
A U G U S T 1 9 9 3

WRL
Research Report 93/4

Unreachable Procedures
in Object-oriented
Programming

Amitabh Srivastava

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There two other research laboratories located in Palo Alto, the Network Systems
Laboratory (NSL) and the Systems Research Center (SRC). Other Digital research groups
are located in Paris (PRL) and in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Unreachable Procedures
in Object-oriented Programing

Amitabh Srivastava

August 1993

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

Unreachable procedures are procedures that can never be invoked. Their
existence may adversely affect the performance of a program. Unfor-
tunately, their detection requires the entire program to be present. Using a
link-time code modification system, we analyze large linked program
modules of C++, C and Fortran. We find that C++ programs using object-
oriented programming style contain a large fraction of unreachable proce-
dure code. In contrast, C and Fortran programs have a low and essentially
constant fraction of unreachable code. In this paper, we present our analysis
of C++, C and Fortran programs, and discuss how object-oriented program-
ming style generates unreachable procedures.

This paper will appear in the ACM LOPLAS Vol 1, #4.. It replaces Technical
Note TN-21, an earlier version of the same material.

i

1 Introduction

Unreachable procedures unnecessarily bloat an executable, making it require more disk space and

decreasing its locality, which may affect its cache and paging behavior. However, programmers

rarely write procedures with the intention of never using them. One does not expect to find many

such procedures in C [6] and Fortran [1] programs, but if the programming style emphasizes

modeling objects and defining behavior rather than writing procedures when needed, the program

may contain unreachable procedures, as all the behavior patterns may not be used. Section 2 of

this paper discusses how object-oriented style can generate unreachable procedures.

Object-oriented programming systems like Flavors [14], LOOPS [3], SCOOPS [10, 13] are

interactive systems built around Lisp [9] and Scheme [8] with dynamic inheritance. A change

made to classes in these systems is propagated throughout the inheritance structure; thus, at any

time methods and functions can be added to the system. In this environment, the notion of

unreachable procedures does not make sense.

This paper is concerned instead with languages like C++ [5, 12], C, and Fortran, which are

usually statically linked. A program build usually ends with a link phase in which separately-

compiled files are combined together into a single executable. During the link phase all procedures

in an object module are included if any of them is referenced. To minimize unreachable proce-

dures, library designers have traditionally split files into many smaller files each containing few

procedures. Splitting a file is not always possible, as it destroys the organizational structure of

programs and is not a suitable solution for programs written in object-oriented style. Section 5

discusses these issues.

Dead code elimination [2] is a standard compile-time optimization that eliminates useless

code in the program: code that is never reached or code that computes a value that is never

used in the program. Unreachable procedures are also dead code. Unfortunately, their detection

requires the entire program to be present. Compilers cannot determine if a global procedure is

unreachable, since most compilers process a single file at a time, and global procedures have

scope larger than a file. Unreachable procedures must be marked at link-time when the whole

program is available.

We chose C++, C, and Fortran as widely used statically linked languages. C++ provides

common object-oriented features, and C++ programs using the object-oriented programming style

are available. Many C and Fortran programs that do not use the object-oriented programming

style are available in public domain. Since C++ evolved from C, they share the same linking and

loading mechanisms and their comparison is of interest.

1

In this paper, we discuss how object-oriented programming style can generate unreachable

procedures and describe the method for their detection. We present the results of our analysis

of C++, C, and Fortran programs by our link-time code modification system OM[11]. We also

argue that library splitting is not a desirable solution.

2 Unreachable Procedures — Why write them?

Three important sources of unreachable procedures are object-oriented programmingstyle, library

structure, and debugging methodology.

2.1 Object-oriented Programming

In object-oriented programming the structure of a program parallels that of the system being

modeled. The emphasis is on the properties and behavior of objects rather than internal imple-

mentation details. Some aspects of this style can easily produce unreachable procedures.

Class Design

The system being modeled consists of various entities that interact with one other. A class in

the program represents an entity in the system. A class definition specifies the behavior of its

objects; that is, how they interact with other objects and how they can be queried and modified.

The object-oriented style focuses on an object’s properties and behavior. This makes programs

easier to understand, modify, and maintain. The class designer keeps the internal details local to

the class, and provides interface routines for the rest of the system. Thus, all possible interfaces

and manipulations for the class are defined. However, other objects may use only a few of the

defined interfaces. The unused interface routines are unreachable procedures.

Consider an example of a class definition modeling a queue. The internal data structure is

kept local to the class while external interfaces addQueue, getQueue, deleteQueue, and

printQueue are defined. If the internal representation is changed, only the class QUEUE needs

to be modified; the change should not be visible to rest of the program. If the program uses only

getQueue and putQueue, then deleteQueue and printQueue will be unreachable.

2

class QUEUEf
private:

int *queueArr;
public:

int getQueue(); // get next element from queue
void putQueue(int); // add element to queue
void deleteQueue(); // delete element from queue
void printQueue(); // print elements in queue

g;

Inheritance

A powerful mechanism of object-oriented programming is inheritance. Higher levels of abstrac-

tions are built through inheritance. Specifying large systems through an inheritance structure

of classes results in a modular design and avoids specifying redundant information. A derived

class is defined by inheriting a base class, adding and redefining class variables and procedures.

The derived class uses the information available in the base class. A program might not use

procedures that are hidden in the inheriting process. The longer the inheritance chain, the higher

is the probability of producing hidden unreachable procedures.

class PERSONf class PILOT : public PERSONf
public: public:

char *name; void printInfo();
void printName(); g;
void printInfo();

g;

The class PILOT inherits class PERSON and redefines the methodprintInfo. It is possible

that printInfo in PERSON is not used in the program.

Virtual Functions

Virtual functions permit polymorphism; they are used to create the most general definition of

a certain concept in a base class. Derived classes inheriting this base class may refine this

definition. Depending on the type of object, the correct definition of the concept is invoked. As

with inheritance, the original definitions in the base class might not be used.

3

2.2 Design of Libraries

In design of system libraries for languages like C and Fortran, commonly used procedures are

defined for certain fundamental data types such as strings and integers. For example, the string

library includes procedures for copying, comparing and searching strings. Similar to defining

a class interface in object-oriented programming, libraries can generate unreachable procedures

if few of the defined operations are used. Library designers have used the trick of splitting

packages into micro-files to minimize unreachable code. Section 5 discusses the issues in detail,

and explains why splitting is not an acceptable solution.

2.3 Debugging

Program designers often write code that is useful for them in program development. The debug-

ging routines print intermediate information during program execution. These routines may also

be invoked when the program has paused under debugger control because of a breakpoint. In a

released program, debugging routines are never called and thus are unreachable.

4

3 Detection of Unreachable Procedures

We looked for unreachable procedures in C++, C, and Fortran programs, using our link-time code

modification system OM [11]. OM analyzes a complete program in the form of a collection of

object files and libraries. It can summarize, optimize, or instrument the program based on this

analysis.

Unreachable procedures are detected by building a directed call graph. Nodes in the call graph

are procedures; edges are statically present procedure calls. We construct the set ADDRPROCS

that contains all procedures whose addresses are taken. Procedures in ADDRPROCS might be

reached dynamically via indirect calls, which are not present in a static call graph. So we build

the set ROOTS that contains the start procedure and the procedures in ADDRPROCS. Using the

call graph, a standard algorithm finds the procedures reachable from the set ROOTS; the rest are

unreachable. This algorithm is conservative and uses only the static information, it cannot detect

procedures that are dynamically unreachable.

Virtual function call in C++ is a dynamic invocation. The algorithm discussed above marks

all virtual functions reachable1 even though some of them may be dynamically unreachable.

However, if we understand the way virtual functions are constructed, we can determine whether

the virtual functions of a class, whose objects are never constructed, are unreachable.

We refine our algorithm in the following way to detect unreachable virtual functions of a class

that is never instantiated. We do not include a virtual function as a member of ADDRPROCS2,

and to compensate for this we add edges to the call graph from the constructor of a class to each

virtual function of the class that is ever referenced. Thus we pretend that virtual functions are

invoked from their constructors. As before, we build the set ROOTS from the start procedure and

the set ADDRPROCS. Using the modified call graph, the standard algorithm finds the procedures

reachable from the set ROOTS; the rest are unreachable.

1Implementation of virtual functions requires their addresses to be stored in a table which the constructor stores
in the object. The algorithm adds all virtual functions to ADDRPROCS.

2We ignore the fact that the address of a virtual function appears in a table, however, if the address of a virtual
function is explicitly taken it will be added to ADDRPROCS.

5

program description language
bisim transistor-level simulator C++
bitv bipolar timing verifier C++
dclock scalable digital clock C++
drip vlsi interpreter C++
iclass class browser C++
layout vlsi layout program C++
lsys generate complex models C++
usf ultra-fast simulator C++
espresso set operation benchmark C
eqntott truth table generator C
li lisp interpreter C
gcc1 gnu C compiler C
gdb debugger C
doduc hydrocode simulation Fortran
fpppp quantum chemistry Fortran
spice circuit simulation Fortran

Figure 1: Program descriptions

4 Code Analysis of Programs

Selecting Programs

For measuring unreachable code, we chose programs that were large and were written for serious

applications. Small programs often give misleading results, generally a larger proportion of

unreachable code. We selected C and Fortran programs from the SPEC suite, two graphical C++

programs from the Interviews suite, and five computational C++ programs that are CAD/CAM

tools in use at WRL. Program descriptions are given in Figure 1.

Programs were compiled and linked on a DECStation3 running under Ultrix3 using the AT&T

C++ translator, the DEC C++ compiler, and host C and Fortran compilers. As system libraries

may be dynamically loaded, we measure the unreachable code in the programs both with and

without system libraries linked in. The unreachable code percentage is the quotient of the sizes

of the unreachable procedures and the total size of all procedures.

3Ultrix and DECStation are trademarks of Digital Equipment Corporation

6

 C++ programs
 C and Fortran programs

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|

 Unreachable Code (%)

bisim

bitv

dclock

drip

iclass

layout

lsys

usf

espress

eqntott

li

gcc1

gdb

doduc

fpppp

spice

Figure 2: Unreachable Code in User’s Program

Programs Without System Libraries

We first measure the unreachable code in user programs without C, Fortran, and C++ system

libraries. Figure 2 shows the results. The C and Fortran programs have 0-5% unreachable code.

Their programming style involves writing a procedure only if it is needed. C++ programs using

object-oriented programming style have up to 26% unreachable code.

7

 C++ programs
 C and Fortran programs

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|

 Unreachable Code (%)

bisim

bitv

dclock

drip

iclass

layout

lsys

usf

espress

eqntott

li

gcc1

gdb

doduc

fpppp

spice

Figure 3: Unreachable Code with Total Procedure Code

Programs With System Libraries

We study the effects of system libraries by measuring the unreachable code in programs with

C++, C and Fortran system libraries linked in. Figure 3 presents the fraction of unreachable code in

the same format as Figure 2, while Figure 4 presents fraction of unreachable code as a function of

the total amount of code in the programs. The graph in Figure 4 highlights the difference between

C++ and C/Fortran programs. Unreachable code in C++ programs is consistently higher than

C and Fortran programs at all values of total code. The unreachable code proportion decreases

slightly at large code sizes in C and Fortran programs while it increases in C++ programs.

8

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|0

|6

|12

|18
|24

|30

|36

|42

|48

 Total Code (KB)

 U
nr

ea
ch

ab
le

 C
od

e(
%

)

bi
tvic
la

ss

la
yo

ut

dc
lo

ck

bi
si

mus
fdr

ip

ls
ys

gd
b

gc
c1sp

ic
e

do
du

c
es

pr
es

so
fp

pp
p

lieq
nt

ot
t

� � �
�

�
�

�
�

Figure 4: Unreachable Code with Total Procedure Code

9

Unreachable Procedure Analysis

We further analyze the unreachable procedures that we found in programs by dividing the un-

reachable procedures into two groups. The first group consists of unreachable procedures that are

never called; that is, unreachable procedures that have no predecessors. The other group consists

of unreachable procedures that have predecessors but for which no predecessor is reachable from

the program.

The two groups are of interest because unreachable procedures with no predecessors can

be easily marked with a simple algorithm as they are never referenced, while detection of

unreachable procedures with predecessors requires the algorithm outlined in Section 3. The

fraction of unreachable procedures that have no predecessors ranges in C++ programs from 45%

to 82% with an average of 64%, and in C and Fortran program from 32% to 82% with an

average of 57%. As there are substantial number of unreachable procedures with predecessors,

the algorithm discussed in Section 3 should be used.

5 Libraries — Is file splitting the answer?

A library is a collection of object modules; each object module contains one or more procedures.

During linking, if a procedure in an object module is referenced, the rest of the procedures in that

object module are also included. The traditional solution is to split the file into smaller files, each

containing a single procedure.

Splitting library files prevents unnecessary library routines from tagging along with necessary

ones. But unreachable user routines will still cause unnecessary library routines to be included,

which in turn may pull in still more.

Besides being inconvenient, splitting a file may not always be possible. For example, a

file may contain two procedures sharing global but unexported variables or procedures (static

variables and procedures in C). If such procedures are split into two files, the shared variables

and procedures would have to be exported to the whole program.

In C and Fortran this problem is usually limited to system libraries. However, any system

designed in object-oriented style is generally written like a library. The system designer has two

options, either split the files or structure the program as needed and risk having large amounts

of unreachable code. For example, the libraries in the X Window system have been carefully

structured to minimize procedures per file. Various schemes for managing C++ libraries [4]

have been suggested. Most involve writing one procedure per file and present unnecessary

10

complications for the library implementor.

The Eiffel [7] compiler from Interactive Software Engineering also attempts to minimize

unreachable procedures. Eiffel code is first converted to an intermediate form and then compiled

to C. The final executable is generated by compiling the equivalent C and linking in the system

libraries and code from other languages present in object form. The compiler can remove

unreachable procedures in Eiffel code by compiling all Eiffel code to its intermediate form and

generating C code only for those routines that may be needed, but cannot remove unreachable

procedures in system libraries and routines from other languages that are present in object form

and are linked in by the system linker in a later phase.

The correct solution, in our opinion, is to have a link-time option to process the program and

remove all unreachable procedures. Since the languages we are concerned with usually end with

a link phase, the whole program including system libraries and modules from other languages are

present in this phase in the same object module format. The link-time option allows programmers

to keep structure in their programs without incurring any penalty. When programming in a higher

level of abstraction one should not have to worry about low-level details or be forced to modify

the structure of programs to suit them.

6 Conclusion

Object-oriented programming style produces substantially more unreachable procedure code than

other programming styles. Unfortunately, most existing systems do not remove unreachable code

at link-time. This is historically understandable as we found only 0-5% unreachable code in C

and Fortran. In contrast, our analysis also found up to 26% unreachable code in C++ programs.

As C++ enables the easy design of large applications, this seems more than enough to have

noticeable effects on disk utilization and program locality.

Acknowledgment

I had many discussions with David Wall. I am grateful to him for his suggestions and perceptive

comments. Shell Simpson provided me with Interviews built with DEC C++. Jeremy Dion, Mary

Jo Doherty, Ramsey Haddad, Richard Swan, and David Wall gave comments on the earlier drafts

of the paper. I thank them all for their valuable help.

11

References

[1] ANSI Standard Fortran, American National Standard Institute, NewYork, 1966.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers, Principles, Techniques

and Tools, Addison-Wesley, 1988.

[3] D.G. Bobrow and M. J. Stefik, The LOOPS Manual, Xerox Corporation, 1983.

[4] James Coggins and Gregory Bollella, Managing C++ Libraries, ACM SIGPLAN

Notices, June 1989.

[5] Margaret Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-

Wesley, 1990.

[6] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice

Hall Software Series, 1988.

[7] Bertrand Meyer, Eiffel: The Language, Prentice Hall, 1992.

[8] Jonathan Rees and William Clinger (Editors),Revised3 Report on Algorithmic Language

Scheme, SIGPLAN Notices 21(12):37-39, December, 1986.

[9] Guy L. Steele, Common Lisp : The Language, Digital Press, 1984.

[10] Amitabh Srivastava, SCOOPS: Scheme Object-oriented Programming System, Texas

Instruments Report CSL-23, 1985.

[11] Amitabh Srivastava and David W. Wall, A Practical System for Intermodule Code

Optimization at Link-Time, Journal of Programming Language, vol 1, March 1993, pp

1-18. Also available as WRL Research Report 92/6, December 1992.

[12] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1991.

[13] Texas Instruments, TI Scheme Language Reference Manual, Texas Instruments 1985.

[14] D. Weinreb, D. Moon and R. Stallman, Lisp Machine Manual, MIT 1983.

12

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

13

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’‘‘Spritely NFS: Implementation and Performance of
Jeffrey Y.F. Tang and J. Leon Yang.Cache-Consistency Protocols.’’
WRL Research Report 90/1, January 1990.V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.
‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’‘‘Available Instruction-Level Parallelism for Super-
Tracy Larrabee.scalar and Superpipelined Machines.’’
WRL Research Report 90/2, February 1990.Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.
‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.‘‘A Unified Vector/Scalar Floating-Point Architec-
WRL Research Report 90/3, March 1990.ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David
‘‘Virtual Memory vs. The File System.’’W. Wall.
Michael N. Nelson.WRL Research Report 89/8, July 1989.
WRL Research Report 90/4, March 1990.

‘‘Architectural and Organizational Tradeoffs in the
‘‘Efficient Use of Workstations for Passive Monitor-Design of the MultiTitan CPU.’’

ing of Local Area Networks.’’Norman P. Jouppi.
Jeffrey C. Mogul.WRL Research Report 89/9, July 1989.
WRL Research Report 90/5, July 1990.

‘‘Integration and Packaging Plateaus of Processor
‘‘A One-Dimensional Thermal Model for the VAXPerformance.’’

9000 Multi Chip Units.’’Norman P. Jouppi.
John S. Fitch.WRL Research Report 89/10, July 1989.
WRL Research Report 90/6, July 1990.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
‘‘1990 DECWRL/Livermore Magic Release.’’sor with High Ratio of Sustained to Peak Perfor-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,mance.’’

Don Stark, Gordon T. Hamachi.Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 90/7, September 1990.WRL Research Report 89/11, July 1989.

‘‘Pool Boiling Enhancement Techniques for Water at‘‘The Distribution of Instruction-Level and Machine
Low Pressure.’’Parallelism and Its Effect on Performance.’’

Wade R. McGillis, John S. Fitch, WilliamNorman P. Jouppi.
R. Hamburgen, Van P. Carey.WRL Research Report 89/13, July 1989.

WRL Research Report 90/9, December 1990.

‘‘Long Address Traces from RISC Machines:
‘‘Writing Fast X Servers for Dumb Color Frame Buf-Generation and Analysis.’’

fers.’’Anita Borg, R.E.Kessler, Georgia Lazana, and David
Joel McCormack.W. Wall.
WRL Research Report 91/1, February 1991.WRL Research Report 89/14, September 1989.

14

‘‘A Simulation Based Study of TLB Performance.’’ ‘‘Cache Write Policies and Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi. Norman P. Jouppi.

WRL Research Report 91/2, November 1991. WRL Research Report 91/12, December 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’cuits.’’
William R. Hamburgen, John S. Fitch.Don Stark.
WRL Research Report 92/1, March 1992.WRL Research Report 91/3, April 1991.

‘‘Observing TCP Dynamics in Real Networks.’’‘‘TurboChannel T1 Adapter.’’
Jeffrey C. Mogul.David Boggs.
WRL Research Report 92/2, April 1992.WRL Research Report 91/4, April 1991.

‘‘Systems for Late Code Modification.’’‘‘Procedure Merging with Instruction Caches.’’
David W. Wall.Scott McFarling.
WRL Research Report 92/3, May 1992.WRL Research Report 91/5, March 1991.

‘‘Piecewise Linear Models for Switch-Level Simula-‘‘Don’t Fidget with Widgets, Draw!.’’
tion.’’Joel Bartlett.

Russell Kao.WRL Research Report 91/6, May 1991.
WRL Research Report 92/5, September 1992.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William ‘‘A Practical System for Intermodule Code Optimiza-
R. Hamburgen, Van P. Carey. tion at Link-Time.’’

WRL Research Report 91/7, June 1991. Amitabh Srivastava and David W. Wall.

WRL Research Report 92/6, December 1992.
‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ- ‘‘A Smart Frame Buffer.’’
ments.’’ Joel McCormack & Bob McNamara.

G. May Yip. WRL Research Report 93/1, January 1993.
WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
‘‘Interleaved Fin Thermal Connectors for Multichip Jeffrey C. Mogul.

Modules.’’ WRL Research Report 93/2, June 1993.
William R. Hamburgen.

WRL Research Report 91/9, August 1991. ‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.
‘‘Experience with a Software-defined Machine Ar- WRL Research Report 93/3, October 1993.

chitecture.’’

David W. Wall. ‘‘Unreachable Procedures in Object-oriented
WRL Research Report 91/10, August 1991. Programing.’’

Amitabh Srivastava.
‘‘Network Locality at the Scale of Processes.’’ WRL Research Report 93/4, August 1993.
Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991. ‘‘Limits of Instruction-Level Parallelism.’’
David W. Wall.

WRL Research Report 93/6, November 1993.

15

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Predicting Program Behavior Using Real or Es-

Brian K. Reid and Christopher A. Kent. timated Profiles.’’

WRL Technical Note TN-4, September 1988. David W. Wall.

WRL Technical Note TN-18, December 1990.
‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’ ‘‘Cache Replacement with Dynamic Exclusion’’

Christopher A. Kent. Scott McFarling.

WRL Technical Note TN-7, November 1988. WRL Technical Note TN-22, November 1991.

‘‘Smart Code, Stupid Memory: A Fast X Server for a ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Dumb Color Frame Buffer.’’ sures’’

Joel McCormack. Wade R. McGillis, John S. Fitch, William

WRL Technical Note TN-9, September 1989. R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Comparison of Acoustic and Infrared Inspection

John Ousterhout. Techniques for Die Attach’’

WRL Technical Note TN-11, October 1989. John S. Fitch.

WRL Technical Note TN-24, January 1992.
‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’ ‘‘TurboChannel Versatec Adapter’’

Joel F. Bartlett. David Boggs.

WRL Technical Note TN-12, October 1989. WRL Technical Note TN-26, January 1992.

‘‘The Effect of Context Switches on Cache Perfor- ‘‘A Recovery Protocol For Spritely NFS’’

mance.’’ Jeffrey C. Mogul.

Jeffrey C. Mogul and Anita Borg. WRL Technical Note TN-27, April 1992.
WRL Technical Note TN-16, December 1990.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

‘‘MTOOL: A Method For Detecting Memory Bot- Patrick D. Boyle.

tlenecks.’’ WRL Technical Note TN-29, July 1992.
Aaron Goldberg and John Hennessy.

‘‘Transparent Controls for Interactive Graphics’’WRL Technical Note TN-17, December 1990.
Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

16

‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.

WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’

Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.

17

