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Abstract

We have developed a system called OM to explore the problem of code
optimization at link-time.  OM takes a collection of object modules constitut-
ing the entire program, and converts the object code into a symbolic Register
Transfer Language (RTL) form that can be easily manipulated.  This RTL is
then transformed by intermodule optimization and finally converted back
into object form.  Although much high-level information about the program
is gone at link-time, this approach enables us to perform optimizations that a
compiler looking at a single module cannot see.  Since object modules are
more or less independent of the particular source language or compiler, this
also gives us the chance to improve the code in ways that some compilers
might simply have missed.

To test the concept, we have used OM to build an optimizer that does in-
terprocedural code motion.  It moves simple loop-invariant code out of loops,
even when the loop body extends across many procedures and the loop con-
trol is in a different procedure from the invariant code.  Our technique also
easily handles ‘‘loops’’ induced by recursion rather than iteration.  Our code
motion technique makes use of an interprocedural liveness analysis to dis-
cover dead registers that it can use to hold loop-invariant results.  This live-
ness analysis also lets us perform interprocedural dead code elimination.

We applied our code motion and dead code removal to SPEC benchmarks
compiled with optimization using the standard compilers for the DECstation
5000. Our system improved the performance by 5% on average and by more
than 14% in one case.  More improvement should be possible soon; at
present we move only simple load and load-address operations out of loops,
and we scavenge registers to hold these values, rather than completely re-
allocating them.

This paper will appear in the March issue of Journal of Programming
Languages. It replaces Technical Note TN-31, an earlier version of the same
material.
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1 Introduction

Code optimization is conventionally the domain of the compiler. This is sensible: it is the compiler

that generates the code to begin with. Furthermore, the compiler begins with the original source

code, and thus knows as much as possible about the intentions of the programmer, including the

types of variables, the use of high-level operations, and pragmas that the programmer may have

included to give the compiler even more help.

Nonetheless, a conventional compiler may be limited in two ways that degrade the code it

produces.

First, in most environments the compiler looks at only one module at a time. This separate

compilation would be hard to do without, since it greatly reduces the turnaround time for the

run-edit-rebuild cycle.

Second, the compiler itself is divided into phases that must communicate. Retargetable

compilers may have machine-independent phases that are insulated from the machine-dependent

parts. The machine-independent optimizations may therefore not have a complete picture of the

resources that are available. Similarly, in many environments the compiler produces assembly

code rather than true object code. The advent of reduced instruction sets has led to environments

in which the two are not isomorphic, and optimizations below the level of assembler cannot be

done by the compiler.

We can compensate for these limitations by adding a link-time step that analyzes and optimizes

the object code that is being linked. Though some of the high-level structure is missing from object

code, link-time optimization has two important properties that compile-time optimization may

not. First, at link time we can see the entire program at once, rather than just a single separately

compiled module. Second, we are looking at object-level code, which even the compiler may

not have done. These two properties lead to several advantages.

One advantage is that seeing the whole program at once allows more precise analysis. We

don’t have to assume the worst when we see a call to an unknown routine. Among other things

this allows alias analysis of global variables, something difficult to do well at compile-time.

Seeing the whole program also gives us a better understanding of the tradeoffs of code

generation. It is easier to have an overall picture of where the program probably spends its time

and other resources, and thereby where optimization will pay off most.

As mentioned previously, the compilation process can be quite fragmented by the need to deal

with separately compiled modules and by the division of labor between the phases in the compiler

and assembler. Separate compilation forces us to compile one module without knowing much
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about its companion modules, and the generation of assembly code instead of object code may

mean that some resources must be dedicated to the use of the assembler and unavailable to the

compile-time optimizer. This fragmentation of compilation requires the adoption of conventions

about the use of registers, the stack, and even instruction selection. With the whole program at

hand at the object level, however, we need not be bound by these conventions, allowing more

global management of these resources.

Similarly, working with the final code means that we can do machine-level optimizations.

The compiler may generate assembly-level operations that we can see to be multiple-instruction

sequences in the object code, parts of which may be loop-invariant and eligible for code motion.

Finally, working like the linker at the object level gives us a certain degree of independence

from the particular compilers in our environment, and even from the particular source languages.

Naturally we cannot expect to analyze and improve code regardless of its origin. Nevertheless,

alternative approaches like monolithic compilation at the source level or even at the intermediate

code level are much less flexible than our approach.

Of course, modifying object code has disadvantages, too. Many parts of the high-level

structure have been irretrievable lost. Other parts are retrievable only with some effort, and our

system has to undo and redo some of the work done by the normal compiler system, such as

compiling of idioms like case-statements or the filling of delayed branch slots. These difficulties

are the price we chose to pay for intermodule analysis without a strong dependency on a particular

compiler or language. A richer object format would alleviate some of them; in fact, some kinds of

“lost” structure, such as type information, may still be available if the program has been compiled

with debugging.

In this paper we describe OM, our system for link-time code optimization, and place it in

the context of other work in the area. As a proof of concept, we then describe our use of OM

to build a link-time optimizer that does interprocedural liveness analysis and interprocedural

code motion. Finally, we evaluate the performance of our link-time optimizer, which improved

compiler-optimized code by 5% on average and by more than 14% in one case.

2 The OM System

OM takes as input a collection of object files and libraries that make up a complete program. It

processes the input modules in three phases: construction of the intermediate representation from

input modules, application of instrumentation and optimization, and generation of object code

from the intermediate representation. Figure 1 shows the organization of OM. OM currently runs
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Figure 1: System organization of OM

under Ultrix on a DECstation1 and has been tested with modules produced for MIPS processors

by Fortran, C, C++, and Modula-2 compilers.

Construction of Intermediate Representation

The first phase processes the input object files in their usual form, with a loader symbol table

and relocation tables, to build the intermediate form. The relocation information lets us dis-

tinguish addresses from coincidental numeric constants [Wal92]; we can therefore perform our

transformations without introducing the dynamic translation overhead of schemes that transform

executable files [LB92, MIP86]. We can also determine exactly which procedures and variables

have had their addresses taken; because we can see the whole program at once, we need not make

worst-case assumptions about code we cannot see.

The intermediate representation of OM consists of a simple Register Transfer Language

(RTL) and a symbol table. This RTL is machine-independent but has been designed for RISC

architectures. It has generic instructions such as add and sub that operate on registers and

constants. Only load and store instructions access memory. Procedure calls are simple transfers

of control, and parameter passing is explicitly exposed. RTL uses an infinite register set model

1Ultrix and DECstation are trademarks of Digital Equipment Corporation.
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with some dedicated registers such as stack-pointer.

All address references in RTL are symbolic. PC-relative branches are converted into branches

to targets that are labels in RTL. Similarly all references to data areas are also converted to symbolic

references. In MIPS code, the pair of related operations, R REFHI and R REFLO, are used to

relocate a pair of instructions that compute a 32-bit address by combining two 16-bit parts. We

find the referenced symbol from the relocation entries, add it to the symbol table, and use the

symbol in its RTL instruction. This conversion to purely symbolic addresses allows us to freely

move and modify RTL instructions without worrying about harming unrelated instructions.

Recovering the original structure of a source-level case-statement is necessary if we are to

know as much about the control structure as the compiler did. A case-statement is compiled

as an indirect jump to an address loaded from some location in a branch table indexed by the

case index value. The branch table for a case statement is normally laid out in the read-only

data area with addresses of the different branch targets stored in consecutive locations. The code

for the case-statement is easy to recognize, and the address of the branch table is obtainable by

examining this code. By finding all the case-statements in a program, we partition the table space

into different branch tables, which lets us know the size of each. This in turn tells us the possible

destinations of each indexed jump. We can cross-check the table size against the part of the

case-statement code that does a range check on the index.

Certain assembly-level operations, such as load-address and double-precision loads and stores,

are revealed in the object code as sequences of simpler instructions. Although this allows us to

optimize this code in ways not possible at the assembly level, it is still helpful to understand

how these simpler instructions fit together. The relocation tables are helpful in reassociating

the parts of a load-address operation, since the instruction fields that are combined to make up

the address must be marked for relocation. However, double-precision loads and stores require

some additional work. A double-precision load is really two single-word loads from an even/odd

register pair accessing adjacent memory locations. Since a double-precision load occurs in an

even/odd pair, we use the odd floating-point register in a load instruction as the starting point,

and search for the matching instruction, which must use the conjugate register and must address

the adjoining location.

There are no delayed branches in our RTL; when we read a MIPS module, we must identify

instructions in delay slots and move them out for representation in RTL. A branch slot is often

filled with an instruction from before the branch, in which case this instruction can be safely

moved back before the branch. If the slot changes a register which the branch uses, it is incorrect

simply to move the instruction back before the branch. Instead, we duplicate the branch slot and
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push it ahead to both the destination address and the fall-through address. If we can see that the

slot instruction is dead code in either successor location, we need not copy it there. In producing

the RTL, we check for deadness simply but conservatively, by seeing whether the basic block

in question kills the instruction directly; this occasionally causes unnecessary duplication, but

interprocedural dead code removal and peephole optimizations performed in the optimization

phase can remove any that remain.

Analysis and Optimization

The second phase of OM divides the RTL form of the program into a collection of procedures.

Instructions in each procedure are divided into basic blocks. We build the usual control flow

graphs for each procedure, and a complete call graph for the entire program. These data structure

are used by the various optimization and analysis phases. OM used these data structures to

analyze C++, C, and Fortran programs and measured the amount of unreachable code.[Sri91].

Each optimization pass may add more information to the RTL which following passes may use.

Since optimizations operate on the RTL, machine-independent optimizations would be unchanged

when OM is retargeted to handle other architectures.

Code Generation

The final phase of OM translates the RTL into object module for the target architecture. All

addresses must be recomputed; instructions may have been moved, altered or deleted. We must

introduce delay slots if required by the target architecture, and then schedule the code to fill them

and to remove other pipeline hazards and stalls. We also heuristically change the order of output

of procedures to help in cache behavior.

If the target architecture is same as the input architecture, code generation is more or less

a matter of reversing the work done in the input phase. If OM is used to translate from one

architecture to another, different code generation is required. The RTL is intended to be machine-

independent, so this should not be a problem: several existing compilers already generate code

from a machine-independent RTL [DF84, Sta92]. At present, however, we do no architectural

translation, so both the input and the output to OM consist of MIPS modules.
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3 Overview of Prototype

As a proof of concept, we implemented a simple form of invariant code motion, along with some

other simpler optimizations that work with it. OM looks for loop-invariant operations to move

out of loops. These loops may include several entire procedures, and can be induced by either

iteration or recursion. For this prototype, we restricted ourselves to the simplest kinds of invariant

code, because the hard part is defining what is meant by a multi-procedural loop. The operations

it looks for at present are load-address operations (which are guaranteed to be invariant) and

loop-invariant load operations. Because these operations are so simple, their results must be

kept in registers for moving them to pay off, so we also do a liveness analysis to find registers

that are unused over the range of the loop. This liveness analysis in turn makes it easy to do

interprocedural dead code removal.

Section 4 describes our liveness analysis, which treats the entire program as a single flow

graph and uses interprocedural summary information to filter the flow into or out of a procedure.

Section 5 describes our current optimizations.

4 Interprocedural Live Variable Analysis

Our data flow analysis takes advantage of modern large memories by using a direct, brute-force

approach. We treat the entire program as a single flow graph, with edges between procedures

corresponding to calls and returns. In the manner of Myers [Mye81], we split a procedure call into

a pair of conjugate blocks: the call block executed just before the transfer to the called procedure,

and the return block executed just after the called procedure. A call block has a single successor,

the entry block of the called procedure. A return block has a single predecessor, the exit block of

the called procedure. An entry block, of course, has as many predecessors as there are places that

call its procedure; likewise for successors of exit blocks. Because we deal with code at the object

level, the argument passing and stack manipulation that are associated with procedure calls are

represented explicitly and are not considered part of the call itself. Figure 2 shows an example

program graph. Procedures p1 and p2 each contain a call to procedure p. Interprocedural edges

are present from the call blocks to the entry of p, and from the exit of p to the return blocks.

As usual, for each block B in the program, we want to compute sets IN[B] and OUT[B] of

variables that are live immediately before and after B. We treat the whole program as one big flow

graph so that this information can cross procedure boundaries; for example, we want to consider

x and y, but not z, as live at the entry to p. We must take care, however, to disallow information
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Figure 2: Single flow graph model
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flow on paths that cannot be followed in a real execution. For example, there is a path from block

b1 through procedure p (where y is live) to the use of y at the end of p2. But it would be imprecise

to conclude from this that y is live at b1, because it is meaningless to talk about calling p from b1

and then returning to the conjugate block for some other call.

To accomplish this, we use a two-phase approach similar to the one described by Landi and

Ryder [LR90] for alias analysis. In the first phase, we delete all return edges and let information

flow over normal edges and call edges, and from a return block to its conjugate call block. In this

phase we compute both liveness (which is “may” information) and its counterpart deadness (which

is “must” information). Because information does not flow over return edges, this phase gives a

precise, flow-sensitive summary of the possible effects of calling each procedure, including the

effects of any calls that procedure makes. We then replace the return edges and delete the call

edges, using the procedure summary information from the first pass to compute the variables that

are live before a call. This is similar to Callahan’s approach [Cal88], which computed the same

flow-sensitive summary information but went to considerable trouble to avoid having the whole

program in memory at once. Because information can flow from a caller to a callee as well as

vice versa, this results in more precise information than approaches like those of Barth [Bar77]

or Banning [Ban79], which use flow-insensitive summary information to capture the effects of a

call within the analyzed procedure but do not tell the analyzer how control got to this procedure

in the first place.

Figure 3 sketches our two-phase dataflow algorithm and the equations we use in each phase.

The equations for a normal basic block are the same as in a standard liveness analysis. The

variables that are live on exit from B are simply those live on entry to any successor of B. The

variables that are live on entry to B are those live on exit but not set by B, along with those used

by B before being set by B. Note that in Phase 2, the successors of a procedure exit block are the

corresponding return blocks, and information flows along these edges.

Since a call/return pair consists only of transfers of control, these blocks neither set nor use

variables. The IN and OUT sets of such a block are therefore identical. A variable is live at a

call block for either of two reasons: it may be a variable that is used during the procedure call, or

it may be a variable that is used after return from the called procedure but was not killed during

the procedure call. During the first phase, we model this by allowing information to flow to a

call block both from the entry to the procedure and from the call block’s conjugate return block.

During the second phase, when information flows into the procedure from many different return

blocks, we cut off information flow across call edges and use instead the entry sets we converged

to in the first phase. This prevents imprecise information from flowing through a procedure
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Phase 1: Delete return edges and compute LIVE (“may” information) and
DEAD (“must” information), according to the following equations.

normal blocks:
DEF[B] = variables defined by B before any use in B
USE[B] = variables used in B before any definition in B
LIVEIN[B] = USE[B] [ LIVEOUT[B] � DEF[B]
LIVEOUT[B] = [s LIVEIN[S] for all successors S of B
DEADIN[B] = DEF[B] [ DEADOUT[B] � USE[B]
DEADOUT[B] = \s DEADIN[S] for all successors S of B

call and return blocks:
LIVEOUT[call] = LIVEIN[entry] [ LIVEOUT[return] � DEADIN[entry]
LIVEOUT[return] = [s LIVEIN[S] for all successors S of return
DEADOUT[call] = DEADIN[entry] [ DEADOUT[return] � LIVEIN[entry]
DEADOUT[return] = \s DEADIN[S] for all successors S of return
IN sets for a call or return block are identical to its OUT sets

When this converges, define, for each procedure P:
PUSE[P] = LIVEIN[B] where B is the entry to P
PDEF[P] = DEADIN[B] where B is the entry to P

and then throw away the LIVE and DEAD sets computed in this phase.

Phase 2: Restore return edges and delete call edges, and compute LIVE
(“may” information) according to the following equations.

normal blocks:
DEF[B] = variables defined by B before any use in B
USE[B] = variables used in B before any definition in B
LIVEIN[B] = USE[B] [ LIVEOUT[B] � DEF[B]
LIVEOUT[B] = [s LIVEIN[S] for all successors S of B

call and return blocks, for call to procedure P:
LIVEOUT[call] = PUSE[P] [ LIVEOUT[return] � PDEF[P]
LIVEOUT[return] = [s LIVEIN[S] for all successors S of return
IN sets for a call or return block are identical to its OUT sets

Figure 3: Algorithm and data flow equations for live variable analysis
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between a return block and a call block that are not conjugates.

Because we want to determine liveness of registers as well as user variables, we add one

improvement to this algorithm. Procedures commonly save a register on entry and restore it on

exit, and then utilize the register for some unrelated purpose in between. Neither such unrelated

references, nor the saves and restores that protect them, are considered true uses or definitions

in our analysis. We could extend this specialization to user variables as well, but such protected

unrelated uses of a user variable are rare.

Indirect procedure calls via procedure variables pose a problem for any interprocedural

analysis. We model such a call as a call to an abstract procedure that in turn calls each actual

procedure that might be the value of the procedure variable. Determination of this set of actual

procedures can be crude or sophisticated. Ours is crude: we have exactly one abstract procedure,

and it calls each procedure whose address is ever taken or specified as an initial value. We handle

global variables similarly: a read or write via an unknown pointer is assumed to read or write any

variable whose address is ever taken.

We use a variation of the standard iterative algorithm [ASU88] to solve the data flow equations:

we repeatedly examine the basic blocks, computing the IN and OUT sets from the equations, until

we make one complete pass without changes. The standard iterative algorithm would visit the

basic blocks in reverse-depth-first search order, but this is complicated by the fact that this order

changes from phase 1 to phase 2. Instead, we compute the depth-first order for the blocks in each

procedure independently, and also the depth-first order of the procedures in the call graph. In

either phase, we visit all the nodes of a procedure consecutively, in their own reverse-depth-first

order. In phase 1, we visit the procedures themselves in reverse-depth-first order, so that called

procedures tend to be visited before their callers. In phase 2 we reverse this, so that callers tend

to be visited before the procedures they call. In practice this required no more iterations than

the normal “flat” depth-first ordering that ignores procedures, and saved us both the time and the

memory needed to compute the “flat” ordering.

5 Interprocedural Optimizations

The OM system performs several optimizations, with more planned. In this section we discuss

two: interprocedural dead code elimination and interprocedural loop-invariant code motion.

Both require the interprocedural live variable analysis described previously. Interprocedural

data flow information improves the effectiveness of normal intraprocedural optimizations. For

example, movement of code out of loops may be limited by the availability of registers to hold
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store   r22,40(sp)

call q2

load r22,40(sp)

use/def of r22}

return

} no use of r22
no use of fun result

q1

store   r22,40(sp)

load r22,40(sp)
return

r1 := fun result

use/def
       of r22}

q2

dead code

Figure 4: Interprocedural dead code elimination

the invariant results; interprocedural information can help us find more free registers. Code that

a given procedure considers part of its job can be seen as useless in the wider context.

Because our analysis is more precise than the traditional summary approach, opportunities

like these arise more often. Moreover, optimizing the whole program at once lets us perform

optimizations such as code motion out of loops even across procedure boundaries.

5.1 Interprocedural Dead Code Elimination

Interprocedural liveness information allows us to remove dead code that would not be recognized

as dead by a compiler. Some examples are shown in Figure 4. The compiler has treated r22 as

a callee-save register, but we can see that it is dead at the only call to q2. The save and restore

in q2 are therefore useless and can be removed. Similarly, q2 returns a function result that is not

used by its caller, a common occurrence in languages such as C; our analysis allows us to remove

the computation of the result.

To discover that these pieces of code are dead, we need information about q1 to be available

when we examine q2. The traditional summary approach would have found neither of these,

because summary information flows only up the call graph from q2 to q1.

5.2 Interprocedural Loop-Invariant Code Motion

Code inside a loop whose effect does not change from one iteration to the next can be moved

outside the loop. Mechanisms for detecting loops and loop-invariant code are well-understood
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p1

call p2

call p3

p2

p4

call p3

p3

call p4

Figure 5: Interprocedural loops

for single procedures [ASU88], but certain loops are not completely visible to techniques that

process one procedure at a time. Figure 5 shows two examples. Procedure p2 is called from a

loop in procedure p1. Looking at p1 or p2 in isolation will not tell us if p2 contains loop-invariant

code. Procedures p3 and p4 call each other in a recursive cycle. Code that is invariant across

both could be moved out into p1.

Richardson [Ric91] suggested that this kind of optimization could be accomplished by pro-

cedure inlining followed by normal intraprocedural analysis and optimization. That approach

has several drawbacks. Inlining already presupposes some kind of interprocedural analysis to

find the most useful inlining opportunities. Loops that arise through recursion cannot be made

intraprocedural by inlining. And inlining can have unpredictable and sometimes detrimental

effects on cache performance unless cache behavior is used to guide inlining decisions [McF91].

Good interprocedural analysis together with judicious use of procedure cloning [CHK92] would

avoid these problems.2

Though we are looking for loop-invariant code across procedure boundaries, our ambitions

in this prototype are modest. Our liveness analysis can tell us when a register is dead or unused

2Richardson also found that inlining overwhelmed the existing intraprocedure optimizer, sometimes causing it to
crash and sometimes simply confusing it so badly that optimization was degraded. This probably reflects only how
the intraprocedural optimizer was written and tuned rather than any fundamental principle, but it shows that inlining
does not simply reduce interprocedural optimization to the “previous problem” of intraprocedural optimization.
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over a particular part of the program, and we look for simple, obviously invariant values to keep

in these registers. At present, the only operations we move across procedure boundaries are

load-address operations, which produce constant values by definition.

There are three parts to the problem: determining the extent of the loop, determining the set

of available registers, and selecting the operations to move.

Determining the extent of the loop is the most interesting part. The classical way of finding a

loop is to look for a strongly-connected component of the flow graph that is dominated by some

point just outside it. This approach does not work well here, for two reasons. First, the call-

edges and return-edges result in many “false loops” that are not computationally valid: control

cannot ever follow these paths in a real computation, which is why we needed to use summary

information to filter the data flow over these edges. Even if we somehow took this into account,

however, this approach would fail to find loops that call utility routines reachable from elsewhere.

We want a loop-finding algorithm that will let us correctly find loops that range over several

procedures, while excluding from the bodies of those loops routines that are not dominated by

their entry points.

We approach the problem of finding interprocedural loops by concentrating on the call graph

rather than the flow graph. We look for a “heavy” call, one that gets executed many times, and treat

the procedure that makes that call as the loop header. We then try to move instructions from the

called procedure, or procedures reachable from it, across the heavy call and into the loop-header

procedure. Procedures in this loop region must be dominated by the loop-header procedure, so

we can move invariant instructions there and be sure they will be executed whenever necessary.

And no path between points in the loop region may pass outside the region, so that we can be

sure that an available register really is unused throughout.

We begin by building a weighted call graph. An edge p ! q is weighted by an estimate of

how many times we will call q each time we call p. These weights are based on our discovery of

loops and recursive calls. To compute the weight of edge p ! q, initialize it to zero. For each

call from p to q, add 10d where d is the number of loops in p that contain the call. Then for each

recursive call to q from anywhere, multiply the weight of p ! q by 10. Note that these weights

do not accumulate as we move down the call graph; the weight on edge p ! q is independent of

the weights on paths leading to p.

A call edge p! q with a large weight implies that some kind of loop is present, because q is

called more often than p. If the call graph were a tree, the loop region would contain q and all its

descendants, these being the procedures reachable via a call from p to q. Real call graphs are not

trees, however, so we must do two more things to this region. First we add paths that lead from
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p

q

x

y

Figure 6: The loop region (all shaded nodes) induced by edge p! q

p to the loop region without going through q. Then we prune the region to exclude procedures

called from outside the region, so that all procedures in the region are dominated by p. Details of

this algorithm appear in the Appendix.

Note two things about the resulting region. First, there may be calls from it to procedures

outside the region. We call such a procedure a stepchild of the region. Stepchildren should

perhaps be considered part of the loop, but they are also reachable from outside the loop, so it

is not safe to move instructions from them to p.3 Second, if p does not dominate q, we prune

the region so thoroughly that it contains only p. All that is left is the part of the loop in p itself,

and only instructions from p will be considered for code motion. If the loop arose because q is

recursive rather than because of a loop in p, not even p will contain eligible instructions.

Figure 6 shows an edge p ! q and its associated loop region. The darkest nodes are procedure

q and those descendants that are dominated by p. The lightest nodes are those we added to include

all paths from p to nodes in the region. Nodes x and y are stepchildren. They may be tentatively

added to the region, but will later be pruned because they are not dominated by p.

Given this loop region, we look for invariant code to remove. This does not require a deep

3Cloning stepchildren would let us add them to the loop region, at the cost of increasing program size.
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analysis, because we look only for load-address operations, which by definition have a constant

result. Each candidate operation is given an estimated execution count by combining its loop

depth in its own procedure with the weights on the call graph edges in paths leading to its

procedure. These operations are ordered according to this estimate, so those with the highest

payoff will be given registers first.

Finally we look for registers to hold the invariant values. Such a register has to be unmentioned

throughout the region (except possibly for a save/restore around the body of p). An unmentioned

register is available if it is dead at the exit of p and at the entry to each stepchild of the region, or if

it is unmentioned in each stepchild and its descendants (except when protected by a save/restore).

In the first case a stepchild or its descendants may independently define and use the register,

but we can still consider it available if we insert a save/restore around the call to the stepchild.

However, it is very likely that the compiler has already generated the necessary save/restore,

in which case we need not. In the second case the register may be live throughout the region

because its value is set before the call to p and used afterward. If it is live at p’s exit, we must

insert a save/restore around the body of p; dead code removal will excise this save/restore if it

is redundant. The costs of inserted save/restores are factored into the decision to use a register;

code motion with a small payoff might not outweigh the expense of the save/restores.

If we find n available registers, we can move the n heaviest operations out to the beginning

of procedure p. In the original position of each we leave a register-register copy to get the value

in the right place. These copies will be cleaned up later.

The three-step process of deriving the loop region, prioritizing invariant operations, and

finding registers to hold their values is done for each call graph edge with a weight greater than 1.

5.3 Intraprocedural Loop-Invariant Code Motion

After interprocedural code motion, we perform a more traditional phase that moves invariant code

out of loops within a single procedure. There are two reasons why this is effective even though

the compiler has already optimized the code OM sees.

First, our interprocedural liveness analysis is more precise than a compiler can achieve looking

at one module at a time. This means we can find available registers that the compiler could not.

Second, since we integrate register allocation with code motion, we can move very small

pieces of invariant code that represent significant savings only if their results are kept in registers.

At present we move only load-address operations and single loads, mostly of global or stack

variables, that we are sure produce invariant values. In contrast, a compile-time optimizer may
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be less thoroughly integrated with register allocation, and so concentrate on invariant code that

pays off even if its result is kept in memory.

5.4 Cleanup and Procedure Ordering

After each of the two code motion phases, OM performs a cleanup phase consisting of copy

propagation, common subexpression removal, and interprocedural dead store removal. This

cleanup gets rid of the register-register copies we added, redundant save/restores, and duplicate

pieces of invariant code that were moved to one spot from multiple locations. Because the code

we start with was previously optimized, nearly all of the opportunities for copy propagation and

common subexpression removal are those introduced by our code motion algorithm.

When all the optimization and cleanup is finished, we write the procedures in depth-first order,

rather than the original order. This simple heuristic is intended to improve the locality and hence

the cache behavior.

6 Where Do Link-Time Opportunities Come From?

Our invariant code motion depends on finding two things: a piece of invariant code that can be

moved, and a dead register to keep it in. Why do either of these exist? Doesn’t their presence

mean the compiler dropped the ball? We do not think so.

As we discussed earlier, the compiler is hindered by the need to support separate compilation

and by its own fragmentation into different phases. Our ability to analyze the entire program at

once, all at the object code level, means that we can find opportunities easily that would have

been hard for the compiler to find.

Consider dead registers first. In the MIPS compilers, some registers are designated as caller-

save or callee-save, whether the resulting saves are really needed or not. One pair of registers is

reserved for return values, even though many procedures return no results and few others return

two-register results. Similarly, another register is reserved for short-term uses by the assembler,

which may not arise at all in some part of the program. Intermodule analysis can show us where

these conventions are unnecessary.

Next consider moveable invariant code. Some instances of this are visible to us because we

allow such code to move across procedure boundaries; a compiler supporting separate compilation

does not have that luxury. Even moving code within a single procedure, however, may be easy

for us but not for the compiler, because we have a more complete picture of available resources.
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Classical code motion is machine-independent, and therefore often looks only for code that is

expensive enough to move even if its result must be kept in a memory location. Register allocation

is likely to be done in an entirely different phase. Our approach, in a sense, is “machine-dependent

code motion” in that it is integrated with knowledge of what registers are available. As a result,

we can move tiny pieces of code whose result must be kept in a register for its motion to pay off.

An example of what this integration can buy is our handling of Fortran common blocks.

Because the declared size of a common block may vary from module to module, the MIPS

Fortran compiler leaves allocation of these areas to the linker. References to them are more

expensive than references to normal variables, typically requiring an address calculation instead

of a direct reference relative to a known base register. In our RTL we represent a reference to a

common variable as a load-address of some nearby base address in the common area, followed

by a reference relative to that base. This allows us to combine the redundant load-address parts of

many different references to the same common block, by keeping their common base address in

a register. In this way we can access variables in the common block much as the compiled code

accesses variables in the “small data sections,” which consist of small global scalars that are kept

together in memory so that a single dedicated register, the global pointer, can be used to access

them quickly.

7 Performance

We used OM to optimize nine SPEC benchmarks. Both OM and the benchmarks ran under Ultrix

on a DECstation 5000 with 48 Mb memory. Object modules given to OM were produced by the

standard MIPS compilers with optimization level -O2.

We measured the speed of an executable in two ways. The first was real user time, according

to the system clock as measured by the systime facility. The second was cycles as measured by

instrumenting the executable using pixie [MIP86]. The pixie tool counts instructions and pipeline

stalls, and gives a theoretical cycle count assuming no cache, memory, paging, or I/O delays.

OM was able to improve the performance of each of the benchmarks, sometimes slightly

and sometimes significantly. This is unsurprising, because the MIPS -O2 option causes only

intraprocedural optimization. To compare our code with that of a peer, we also compiled the

benchmarks using the MIPS options that cause interprocedural optimization. In one case we used

the MIPS -O3 option by itself; in the other we gave it a dynamic profile and also invoked the -cord

option, which reorders procedures based on the profile to improve cache behavior. The effects of

the MIPS interprocedural was spotty; it was common for it to produce worse code than -O2 did.
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speedup with runtime measured by
systime pixie

OM MIPS (opt level) OM MIPS (opt level)
doduc 14.40% 11.77% (O3) 2.48% 1.39% (O3p)
eqntott 5.13% 9.77% (O3) 5.56% 10.91% (O3p)
espresso 0.30% 0.55% (O3p) 2.96% 1.13% (O3p)
fpppp 12.51% 0.00% (O2) 10.51% 0.00% (O3p)
gcc1 1.03% 0.00% (O2) 1.19% 0.66% (O3p)
li 1.52% 0.00% (O2) 0.63% 0.80% (O3p)
nasa7 0.12% 0.00% (O2) 0.85% 0.00% (O2)
spice 12.36% 0.36% (O3p) 17.30% 1.00% (O3p)
tomcatv 2.57% 0.00% (O2) 7.89% 0.00% (O3p)
average 5.55% 2.49% 5.49% 1.77%

Figure 7: Speedup relative to MIPS -O2

Figure 7 shows the reduction in runtimes for OM and for the best code produced by the MIPS

compilers using -O2, -O3, or -O3 with a profile and -cord (denoted “O3p” in the figure). All these

times are normalized by the times for code compiled with MIPS -O2, as measured by systime or

pixie respectively. Thus a reduction of 0% means the interprocedurally optimized program took

exactly as long as it did when optimized with only MIPS -O2; in many cases -O2 gave the best

code the MIPS compilers could produce.

OM was able to improve performance over MIPS -O2 by about 5% on the average, and by

12% or more in some cases. Code motion accounts for nearly all of this, but precise attribution

is difficult because the code motion depends on dead code removal, to remove useless operations

and thereby free more registers and also to clean up the code afterwards. Even compared to the

MIPS interprocedural optimization, OM looks good; only for eqntott was the MIPS optimizer

able to do much better than OM.

Also of interest are the costs of using OM. Figure 8 shows the total time OM takes to process

each benchmark. This time includes reading the object files and libraries, converting them into a

single RTL structure, optimizing, and generating assembler code.4 About 75% of the time is spent

on the analysis and optimization, with the remaining time divided evenly between producing RTL

from object and producing assembler from RTL. We have done essentially no performance tuning

4In the future we plan to generate an executable directly, which should be faster than generating a textual assembler
file. This is also why we do not include assembly time in these figures.
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total OM one liveness phase 1 phase 2 static static
time (secs) analysis (secs) iterations iterations block count instr count

doduc 14.98 0.966 4 4 6759 47524
eqntott 4.85 0.384 4 4 2946 10200
espresso 19.80 1.683 4 4 11901 46452
fpppp 14.58 0.867 4 4 6013 41540
gcc1 88.95 7.583 6 4 46536 169608
li 9.08 0.833 4 4 5863 18884
nasa7 8.40 0.633 4 4 4697 21656
spice 37.05 2.833 5 6 16173 92956
tomcatv 6.53 0.534 4 4 3995 15100

Figure 8: OM processing time statistics

and do many things by brute force; for example, the liveness analysis is actually performed from

scratch five separate times. Figure 8 also shows how long one complete execution of the liveness

analysis takes. Each liveness analysis requires around eight iterations, correlating weakly with

the static number of basic blocks in the program. It is interesting that each phase requires about

the same number of iterations that are required to converge on a single procedure [ASU88], even

though the whole-program graph is much larger and more deeply nested. Presumably this is

because the absence of either all call or all return edges hides the global depth of loop nesting.

One reason we can do so much in a minute or less of processing is that we are quite free in

our use of memory. Figure 9 shows how much memory OM used for each benchmark. In general

it needs memory space equal to about 18 times the disk space occupied by the object code.

8 Conclusions

We have shown that very modest interprocedural optimization can deliver a significant improve-

ment in performance even without inlining or cloning. To do this, it must be driven by precise

interprocedural data flow analysis that allows information to flow in both directions between caller

and callee. We have shown that obtaining information this precise need not be extravagantly

expensive, even using brute force algorithms. Our system requires no explicit help from the

compiler itself, and is thus relatively independent of both source language and compiler.

We plan to extend our prototype in several ways. First, a full register allocator that renames

existing registers when possible without degrading pipeline performance would free more registers
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object OM ratio
size memory

doduc 0.37 Mb 5.5 Mb 14.7
eqntott 0.10 Mb 2.3 Mb 23.0
espresso 0.40 Mb 6.9 Mb 17.3
fpppp 0.35 Mb 5.0 Mb 14.3
gcc1 1.31 Mb 24.0 Mb 18.3
li 0.20 Mb 3.7 Mb 18.5
nasa7 0.19 Mb 3.4 Mb 17.9
spice 0.73 Mb 10.8 Mb 14.8
tomcatv 0.14 Mb 2.8 Mb 20.0

Figure 9: OM memory requirements

for other purposes. Second, more ambitious recognition of loop-invariant code would give us

more uses for these registers, and could reveal invariant code that was worth moving even if

its result had to be kept in memory. Dynamic profiles could guide careful procedure cloning,

allowing key procedures to be added to loop regions even when they are not dominated by the

region header, which could lead to a more general and elegant construction of a loop region.

Beyond these short-term improvements, we expect to implement other traditional loop op-

timizations in our interprocedural framework. We hope OM will continue to be an effective

platform for the study of both very global optimization and machine-dependent optimization.

Acknowledgements

We are very grateful to Mary Jo Doherty, Mary Fernandez, Joel McCormack, Scott McFarling,

and Paul Vixie for careful reading and pertinent comments, and to Mick Jordan for insisting that

we measure our performance improvement with pixie along with systime.

20



Appendix. Construction of an Interprocedural Loop

Input: A call graph C=(P,E) where P is the set of procedures and E is the set of call edges, a

depth first spanning tree D of C, and an edge e = (ph ! pe).

Output: LoopRegion(e), a subset of the procedures of C.

Method:

constant Family = fp j p is a descendant of ph in D g /* LoopRegion � the */

LoopRegion = fph, peg /* descendants in D of ph */

while changes to set LoopRegion do /* Build initial set of nodes */

for each p in Family�fphg, in depth-first order, do /* reachable from pe */

if p 2 LoopRegion then

for each procedure q that p calls do

if q =2 LoopRegion and q 2 Family then

LoopRegion = LoopRegion [ fqg

while changes to set LoopRegion do /* Add callers of nodes already */

for each q in Family, in reverse-depth-first order, do /* in region, if all callers */

if q 2 LoopRegion then /* are in Family */

addcallers = true

for each procedure p that calls q do

if p =2 Family then addcallers = false

if addcallers then

for each procedure p that calls q do

if p =2 LoopRegion then

LoopRegion = LoopRegion [ fpg

while changes to set LoopRegion do /* Ensure region has a single */

for each q in Family�fphg, in depth-first order, do /* entry point ph */

if q 2 LoopRegion then

for each procedure p that calls q do

if p =2 LoopRegion then

LoopRegion = LoopRegion - fqg

21



References

[ASU88] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Techniques

and Tools. Addison-Wesley, 1988.

[All74] F.E. Allen. Interprocedural data flow analysis. Proceedings of IFIP Congress 1974, pp.

398–402. North Holland, 1974.

[Ban79] John P. Banning. An efficient way to find the side effects of procedure calls and

the aliases of variables. Conference Record of the Sixth Annual ACM Symposium on

Principles of Programming Languages, pp. 29–41, January 1979.

[Bar77] Jeffrey M. Barth. A practical interprocedural data flow analysis algorithm. Communi-

cations of the ACM 21(9), pp. 724–736, September 1978.

[Cal88] David Callahan. The program summary graph and flow-sensitive interprocedural data

flow analysis. Proceedings of the SIGPLAN ’88 Conference on Programming Language

Design and Implementation, pp. 47–56. Published as SIGPLAN Notices 23(7), July

1988.

[CHK92] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure cloning. Proceedings

of the 1992 International Conference on Computer Languages, pp. 96–105, IEEE

Computer Society Press, April 1992.

[DF84] Jack W. Davidson and Christopher W. Fraser. Code selection through object code

optimization. ACM Transactions on Programming Languages and Systems 6(4), pp.

505-526, October 1984.

[LR90] William Landi and Barbara Ryder. Pointer-induced aliasing: A problem classifica-

tion. Conference Record of the Seventeenth Annual ACM Symposium on Principles of

Programming Languages, pp. 93–103, January 1990.

[LB92] James R. Larus and Thomas Ball. Rewriting executable files to measure program

behavior. University of Wisconsin Computer Sciences Technical Report 1083, March

1992.

[Lom77] D. Lomet. Data flow analysis in presence of procedure calls. IBM Journal of Research

and Development 21,6, pp. 559–571, 1977.

22



[McF91] Scott McFarling. Procedure merging with instruction caches. Proceedings of the SIG-

PLAN ’91 Conference on Programming Language Design and Implementation, pp.

71–79. Published as SIGPLAN Notices 26(6), June 1991.

[MIP86] MIPS Computer Systems, Inc. Language Programmers’s Guide, 1986.

[Mye81] E. Myers. A precise inter-procedural data flow algorithm. Conference Record of the

Eighth Annual ACM Symposium on Principles of Programming Languages, pp. 219–

230, January 1981.

[Ros79] B. Rosen. Data flow analysis for procedural languages. Journal of the ACM 26(2), pp.

322–344, April 1979.

[Ric91] S.E. Richardson. Evaluating Interprocedural Code Optimization Techniques. Ph.D.

Thesis, Stanford University, Technical Report No CSL-TR-91-460, February 1991.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In

Steven S. Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and

Applications. Prentice-Hall, Englewood Cliffs, N.J, 1981.

[Sri91] Amitabh Srivastava. Unreachable procedures in object-oriented programming. WRL

Technical Note TN-21, November 1991.

[Sta92] Richard Stallman. Using and porting GNU CC. Free Software Foundation, 1992.

[Wal92] David W. Wall. Systems for late code modification. Proceedings of the CODE 91

Workshop on Code Generation, Springer Workshops in Computer Science, to appear.

Also available as WRL Research Report 92/3, May 1992.

23



24



WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter:  An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow:  Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

25



‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’‘‘Spritely NFS: Implementation and Performance of
Jeffrey Y.F. Tang and J. Leon Yang.Cache-Consistency Protocols.’’
WRL Research Report 90/1, January 1990.V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.
‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’‘‘Available Instruction-Level Parallelism for Super-
Tracy Larrabee.scalar and Superpipelined Machines.’’
WRL Research Report 90/2, February 1990.Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.
‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.‘‘A Unified Vector/Scalar Floating-Point Architec-
WRL Research Report 90/3, March 1990.ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David
‘‘Virtual Memory vs. The File System.’’W. Wall.
Michael N. Nelson.WRL Research Report 89/8, July 1989.
WRL Research Report 90/4, March 1990.

‘‘Architectural and Organizational Tradeoffs in the
‘‘Efficient Use of Workstations for Passive Monitor-Design of the MultiTitan CPU.’’

ing of Local Area Networks.’’Norman P. Jouppi.
Jeffrey C. Mogul.WRL Research Report 89/9, July 1989.
WRL Research Report 90/5, July 1990.

‘‘Integration and Packaging Plateaus of Processor
‘‘A One-Dimensional Thermal Model for the VAXPerformance.’’

9000 Multi Chip Units.’’Norman P. Jouppi.
John S. Fitch.WRL Research Report 89/10, July 1989.
WRL Research Report 90/6, July 1990.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
‘‘1990 DECWRL/Livermore Magic Release.’’sor with High Ratio of Sustained to Peak Perfor-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,mance.’’

Don Stark, Gordon T. Hamachi.Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 90/7, September 1990.WRL Research Report 89/11, July 1989.

‘‘Pool Boiling Enhancement Techniques for Water at‘‘The Distribution of Instruction-Level and Machine
Low Pressure.’’Parallelism and Its Effect on Performance.’’

Wade R. McGillis, John S. Fitch, WilliamNorman P. Jouppi.
R. Hamburgen, Van P. Carey.WRL Research Report 89/13, July 1989.

WRL Research Report 90/9, December 1990.

‘‘Long Address Traces from RISC Machines:
‘‘Writing Fast X Servers for Dumb Color Frame Buf-Generation and Analysis.’’

fers.’’Anita Borg, R.E.Kessler, Georgia Lazana, and David
Joel McCormack.W. Wall.
WRL Research Report 91/1, February 1991.WRL Research Report 89/14, September 1989.

26



‘‘A Simulation Based Study of TLB Performance.’’ ‘‘Cache Write Policies and Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi. Norman P. Jouppi.

WRL Research Report 91/2, November 1991. WRL Research Report 91/12, December 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’cuits.’’
William R. Hamburgen, John S. Fitch.Don Stark.
WRL Research Report 92/1, March 1992.WRL Research Report 91/3, April 1991.

‘‘Observing TCP Dynamics in Real Networks.’’‘‘TurboChannel T1 Adapter.’’
Jeffrey C. Mogul.David Boggs.
WRL Research Report 92/2, April 1992.WRL Research Report 91/4, April 1991.

‘‘Systems for Late Code Modification.’’‘‘Procedure Merging with Instruction Caches.’’
David W. Wall.Scott McFarling.
WRL Research Report 92/3, May 1992.WRL Research Report 91/5, March 1991.

‘‘Piecewise Linear Models for Switch-Level Simula-‘‘Don’t Fidget with Widgets, Draw!.’’
tion.’’Joel Bartlett.

Russell Kao.WRL Research Report 91/6, May 1991.
WRL Research Report 92/5, September 1992.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William ‘‘A Practical System for Intermodule Code Optimiza-
R. Hamburgen, Van P. Carey. tion at Link-Time.’’

WRL Research Report 91/7, June 1991. Amitabh Srivastava and David W. Wall.

WRL Research Report 92/6, December 1992.
‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ- ‘‘A Smart Frame Buffer.’’
ments.’’ Joel McCormack & Bob McNamara.

G. May Yip. WRL Research Report 93/1, January 1993.
WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
‘‘Interleaved Fin Thermal Connectors for Multichip Jeffrey C. Mogul.

Modules.’’ WRL Research Report 93/2, June 1993.
William R. Hamburgen.

WRL Research Report 91/9, August 1991. ‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.
‘‘Experience with a Software-defined Machine Ar- WRL Research Report 93/3, October 1993.

chitecture.’’

David W. Wall. ‘‘Unreachable Procedures in Object-oriented
WRL Research Report 91/10, August 1991. Programing.’’

Amitabh Srivastava.
‘‘Network Locality at the Scale of Processes.’’ WRL Research Report 93/4, August 1993.
Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991. ‘‘Limits of Instruction-Level Parallelism.’’
David W. Wall.

WRL Research Report 93/6, November 1993.

27



‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Predicting Program Behavior Using Real or Es-

Brian K. Reid and Christopher A. Kent. timated Profiles.’’

WRL Technical Note TN-4, September 1988. David W. Wall.

WRL Technical Note TN-18, December 1990.
‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’ ‘‘Cache Replacement with Dynamic Exclusion’’

Christopher A. Kent. Scott McFarling.

WRL Technical Note TN-7, November 1988. WRL Technical Note TN-22, November 1991.

‘‘Smart Code, Stupid Memory: A Fast X Server for a ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Dumb Color Frame Buffer.’’ sures’’

Joel McCormack. Wade R. McGillis, John S. Fitch, William

WRL Technical Note TN-9, September 1989. R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Comparison of Acoustic and Infrared Inspection

John Ousterhout. Techniques for Die Attach’’

WRL Technical Note TN-11, October 1989. John S. Fitch.

WRL Technical Note TN-24, January 1992.
‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’ ‘‘TurboChannel Versatec Adapter’’

Joel F. Bartlett. David Boggs.

WRL Technical Note TN-12, October 1989. WRL Technical Note TN-26, January 1992.

‘‘The Effect of Context Switches on Cache Perfor- ‘‘A Recovery Protocol For Spritely NFS’’

mance.’’ Jeffrey C. Mogul.

Jeffrey C. Mogul and Anita Borg. WRL Technical Note TN-27, April 1992.
WRL Technical Note TN-16, December 1990.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

‘‘MTOOL: A Method For Detecting Memory Bot- Patrick D. Boyle.

tlenecks.’’ WRL Technical Note TN-29, July 1992.
Aaron Goldberg and John Hennessy.

‘‘Transparent Controls for Interactive Graphics’’WRL Technical Note TN-17, December 1990.
Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

28



‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.

WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’

Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.

29


