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Abstract

Using a RISC processor to drive a simple frame buffer yields good 2D
color graphics performance.  But processor, memory, and bus architectures
can prevent processors from saturating video RAM bandwidth.  The smart
frame buffer is a small cheap gate array that makes full memory bandwidth
available to the CPU by expanding 32 data bits into operations upon 32
pixels; pixels can be 8, 16, or 32 bits deep.  We avoid the cost and complexity
of typical graphics accelerators by leaving high-level control to the CPU, yet
achieve comparable performance. This paper describes the architecture of
the smart frame buffer chip, sketches several software algorithms for com-
mon X11 graphics operations, and compares performance against other
popular graphics hardware.
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1. Introduction
Cheap memory made RISC processors viable. When memory was expensive, processors min-

imized code size by including complex instruction decoding and operand fetch logic. As large
caches became affordable, this complexity became a performance liability.  Implementation
issues like pipelining, memory latency, and multiple issue now drive instruction set design.

In turn, fast RISC processors have made simple graphics accelerators viable. When proces-
sors were slow, high-performance graphics systems minimized processor intervention by includ-
ing complex logic to parse graphics commands and to paint different shapes in a variety of pat-
terns. For 2D graphics, at least, this complexity has become a performance liability.  We believe
that implementation issues like pipelining, memory organization and latency, and the exploita-
tion of special video RAM functionality should now drive graphics accelerator design.

A dumb frame buffer is the ultimate in simplicity: graphics memory looks just like main
memory. Reference [6] describes how we used this approach on early Digital RISC workstations
to get cheap graphics with high performance.  But processor, memory, and bus architectures
limit dumb frame buffer performance: many processors implement byte writes as painfully slow
read/modify/writes, and even fast I/O busses provide a small fraction of the bandwidth available
from video RAMs.  To fully exploit VRAM technology under these constraints requires special-
ized graphics hardware.

The smart frame buffer is a small cheap gate array that locally expands 32 data bits into opera-
tions upon 32 pixels; pixels can be 8, 16 or 32 bits deep.  This expansion enables us to provide

1information for 250 megapixels/second via the TURBOchannel bus. Different modes of opera-
tion provide support for filling solid areas, stippling areas, copying areas, and drawing solid and
dashed lines.  Complex operations, such as computing the shape of an object and the pattern to
paint within it, are left to the CPU.

Limiting graphics assistance to a few simple commands reduces chip cost, reduces design
time, increases reliability, allows designers to focus upon making VRAM bandwidth available to
the CPU, and allows graphics performance to improve in tandem with CPU performance.

1TURBOchannel, DECstation 5000, AXP, and Alpha AXP are trademarks of Digital Equipment Corporation.
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A SMART FRAME BUFFER

The smart frame buffer design proved all of these advantages.  Chip cost is less than the exter-
nal glue logic it obviates.  Initial design to power-up took 9 months. The chip contained two
bugs, easily bypassed in software, and then fixed on the second pass.  The full video RAM
bandwidth is available to the CPU for most operations.  And performance on many graphics

2benchmarks has improved dramatically from the 25 MHz MIPS-based DECstation 5000/200 to
the 150 MHz Alpha-based DEC 3000/500 AXP (Flamingo).  The smart frame buffer sets an
aggressive new level of performance for ‘‘low-end graphics,’’ and belies the common wisdom
that graphics systems need to be complex to be competitive.

This paper describes the architecture of the smart frame buffer chip, sketches software
3strategies for graphics operations common in the X Window System , and compares perfor-

mance against other popular graphics hardware.  Finally, we summarize the reasons why such
simple hardware performs so well.

2. Design Goals and Strategies
In priority order, our design goals were time to market, cost, and performance.  Performance

improvements could not significantly impact an aggressive schedule, nor significantly increase
cost over a dumb frame buffer system.  We wanted to maximize the performance of our cheapest
graphics systems.

To minimize design time, we kept things simple.  All logic had to result in concrete perfor-
mance improvements. We kept functionality as general as possible to allow extensive sharing of
common logic among the different hardware modes, and to allow software to use these modes
across a variety of painting algorithms.

To keep board manufacturing costs at or below that of a dumb frame buffer system, the gate
array cost had to be offset by the elimination of random glue logic.  The cheapest gate array
available had too few pins for a 64-bit data path to video memory, so we settled for the next
cheapest, with 184 I/O pins and 54,000 gates.  We used 22,000 gates, which the manufacturer’s
router could barely handle.  We had enough pins and gates to implement the capabilities we
really wanted, and no more. These constraints provided us with a technical excuse for avoiding
additional capabilities that, while desirable, would have significantly lengthened the design time.

To get high performance, we carefully divided responsibility between the sfb chip and the
CPU, so that each chip gets to do what it is best at. The gate array extracts the maximum pos-
sible bandwidth from the video RAMs; the CPU implements painting algorithms.

Although many graphics accelerators include extensive control logic, we’d rather exploit the
capabilities of CPUs than compete with them.  The Alpha AXP CPU in a Flamingo workstation
ticks at 6.7 nsec----nearly six times faster than our 40 nsec gate array clock----and faster CPUs are
on the horizon.  And by improving software painting algorithms, we can increase performance
by without redesigning the graphics hardware.

2MIPS, R3000, and R4000 are trademarks of MIPS Technologies, Inc.

3X Window System is a trademark of the Massachussetts Institute of Technology.
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We use three strategies to maximize bandwidth and avoid reads and read/modify/write opera-
tions over the TURBOchannel.  The sfb chip is closely coupled to video memory with a wide
data path, and implements semantics for planemasking and the Boolean combination of source
and destination pixels.  The sfb allows the processor to use 32-bit writes to word-aligned ad-
dresses, and so avoid partial word writes that might not be supported by the CPU’s instruction
set. Finally, all sfb operations complete within a bus timeout, so the processor never needs to
check for overflow of the chip’s input buffer.

3. System Architecture and Interfaces
The primary external control functions of the smart frame buffer chip are to interface to the

TURBOchannel I/O bus, to interface to the random-access and serial ports of the video RAM, to
generate timing signals for the monitor, and to convert pixels to analog RGB composite video

4via a Brooktree RAMDAC. Figure 1 shows a block diagram of a complete graphics system
built around the sfb.

CPU SFB

 32 
bits

 64
bits

Video RAM

 32 
bits

RAMDAC

Control signals

Monitor
RGB

Figure 1: Block diagram of primary sfb chip interfaces

The processor accesses the smart frame buffer via the TURBOchannel, a 32-bit shared
data/address bus clocked at 40 nsec (25 MHz). Non-DMA writes take at least 120 nsec per
32-bit word, for a maximum transfer rate of 33 megabytes/second.  Reads take at least 160 nsec,
for a maximum rate of 25 megabytes/second.  The sfb chip is a write-mostly device, and can
accept 32 bits of data in the minimum 120 nsec bus write cycle.  The processor reads data from
the chip only to save sfb state when writing console messages, and to copy pixels from the
screen into main memory.  The sfb does not support DMA operations.

To increase bandwidth, the sfb uses a 64-bit interface to video RAM.  As long as accesses stay
within a 4096-pixel page, the chip can read or write 64 bits of data in 80 nsec.  Access to a new
page requires an extra 160 nsec, for a total of 240 nsec.  Read/modify/write operations like xor
require an additional 120 nsec, for a total of 200 nsec for accesses to the same page, and 360
nsec for accesses to a new page.

Video RAMs have a separate output port, fed by one of two large internal shift registers, for
sending pixel data to the screen.  Each half of a 4096-pixel page can be loaded into one of the
shift registers in a few hundred nanoseconds by using a special memory transaction.  When there
is not enough data left in the shift registers to display the next scanline, the sfb loads one of the
shift registers with the next 2048 pixels of data during horizontal blanking.  The sfb sends data
from the VRAM output port to the Brooktree RAMDAC, which converts the data to an RGB
video signal.

4Brooktree and RAMDAC are trademarks of Brooktree Corporation.
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4. Smart Frame Buffer Architecture
The smart frame buffer chip sits between the processor and video memory.  The sfb chip

operates in a 16 megabyte address space, as shown in figure 2.  Most of the address space is
devoted to frame buffer memory.  The maximum frame buffer size is 8 megabytes, for use in a
true color system with up to 1600x1280 32-bit pixels.  Since the usual frame buffer size is 2
megabytes of 8-bit pixels, and since early workstations limited TURBOchannel address space,
we alias portions of frame buffer memory to fit into smaller 4 and 8 megabyte address spaces.

Control registers0 megabytes

2 megabytes

4 megabytes

8 megabytes

Alias to bottom 2 
megabytes of frame buffer

Alias to bottom 4
megabytes of frame buffer

8 megabytes of
frame buffer

TURBOchannel ROM 

SFB registers

RAMDAC registers

0 megabytes

1 megabyte

1.75 megabytes

Figure 2: Address space of sfb chip

4.1. Dumb frame buffer mode
The sfb operates in several modes.  In the simplest mode, the sfb acts like a dumb frame

buffer. The processor can read or write a 32-bit word to any address in frame buffer memory.  If
the processor architecture supports byte or other partial word addressing, as do the MIPS R3000
and R4000, the processor can read or write any group of bytes within a 32-bit word.

4.2. Planemasking and Boolean functions
Dumb frame buffer mode and all the accelerated modes described below have hardware sup-

port for a planemask and the 16 possible Boolean functions (‘‘rasterops’’) that combine source
and destination pixels.  These operations would otherwise require read/modify/write cycles in all
but the simplest cases.

Conceptually, a planemask contains the same number of bits (or ‘‘planes’’) as a single pixel.
A 1 in the planemask allows the corresponding bit in the destination pixel to be overwritten, a 0
in the planemask leaves the corresponding destination bit unchanged.  The sfb planemask
register is 32 bits wide.  In systems with 8-bit or 16-bit pixels, software replicates the X11
planemask appropriately; the chip then duplicates the planemask to match the 64-bit VRAM
word size.  Whenever the processor loads the planemask register, or the sfb accesses a new page,
the sfb issues a special cycle to video memory to load the planemask into the VRAMs.  The
VRAMs use the loaded planemask as a write-enable bit mask on subsequent writes.
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The X protocol allows a source pixel and a destination pixel to be combined using any of the
16 possible two-operand Boolean functions.  The same graphics function applies to all bits in the
pixels. Table 1 shows the name and definition of each graphics function.

Function Definition

Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src

AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst

Nor NOT (src OR dst)
Equiv NOT (src XOR dst)
Invert NOT dst
OrReverse src OR (NOT dst)

CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand NOT (src AND dst)
Set 1

Table 1: X11 graphics functions

The sfb chip implements all 16 Boolean functions in hardware.  The sfb directly overwrites
the destination pixels when using one of the four Boolean functions that do not depend upon the
destination (Clear, Copy, CopyInverted, and Set). For the other twelve functions, the sfb
reads the destination pixels, combines them appropriately with the source pixels, then writes the
result back to video memory.  These destination-dependent Boolean operations require an ad-
ditional 120 nsec over the basic write cycle time, but this is much faster than forcing the proces-
sor to read destination data over the bus, combine it with source data using logical operations,
then write the result back over the bus.

4.3. Accelerated mode philosophy
A typical graphics accelerator accepts commands like ‘‘paint a rectangle,’’ ‘‘paint a triangle,’’

‘‘paint text,’’ and ‘‘copy a rectangle.’’  The accelerator executes a sequence of microcode for
each command.  Each microcode routine computes the location of the object in video memory
given its x and y coordinates, computes the shape of the object, clips the object to the window,
figures out what data to fill the object with, and then issues a sequence of span filling operations
to the most primitive layer of painting logic.  (A span is a contiguous sequence of pixels on one
scan line.) In many cases, the graphics accelerator chip is more complex and expensive than the
processor chip to which it is attached!

The sfb can’t even fill a span by itself.  It is ‘‘smart’’ only when compared to a dumb frame
buffer.

5
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For accelerated painting operations, the processor writes to a few sfb registers, like the
foreground and background pixels and the mode register, then writes 32-bit data words into the
frame buffer.  Each write address is aligned to an 8-byte boundary, and tells the sfb where in the
frame buffer to start painting.  The write data tells the sfb what to paint.  Each bit specifies what
happens to one pixel, so a single data word may affect as many as 32 pixels.  Different modes
cause different interpretations of the 32-bit data word.

For a small increase in complexity over a dumb frame buffer, the sfb offers a large increase in
performance by decreasing bus transactions, increasing available memory bandwidth, and free-
ing the processor from low-level painting operations.

Since the sfb maps one bit into a pixel, a system with 8-bit pixels reduces the number of bus
transactions by 8 to 16 times.  (Some operations in a dumb frame buffer require two transactions
per word, thus the factor of 16.)  This compaction in turn effectively increases the capacity of the
processor’s write buffer.

The sfb can write eight 8-bit pixels every 80 nsec.  To process a complete 32-bit data word,
the sfb normally uses four cycles, or 320 nsec. For most operations, there are no idle cycles
between 32-bit data words.  Our measured write bandwidth is 93 megabytes/second----nearly
three times the 32 megabytes/second we’ve measured over the TURBOchannel.

Finally, we get small-scale parallelism: while the sfb is processing one data word, the proces-
sor can be computing the next word.

4.4. Transparent stipple mode
Transparent stipple mode expands 32 data bits to 32 pixels, with the following semantics:

• 0 means do nothing

• 1 means use the foreground pixel as the source pixel

Figure 3 shows a portion of a transparent stipple operation.  Transparent stipple mode is used
to fill areas with a single color, to fill areas in X11’s transparent stipple mode, to paint certain
kinds of text, and to fill areas with certain tiles.

0   0   0   1   1   0   1   1

Foreground pixel

Unmodified pixel

data word

Figure 3: Transparent stipple behavior

The sfb has a 32-bit foreground register, which must be loaded before using transparent stipple
mode. Software replicates the foreground pixel to 32 bits on 8-bit and 16-bit pixel systems.

The left edge of a span may not be aligned to 8 bytes, and the width is rarely a multiple of 32
bytes. The processor uses the no-op property of 0 to deal with these ragged edges.  It zeroes as
many as 7 low-order bits of the data word it uses at the left edge of a span, and as many as 31
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high-order bits at the right edge.  To fill a span of less than 32 pixels, it zeroes the appropriate
bits at both ends of the data word.  The sfb hardware uses a priority encoder to skip over low-
order zeroes, and stops painting when only zeroes remain in the high-order bits of a word.

Some graphics chips implement transparent stipple operations using read/modify/write cycles.
The sfb avoids reads by using control logic on individual VRAM chips to disable writes to pixels
with a 0 data bit.  The theoretical peak fill rate is 8 bytes every 80 nsec, or 100
megabytes/second.

4.5. Opaque stipple mode
Opaque stipple mode expands 32 data bits to 32 pixels, with the following semantics:

• 0 means use the background pixel as the source pixel

• 1 means use the foreground pixel as the source pixel

Figure 4 shows a portion of an opaque stipple operation.  Opaque stipple mode is used to fill
areas with X11’s opaque stipple mode, to paint certain kinds of text, and to implement
CopyPlane requests.

0   0   0   1   1   0   1   1Foreground pixel

Background pixel

data word
0   1   1   1   1   1   0   0 pixel mask

Unmodified pixel

Figure 4: Opaque stipple behavior

Like the foreground register, the background register is 32 bits wide.  Both foreground and
background must be loaded before using opaque stipple mode.

To fill narrow spans, or the left and right edges of longer spans, 0 bits in the data can’t be used
as no-ops.  The sfb provides a 32-bit pixel mask register: a 1 in the mask allows the correspond-
ing pixel to be written, and a 0 prevents the pixel from being written.  To write less than 32
pixels in opaque stipple mode, the processor first writes to the pixel mask register, then writes a
data word to the frame buffer.  The pixel mask register resets to all 1’s after each use: most
algorithms paint a scanline at a time, so this saves us from writing a mask of all 1’s to paint the
middle of large spans.

Transparent and opaque stipple modes share large amounts of gate array logic. They differ
only in their use of the pixel mask register.  Opaque stipple mode uses the pattern that is already
in the pixel mask register; transparent stipple mode loads the data word into the pixel mask
register. Both modes expand 1 bits in the data word to the foreground pixel, and 0 bits to the
background pixel.  But transparent stipple mode doesn’t paint the background pixels, because the
pixel mask register contains zeroes in those positions.  The priority encoder and zero-detection
logic use whatever pattern ends up in the pixel mask register, which allows copy mode
(described below) to use this logic as well.  The theoretical peak fill rate for opaque stipples is
100 megabytes/second.
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4.6. Copy mode
When copying pixels from one area to another, the sfb cannot synthesize the source data from

background and foreground pixels, but must read source data from memory. The sfb includes a
32-byte copy buffer for temporarily holding source data.

The processor transfers pixels in groups of 32 bytes by writing a pair of 32-bit data words.
The processor first writes a data word to the address of the source pixels.  A 1 in the data word
indicates that the corresponding pixel should be read into the copy buffer, a 0 indicates that the
pixel isn’t needed.  The processor then writes a second data word, this time to the address of the
destination pixels.  A 1 in the data word indicates that the corresponding pixel in the copy buffer
should be written, a 0 indicates that the destination pixel should be left unchanged.

The sfb requires source and destination addresses to be aligned to 8 bytes, while an application
can specify copies of arbitrary lengths that start at arbitrary byte addresses.  If these byte ad-
dresses are identical in the least significant three bits, as with a source address of 0002 and a16
destination address of 1002 , the processor can deal with the ragged edges by zeroing exactly16
the same bits in the source and destination masks.  But what if the application’s source and
destination addresses are misaligned with respect to each other?  For example, the source address
might be 0001 while the destination address is 1004 . To support such unaligned copies, the16 16
sfb uses an 8-byte residue register and a shifter to assemble data from two consecutive 8-byte
source words into an 8-byte destination word.

Before the sfb stores incoming source pixels into the copy buffer, it concatenates them with
the residue register, then rotates this 16-byte result by -8 to +7 pixels.  Backward (right-to-left)
copies use rotations from -8 to -1, and forward (left-to-right) copies use rotations from 0 to 7.
After extracting the destination word from the rotated result, the sfb moves the incoming data
into the residue register, ready to be concatenated with the next 8 bytes of source data.  The
residue register maintains data between each 32-byte group of pixels, so that once an unaligned
copy is started, each pair of data words copies a full 32 bytes of data.

In the example above, there is a 3-byte difference between the alignment of the destination
address of 1004 and the source address of 0001 . The processor loads this value into the sfb’s16 16
shift amount register before copying the scanline.  As shown in figure 5, this causes the
shift/residue logic to move the source data in byte 1 up to byte 4 in the destination.

Residue register

0 1 2 3 4 5 6 7

Incoming source data

0 1 2 3 4 5 6 7

Shifter output

5 6 7 0 1 2 3 4

Figure 5: Copy residue register and rotation logic
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In the usual case, in which the source and destination addresses are on different VRAM pages,
the copy logic has a theoretical maximum bandwidth of 33 megabytes/second.

The on-chip copy buffer is available to the processor as eight 32-bit registers. To transfer data
from main memory to VRAM, the processor writes these registers, then writes a 32-bit data word
to the destination address in the frame buffer.  Conversely, to transfer data from VRAM to main
memory, the processor writes a 32-bit data word to the source address in the frame buffer, then
reads the copy buffer registers.  The residue register and shift logic are enabled in both cases.

The sfb’s copy logic illustrates the advantages of keeping graphics hardware simple.  We con-
centrated on making the underlying copy functionality complete----supporting backward copies as
efficiently as forward copies, and using the copy logic for transfers between main memory and
VRAM----rather than putting higher-level control into hardware by supporting rectangle copies.

Implementing rectangle copies in hardware is a nightmare: overlapping rectangles may require
copying from top to bottom or vice-versa, and from left to right or vice-versa, and source and
destination addresses may not be aligned to VRAM words.  In a vain attempt at simplification,
some graphics chips read source data multiple times during unaligned copies.  If the sfb took this
approach, it would read 32 bytes, then write 24 bytes, slowing unaligned copy rates by 17%.
Some chips support unaligned copies from left-to-right, but leave the backward direction to
software! And even when a complex accelerator provides full rectangle copy support, it may
have bugs----we know of one accelerator that can’t copy rectangles of width 1.  Had this bug not
been circumventable in software, another pass of the chip would have been required.

4.7. Line modes
Transparent and opaque stipple modes paint 32 pixels horizontally, and for long spans the

processor must provide the starting address of each 32-pixel chunk.  Transparent stipple and
opaque stipple line modes differ from the span modes in that the sfb traces out a line that may go
in any direction, it paints 16 pixels at a time, and it maintains the current address across 16-pixel
chunks. Figure 6 shows a portion of transparent and opaque stipple line operations.

0   0   0   1   1   0   1   1 0   0   0   1   1   0   1   1

Foreground pixel Background pixel Unmodified pixel

Transparent stipple line Opaque stipple line

Figure 6: Line stipple behavior
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The sfb computes the path of a line through frame buffer memory using Bresenham’s
algorithm [4].  The C equivalent of the hardware Bresenham step looks like:

*address = foreground;
if (e < 0) {

address += a1; e += e1;
} else {

address += a2; e -= e2;
}

To paint a line, the processor provides initial values for e (a signed 17 bit number), e1 and e2
(unsigned 16 bit numbers), a1 and a2 (signed 16-bit numbers), and the length of the line
modulo 16 (a 16-bit pixel mask specifier would have required more CPU cycles and another bus
write per line).  The three line initialization registers are shown in figure 7.

31 16  15 0

a1 e1

31 16  15 0

a2 e2

Bres1 register

Bres2 register

31 15 14 0

 e don’t care

4  3

len Bres3 register

Figure 7: Line register formats

The processor then writes a data word to the starting address of the line, aligned to four bytes.
The word contains up to 16 bits of transparent or opaque stipple line data, and the two low bits
that were masked from the true starting address in order to align it.  To paint longer lines, the
processor writes as many additional 16-bit data words as necessary to a continuation register.

At the end of a line, the sfb leaves the address register one position past the last pixel painted.
When painting lines that are connected end-to-end, this is the starting point of the next line. The
processor thus avoids a multiply to compute the new starting address of each connected line.

The sfb doesn’t use 32 bits of line data for several reasons: there wouldn’t be room for the two
low-order bits of address in the first data word, some lines would take longer than a bus timeout
to paint if the graphics function required a read/modify/write cycle, and the X11 server’s dashed
line code would have been much uglier.

The processor uses transparent stipple line mode for painting solid lines and dashed lines (al-
ternating foreground with blank space), and opaque stipple line mode for double-dashed lines
(alternating foreground and background).  Since the processor explicitly provides stipple data for
each line, dash patterns may be arbitrarily complex.

We estimate that the theoretical limit for 10-pixel connected lines is 650,000 to 700,000
lines/second.
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4.8. Support for processor idiosyncracies
Not all RISC processors are alike.  We included a couple of capabilities----one intentional, one

accidental----that avoid performance bottlenecks in the MIPS R3000 and the Alpha AXP 20164
CPU implementations.

The MIPS R4000 and Alpha AXP can map the entire frame buffer with a single special Trans-
lation Lookaside Buffer entry.  But the MIPS R3000 TLB effectively maps only 224 kbytes of
memory. This is a small fraction of the screen memory; as the server draws objects on the
screen, it often uses virtual addresses that are not mapped by the TLB. Even though the kernel
usually requires only 17 instructions to load a new TLB entry, drawing lines to the dumb frame
buffer caused enough TLB faults to significantly decreased performance.

We expected a large decrease in TLB faulting overhead using the sfb, as the processor writes
to the frame buffer once per line rather than once per pixel. Early performance simulations
proved us wrong.  While the decrease in TLB misses per line helped, we were painting lines
more quickly, and so TLB faults still occured about as frequently per second for 10-pixel lines.

When we modified the line-drawing hardware to leave the address in the right place at the end
of a line, the TLB problem mostly disappeared for connected lines as a side effect.  The new
code wrote to the frame buffer once per Polyline request, rather than once per line.

For unconnected lines, we added an address register and a ‘‘start’’ register.  Instead of writing
a data word directly to the frame buffer, the processor can first write the address to the address
register, then write the data to the start register. The TLB usually contains a page entry for the
sfb registers, so these two transactions rarely cause a TLB fault.  During performance tuning, we
found that using the address register also sped up painting of small rectangles and spans.

The Alpha AXP architecture was designed to support fast memory system interfaces.  There
are no guarantees that reads and writes will be issued in the order that they occur, or that they
will even be issued if they are redundant and can be eliminated.  This creates problems for
memory-mapped I/O devices like the sfb.  For example, if the CPU’s write buffer rearranges the
order of writes while the sfb is in copy mode, the source becomes the destination and vice-versa.

The Memory Barrier instruction separates memory transactions.  All memory transactions ex-
ecuted before the MB instruction must complete their accesses to memory before any trans-
actions executed after the MB instruction can access memory.  To keep a series of memory trans-
actions in order, the programmer must include an MB instruction between each access.

Memory Barrier semantics require it to act only as a separator between memory accesses, but
the existing Alpha chip brings the processor to a grinding halt, flushes the CPU write buffer,
signals the external memory system, and waits for a reply. On the Flamingo workstation, this
involves tens of nanoseconds, or somewhere in the neighborhood of 6 to 12 instruction cycles.

We complained, and a new instruction was added to the Alpha AXP architecture.  The
Memory Write Barrier instruction separates writes before the instruction from writes after the
instruction; reads are not affected.  The existing chip implements this instruction as if it were a
normal Memory Barrier.  Future implementations will execute Memory Write Barrier in a single
cycle by marking existing data entries in the write buffer to prevent them from being merged or
overwritten with new data; no external communication will be required.

11
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In the meantime, we exploit ‘‘don’t cares’’ in the sfb’s address decoding, which uses high-
order bits to determine that the processor is accessing a register, and low-order bits to determine
which register.  It ignores the mid-order bits, so the entire register set is aliased many times at
128-byte intervals.

The Flamingo server uses this aliasing to avoid Memory Barrier instructions.  It cycles
through eight aliased sets of registers; moving from one aliased set to the next requires two in-
structions. The aliases put enough distance between register addresses to prevent the write buff-
er from reordering or eliminating register accesses.  We later discovered that we could alias the
frame buffer in a similar way.  Register and frame buffer aliasing eliminated about 95% of the
Memory Barrier instructions previously required.

5. Smart Frame Buffer Configurability
The sfb chip can be used to implement a wide range of graphics systems.  It offers multiple

pixel depths, a cornucopia of screen resolutions and refresh rates, memory configurations from
two to eight megabytes, and can be attached to one or two screens.

5.1. Pixel depths
The smart frame buffer supports pixel depths of 8, 16, and 32 bits.  Physical pixel depth is

fixed for a given graphics board, as memory must be wired slightly differently in each case.
Some Brooktree RAMDACs support the appearance of different depths by allowing control bits
in each pixel to specify how the rest of the bits should be interpreted.

The 8 bits per pixel graphics system uses the Brooktree 459 RAMDAC, which has a 256-entry
colormap. Each entry in the colormap contains 8 bits each of red, green, and blue intensity data.

A 16 bits per pixel graphics system would use the Brooktree 463 RAMDAC, configured on a
per-pixel basis to use 4 bits each of red, green, and blue intensity data directly from the pixel, or
to use 8 bits of the pixel as an index into one of two 256-entry colormaps.  This system would
support two bits of overlay planes that are displayed ‘‘on top’’ of normal pixel data.

A 32 bits per pixel graphic system would also use the Brooktree 463.  This system could
display 8 bits each of red, blue, and green directly from the pixel, or use 8 bits of the pixel as an
index into one of two 256-entry colormaps.  This system would support 4 bits of overlay planes.

Increasing pixel depth decreases bandwidth as measured in pixels per second.  In one 80 nsec
cycle, the sfb can paint eight 8-bit pixels, four 16-bit pixels, or two 32-bit pixels.  This reduction
in bandwidth mostly affects large area fills and copies; small area, line, and text performance are
governed by other factors, and so don’t slow down in direct proportion to pixel depth.

In 16-bit and 32-bit pixel systems, the sfb may not paint a full 32 pixels for each 32-bit data
word. The sfb uses an 8-input priority encoder to skip over low-order groups of 0 bits in the
pixel mask.  But when using 32-bit pixels, a data word contains 16 groups of two bits, and
opaque and transparent stipple modes use only the bottom 16 bits of the data word.

The on-chip copy buffer holds 32 bytes of data, which is an even more severe limitation.  On
16-bit and 32-bit pixel systems, copy mode uses the bottom 16 or 8 bits of a 32-bit data word.

12
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5.2. Monitor resolutions and refresh rates
Digital sells monitors offering resolutions from 640x480 to 1280x1024, using refresh rates

from 56 Hz to 76 Hz.  We wanted to support all these monitors, and any likely new candidates,
so we made the sfb monitor timing generation logic fully programmable.

The sfb uses an external pixel dot clock to generate timing signals for the RAMDAC and
video RAMs; this clock’s frequency is specific to the monitor’s resolution and refresh rate.
Programmable clocks were noticably inferior to fixed frequency crystals in image clarity; we
suspect this was due to minor instabilities in the clock period.  We turned the disadvantage of
using a different crystal for each type of monitor into a user-friendly feature.  We use the dot
clock frequency, rather than board jumpers or switches, to automatically determine screen
resolution and refresh rate.  We support all Digital monitors and most of our competitor’s as
well, as shown in Table 2.

Typical usage Resolution Refresh rate Dot clock

VGA 640 x 480 60 Hz 25.18 MHz

VGA 640 x 480 72 Hz 32.00 MHz

SVGA 800 x 600 56 Hz 36.00 MHz

SVGA 800 x 600 72 Hz 50.35 MHz

1K VGA, ACE 1024 x 768 60 Hz 65.00 MHz

1K VGA, ACE 1024 x 768 66 Hz 66.00 MHz

1K VGA, ACE 1024 x 768 72 Hz 72.80 MHz

1K VGA, ACE 1024 x 768 72 Hz 74.37 MHz

Digital 1024 x 864 60 Hz 69.20 MHz

Sun 1152 x 900 66 Hz 92.98 MHz

Sun 1152 x 900 72 Hz 104.00 MHz

Digital 1280 x 1024 66 Hz 119.84 MHz

Digital 1280 x 1024 72 Hz 130.81 MHz

Digital internal 1600 x 1280 76 Hz 219.00 MHz

Table 2: Preprogrammed monitor resolutions and refresh rates

We can’t determine the dot clock’s frequency by counting how many times it ticks during a
known period of time----the sfb uses the TURBOchannel clock, which can have a period between
40 and 80 nsec.  Instead, the processor instructs the sfb chip to count ticks of two different dot
clocks. The standard dot clock has a known frequency (130.81 MHz on the HX board).  The
optional dot clock has an unknown frequency appropriate to the non-standard monitor.  On
power-up, the processor instructs the sfb to count the number of times each dot clock ticks
during 256 TURBOchannel cycles.  The ratio of these counts remains constant (with a small
amount of error) regardless of the TURBOchannel clock period.  The driver software uses this
ratio to determine the monitor’s resolution and refresh rate, sets up the sfb’s video timing
registers, then passes the screen width and height on to the X server.
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5.3. Memory configurations
Many graphics accelerators convert an object’s x and y coordinates to a frame buffer address.

This involves multiplying the y coordinate by the scanline stride (which may be wider than the
visible screen width).  These accelerators often restrict the stride to an easy multiplier constant
like 1024, 1280, or 2048.  Since all pixmaps must use this same stride, software must use a
complex and wasteful two-dimensional allocator.  Figure 8 shows a 1280x1024 screen with a
stride of 2048 bytes embedded within four megabytes of memory.  The two 1088x576 pixmaps
require a total of 1.2 megabytes, but they can’t both fit into the available 2.75 megabytes of
off-screen memory.

Visible screen
  (1280x1024)

  Pixmap 1
(1088x576)

  Pixmap 2
(1088x576)

Oops!

2048 pixels

2048 scanlines

Figure 8: A two-dimensional allocator wastes space

The sfb leaves computation of an object’s address to the processor, and packs screen scanlines
end-to-end in video memory regardless of screen resolution.  The sfb requires only that screen
and pixmap rows be padded to a multiple of 64 bits, which allows software to use a simple and
efficient one-dimensional memory allocator for off-screen pixmaps.

Using 256k by 4-bit parts, the minimum memory configuration requires 16 VRAM chips for a
total of 2 megabytes.  The standard 8-bit 1280x1024 screen uses 1.25 megabytes of video
memory. The remaining .75 megabyte is available for off-screen pixmaps. The sfb-based HX
graphics board has space for an additional 2 megabytes of DRAM, although this configuration is
not supported as a product.  The X server uses this memory for pixmaps; a four megabyte board
has ample memory for full-screen double-buffering applications.

A 16-bit pixel system requires 4 megabytes, or 8 megabytes for full-screen double-buffering.
A 32-bit pixel system requires 8 megabytes of memory, which is the maximum allowed, and so
full-screen double-buffering isn’t possible.

5.4. Multiple monitors
The sfb can drive two monitors simultaneously from a pair of 2-megabyte banks of VRAM.

Both monitors must have the same resolution, refresh rate, and pixel depth.  Driving two screens
with one sfb chip saves board space and manufacturing cost.  More importantly, it saves a TUR-
BOchannel slot.
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6. Software Algorithms
The sfb-specific X server code borrows heavily from the dumb frame buffer code described in

reference [6]. We use the dumb frame buffer code to paint to pixmaps that reside in main
memory, so we don’t have to limit pixmaps to off-screen video memory.  We also used this code
as a template for sfb-specific code; in many routines the only significant changes were in the
low-level span filling loops. By recycling cfb code, we took just two months to create an X11
server that exercised the sfb software simulator.

The sfb-specific server code is 16,100 lines of C and 850 lines of MIPS assembler, which
generates 116,000 bytes of object code.  This compares quite favorably to the dumb color frame
buffer code, which is 13,200 lines of C and 3,300 lines of assembler, generating 262,000 bytes of
object code. (Many of the dumb cfb files are compiled three times in order to implement all 16
Boolean graphics functions, hence the much larger object code size.)

6.1. Directory structure and parameterization
The MIT X server [2, 3] lets programmers add support for new graphics devices with minimal

impact on the rest of the server.  We modified a few cfb routines so that the sfb code could call
them, and changed some initialization code to recognize the smart frame buffer.  Otherwise, all
support for the sfb is confined to the three device-dependent X directories sfb, sfb16, and
sfb32.

In order to maintain one set of sources for all pixel depths, we parameterized as much as we
could in a few header files, and resorted to about 50 C #ifdef preprocessor statements else-
where. All source files reside in the sfb directory; the sfb16 and sfb32 directories use sym-
bolic links to the sources in sfb. The main definition file for sfb functionality, sfb.h, includes
another file sfbparams.h. This file is in turn a symbolic link to an actual parameterization
file: in sfb it points to a parameter file appropriate for 8-bit pixels, in sfb16 to a file for 16-bit
pixels, and in sfb32 to a file for 32-bit pixels.

Each actual parameterization file contains six definitions:
sfb sfb16 sfb32

#define SFBPIXELBITS 8 16 32
#define SFBSTIPPLEBITS  32 32 16
#define SFBCOPYBITS 32 16 8
#define SFBLINEBITS 16 16 16
#define SFBBUSBITS 32 32 32
#define SFBVRAMBITS 64 64 64

SFBPIXELBITS defines the number of bits per pixel. SFBSTIPPLEBITS defines the num-
ber of bits in a data word that the sfb uses in transparent and opaque stipple modes.
SFBCOPYBITS defines the number of bits in a data word that the sfb uses in copy mode.
SFBLINEBITS defines the number of bits in a data word that the sfb uses in transparent and
opaque stipple line modes. SFBBUSBITS defines the number of data bits in the TURBOchan-
nel bus.  Finally SFBVRAMBITS defines the number of bits in the sfb interface to video RAM.

The file sfb.h defines a large number of other parameters, which it derives from combina-
tions of these six parameters with CPU-dependent parameters.
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6.2. Solid area filling
The simplest operation in an accelerated mode is solid area filling; the example in figure 9

shows the basic techniques of mask generation used throughout the sfb code.  This code assumes
that the planemask and foreground color have already been loaded, that the mode has been set to
transparent stipple, and that the span has been clipped to the window boundaries.

/* Compute starting address of span within frame buffer */
p = pdstBase + y*drawableWidth + x*SFBPIXELBYTES;

/* Compute how many bytes past 8-byte alignment */
align = (int)p & SFBALIGNMASK;

/* Align starting address to 8-byte alignment */
p -= align;

/* Convert align from number of bytes to number of pixels  */
align /= SFBPIXELBYTES;

/* Add the number of alignment pixels to the total width */
width += align;

/* Compute a left mask with low 0’s where alignment was */
needed */

leftMask = SFBSTIPPLEALL1 << align;

/* Compute a right mask with high 0’s past the (extended)  */
width */

rightMask = SFBSTIPPLEALL1 >> (-width & SFBSTIPPLEBITMASK);

if (width <= SFBSTIPPLEBITS) {
/* Mask fits into a single word */
SFBADDRESS(sfb, p); /* Minimize TLB misses */
SFBSTART(sfb, leftMask & rightMask);

} else {
/* Mask requires 2 or more words */
SFBWRITE(p, leftMask);
width -= 2*SFBSTIPPLEBITS;
while (width > 0) {

p += SFBSTIPPLEBYTESDONE;
SFBWRITE(p, SFBSTIPPLEALL1);
width -= SFBSTIPPLEBITS;

}
SFBWRITE(p+SFBSTIPPLEBYTESDONE, rightMask);

}

Figure 9: Solid filling prototype code

If p = 1005 and width = 9, the code computes the following masks:16
leftMask 11111111 11111111 11111111 11100000
rightMask 00000000 00000000 00111111 11111111
leftMask & rightMask 00000000 00000000 00111111 11100000

(As the sfb paints from left to right, it uses bits in a data word from low to high.)
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To paint a rectangle, the processor first computes masks and a starting address, then branches
into a loop for narrow rectangles that can be painted with one data word, or a loop for wider
rectangles that require two or more data words.

6.3. Transparent stipples, opaque stipples, and tiles
The X server uses the solid area code as a template for the routines that paint certain stipples

and tiles.  Stipples are bitmaps that are expanded using transparent or opaque stipple semantics,
while tiles are pixmaps that are copied. The bitmap or pixmap pattern is repeated both horizon-
tally and vertically in order to fill areas larger than the pattern.

Stipple data is often provided in a bitmap with a width that is a power of 2, like 8, 16, or 32.
Tile data is often provided in a pixmap with a width of four pixels, or 32 bits on an 8-bit pixel
system. The sfb code replicates any such bitmap or pixmap to a width of 32 bits, and provides
special routines for painting these patterns.  These special cases of stipple and tile painting are so
similar that the same source code is compiled three times, with a few #ifdef statements to
implement the differences.

In the transparent and opaque stipple code, the processor fetches a 32-bit word from the ap-
propriate row of the bitmap, rotates this word based upon the position in the window, then writes
the rotated data every 32 pixels across the entire span (masking off a few bits at the edges).

The tile code rotates data on pixel boundaries rather than on bit boundaries, then loads the
foreground register with the rotated data.  The foreground register is 32 bits wide, so it can hold
a different 8-bit pixel value in each byte.  The server then fills the span as if it were filling a solid
area. Though this code can paint tiles that are no wider than four pixels on an 8-bit pixel system,

5this is often sufficient.  For example, the Display PostScript System [5, 1] uses a tile four pixels
wide by six pixels high for color half-toning.

Stipples of widths that are not a power of two are uncommon, so the server code for them is
fairly inefficient.  The server fetches either a full 32-bit word, or whatever is left of the stipple,
then paints this data word.  To satisfy alignment constraints, the server usually has to paint the
data word in two operations; in opaque stipple mode this also requires two writes to the pixel
mask register.

The server uses code similar to that described below for copies in order to fill areas with tiles
that are larger than 32 bits in width.

6.4. CopyPlane
The CopyPlane operation looks like a non-repeated opaque stipple of arbitrary size.  These

requests are common enough that the server has special code for large bitmap patterns.  Since
CopyPlane doesn’t involve the complications of repeating the bitmap pattern, its inner loop
arranges data in order to extract maximum bandwidth from the sfb.  This loop maintains the
unused bits from the previous iteration, fetches one new 32-bit word, shifts and merges these two

5Display PostScript System is a trademark of Adobe Systems, Inc.
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words, then writes the resulting data word directly to an 8-byte aligned address.  In the middle of
a span, each 32 pixels require a single write to the sfb, rather than the four writes used by the
general opaque stippling code.

6.5. Copies
Copy code is an obvious extension of the CopyPlane code, in which the source bitmap be-

comes a pixmap.  Copies involve two independent frame buffer addresses----source and
destination----which may not be aligned.  The processor must write the shift amount to the sfb,
and may need to prime the shift/residue logic at the beginning of a span, and drain the logic at
the end of a span.

If the alignment of the source address is larger than the destination alignment, the first 8-byte
word from the (alignment-adjusted) source address may not contain enough data to write to the
first 8-byte word of the (alignment-adjusted) destination address.  Figure 10 shows a copy of 7
bytes where the source alignment is 2 and the destination alignment is 1.

0 1 2 3 4 5 6 7

2 3 4 5 6 7 Source

Destination

. . .8 90 1

Figure 10: A copy that requires priming the shift/residue logic

In this case, the processor backs up the aligned destination pointer by an additional 8 bytes,
and shifts 0’s into the bottom 8 bits of the left edge destination mask, so that the sfb loads the
first 8 bytes of the source into the residue register without writing anything to the destination.

Similarly, the processor may need to drain data from the residue register at the end of the span.
Figure 11 shows a copy of 6 bytes where a single 8-byte source word contains data that must be
written to two different 8-byte destination words.  We read an extra 8-byte word after the source
to force pixels through the shift/residue logic.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 Source

Destination8 9 . . .

Figure 11: A copy that requires draining the shift/residue logic

In both cases, the extra read costs 80 nsec, and is more efficient than any scheme to explicitly
prime or drain the logic.  We leave the first 8 bytes and the last 8 bytes of video memory un-
allocated in order to avoid generating addresses outside of the frame buffer.
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6.6. Text
X11 has two types of text painting requests. PolyText paints a string of characters using

transparent stipple semantics to spatter foreground pixels onto the destination. ImageText
paints a string of characters using opaque stipple semantics to fill in the area around characters
with the background pixel.

In a fixed-metric font, each glyph (bitmap picture of a character) is the same height and width.
In a variable-pitch font, glyphs can be different heights and widths.  The server uses different
strategies to paint variable-pitch and fixed-metric fonts.

The PolyText code for variable-pitch fonts uses transparent stipple mode in an obvious
fashion. It looks up the bitmap glyph for each character in the string, and paints one glyph at a
time from the top row to the bottom.  The corresponding ImageText code doesn’t use opaque
stipple mode, because painting background and foreground simultaneously in these fonts is hard:
each glyph must be extended up and down to the overall font height, the space between glyphs
must be filled in, and in some fonts information from two adjacent glyphs can overlap (as with
an overstrike character).  The server avoids these problems by clearing a rectangle of the ap-
propriate size with the background pixel, then calling the PolyText code.

The PolyText and ImageText code for fixed-metric fonts share the same source file, with
a few #ifdefs to handle masking correctly.  Since all glyphs are the same height and width, it
is easy to merge information from the same row of several adjacent glyphs.

Our original code painted glyphs one at a time up to the first 8-byte aligned address, painted
the middle of the string with full 32-bit data words assembled from multiple glyphs, then finally
painted the last few glyphs one at a time.  Performance was disappointing.  We were nowhere
near saturating TURBOchannel or sfb memory bandwidth anyway, and so the effort expended to
use only aligned, 32-bit writes in the middle of the string was in vain.

We improved performance with a simpler algorithm.  The processor paints glyphs in groups
that are guaranteed to fit into a 32-bit data word, regardless of alignment constraints.  For ex-
ample, if each glyph is 6 bits wide, the processor can fit data from four glyphs into a 32-bit data
word, and still have room to shift the data left as much as 7 bits in order to satisfy the 8-byte
alignment constraint.  Similarly, the processor can fit data from three 8-bit wide glyphs into a
data word, and still have room to shift the data to satisfy alignment constraints.  Our new code
writes to the sfb more often, but uses many fewer CPU cycles.

6.7. Lines
Though largely irrelevant for most 2D applications, the most commonly quoted graphics per-

formance benchmark is 10-pixel lines.  Not coincidentally, line painting is the only area where
we descended into assembly code and literally counted every instruction.  We maximized perfor-
mance by avoiding data shuffling and masking, by using fast clipping code, and by using posi-
tion within code rather than data registers to record important decisions.

We chose the contents of the line initialization registers in order to minimize the number of
writes to the sfb.  We then arranged fields within the registers in order to avoid masking opera-
tions in the CPU as we shifted and merged data into the proper positions.
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Referring back to figure 7, note that signed fields are in the most significant bits of registers so
that the processor doesn’t need to zero sign bits of negative values.  We also pushed e as far as
possible from the len field. The maximum line length we allow is a 15-bit unsigned number;
we don’t explicitly zero the high 11 bits, as the sfb ignores them.  Our arrangement of fields
saves three instructions over a more careless layout.  This seems insignificant, but removing a
single instruction increases 10-pixel line performance by 0.4% to 1.9% on various DEC worksta-
tions. If you take care of the nanoseconds, the x11perf results will take care of themselves.

We avoid shifts by computing a1 and a2 in the high 16 bits of the CPU registers.  The com-
putation of e requires a divide by 2, but we just shift left by 14 bits rather than 15; as with the
length field, the unused bottom bit is ignored.  Avoiding shifts saves another three instructions.

To determine if a line is completely visible within a window, we borrowed Keith Packard’s
code from the MIT X11R5 sample server.  This code simultaneously compares 16-bit x and y
coordinates in a single 32-bit subtract. Testing unconnected lines for visibility requires 11 in-
structions. The connected line code remembers visibility status of the ending point, which be-
comes the starting point of the next line.  If this point is known to be visible (the usual case),
testing the new end point uses only 8 instructions.

Finally, rather than painting all lines with the same loop, our code branches into one of four
cases depending on whether the line is more horizontal than vertical, and whether the line goes
forward or backward.  This reduces line overhead by a few more instructions.

7. Design Style and Simulation
Joel McCormack works in Palo Alto, California.  Bob McNamara works in Maynard, Mas-

sachussetts. Bob visited California once to discuss the original sfb proposal, which was no more
than a page of rough ideas.  Joel visited Massachussetts once when we powered on the sfb-based
HX board. We used the phone to discuss ideas, electronic mail to keep a written record of our
decisions, and a behavioral simulator to act as the final authority on the chip’s functionality.

Using the phone instead of a whiteboard sometimes resulted in the two of us believing our-
selves to be in agreement on an issue, whereas in reality we were talking about entirely different
strategies. Since we could ultimately discover and resolve misunderstandings with the simulator,
this ambiguity turned out to be a benefit.  It allowed us to agree upon a set of goals, and then
independently explore alternatives to accomplish those goals.  Eventually (and usually inadver-
tently), we would discover just how different our approaches were, discuss the strengths and
weaknesses of each, and then choose one.

We used electronic mail primarily as a written record of important design decisions made
during telephone calls, and to write up extensive performance computations.  We also used mail
to send an English specification of the chip back and forth, but this specification was imprecise
and usually out of date.

The true specification of the chip was the behavioral simulator. The simulator consisted of a
few C source files written by Bob McNamara and Lindsay Gage.  Programs call the simulator’s
BusWrite and BusRead procedures to simulate transferring data over the TURBOchannel,
and provide a do_rams procedure to simulate the chip’s interface to video memory.
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Bob and Lindsay used the simulator to create simple test cases for the chip.  Their program
parses a file of drawing commands, then translates these into BusWrite calls to the sfb
registers and frame buffer.  Their do_rams routine writes pixels to an X window to show the
result of the commands.  In many graphics chip designs, this is where the use of the simulator
ends.

Joel McCormack wrote and debugged X server code for the chip by linking the simulator into
an X server.  This server communicates with the sfb hardware via conditionally compiled macros
that either directly read and write the memory-mapped registers and frame buffer, or call the
simulator’s BusRead and BusWrite procedures. His do_rams routine writes pixels to a
dumb color frame buffer graphics card, turning it into a (very slow) sfb display.

The simulator allowed development of server code before the chip was ready, and yielded
more subtle advantages as well.  Regardless of the state of the document and the ambiguities of
its English prose, the simulator provided an ironclad contract between hardware and software.  If
the simulator performed a certain function, the chip was expected to perform that function in
exactly the same manner.  The simulator provided feedback on our design: as we converted
painting routines to use the smart frame buffer, we altered the chip architecture to better suit our
needs. And the simulated server uncovered a few subtle bugs in the hardware design that had
been missed by the simpler test cases.

Finally, the simulator allowed us to efficiently and comprehensively verify the schematic
diagrams used to fabricate the chip.  Joel used the sfb server to run every X program he could
find, recording both the commands that the server sent to the simulator, and the video memory
transactions that the sfb sent in response.  This resulted in hundreds of megabytes of trace data,
painfully gathered over a few weeks.

When the schematics were complete, Bob wrote a program to translate the schematics into a
gate-level simulator, which ran seven times slower than the high-level behavioral simulator.
This was too slow for interactive use, but fast enough to run the command traces gathered with
the high-level simulator and check that the two simulators issued exactly the same memory
transactions. To speed this process we checked several traces simultaneously using multiple
workstations.

Trace verification revealed several areas where the schematics did not match the high-level C
simulator code, as well as some timing problems.  When the gate-level simulator could run all
traces without error, we sent the schematics to the gate array vendor to be placed and routed.

Our simulation of real X programs paid off handsomely in hardware and software correctness,
though there were a few minor problems.  The only hand-routed wire on the board (which was
made extra thick to ensure plenty of power) shorted the 12 volt power supply to ground. We
next discovered that the chip was missing a couple of inverters on an address masking register,
so the board could only be plugged into slot 0 on the TURBOchannel.  No problem, except that
the boot sequence expected slot 0 to be the console, and we didn’t yet have console software for
the sfb TURBOchannel ROM.  After two days of hacking around this problem in the kernel and
the server, the X server was up and running. We sent out preliminary x11perf performance
numbers within 49 hours of blowing the power supply.
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Subsequent testing revealed an insignificant hardware error in lines, which hadn’t been tested
by the server due to an unclosed comment in some C code.  We also discovered a race condition
in the copy logic, but soon relabeled this a ‘‘performance enhancement.’’ Fixing the race con-
dition in hardware would require adding an extra 40 nsec clock tick to all copy requests; fixing it
in software required two extra lines of setup when copying narrow rectangles.

We discovered a few bugs in the X server software when we reran the set of test programs
used to provide traces. The simulator was so slow that it hadn’t allowed us to completely ex-
ercise some real-time X applications.

Nonetheless, within a couple weeks of power-on, several of us were using the sfb boards and
X server for our daily work.  At this point, we concentrated almost entirely upon performance
tuning rather than debugging. This would not have been possible without the extensive simula-
tions conducted before the chip was taped out.

8. Performance Measurements
Quoting theoretical ‘‘speed-of-light’’ graphics hardware capabilities is a common but mislead-

ing practice, rivalling the use of ‘‘peak MIPS’’ in optimistic uselessness.  The theoretical num-
bers we have provided above show hardware performance limits; the numbers below show how
closely we have come to achieving those limits in practice.

We use the x11perf program to measure X11 server performance.  While this benchmark
reports performance numbers higher than most applications will attain (its painting requests con-
tain as many as 1000 objects), it is an actual application painting with X graphics requests.  Since
alternate X servers (such as those available from MIT’s X Consortium) may outperform a
vendor’s server on some tests, we always use the highest x11perf numbers available for a
given workstation.

CPU horsepower and the mechanism used to transport data from the application to the X serv-
er have a big impact upon performance, so we compare several sets of sfb performance numbers
with performance results from Sun and Hewlett-Packard machines.  We have attempted to match
the sfb configurations as closely as possible to the other vendors’ configurations.

The dumb color frame buffer numbers were generated using the sfb in simple dumb frame
buffer mode, and show what performance is possible with no hardware help.  In many cases
these numbers are limited by TURBOchannel bandwidth, and would be higher if graphics
memory were more tightly coupled to the processor.

The Sun results are from a SPARCstation 2 with a GX graphics accelerator [7]. This con-
figuration has CPU performance comparable to a DECstation 5000/200.  Using the 1992
SPECint benchmarks, the SPARCstation rates about 22 integer SPECmarks, the DECstation

6about 20.  Both use UNIX sockets for communication between the application and the X server.

The GX graphics accelerator [7] qualifies as complex.  It has three drawing functions: draw a
point/line/triangle/quadrilateral filled with any 16x16 transparent or opaque stipple pattern; copy

6UNIX is a trademark of AT&T Bell Laboratories.
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a rectangle; and draw text.  The GX computes a starting addresses in the frame buffer given an
object’s x and y coordinates. It clips objects against two rectangles.  If an object is partially
outside of the soft clip rectangle, the GX computes values for all pixels in the object, but doesn’t
actually paint the pixels that are clipped.  If an object is partially outside of the hard clip rec-
tangle, the GX doesn’t paint anything, but notifies the processor so that it can clip the object in
software. Internally, it uses a massively parallel state machine (‘‘SuperCISC’’).

Many features of the GX interact poorly with X11 or the I/O bus.  The GX’s internal coor-
dinate system system is 14 bits, but X11 uses 16 bits; large X11 coordinates that should be
clipped alias into coordinates that the GX considers visible. These 14-bit values each require a
separate 32-bit write; packing two to a word would reduce bus traffic and increase command
buffer capacity.  The processor cannot stream commands to the GX, but must constantly ask if
there is room in the command buffer and whether an object is contained in the hard clip rec-
tangle. The GX line hardware always paints the last endpoint, which makes it inefficient on all
Polyline and some PolySegment requests.

The DECstation 5000/240 and the Alpha-based Flamingo workstation bracket the HP 730’s
CPU performance.  The DECstation 5000/240 rates about 27 integer SPECmarks, the HP 730
about 48, and the Flamingo about 74.  Many of the Flamingo performance numbers below are
preliminary, and may improve with better compiler technology and with server performance
tuning. All three systems use shared memory for communication between an application and the
X server.

HP has published nothing specific about their CRX graphics board, and so we know almost
nothing about its organization and capabilities.

8.1. Rectangle performance
Painting something as simple as a rectangle requires a good deal of software for the sfb.  The

server must clip the rectangle to the window, compute a starting address, compute left and right
edge masks, and write at least one data word per scanline.  If the rectangle is stippled, the server
must also fetch the stipple pattern for each scanline.  The Sun GX performs all these operations
in hardware given the four corners of the rectangle.

Benchmark DEC Sun DEC DEC HP DEC
(kilorectangles/sec) 5000/200 SS2 5000/200 5000/240 730 Flamingo

w/cfb w/GX w/sfb w/sfb w/CRX w/sfb

Solid 10x10 92 150 156 229 280 423

Transparent 10x10 34 150 96 166 126 448

Opaque 10x10 32 150 96 141 126 299

Tile 10x10 38 150 93 137 130 359

Table 3: Small rectangle fill performance

Table 3 shows small rectangle performance.  The Sun GX has identical rates for solid,
stippled, and tiled rectangles, as the x11perf patterns fit into the GX’s stipple memory. The
sfb paints solid rectangles as quickly as the GX on a similarly rated processor, but can’t keep up
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when the CPU must execute stipple fetching code.  This handicap disappears with more CPU
power, and an sfb on a Flamingo easily outdistances both the GX and the CRX.  The Flamingo
fills solid 10x10 rectangles at 95% of the sfb’s theoretical maximum of 444,000
rectangles/second.

Setup times are insignificant for large rectangles; the tests shown in Table 4 measure raw
bandwidth. The HP CRX provides an impressive solid fill rate, but this is not sustained in the
other fill modes.  The large CopyPlane request shows how fast each graphics system can paint
an opaque stipple when the source bitmap is large, and thus cannot be loaded once per scanline
or once per window.

Benchmark DEC Sun DEC DEC HP DEC
(megabytes/sec) 5000/200 SS2 5000/200 5000/240 730 Flamingo

w/cfb w/GX w/sfb w/sfb w/CRX w/sfb

Solid 500x500 30 98 90 91 109 94

Transparent 500x500 14 98 90 91 69 94

Opaque 500x500 25 98 85 86 69 91

Tile 500x500 22 97 90 89 69 93

CopyPlane 500x500 15 50 67 79 65 88

Table 4: Large rectangle fill performance

8.2. Copy performance
A single X11 rectangle fill request can contain coordinates for thousands of rectangles, but a

copy request contains coordinates for exactly one source and destination rectangle pair; small
rectangle copies involve so much overhead that they reveal little about accelerator hardware.
The large rectangle times in Table 5 show raw copy bandwidth.

Benchmark DEC Sun DEC DEC HP DEC
(megabytes/second) 5000/200 SS2 5000/200 5000/240 730 Flamingo

w/cfb w/GX w/sfb w/sfb w/CRX w/sfb

Screen to screen 5 18 32 32 40 32

Main to screen 10 9 12 13 40 27

Screen to main 6 4 6 6 5 8

Main to main 11 11 11 12 22 81

PutImage 2.3 1.6 2.9 6.0 9.4 12.0

Table 5: Rectangle copy performance

Screen to screen copies occur when a window manager moves windows around, or when an
application scrolls data within a window. If a system has lots of off-screen graphics memory, the
screen to screen data rate may also govern copies from pixmaps or from backing buffers to the
screen. A 1280x1024 double-buffered animation, refreshing at 10 frames/second, requires 13
megabytes/second just for the copies.
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Main memory to screen copies usually occur when an application requests that a pixmap that
the server has stored in main memory be copied into a window.  They also occur when an ap-
plication forms an image in its own memory (for example, by reading an image from disk, and
possibly decompressing or processing it), then copies the image to the screen using the MIT
shared-memory PutImage extension. A live video window of 640 by 480 8-bit pixels, refresh-
ing 30 times a second, requires 9 megabytes per second just for memory to screen copies----not to
mention the bandwidth and CPU cycles required to put video images into memory in the first
place. Only the CRX and the Flamingo appear to have adequate bandwidth; other sfb configura-
tions and the GX would have to display smaller images or refresh them less frequently.

If an application forms an image in its own memory, then uses the standard X11 PutImage
request to display it, the kernel has to copy the data at least once in order to maintain separation
of server and application address spaces.

8.3. Text performance
The sfb server uses the general transparent and opaque stipple modes for painting text, and

includes specialized code for fixed-metric fonts like 6x13.  The Sun GX provides facilities for
painting text that are similar to the sfb’s stipple modes, but involve more overhead.  The MIT
GX server also includes specialized fixed-metric code.

Given comparable processors, the sfb is usually faster than the GX.  Using the Alpha AXP
processor shows that the sfb hardware isn’t the bottleneck in text painting, and it usually stays
comfortably ahead of the HP CRX.  Note that an entire page of text contains less than 10,000
characters, so any of these devices would fill a window within a few screen refresh times.

Benchmark DEC Sun DEC DEC HP DEC
(kilochars/second) 5000/200 SS2 5000/200 5000/240 730 Flamingo

w/cfb w/GX w/sfb w/sfb w/CRX w/sfb

PolyText 6x13 101 178 213 342 316 603

ImageText 6x13 114 207 225 346 263 432

PolyText Times Roman, 10 pt 107 153 174 263 394 522

ImageText Times Roman, 10 pt 78 103 161 213 329 385

PolyText Times Roman, 24 pt 41 92 81 139 199 232

ImageText Times Roman, 24 pt 24 54 64 87 128 127

Table 6: Text performance

8.4. Line performance
The X11 Polyline request paints lines that are connected end-to-end; n lines require n+1

points. The PolySegment request paints lines that are not connected; n lines require 2n
points. Connected lines require less data to be copied, may use more efficient clipping and fewer
multiplications in the server, and may require less setup in the hardware.
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The GX hardware at its best paints solid lines only 50% faster than dumb frame buffer code,
and it treats dashed lines as a special case----for which it has no acceleration facilities.  The sfb’s
transparent and opaque line modes make it easy for software to paint dashed lines quickly.

Benchmark DEC Sun DEC DEC HP DEC
(kilolines/second) 5000/200 SS2 5000/200 5000/240 730 Flamingo

w/cfb w/GX w/sfb w/sfb w/CRX w/sfb

10-pixel lines 161 226 325 587 921 663

10-pixel segments 134 157 261 458 611 614

10-pixel dashed segments 70 48 186 361 323 565

500-pixel segments 6 9 17 17 25 18

Table 7: Line performance

9. Conclusions
Complex accelerators have traditionally been used to achieve high graphics performance.

When designed competently and quickly, they can still provide leading-edge performance. But
graphics accelerators are often designed with insufficient understanding of their intended uses, in
competition rather than in cooperation with the associated CPU, without adequate consultation
with software engineers, and with three-year design cycles.  Such accelerators may have worse
performance on many operations than a simple dumb frame buffer, but people will use them
anyway in the mistaken belief that high performance requires complexity.
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Figure 12: A biased view of tradeoffs in complexity vs. performance

We believe that RISC architectures have introduced a qualitative change in the relationship
between graphics accelerators and general-purpose processors. It is no longer necessary to put
extensive control logic into an accelerator.  Such functionality can migrate back to the CPU and
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software; hardware designers can then focus on providing maximum memory bandwidth to the
processor with minimum hardware complexity.

The smart frame buffer provides bandwidth in simple, general ways, rather than trying to trade
off chip real estate among several specialized functions.  This single-mindedness led to a design
whose core logic is shared among all modes, which allowed us time to refine implementation
details: fine-tuning register formats, eliminating pipeline bubbles and idle cycles, making
functionality more complete.  Our attention to detail is paid back continually, as the chip’s basic
capabilities are exploited again and again to paint different types of graphical objects.

Leaving control flow decisions in the CPU has one major disadvantage:  no large-scale paral-
lelism can take place.  The advantages are numerous.  The sfb provides a good deal of small-
scale parallelism, and graphics performance increases as processors get faster.  The simplicity of
the sfb decreases development time, so that new designs can closely track the latest capabilities
of VRAM technology.  The functionality fits into a cheap gate array, so that graphics accelera-
tion adds nothing to the manufacturing cost.  Last, but not least, the smart frame buffer offers
performance that is comparable to more traditional accelerators----without suffering ‘‘Achilles
heel syndrome’’ when confronted with a case that the designers didn’t have the chip real estate,
or foresight, to include.

The smart frame buffer approach can be extended beyond the current design.  We are already
working on a chip that will provide higher performance by exploiting a new generation of video
RAMs, and will add video and low-end 3D capabilities.  Except for high-end 3D systems, we
believe that complex graphics accelerators are an evolutionary dead end.
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