 11.5 33.3 9.0 48.9 59.7 20.6 29

at

54.0 19.4 21.5 10.4 26.2 21.2 7.5 25.7 51.4 40.4 58.5 13.6 28.2 9.9 33.3 9.0 48.9 59.7 19.6 28b 29b

54.0 19.4 21.5 10.3 26.2 21.2 7.5 25.7 51.4 40.4 58.5 13.6 28.2 9.9 33.3 9.0 48.9 59.7 19.5 28b

?+
2+

?+

53.9 19.4 21.5 10.2 26.1 21.2 7.5 25.7 51.4 40.4 58.5 13.6 28.0 9.8 33.3 9.0 48.9 59.7 19.5 28b

r+
r+
r+
r+
r+
r+

r+

j8
j4
j2

53.9 19.3 21.5 10.1 25.8 21.1 7.5 25.7 49.8 40.3 58.5 13.3 27.3 9.533.3 9.0 48.9 59.7 19.3 28b

at+

2+
2+
?+
?+
2+

53.9 16.7 21.5 9.7 24.5 19.7 7.5 25.7 40.6 39.9 58.5 12.8 26.9 9.0 33.3 9.0 48.9 59.7 18.7 28b

53.9 15.5 21.3 9.1 20.5 17.6 7.5 25.7 38.6 38.7 57.9 12.2 26.2 8.3 33.3 9.0 48.9 59.7 17.9 28b

53.9 24.5 21.7 10.3 18.5 15.8 7.5 25.7 50.0 38.4 60.6 16.5 29.3 11.4 33.3 9.0 48.9 59.8 19.7

at

jP

53.8 13.4 19.7 7.8 14.3 10.8 7.5 25.6 34.4 35.6 57.4 10.5 23.0 6.8 33.3 9.0 48.8 59.6 15.7 28b

13.1 13.5 10.6 13.0 13.1 13.6 7.4 10.0 32.0 16.5 59.8 15.8 28.1 15.5 30.0 9.0 46.6 53.8 15.5

?c13:8 j+

28
29
30
31
32

12.2 12.5 10.3 8.9 12.9 13.4 5.6 10.0 17.5 15.7 49.8 11.3 13.5 11.8 11.4 9.0 43.5 45.6 12.6 24b
12.2 12.8 10.4 12.5 12.5 13.1 7.4 9.6 30.7 16.0 59.9 14.9 27.0 15.2 29.5 9.0 46.5 54.0 15.0

?c13:8 j 2K+2K r256 a+

?cl13:6 |+

r+

gl
N

11.5 11.9 10.2 8.6 12.3 12.9 5.6 9.6 17.0 15.3 49.6 10.8 13.3 11.7 11.1 9.0 43.4 45.7 12.2 24b

11.3 12.6 10.1 12.2 11.8 12.8 7.3 8.4 28.8 15.359.4 14.1 26.3 15.0 28.4 9.0 46.4 53.6 14.4
10.8 12.1 10.1 12.1 11.7 12.8 5.6 8.4 16.5 14.7 49.4 13.7 14.9 14.6 10.7 9.0 43.3 455 12.6

?¢13: 6 j 2K+2K r 256 a+

?¢c13:4 j+

at

r+

r256 a+

?cl13:4 j+

33
34
35
36
37
38
39
40

11.3 12.1 9.9 8.6 11.7 12.7 7.3 8.4 28.6 15.3 59.4 10.7 22.2 11.8 28.4 9.0 46.4 53.5 13.5 33b

at

?c13: 4 j2K+2K r+

10.8 11.7 9.9 8.5 11.6 12.6 5.6 8.4 16.4 14.7 49.4 10.4 13.3 11.5 10.7 9.0 43.3 45.4 11.9 12 16a 24b 27...

?c13: 4 j 2K+2K r256 a+

.32b. ..

10.8 11.7 9.9 8.5 11.6 12.6 5.6 8.4 16.6 14.8 51.5 10.4 13.6 11.5 10.7 9.0 43.5 56.2 11.9 18a
10.8 11.7 9.9 8.5 11.6 12.6 5.6 8.4 16.4 14.7 49.2 10.4 13.2 11.5 10.7 9.0 43.3 45.4 11.9 16a
10.8 11.7 9.9 8.5 11.6 12.6 5.6 8.4 16.4 14.7 48.5 10.4 13.1 11.5 10.7 9.0 43.3 45.4 11.9 16a
10.7 11.6 9.9 8.5 11.6 12.6 5.6 8.4 16.2 14.6 46.7 10.3 12.3 11.5 10.7 9.0 42.7 44.5 11.8 16a
10.0 10.8 9.7 8.2 10.9 12.1 5.4 8.3 14.8 12.9 34.7 9.8 11.2 11.4 10.7 9.0 41.0 33.7 11.2 16a

?c13:4 j2K+2K r256 a+ w+

.33b 35b

?¢13: 4 j 2K+2K r 256 a+ wiK

?c13: 4 j 2K+2K r256 a+ ws12

?c13:4 j 2K+2K r256 a+ w256

?c13: 4 j 2K+2K r256 a+ wi28
?c13: 4 j 2K+2K r256 a+ w64
?c13: 4 j 2K+2K r256 a+ w32
?¢13: 4 j 2K+2K r 256 a+ wl6
?c13:4 j 2K+2K r256 a+ w8
?c13:4 j2K+2K r256 a+ w4

9.9 16a
8.1 16a
6.1 16a
4.2 16a
2.7 16a

8.9 9.5 9.3 7.7 9.411.0 5.3 7.6 11.7 10.3 22.4 8.9 10.2 10.7 9.0 8.7 25.3 22.2

7.2 83 84 6.7 7.2 9.1 5.1 6.8

41

8.7 88 6.7 80 14.2 14.2

6.7 6.3 4.9 6.0

8.8 7.9 13.6 7.5
6.5 5.8 8.3 5.8

42

8.1

5.4 7.1 6.6 5.3 5.2 6.3 4.4 57

43

44
45

3.3

3.2

2.8 2.4 3.2 2.6

2.2 2.9 25 2.7 2.4 2.6 2.8 2.6
10.8 11.7 9.8 8.5 11.5 12.5 5.6 8.4 15.9 14.6 41.7 10.3 12.9 11.5 10.6 9.0 38.1 44.0 11.7 17a

10.8 11.6 9.8 8.4 11.3 12.1 5.4 8.4 14.9 13.5 39.8 10.3 12.3 11.3 10.5 8.8 34.2 42.9 11.5 17a

?¢13: 4 j 2K+2K r256 a+ dw2K

46

?c13: 4 j 2K+2K r256 a+ dwlK

a7

9.4 17a
7.5 17a
5.8 17a
4.4 17a
3.3 17a
2.5 17a
2.0 17a

9.5 9.9 9.0 7.5 20.5 18.8
7.8 84 6.7 6.5 12.9 12.0

6.2 6.5 4.7 5.3

4.7 4.9 3.6 4.0

8.9 9.4 88 7.6 89 9.5 50 7.7 10.2 10.6 25.4 8.6

7.2 81 7.8 6.2 6.8 7.6 4.7 7.0
5.4 6.5 6.5 5.2 51 58 4.3 5.6
3.9 5.3 4.9 4.2 3.7 4.2 3.7 4.5

?c13:4 j2K+2K r256 a+ dws12 10.1 10.8 9.5 8.3 10.5 11.1 5.3 8.4 13.0 12.4 34.6 9.8 11.1 10.8 10.2 8.6 28.1 40.5 10.9 17a
2.8 4.1 3.4 3.3 2.8 3.1 3.0 3.3

?c13: 4 j 2K+2K r 256 a+ dw256
?c13:4 j2K+2K r256 a+ dwl28

?c13:4 j2K+2K r256 a+ dwe4

48
49

7.2 8.3 11.0 7.2
5.4 6.0 7.5 5.7

50
51
52
53
54
55

8.7

7.7
4.

8

4.2 4.2 5.3 4.3

?c13: 4 j 2K+2K r256 a+ dw32

3.3
2.7
2.

3.6 3.8 2.8 3.2

3.3 3.0 3.9 3.2

?c13: 4 j 2K+2K r256 a+ dwl6
?c13:4 j2K+2K r256 a+ dws
?c13: 4 j 2K+2K r256 a+ dw4

3.2
2.6

2.8 2.8 2.1 2.6

2.3 2.1 1.7 2.0

2.6 2.2 3.1 2.4
2.2 1.7 2.4 1.9

2.0 2.7 2.4 2.6 2.1 2.4 25 2.4

5

1.6 2.0 1.7 1.9 1.7 1.8 2.0 1.9

tont HVEAN Fi gures

swm

ora

ml |

conp dodu espr fppp gccl hydr |

met alv
ilnf 10.8 11.7 9.9 8.5 11.6 12.6 5.6 8.4 16.6 14.8 51.5 10.4 13.6 11.5 10.7 9.0 43.5 56.2 11.9 15a

i*2 10.8 11.7 9.9 8.511.6 12.6 5.6 8.4 16.6 14.8 51.5 10.4 13.6 11.5 10.7 9.0 43.5 56.2 11.9 l4a

grr

eco

egre sedd yacc

?c13: 4 j 2K+2K r 256 a+
?2c13: 4 j2K+2K r256 a+
?c13: 4 j 2K+2K r256 a+
?c13: 4 j 2K+2K r 256 a+
?2c13: 4 j 2K+2K r256 a+
?cl13: 4 j 2K+2K r256 a+

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

10.8 11.7 9.9 8.5 11.6 12.7 5.4 8.4 14.6 14.7 42.7 10.4 14.2 11.5 13.2 6.3 61.3 55.8 11.6 34a 35b

11.7 13.2 10.9 8.0 11.5 13.2 5.5 8.4 15.7 15.0 45.1 10.1 17.2 12.4 16.5 5.7 75.8 69.5 12.0 35b

LB
LC
LD
LE

11.7 13.2 10.9 8.0 11.5 13.2 5.4 8.4 14.4 15.0 40.5 10.2 17.7 12.4 17.7 4.8 73.2 69.5 11.7 34b 35b
12.4 14.3 11.8 7.7 11.3 13.4 5.9 8.5 14.4 15.1 43.9 10.0 20.5 12.7 19.1 4.5 73.6 72.3 12.0 35b

10.8 11.7 8.3 5.6 10.9 9.2 55 7.7 16.4 6.5 49.4 6.8 12.2 8.5 10.7 9.0 43.3 45 4

9.9 32b
4.0 32b
3.4 32b

10.2 10.6 9.8 8.3 11.0 12.2 5.5 8.2 15.112.7 35.2 9.9 12.7 11.5 10.7 9.0 41.0 44.2 11.4 33b

?¢13: 4 j 2K+2K r 256 aConp
?c13: 4 j2K+2K r256 al nsp
?c13: 4 j 2K+2K r 256 a-
?c13: 4 j 2K+2K r128 a+
?2c13:4 j2K+2K r64 a+
?c13: 4 j 2K+2K r32

?c13: 4 j2K+2K r-

?c13:2 j+

4

6.1 4.7 55 3.5 3.5 3.4 26 3.7

3.5

3.5

8.9 9.4 9.4 7.8 9.011.0 5.3 7.5 11.0 9.8 20.4 8.7 11.4 10.9 10.3 8.8 21.0 27.7 10.0 33b

5.5 33b
4.4 33b

6.6
4

6.4
3.4

6.0 58 4.1 5.9

6.0 5.2 3.3 4.2

5.3 4.7 54 4.9

4.7 4.0 3.5 4.3

5.5 7.1 5.7 54 44 6.1 4.6 6.3

4.9 5.9 4.9 4.3 43 50 3.3 5.1
11.0 11.5 10.0 11.5 10.9 12.8 6.7 8.1 28.1 13.9 59.4 13.2 24.9 14.5 27.4 9.0 46.1 53.6 13.8

at

9

at

at+

r+

10.4 10.9 9.7 8.2 10.7 12.5 5.5 8.1 16.2 13.4 49.3 9.8 12.8 11.3 10.2 9.0 43.0 45.4 11.5 24b 27

10.3 11.4 9.4 10.9 9.1 11.5 6.7 6.2 26.1 13.0 58.4 11.3 23.2 13.8 24.3 9.0 45.9 53.6 12.7

?c13:2 j2K+2K r256 a+

?cl3
?cl3
?c13
?cl3
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c13
?cl3
?c13
?c12
?c12
?cll
?cll
?c10
?¢10
?c10
?c10
?c10
?c10
?c10
?c10
?c10

r+

j+

9.8 10.8 9.1 7.8 9.011.4 5.6 6.2 155 12.4 48.5 8.8 12.6 10.7 9.9 9.0 42.8 45.5 10.7 12 22b 23b 24b

9.8 10.8 9.1 7.8 9.011.4 5.6 6.2 15.7 12.4 50.6 8.8 12.9 10.7 9.9 9.0 42.9 55.9 10.8 18a
9.8 10.8 9.1 7.8 9.011.4 5.6 6.2 15.7 12.4 50.6 8.8 12.9 10.7 9.9 9.0 42.9 55.9 10.8 15a
9.8 10.8 9.1 7.8 9.0 11.4 5.6 6.2 15.7 12.4 50.6 8.8 12.9 10.7 9.9 9.0 42.9 55.9 10.8 1l4a
9.8 10.8 9.1 7.8 9.011.4 5.4 6.2 13.9 12.4 42.1 8.8 13.4 10.7 12.1 6.3 60.7 55.8 10.5 34a

10.7 12.2 10.1 7.3 8.9 11.8 5.4 6.3 15.0 12.7 44.4 8.6 16.1 11.1 15.1 5.7 75.6 69.6 10.9

j 2K+2K 1256 a+

WH

j 2K+2K r 256 a+

i | nf
i*2
LB
LC
LD
LE

j 2K+2K r256 a+

j 2K+2K 1256 a+

j 2K+2K r 256 a+

j 2K+2K r256 a+

10.7 12.2 10.1 7.3 8.9 11.8 5.3 6.3 13.8 12.7 39.9 8.6 16.5 11.1 16.0 4.8 73.1 69.6 10.6 34b

11.4 13.3 10.8 7.0 8.7 12.0 5.9 6.3 13.8 12.8 43.1 8.4 19.0 11.3 17.2 4.5 73.5 72.4 10.8

j 2K+2K 1256 a+

j 2K+2K r 256 a+

j2K+2K 164 a+

9.8 10.8 9.1 7.7 9.011.4 5.6 6.2 15.5 12.4 48.5 8.7 12.510.7 9.9 9.0 42.8 455 10.7 29a
9.8 10.8 9.1 7.7 9.0 11.4 5.6 6.2 15.5 12.4 48.5 8.6 12.4 10.7 9.9 9.0 42.8 45.5 10.7 29a
9.8 10.8 9.1 7.7 9.0 11.4 5.6 6.2 15.5 12.4 48.5 8.6 12.2 10.7 9.9 9.0 42.8 45.4 10.7 29a
9.8 10.8 9.1 7.7 9.011.4 5.6 6.2 15.5 12.4 48.5 8.5 12.2 10.7 9.9 9.0 42.8 45.4 10.7 29a
9.8 10.8 9.1 7.7 9.0 11.4 5.6 6.2 15.5 12.4 48.5 8.5 12.0 10.0 9.9 9.0 42.8 45.4 10.6 29a
9.8 10.8 9.1 7.7 9.0 11.3 5.6 6.2 15.1 12.4 48.5 8.4 12.0 10.0 9.9 9.0 42.8 45.4 10.6 29a

j 2K+64 1256 a+

j 2K+32 r256 a+

82

r256 a+
r256 a+
r256 a+
r256 a+
r256 a+
r64 a+

j 2K+16 r256 a+

j 2K+8
j 2K+4
j 2K+2
j2K
j16+8
j16+8
j16

j 16
j8

83
84
85

[
w

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

9.8 7.7 9.0 7.4 8.811.1 5.6 6.2 14.9 12.4 47.3 7.8 12.0 8.8 9.9 9.0 42.8 45.4 10.2 28a 29a

9.8 10.8 9.1 7.7 9.011.4 5.6 6.2 15.5 12.4 48.5 8.5 12.2 10.6 9.9 9.0 42.8 45.4 10.6

9.8 7.7 9.0 7.3 8.811.1 5.6 6.2 14.9 12.4 47.3 7.8 12.0 8.7 9.9 9.0 42.8 454 10.1 28a

r256 a+

4.2 22a 23a

9.8 7.7 9.0 7.3 8.811.1 5.6 6.2 14.9 12.4 47.3 7.8 11.9 8.7 9.9 9.0 42.8 45.4 10.1 28a
9.8 7.7 9.0 7.3 8.7 11.0 5.5 6.2 14.9 12.3 47.3 7.8 11.8 8.4 9.9 9.0 42.8 45.4 10.1 28a

9.8 7.3 9.0 7.0 8.6 10.7 55 6.2 14.7 12.3 47.3 7.6 11.8 8.1 9.9 9.0 42.8 45 4
9.8 7.0 8.9 6.7 8.210.1 55 6.2 14.6 12.1 47.2 7.4 11.6 7.4 9.9 9.0 42.8 45.4

at

r256 a+
r256 a+
r256 a+
r256 a+
r256 a+
r256 a+

9.9 28a
9.7 28a

j2

jl

i

9.8 10.9 9.1 7.4 8.2 9.6 56 6.2 15.2 11.9 48.4 8.6 12.2 9.9 9.9 9.0 42.8 455 10.4
9.7 6.7 85 6.0 7.2 80 55 58 14.3 11.5 47.1 6.8 11.0 6.2 9.9 9.0 42.8 45 4

9.0 28a

J' -

8.6 10.6 9.0 7.7 8.8 11.2 5.6 6.2 15.2 12.2 48.3 8.4 12.4 10.3 9.9 9.0 42.8 45.5 10.5 22b 23b

j 2K+2K r256 a+

i16

4.1 22a 23a

4.9

7.7 10.6 8.8 7.5 8.511.0 5.6 6.2 14.9 11.9 48.2 8.0 12.1 10.1 9.8 8.9 42.8 45.4 10.2 22b 23b

4.4 5.0 4.6 4.1 3.8 4.7 3.3 4.4

at

j 2K+2K r 256 a+

j16

4.1 22a 23a

4.9

3.4

5.7 4.6 3.2 4.2

4.5 3.7 3.5 3.8

at

7.2 10.4 8.7 7.4 8.110.8 56 6.1 14.511.6 48.0 7.5 11.9 9.8 9.7 8.6 42.8 454 10.0 22b 23b

6.5 8.8 83 6.9 7.0 9.6 53 57 10.2 8.3 20.2 6.8 10.6 9.3 9.2 85 21.0 27.3

j 2K+2K 1256 a+

8.7

j2K+2K r64 a+

j16+8
j 16+8
j16+8
j16+8
j 16+8
j16+8
j16+8

7.3 10.7 87 7.3 8.110.8 6.7 6.1 22.8 12.0 57.5 7.5 16.7 9.9 22.8 8.6 45.8 53.4 10.9 33a

7.2 10.4 8.7 7.3 8.110.8 56 6.1 14.5 11.6 48.0 7.4 11.6 9.7 9.7 8.6 42.8 454

7.0 9.7 8.6 7.2 7.910.4 54 6.1 13.510.3 34.5 7.2 11.2 9.7 9.7 8.6 40.6 44.1
6.5 8.8 8.3 6.9 7.0 9.6 5.3 57 10.2 8.3 20.2 6.7 10.3 9.2 9.2 8.5 20.0 27.3

6.5 88 83 6.9 7.0 9.6 5.3 57 10.2 8.3 20.2 6.7 10.3 9.2 9.2 85 20.0 27.3
6.5 88 83 6.9 7.0 9.6 53 57 10.2 8.3 20.2 6.7 10.3 9.2 9.2 8.5 20.0 27.3
6.5 88 83 6.9 7.0 9.6 5.3 57 10.2 8.3 20.2 6.7 10.3 9.2 9.2 8.5 20.0 27.3

at

r+

9.9 33a
9.6 33a

r256 a+
rl28 a+
r64 a+

8.7 12 13 27b 32a..

8.7 18a
8.7 15a
8.7 1l4a

. 33a 35a

WH

r64 a+

il nf

ré64 a+

*2

ré4 a+

tont HVEAN Fi gures

swm

ora

ml |

8.1 8.315.7 6.7 10.5 9.2 7.7 6.0 17.7 23.1

conp dodu espr fppp gccl hydr

met alv

grr
6.5 8.8 8.2 6.8 6.9 9.6 5.1 5.7

eco

egre sedd yacc

8.1 34a 35a

LB
LC
LD
LE

r64 a+

j 16+8
j 16+8
j 16+8
j 16+8
j 16+8
j 16+8
j 16+8
j 16+8
j 16+8
j16

i

?c10
?c10
?¢10
?c10
?c10
?¢10
?c10
?c10
?¢10
?c10
?c10
?c9

?c9

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

ré4 a+

7.8 34b 35a
7.8 3ba
7.7 32a
3.7 32a
3.3 32a
5.1 33a
4.2 33a

7.3 8.214.1 6.5 11.5 9.1 7.0 4.5 15.1 20.2
7.3 8.115.3 6.4 12.5 8.9 7.1 4.2 157 21.3

6.8 9.4 8.9 6.4 6.8 9.6 5.1 5.6

ré64 a+

7.0 9.8 9.2 6.1 6.7 9.6 5.4 5.6

r64 a+

9.8 7.0 9.2 85 20.1 27.3

4.4 4.2 2.5 4.3

6.5 88 7.3 5.1 6.8 7.5 5.2 57 10.2 5.3 20.2 5.1

4.7 4.4 50 3.3 3.2 3.3 2.6 3.3

r64 aConp

ré64 alnsp

ré4 a-

4.7

3.5

5.1 4.3 4.1 3.4

3.5

7

r32 a+

4.9

3.4

6.5 6.7 8.2 6.5 6.9 9.4 53 57 10.1 8.3 20.0 6.3 10.2 7.8 9.2 8.5 20.1 27.3

a+
r64 a+

r-

4.1 22a 23a
9.6 22b 23b
4.1 22a 23a

9.2

4.9

6.3 10.4 8.4 7.2 7.7 10.4 5.6 6.1 14.1 10.9 47.5 6.9 11.6 9.3 9.7 8.3 42.8 45.4
4.1 5.0 4.6 4.1 3.7 4.7 3.3 4.4

a+

16

j 2K+2K r 256 a+

4.9

3.4

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.7

at

j 2K+2K r256 a+

j16

5.8 10.3 8.1 7.0 7.2 9.9 55 6.1 13.8 10.4 46.9 6.2 11.3 8.5 9.6 8.2 42.8 45 4

4.0 5.0 45 40 3.7 4.6 3.3 4.3

c8
?c8
2

3.4

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.6

at

8.7

5.3 82 7.7 6.4 6.8 9.1 55 6.0 13.4 9.6 46.0 5.5 10.8 8.1 9.5 7.8 42.8 45 4

j 2K+2K r 256 a+
j16

c7

a+t+

?c7
?c6
?c6

8.1

5.0 80 7.3 59 6.2 7.8 53 58 12.8 8.8 44.8 4.9 10.2 7.1 9.4 7.4 42.8 45.4

3.8 4.9 4.4 3.8 3.5 4.4 3.3 4.2

j 2K+2K r 256 a+

j16

128

5.4 4.2 3.2 4.0

4.5 3.6 3.5 3.3

at

7.3
3.8
6.6

9.9 5.9 9.2 7.3 42.8 45.3

5.3 3.9 3.2 3.9

4.7 6.4 6.8 50 54 6.8 5.0 5.5 12.0 7.9 43.7 4.4

3.7 4.6 4.2 3.6 3.3 4.2 3.2 4.2

j 2K+2K r256 a+

c5
?c5
?

4.9

3.4

4.4 3.5 3.5 3.1

at

j 2K+2K r 256 a+

131
132

9.4 5.1 8.8 6.5 42.8 45.3

4.0 6.2 6.5 4.4 4.6 6.0 4.7 5.1 10.2 7.0 42.5 4.1

3.4 45 4.1 3.4 3.1 40 3.1 4.0

c4

4

6.7 9.7 8.7 7.3 8810.2 55 6.1 15.1 12.2 48.1 8.6 12.3 10.3 9.6 7.6 42.8 45.5 10.0

4.2 4.9 4.6 4.1 3.9 4.7 3.3 4.4

3.4

5.2 3.6 3.1 3.7

4.2 3.4 3.5 3.0

a+t+

j 2K+2K r 256 a+

i

?b13
?b13
?b12
?b12
?b11
?bl1l
?b10
?b10

134
135
136
137

5.7 4.6 3.2 4.1

4.6 3.8 3.5 3.9

at

16

9.8

6.3 9.7 86 7.3 8510.1 55 6.1 14.9 12.0 48.1 8.3 12.1 10.3 9.6 7.7 42.8 455

j 2K+2K r256 a+

j16

at

9.7
4.1
9.4

5.8 9.6 8.6 7.2 8.310.0 55 6.1 14.8 11.8 47.9 7.9 11.9 9.9 9.5 7.7 42.8 455
5.3 9.6 84 7.1 80 9.6 54 6.0 14.5 11.5 47.7 7.5 11.7 9.9 9.5 7.6 42.8 45 4

3.9 4.9 46 4.1 3.8 46 3.3 4.4

a+t+

j 2K+2K r 256 a+

i

j 2K+2K r 256 a+

i 16

138
139
140

g

4

3.4

5.7 4.6 3.2 4.1

4.5 3.7 3.5 3.8

at

16

141
142
143
144
145
146
147

9.2 22b 23b
4.1 22a 23a
4.3 25b
4.3 25b

5.1 9.6 83 6.8 7.7 9.3 54 6.0 14.1 11.1 47.4 6.9 11.5 9.6 9.5 7.7 42.8 45 4

3.9 49 45 4.1 3.8 46 3.3 4.4
4.9 5.2 4.9 4.2 4.2 4.9 3.3 5.2

j 2K+2K r256 a+
j16

b9
?b9

4.9

3.4
3.4
3.4
3.4
3.4

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.7

at

4

5.8 4.9 3.4 4.2

4.7 4.0 3.5 4.2

at

r-

?b8: 8 j 16
7b8: 6 | 16
7b8: 4 j 16
7b8: 2 j 16

4.9

a+

r-

4.3 25b 27

4.9

at

r-

5.6 4.8 3.3 4.2

4.6 3.9 3.5 4.0

4.4 5.1 4.7 4.2 4.1 4.9 3.3 4.8

at

r-

8.9 22b 23b

4.

4.9 9.5 8.0 6.6 7.2 89 54 6.0 13.8 10.3 46.8 6.3 11.2 9.2 9.4 7.7 42.8 45. 4

3.8 5.5 45 4.1 3.7 46 3.3 4.4
3.8 5.5 45 4.1 3.7 46 3.3 4.4
3.8 5.5 4.5 4.1 3.7 4.6 3.3 4.4
3.8 5.5 45 4.1 3.7 46 3.3 4.4
3.8 5.5 45 4.1 3.7 46 3.3 4.4

j 2K+2K 1256 a+
j 2K+64 -

b8
?b8

4.9

3.4
3.4
3.4
3.4
3.4

5.7 4.8 3.2 4.1

4.5 3.7 3.5 3.7

at

149
150
151
152

5.6 4.8 3.2 4.1 4

4.5 3.7 3.5 3.7

at

j2K+32 r-

b8
?b8
?b8
?b8
?b8

5.6 4.8 3.2 4.1 4

4.5 3.7 3.5 3.7

a+

j 2K+16 r-
j 2K+8
j 2K+4
j 2K+2

4.

5.6 4.8 3.2 4.1 4.9

4.5 3.7 3.5 3.7

r-

5.6 4.7 3.2 4.1 4

4.5 3.7 3.5 3.7

at

r-

a+t+

r-

4.0

4.9

3.4

9.9 86 9.0 7.7 20.1 27.7

at

r64 a+

8.0

4.7 8.2 7.8 6.4 6.5 85 52 56 10.0 7.9 20.0 5.9

j16+8
j 16+8
j16

?b8
?b8
?b8
?b8
?b8
?b8
?b8

a+
ré64 a+

r-

7.7

9.8 7.4 9.0 7.7 21.0 27.7

5.6 4.5 3.2 4.1

9.9 7.9 19.9 5.6
4.5 3.7 3.5 3.6

4.7 6.4 7.7 6.1 6.4 83 5.2 56
3.8 4.8 4.5 4.0 3.7 4.6 3.3 4.4

158
159
160

4.0 12 16b 22a...

4.9
4.9

3.4
3.4
4.9

3.4
3.4

at

16

.23a 25b

4.0 18a
4.0 16b
4.0 16b
4.0 16b
4.0 16b
4.0 16b

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.6

4.5 3.7 3.5 3.6

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

a+

5.6 4.5 3.2 4.1

wiK

at

j16
j16

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.6

3.8 4.8 45 40 3.7 46 3.3 4.4

w512

at

4.9
4.9

3.4
3.4

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.6

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

wl28

at

5.5 4.5 3.2 4.1 4.9

4.5 3.7 3.5 3.6

3.8 4.8 45 4.0 3.7 46 3.3 4.4

we4

at

?b8 |16

165

tont HVEAN Fi gures

swm

ora

conp dodu espr fppp gccl hydr |

met alv

grr

eco

egre sedd yacc

4.0 16b
3.9 16b
3.5 16b
2.6 16b
4.0 17b
4.0 17b
4.0 17b
4.0 17b
3.9 17b
3.7 17b
3.4 17b
2.9 17b
2.4 17b

4

j16
j16
j16
j16
i16
j16
j16
j16
j16
j16
i16
j16
j16
j16
j16
j16
i16
j16
j16
i16
j16

?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

4.9

3.4
3.4

3.0
3.4
3.4

4.3 3.6 3.5 3.5

3.7 4.8 4.3 40 3.6 45 3.3 4.3
3.1 4.1 35 35 3.0 36 3.2 3.6

2.1 2.8 2.4 2.5 2.3 2.5 2.8 2.5

w16

at+

4.4
3.2
4.9

4.9

4.1 3.8 2.9 3.3

3.7 3.2 3.4 3.1
2.7 2.3 3.1 2.4
4.5 3.7 3.5 3.6

4.5 3.7 3.5 3.6

at

2.8 2.7 2.2 2.7
5.6 4.5 3.2 4.1

at

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

at dw2K

r-

5.5 4.5 3.2 4.1

a+ dwlK

r-

3.8 4.8 45 4.0 3.7 45 3.3 4.4

a+ dwbs12

r-

4

at+ dw256

r-

4.8

3.4

4.3 3.5 3.4 3.5

3.7 4.7 4.3 40 3.6 4.3 3.2 4.3

dwl28
dwe4
dw32
dwl6
dws
dwa
ilnf

at

r-

4

at

r-

3.6 3.0 3.2 3.2

3.1 4.1 35 35 3.0 35 3.0 3.9

2.5 3.4 2.9 3.0 2.5 2.8 2.8 3.1

at+

r-

3.7
3.2
2.6

4.9

3.0
2

3.4 3.3 2.4 238
2.7 2.7 2.0 2.4

2.2 20 1.7 2.0
5.6 45 3.2 4.1

3.1 2.6 3.1 27
2.5 2.1 2.8 22

2.1 1.7 2.4 1.8

4.5 3.7 3.5 3.6

at

r-

7

2.0 2.6 2.2 2.5 2.0 2.3 2.5 2.3
1.5 1.9 1.7 1.9 1.7 1.8 1.9 1.8
3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

at

r-

1.9 17b
4.0 15a
4.0 l4a
3.6 34a

2.5
3.4

at+

r-

+
]

3.9

2.6

4.6 4.5 2.6 3.2

3.3 3.7 2.9 3.6

3.2 34b

31 4.2 4.0 3.8 3.6 4.3 2.2 4.1

at

r-

3.3

2.3

2.7 3.4 2.7 3.5

at

r-

LE

at+

3

3.8
4

2.7
3.4
3.4
3.4
3.4

3.8 3.4 2.4 3.5

5.6 4.5 3.2 4.1

3.7 2.9 2.9 2.7
4.5 3.7 3.5 3.6

3.3 3.5 36 29 2.6 30 25 3.2
3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

al nsp
at+

r-

4

4

5.6 4.5 3.2 4.1

4.5 3.7 3.5 3.6

4.5 3.7 3.5 3.6

3.8 4.8 4.5 40 3.7 4.6 3.3 4.4

3.8 4.8 4.5 40 3.7 4.5 3.3 4.4

at+

j4
j2

4.0

4.9

5.6 4.4 3.2 4.1

at

5.5 4.3 3.2 4.1 4

3.8 4.7 45 40 3.7 45 3.3 4.4 4.5 3.7 3.5 3.6

at

at+

4.0

4.9

3.4

at

o
™ oM
NN
o
INEN
NN
owo
™ 0 <
o< o
oW <
<
N~ oo <
o™
<
<t ~O
o N <
<N
Nom
N <
™ 0 <
~ N~
™o
—
© o
Nwm
o mw
N©m
<
o © ©
Nom
N~ <o
™oM<
b
— o<
™ O <
nmm
Nwm
0 < W0
N 0 <
© ™~ ©
N ©m
o mo
R
O~
o~
™~
o N <
™ o ©
m< o
a
)
c
— + +
c © ©
©
re
N
RS
X
N
+
X ©
N
0 N~ N~
200
[SESES
™M < W0
o oo
-

55

8.1 22b 23b
3.9 22a 23a

7.5

4.7 7.5 7.4 5.8 6.1 7.9 5.2 57 12.8 8.945.2 5.2 10.3 7.8 9.3 7.5 42.8 45.4

3.8 4.8 4.4 3.9 3.5 4.4 3.2 4.2

?b6
?b6
?b5
?b5
?b4
?b4
?a9
?a9
?a8
?a8
?a7
?a7
?a6
?a6
?a5b
?ab
?a5
?a5b
?ab
?a5
?a5
?ab
?a5
?a5
?ab

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

j 2K+2K r256 a+

i16

4.9

3.4

5.5 4.3 3.2 4.0

4.5 3.6 3.5 3.3

at+

9.9 7.0 9.1 7.5 42.8 45.3

5.4 4.2 3.2 4.0

4.3 7.0 7.0 5.2 54 7.3 5.1 55 11.8 7.8 44.1 4.6

3.7 4.7 4.3 3.7 3.4 43 3.2 4.2

j 2K+2K r 256 a+

i

4.4 3.5 3.5 3.2

at

6.9

9.5 5.6 8.8 6.9 42.8 45.3

4.0 6.1 6.6 4.7 49 6.4 4.8 53 10.9 6.9 43.3 4.3

4.4 9.3 7.4 5.8 5.6 7.6 5.2 57 13.2 6.9 46.3 5.7 10.2 6.4 9.2 7.7 42.2 45.4

3.7 4.8 4.4 3.9 3.4 4.4 3.2 4.3

at

j 2K+2K 1256 a+

j16

7.9

j 2K+2K r256 a+

i16

4.5 3.5 3.5 3.5

at+

4.4 9.3 7.3 56 56 7.4 52 57 13.0 6.9 455 5.3 10.1 6.4 9.2 7.7 42.2 453 7.8
3.7 4.8 4.4 3.8 3.4 4.4 3.2 4.3

j 2K+2K r 256 a+

j16

4

3.4

5.4 4.1 3.2 4.0

4.5 3.5 3.5 3.4

at

7.5 22b 23b
3.9 22a 23a
7.2 22b 23b
3.8 22a 23a
6.6 22b 23b
3.7 22a 23a

2

9.8 6.2 9.2 7.7 42.2 45.3

5.4 4.1 3.2 4.0

4.4 7.5 7.1 5.4 55 6.8 5.0 5.7 12.5 6.7 45.0 5.0

3.7 4.7 4.4 3.7 3.4 4.3 3.2 4.3

j 2K+2K 1256 a+

j16

4.9

3.4

4.5 3.4 3.5 3.3

at

9.1 5.8 9.2 7.1 42.2 45.3

4.3 7.2 6.8 5.0 5.1 6.6 4.9 55 11.4 6.4 43.9 4.6

j 2K+2K r256 a+

i16

4.9

8.9 51 9.1 7.1 42.1 45.3

5.2 3.8 3.1 4.0

3.7 3.0 2.3 3.2

at

3.9 6.3 6.5 45 47 58 4.8 52 10.3 5.7 43.3 4.3

3.6 4.6 4.2 3.4 3.2 40 3.1 4.1

j 2K+2K r 256 a+

j16

4.9

3.4
2

4.2 3.3 3.5 3.1

at

3.8
4.9

7

3.5 2.7 2.9 2.4

4.2 3.2 3.5 3.0
3.5 2.6 2.9 2.4

3.5 2.6 2.9 2.4
3.5 2.6 2.9 2.4
3.5 2.6 2.9 2.4
2.8 2.6 2.6 2.3
2.7 2.5 2.7 2.3
2.4 2.5 2.5 2.3

r- al nsp

i16

3.6

3.4
2

5.1 3.4 3.1 3.9

3.6 44 4.1 3.3 3.1 3.8 3.1 4.0

J' -

2.8 12 27a
2.8 18a
2.8 15a
2.8 1l4a
2.6 34a

3.8
3.8
3.8

7
7

3.6 2.7 2.3 3.2
3.6 2.7 2.3 3.2

3.6 2.7 2.3 3.2
3.6 2.7 2.3 3.2
3.3 2.7 2.1 27

3.1 3.2 3.3 2.5 2.3 2.5 2.4 29

3.1 3.2 33 2.5 2.3 25 2.4 29

2

2.7
2

3.1 3.2 3.3 2.5 2.3 25 2.4 29
3.1 3.2 3.3 2.5 2.3 2.5 2.4 29

3.1 3.2 33 25 23 25 21 29

ilnf

7
2

3.2

2

2.2
2

3.3 2.6 2.0 2.6
3.1 2.6 1.9 2.2

2.7 2.9 2.9 2.4 2.3 25 20 28
2.7 2.9 2.9 2.4 2.3 25 1.8 2.8

nsp LC

2.4 34b

2.9

0

nsp LD

j-

r-

j-

r-

a

r-

j-

tont HVEAN Fi gures

swm

2.

ora

conp dodu espr fppp gccl hydr

met al vi

grr

eco

egre sedd yacc

2.4
2.

2.9

1

alnsp LE

a-

j 2K+2K r 256 a+

j16

r-

?a5b
?a5
?a4
?a4
?a3
?a3
?a2
?a2
?al
?al

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

6.2 22b 23b
3.6 22a 23a
5.7 22b 23b
3.5 22a 23a
5.4 22b 23b
3.4 22a 23a
5.2 22b 23b
3.3 22a 23a

6.7 11.7 8.7 9.6 8.210.0 7.1 7.6 24.9 9.8 56.1 10.8 20.2 13.1 21.7 8.7 45.8 53.5 11.8 26b

6.7 11.0 85 7.2 82 9.9 55 7.6 16.7 9.7 47.7 8.9 11.9 10.4 10.6 8.7 43.3 45.4 10.2

4.7 5.2 4.9 4.2 4.2 4.9 3.3 5.0

8.3 5.1 6.7 6.5 42.1 45.3

5.0 3.7 2.9 3.9

9.5 5.542.4 4.0
4.1 3.2 3.5 3.0
8.5 5.1 40.4 3.8
4.0 3.1 3.4 2.9
7.9 4.6 39.4 3.8

3.6 5.9 6.2 3.9 4.3 55 4.6 51

3.4 45 41 3.2 3.0 3.8 3.1 4.1

4.9

3.4

at

7.9 4.9 6.6 6.4 42.1 45.2

4.8 3.7 2.9 4.1

3.5 4.7 4.4 3.7 41 47 4.6 4.5

j 2K+2K 1256 a+

j16

4.9

3.4

3.3 3.7 32 31 30 35 3.1 3.8
3.5 5.1 4.0 3.5 3.8 4.7 4.5 4.4

at

7.5 4.5 5.9 6.0 40.3 45.2

j 2K+2K r256 a+

4.9

6.9 4.0 5.8 56 40.3 44.9

at+

j 2K+2K r 256 a+

j16

8.1 4.539.3 3.7

3.3 5.0 3.9 3.3 3.8 4.4 4.6 4.2

at

at+

r+

?P:4(1.00) j+

2P 4(1.00) | 2K+2K r256 a+

2P: 4(1.00) |16
2P: 4(0. 98)

4.

3.4

5.7 4.8 3.3 4.2

4.7 3.9 3.5 4.2

at

r-

7.2 12.9 9.0 10.2 8.4 10.6 7.2 8.2 28.4 10.2 56.1 11.3 20.5 12.7 21.6 8.7 45.2 53.3 12.3 26b

7.112.0 8.8 7.6 8.4 10.5 55 8.2 16.9 10.1 48.0 9.2 12.0 10.1 10.6 8.7 42.8 45.3 10.5

r+

j+

2P: 4(0.98) | 2K+2K r256 a+

?P:4(0.98) j16
?P:4(0.96) j+

at

r-

7.9 12.8 8.9 10.3 8.4 10.6 7.1 8.2 28.110.6 57.2 11.3 20.3 12.7 22.8 8.7 45.2 53.2 12.4 26b

7.8 11.9 8.7 7.6 8.4 10.5 55 8.2 16.7 10.6 48.7 9.2 11.9 10.1 11.0 8.7 42.8 45.3 10.6

at+

r+

2P: 4(0.96) | 2K+2K r256 a+

2P: 4(0.96) | 16
2P: 4(0.94) |+

7.9 11.9 8.9 10.3 8.510.3 7.1 8.2 285 10.7 57.8 11.5 20.5 12.7 23.0 9.0 45.2 53.2 12.4 26b

7.8 11.2 8.7 7.6 8.4 10.2 55 8.2 16.7 10.7 48.8 9.2 11.9 10.1 11.0 9.0 42.8 45.3 10.6

4.9 5.1 4.8 4.2 4.2 4.9 3.3 5.0

at+

r+

2P: 4(0. 94) | 2K+2K r256 a+

2P: 4(0.94) |16
2P: 4(0. 92)

4.

3.4

5.7 4.8 3.3 4.2

4.7 3.9 3.5 4.2

at

7.9 10.9 8.9 10.1 8.6 10.2 7.1 8.1 28.510.8 57.8 11.5 20.9 12.7 22.9 9.0 45.2 53.2 12.3 26b
7.8 10.3 8.6 7.4 8.510.1 55 8.0 16.8 10.7 48.8 9.3 12.3 10.1 10.8 9.0 42.8 45.3 10.5 27

4.9 5.0 4.8 4.2 4.2 4.8 3.3 5.0

at

r+

j+

2P: 4(0.92) | 2K+2K r256 a+

?P:4(0.92) j16
?P:4(0.90) j+

5.8 4.8 3.3 4.2

4.7 3.9 3.5 4.2

at

r-

7.9 10.9 88 9.9 8.6 10.2 7.1 80 259 10.6 57.9 11.5 20.8 12.7 21.8 9.0 45.2 53.2 12.2 26b

7.8 10.3 8.6 7.3 8.510.1 55 80 15.6 10.6 48.9 9.3 12.2 10.1 10.4 9.0 42.8 45.3 10.5

4.9 5.0 4.8 4.2 4.2 4.8 3.3 5.0

at+

r+

2P: 4(0. 90) | 2K+2K r256 a+

?P:4(0.90) j16
?P:4(0.88) j+

5.8 4.8 3.3 4.2

4.6 3.9 3.5 4.2
7.9 10.9 87 9.8 8.6 10.2 7.1 7.4 26.6 10.557.9 11.6 20.2 12.6 18.0 9.0 45.2 53.2 12.0 26b

7.8 10.3 8.5 7.2 8510.1 55 7.4 15.6 10.4 48.9 9.3 12.1 10.1 9.2 9.0 42.8 45.3 10.3

4.9 5.0 4.8 4.1 4.2 4.8 3.3 4.7

r- a+
r+ a

2P: 4(0.88) | 2K+2K r256 a+

2P: 4(0. 88) | 16
2P: 4(0. 86)

248
249
250

56

4.

3.4

5.8 4.8 3.2 4.2

4.6 3.9 3.5 4.2

at

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

8.0 10.8 8.7 9.7 8.6 10.2 7.1 7.4 26.8 10.4 57.8 11.5 19.9 12.6 18.2 9.0 45.2 53.2 12.0 26b

7.9 10.2 8.4 7.1 8510.1 55 7.4 15.6 10.4 48.6 9.3 12.0 10.1 9.0 9.0 42.8 45.3 10.2

4.8 5.0 4.8 4.1 4.2 4.8 3.3 4.7

at+

r+

j+

2P: 4(0.86) | 2K+2K r256 a+

?P: 4(0.86) |16
2P: 4(0.84) j+

5.7 4.8 3.2 4.2

4.6 3.9 3.5 4.2

at

8.0 10.8 8.8 9.6 8.6 10.2 7.1 7.4 26.7 10.3 57.5 11.5 19.2 13.0 18.2 9.0 45.2 53.2 12.0 26b

7.9 10.2 8.6 7.1 8.510.1 55 7.4 15.510.2 48.4 9.2 11.7 10.3 9.0 9.0 42.8 45.3 10.2

4.8 5.0 4.7 4.1 4.1 4.8 3.3 4.7

at

r+

2P: 4(0.84) | 2K+2K r256 a+

?P: 4(0.84) |16
2P 4(0.82) j+

5.7 4.8 3.2 4.2

4.6 3.9 3.5 4.1

at

8.0 10.8 8.8 9.5 8.6 10.3 7.1 7.4 26.7 10.3 57.6 11.5 19.0 12.6 18.3 9.0 45.2 53.2 12.0 26b

7.9 10.2 8.5 7.0 8510.2 55 7.4 15.510.2 48.3 9.2 11.7 10.1 8.9 9.0 42.8 45.3 10.2

4.8 5.0 4.7 4.1 4.1 4.8 3.3 4.7

at+

r+

2P: 4(0.82) | 2K+2K r256 a+

2P: 4(0.82) |16
2P: 4(0. 80)

3.4 4.

5.7 4.8 3.2 4.2

4.6 3.9 3.5 4.1

at

8.0 10.8 8.7 9.5 8.6 10.3 7.1 7.4 26.7 10.2 56.9 11.4 19.0 12.5 18.3 9.0 45.2 53.2 11.9 26b

7.8 10.2 8.4 7.0 8.510.2 55 7.4 15.4 10.2 47.8 9.1 11.7 9.9 8.9 9.0 42.8 45.3 10.2

4.8 5.0 4.7 4.1 4.1 4.8 3.3 4.7

at

r+

j+

2P: 4(0.80) | 2K+2K r256 a+

?P:4(0.80) j16
?P:4(0.78) j+

5.7 4.7 3.2 4.2

4.6 3.9 3.5 4.1

at

8.0 10.8 85 9.4 8.410.3 7.2 7.4 26.510.157.111.3 19.0 12.5 18.3 9.0 45.2 53.2 11.9 26b

7.8 10.2 8.3 7.0 8.310.2 55 7.4 15.4 10.0 47.9 9.0 11.7 9.9 8.9 9.0 42.8 45.3 10.1

4.8 5.0 4.6 4.1 4.1 4.8 3.3 4.7

at

r+

2P 4(0.78) | 2K+2K r256 a+

?P:4(0.78) j16
?P:4(0.76) j+

5.7 4.7 3.2 4.2

4.6 3.9 3.5 4.1

at

7.9 10.8 8.4 9.4 8.210.0 7.2 6.9 25,2 9.956.6 11.2 18.9 12.5 18.3 9.0 45.2 53.2 11.7 26b

7.8 10.2 8.2 6.9 81 9.9 55 6.9 15.0 9.9 47.1 8.9 11.6 9.9 8.9 9.0 42.8 45.3 10.0

4.8 5.0 4.6 4.1 4.1 4.7 3.3 4.6

at+

r+

2P: 4(0.76) | 2K+2K r256 a+

?2P: 4(0.76) |16
2P 4(0. 74)

3.4 4.

5.6 4.7 3.2 4.2

4.6 3.8 3.5 4.1

at

7.4 10.8 8.3 9.3 82 9.9 7.2 6.9 251 9.3 56.410.8 18.8 12.3 17.7 9.0 45.9 53.2 11.5 26b

7.3 10.2 81 6.9 81 9.8 55 6.9 15.0 9.3 46.9 8.5 11.6 9.9 8.7 9.0 42.8 45.3

4.7 5.0 4.6 4.1 4.1 4.7 3.3 4.6

r+

j+

9.8

2P: 4(0. 74) | 2K+2K r256 a+

2P: 4(0.74) |16
2P 4(0.72) j+

5.6 4.7 3.2 4.2

4.6 3.8 3.5 4.0

at

4.7 10.8 8.2 9.0 7.9 9.8 6.4 6.9 25.1 9.1 56.110.5 18.512.3 17.7 9.0 45.9 53.2 10.7 26b

4.7 10.2 8.0 6.8 7.8 9.7 54 6.9 150 9.1 46.8 8.4 11.5 9.9 8.7 9.0 42.8 453
3.9 5.0 4.6 4.1 4.0 4.7 3.3 4.6

at

r+

9.4

2P 4(0.72) | 2K+2K r256 a+

2P 4(0.72) |16

3.4 4.

5.6 4.7 3.2 4.2

4.6 3.8 3.5 4.0

at

tont HVEAN Fi gures

4.7 10.8 81 9.0 7.9 9.7 6.4 6.9 251 9.156.110.3 18.3 11.9 17.7 9.0 45.9 53.2 10.7 26b

swm

ora

ml |

conp dodu espr fppp gccl hydr li

met al vi

grr

eco

egre sedd yacc

r+

2P: 4(0.70) |+

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

9.3

4.7 10.2 7.9 6.8 7.8 9.6 54 6.9 15.0 9.0 46.8 8.2 11.4 9.6 8.7 9.0 42.8 45.3

?P: 4(0.70) j 2K+2K r256 a+

2P: 4(0. 70) | 16

2P: 4(0.68) |+
2P: 4(0. 66)

5.6 4.7 3.2 4.2

4.7 10.9 7.8 8.4 7.9 9.4 6.4 6.5 24.5 8.8 56.1 10.2 18.2 11.9 16.5 9.0 45.9 53.2 10.5 26b
4.7 10.2 7.7 8.4 7.6 9.1 6.4 6.5 24.3 8.455.310.0 17.8 11.5 16.5 9.0 45.9 53.2 10.3 26b

4.7 10.2 7.6 8.2 7.5 86 6.4 6.5 24.3 8.1552 9.9 17.0 10.5 16.5 9.0 45.9 53.2 10.1 26b
4.7 10.2 7.6 8.1 7.3 82 6.4 6.5 24.0 7.955.0 9.8 16.9 10.3 16.5 9.0 45.9 53.2 10.0 26b

4.6 3.8 3.5 4.0

3.9 5.0 4.6 4.1 3.9 4.7 3.3 4.6

at

r-

r+
r+

r+

j+

at

2P: 4(0.64) |+

r+
r+
r+
r+
r+
r+
r+

2P 4(0.62) |+

9.9 26b
9.8 26b

4.7 10.2 7.6 8.0 7.3 81 6.3 6.5 23.9 7.154.6 9.6 16.5 10.2 16.0 9.0 45.9 53.2
4.7 9.9 7.6 7.9 7.3 80 6.3 6.5 23.9 6.7 54.1 9.4 16.0 10.2 16.0 9.0 45.9 53.2

?P: 4(0.60) j+

at

2P: 4(0.58) |+

at

2P: 4(0.56) |+

9.0 26b
8.9 26b

5.6 11.3 7.6 85 6.9 9.6 7.2 6.8 225 7.954.7 9.2 17.8 11.1 18.9 8.4 45.8 53.5 10.5 26a

4.7 9.9 6.1 7.6 6.1 7.8 6.2 56 23.5 6.653.9 86 16.0 8.1 159 7.7 41.8 53.2
4.7 9.9 6.0 7.4 58 7.7 6.2 56 23.4 6.553.9 7.7 159 8.0 15.9 7.7 41.8 53.2

at+

2P: 4(0.54) j+

at

2P: 4(0.52) |+

at

2P: 2(1.00) |+

9.2

5.510.7 7.4 6.7 6.9 9.5 55 6.8 15.2 7.9 46.5 7.7 10.9 9.1 9.6 8.4 43.0 45.3

2P: 2(1.00) j 2K+2K r256 a+

2P: 2(1.00) |16
2P: 2(0.98) |+

5.6 4.7 3.3 4.2

4.6 3.7 3.5 4.1
5.9 11.7 8.0 9.1 6.9 9.6 7.2 6.6 22.7 8.6 54.5 9.5 18.2 11.5 19.1 8.4 45.2 53.2 10.8 26a

4.4 5.2 4.7 4.2 4.0 4.8 3.3 4.6

at

r-

at

r+

9.4

5.8 11.0 7.8 7.0 6.9 9.5 55 6.6 15.3 8.6 46.5 8.0 11.1 9.4 9.7 8.4 42.8 453

2P: 2(0.98) | 2K+2K r256 a+

2P: 2(0.98) |16
2P: 2(0.96) |+

at

r-

6.511.7 7.9 9.1 7.1 9.6 7.2 6.6 23.5 8.756.4 9.6 18.4 11.5 19.2 8.4 45.2 53.2 10.9 26a

r+

9.6
4.2

6.511.0 7.7 7.0 7.1 9.5 55 6.6 15.6 8.7 47.7 8.0 11.1 9.4 10.0 8.4 42.8 453

2P: 2(0. 96) | 2K+2K r256 a+

2P: 2(0.96) |16
2P:2(0.94) |+

4.9

3.4

5.6 4.7 3.3 4.2
6.511.3 7.9 9.1 7.1 9.4 7.2 6.6 24.0 8.8559 9.6 18.5 11.5 19.4 8.6 45.2 53.2 11.0 26a

4.7 5.2 4.7 4.2 4.0 4.8 3.3 46 4.6 3.8 3.5 4.1

at

r-

r+

9.6

6.510.7 7.7 7.0 7.0 9.3 55 6.6 15.7 8.8 47.6 8.0 11.2 9.4 10.1 8.6 42.8 453

2P: 2(0. 94) | 2K+2K r256 a+

2P: 2(0.94) |16
2P:2(0.92) |+

5.6 4.7 3.3 4.2

6.5 10.9 7.9 9.1 7.1 9.3 7.2 6.6 26.6 8.8559 9.6 19.0 11.5 19.9 8.6 45.2 53.2 11.0 26a

4.6 3.8 3.5 4.1

4.7 5.1 4.7 4.2 4.0 4.8 3.3 4.6

at

r-

r+

9.5 27

6.510.3 7.7 6.9 7.0 9.2 55 6.6 15.7 8.8 47.6 8.0 11.6 9.4 10.1 8.6 42.8 453

2P: 2(0.92) j 2K+2K r256 a+

2P: 2(0.92) |16
2P: 2(0.90) |+

at

r-

9.6
4.2

4.9

3.4

5.7 4.7 3.3 4.2
6.5 10.9 7.8 9.0 7.1 9.3 7.2 7.0 25.0 8.7 55.8 9.7 18.8 11.5 17.3 8.6 45.2 53.2 10.9 26a

6.5 10.9 7.9 9.2 7.1 9.3 7.2 7.3 25.3 8.755.8 9.7 19.0 11.6 19.8 8.6 45.2 53.2 11.1 26a
4.6 3.8 3.5 4.1

6.510.3 7.7 6.9 7.0 9.2 55 7.3 15.2 8.7 47.6 8.0 11.6 9.4 10.1 8.6 42.8 453

4.7 5.0 4.7 4.2 4.0 4.8 3.3 5.0

r+
r- at+

2P: 2(0.90) j 2K+2K r256 a+

2P: 2(0.90) |16
2P: 2(0.88) |+

303
304
305

57

r+

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

9.5

6.510.3 7.6 6.8 7.0 9.2 55 7.0 15.2 8.6 47.6 8.1 11.6 9.4 9.0 8.6 42.8 453

2P: 2(0. 88) | 2K+2K r256 a+

2P: 2(0.88) |16
2P: 2(0.86) |+

5.7 4.7 3.2 4.2

4.6 3.8 3.5 4.1
6.7 10.8 7.8 9.2 7.1 9.3 7.2 7.0 24.9 8.756.1 9.7 18.9 11.5 17.4 8.6 45.2 53.2 11.0 26a

4.7 5.0 4.7 4.1 4.1 4.8 3.3 4.7

at

r-

r+

9.5

6.6 10.2 7.6 6.8 7.1 9.2 55 7.0 15.2 8.6 47.5 8.1 11.6 9.4 9.0 8.6 42.8 453

2P: 2(0. 86) | 2K+2K r256 a+

2P: 2(0.86) |16
2P: 2(0.84) |+

at

r-

6.7 10.8 8.1 9.1 7.2 9.3 7.2 7.0 24.9 8.6 56.4 9.8 18.5 11.6 17.4 8.6 45.2 53.2 11.0 26a

r+

9.5
4.2

6.6 10.2 7.9 6.8 7.2 9.2 55 7.0 15.2 8.547.7 8.1 11.4 9.4 9.0 8.6 42.8 453

2P: 2(0. 84) | 2K+2K r256 a+

2P: 2(0. 84) | 16
2P: 2(0.82) |+

4.9

3.4

5.6 4.7 3.2 4.2
6.7 10.8 8.1 9.1 7.3 9.4 7.2 7.0 24.9 8.6 56.4 9.8 18.4 11.5 17.4 8.6 45.2 53.2 11.0 26a

4.6 3.8 3.5 4.1

4.6 50 4.7 41 4.0 4.8 3.3 4.7

at

r-

r+

9.5

6.6 10.2 7.9 6.8 7.2 9.3 55 7.0 15.2 8.547.4 8.0 11.4 9.4 8.9 8.6 42.8 453

2P: 2(0. 82) j 2K+2K r256 a+

2P: 2(0.82) |16
2P: 2(0.80) |+

5.6 4.7 3.2 4.2

4.6 3.8 3.5 4.1
6.6 10.8 8.0 9.1 7.3 9.4 7.2 7.0 24.9 8.556.2 9.8 18.5 11.4 17.4 8.6 45.2 53.2 11.0 26a

4.6 5.0 4.7 41 4.0 4.8 3.3 4.7

at

r-

r+

9.5

6.6 10.2 7.8 6.8 7.2 9.3 55 7.0 151 8.547.2 8.0 11.5 9.3 8.9 8.6 42.8 453

2P: 2(0. 80) j 2K+2K r256 a+

2P: 2(0.80) |16
2P:2(0.78) |+

at

r-

6.6 10.8 8.0 9.0 7.2 9.4 7.1 7.0 24.8 8.556.0 9.7 18.4 11.4 17.4 8.6 45.2 53.2 10.9 26a

r+

9.5
4.2

6.6 10.2 7.8 6.7 7.2 9.3 55 7.0 151 8.547.0 8.0 11.4 9.3 8.9 8.6 42.8 453

2P: 2(0.78) | 2K+2K r256 a+

2P: 2(0.78) |16
2P: 2(0.76) |+

4.9

3.4

5.6 4.6 3.2 4.2
6.6 10.8 7.9 89 7.1 9.3 7.1 6.8 24.0 8.4557 9.6 18.3 11.4 17.4 8.8 45.2 53.2 10.9 26a

4.6 3.7 3.5 4.0

4.6 50 4.6 4.1 4.0 4.8 3.3 4.7

at

r-

r+

9.4

6.6 10.2 7.7 6.7 7.1 9.2 55 6.8 14.9 8.4 46.5 7.9 11.4 9.3 8.9 8.7 42.8 453

2P: 2(0.76) | 2K+2K r256 a+

2P: 2(0.76) |16
2P:2(0.74) j+

5.6 4.6 3.2 4.2

4.6 3.7 3.5 4.0
6.4 10.8 7.8 89 7.1 9.2 7.1 6.8 23.9 8.2556 9.5 18.2 11.7 17.4 8.8 45.1 53.2 10.8 26a

4.6 5.0 46 4.1 4.0 4.7 3.3 4.6

at

r-

r+

9.3

6.310.2 7.6 6.7 7.1 9.1 55 6.8 14.8 8.2 46.4 7.8 11.3 9.5 8.7 8.7 42.8 453

2P: 2(0. 74) | 2K+2K r256 a+

2P: 2(0.74) |16
2P:2(0.72) j+

at

r-

4.7 10.8 7.7 8.7 7.2 9.1 6.3 6.8 23.9 80554 9.4 18.1 11.7 17.4 8.8 45.1 53.2 10.3 26a

at

r+

tont HVEAN Fi gures

swm

ora

ml |

conp dodu espr fppp gccl hydr

met al vi
4.7 10.2 7.5 6.6 7.2 9.1 5.4 6.8 14.8 8.0 46.3 7.8 11.3 9.5 8.7 8.7 42.8 45.3

grr

eco

egre sedd yacc

9.1

2P 2(0.72) | 2K+2K r256 a+
2P: 2(0.72) |16

331
332
333
334
335
336
337
338
339
340
341
342
343
344

4.7 10.8 7.6 8.7 7.2 9.0 6.3 6.8 23.9 8.0554 9.4 17.8 11.4 17.4 8.8 45 1 53.2 10.3 26a

4.7 10.2 7.4 6.6 7.2 89 54 6.8 14.8 8.046.3 7.7 11.2 9.3 8.7 8.7 42.8 453

at

r+

2P: 2(0.70) |+

9.0

2P: 2(0. 70) | 2K+2K r256 a+

2P: 2(0.70) |16

4.

4.7 10.9 7.4 8.2 7.2 88 6.3 6.5 23.9 7.955.4 9.4 17.7 11.4 16.4 8.8 45 1 53.2 10.1 26a
4.7 10.2 7.4 8.2 6.8 87 6.3 6.5 23.8 7.855.0 9.3 17.4 11.3 16.4 8.8 45.1 53.2 10.0 26a

4.7 10.2 7.3 8.0 6.8 84 6.3 6.5 23.8 7.654.9 9.2 16.9 10.2 16.4 8.8 45.1 53.2
4.7 10.2 7.3 7.9 6.6 8.2 6.3 6.5 23.5 7.554.9 9.2 16.8 10.2 16.4 8.8 45.1 53.2

4.7 10.2 7.3 7.9 6.6 81 6.2 6.5 23.4 7.054.6 9.0 16.4 10.1 15.9 8.8 45.1 53.2
4.7 9.9 7.3 7.8 6.6 7.9 6.2 6.5 23.4 6.7 54.1 8.9 16.0 10.1 15.9 8.8 45.1 53.2

4.7 9.9 6.1 7.8 6.1 7.8 6.2 5.6 23.3 6.654.0 86 16.0 9.9 15.9 7.7 41.8 53.2

4.7 9.9 6.0 7.6 5.8 7.8 6.2 5.6 23.3 6.553.9 83 16.0 8.115.9 7.7 41.8 53.2

4.7 9.9 6.0 7.4 57 7.6 6.2 56 23.3 6.553.9 7.7 159 7.9 159 7.7 41.8 53.2
4.7 9.9 59 7.3 52 7.5 6.2 56 21.8 6.353.6 7.4 156 7.6 15.6 7.6 41.8 53.2

3.4
4.7 9.4 5.8 5.8 51 7.5 53 56 14.0 6.3 45.4 6.4 10.3 6.5 8.4 7.6 41.0 45.2

5.6 4.6 3.2 4.2

4.6 3.7 3.5 4.0

3.9 5.0 45 4.1 3.9 47 3.3 4.6

at

at

r+
r+
r+
r+
r+
r+
r+
r+
r+

2P: 2(0.68) |+

2P: 2(0.66) |+

9.9 26a
9.8 26a
9.7 26a
9.6 26a
9.2 26a
9.0 26a
8.9 26a

2P 2(0.64) j+

at

2P: 2(0.62) |+

2P: 2(0. 60) |+

at+

?P:2(0.58) j+

at

2P: 2(0.56) |+

at

2P: 2(0.54) |+
2P: 2(0. 52)

at+

j+

8.7 26a 26b

7.

r+

j 2K+2K r256 a+

2P

?Taken j 2K+2K r256 a+

?Si gn

347
348

4.2

4.7 3.6 3.8 5.4 40.9 22.1

8.6 3.4 34.3 3.1
6.5 80 7.2 81 7.9 89 51 7.2 15.1 8.4 49.1 8.2 15.0 9.2 14.8 8.2 45.5 49.9
6.5 7.9 7.1 6.6 7.8 8.9 51 7.2 14.0 8.4 452 7.2 10.8 8.0 11.1 8.2 43.4 455
57 7.5 6.7 7.3 7.0 7.6 50 6.8 13.4 7.3 47.3 7.2 13.3 8.1 10.9 7.8 44.6 47.0
5.7 7.4 6.6 6.1 7.0 7.6 5.0 6.8 12.7 7.2 43.4 6.4 10.2 7.2 10.1 7.8 43.2 45 4
4.7 6.3 5.0 6.0 6.0 6.2 4.9 56 11.3 5.7 451 6.0 10.8 6.7 10.1 7.7 43.5 42.3

3.9 4.8 3.9 3.9 3.3 4.4 3.3 4.3

j 2K+2K r 256 a+

9.

r+ a+

j 2K+2K 1256 a+

9.1 24a

8.8

8

?-:

r+

+
j 2K+2K r256 a+
j+

j 16

351
352
353

8.4 24a
7.4

6

?-:

at+

r+

3.4

55 4.1 3.1 3.9

4.5 3.4 3.5 3.7

at

2P
2.

7.2 24a

5.6

9.1 6.2 8.3 7.6 43.0 42.2
7.8 5.1 7.0 6.5 40.1 34.8

4.7 6.3 4.9 54 6.0 6.1 4.9 56 10.9 5.7 41.5 5.5

j 2K+2K r256 a+

14

8.6 4.3 41.1 4.4

at+

r+

at

?Taken j 16

357

5.5 24a
2.6
2.9

3.4 4.4

7.3 4.8 6.4 6.5 40.0 34.8
3.4 2.3 3.0 4.2 19.5 18.6

3.5 2.9 2.2 3.4

8.3 4.3 38.2 4.2
4.1 1.8 29.9 2.1
4.0 2.6 3.4 2.6
4.1 1.8 28.5 2.0

4.6 4.0 3.5 4.2

3.4 4.7 3.3 4.4 45 4.2 47 4.0

1.3 2.0 1.4 2.2 2.1 2.1 3.2 21
2.2 25 25 2.7 2.8 3.0 3.1 3.3

1.3 2.0 1.4 2.1 2.1 2.1 3.2 21

a+
a

j 2K+2K r256 a+
16

!
i

2

:°Si gn

?-:
?2-

358
5
360

58

2.6 22b 23b 24a

4.3 25a
4.3 25a
4.1 25a
3.6 25a

3.3 2.3 2.9 4.2 19.5 18.6

5.7 4.8 3.4 4.2
5.6 4.7 3.4 4.2

5.4 4.5 3.2 4.2

j 2K+2K r256 a+

361
362

4.9
4.9

3.4
3.4
3.4

4.9 5.2 4.8 4.2 42 4.9 3.3 5.1

at+

4.6 3.9 3.5 4.1

4.4 3.7 3.5 3.9

4.7 5.2 4.7 4.2 4.2 4.9 3.3 5.0

at

4.9

4.3 4.8 4.0 4.1 4.0 4.8 3.3 4.6

at

4.

at

2.2 22a 23a 25a

4.4

3.4
2.

at

7
7

2.4 1.8 1.6 2.3

2.4 1.5 2.9 1.6

1.3 1.6 1.3 1.6 1.6 1.6 2.2 1.9

al nsp

1.7 12

2.8
2.8
2.8
2.8
2.7

2.

1.7 18a
1.7 15a
1.7 14a
1.7 34a

2.7
2.

2.3 1.5 1.6 2.3
2.3 1.5 1.6 2.3

2.3 1.5 1.6 2.3

2.1 1.5 2.5 1.5
2.1 1.5 2.5 1.5
2.1 1.5 2.5 1.5
2.0 1.5 2.3 1.5
2.1 1.5 2.6 1.5
2.0 1.5 2.4 1.5
2.0 1.5 2.4 1.5

1.3 1.5 1.3 1.5 1.4 1.4 2.2 1.9
1.3 1.5 1.3 1.5 1.4 1.4 2.2 1.9

1.3 1.5 1.3 1.5 1.4 1.4 2.2 1.9

369
370
371
372

7
7

il nf
i*2
LB
LC
LD
LE

2.

2.2
2.

2.2 1.5 1.5 2.1
2.4 1.5 1.5 2.1

1.3 1.5 1.3 1.5 1.4 1.4 1.9 1.9

1.3 1.5 1.2 1.5 1.5 1.5 1.9 1.8

2

1.7 34b
1.7

8
2.6

2
2.0
2.

2.3 1.5 1.5 1.9

1.3 1.5 1.2 1.5 1.5 1.5 1.8 1.8

a-

a-

1

1.3 1.5 1.2 1.5 1.5 1.5 1.7 1.8 2.3 1.5 1.6 1.9

375

Fi gure 12
368 ?-
214 ?a5
159 ?b8
107 ?cl0
72 ?cl13

35 ?c13

1 2+

Fi gure 13
107 ?cl0

Fi gure 14a
371 ?-

217 ?a5

181 ?b8

110 ?cl0

75 ?cl13

57 7?c13

4 7+

Fi gure 15a
370 ?-

216 ?a5

180 ?b8

109 ?cl0

74 ?cl13

56 ?c13

3 7+

Fi gure 16a

45 ?c¢13
44 ?c13
43 ?c13
42 ?c13
41 ?c13
40 7?c13
39 ?ci13
38 7?c13
37 7?c13
35 ?ci13

Fi gure 16b
169 ?b8
168 ?b8
167 ?b8
166 ?b8
165 ?b8
164 ?b8
163 ?b8
162 ?b8
161 ?b8
159 ?b8

AADMDAADDDD

RPRRRRERERE
DO OO OO

J

J -

j 16
j 16+8
j 2K+2K
j 2K+2K
j+

j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

r-
r-

r64
r 256
r 256
r+

r64

r-
r-
r-
r64
r 256
r 256
r+

r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

aln
at
at
at
at
at

a+

aln
at
at
at
at
at

a_
aln
at
at
at
at
at

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

wl6
w32
we4
w128
w256
ws12
wLK

sp

sp i*2

i|nf
sp ilnf
i|nf
i|nf
i|nf
i|nf
i|nf

wl6
w32

w128
w256
ws12
wlK

59

Figure 17a

55
54
53
52
51

?cl3
?cl3
?cl3
?cl3
?cl3
?cl3
?cl3
?cl3
?cl3
?cl3

Figure 17b

179
178
177
176
175
174
173
172
171
170

?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8
?b8

Fi gure 18a

369
215
160
108
73
36
2

?-
?a5
?b8
?c10
?c13
?cl3
2+

Fi gure 22a

366
230
228
226
224
211
209
207
197
195
159
143
123
121
101

91

?-
?al
?a2
?a3
?a4
?a5
?a6
?a7
?b6
?b7
?b8
?b9
?c9
?c10
?cll
?cl2
?c13

j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K

AR DD

PRRRRERERER
DO OO O OD
-
\

r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

r.
r.
r.
r64
r 256
r 256
r+

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

dw4

dwl6
dw32
dwe4

dw4

dwl6
dw32
dwe4
dwi28
dw256
dws12
dwliK
dw2K

dwi28
dw256
dws12
dwlK
dw2K

337353

Fi gure 22b

361
229
227
225
223
210
208
206
196
194
148
142
122
102
100

98

72

?-

?al
?a2
?a3
?a4
?ab
?a6
?a7
?b6
?b7
?b8
?b9
?c9

?c10
?cll j
?cl2 j
?cl13

Fi gure 23a

366
230
228
226
224
211
209
207
197
195
159
143
123
121
101

99

91

?-
?al
?a2
?a3
?a4
?ab
?a6
?a7
?b6
?b7
?b8
?b9
?c9
?cl0
?cll
?cl2
?cl3

Fi gure 23b

361
229
227
225
223
210
208
206
196
194
148
142
122
102
100

98

?-
?al
?a2
?a3
?a4
?ab
?a6
?a7
?b6
?b7
?b8
?b9
?c9
?cl0
?cll
?cl2
?cl3

j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K
j 2K+2K

r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256
r 256

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

60

Fi gure 24a

361
358
355
352
350

?-

Fi gure 24b

72
70
35
31
29

?cl
?cl
?cl
?cl
?cl

Fi gure 25a

366
365
364
363
362

?-

Fi gure 25b

159
147
146
145
144

?b8

oo AN

oo AN
N
~
i
N
~

3
3
3
3
3

16 r
16 r

j16 r
j16 r-
j16 r

j16

7b8:2 j 16
7b8: 4 j 16
?2b8: 6 j 16
7b8: 8 j 16

Fi gure 26a

345
344
343
342
341
340
339
338
337
336
333
330
327
324
321
318
315
312
309
306
303
300
297
294
291
288

?P
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:
?P:

2(0
2(0
2(0
2(0
2(0
2(0
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(0.
2(1.

52)
54)
56)
58)
60)
62)
64)
66)
68)
70)
72)
74)
76)
78)
80)
82)
84)
86)
88)
90)
92)
94)
96)
98)
00)

r-
r-
r-
r-
r-

r2
r2
r2
r2
r2

a+
a+
a+
a+
a+

a
a
a
a
a

56
56
56
56
56

a+
a+
a+
a+

r 256
r 256
r 256
r 256
r 256

+
+
+
+
+

r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+
r+

a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+
a+

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Fi gure 26b
345 ?P +r+ at+
287 ?P:4(0.52) j+ r+ at
286 ?P:4(0.54) j+ r+ at
285 ?P:4(0.56) j+ r+ at
284 7?P:4(0.58) j+ r+ at
283 ?P:4(0.60) j+ r+ at
282 ?P:4(0.62) j+ r+ at
281 7?P:4(0.64) j+ r+ at
280 7?P:4(0.66) j+ r+ at
279 ?P:4(0.68) j+ r+ at
276 ?P:4(0.70) j+ r+ at
273 ?P:4(0.72) j+ r+ at
270 ?P:4(0.74) j+ r+ at
267 ?P:4(0.76) j+ r+ at
264 ?P:4(0.78) j+ r+ at
261 ?P:4(0.80) j+ r+ at
258 ?P:4(0.82) j+ r+ at
255 ?P:4(0.84) j+ r+ at
252 ?P:4(0.86) j+ r+ at
249 ?P:4(0.88) j+ r+ at
246 ?P:4(0.90) j+ r+ at
243 ?P:4(0.92) j+ r+ at
240 ?P:4(0.94) j+ r+ at
237 ?P:4(0.96) j+ r+ at
234 ?P:4(0.98) j+ r+ at
231 ?P:4(1.00) j+ r+ at
Fi gure 27
302 ?P:2(0.92) j16 r-
147 ?b8:2 j 16 r-
245 ?P:4(0.92) j16 r-
146 ?b8: 4 j 16 r-
301 ?P:2(0.92) j2K+2K r256
70 ?cl3:2 j 2K+2K r 256
244 ?P:4(0.92) j2K+2K r256
35 ?c¢l13:4 j 2K+2K r 256
Fi gure 28a
97 ?c¢l13 j- r256 at
95 ?cl13 j1 r256 a+
94 ?cl1l3 j2 r256 a+
93 ?cl1l3 j4 r256 a+
92 ?cl13 j8 r256 at
90 ?cl13 j16 r256 at
87 ?cl1l3 j2K r256 a+
Fi gure 28b
27 ?+ j- r+ a+
25 ?+j1 r+ a+
24 ?+ j2 r+ a+
23 ?+ j4 r+ a+
22 ?+j8 r+ a+
21 ?+ j16 r+ a+
20 ?+ j2K r+ a+

a+
a+
a+
a+

61

Fi gure 29a
87 ?c13
86 ?c13
85 ?c13
84 ?c13
83 ?c13
82 ?c13
81 ?c13

Fi gure 29b

j 2K
j 2K+2

r256 a+
r256 a+
j 2K+4 r256 a+
j 2K+8 r256 a+
j 2K+16 r256 a+
j 2K+32 r256 a+
j 2K+64 r 256 a+

20 ?+ j2K r+ a+
19 2?2+ j2K+2 r+ at+
18 ?+ j2K+4 r+ a+
17 2?2+ j2K+8 r+ a+
16 7?2+ j2K+16 r+ a+
15 ?+ j2K+32 r+ a+
14 2?2+ j2K+64 r+ a+

Fi gure 27a
214 ?a5 j- r- alnsp

Fi gure 27b
107 ?cl1l0 j 16+8 r64 at+

Fi gure 32a
117 ?cl10 j 16+8 r64 a-
116 ?c10 j 16+8 r64 al nsp
115 ?c¢10 j 16+8 r64 aConp
107 ?cl10 j 16+8 r64 a+

Fi gure 32b
64 ?cl13:4 j2K+2K r256 a-
63 ?cl3:4 j2K+2K r256 al nsp
62 ?c¢13:4 j2K+2K r256 aConp
35 ?c¢13:4 j2K+2K r256 a+

Fi gure 33a
119 ?¢10 j 16+8 r- at
118 ?c10 j16+8 r32 at
107 ?cl1l0 j16+8 r64 at
106 ?cl1l0 j 16+8 r128 at+
105 ?c10 j 16+8 r256 at+
104 ?cl10 j16+8 r+ at

Fi gure 33b
68 ?cl3:4 j2K+2K r- a+
67 ?cl13:4 j2K+2K r32 at+
66 ?cl1l3:4 j2K+2K r64 at+
65 ?cl13:4 j2K+2K r128 a+
35 ?c¢13:4 j2K+2K r256 a+
34 ?¢13:4 j2K+2K r+ a+

Fi gure 34

372
218
182
111
76
58

5

Fi gure 34
374
220
184
113
78

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

a Fi gure 35a
?- j- r- a- LB 107 ?c1l0 j16+8 r64 at
?a5 j- r- al nsp LB 111 ?cl0 j16+8 r64 a+ LB
?b8 j 16 r- at LB 112 ?c10 j16+8 r64 at LC
?c10 j16+8 r64 a+t LB 113 ?c10 j16+8 r64 at LD
?c13 j2K+2K r256 a+ LB 114 ?c10 j16+8 r64 at LE
?c13: 4 j 2K+2K r256 a+ LB
?+ j+ r+ a+ LB Fi gure 35b

35 ?c¢13:4 j2K+2K r256 a+
b 58 ?c13:4 j2K+2K r256 a+ LB
?- - r- a- LD 59 ?c¢13:4 j2K+2K r256 a+ LC
?a5 - r- alnsp LD 60 ?cl13:4 j2K+2K r256 a+ LD
?b8 16 r- at LD 61 7?cl13:4 j2K+2K r256 at+ LE

i
J
J
?c10 j16+8 r64 a+t LD
?c13 j 2K+2K r256 a+ LD
J
J

60 ?cl3:4 j2K+2K r256 a+ LD
7 2+ + r+ a+ LD
References
[AC87] Tilak Agarwalaand John Cocke. High performance reduced instruction set processors.

[BEH91]

IBM Thomas J. Watson Research Center Technical Report #55845, March 31, 1987.

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register allocation
andinstruction scheduling for RISCs. Fourth International Symposiumon Architectural
Support for Programming Languages and Operating Systems, pp. 122—-131, April 1991.
Published as Computer Architecture News 19 (2), Operating Systems Review 25 (special
issue), SGPLAN Notices 26 (4).

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and

[Fis91]

[GM86]

[GH88]

structures. Proceedings of the SGPLAN "90 Conference on Programming Language
Design and Implementation, pp. 296-310. Published as SIGPLAN Notices 25 (6), June
1990.

J. A. Fisher. Global code generation For instruction-level parallelism: trace scheduling-
2. Technical Report #HPL-93-43, Hewlett-Packard Laboratories, Palo Alto, California,
1993.

Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. Proceedings of the S GPLAN ' 86 Symposium on Compiler Con-
struction, pp. 11-16. Published as SSGPLAN Notices 21 (7), July 1986.

James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation in
large basic blocks. International Conference on Supercomputing, pp. 442-452, July
1988.

[HHN92] Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolai. Abstractions for recur-

sive pointer data structures. Improving the analysis and transformation of imperative
programs. Proceedings of the SGPLAN ’92 Conference on Programming Language

62

[HG83]

[IM82]

[JW89]

[LHSS]

[LS84]

[McF93]

[NF84]

[PSR92]

[Smis1]

[SIH89]

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

Design and I mplementation, pp. 249-260. Published as SSGPLAN Notices 27 (7), July
1992.

John Hennessy and Thomas Gross. Postpass code optimization of pipeline constraints.
ACM Transactions on Programming Languages and Systems 5 (3), pp. 422—448, July
1983.

Nell D. Jonesand Steven S. Muchnick. A flexible approach to interprocedural dataflow
anaysis and programs with recursive data structures. Ninth Annual ACM Symposium
on Principles of Programming Languages, pp. 66—74, Jan. 1982.

Norman P. Jouppi and David W. Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines. Third International Symposium on Architectural
Support for Programming Languages and Operating Systems, pp. 272—282, April 1989.
Published as Computer Architecture News 17 (2), Operating Systems Review 23 (special
issue), SGPLAN Notices 24 (specia issue). Also available as WRL Research Report
89/7.

James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure accesses.
Proceedings of the SSGPLAN’ 88 Conference on Programming Language Design and
Implementation, pp. 21-34. Published as SSGPLAN Notices 23 (7), July 1988.

Johnny K. F. Lee and Alan J. Smith. Branch prediction strategies and branch target
buffer design. Computer 17 (1), pp. 622, January 1984.

Scott McFarling. Combining branch predictors. WRL Technical Note TN-36, June
1993. Digital Western Research Laboratory, 250 University Ave., Palo Alto, CA.

Alexandru Nicolau and Joseph A. Fisher. Measuring the parallelism available for very
long instruction word architectures. |EEE Transactions on Computers C-33 (11), pp.
968-976, November 1984.

Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the accuracy of dynamic
branch prediction using branch correlation. Fifth International Symposiumon Architec-
tural Support for Programming Languages and Operating Systems, 76-84, September
1992. Published as Computer Architecture News 20 (special issue), Operating Systems
Review 26 (special issue), S GPLAN Notices 27 (special issue).

J. E. Smith. A study of branch prediction strategies. Eighth Annual Symposium on
Computer Architecture, pp. 135-148. Published as Computer Architecture News 9 (3),
1986.

Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on multiple instruc-
tion issue. Third International Symposium on Architectural Support for Programming
Languages and Operating Systems, pp. 290-302, April 1989. Published as Computer
Architecture News 17 (2), Operating Systems Review 23 (specia issue), SGPLAN
Notices 24 (special issue).

63

[TF70]

[Wall91]

[YP92]

[YP93]

LIMITS OF INSTRUCTION-LEVEL PARALLELISM

G. S. Tjaden and M. J. Flynn. Detection and parallel execution of parallel instructions.
| EEE Transactions on Computers C-19 (10), pp. 889895, October 1970.

DavidW. Wall. Limitsof instruction-level parallelism. Fourth International Symposium
on Architectural Support for Programming Languages and Operating Systems, 176—
188, April 1991. Also availableas WRL Technical Note TN-15, and reprinted in David
J. Lilja, Architectural Alternatives for Exploiting Parallelism, IEEE Computer Society
Press, 1991.

Tse-Yu Yeh and Yale N. Patt. Alternativeimplementationsof two-level adaptive branch
prediction. Nineteenth Annual International Symposium on Computer Architecture,
124134, May 1992. Published as Computer Architecture News 20(2).

Tse-Yu Yeh and Yale N. Patt. A comparison of dynamic branch predictors that use
two levels of branch history. Twentieth Annual I nternational Symposium on Computer
Architecture, 257-266, May 1993.

WRL Research Reports

“*Titan System Manual."”’
Michael J. K. Nielsen.
WRL Research Report 86/1, September 1986.

‘*Global Register Allocation at Link Time.”’
David W. Wall.
WRL Research Report 86/3, October 1986.

“*Optimal Finned Heat Sinks.””’
William R. Hamburgen.
WRL Research Report 86/4, October 1986.

““The Mahler Experience: Using an Intermediate
Language as the Machine Description.”’

David W. Wall and Michael L. Powell.

WRL Research Report 87/1, August 1987.

““The Packet Filter: An Efficient Mechanism for
User-level Network Code.”’

Jeffrey C. Mogul, Richard F. Rashid, Michael
J. Accetta.

WRL Research Report 87/2, November 1987.

“* Fragmentation Considered Harmful.”’
Christopher A. Kent, Jeffrey C. Mogul.
WRL Research Report 87/3, December 1987.

‘* Cache Coherence in Distributed Systems.”’
Christopher A. Kent.
WRL Research Report 87/4, December 1987.

“* Register Windows vs. Register Allocation.’’
David W. Wall.
WRL Research Report 87/5, December 1987.

“‘Editing Graphical Objects Using Procedural
Representations.”’

Paul J. Asente.

WRL Research Report 87/6, November 1987.

““The USENET Cookbook: an Experiment in
Electronic Publication.”’

Brian K. Reid.

WRL Research Report 87/7, December 1987.

65

““MultiTitan: Four Architecture Papers.’”’

Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-
ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.

“*Fast Printed Circuit Board Routing.”’
Jeremy Dion.
WRL Research Report 88/1, March 1988.

‘“*Compacting Garbage Collection with Ambiguous
Roots.”

Joel F. Bartlett.

WRL Research Report 88/2, February 1988.

““The Experimental Literature of The Internet: An
Annotated Bibliography.”’

Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.

““Measured Capacity of an Ethernet: Myths and
Reality.”

David R. Boggs, Jeffrey C. Mogul, Christopher
A. Kent.

WRL Research Report 88/4, September 1988.

“*Visa Protocols for Controlling Inter-Organizational
Datagram Flow: Extended Description.”’

Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Kamaljit Anand.

WRL Research Report 88/5, December 1988.

“*SCHEME->C A Portable Scheme-to-C Compiler.”’
Joel F. Bartlett.
WRL Research Report 89/1, January 1989.

““Optimal Group Distribution in Carry-Skip Ad-
ders.”

Silvio Turrini.

WRL Research Report 89/2, February 1989.

“* Precise Robotic Paste Dot Dispensing.”’
William R. Hamburgen.
WRL Research Report 89/3, February 1989.

“*Simple and Flexible Datagram Access Controls for
Unix-based Gateways.”’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

“*Spritely NFS: Implementation and Performance of
Cache-Consistency Protocols.”’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

“*Available Instruction-Level Parallelism for Super-
scalar and Superpipelined Machines.”

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

““A Unified Vector/Scalar Floating-Point Architec-
ture.”’

Norman P. Jouppi, Jonathan Bertoni, and David
W. Wall.

WRL Research Report 89/8, July 1989.

“* Architectural and Organizational Tradeoffs in the
Design of the MultiTitan CPU.”’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

“‘Integration and Packaging Plateaus of Processor
Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

““A 20-MIPS Sustained 32-bit CMOS Microproces-
sor with High Ratio of Sustained to Peak Perfor-
mance.”’

Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

““The Distribution of Instruction-Level and Machine
Parallelism and Its Effect on Performance.”’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

““Long Address Traces from RISC Machines:
Generation and Anaysis.”’

Anita Borg, R.E.Kessler, Georgia Lazana, and David
W. Wall.

WRL Research Report 89/14, September 1989.

66

“‘Link-Time Code Modification.”’
David W. Wall.
WRL Research Report 89/17, September 1989.

“*Noise Issuesin the ECL Circuit Family.”
Jeffrey Y.F. Tang and J. Leon Y ang.
WRL Research Report 90/1, January 1990.

‘“‘Efficient Generation of Test Patterns Using
Boolean Satisfiablilty."”

Tracy Larrabee.

WRL Research Report 90/2, February 1990.

“*Two Papers on Test Pattern Generation.”’
Tracy Larrabee.
WRL Research Report 90/3, March 1990.

“*Virtual Memory vs. The File System.”’
Michael N. Nelson.
WRL Research Report 90/4, March 1990.

“‘Efficient Use of Workstations for Passive Monitor-
ing of Local Area Networks.”’

Jeffrey C. Mogul.

WRL Research Report 90/5, July 1990.

““A One-Dimensional Thermal Model for the VAX
9000 Multi Chip Units.”’

John S. Fitch.

WRL Research Report 90/6, July 1990.

**1990 DECWRL/Livermore Magic Release.”’

Robert N. Mayo, Michadl H. Arnold, Walter S. Scott,
Don Stark, Gordon T. Hamachi.

WRL Research Report 90/7, September 1990.

“‘Pool Boiling Enhancement Techniques for Water at
Low Pressure.”’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Research Report 90/9, December 1990.

““Writing Fast X Servers for Dumb Color Frame Buf-
fers””

Joel McCormack.

WRL Research Report 91/1, February 1991.

““A Simulation Based Study of TLB Performance.”’

J. Bradley Chen, Anita Borg, Norman P. Jouppi.

WRL Research Report 91/2, November 1991.

“*Analysis of Power Supply Networks in VLS| Cir-
cuits.”’

Don Stark.

WRL Research Report 91/3, April 1991.

“*TurboChannel T1 Adapter.”’
David Boggs.
WRL Research Report 91/4, April 1991.

“*Procedure Merging with Instruction Caches.”’
Scott McFarling.
WRL Research Report 91/5, March 1991.

“*Don’'t Fidget with Widgets, Draw!.”’
Joel Bartlett.
WRL Research Report 91/6, May 1991.

“*Pool Boiling on Small Heat Dissipating Elementsin
Water at Subatmospheric Pressure.”’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Research Report 91/7, June 1991.

““Incremental, Generational Mostly-Copying Gar-
bage Collection in Uncooperative Environ-
ments.”’

G. May Yip.

WRL Research Report 91/8, June 1991.

““Interleaved Fin Therma Connectors for Multichip
Modules.”

William R. Hamburgen.

WRL Research Report 91/9, August 1991.

‘*Experience with a Software-defined Machine Ar-
chitecture.”

David W. Wall.

WRL Research Report 91/10, August 1991.

““‘Network Locality at the Scale of Processes.”’
Jeffrey C. Mogul.
WRL Research Report 91/11, November 1991.

‘* Cache Write Policies and Performance.”
Norman P. Jouppi.
WRL Research Report 91/12, December 1991.

“*Packaging a 150 W Bipolar ECL Microprocessor.”’
William R. Hamburgen, John S. Fitch.
WRL Research Report 92/1, March 1992.

“*Observing TCP Dynamicsin Real Networks.””’
Jeffrey C. Mogul.
WRL Research Report 92/2, April 1992.

‘*Systems for Late Code Modification.”’
David W. Wall.
WRL Research Report 92/3, May 1992.

‘“‘Piecewise Linear Models for Switch-Level Simula-
tion.”

Russell Kao.

WRL Research Report 92/5, September 1992.

“*A Practical System for Intermodule Code Optimiza-
tionat Link-Time."”

Amitabh Srivastava and David W. Wall.

WRL Research Report 92/6, December 1992.

““*A Smart Frame Buffer.””
Joel McCormack & Bob McNamara.
WRL Research Report 93/1, January 1993.

‘“*Recovery in Spritely NFS."”
Jeffrey C. Mogul.
WRL Research Report 93/2, June 1993.

“*Tradeoffsin Two-Level On-Chip Caching.”’
Norman P. Jouppi & Steven J.E. Wilton.
WRL Research Report 93/3, October 1993.

““Unreachable Procedures in Object-oriented
Programing.”’

Amitabh Srivastava.

WRL Research Report 93/4, August 1993.

“‘Limits of Instruction-Level Paralelism.’”’
David W. Wall.
WRL Research Report 93/6, November 1993.

““FHuoroelastomer Pressure Pad Design for
Microelectronic Applications.”’

Alberto Makino, William R. Hamburgen, John
S. Fitch.

WRL Research Report 93/7, November 1993.

WRL Technical Notes

““TCP/IP PrintServer: Print Server Protocol.”’
Brian K. Reid and Christopher A. Kent.
WRL Technical Note TN-4, September 1988.

“TCP/IP PrintServer: Server Architecture and Im-
plementation.”’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

“*Smart Code, Stupid Memory: A Fast X Server for a
Dumb Color Frame Buffer.”

Joel McCormack.

WRL Technical Note TN-9, September 1989.

““Why Aren't Operating Systems Getting Faster As
Fast As Hardware?”’

John Qusterhout.

WRL Technical Note TN-11, October 1989.

“Mostly-Copying Garbage Collection Picks Up
Generations and C++."”

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

““The Effect of Context Switches on Cache Perfor-
mance.”’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

““MTOOL: A Method For Detecting Memory Bot-
tlenecks.”

Aaron Goldberg and John Hennessy.

WRL Technical Note TN-17, December 1990.

68

“‘Predicting Program Behavior Using Rea or Es
timated Profiles.”’

David W. Wall.

WRL Technical Note TN-18, December 1990.

“* Cache Replacement with Dynamic Exclusion’’
Scott McFarling.
WRL Technical Note TN-22, November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-

sures’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.

“*A Comparison of Acoustic and Infrared Inspection
Techniques for Die Attach’’

John S. Fitch.

WRL Technical Note TN-24, January 1992.

““TurboChannel Versatec Adapter’’
David Boggs.
WRL Technical Note TN-26, January 1992.

* A Recovery Protocol For Spritely NFS”
Jeffrey C. Mogul.
WRL Technical Note TN-27, April 1992.

‘*Electrical Evaluation Of The BIPS-0 Package’’
Patrick D. Boyle.
WRL Technical Note TN-29, July 1992.

“‘Transparent Controls for Interactive Graphics'’
Joel F. Bartlett.
WRL Technical Note TN-30, July 1992

‘“‘Design Toolsfor BIPS-0'’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

“*Link-Time Optimization of Address Calculation on
a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.

WRL Technical Note TN-35, June 1993.

‘*Combining Branch Predictors'”’
Scott McFarling.
WRL Technical Note TN-36, June 1993.

“*Boolean Matching for Full-Custom ECL Gates”
Robert N. Mayo and Herve Touati.
WRL Technical Note TN-37, June 1993.

69

