
S E P T E M B E R  1 9 9 2

WRL
Research Report 92/5

Piecewise Linear Models
for
Switch-Level Simulation

Russell Kao

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes.  This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us.  You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.



Piecewise Linear Models for
Switch-Level Simulation

Russell Kao

September 1992

d i g i t a l Western Research Laboratory   250 University Avenue   Palo Alto, California 94301 USA



This report is a slightly revised version of a dissertation submitted in 1992 to the Department
of Electrical Engineering of Stanford University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

Copyright  1992 Russell Kao

i



Abstract

Rsim is an efficient logic plus timing simulator that employs the switched resistor transistor

model and RC tree analysis to simulate efficiently MOS digital circuits at the transistor

level. We investigate the incorporation of piecewise linear transistor models and general-

ized moments matching into this simulation framework. General piecewise linear models

allow more accurate MOS models to be used to simulate circuits that are hard for Rsim.

Additionally they enable the simulator to handle circuits containing bipolar transistors such

as ECL and BiCMOS. Nonetheless the switched resistor model has proved to be efficient

and accurate for a large class of MOS digital circuits. Therefore it is retained as just one

particular model available for use in this framework.

The use of piecewise linear models requires the generalization of RC tree analysis. Un-

like switched resistors, more general models may incorporate gain and floating capacitance.

Additionally, we extend the analysis to handle non-tree topologies and feedback. Despite

the increased generality, for many common MOS and ECL circuits the complexity remains

linear. Thus, this timing analysis can be used to simulate, efficiently, those portions of

the circuit that are well described by traditional switch level models, while simultaneously

simulating, more accurately, those portions that are not.

We present preliminary results from a prototype simulator, Mom. We demonstrate its

use on a number of MOS, ECL, and BiCMOS circuits.
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Chapter 1

Introduction

1.1 Verification of Large Digital Designs

Over the past few decades the number of transistors it is possible to incorporate into a

single digital integrated circuit (IC) has risen at a breathtaking pace. Unfortunately, as the

complexity of integrated circuits increases, so does the likelihood of design errors and the

difficulty of detecting and identifying those errors. Consequently, designers have become

dependent upon simulation programs to predict the behavior of ICs before they are actually

fabricated. These programs make it possible to verify that an IC conforms to logical and

timing specifications before committing the vast resources necessary to build it.

In order to deal with the staggering complexity of designs consisting of hundreds

of thousands of transistors, a hierarchy of simulation tools and techniques has evolved

(Figure 1). In general, lower levels of simulation utilize more detailed descriptions of

increasing
speed

Circuit level

increasing
accuracy

Device level

Switch level

Gate level

Functional level

Figure 1: Simulation Hierarchy
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CHAPTER 1. INTRODUCTION 2

the design and provide greater accuracy and flexibility. However, this increased accuracy

is usually achieved at the expense of decreased efficiency, limiting the size of designs it

is possible to simulate. In contrast, higher level simulators utilize simplified higher level

models to represent the behavior of collections of lower level objects. Because higher level

models abstract away many lower level details, higher level simulators can simulate larger

designs more efficiently. However, the assumptions made in formulating the higher level

models often compromise their accuracy and flexibility. Thus, tradeoffs exist for every

level of simulation. The result is that the design process usually includes simulation at

multiple different levels.

Because the focus of this thesis is switch-level simulation we will narrow our discussion

to just the three middle levels of Figure 1 . Immediately below the switch-level is circuit

level simulation. Circuit simulators[Nag75, WJM+73] represent the IC as a network of

lumped, possibly nonlinear, transistors, resistors, inductors, capacitors, and current and

voltage sources (Figure 2). Kirchoff’s voltage and current laws are used to formulate a

DC
B

A

Figure 2: Circuit Level Representation

set of coupled nonlinear differential equations describing the behavior of the network, and

numerical integration is used to solve these equations. The advantages of circuit simulators

are their flexibility and accuracy. They can deal with arbitrary circuit topologies, they

employ general non-linear transistor models, and they can generate detailed descriptions

of the time behavior of any voltage or current in the network. Their disadvantage is that

they are slow. Circuit simulation programs running on contemporary workstations can

only simulate approximately 1 logic transition of a logic gate in a second. This speed is

inadequate considering that large digital designs can consist of ten to a hundred thousand
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logic gates.

In contrast, gate level simulators represent the IC as a network of gates (Figure 3). A

D = CC = (A + B)

DC
B

A

Figure 3: Gate Level Representation

gate is a higher level object that represents a collection of transistors. Each gate interacts

with the rest of the circuit via a set of unidirectional input and output terminals. A gate

observes the state of wires attached to its inputs, and sets the state of wires attached to its

output. Wire states are represented by Boolean values, and a gate’s behavior is modeled by

a Boolean function that determines the output value as a function of the input values. The

primary advantage of gate level simulation is efficiency. Logic simulation programs running

on contemporary workstations can simulate up to a million logic transitions of a logic gate

in a second. However, there are disadvantages. First of all, the circuit must be partitioned

into a number of pre-characterized gates that exhibit unidirectional behavior. While this is

readily done for gate arrays and standard cell designs (after all, these designs are composed

from gates selected from libraries) custom designs often contain structures (for example,

the MOS pass transistor structure) whose behavior is bidirectional and consequently is not

readily modeled by the gate abstraction. Secondly, the characterization of the logical and

timing behavior of gates is usually performed manually and can be time consuming and

error prone.

Switch-level simulation[Bry80, Ter83, RT85b, DvGdG85, Sch85] is a relatively recent

innovation which attempts to strike a balance between gate and circuit level simulation.

The circuit is described as a network of transistors that are simply modeled by voltage

controlled switches. Depending upon the particular approach, each switch has associated

with it either a strength[Bry80] or a resistance[Ter83, RT85b] representing the current

driving capabilities of the transistor (Figure 4). Because the circuit isn’t partitioned into

unidirectional gates, switch level simulators eliminate the pre-characterization step1 and can

simulate a wider variety of circuits than gate level simulators (including those exhibiting

1Instead of pre-characterizing every different logic gate the user only needs to pre-characterize the two
different kinds of transistors: NMOS and PMOS.
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Figure 4: Resistive Switch Representation

bidirectional behavior). Simultaneously, the simplified circuit models allow switch-level

simulators to be more than three orders of magnitude faster than circuit simulators.

Of course, limitations can arise from the use of overly simplistic transistor models.

The switch model was initially developed for the simulation of MOS digital circuits, and

works well for the static MOS logic which makes up most of a typical digital MOS

IC. Occasionally, however, there are small portions of an IC whose behavior is not well

modeled by a network of switches. Typically, these portions must be simulated at the

circuit level, thus complicating the verification of the design. Furthermore, resistive or

multi-strength switches are poor models for the behavior of bipolar transistors in ECL

circuits. Although switch-level models have been extended to allow the simulation of

bipolar transistors[HS87, SYH88, KAHS88], real ECL and BiCMOS designs occasionally

include circuit techniques (for example, diode decoders, leaker resistors, current source

sharing) that foil approaches based upon classical ECL current steering trees.

To address these shortcomings, this thesis attempts to extend the capabilities of switch-

level simulation. Noting that the switched resistor model is just a particular piecewise linear

model, we investigate the incorporation of more general piecewise linear transistor models

into the switch-level framework.2 Several considerations motivate the use of piecewise

2Pillage[Pil89] suggested the incorporation of piecewise linear models and moment analysis into a circuit
simulator as a promising future application of his work. Our work differs in emphasis. We neglect the
general nonlinear models and circuit topologies necessary to achieve the accuracy of circuit simulation and
study instead simple models and restricted topologies in an attempt to match the efficiency of switch-level
simulation.
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linear models. First, we would like to incorporate more sophisticated MOS models in order

to simulate the behavior of MOS circuits that cannot be simulated by the use of switched

resistors (for example RAM sense amplifiers). Second, we would like to be able to simulate

bipolar transistors which are strongly nonlinear but which seem to be adequately described

by fairly simple piecewise linear models[KAHS88]. Meanwhile, we would like to give

up as little efficiency as possible. Switch-level simulation has proven itself useful for

simulating the large majority of MOS digital circuits and it would be best if we could pay

for additional generality for only those portions of the circuit where it was needed. To

this end the simulator provides the user with a selection of transistor models of which the

switched resistor model is one choice. It turns out that the RC tree analysis techniques can

be generalized to efficiently handle trees of our more general piecewise linear devices with

only a modest degradation of efficiency. The resulting simulator, Mom, is a mixed mode

simulator that extends the capabilities of switch-level simulation in the direction of circuit

simulation.

1.2 Organization

The next chapter describes previous work in estimating the transient response of digital

circuits. In particular the approach taken by circuit simulators (e.g. SPICE) is compared

with that taken by switch-level simulators (e.g. Rsim). Although much work has gone into

trying to speed up circuit simulation, we approach the problem from a different perspective.

That is, rather than starting with a simulator that is accurate and trying to improve its

efficiency, we start with a simulator that is efficient and try to improve its accuracy.

The efficiency and flexibility of Mom are strongly dependent upon the choice of piece-

wise linear models. Chapter 3 discusses restrictions that are placed upon the models to

preserve efficiency. It also explores the utility of simple piecewise linear models and

demonstrates that even simple models can greatly extend the capabilities of switch-level

simulation.

Networks containing piecewise linear models may not have responses that are well ap-

proximated by a single exponential. Therefore a more general moments matching procedure

is used in place of Rsim’s single time constant delay estimation. Chapter 4 summarizes our
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experience with moments matching waveform approximation. Although the procedure has

been extensively explored by others, there are a number of practical considerations unique

to our application.

Chapter 5 describes extensions to RC tree analysis that allow it to handle piecewise

linear models. It is demonstrated that as long as the topology of the transistors is a tree, and

as long as there is no feedback, the complexity of the analysis remains O(n). It turns out

that most MOS and ECL circuits meet these restrictions. However, the analysis can also

be extended to handle non-tree topologies and feedback. Although the extensions are not

as efficient they only need to be used for those portions of the circuit that don’t meet the

restrictions.

The introduction of piecewise linear models greatly complicates the task of detecting

when devices switch. Ultimately, the problem boils down to finding the smallest, positive

root of a multiple-pole exponential waveform. Chapter 6 discusses the techniques used to

solve this problem efficiently.

Finally, Chapter 7 demonstrates the utility of Mom on a number of small CMOS,

ECL, and BiCMOS circuits. Additionally, its efficiency is compared with that of existing

switch-level simulators.



Chapter 2

Previous Work in Transient Estimation

Many different approaches have been proposed for estimating the transient response (and

hence delay) of digital circuits. Here, we will review and contrast two prevalent approaches.

One approach is exemplified by circuit and timing simulators. This approach is character-

ized by the use of nonlinear device models and incremental time numerical integration. A

second approach has been taken by some MOS timing analyzers and switch-level simula-

tors. This approach employs linear device models and moment analysis.

2.1 Circuit and Timing Simulation

Circuit and timing simulation have evolved continuously over the past few decades. The

“second generation1” simulators[WJM+73, Nag75] reached maturity during the mid 1970’s.

These simulators have since achieved widespread acceptance and are now regarded as the

classic “circuit simulators”. However, as ICs increased in size, the circuit simulators were

found to require excessive amounts of computer memory and time. Consequently, a “third

generation” of simulators emerged which attempted to accelerate the transient simulation

of large digital ICs.

1Hachtel and Sangiovanni-Vincentelli[HSV81] have found it to be convenient to distinguish between three
generations of simulators.

7
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2.1.1 Circuit Simulation

Circuit simulators represent the IC as a network of lumped, possibly nonlinear transistors,

resistors, inductors, capacitors, and current and voltage sources. The equations relating the

terminal voltages and currents of the network elements are combined with Kirchoff’s voltage

and current laws to produce a set of coupled nonlinear differential equations describing the

electrical behavior of the network. These equations can be written:

f(x(t); x0(t); t) = 0 (1)

x�<n; f() : <n �<n �< ! <n

where x(t) is a (time varying) vector of network variables (voltages and currents), x0(t)

is its time derivative, and t is time. The transient response of the network is simply the

solution of these equations for t > 0 subject to the initial conditions: x(t = 0) = x0.

Incremental time numerical integration is used to solve the equations. The procedure

involves advancing time in steps:

tk+1 = tk + hk; t0 = 0 (2)

(hk is the size of the kth step) and computing the response at each step. That is at each time

step a linear multistep integration formula of the general form2

x(tk+1) =
pX

i=0

aix(tk�i) + hk

pX
j=�1

bjx
0(tk�j) (3)

is used to eliminate x0(t) from Equation (1). This yields a system of coupled nonlinear

algebraic equations,

g(x(tk+1)) = 0 (4)

which is solved using Newton-Raphson iteration. That is, starting from an initial guess:

x0(tk+1) = x(tk), successively improved estimates are computed:

for i = 0; 1; 2; 3 : : :begin

xi+1(tk+1) = xi(tk+1)� g(xi(tk+1))

g0(xi(tk+1))
(5)

end (6)
2The coefficients, ai and bi, are chosen to ensure that the formula is satisfied exactly if x(t) is a low order

polynomial.
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(g0() is the Jacobian of g()) until some convergence criterion is met:������xi+1(tk+1)� xi(tk+1)
������ < � (7)

(� is some error tolerance). The time step, hk is carefully chosen to control the local

truncation error of the integration formula (3). Time step selection involves a compromise

because smaller step sizes decrease both the error and simulation efficiency.

Flexibility and accuracy are the primary advantages of circuit simulation. The equation

formulation places few restrictions on the network’s topology, and the ability to handle

nonlinear network elements allows accurate transistor models. Furthermore, the numerical

integration procedure allows the computation of the detailed time step by time step behavior

of any electrical variable in the circuit. The accuracy of the integration algorithms is limited

only by numerical considerations which are almost always insignificant compared to the

precision with which components can be fabricated on an IC.

The disadvantage of circuit simulation is the inefficiency that results from processing the

entire circuit simultaneously. At each time step circuit simulators compute multiple Newton-

Raphson iterations, each of which requires the formulation and inversion of the Jacobian.

However, the inversion of the Jacobian of an entire IC can be prohibitively expensive. Even

using sparse techniques, the inversion of circuit matrices has been empirically observed

to grow superlinearly (for example, O(n1:5)[Kun86]) with the circuit size. Furthermore,

because a single time step is chosen for the entire circuit, the step size is necessarily limited

by the accuracy requirements of the fastest moving subcircuit. Thus tiny time steps must

be taken for the entire IC if a single gate is switching rapidly, even if nothing else in the

rest of the IC is switching at all!

2.1.2 Acceleration of Circuit Simulation

To address these deficiencies a third generation of simulators emerged which attempted

to accelerate the transient simulation of large digital ICs. The almost universal theme in

these simulators was the use of decomposition techniques to partition the IC into smaller

pieces that could be analyzed independently[DMHH87]. Partitioning achieved several

things. First, it allowed the formulation and analysis of much more moderately sized

systems of equations. Second, it open up the possibility of multirate simulation, that is the
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selection of different time steps for different portions of the IC. Third, it became possible to

bypass completely the analysis of latent subcircuits, that is subcircuits that weren’t actively

switching. We will describe three common techniques that were used to decompose the

circuit equations (4): circuit tearing, relaxation, and forward Euler integration.

Circuit Tearing

Macro[RSVH79] and Slate[YHT80] employed circuit tearing techniques to reduce the

Jacobian to bordered block diagonal form. Once in this form the system of equations could

be solved in two steps. First, each of the blocks was solved independently. Second, the

overall solution was assembled from the individual solutions. However, only the non-latent

blocks needed to be processed at any particular step. If the state of a block changed little

between the last two time steps or Newton Raphson iterations the block was declared latent

and the solution from the previous time step or Newton Raphson iteration was simply

reused. Thus, the needless reevaluation of subcircuits that were not changing was bypassed

much in the same way that SPICE bypassed devices[Nag75].

Relaxation

MOTIS[CGK75] was the first of the so called “timing simulators” that utilized restricted cir-

cuit models, nonlinear relaxation, and time advancement integration. When certain restric-

tions were placed on the circuit (including no inductors, no floating capacitors, a grounded

capacitor at each node3, unidirectional coupling from an MOS transistor’s gate to its source

and drain, and appropriate ordering of the nodes) the Jacobian became nearly lower block

triangular and, for sufficiently small step sizes, diagonally dominant. These characteristics

make it efficient to invert the Jacobian using a form of Gauss-Jacobi relaxation. Nonlinear

Gauss-Jacobi relaxation essentially decomposes the system of equations (4) into a set of

scalar equations by treating all non-diagonal entries of the Jacobian as if they were zero.

That is, starting with an initial guess, x0(tk+1) = x(tk), each succeeding relaxation iterate,

xi+1(tk+1), is assembled by solving the jth equation, gj , for the jth component of x, xj ,

3A “floating” capacitor is a capacitor with neither terminal connected to ground or a power supply. A
“grounded” capacitor is a capacitor with at least one terminal connected to ground or a power supply.
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assuming that all other components, fxl : l 6= jg are fixed at their values from the previous

iteration.

for i = 0; 1; 2; 3; : : : begin

for j = 1; 2; 3; : : :n begin

solve for xi+1
j (tk+1):

gj(xi1(tk+1); xi2(tk+1); : : : xij�1(tk+1); x
i+1
j (tk+1); xij+1(tk+1); : : : xin(tk+1)) = 0

end

end

In principle, the innermost loop uses Newton-Raphson iteration to solve each of the

scalar nonlinear equations, and the outermost loop computes successive relaxation iterations

until the xi converge (Equation (7)). However, the time advancement algorithms utilized

only one relaxation step per time step and only one Newton-Raphson step per relaxation

step because that was shown to be sufficient to guarantee convergence. MOTIS pioneered

the use of time advancement integration algorithms and, in doing so, avoided both sparse

Gaussian elimination and Newton-Raphson iteration.

MOTIS was followed by a number of simulators that explored variations of the relax-

ation procedure. Event-driven techniques from logic simulation were used by SPLICE1

[New79] to 1) dynamically order the equations thereby achieving faster convergence and 2)

bypass the evaluation of latent nodes. Problems with reliability motivated the investigation

of alternatives to Gauss-Jacobi time advancement, including Gauss-Seidel[New79], and

Modified Symmetric Gauss-Seidel[DMNSV83] algorithms. Additionally, it was realized

that relaxation could be applied at different levels, including at the linear equation level

(MOTIS2[CS84]), the nonlinear equation level (SPLICE 1.6[Sal83]) and the waveform

level (Relax[LSV82]).

Forward Euler Integration

A different approach to decoupling Equation (4) was explored by Elogic[KKSN84] and

SPECS[dG84]. When certain restrictions were placed on the network (including no induc-

tors, no floating capacitors, and a grounded capacitance at each node) Nodal Analysis yields
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the formulation:

Cv0(t) = i(v(t)) (8)

v�<n; C�<n �<n; i() : <n ! <n

where v(t) is a (time varying) vector of node voltages (measured with respect to ground),

v0(t) is its time derivative, C is a diagonal matrix of node to ground capacitances, and

i() gives the currents injected into each node by the non-capacitive elements. Since C is

diagonal, it is trivially inverted, and Forward Euler integration is used to predict the value

of v at some time step, hn, in the future:

v(tn+1) =
1
hn

C�1i(v(tn)) (9)

Note that this formulation decouples the nodes. To predict the future voltage of a node, N ,

(see Figure 5) it is necessary to compute the currents through only those devices directly

attached to N (r2 and r3) No matrix formulation or inversion is required. Furthermore,

r 2r 3r 4r1

N

Figure 5: Node Decoupling

time steps can be selected independently.

The approach taken by Elogic, SPECS, and WATSWITCH[RVB88] was to partition

voltage into a small number of disjoint ranges (Figure 6). Then the time step for a node

range 1

range 2

range 3

range 4

0 v
range 0

1 v

5 v

4 v

3 v

2 v

Figure 6: Voltage Ranges

was set equal to the amount of time it took for the node’s voltage to move from its present
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value to just outside its present range. An event was scheduled for a node for the time

when its voltage crossed into an adjacent range. When this event fired, the current through

all devices attached to the node were updated and new waveforms were computed for all

nodes connected to those devices. Thus, simulation proceeded on an event–driven basis

and the evaluation of latent nodes was bypassed.

Later versions of SPECS associated the voltage ranges with the devices rather than the

nodes and formalized the simulation in terms of piecewise linear voltages and piecewise

constant current device models[RV87]. Furthermore, extensions were made to include

floating capacitors and inductors[VFR90]. ADAPTS[SNGR91] further generalized the

approach by dynamically selecting each device’s voltage ranges (and, hence, the step size)

based upon an analytical model for the device and the accuracy requirements of the overall

simulation.

In general the third generation simulators achieved speed-ups of up to two orders of

magnitude over the classic circuit simulators. However, their restricted circuit models

and problems with reliability have impeded their widespread acceptance. Furthermore

their speedups, although impressive, are fundamentally limited by the use of numerical

integration. Time advancement numerical integration requires that time be advanced in

steps whose size is limited by the need to maintain accuracy and, in some cases, stability.

2.2 Moment Based Timing Analysis and Simulation

In spite of the large amount of work invested in trying to speed up circuit simulation a large

gap remained between the timing simulators and the gate level simulators. Consequently

in the early 1980’s a new form of simulator was devised to fill this gap, the switch-level

simulators. One of these, Rsim[Ter83, Hor83], took a fundamentally different approach to

transient estimation from the circuit and timing simulators. Instead of modeling the behavior

of devices using nonlinear models and computing the response of the networks using

numerical integration, Rsim modeled the behavior of devices using simple linear models

and computed the response of networks using moment analysis. Moment analysis has the

advantage over time advancement numerical integration that the response is computed once

for all time rather than at numerous points in time.
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Moment analysis originated in the late 1940’s when Elmore[Elm48] utilized the first and

second moments of the impulse response of a linear amplifier to estimate its step response.

In general, the kth moment of the (presumed causal) impulse response, h(t), is defined:

cmk =
Z
1

0
tkh(t)dt (10)

Elmore found that the quantities (
p

2� cm2 �cm2
1) and cm1 were good estimates of the step

response’s rise time and the delay to its 50% point, respectively. The delay estimate became

known as the Elmore delay.

Interest in the application of moment analysis to the modeling of delays in MOS digital

integrated circuits was sparked by Penfield and Rubinstein[PR81] who modeled the delay

of polysilicon interconnect by the step response of RC trees. An RC tree was defined to

be a tree of resistors with one grounded node and grounded capacitors at the other nodes

(Figure 7). RC trees were particularly interesting because interconnect usually took the

Figure 7: RC Tree

form of trees and because trees were easy to analyze. Penfield and Rubinstein described a

computationally efficient algorithm for computing the first moment of RC trees and derived

waveform bounds for the step response based upon the single time constant approximation.

Although this work was initially intended to model the delays of linear interconnect, it

was soon used by a number of MOS timing analyzers[Put82, Jou83] to model the delays

of networks of nonlinear MOS transistors. Horowitz[Hor83] more carefully justified this

approach by deriving nonlinear one and two time constant waveform estimates and bounds.

He then retrofitted his nonlinear timing models into an existing switch-level simulator4,

4Although, this work has not been widely reported in the literature, it was performed as part of his PhD
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Rsim[Ter83]. Because this thesis is essentially an extension of Rsim we next describe in

greater detail the algorithms used by Rsim.

As mentioned in the introduction, Rsim models transistors with the simple resistive

switch consisting of the series combination of a resistor and a voltage controlled switch

(Figure 8). The resistor models the current driving capabilities of the MOS transistor and

V d

V s

V gV

dV

sV

g

Figure 8: Switched Resistor Model

is sized according to the width and length of the transistor. The switch is either on or off

and is controlled by the gate voltage measured with respect to ground. If (for an NMOS

transistor) the gate voltage is greater than half the power supply voltage then the switch is

closed (current flows). Otherwise the transistor is an open circuit. It is assumed that no

DC current flows into the gate and, aside from the gate’s control of the switch, there is no

coupling between the gate and the channel. As with the early third generation simulators,

floating capacitors are disallowed and modeled by “equivalent” capacitances to ground.

Replacing on transistors by resistors and off transistors by open circuits usually results

in a partition of the original circuit into a large number of small, mutually independent

subcircuits known as stages or clusters (Figure 9). Because clusters are decoupled, their

responses can be computed independently. Thus in order to compute the transient response

of the overall circuit it is only necessary to analyze those clusters that are actively switching

at each point in time. Rsim uses an event-driven simulation algorithm to schedule the

evaluation of active clusters thereby avoiding the analysis of latent clusters (Figure 10).

thesis work on MOS timing models. This improved version of Rsim became part of the standard Berkeley
CAD distribution.
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D

cluster 2

C

cluster 1A  (0)

B  (0)
D  (0)C  (1)

Figure 9: Decomposition of Circuit into Clusters.

To compute the response of a cluster Rsim uses moment analysis instead of numerical

integration. Moment analysis is a two step process that involves, first, the computation of

moments from the network followed by the generation of waveform estimates from those

moments. Moments were computed using a procedure equivalent to finding successive DC

solutions for the network. Particular advantage was taken of the tree structure possessed by

most circuits. Sparse matrix formulation and sparse Gaussian elimination were bypassed in

1. Through the use of an event queue, select the next device to switch. Advance the
simulation time to the time of this event.

2. Construct the cluster. That is, collect all nodes affected by this switching event.

3. Compute the response of the cluster resulting from the switching event.

4. Reschedule all MOS transistors affected by this cluster. That is, examine every
transistor with a gate terminal attached to the cluster and schedule an event for it if
the new response causes it to switch some time in the future.

Figure 10: Rsim’s Event Driven Simulation Algorithm.

favor of simpler tree analysis techniques whose complexity was guaranteed to be O(n) in

the size of the cluster. In the rare case that non-tree topologies were encountered, heuristics5

were used to simply delete resistors closing loops in order obtain an approximate solution.

5It was noted that the most commonly occurring case of loops was created by CMOS transmission gates.
These were simply handled by parallel resistor combination.
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In his thesis Horowitz showed that waveform estimates for linear RC networks, could

be obtained from the moments by assuming that the system function was of the general

form6

V(s) = 1
(1 + �1s)

(11)

for single time constant estimates, or:

V(s) = (1 + s�z)

(1 + s�1)(1 + s�2)
(12)

for two time constant estimates. Then, the parameters, �1, �2, and �z , were obtained by

matching (among other things) the low order moments of the system function with those

computed from the circuit. In the time domain, these one and two time constant estimates

took the forms:

v(t) = e�t=�1 and (13)

v(t) = (�z��1)e
�t=�1+(�2��z)e

�t=�2)
�2��1

(14)

respectively.

However, MOS transistors are nonlinear. Horowitz showed that the single time constant

estimate of the response of a nonlinear NMOS network was:

v(t) =

8<: 1� tanh(t=�1) v(t) falling
t

t+�1
v(t) rising

(15)

where �1 was the first moment of the network obtained by replacing each transistor by a

resistor of resistance:

Reff =
2

k(Vdd � Vt)
(16)

(where k = �CoxW=L is the device transconductance parameter and L;W;�;Cox; andVt

are parameters of the quadratic MOS model[MK77, HJ83]).

However, switch-level simulators do not require the computation of the waveform but

rather only the delay to the 50% point. For linear networks, the delay can be computed

6For simplicity Horowitz normalized the logic swing (usually 5 volts) to 1 volt.
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by multiplying the first moment7 by � ln(1=2). For NMOS networks the delay can be

computed by multiplying the first moment by tanh�1(1=2) for falling transitions and 1 for

rising transitions. Thus although the step response of MOS-capacitor trees is not identical

to the step response of resistor-capacitor trees, the computation of single time constant delay

estimates of MOS trees could be made identical in form to that of resistor trees by choosing

the resistor values appropriately. It was precisely this observation that justified the use of

the switched resistor model. Unfortunately, Horowitz found no corresponding relationship

between linear and nonlinear two time constant delay estimates.

Numerous extensions to the approach of Penfield, Rubinstein, and Horowitz have

been suggested. A number of researchers have investigated the extension of linear mo-

ment analysis to circuits more general than RC trees, including RC trees with multiple

sources[Chu88, RT85a], RC meshes[Wya85, LM84], and floating capacitors and con-

trolled sources[SZ87]. Also explored was the use of higher order estimates to model

the non-monotonic waveforms arising from linear[RT85a] and nonlinear[Chu88] charge

sharing.

However, many of the extensions to linear moment analysis were superceded by the

recent discovery[Hua90, Cha91] that single time constant delay estimation was just a

special case of the more general moments matching procedure developed to solve the

model order reduction problem of linear control theory. In 1956 Paynter[Pay56] applied

the Padé approximation to the approximation of system functions. That approach constructs

approximations of arbitrary order by matching low order moments. Pillage, Rohrer, and

Huang[PR90, Hua90] combined general Padé approximation with standard circuit equation

formulation and analysis techniques from circuit simulation to generate arbitrarily high

order estimates of the responses of general lumped linear networks. They demonstrated the

application of those techniques to the estimation of the responses of linear interconnect and

the estimation of the poles and zeros of linearized models of operational amplifiers.

7For the linear single time constant approximation the result of matching the first moment of Equation (11)
is �1 = bm1.
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2.3 Improving Rsim

Switch-level simulation has its limitations. A common scenario is that the simulator can

simulate 99.9% of a large circuit, although for small portions the simulator fails to produce

even a correct logical result. Sometimes those failures don’t interfere with the verification of

the circuit. For example, the output of a voltage reference generator can be manually fixed

in a switch-level simulation after being verified using SPICE. Unfortunately the simulator’s

failure sometimes hinders the verification of the design. For example, Rsim’s inability to

deal with sense amplifiers makes it difficult to check the logical correctness of RAMs.8

However, most of such a circuit can be simulated at the switch-level. If it were possible to

increase the generality of the simulator just for certain small portions of the circuit it would

be possible to validate the entire design.

Piecewise linear models promise to give the user the ability to select different accuracies

for different parts of the circuit.9 For the RAM described above only small portions need to

be simulated with more accurate models while the majority of the circuit can be simulated

using switch-level models. In principle, if a simulator were designed such that the additional

complexity was paid for only when it was used, it would be possible to simulate those circuits

with only a moderate impact on the overall efficiency. Since the switched resistor model is a

piecewise linear model, it appears promising to simply extend Rsim’s simulation framework

to allow more general piecewise linear models.

Although Rsim’s basic simulation framework can be retained, extensive changes are

required. One change involves the representation of node state. Rsim takes advantage of

the fact that most digital MOS gates have logic swings from one power supply rail to the

other and switching thresholds at the midpoint. Therefore Rsim represents the state of nodes

using the Boolean values 0 and 1 and describes state transitions using just the delay and

slope at the 50% point. However, because Mom must simulate a wider variety of circuits,

it can make fewer assumptions about their properties. For example, ECL circuits have

multiple nonoverlapping voltage swings which make it impossible to establish a one to one

8Although each of the individual pieces of a RAM is usually verified using a circuit simulator, it is still
useful to verify the logical functionality of the entire RAM using a switch-level simulator in order to confirm
that the decoders have been hooked up properly, that the data hasn’t been inadvertently inverted, etc.

9The present version of the simulator depends upon the user to manually choose transistor models.
Although it may be possible to automate the selection of models, this wasn’t explored.
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correspondence between a logical value and a voltage. To avoid building in assumptions

about particular logic families, Mom utilizes real voltages to represent the state of nodes

and waveforms to describe the shape of transitions.

Although the switched-resistor model is a piecewise linear model, more general piece-

wise linear models have attributes which necessitate extending the switch-level framework.

First, while the switched-resistor model only has two regions of linearity, a more general

piecewise linear model can have any number of regions. Devices with more regions are

more difficult to schedule. They also generate additional events which cause logic tran-

sitions to be made up of multiple segments instead of just a single segment (Figure 11).

Second, while the linear circuit describing the behavior of the switched-resistor model

Rsim: Mom:

Figure 11: Multiple Segments per Logical Transition.

(when it is on) is just a resistor, more general piecewise linear models can have more com-

plex circuit models which include voltage, current, and dependent sources. More complex

circuit models complicate the estimation of a circuit’s response. Not only are the wave-

form estimates more complex, but the procedures for computing moments require more

sophistication.

Unfortunately these changes degrade the efficiency of the simulator. Simpler models

yield more efficient simulations, and there are strong incentives to use models that are

as simple as possible. The next chapter considers the constraints that must be placed

upon piecewise linear models in order to preserve efficiency. Additionally it explores the

capabilities of simple piecewise linear models.

2.4 Comparison and Summary

Circuit simulation has proven to be the most general and reliable technique for estimating the

transient response of digital circuits. Circuit simulation places few restrictions on the circuit
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topology, utilizes general nonlinear transistor models, and employs time advancement

numerical integration to solve the circuit equations. The advantages of circuit simulation

are its accuracy and generality. The disadvantage of circuit simulation is its inefficiency. The

general models and topologies require algorithms whose execution time grows superlinearly

with the circuit size, making their use impractical for large ICs.

The classic circuit simulators were followed by a third generation of simulators which

focused on the acceleration of the transient simulation of large ICs. These approaches

were based upon the use of simplified circuit models and the decomposition of the circuit

into pieces that could be analyzed independently. Decomposition accelerates simulation

by reducing the size of the systems to be solved, by allowing the independent selection

of time steps (multirate) and by bypassing sections of the circuit that are not actively

switching (latency). Speedups of up to two orders of magnitude were achieved over classic

circuit simulation. However, these speedups are limited because the numerical integration

algorithms advance time in steps limited in size by the need to maintain accuracy.

MOS switch-level simulators such as Rsim also use decomposition techniques. How-

ever, instead of accurate nonlinear device models and numerical integration, simple linear

device models and moment analysis are used to predict the response of circuits. Moment

analysis has the fundamental advantage that it eliminates the need to take time steps; the

response is computed once for all time. The primary advantage of switch-level simulators

is their efficiency. Speedups over circuit simulation of more than three orders of magnitude

have been observed. Furthermore, because they restrict the topology of networks to trees,

switch-level algorithms have complexities which grow linearly (O(n)) with the size of the

circuit, making them suitable for the simulation of large ICs. The disadvantage of switch-

level simulators is their inflexibility. Simple switched resistor models are unsuitable for

some MOS digital circuits, and for most ECL and BiCMOS circuits.

The conjecture explored by this thesis is that the limitations of switch level simulation

can be overcome by allowing more general piecewise linear models. The incorporation of

piecewise linear models requires many changes to Rsim’s simulation framework and these

are explored in the following chapters.



Chapter 3

Piecewise Linear Models

Mom is an extension of Rsim that allows more general piecewise linear transistor models.

In principle, a simulator that utilizes piecewise linear models should be able to achieve

simulations of arbitrary accuracy because piecewise linear models can be made to conform

to nonlinear device characteristics with arbitrary precision by simply adding regions of lin-

earity. However, as pointed out in the preceding chapter, efficiency concerns provide strong

incentives to use models that are as simple as possible. Therefore, after a brief discussion

of the representation of piecewise linear models, this chapter describes restrictions placed

on the models in order to preserve the efficiency of simulation. Such restrictions do not

appear to be a problem. A number of simple MOS and bipolar models are proposed and

simulations are used to demonstrate their capabilities. Even models that are just slightly

more complex than the switched resistor model can significantly increase the capabilities

of the simulator.

3.1 Piecewise Linear Representation

We represent a piecewise linear device by a collection of linear circuits, each of which

represents the linearized behavior of the device for a particular region of operation. Each

region of operation is represented by a polytope[vB87] in the multi-dimensional space

defined by the device’s terminal voltages. For example, the piecewise linear description of

the switched resistor model is depicted in Figures 12 and 13. The electrical behavior of the

22



CHAPTER 3. PIECEWISE LINEAR MODELS 23
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Figure 12: Switched Resistor Model.

device in each of its two regions is modeled by the circuits in Figures 12 (a) and (b). The

regions themselves are described by polytopes in the three dimensional space defined by the

source, drain, and gate voltages (Figure 13). The region to the right of the cross-hatched

V g

on region

V g =

off region

V tV s

V d

Figure 13: Hyperplane Subdivides Space into Regions of Operation.

plane labeled “Vg = Vt” is the polytope corresponding to the on region. The region to the

left of the plane is the polytope corresponding to the off region.

More general models may have circuits consisting of interconnections of linear circuit

elements. Additionally, they may have more than two regions of linearity. Examples of

more general circuits will be given in the following sections. The remainder of this section

discusses how regions of linearity are specified.

In general a device may have n terminals. Consider the n dimensional space defined by

the voltages at those terminals: fv1; v2; : : : vng. Then the set of points whose coordinates

satisfy a given linear equation in those voltages:

a0 + a1v1 + a2v2 + : : :+ anvn = 0 (17)
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defines a hyperplane in the n dimensional space. The hyperplane is simply the multi-

dimensional generalization of the familiar three dimensional plane. Like planes, hyper-

planes partition space. Points that lie on one side of the hyperplane have coordinates that

satisfy the inequality:

a0 + a1v1 + a2v2 + : : :+ anvn < 0 (18)

while points on the opposite side satisfy:

a0 + a1v1 + a2v2 + : : :+ anvn > 0: (19)

The polytope is the multi-dimensional generalization of the polyhedron. While a poly-

hedron is a region in three dimensional space bounded by planes, a polytope is a region

in n dimensional space bounded by hyperplanes. Equations (18) and (19) suggest that a

polytope can be specified by a conjunction of linear inequalities:

a0 + a1v1 + a2v2 + : : :+ anvn > 0

b0 + b1v1 + b2v2 + : : :+ bnvn > 0

c0 + c1v1 + c2v2 + : : :+ cnvn > 0 (20)
...

...
...

Each inequality bounds the region by a hyperplane.

3.2 Model Restrictions

Much of the speed of MOS switch-level simulation results from the use of transistor models

that have been simplified to allow their efficient analysis. Although we intend to generalize

those models, we retain certain constraints on the models in order to facilitate analysis.

Because moments matching can only be used to estimate the responses of linear circuits,

the first constraint is that nonlinear capacitors must be approximated by linear (i.e. fixed

value) capacitors. Although it may be possible to approximate nonlinear capacitors with

piecewise linear capacitors, this was not explored.

Second, we restrict the DC coupling from the gate (base) to the source and drain

(emitter and collector) to be unidirectional. This facilitates decomposition because clusters
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can be analyzed independently once they have been properly ordered. The unidirectional

assumption is reasonable for MOS transistors because the DC current into the gate is

negligible. It is also acceptable for nonsaturating bipolar circuits such as ECL. Because

a bipolar transistor’s current gain, � � IC=IB, is typically on the order of 100, the DC

base current is typically two orders of magnitude smaller than the tree current and hence

contributes minimally to the switching delay of the preceding gate.1 There are digital bipolar

circuits such as IIL and TTL which saturate the transistor and hence draw significant base

currents. This restriction is not likely to be acceptable for those circuits.2

Lastly, we focus our attention on piecewise linear models with small numbers of regions.

One of the advantages of the switched resistor model is that as long as a cluster’s inputs

don’t change, the cluster’s response can be computed once for all time. However, when

transistor models acquire greater numbers of regions, transistors may pass through multiple

regions during the course of a single logic transition. The response of a cluster must be

recomputed whenever any of its transistors changes its region of operation. In the limit, as

piecewise linear models become more detailed, the intervals between recomputation shrink

until they become comparable to the time steps taken by simulators employing numerical

integration. This would nullify the principle advantage of moment based techniques, that

is the ability to take large time steps. Fortunately, fairly simple piecewise linear models

often suffice provided that the operating point about which the device is linearized is chosen

judiciously.

3.3 MOS Level-0 Model

Our simplest MOS Level-0 model is the switched resistor model described above. The

advantages of this model are that it can be analyzed extremely efficiently (the simulation

can be very fast) and that it provides good first order estimates of the switching delay

of most digital MOS circuits. Figure 14 compares the responses of inverters using the

1Base current does affect noise margins in ECL circuits. However, DC noise margins are more efficiently
checked through the use of programs that perform a static analysis of the circuit. A dynamic logical simulation
is generally unnecessary and much more expensive.

2In principle where base current is sufficiently important it can be modeled using a piecewise constant
current source. However this was not explored.
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Figure 14: Response of Level-0 Inverter Compared to SPICE.

switched resistor model and SPICE’s nonlinear MOS model. For this simulation nonlinear

and/or floating capacitors have been approximated by linear grounded capacitors. Also the

model’s resistance has been selected assuming that a gate has approximately equal input and

output slopes. As expected (see Chapter 2), although the waveform shapes aren’t identical,

the switched resistor model does provides a good estimate of the delay to the 50% point.

The model has some limitations. Perhaps the most problematic is that it adequately

models the behavior of only certain kinds of circuits. Horowitz showed that single time

constant estimates can be produced for networks of nonlinear resistors as long as all

the resistors possesses identical pseudo-linear I-V characteristics[Hor83]. However, this

restriction excludes circuits with MOS transistors with different gate voltages, circuits with

linear resistors in addition to MOS transistors, and even circuits with both NMOS and

PMOS transistors in which transistors of both types are simultaneously on.3 While this

assumption is rarely a problem with MOS digital gates, there are circuits, such as the

sense amplifiers of dynamic and static MOS RAMs, for which the switched resistor model

produces poor predictions of the DC operating points and transient behavior.

Another problem is that while the switched resistor model can be used to predict the

3Apparently this excludes many CMOS gates. However, in practice the delay of a CMOS gate is usually
dominated by a tree of transistors of a single type driving the output node to Vcc or ground. A tree of the
opposite transistor type may also be attached to the output node. However because it usually is small, it
contributes little error to the switching delay even if it is ‘incorrectly” modeled.
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step response of MOS networks, because it theoretically switches between its two states

instantaneously, it does not directly account for the affect of finite input slopes upon the

delay. Instead, an additional “nonlinear gate” model must be used to account for the affects

of finite input slope[Hor83]. However, for our piecewise linear simulator this input slope

dependency is most conveniently handled by formally incorporating characteristics of the

“nonlinear gate” model directly into a more sophisticated transistor model.

3.4 MOS Level-1 Model

3.4.1 Rationale

The MOS Level-1 model was originally motivated by the observation that velocity sat-

uration, which has become prevalent in modern MOS transistors, tends to linearize the

behavior of the device. Velocity saturation occurs because lattice scattering limits the

maximum velocity of carriers drifting through a semiconductor. It appears in modern short

channel devices because as channel lengths decrease, the electric fields in the channel in-

crease thereby increasing the velocity of carriers[GD85, pages 105–107]. From the circuit

designer’s point of view, velocity saturation is undesirable because it reduces the current

driving capabilities of the device. Ironically, velocity saturation simplifies the modeling of

MOS transistors using piecewise linear functions.

One effect of velocity saturation is that it tends to induce saturation at drain–source

voltages lower than those predicted by the quadratic model. To illustrate, Figure 15 plots

the drain current, Id vs the drain-source voltage, Vds, for two transistors for a single gate–

source voltage, Vgs = 5. The lower curve is for a MOSIS 2� transistor while the upper

curve is for the same transistor with the effects of velocity saturation eliminated.

From the plot it is apparent that the I-V characteristic of the device which isn’t velocity

saturated is largely quadratic. As such it consists of two segments. For low drain-source

voltages the transistor operates in the linear region and the characteristic is parabolic.

Above a certain drain-source voltage4 (Vds � 4V ) the transistor operates in the saturation

4For any given gate–source voltage, Vgs, the quadratic model enters the saturation region when Vds >

Vgs � Vt
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Figure 15: MOS I-V Characteristics With and Without Velocity Saturation

region and the characteristic is a (nearly) horizontal line.

From the plot it is also evident that the characteristic of the velocity saturated transistor

is identical to that of the quadratic transistor except that it saturates at a much lower voltage

(Vds � 1:5V ). This increases the size of the saturation region such that it comprises most

of the I-V characteristic. Because this segment is nearly horizontal, the transistor in the

saturation region can be approximated by a current source. Simultaneously, the linear

region has been truncated so that what remains of the original parabolic segment can be

approximated by a straight line. This is equivalent to modeling the transistor in the linear

region by a resistor.

Another effect of velocity saturation is that it tends to linearize the dependence of the

channel current upon the gate–source voltage in the saturation region. For a quadratic

transistor, the transconductance in the saturation region increases linearly with the gate

voltage:

gm = 2�Cox
W

L
(Vgs � Vt) (21)

while for a velocity saturated transistor the transconductance asymptotically approaches

gm = CoxWVmax (22)

where Vmax is the maximum velocity of carriers drifting through the semiconductor. This
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effect can be observed in Figure 16 which plots Id vs Vgs for Vds = 5. While the
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Figure 16: Linearization of Transconductance for Large Vgs

current through the quadratic transistor (the upper curve) continues to increase in slope

with increasing Vgs (the curve is a parabola), the slope of the velocity saturated transistor

(the lower curve) becomes constant for large Vgs. Thus the velocity saturated part of the

curve can be approximated by a straight line. This is equivalent to modeling the transistor

in the saturation region by a linear voltage controlled current source.

3.4.2 Model

The resulting MOS Level-1 model is depicted in Figures 17– 19. In the saturation region

(Figure 17) the transistor is modeled by a voltage controlled current source shunted by a

gV

g o

V d

sV

)t( V-gsVgmi =
Vgs � (Vt � go

gm
Vds) > 0 (23)

glVds � gm(Vgs � Vt) > 0 (24)

Figure 17: Piecewise Linear MOS Model: Saturated Region

resistor. The transconductance is set by the parameter gm, while the gate–source voltage
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for which the current source delivers zero current is Vt. In addition, the upward slope of

the saturated segment of the I-V curve5 is modeled by go.

The inequalities in the figure define the saturation region polytope. Equation (23)

ensures that transistor has sufficient gate–source voltage to turn it on. Here, the quantity

(Vt � (go=gm)Vds) is the effective threshold of the device.6 Equation (24) ensures that the

drain–source voltage is sufficient to saturate the transistor.

In the linear region the transistor is modeled by a single conductance, gl (Figure 18).

Equation (25) ensures that current flows from the drain to the source. If that is not the case

V g g l

V d

V s

Vds > 0 (25)

glVds � gm(Vgs � Vt) < 0 (26)

Figure 18: Piecewise Linear MOS Model: Linear Region.

the source and drain are simply interchanged.

Lastly, the off region is the obvious open circuit in Figure 19.

sV

dV

gV
Vds > 0 (27)

Vgs � (Vt � go
gm

Vds) < 0 (28)

Figure 19: Piecewise Linear MOS Model: Off Region.

The regions are plotted in Appendix B. Note that although there are a total of three

hyperplanes, any given region is bounded by only two. This is important because the effort

required to compute if and when a piecewise linear device changes regions is proportional

to the number of hyperplanes bounding the current region.

5The variation of drain current with the drain–source voltage in the saturation region is caused by channel
length modulation[MK77]

6The dependence of the model’s threshold upon the drain voltage is explained in Appendix A.
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3.4.3 Choosing Parameters

In exchange for its simplicity, the Level-1 piecewise linear MOS model loses the ability

to duplicate the behavior of a SPICE model over any arbitrary operating range. However,

digital circuits often operate their transistors in particular regions. If the parameters of a

piecewise linear transistor are chosen based upon the circuit in which it is used, good results

can be obtained.

CMOS gates

For static CMOS gates, the parameters should be chosen to match the I-V characteristics of

the SPICE model in a region of greatest current, that is, 2:5 < Vgs < 5 and 2:5 < Vds < 5.

The rationale is that typically most of the change in voltage at the output of a CMOS gate

occurs with the output transistors biased into their high current range. Because the rate of

change of voltage is proportional to the current, modeling errors in regions of low current

usually produce smaller timing errors than errors in regions of high current. Figures 20 and

21 illustrate the ability of the piecewise linear models to match the I-V characteristics of
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Figure 20: Piecewise Linear vs SPICE I-V Characteristics: Vgs = 3,4, and 5 volts, SPICE
Level-2 models for MOSIS 2� Process.

MOS transistors from MOSIS 2� and 1:2� processes, respectively.
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Figure 21: Piecewise Linear vs SPICE I-V Characteristics: SPICE Level-3 models for
MOSIS 1:2� Process.

In these figures, the I-V curves of the piecewise linear models are superimposed over

those of the SPICE models that they were tailored to match. The figures reveal a very good

match in the saturation region for large values of Vgs and Vds.

The quality of the match is also born out by a comparison of the transient responses

of CMOS inverters (Figure 22) using SPICE vs piecewise linear transistors.7 Figure 23

in out

Figure 22: CMOS Inverter

shows the responses for fast and slow rising exponential inputs. However, the match of I-V

characteristics is not as good for lower values of Vgs. Figure 24 plots Id vs Vgs and shows

7In this section only the modeling of transistor I-V characteristics is considered. The modeling of nonlinear
and/or floating capacitors using linear grounded capacitors is considered in a following section. Thus, in this
section when circuits using SPICE vs piecewise linear transistors are compared, errors due to the modeling
of capacitors are eliminated by swamping all device capacitances with large linear grounded capacitors.
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Figure 23: Inverters Using Piecewise Linear vs SPICE Transistors.
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Figure 24: Mismatch for Small Vgs.
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that the piecewise linear model (lower straight line) underestimates the current for small Vgs

where the SPICE model (upper curve) is no longer velocity saturated. This modeling error

is most evident for slow inputs. When the input to a logic gate switches slowly relative

to the output, the transistors are never biased into their high current regions (Figure 25).

However, as pointed out by Horowitz[Hor83], timing errors in this case are less important
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Figure 25: Slow Input to CMOS Gate Accentuates Modeling Errors.

because they are small relative to the delay (and hence, error) of the previous stage.

It is interesting to note that the Level-1 piecewise linear model predicts the behavior of

stacks of transistors more accurately than the switched resistor model. As mentioned above,

it is necessary to assume quadratic behavior in order to model MOS transistors as pseudo-

linear resistors. Unfortunately, velocity saturated transistors are not pseudo-linear. To see

why, consider the series connection of a pair of identical MOS transistors. If the devices

were pseudo-linear, then it would be possible to perform series combination as if they were

resistors. That is the pair could be replaced by a single transistor which supplies half the

current (for example, one with half the channel width). However, the series connection of

two identical transistors is actually equivalent to a single transistor with twice the channel

length. Because the channel length has been doubled, velocity saturation (a short channel

effect) becomes less pronounced, and the pair will deliver more than half the current of

a single transistor. This is confirmed by a comparison of the I-V characteristics and step

response of series stacks of pairs of MOS transistors using SPICE, piecewise linear, and
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pseudo-linear models (Figure 26). Both plots show that the piecewise linear model gives
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Figure 26: NMOS Stacks Using SPICE, Piecewise Linear, and Pseudo-Linear models.

a better fit to the SPICE model than the pseudo-linear model.

Other Circuit Forms

Of course, different circuit forms bias their transistors into different regions of operation.

A piecewise linear model formulated for static CMOS gates does not necessarily perform

well for other kinds of circuits. To illustrate, consider the differential amplifier circuit in

Figure 27 which has been used to sense the small voltage swings on the bit lines of CMOS

a

out

bitbit

Vcs

tail

Figure 27: SRAM Sense Amplifier
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static RAMs[MMS+80]. When the Level-1 models formulated for static CMOS logic are

used in the sense amplifier (Figure 28 (a)) (The response of out and a are shown for rising
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(a) Poor Choice of Level-1 Parameters. (b) Better Choice of Level-1 Parameters.

Figure 28: Simulated Response of SRAM Sense Amplifier.

and falling transitions on bit.) the match with SPICE is not as good as with MOS static

gates. However this result is a vast improvement over Rsim. Mom’s output generally does

the right thing although there are errors in the timing. In contrast, Rsim reports that all

nodes remain in the undefined state.

It is interesting to investigate the cause of the mismatch particularly in light of the

excellent matches obtained for static gates. The reason is that the sense amplifier is

very different from a static gate. Not only is the output swing not from 0 to 5 volts

(it is from 2 to 5 volts) but the input swing is only 1 volt peak to peak centered about

3.5 volts. Thus, the sense amplifier operates its transistors in different regions than do

MOS static gates. If the user takes care to linearize the transistors in the actual operating

regions of the circuit better results can be obtained. In this case excellent results are

obtained when the transistors are linearized with the circuit biased at its switching threshold

(Vbit = Vbit = 3:5V )(Figure 28 (b)). This match is surprisingly good considering that the

transistors operate in regions where they are not strongly velocity saturated and, in fact,

exhibit substantial quadratic behavior.
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To conclude, the MOS Level-1 model consistently yields better results than the switched-

resistor model. Furthermore, if care is taken in choosing the point about which the devices

are linearized, the matches with SPICE can be surprisingly good considering the simplicity

of the model.

3.5 Bipolar Model

Bipolar transistors are more difficult to model because their exponential characteristics are

more strongly nonlinear than MOS transistors’ quadratic characteristics. For the purpose of

ECL switch-level simulation satisfactory results have been obtained using the simple Level-

0 model shown in Figure 29[KAHS88]. For this model, gm represents the transconductance

forward
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V c

eV

-= mg ( Vi )Vonbec
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Figure 29: Piecewise Linear Bipolar Model.

of the transistor, and Von the nominal base–emitter voltage drop in the forward active region.

The model incorporates several simplifications. In the forward active region the output

conductance caused by base width modulation[MK77] was omitted. The output conduc-

tance does not appear to significantly affect the delay, and its omission allows current

steering trees to be analyzed in linear time (See Section 5.5). Furthermore, the satura-

tion region was omitted altogether because the additional complexity would degrade the

performance of the simulation and ECL gates don’t normally operate transistors in that

region.

The parameters can be obtained by linearizing an ECL inverter (Figure 30) about its

switching threshold: Vin = Vref . At the threshold each of the transistors receives half of

the tail current. Since the current for an ideal bipolar transistor in the forward active region
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Figure 30: ECL Inverter

can be approximated by[MK77]:

Ic = Ise
V be
KT=q ; (29)

the parameters are given by

gm =
Itail

2KT=q
(30)

Von =
KT

q
ln
Itail
2Is

(31)

In addition, if the parasitic resistance in series with the emitter terminal is not modeled

separately its affect can be incorporated into gm:

g0m =
1

1
gm

+ re
(32)

Figure 31 depicts an ECL AND gate and compares the response of the circuit using

piecewise linear and SPICE models. Again the match is quite good especially considering

the simplicity of the model.

3.6 Second Order Phenomena

The previous section only considered the modeling of I-V characteristics of devices. For the

sake of clarity examination of various second order effects were postponed. This section

will address the modeling of nonlinear capacitance, floating capacitance, and parasitic

resistance. MOS switch-level simulators model the effect of floating capacitors using

“equivalent” grounded capacitors. This approximation has been effective for most MOS
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Figure 31: ECL AND Gate.

gates because the majority of the capacitance is to ground. However, for circuits with a

larger fraction of floating capacitance this approximation can result in significant errors.

To illustrate, we will consider the responses of CMOS and ECL inverters with and without

floating capacitors (Figure 32). To simulate more realistic loading, the output of the CMOS
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Figure 32: CMOS and ECL Test Circuits

inverter and the inverting output of the ECL inverter drive other inverters. The inputs are

rising exponentials.

In Figure 33 the inverters using SPICE models include the devices’ nonlinear float-

ing capacitors, while the inverters using piecewise linear models use “equivalent” linear
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Figure 33: Grounded Capacitor Approximations.

grounded capacitors. From the plots it can be seen that the grounded capacitor model

performs much better for the CMOS inverter than for the ECL inverter. For the CMOS

inverter, the most apparent error comes from the floating capacitance between the gate and

drain of the MOS transistors. This causes the response of the SPICE inverter to bump up

slightly before falling to ground. However, the responses rapidly converge after the bump.

The error in switching delay is only 4%.

In contrast, numerous sources of mismatch arise when one attempts to approximate the

floating capacitances of ECL gates. Several of these can be observed in the plots. The first

has already been observed for the CMOS inverter. The floating base-collector capacitance

of T1 causes the inverting output of the SPICE circuit to bump up slightly before falling.

Second, note that the non-inverting output of the SPICE circuit begins to rise when the

input begins to rise rather than when the input crosses the switching threshold. When

the input rises, current is injected into tail via the floating base-emitter capacitance of T1.

This current cancels some of the current extracted from tail by the current source thus

causing the non-inverting output to rise. Third, after the initial bump the inverting outputs

appear to converge up until t=500ps when they again diverge. This occurs because the

“equivalent” capacitance seen looking into the input of the second stage changes with time.

Initially, this load consists only of the base-collector capacitance of T3. However, when
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the second stage switches the effective capacitance increases suddenly. When the collector

of T3 falls, its effective floating base-collector capacitance increases because of the Miller

effect. When the base-emitter voltage of T3 collapses the base-emitter floating capacitance

becomes visible. As T3 turns off, its stored base charge must be discharged by the first

stage. The result is that the switching delay error for the inverting output is 8.3% while the

error for the noninverting output is 24%. In general, we have observed that the modeling

of floating capacitors using grounded capacitors in ECL leads to errors of up to 30%.

If greater accuracy is required it is necessary to include linearized floating capacitors

in the piecewise linear model. Figure 34 shows the Level-1 bipolar model and its response
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Figure 34: Level-1 Bipolar Model has Floating Capacitors.

compared with the SPICE model. (Appendix C describes the generation of linear approx-

imations of the nonlinear capacitances of the bipolar transistor.) It is apparent that the

waveform accuracy has increased substantially. The switching delay error of the inverting

output has dropped from 8.3% to 4% and that of the non-inverting output from 24% to 19%.

These results confirm that much of the error was due to the inadequacies of the grounded

capacitance approximations.

Finally, if still greater accuracy is required the parasitic resistances of the bipolar

transistor can be included in the piecewise linear model. Figure 35 shows the Level-2

bipolar model and its response compared with the SPICE model. The matching is very

good indeed. The switching delay error for the inverting output has dropped from 4% to
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Figure 35: Level-2 Bipolar Model has Floating Capacitors and Parasitic Resistors

1.5%, while that for the non-inverting output has dropped from 19% to 4%. The remaining

mismatch between the SPICE and piecewise linear models appears to be due mostly to

the modeling of non-linear capacitors using linear capacitors. For example, the previously

described bump on the inverting output caused by the base-collector floating capacitance of

T1 is consistently smaller for the SPICE models than for the piecewise linear model. The

reason is that the non-linear base-collector capacitance varies by more than a factor of two

from :77Cjc0 when the base is low and the collector is high, to 1:65Cjc0 when the base is

high and the collector is low. Thus when we are forced to choose an average capacitance,

that capacitance will be too large at the beginning of the transition, and too small at the end.

The initial over-estimate leads to an over-estimate of the size of the bump.

Before we conclude this section, it should be admitted that these experiments are,

perhaps, overly conservative. First, note that the error in the switching delay for the non-

inverting output appears to be uniformly larger than the switching delay for the inverting

output. The reason is that the non-inverting output is unloaded and hence has fewer

capacitors attached. When larger numbers of capacitors are modeled, individual modeling

errors tend to cancel. When this output is loaded the switching delay error decreases. This

tendency for unloaded outputs to have larger modeling errors has also been observed for

MOS switch-level simulators and timing verifiers. However if the output is truly unloaded

then nothing is affected by it and we probably don’t care about its error.
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Second, only device parasitic capacitances have been included. Wire capacitance has

been neglected because it is very layout dependent. However, because wire capacitance

is usually modeled as linear and grounded, it tends to swamp out the errors caused by the

modeling of floating and nonlinear capacitors. Thus, actual circuits, which include wire

capacitance, can be modeled more accurately than might be indicated by these experiments

and will be more tolerant of simpler models.

3.7 Summary

A piecewise linear device is represented by collection of linear circuits, each of which

represents the device for a particular region of operation. Each region of operation is a

polytope described by a conjunction of linear inequalities. Each inequality represents a

hyperplane boundary.

Several restrictions are placed upon the piecewise linear models in order to preserve

the efficiency of timing analysis. First, the DC coupling from the gate to the source and

drain for a MOS transistor, and from the base to the emitter and collector for a bipolar

transistor is modeled as unidirectional. This facilitates circuit partitioning. Secondly, only

linear capacitors are allowed in the models. Nonlinear capacitors must be modeled using

equivalent linear capacitors. Finally, the number of piecewise linear regions is limited. This

is necessary to preserve the principle advantage of moment-based techniques: the ability

to take large time steps. Simple models can be constructed by utilizing a priori knowledge

about the operating regions of transistors in particular forms of digital circuits. Experiments

with a number of MOS and bipolar models indicates that these restrictions are acceptable.

In a number of instances predictions of switching delays to within 4% were possible.

Two MOS models were explored. The simplest model, the MOS Level-0 model, is the

switched resistor model. This model was included to allow maximally efficient simulation.

Experience with Rsim (a MOS switch level simulator) has shown that the model is useful

for predicting the delays of most forms of MOS static logic. For circuits where greater

accuracy and flexibility are needed, a MOS Level-1 model was explored. This model differs

from the Level-0 model in that it models the linear and saturation regions separately. The

Level-1 model was justified on the grounds that velocity saturation tends to linearize the
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behavior of modern MOS transistors. Because of its increased sophistication the Level-1

model supplies greater waveform accuracy when simulating static CMOS circuits. The

switching error of an inverter employing Level-1 models can be as low as 4% relative to

SPICE. Additionally, the Level-1 model can be used to correctly simulate circuits for which

the switched resistor model fails to yield even a correct logical simulation.

Three bipolar models were also explored. The bipolar model includes only two regions

of linearity, on and off. When it is on, the exponential I-V characteristic of the bipolar

transistor is approximated by a voltage controlled current source. However, because of

second order affects, it appears to be more difficult to model ECL than CMOS. A large part of

the problem is the greater proportionof floating to grounded capacitance in an ECL gate. For

an ECL inverter it was observed that the approximation of floating capacitors by grounded

capacitors produced errors as large as 30% in the switching delay. These errors were

reduced to 20% when floating capacitors were included in the bipolar model. Additionally,

parasitic resistances in the bipolar transistor appear to make significant contributions to

the switching delay. When they were also incorporated into the transistor model, these

errors were reduced to 4%. Note that all the errors reported are conservative because a

large source of linear, grounded capacitance, wire capacitance, was neglected. When wire

capacitance is included we expect the errors for all models to decrease.

Overall, the use of piecewise linear models is promising. Although restrictions have

been placed on the models in order to preserve efficiency surprisingly simple models appear

to significantly extend the accuracy and flexibility of the simulator. The next two chapters

will examine the procedures for computing the response of networks made up of these

devices.



Chapter 4

Waveform Approximation

The previous chapter showed that simple piecewise linear transistor models can produce

good predictions of the behavior of digital circuits. However, once a circuit uses piecewise

linear models it may no longer reduce to an RC tree and its response may not be well

approximated by an exponential. In fact our experience has been that as transistor models

increase in complexity, so do the responses of the circuits containing them. Therefore a

more flexible technique for approximating waveforms is required than Rsim’s single time

constant delay estimation.

Fortunately, Rsim’s single time constant techniques have been extended to allow more

accurate waveform estimates with multiple time constants. The generalized moments

matching procedure mentioned in Chapter 2 allows Mom to produce more sophisticated

estimates of the responses of circuits containing piecewise linear models. This technique

possesses several promising characteristics. In contrast to numerical integration algorithms,

a single computation yields a function of time, v(t), representing the response for all future

time, t 2 [0;1]. In contrast to single time constant algorithms, it allows the computation

of waveform estimates of arbitrary accuracy.

This chapter begins with a brief review of the theory behind the moments matching

procedure. It then discusses some practical aspects that must be considered in an imple-

mentation. Next the utility of the procedure is demonstrated by showing a number of

simulations. The chapter concludes with a description of some of the limitations of the

procedure.

45
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4.1 Waveform Approximation

One general approach to waveform approximation begins with the derivation of a low

order model of the (presumably high order) system of interest. If the low order model

is sufficiently simple it becomes practical to compute its response exactly. That response

serves as an approximation of the response of the original system. The model order

reduction problem has been studied extensively by linear control theorists. Of the many

methods proposed, one of the simplest is based upon moments matching[BL72]. Although

more advanced techniques demonstrating superior convergence and stability properties

were subsequently derived[Cha91], none of these appears to be efficient enough for use in

our particular application.

The moments matching waveform approximation procedure involves two steps[PR90].

First the asymptotic final voltages of each node are computed by finding the DC solution of

the network (assuming all piecewise linear devices remain in their present regions). This

DC solution corresponds to the particular solution. Then all DC sources in the circuit

are set to zero and an estimate for the homogeneous solution is generated by matching

moments. The total estimate is the sum of the two solutions.

4.2 Padé Approximation

It has been observed that moments matching is, in fact, just a particular application of the

Padé approximation[Zak73]. In general, the Laplace transform of the impulse response of

a lumped linear time-invariant circuit takes the form of a ratio of polynomials in s:

H(s) =
�0 + �1s+ �2s

2 + : : :+ �ms
m

�0 + �1s + �2s2 + : : :+ �nsn
: (33)

where the order of the denominator polynomial, n, is usually equal to the number of

storage elements (capacitors and inductors) in the circuit. However, if n is very large

it can be prohibitively expensive to compute H(s) exactly. Instead, a lower order Padé

approximation is constructed:

Ĥ(s) =
b0 + b1s+ b2s

2 + : : :+ bj�1s
j�1

1 + a1s+ a2s2 + : : :+ ajsj
(34)
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(j � n) and used to model the response of the system.

The parameters of the Padé approximation are obtained using a two step process. First

the 2j low order terms of the series expansion in s of H(s) are computed:

H(s) = m0 +m1s+m2s
2 +m3s

3 + : : :+m2j�1s
2j�1 +O(s2j) (35)

Here, themi are the moments of the impulse response1 andO(s2j) represents all other terms

of order 2j or higher.

Moments are of interest because they are easily computed directly from the circuit even

though it is usually impractical to compute H(s) in closed form. Pillage and Rohrer[PR90]

point out that moment computation can be viewed as a sequence of DC solutions. First the

voltages and currents at t = 1 are found by computing the DC solution of the network

assuming that capacitors are open circuits and inductors are short circuits. The difference

between the initial and final voltages across capacitors and the initial and final currents

through inductors are the 0th order moments. Then the (k + 1)st moments are recursively

computed from the kth moments by finding the DC solution of the network derived by

(Figure 36):

1. Setting all independent sources to zero. This has the effect of subtracting out the

particular solution.

2. Replacing capacitors with current sources equal to the product of the capacitance

times the kth moment of the capacitor voltage.

3. Replacing inductors with voltage sources equal to the inductance times the kth mo-

ment of the inductor current.

Once the DC solution is found, the resulting capacitor voltages and inductor currents

represent the (k + 1)st moments. Note it is quite straight forward to find the DC solution

1Strictly speaking, the Laplace coefficients, mi, are equal to the moments, bmi, scaled by constant factors:

mi =
(�1)i

i!

Z
1

0
tih(t)dt =

(�1)i

i!
bmi:

However, in the literature the term moment is used to refer to both mi and bmi. We will continue this
convenient, although somewhat imprecise, use of the term moment.
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Figure 36: Replacing Capacitors and Inductors to Compute (k+1)st Moments.

of a resistor tree. In addition Chapter 5 will demonstrate that those procedures can be

generalized to solve trees of piecewise linear transistors.

Once the low 2j moments have been computed from the circuit, Ĥ(s) is expanded via

long division into a power series in s and its coefficients are chosen such that the low

2j moments of the approximate response match those of the actual response. It has been

shown that this matching constrains the ai and bi to be linearly dependent on the mi. The ai

and bi can be obtained by solving the following linear system of equations[Zak73, Hua90]:266666664

mj�1 mj�2 : : : m0

mj mj�1 : : : m1
...

...
...

...

m2j�2 m2j�1 : : : mj�1

377777775

266666664

a1

a2
...

aj

377777775 = �

266666664

mj

mj+1
...

m2j�1

377777775 (36)

266666666664

m0

m1 m0

m2 m1 m0
...

...
...

...

mj�1 mj�2 mj�3 : : : m0

377777777775

266666666664

1

a1

a2
...

aj�1

377777777775
=

266666664

b0

b1
...

bj�1

377777775 (37)

The matrix on the left hand side of Equation 36 is referred to as the moment matrix. Once

Ĥ(s) is known, its denominator can be factored

Ĥ(s) =
b0 + b1s+ b2s

2 + : : :+ bj�1s
j�1

(s�1 + 1)(s�2 + 1) : : : (s�j + 1)
(38)

and the result expanded into partial fractions:

Ĥ(s) =
k1

(s�1 + 1)
+

k2

(s�2 + 1)
+ : : :

kj
(s�j + 1)

(39)
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But the inverse transform for each term in Equation (39) is given by:

L�1

(
1

1 + s�

)
=

1
�
e�t=� : (40)

Thus the inverse transform of Equation (39) yields the time domain estimate2

h(t) =
k1

�1
e�t=�1 +

k2

�2
e�t=�2 + : : :+

kj
�j
e�t=�j (41)

In principle, approximations of arbitrary order can be computed from the moments. It

has been shown that when j = 1 the Padé approximation is equivalent to the single time

constant estimate generated by RC tree analysis[PR90]. Furthermore, as j approaches the

order of the actual system being approximated, the Padé approximation, Ĥ(s), converges

to the actual system function, H(s)[Hua90].

4.3 Practical Considerations

Although in principle moments matching encompasses approximations of arbitrary order, in

practice it may be impossible to produce an approximation if the order is too high or too low.

Furthermore even in those cases when an approximation is possible, it may contain spurious

unstable poles. Moments matching has been observed to be numerically sensitive[Hua90]

and care must be taken when applying the procedure.

4.3.1 Order Too Low

If the order of the approximation is too low the moments matching procedure can fail

to yield any approximation at all. Note that the first row of a jth order moment matrix

(Equation (36)) is [mj�1 : : :m2 m1 m0]. If the low j moments are all zero, then that row is all

zero, the moment matrix is singular, and it is impossible to produce an approximation. This

situation frequently arises as a side effect of floating capacitors. Consider the the circuit

in Figure 37. Note that except for n1 all nodes are initially zero and that all final values

are zero. The lowest moment, m0, is given by the negative of the initial condition[PR90].

2In practice, we solve for the ai, factor the polynomial to get the pole frequencies, and then compute the
pole coefficients, ki, directly from the poles frequencies. See [PR90].
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Figure 37: Circuit with Low Order Moments Equal to Zero.

Thus the zeroth order moments for nodes fn1, n2, n3, n4g are f-1, 0, 0, 0g , respectively.

To compute successive moments each capacitor is replaced by a current source equal to the

capacitance times the difference of the moments on its terminals:

m0 : f �1; 0; 0; 0 g
m1 : f 1; �1; 0; 0 g
m2 : f �2; 3; �1; 0 g

...

Thus nodes that are initially at rest but are coupled via a chain of floating capacitors to nodes

that are not will have low order moments equal to zero. If the chain is k links long then

the k low order moments will be zero and approximations of order� k will be impossible.

This is undesirable because the lowest order approximation possible grows with the size of

the circuit.

However, as will be observed in Chapter 5 the coupling through multiple levels of

floating capacitors is not important for digital circuits. Therefore when too many low order

moments are zero we simply assume that this was caused by too many levels of floating

capacitors and set the particular response to zero.

4.3.2 Order Too High

Although approximations of arbitrarily high order are theoretically possible, in practice

numerical considerations limit the order of the approximation. The reason for this is that

round-off errors can make it difficult to compute higher order moments with sufficient

accuracy. Note that the series expansion of the Laplace transform of a single pole response

is:

L
n
e�t=�1

o
= �1 � � 2

1 s+ � 3
1 s

2 : : : (42)
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Therefore by superposition, the general multipole response:

v(t) = k1e
�t=�1 + k2e

�t=�2 + : : :+ kne
�t=�n (43)

has a Laplace transform whose series expansion is:

V(s) = (k1�1 + k2�2 + : : :+ kn�n)�
(k1�

2
1 + k2�

2
2 + : : :+ kn�

2
n)s+

(k1�
3
1 + k2�

3
2 + : : :+ kn�

3
n)s

2 �
... (44)

Now, suppose that the magnitude of �1 is much larger than that of all other � ’s. In that

case the higher order coefficients will be dominated by �1. That is for sufficiently large i,

mi � k1�
i+1
1 . However if this is the case, then the rows of the moment matrix become

linearly dependent, the moment matrix becomes singular, and it becomes impossible to

compute an approximation. In practice, as higher order approximations are attempted, the

moment matrix tends to become more and more ill-conditioned until a point is reached when

it can’t be inverted. At that point it becomes necessary to use a lower order approximation.

Huang proposed a technique to enhance the accuracy of moment computation. The

technique involves inserting a resistor in parallel with each capacitor and in series with

each inductor, where the resistances are sized proportionally to the capacitances and

inductances[Hua90]. This effectively shifts all poles and zeros left in the complex plane

away from the imaginary axis, thus reducing the tendency of the lowest frequency pole

to dominate the other poles. The technique was successfully used to obtain the frequency

domain behavior of operational amplifiers and active filters.

Unfortunately, the method does not appear to be suitable for our particular application.

One reason is that the resistors that parallel floating capacitors would destroy the tree

structure of our circuits. Then the computation of moments would require the formulation

and LU factorization of a matrix, a process that is generally superlinear. However, even if

a matrix were formulated and factored, it appears that in order to select the shift amount, a

priori knowledge about the placement of the poles must be utilized. It does not appear to

be possible to choose one shift amount that is good for all circuits. The alternative of trial
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and error selection of the shift amount appears to be prohibitively expensive because each

new trial modifies the circuit and requires the refactorization of the matrix.

Because of the difficulties associated with generating extremely high order waveform

estimates, Mom only generates estimates with three poles or less. Fortunately for our

purposes low order estimates are usually sufficient.

4.3.3 Unstable Poles

The moments matching procedure occasionally yields defective poles, that is poles that are

unrelated to the poles of the system function being approximated. In fact, researchers have

long observed that Padé approximations can contain unstable poles even if the system being

approximated is stable[Zak73, Cha91]. One source of defective poles is numerical error.

From Equation (44) we can infer that small errors in the moments may contribute spurious

poles to the waveform approximation that have small time constants and coefficients.

However, defective poles may also arise in the absence of numerical error. For example,

the stable second order impulse response:

h(t) = e�t � 1
3
e�t=2 (45)

has the unstable first order approximation:

ĥ(t) = �1
3
et: (46)

Yet if the series expansions of the Laplace transforms of both signals are computed, it can

be verified that their two low order terms match exactly.

Defective poles usually pose no problem if they are stable. Because they tend to have

small time constants and coefficients they tend to have minimal effect on the waveform

estimate. Unfortunately, if the defective pole is unstable it dominates the waveform.

Consequently much work has been done exploring ways of dealing with unstable defective

poles. The most common approach is to restrict the problem domain to stable systems.

Then the approximation procedure is modified to allow only stable poles[Zak73, GP91].

However, the simulation of digital circuits occasionally requires modeling unstable

responses. For example, consider the Schmitt trigger depicted in Figure 38. If out is
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Figure 38: Schmitt Trigger

initially low, and in falls from high to low, T2 will eventually switch from off to on. When

it does, an unstable positive feedback loop is established. That is T2 turning on tends to

turn off T1 which causes out to rise which turns on T2 even harder, etc. Because this loop

is unstable its response includes an unstable pole. Of course, the unstable pole can persist

only briefly. The node out very quickly rises to the point where it turns off T1 completely

thus returning the circuit to a stable configuration.

In order to handle the possibility of unstable circuits we employ a heuristic to first

distinguish between stable and unstable clusters. When it is known, a priori, that a cluster is

stable, all unstable poles can be safely suppressed when estimating its response. Conversely,

the response of an unstable cluster is performed in such a way as to require at least one

unstable pole.

A fairly simple heuristic can be used to identify commonly occurring unstable digital

circuits. They are typically characterized by a feedback loop with an open loop DC gain

that is greater than one. Conveniently, this information is generated as a side effect of

finding the particular (DC) solution. For our example, because the Schmitt trigger contains

feedback, circuit tearing must be employed to solve it. This involves:

1. tearing out the wire connecting the base of T2 to out in order to break the feedback

loop

2. computing a value that is equivalent to the open loop DC gain

Thus the routine that computes the particular solution can easily identify clusters with

unstable positive feedback.
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Our experience with this heuristic indicates that it quite reliably identifies commonly

occurring unstable digital circuits. Errors that occur when analyzing more sophisticated

circuits (for example Mom will miss the unstable poles of an unstable voltage reference

generator) have not been problematic because such circuits are small and can easily be

isolated from the predominantly digital design.

4.3.4 Efficiency

Because the generation of a jth order waveform approximation involves the inversion of

multiple non-sparse j � j matrices and the factorization of a jth order polynomial, we

would expect the cost of waveform approximation to rise superlinearly with the number of

poles. This is confirmed by measurements of the execution time of the waveform generation

portions of Mom. Table 1 gives the average number of cycles3 needed to generate one,

1 Pole 2 Poles 3 Poles
99 380 2030

Table 1: Execution Time Required to Generate Waveform Approximations.

two, and three pole waveform estimates for a particular circuit. Note that the cost varies by

a factor of 20. As we shall see in a later chapter, this growth can significantly degrade the

simulator’s efficiency when more complex circuits and models are used.

4.3.5 Error Control

For the sake of computational efficiency it is desirable to employ the lowest order approxi-

mation possible. The usual approach is to start with the first order approximation (j = 1)

and to compute successive higher order approximations only when necessary. An estimate

of the approximation error is produced for each waveform estimate. If that error is above a

certain threshold then the next higher order approximation is attempted.

Our estimate for the approximation error is a derivative of one suggested by Shi and

Zhang[SZ87]. After generating a jth order approximation from the low 2j moments

3Estimates of machine cycles are for the MIPS R2000 CPU and were estimated using the pixie execution
profiling tool created by MIPS Computer Systems, Incorporated.
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(m0 : : :m2j�1)), we then see how well that approximation matches the 2jth moment.

Comparing the match of higher order moments is computationally efficient and additionally

provides a sense of the conditioning of the system. If the 2jth moments and the (2j +

1)st moments match exactly then there is no use even attempting the next higher order

approximation because that system of equations will be ill defined.4

In general the threshold for an acceptable approximation error is set to a value between

2% - 20% depending upon the desired level of accuracy. However, it is important to reduce

the threshold for large signals because a 10% error in a 1000 volt signal is much worse

than a 10% error in a 1 volt signal. At first glance it would seem impossible for such

large signals to occur in common forms of digital circuits. However when piecewise linear

transistor models are used asymptotic swings much greater than the logic swings occur with

surprising frequency. For example, consider the two input CMOS NAND gate in Figure 39

when piecewise linear MOS Level-1 models are used. Just after the input has risen, T1 and

T4

x

in

T3

T2T1
out

Figure 39: 2 Input CMOS NAND Gate.

T2 are off and T3 and T4 are saturated. The asymptotic final value of the output waveform

is computed by finding the DC solution of the network assuming that all devices remain

in their present regions of linearity. For our model, gm � 1=3:6k and Vt � 2. Since T4’s

gate is at 5 volts, its internal current source generates � �(5 � 2)=3:6k � �830�A of

current. However T3’s drain isn’t connected to anything. Therefore all of T4’s current

4To see this, note that if a j pole approximation, v̂j(t) matches the low 2j + 2 moments exactly, then so
must the j + 1 pole approximation:

v̂j+1(t) � v̂j(t) + kj+1e
t=�j+1

for kj+1 = 0. However, for higher order approximation there is no unique value for �j+1. That is, there are
more variables than constraints and the system is ill defined.
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must flow into T4’s output resistance � 67k. Thus the DC solution for x is about �830�A

�67k � �56 volts. Furthermore, with no net current flowing through T3, the voltage gain

from its source to its drain is approximately 67k=3:6k � 19. Thus the DC solution for

out is about �56 � (56 + 5) � 19 � �1100 volts! Figure 40 compares the response of
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Figure 40: Large Signal Swing for CMOS NAND Gate.

out predicted by our simulator using 10% and .05% error thresholds. On a scale of 2000

volts (a) the signals are indistinguishable. In fact, the approximation error is just 0.273%.

However when the waveform is examined on the scale of 5 volts (the region we actually

care about) we see that significant error is introduced. The solution is to scale the error

threshold of large signals inversely proportional to their size. The lowest order moment,

m0, is used to estimate the size of the signal.

4.3.6 Frequency Scaling

Another source of errors in the moment matrix arises essentially from a poor choice of

units of time. Consider the moments of a multipole response (Equation 44). If the � ’s

are all of the order of 1ps then m0 � 10�12;m1 � 10�24;m2 � 10�36; : : :. That is, the

magnitude of each moment will be approximately 12 orders of magnitude smaller than its

predecessor. This large variation in moments introduces large variations in the magnitude

of the elements of the moment matrix, thereby rendering it uninvertible.
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However, note that the choice of units of time is arbitrary. If, for example, we had

chosen 1ps to be the unit of time, then the � ’s would all be of the order of 1 and the large

variation between successive moments would be eliminated. Pillage[PR90] suggested

scaling frequencies by the ratio jm1=m0j. However, consider the following set of moments

obtained from an actual simulation.

fm0;m1; : : :m5g =
n

0; 0; 1:4� 10�35;�3:0� 10�30; 5:5� 10�39;�5:9� 10�48
o

(47)

These moments were particularly problematic because the 18 orders of magnitude differ-

ence in the sizes of the moments made it impossible for Mom to compute any waveform

approximation. Note that because m0 = 0 Pillage’s method can’t be applied directly.

An obvious modification would be to use the ratio jmk+1=mkj where k is smallest

subscript for which mk 6= 0. However for our example this makes things even worse.

fm0; : : :m5g =
n

0; 0; 3:3� 10�46;�3:3� 10�46; 2:9� 10�60;�1:5� 10�74
o

(48)

Whereas the ratio of the magnitude of the smallest moment to that of the largest used to be

18 orders of magnitude, it is now 28!

A better approach would be to note that the asymptotic growth of high order moments

is dominated by the � of largest magnitude. If the moments are normalized by the largest

time constant then this growth will be curtailed. Furthermore, a good estimate for this time

constant would be jmk=mk�1j wheremk is the highest order moment computed. When this

is done the moments become:

fm0; : : :m5g =
n

0; 0; 1:2� 10�17;�2:4� 10�3; 4:1� 10�3;�4:1� 10�3
o

(49)

Note that the high order moments are almost identical and the the ratio of the magnitudes

of the largest and smallest (now 14 orders of magnitude) is better than before the frequency

scaling. This procedure has been found to be useful for a large body of simulations.

Finally, note that the example given above is a rare example for which none of the

frequency scaling procedures described above was able to condition the moment matrix

sufficiently for it to be inverted and a waveform approximation produced. This prompted

us to consider whether or not it was possible to do any better. In fact, it turns out that it is

possible to find a scaling factor that is “optimum” in the sense that it minimizes the ratio of



CHAPTER 4. WAVEFORM APPROXIMATION 58

the magnitudes of the largest and smallest moments (See Appendix D). When the optimum

scaling factor is used:

fm0; : : :m5g =
n

0; 0; 2:6� 10�27;�7:4� 10�18; 1:8� 10�22;�2:6� 10�27
o

(50)

the ratio of the largest to smallest moments drops to just 9 orders of magnitude, the moment

matrix could be inverted, and a waveform approximation could be produced. Unfortunately,

the procedure appears to be too expensive to justify its use. For almost all other waveforms

the improvement over using one of the heuristics was negligible and optimal frequency

scaling increased the execution time of the program by up to 10%.

4.4 Demonstration

In order to evaluate how well moments matching works for our application, a variety of ring

oscillators were simulated. For each circuit, three different simulations were performed.

First, SPICE was run using its nonlinear transistor models. Second, Mom was run using

each of the piecewise linear models described in Chapter 3. Third, SPICE was run using

Mom’s piecewise linear models. For each run the period of oscillation was recorded. For

each circuit a plot was made overlaying the responses of all three simulations. Table 2

presents some statistics gathered from the simulations. The first three columns give the

Pole Distribution Model Waveform
% 1 Pole % 2 Poles % 3 Poles Error Error

CMOS0 Inverter Ring 100.0 0 0 0.8 1.2
CMOS0 NAND Ring 73.8 26.2 0 28.1 0.3
CMOS1 Inverter Ring 7.5 90.7 1.8 1.1 0.0
CMOS1 NAND Ring 16.7 83.2 0.1 5.2 0.1
BJT0 ECL Ring 10% 25.2 31.3 43.4 9.2 0.3
BJT0 ECL Ring 20% 53.9 46.1 0 9.2 6.3
BJT1 ECL Ring 11.8 20.2 67.8 8.0 0.1
BJT2 ECL Ring CapLevels=1 2.2 22.3 75.6 2.5 0.3

Table 2: Benchmark Statistics.

fraction of 1, 2, and 3 pole responses produced by Mom. The last two attempt to identify

the origin of simulation errors.
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The column labeled “Model Error” gives the error of the period of the SPICE piecewise

linear simulation relative to the SPICE nonlinear simulation. “Model Error” is the error

incurred by modeling nonlinear SPICE transistors using the simple piecewise linear models.

The column labeled “Waveform Error” gives the error of the period predicted by Mom

relative to the SPICE piecewise linear simulation. “Waveform Error” is the error produced

by the moments matching waveform approximation procedure. In principle the total error

of our simulator could be the sum of these two errors. In practice, as will be seen in

Chapter 7, the errors can randomly sum or cancel.

The circuit “CMOS0 Inverter Ring” is a 5 stage CMOS ring oscillator using inverters

composed of piecewise linear MOS Level-0 transistors (Figure 41 (a)). Because of
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(a) CMOS0 Inverter Ring (b) CMOS0 NAND Ring

Figure 41: CMOS Level-0 Ring: SPICE vs PWL vs Mom.

the simplicity of the piecewise linear model and circuit (every cluster reduces to just an

RC) the piecewise linear response is exactly single time constant. Thus the Mom and

SPICE piecewise linear simulations match well although the piecewise linear and nonlinear

simulations don’t. This is expected because the switched resistor model can correctly

predict the switching delay of a CMOS gate but not necessarily the waveform. The match

of the periods is a consequence of using this circuit to calibrate the switched resistor model.

Figure 41 (b) shows what happens when 2 input NAND gates are used in the ring

(“CMOS0 NAND Ring”). Again note the close match between the Mom and SPICE
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piecewise linear simulations. However, the error due to the switched resistor model has

increased to 28%. This is not surprising because it has already been observed that the use

of switched resistors to model series stacks of velocity saturated devices can lead to errors

of the order of 29% (Figure 26). Also note that the circuit is slightly more complex with

the result that 2 pole approximations are occasionally used for the intermediate node of the

NAND stack.

The circuits “CMOS1 Inverter Ring” and “CMOS1 NAND Ring” (Figure 42 (a) and

(b)) illustrate the use of MOS models with gain. The gain couples multiple nodes together
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Figure 42: CMOS Level-1 Ring: SPICE vs PWL vs Mom.

thereby increasing the complexity of the response. Most of the waveforms are now two

poles and the match with SPICE is much improved.

The circuits “BJT0 ECL Ring 10%” and “BJT0 ECL Ring 20%” (Figure 43 (a) and

(b)) are 9 stage ECL ring oscillators using the piecewise linear Level-0 bipolar model.

When an error threshold of 10% was used, the SPICE and Mom responses match almost

exactly. However the 0.3% error of the waveform approximation is swamped by the 9.2%

error of the piecewise linear model. Perhaps a better balance between speed and accuracy

is achieved by increasing the error tolerance to 20%. The resulting elimination of 3 pole

responses can substantially speed up the simulation, albeit at the expense of increasing the

waveform approximation error to 6.3%
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Figure 43: ECL Level-0 Ring: SPICE vs PWL vs Mom.

Finally, the ECL ring oscillator was simulated with the Level-1 and Level-2 bipolar

models (Figure 44). “BJT1 ECL Ring” employs the piecewise linear Level-1 bipolar

model, and “BJT2 ECL Ring Caplevels=1” employs the piecewise linear Level-2 bipolar

model. (The meaning of “Caplevels=1” will be explained in the following chapter.) Note

that for these circuits the approximation error threshold had to be reduced from its default

value of 10% to 2% in order to achieve the degree of matching depicted in the figures and

table.

From this set of simulations a number of observations can be made. In general as the

complexity of the models and circuits increases, so does the number of poles needed to rep-

resent the response. Both gain and floating capacitors tend to couple together multiple nodes

thereby complicating the response and requiring greater numbers of poles. Additionally, as

the models become more complex, the error threshold should be reduced commensurately.

It is senseless to pay for a low waveform approximation error if it is going to be swamped

by the modeling error, and conversely.

Overall, third order waveform approximations appear to be adequate. Note that the

error due to waveform approximation can almost always be made smaller than the modeling

error. Additionally, the piecewise linear models do quite well despite their simplicity. The

switching delay errors due to the Level-2 bipolar and the Level-1 MOS models are under



CHAPTER 4. WAVEFORM APPROXIMATION 62

time
0 2 4 6 8 10

nS
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1
V

Mom
SPICE PW Linear
SPICE Nonlinear

time
0 2 4 6 8 10

nS
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1
V

Mom
SPICE PW Linear
SPICE Nonlinear

(a) BJT1 ECL Ring (b) BJT2 ECL Ring Caplevels=1

Figure 44: ECL Level-1 & -2 Rings: SPICE vs PWL vs Mom.

6%.

4.5 Limitations

4.5.1 Unstable Responses

It is apparently more difficult to apply the waveform approximation technique to unstable

circuits than to stable circuits. One reason for this is that the Padé approximation tends to

capture the low frequency behavior of the response. That is Ĥ(s) first converges to H(s) in

the vicinity of the origin of the complex s plane[Hua90]. For stable circuits this behavior

is desirable because the low frequency poles tend to dominate the behavior of the response

(hence the term dominant time constant). Unfortunately, for unstable circuits the response

is dominated by the unstable poles which may not be the lowest frequency poles. In that

case the most important poles may be approximated with the greatest error.

This poor approximation of unstable poles is exacerbated by the exponential growth

with time of the approximation error: v(t)� v̂(t) of an unstable system. In the worst case,

this increase of the error with time can actually lead to a misprediction of not only the

timing behavior of a circuit but also its logical behavior. In contrast, for a stable system
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both the response and its estimate decay exponentially with time. Consequently for a stable

system we are always assured that the error decays exponentially, and that voltages always

eventually converge to their correct final values.

To illustrate, consider the response of node emit of the Schmitt trigger (Figure 38) when

T2 first turns on. The complete third order response may be compared to the first and second

order approximations:

v(t) = 0:230e�t=2;000ps� 0:001e�t=13ps + 0:007et=132ps (51)

v̂1(t) = 0:650e�t=1;368ps (52)

v̂2(t) = 0:006et=158ps+ 0:230e�t=2;000ps (53)

According to our metric the first order estimate appears to be adequate. In fact, the first

seven moments match to within 14%. For stable systems such a match usually implies an

acceptable approximation. However the first order approximation is missing the crucial

unstable pole. Figure 45 (a) shows that the use of this estimate leads to an incorrect logical

simulation. The lack of an unstable pole causes emit (the lowest trace) to erroneously

continue falling when T2 turns on (at t � 2ns). In contrast out (initially the middle trace)

correctly begins to rise exponentially. The result is that T1 never turns off and out veers

wildly off to +1.

The first order approximation is readily rejected because it has been determined that

the circuit is unstable and yet the estimated response lacks an unstable pole. The second

order approximation does possess an unstable pole. Furthermore the time constant and

coefficient of its dominant pole is accurate to within 3 significant figures and its first seven

moments match to within .009%. However, the use of the second order approximation still

shows some noticeable errors (Figure 45 (b)). Only when the error tolerances are tightened

to force the use of the full 3 pole response do we get a good match with SPICE (Figure 46).

4.5.2 Circuits with High Gain

Another limitation arises when circuits with extremely high gain place extreme demands

on the accuracy of the waveform approximation. The CMOS NAND gate described in
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Section 4.3.5 is an instance of such a circuit. A more extreme example is the cascade of

ECL inverters in Figure 47 where all stages are initially biased into their linear regions

100uA 100uA100uA100uA

-250mV-250mV-250mV-250mV

5k5k5k

in

5k

Vcc Vcc Vcc Vcc

1V V V V2 3 4

Figure 47: Cascade of ECL Inverters

(V1 = V2 = V3 = V4 = Vref = -250mV) and in rises from -250mV to 0v. For the initial

segment of the response, all the inverters remain in the linear region. Since each stage has

a gain of approximately 5 the initial input signal swing of 250mV gets amplified to about

156 volts by the last stage.

Figure 48 compares the initial segment of V4 predicted by Mom with that generated by
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Figure 48: Initial Segment in the Response of ECL Cascade.

SPICE. Our simulator’s response consists of 3 poles with an approximation error of .25%.

On a scale of 200 volts (a) the approximate response looks quite good. However on a scale

of 10 volts (b) it is apparent that the approximation is useless. In the region of interest
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(i.e. near t=0) the approximation doesn’t even move in the correct direction. The problem

is that the asymptotic swing of the segment is much larger than swings that can actually

occur in the circuit. Thus, the required approximation error must be vanishingly small.

Unfortunately, in this case the approximation is already composed of three poles, and our

simulator can do no better.

This example is admittedly artificial because digital circuits are extremely non-linear

thus making it unlikely that many successive logic stages will be simultaneously biased

into their high gain regions. In fact, this situation arose because of a peculiarity of the

initial DC solution; the perfect symmetry of the ring caused the simulation to start from the

metastable state. Although the ring oscillator’s problem can be solved by modifying the

initial DC solution, it is possible that circuits similar to the CMOS NAND gate mentioned

above will require a more general solution.

4.6 Summary

Piecewise linear models require more sophisticated waveform approximation procedures

because as the complexity of the transistor models increases so does the complexity of

the responses of circuits using those models. Therefore, Mom uses a general moments

matching procedure to generate higher order waveform estimates. The procedure involves

modeling an actual high order system using a low order system chosen such that low order

moments of the impulse responses of both systems match. Because the response of the low

order system can be computed exactly it is used to approximate the response of the high

order system.

Practical implementations of this procedure must address a number of issues. Floating

capacitors occasionally lead to problems with low order approximations, roundoff errors

in the moments ultimately limit the order of the approximation, approximations can some-

times contain unstable defective poles, and the cost of generating an approximation rises

superlinearly with the number of poles. While these issues need to be addressed, practical

compromises can deal with them.

Overall, the procedure works well. An examination of a number of CMOS and ECL

circuits indicates that 3 poles are usually adequate. In fact, comparisons with SPICE
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simulations indicate that the waveform approximation works so well that the errors due

to waveform approximation are almost always swamped by the piecewise linear modeling

errors.

A couple of limitations persist. First, it is much more difficult to simulate unstable

circuits because unstable poles frequently have small coefficients and time constants and

hence contribute minimally to the moments. The result is that small errors in matching the

moments generate large errors in the time domain response. Second, for brief moments

during a switching transient certain combinations of device states can yield circuits with

voltage swings that far exceed what is physically possible. The consequence is that only an

infinitesimal initial portion of the waveform approximation is used, thereby placing extreme

demands on the accuracy of the approximation.



Chapter 5

Moment Computation

In the previous chapter the general moments matching procedure was introduced and shown

to be useful for predicting the responses of circuits containing piecewise linear models. This

chapter is concerned with one particular “implementation detail” of the moments matching

procedure: the computation of moments from the circuit. Moment computation is carefully

considered here because in previous work[PR90] it tended to dominate the overall cost

of waveform approximation. One of the factors that made moments matching attractive

for MOS timing analysis and switch-level simulation was the relative ease with which

moments could be computed from the circuit. When the switched-resistor transistor model

was used, the task of computing moments reduced to finding the DC solution of a resistor

tree, something that was readily done in linear time without formulating or LU factoring

general sparse circuit matricies.

However, when piecewise linear transistor models are allowed, the simulator must deal

with circuits that are no longer RC trees. This chapter generalizes RC tree analysis along

two dimensions. First, RC tree analysis is extended to apply to piecewise linear transistor

models. This generalization retains the efficiency of RC tree analysis for the transistor-

capacitor trees found in MOS circuits and the current steering trees found in ECL circuits.

Second, circuit tearing is used to handle non-tree topologies and feedback. If the number

of branches that need to be torn in order to get a feedback-free tree is small and bounded,

then even these more complex circuits can be analyzed efficiently.

68
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Finally, this chapter addresses the efficiency problem caused by allowing floating ca-

pacitors in transistor models. Floating capacitors can potentially couple together all nodes

in the circuit thereby eliminating the ability of the simulator to take advantage of latency.

From a practical standpoint, however, this isn’t a problem because the circuit can be repar-

tioned by simply ignoring coupling through all but a limited number of levels of floating

capacitors.

5.1 Background

Many methods have been proposed for the computation of moments. Because of their

emphasis on efficiency, switch-level simulators have historically attempted to take ad-

vantage of the tree-like topology of most digital MOS circuits. Initially, only grounded

capacitors were considered and heuristics were used to break loops so that tree analysis

could be applied in linear time[Hor83]. Raghunathan and Thompson[RT85a] and Chu and

Horowitz[Chu88] extended tree analysis to handle leaky trees, multiple drivers, and charge

sharing while retaining the efficiency of RC tree analysis. Chan[Cha88] extended RC tree

analysis to handle floating capacitors.

A number of derivatives of tree analysis have been proposed to handle circuits that are

nearly trees. Although these procedures do not have linear complexity, if the number of

loops is small, they can be nearly as efficient. Lin and Mead[LM84] proposed an algorithm

based on Gauss-Seidel relaxation. Chan and Karplus[CK89] and Pillage and Dutta[PD90]

handle edges closing loops in the tree using branch tearing. Ratzlaff et al.[RGP91] utilize

a procedure that can be viewed as the application of node tearing techniques.1

General purpose circuit analysis techniques have also been applied to moment compu-

tation. Shi and Zhang[SZ87] formulate the problem in terms of nodal analysis, thereby

removing the topological restrictions of tree analysis while allowing independent sources,

dependent sources, and floating capacitors. Pillage and Rohrer[PR90] use tree link analy-

sis to compute moments for networks that may additionally include inductors. However,

1Although Ratzlaff et al. do not present their work in terms of node tearing, we will justify this point of
view later.
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although these techniques are more general, they may not be as efficient as RC tree anal-

ysis for the particular case of RC trees. Pillage and Dutta point out that when tree-link

analysis is applied to RC trees the loop/cutset matrix may not be sparse thus leading to

super-linear complexity[PD90]. Furthermore, although properly ordered nodal equations

for trees can be LU factored in linear time due to the absence of fill-ins[SZ87], it may still

be better to utilize an alternate formulation. While studying the DC solution of power nets,

Branin[Bra80] found that his tree-based method could solve the network in about the time it

took simply to formulate the sparse nodal equations. Ratzlaff et al. found that their hybrid

tree/nodal analysis was up to two orders of magnitude faster than general LU factorization.

Since our goal is to duplicate the efficiency of switch-level simulators, we have chosen

to generalize RC tree analysis. Our analysis is an extension of that of Chu. We first review

his analysis in the next section.

5.2 Moment Computation for Leaky Resistor Trees

Chu[Chu88] extended RC tree analysis to include RC trees driven by multiple sources

(Figure 49). These topologies may continue to be viewed as trees if one redefines
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Figure 49: Leaky resistor tree.

leaf nodes to be nodes connected to one transistor terminal and either a grounded current

or voltage source.2 The root node is arbitrarily selected from the non-leaf nodes (See

Figure 50). We will refer to such topologies as a leaky trees.

To review Chu’s approach,3 consider the leaky tree in Figure 50 that results when the

2We include nodes connected to current sources with zero current.
3Chu’s thesis describes the analysis in terms of “moving capacitors”. We present his work from the slightly

different perspective of Norton analysis applied to the network.
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capacitors are replaced by current sources for the purpose of computing moments. The

circuit has been redrawn to suggest its tree structure, with the leaf nodes n1, n4, and n5 at

the bottom and the root node n2 at the top. The DC solution can be found by making two

passes over the network. The first pass starts at the leaves of the tree and ascends to the

root. The second pass starts at the root of the tree and descends to the leaves.

We begin the first pass with the resistors connected to leaf nodes (r1, r3, and r4). For

each resistor we compute the Norton equivalent seen looking into its upper terminal. Once

we have computed the Norton equivalents of all resistors descending from a particular

node (after the first iteration n3 becomes such a node) we can combine them with the

capacitor current sources to produce the Norton equivalent seen looking out of the lower

terminal of the (single) resistor ascending from that node (for n3 this is r2). We record this

aggregate Norton equivalent at the node for use in the second pass. The first pass continues

iteratively, replacing each ascending resistor by the Norton equivalent seen looking into

its upper terminal and, in turn, computing the Norton equivalent seen by the parent node’s

ascending resistor. The iteration terminates when we have computed the Norton equivalent

of all the resistors descending from the root node.

The second pass starts by solving for the voltage at the root node. This is possible

because the root node has no resistors ascending from it and in the first pass we saved for

each node the Norton equivalent of all resistors (and capacitor current sources) descending
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from that node. Once we know the root’s voltage, we can solve for the voltage of its

children by utilizing the Norton equivalent saved at each child. We continue descending

the tree until we’ve solved for all the voltages.

In summary, the process utilizes two mapping computations. In the first pass (See

Figure 51) we are given r1, i1, and r and need to find r2 and i2

r

r

r

v2

v

i 1

1

1

i 22 ,

Figure 51: Norton calculations.

r2 = r1 + r (54)

i2 = i1
r1

r1 + r
(55)

In the second pass we are given, in addition, v2 and we need to find v1

v1 =
v2r1 + i1r1r

r1 + r
(56)

Later, we will show that these two computations can still be performed even if resistor r is

replaced by a transistor modeled using piecewise linear functions.

Finally, it should be noted that one of the factors contributing to the efficiency of tree

analysis is that the formulation of the equations occurs largely as a side effect of the process

of deciding which nodes are affected by the switching event. A cluster consists of all nodes

connected by the channels of conducting transistors. Therefore, when a transistor switches,

a depth first search is performed on the interconnection graph4 along only those edges

representing conducting transistors. The construction of a list of those edges in the order

4A static interconnection graph of the network is constructed once during a preprocessing phase.
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they are encountered, plus a bit in each edge indicating which of its two channel terminals

is higher in the tree, constitutes the formulation of the equations.

5.3 Leaky Trees of Three Terminal Networks

The switched resistor model is particularly easy to deal with because of the simplicity of

the circuit models that represent its behavior in each region of linearity: the transistor is

represented by either a resistor (if it is on) or an open circuit (if it is off). Such simple circuits

are not always sufficient. For example, to model the dependence of the drain current on the

gate source voltage, the MOS Level-1 transistor model must employ a dependent current

source. In general, we would like to allow interconnections of resistors and dependent and

independent current and voltage sources in transistor models. Once this is done it is no

longer apparent that a simple tree walk can be used to find the moments.

This section demonstrates the rather surprising result that trees of piecewise linear

devices can be solved as easily as trees of resistors. This general result has only two minor

restrictions: the coupling from the gate (base) to the source and drain (emitter and collector)

must be unidirectional, and the tree must be feedback free: that is no gate (base) of any

transistor in the tree may be connected to any node in the same tree.

In order to compute the moments of a transistor-capacitor tree we need to find the

DC solution of a corresponding tree obtained by setting independent DC sources to zero,

replacing inductors with voltage sources, and replacing capacitors with current sources.

Furthermore, because we assume inputs are unidirectional, MOS gates are considered to

be driven by independent, possibly exponentially time varying voltage sources. It can be

shown that when formulating the circuit to compute the (k + 1)st moments, each time-

varying source should be replaced by a DC source set equal to the (k + 1)st moment of its

waveform (see Figure 52).

In any particular state, each piecewise linear device is equivalent to some linear network.

Assuming that each transistor remains in its present state for some finite amount of time,

we group each transistor with the voltage source driving its gate and represent the interface

that the pair presents to the network by the short-circuit admittance parameters of a three

terminal network[BS65] (Figure 53). The parameters are defined by extracting two voltage
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Figure 52: Transistor-capacitor tree.
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Figure 53: Three terminal network model.

ports, one from each terminal to ground[CL75].524 i1

i2

35 =

24 y11 y12

y21 y22

3524 v1

v2

35+

24 is1

is2

35 (57)

Figure 54 gives a physical interpretation of the six parameters of the admittance formulation.
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Figure 54: Circuit interpretation of admittance parameters.

In order to find the DC solution of leaky trees of these networks6 we need to be able

to do two things. If we replace resistor r in Figure 51 by the circuit in Figure 54 it can be

5It is not always possible to extract two voltage ports for a particular model. For example, admittance
parameters cannot be determined for a voltage source. Such devices are handled as special cases. However,
to simplify the discussion we assume that the admittance representation exists.

6A special case arises if either y12 = 0 or y21 = 0. In that case rather than treating the transistor as a
branch in a tree it is potentially more efficient to treat it as an arc between clusters. See Section 5.5
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shown that if g1 = 1=r1 and i1 are known then g2 = 1=r2 and i2 are given by

i2 = �
"
is1 +

y12

y22 + g1
(i1 � is2)

#
(58)

g2 = y11 � y12y21

y22 + g1
(59)

If, in addition, v2 is known then v1 is given by

v1 =
i1 � is2 � y21v2

g1 + y22
(60)

Thus it is possible to generalize the DC analysis of leaky trees of resistors to leaky trees

of three terminal networks. Because the above equations take a constant amount of time

to compute, the leaky tree analysis remains O(n) in the number of devices in the circuit

irrespective of the complexity of the models.

5.4 Series-Parallel Combination

The analogy with resistors goes even further. These three terminal networks are also

amenable to series-parallel combination. The admittance parameters of the parallel combi-

nation of two networks can be found by simply summing their corresponding parameters.

The parameters of a series combination can be derived from the series combination of

two of the circuits in Figure 54. If we let superscripts of 1 and 2 distinguish between the

parameters of the two circuits then

y11 = y1
11 �

y1
12y

1
21

y1
22 + y2

11
(61)

y12 = � y1
12y

2
12

y1
22 + y2

11

(62)

y21 = � y1
21y

2
21

y1
22 + y2

11
(63)

y22 = y2
22 �

y2
21y

2
12

y1
22 + y2

11
(64)

is1 = i1s1 �
y1

12

y1
22 + y2

11

�
i1s2 + i2s1

�
(65)

is2 = i2s2 �
y2

21

y1
22 + y2

11

�
i1s2 + i2s1

�
(66)
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Parallel combination can be useful for breaking small loops produced, for example, by

CMOS transmission gates. Although such loops can be handled using the more general

tearing techniques described later in the chapter, parallel combination is more efficient.

5.5 Coupled Clusters

The previous section showed how to compute the moments of a single cluster assuming

that all its inputs are known. For Rsim this is sufficient because the switched resistor

model always yields clusters that are independent. Mom’s more general models, however,

may include coupling between clusters which requires that multiple clusters be analyzed

simultaneously.

Switch-level simulators usually exclude floating capacitors. However, Mom treats a

floating capacitor as a bidirectional coupling which requires the simultaneous evaluation

of both terminals. As outlined in Section 4.2 the computation of the moments proceeds by

replacing capacitors with current sources. However, instead of inserting a single floating

current source we insert two grounded current sources (Figure 55). When computing the

mpmp

C

p m

k k
-M M ) )MM -

kk
C(C(

Figure 55: Floating capacitor connecting same cluster.

(k + 1)st moments, the current of an inserted current source becomes

ic = C(Mpk �Mmk
) (67)

where Mpk and Mpk represent the kth moments of voltages of the nodes connected to the

plus and minus capacitor terminals, respectively.

If both terminals are connected to the same cluster then the moment computation

proceeds as for grounded capacitors. However, if the capacitor links two otherwise dis-

connected clusters (Figure 56) then the moments for both clusters must be computed in
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Cluster 1 Cluster 2

Figure 56: Capacitive Coupling Between Clusters.

lock step because the (k + 1)st moments in each cluster depend upon the capacitor current

which, in turn, is a function of the kth moments of nodes in both clusters. Thus the 0th

moments are computed for Cluster 1 and Cluster 2, followed by the 1st moments for Cluster

1 and Cluster 2, etc.

Coupling between clusters can also be caused by dependent sources in the transistor

models. To see this, consider the circuit in Figure 57. If T2 is modeled by the switched

Cluster 2Cluster 1

T1

T2
n1

Figure 57: Gate to Channel Coupling.

resistor model then Clusters 1 and 2 are independent. Switching events in Cluster 1 (for

example T1 changing regions) which affect waveforms in Cluster 1 (for example n1) won’t

affect waveforms in Cluster 2 unless they cause T2 to change regions. However, consider

what happens if T2 is our MOS Level-1 model biased into its saturation region. In that

case T2’s drain current will be a continuous function of of T2’s gate voltage. In that case

any changes to n1’s waveform will immediately affect waveforms in Cluster 2 even if T2

doesn’t change regions.

Thus if T2’s model includes a dependent source coupling its source and drain currents

to its gate voltage, then any event that requires Mom to recompute the response of Cluster

1 (including its moments) also requires Mom to recompute the response of Cluster 2

(including its moments). This implies that not only must the moments be computed in lock

step, but the kth moments of Cluster 1 must be computed before the kth moments of Cluster
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2. This unidirectional coupling is represented by an arc between the clusters.

Another example of unidirectional coupling is illustrated by our bipolar model. Similar

to the MOS example, the emitter and collector currents are dependent upon the base

voltage. However, while the collector current depends upon the emitter voltage, the emitter

current is independent of the collector voltage. This can be represented by an additional

unidirectional coupling from the emitter to the collector (Figure 58). Thus we represent a

Cluster 3

Cluster 1

Cluster 2

Figure 58: Multiple Couplings for Bipolar Transistor.

bipolar transistor with three arcs.

Note that for this particular model the “channel” of the bipolar transistor (the emitter–

collector path) is represented by a unidirectional arc rather than a bidirectional edge.

Therefore the base, emitter, and collector nodes may all reside in different clusters. In

general, if either y12 or y21 of a device model (See Equation 57) are equal to zero it can

be treated as a unidirectional coupling between possibly different clusters rather than as a

branch that couples the two nodes into the same cluster. Later we shall see this allows a

potentially more efficient evaluation.

Coupled clusters are collected into a group and represented by a directed graph.7 The

moments of clusters in a group must be computed in lock step, and the arcs between clusters

induce an ordering for the computation of each moment. If the directed graph is cycle free

then the correct order for the evaluation of moments can be found via a topological sort of

7Note that while a cluster’s graph is, by definition, connected, a group’s directed graph may not be.
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the graph.8 In this case the group’s moments can be computed in linear time. If the directed

graph has cycles then the group has feedback and no topological sort exists. Feedback is

handled using tearing as described in a following section.

Figure 59 depicts a topological sort of the directed graph of an ECL gate. Note that

cluster 1

cluster 4

cluster 33

5 6

4

1

2

Vref1

Vref2

cluster 2

cluster 6cluster 5

Figure 59: Topological Sort of ECL Gate.

since the bipolar model contains no edges, each node in the ECL gate is an independent

cluster. The figure suggests that the directed graphs of most ECL current steering trees will,

in fact, be cycle free. Thus it is possible to compute the moments of most ECL gates in

linear time. In contrast, if the bipolar transistor were treated as an edge rather than an arc

(Figure 60 shows what happens when the bipolar transistor model is a resistor.) then the

resulting undirected graph would have a loop and it wouldn’t be possible to compute its

moments in linear time. This elimination of loops from the graphs of ECL gates was the

primary motivation behind neglecting the output conductance of bipolar transistors.

8A topological sort can be performed by depth first search with complexity O(n) [AHU85].
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Figure 60: Resistor Model for Bipolar Transistor Results in Loops in ECL Gates

5.6 Relaxing Network Restrictions

In the preceding section a method for finding the DC solution (and hence the moments) of

(possibly multiple coupled) trees of piecewise linear devices was described. That method

has the nice property that its complexity grows linearly with the size of the circuit. However

two restrictions were placed on the circuit: the edge graph must be loop free, and the cluster

graph must be cycle free. Because of the judicious choice of transistor models these

restrictions are seldom a problem. Most CMOS circuits yield leaky trees, and most ECL

circuits yield directed acyclic graphs. Thus it is possible to compute the moments of the

most common circuits in linear time. However, one occasionally encounters circuits that

contain either loops or feedback. For those circuits the techniques described cannot be used

directly. In this section we shall describe the use of tearing to solve those circuits. Although

the complexity of tearing is superlinear, if the circuits that need to be torn are small, and if

there aren’t many of them, tearing can still yield an efficient solution technique.

One example of a circuit with feedback is the Schmitt trigger in Figure 61. The Schmitt
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T1
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Vcc Vcc

T2

out

emit

Figure 61: Schmitt Trigger

trigger has two stable states. If in is high then T1 is on and out is low. Conversely, if in

is low then T2 is on and out is high. In either state only one transistor is on. However,

consider what happens when in falls from high to low. T1 is initially the only transistor

on but soon T2 turns on as well. When it does, a positive feedback loop is established

through both transistors that eventually causes T1 to turn off. Thus during the transition

a cycle exists in the directed graph. As another example, consider the diode decoder in

Figure 62. When the decoder’s inputs x2 - x0 are low, i2� i0 receive current and i2� i0

i2 i1

i0

i2 i1

i0

i1

i1

i2

i2

**** **** *** *

x0

i0i0

x2 Vr Vrx1 Vr

Vcc

y0 y1

Vcc

y2

Vcc

y3

Vcc

y7

VccVcc

y4

VccVcc

y5 y6

Figure 62: Diode Decoder.

don’t receive current from the differential pairs. Only diodes connected to wires receiving
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current (marked with an asterisk (*)) are on. Since y0 is the only output whose diodes are

all off, only it is high. All other outputs are pulled low by one or more on diodes. However,

it is not trivial to determine the distribution of currents through the diode network. This is

because the topology of the on diodes forms a mesh rather than a tree.

If the circuits containing loops and/or feedback are small and if there aren’t many of

them, it can be practical to handle just those circuits using a more general, albeit less

efficient, extension of the original algorithm. In this section we will show that the circuit

decomposition technique known as tearing can be used to handle such circuits.

5.6.1 Node and Branch Tearing

Circuit tearing was originally introduced by Kron[Kro39] who described the solution of

large networks by 1) partitioning them into multiple subnetworks 2) solving the subnetworks

independently and 3) combining the independent solutions to produce the overall solution.

Two particularly interesting techniques have been devised for tearing systems of nodal

equations: branch tearing[Wu76] and node tearing[SVCC77]. Branch tearing can be

interpreted as9 the insertion of independent current sources in series with “torn” branches

in order to partition the network (Figure 63). In contrast, node tearing can be interpreted as

21 ii

2v1v

Figure 63: Circuit Partitioning via Branch Tearing.

the insertion of independent voltage sources between “torn” nodes and ground in order to

partition the network (Figure 64). For each of our examples the insertion of two independent

sources partitions the network into three subnetworks. The network is considered to be

9The intuition behind these interpretations of branch and node tearing are largely due to an insightful paper
by Rohrer[Roh88]. However, our interpretation of node tearing differs from the one presented there.
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Figure 64: Circuit Partitioning via Node Tearing.

“partitioned” because each of the subnetworks may be solved independently once the values

of the inserted sources are given.

The solution of the original network can be found using multiple solutions of the

subnetworks. To illustrate, consider the case of branch tearing. First the inserted current

sources, i1 and i2, are set to zero and the subnetworks are solved to find the voltages across

the inserted sources v1 and v2. Denote the resulting voltage across the kth inserted source

by vok , that is the response due to sources that were part of the original network. Next,

set all sources (original and inserted) to zero. Then for each of the inserted sources, set

only that source (let’s say it is the kth source) to some nonzero constant iak and solve the

subnetworks for the voltages across each of the inserted current sources. Denote the ratio

of the voltage across the jth inserted source to iak by the transfer resistance rjk . Then by

superposition, the total response due to the original sources and with arbitrary settings for

the inserted sources is given by (assuming n inserted sources, and vtj is the total voltage

across the jth source)266666664

vt1

vt2

...

vtn

377777775 =

266666664

r11 r12 � � � r1n

r21 r22 � � � r2n

...
...

...
...

rn1 rn2 � � � rnn

377777775

266666664

ia1

ia2

...

ian

377777775+

266666664

vo1

vo2

...

von

377777775
(68)

If we set vt = 0 in the above equation and solve for ia we get the actual currents flowing

through the torn wires of the original circuit (ie before augmentation). Finally, if we solve

the augmented circuit with those currents we get the DC solution of the rest of the original

circuit.

The node tearing case is solved in a similar manner, except that instead of setting the

values of the inserted current sources the values of the inserted voltages sources are set,
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instead of measuring the voltages across the inserted current sources the currents through

the inserted voltage sources are measured, and instead of forming a transfer resistance

matrix a transfer conductance matrix is formed.

5.6.2 Non-Leaky Tree Topologies

Node and branch tearing were conceived with the objective of partitioning the network

into multiple independent pieces. However, they can also be used to reduce a network to

one that is more readily solved. For example, consider a circuit that is nearly a leaky tree

(Figure 65). The network can be reduced to a leaky tree by finding a spanning tree for

Figure 65: Circuit That is Nearly a Leaky Tree.

the network and then using branch tearing to tear out all edges not part of the spanning tree

(Figure 66). The equivalence of the torn circuit to a leaky tree can be made more apparent

(a) (b)

1v

2v
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1ii

Figure 66: Branch Tearing of Nearly Leaky Tree.

by replicating the tearing sources. In a similar manner node tearing can be used to break
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Figure 67: Node Tearing of Nearly Leaky Tree.

loops in the circuit (Figure 67). In either case, the torn circuit is a leaky tree and hence

can be solved in linear time. Of course tearing doesn’t really eliminate the work of solving

the network. In order to compute the response of the original network from the solution

of the torn network a transfer resistance or conductance matrix of dimensionality equal to

the number of torn nodes or branches must be formulated and LU factored, a process that

is generally superlinear. In general, tearing techniques are not guaranteed to reduce the

amount of computation and can actually increase it[Wu76]. However, the experience from

switch-level simulation has been that circuits are usually close approximations of trees and

the number of torn branches or nodes is much smaller than the total number of branches or

nodes in the network. If the number of torn branches or nodes is small and bounded then

tearing can be used advantageously.

Chan and Karplus[CK89] and Pillage and Dutta[PD90] used branch tearing to reduce

the network to a tree. Ratzlaff et al[RGP91] used a circuit collapsing technique10 which

can be viewed as node tearing if one notes that the circuits that are collapsed are simply the

partitioned subnetworks and the nodes that remain after collapsing are the torn nodes. The

choice of tearing nodes is particularly advantageous in that the resulting tearing matrix is

sparse, symmetric, and positive definite and therefore can be more efficiently LU factored

than general circuit matrices.

We use a combination of tearing techniques. Branch tearing is used to reduce individual

10This was an improvement of a technique first explored by Stark and Horowitz for the solution of large
power networks[SH90].
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clusters to leaky trees.11 The difference between our approach and that of Chan and

Karplus[CK89] and Pillage and Dutta[PD90] is that we needn’t tear branches to ground.

Although this complicates the formulation of the tearing matrix (we can no longer simply

traverse fundamental loops), the tearing matrix can be smaller and sparser. As demonstrated

in [PD90], tearing branches to ground can severely reduce the sparsity of the tearing matrix.

Feedback is handled using an analogous procedure. Instead of tearing out edges to

eliminate loops in a cluster’s undirected graph, we tear out arcs in order to eliminate cycles

from a group’s directed graph (Figure 68 (a)). The only additional complication arises

(b)(a)

Figure 68: Tearing of feedback.

when it is not possible to replace the torn wire with a current source because such a current

source would see an infinite impedance. This occurs, for example, when cluster inputs are

only connected to MOS gates.12 In this case we tear out the wire and drive the infinite

impedance side with a grounded DC voltage source.

5.7 Partial Evaluation of Floating Capacitive Coupling

The procedures described up to this point can be used to compute the moments of arbitrary

interconnections of piecewise linear devices. If the network is free of loops and feedback

11Branch tearing is actually suboptimal with respect to node tearing in the sense that it may require more
tearing variables. As illustrated by our example, tearing a branch can open up at most one loop while tearing a
node can open up several. A similar result was proved by Sangiovanni-Vincentelli et al.[SVCC77]. However,
in the context of a switch-level simulator, the implementation of branch tearing is slightly simpler.

12In fact, presently all our bipolar models also have zero DC base current although this is not actually a
restriction imposed by the simulator.
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then the moments can be computed in linear time, otherwise the moments are computed

with reduced efficiency. In either case, the moments are computed exactly (except for the

numerical error introduced by executing the algorithms on a real computer).

However, under certain circumstances it may be necessary to give up trying to compute

the moments exactly.13 In particular, the inclusion of floating capacitors into device models

introduces an efficiency problem. To illustrate, examine the cascade of three CMOS

inverters shown in Figure 69. Assume that the circuit has settled and consider the

C2C1

n2 (0->1)n1 (1->0)

T6T2 C3 C4

n3 (1->0)

C5

in (0->1)
T1 T3

T4

T5

Figure 69: Clusters Coupled by Floating Capacitors.

sequence of events that follows T2 turning on. First note that were it not for the floating

capacitors C1 and C2, nodes n1, n2, and n3 would reside in three different groups. This is

because T3 - T6 are initially biased into either the off or linear regions which exhibit zero

gain from the gate to the source and drain. However C1 and C2 couple all three nodes into

the same group. Although the efficiency of moment computation is still O(n) (no loops or

cycles can be introduced by floating capacitors) we must recompute the response of many

more nodes than would seem necessary. Intuitively we would expect that the effect of T2

switching upon n2 (coupled through 1 level of floating capacitors) to be quite small relative

to the logic swing, and the effect on n3 (coupled through 2 levels of floating capacitors)

to be negligible. Otherwise the logic gate abstraction would never have been found to be

useful. However, with our present moment computation algorithm, floating capacitors can

potentially couple all nodes in a circuit thereby eliminating the ability to take advantage of

circuit latency.

A simple solution is to allow a group to expand through only a limited number of

levels of floating capacitors. Nodes sufficiently distant (in terms of the number of levels of

13This isn’t so bad. After all the waveforms that are generated from the moments are just approximations.
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floating capacitors) from the switching event are presumed to be essentially unaffected by

the event. For our example, if the maximum number of levels is set to 1, then only n2 would

be brought into the same group as n1. However, when the expansion process is truncated

there may be some capacitors that only have one terminal belonging to the group. In that

case the terminal outside the group is considered to be driven by a (possibly time varying)

voltage source that has the waveform presently on the node. That waveform is otherwise

undisturbed by the event. For our example, C2 is treated as if its right terminal were driven

by a voltage source having n3’s present waveform. Node n3 retains whatever waveform it

had prior to T2 switching.

Our initial experience is that this procedure works well. Figure 70 plots the response

of a 9 stage ECL ring oscillator when Mom expands groups through various numbers of

levels of floating capacitors. In each case the output of Mom using the Level-2 bipolar

model (which includes parasitic floating capacitors and resistors) is compared with that of

SPICE using an identical piecewise linear model. Table 3 gives the switching delay error

for each case. The figure and table show that the largest change in accuracy is obtained by

capacitor levels 0 1 2 unlimited
% switching delay error 3.5 0.3 0.7 1.8
run time (seconds) 2.3 6.2 10.0 19.5
nodes per group 7.9 24.6 54.9 108
# waveform computations 869 2710 4127 7960

Table 3: Decrease in Efficiency with Increasing Capacitor Levels.

expanding the group through just 1 level of floating capacitors.14

The table also shows the super-linear growth of execution time with increasing numbers

of levels. This super-linear growth can be explained. First note that the number of events

doesn’t change. Thus the execution time is roughly proportional to the number of waveform

computations and hence the average size of a group. Also note that because of the nodes and

14Mom and SPICE piecewise linear simulations appear to be converging to slightly different waveforms.
The most obvious source of error is the waveform approximation. However, there are other possible sources
of error. For practical reasons, it is not actually possible for Mom and SPICE to simulate exactly identical
piecewise linear models. Small parasitic conductances and capacitances must be added to SPICE’s piecewise
linear models in order to aid convergence of the numerical integration. Hysteresis (+/- 1mV) must be added
to Mom’s piecewise linear models to enhance the stability of event scheduling. Finally, experimentation with
simple circuits that could be solved analytically indicate that SPICE may generate errors as large as 0.3%.
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Figure 70: Limited Levels of Floating Capacitors.
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coupling introduced by the bipolar parasitics the fine grain of the interconnection network

resembles a mesh. If the number of levels is modeled by the radius of a circle, and the

number of nodes in a group by the area of the circle then one would expect a roughly

quadratic initial growth of the group size with the number of levels.

Finally, note that for our small example a maximum speedup of only 8.5:1 is achieved.

This seems consistent with the expectation that at any instant in time only one or two of the

nine stages of the ring is actively switching. However, larger circuits often exhibit much

more latency, and one might expect correspondingly greater speedups for them.

5.8 Summary

Moment computation can dominate the cost of waveform estimation. To compute moments,

switch-level simulators use RC tree analysis which is efficient because it takes advantage

of the tree-like topology of most circuits. We generalize RC tree analysis along two

dimensions. First, tree analysis is extended to apply when transistor models are generalized

from resistors to piecewise linear devices. This generalization retains the efficiency of

RC tree analysis for the transistor-capacitor trees found in MOS circuits and the current

steering trees found in ECL circuits. Second, tearing is used to handle non-tree topologies

and feedback. The advantage of combining a tree analysis with tearing is that most circuits

are trees and hence can be analyzed efficiently. The cost of analyzing more general non-tree

topologies is paid only when it is needed.

The addition of floating capacitors to device models can degrade simulation efficiency

because floating capacitors can potentially couple together all nodes in the circuit thereby

eliminating the ability of the simulator to take advantage of circuit latency. However, in

digital circuits there is rarely any significant coupling through multiple levels of floating

capacitors. Thus, repartitioning of the circuit can be achieved by ignoring coupling through

all but a limited number of levels of floating capacitors.



Chapter 6

Detecting Region Changes

The previous chapters showed how moments matching can be used to compute the response

of circuits containing piecewise linear devices. However, moments matching only deals

with linear circuits. That is, the response is computed assuming that all piecewise linear

devices remain in their present regions of linearity. In reality devices may change regions

of linearity in the middle of the transient. At the instant any device in the cluster changes

region, the simulator must stop and recompute the response with that device relinearized in

its new region.

This chapter describes the techniques used by Mom to determine if and when piecewise

linear devices change regions of linearity. It turns out that this task is considerably more

difficult for Mom than for Rsim. It is important to study this problem because, as we shall

see in a later chapter, this computation can dominate the run time of the simulation.

6.1 Mom vs Rsim

The incorporation of more general piecewise linear transistor models complicates the de-

tection of when devices change regions of linearity. In Rsim’s case, a transistor switches

whenever its gate voltage crosses the switching threshold. Since the step response of RC

trees is approximated by a single exponential:

Vg(t) = 5:0e�t=� (69)
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(where � is given by the first moment), in order to find out whether a transistor switches

Rsim only needs to solve the following equation for t:

Vg(t)� 2:5 = 0 (70)

where the first term on the left hand side is the waveform on the gate terminal and the

second term is the negative of the transistor’s switching threshold. The solution for t can

be found explicitly:

5:0e�t=� � 2:5 = 0 (71)

t = �� ln 1=2: (72)

Thus Rsim only needs to multiply the first moment by a constant in order to obtain the

switching time.

More general piecewise linear models introduce a few complications. They may have

several regions of linearity and it is necessary to check whether the model will change

from the present region to any adjacent region. As described in Chapter 3 the boundary

separating the present region from an adjacent region is a hyperplane defined by a linear

equation of the form:

a0 + a1v1(t) + a2v2(t) + a3v3(t) = 0: (73)

where vi(t) is the voltage on the ith terminal, and the ai are constant coefficients that

determine the location of the hyperplane. Since Mom approximates voltage waveforms

using sums of exponentials:

vi(t) = bi0 + bi1e
�1t + bi2e

�2t + bi3e
�3t (74)

the time at which the transistor crosses that boundary can be obtained by substituting the

terminal voltages (Equation (74)) into the equation for the hyperplane (Equation (73)) and

finding the root of the resulting equation:

k0 + k1e
�1t + k2e

�2t + : : :+ k9e
�9t = 0 (75)

The left hand side of Equation (75) defines a time varying waveform which will be referred

to as the boundary waveform.
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However, we are not interested in finding any root. Instead, Mom must start at the

current time and search forward to find the first root. Since the current time can always be

normalized to zero, Mom must find the smallest, positive root of an equation of the form

of (75). If no positive root is found then that boundary is never crossed. Mom must then

check all remaining hyperplanes bounding the current region.

Thus the task of rescheduling a device eventually reduces to (possibly several instances

of) the one dimensional root finding problem. The robust and efficient solution of that

problem is the focus of the rest of this chapter.

6.2 Overview of Root Finding

Although many general purpose root finding techniques have been described in the literature

(for example, Bisection, Newton Raphson, regula falsi, and Brent’s[Atk78]), there exists

no general technique which 1) offers any control over which root is found, 2) provides any

guarantee of convergence or 3) can detect when no root exists. Instead, in order to guarantee

convergence to a desired root it is necessary to incorporate problem specific knowledge.

Mom takes particular advantage of the fact that the left hand side of Equation (75) is a

weighted sum of exponentials. Different techniques are used depending upon the number

of exponentials.

The procedure used by Mom for finding roots involves 3 steps:

1. Moments matching is used to produce a low order approximation of the boundary

waveform. This is done because root finding is most difficult when there are a large

number of poles. Moments matching is used to reduce the number of poles to three

or fewer.

2. Once the number of poles has been limited to three, the problem can be broken down

into a number of special cases. For each different pole configuration the roots are

found by taking advantage of special characteristics of that particular configuration.

3. Although the waveform approximation in the step 1. makes it easier to find roots,

it can sometimes introduce small errors that lead to consistency problems with the
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simulation. Therefore after the root is found, root polishing is used to eliminate the

errors introduced by the waveform approximation.

Each of these steps will be individually addressed in the following three sections.

6.3 Order Reduction

To simplify the task of finding roots, the boundary waveform (which could initially contain

as many as 9 poles) is approximated by a waveform having three or fewer poles. This is

done by forming the moments of the boundary waveform from the linear superposition of

the moments of the terminal voltages and computing a waveform approximation from the

resulting moments. The result is a reduced order waveform1

b(t) = k0 + k1e
�1t + k2e

�2t + k3e
�3t (76)

The poles may be either simple (both ki and �i real) or may occur in complex conjugate

pairs (two poles with �i and �j complex such that ki = k�j and �i = ��j ).

6.4 Finding Roots

Once the number have poles has been reduced to three or fewer, Mom only needs to deal

with a limited number of configurations:

� 1 simple pole

� 2 simple poles

� 3 simple poles

� 1 complex conjugate pole pair

� 1 simple pole plus 1 complex conjugate pair.

1All poles are assumed to be stable. Appendix E shows how to handle unstable poles.
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In general, the difficulty of finding roots is dependent upon the pole configuration. In

order to maximize efficiency a different technique is used for each different configuration.

Occasionally a root can be found explicitly, although most of the time Mom must use some

combination of root bracketing and Newton-Raphson iteration. The following subsections

describe each of the different techniques.

6.4.1 One Pole

The simplest case is if there is a single pole. In that case b(t) takes the form:

b(t) = k0 + k1e
�1t (77)

and b(t) = 0 can be explicitly solved for t to yield:

troot =
1
�1

ln�k0

k1
(78)

Note that if k0=k1 > 0 then no root exists. Also, if troot < 0 then the root occurred in the

past and is of no interest.

6.4.2 Two Poles

The roots of two pole responses are found by bracketing the root before using a general

purpose algorithm. Bracketing consists of locating an interval, t 2 [t0; t1], that contains

exactly one root, the desired root. Once the root has been bracketed several general purpose

algorithms (for example Bisection) are guaranteed to converge to it.

To bracket the root, the stationary points of b(t) (that is the points at which the deriva-

tive is zero) are considered to partition the function into a number of disjoint segments

(Figure 71). Because the derivative is continuous, it cannot change sign without passing

through zero (a stationary point) and hence these segments must be monotonically non-

increasing or monotonically non-decreasing. Thus if the sign of the function changes from

one end of the segment to the other then that segment must contain exactly one root.

Fortunately, the stationary points of two pole responses may be obtained explicitly. If

the response consists of two simple poles (Figure 71 (a)):

b(t) = k0 + k1e
�1t + k2e

�2t; (79)
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v(t)

t

v(t)

t

(a) Simple Poles (b) Complex Conjugate Pair

Figure 71: Stationary Points

then the stationary point (if it exists) can be found by setting the derivative of b(t) to zero:

tstationary = � 1
�1 � �2

ln

 
�k1�1

k2�2

!
(80)

Since there is at most one stationary point the waveform may consist of at most two

monotonic segments. A comparison of the signs of b(tstationary), b(t = �1), and b(t =

+1) reveals whether or not either segment contains a root.

If the response consists of a complex conjugate pole pair, then b(t) can be expressed:

b(t) = k0 +Me�t cos (!t+ �); (81)

which has the stationary points:

tstationary =
1
!

�
tan�1 �

!
� �+ �k

�
(82)

for k = : : : � 1; 0; 1; : : :. Although there are an infinite number of stationary points, it is

only necessary to examine the first couple of segments past the origin because the waveform

decays with time (Figure 71 (b)).

6.4.3 Three Poles

Two cases can occur for three pole waveforms. Either all three poles are simple poles, or

there is one simple pole and a complex conjugate pair.
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Three Simple Poles

The case of three simple poles

b(t) = k0 + k1e
��1t + k2e

��2t + k3e
��3t (83)

(�i 2 <; �i > 0) is handled by conceptually transforming the multipole exponential

expression into a polynomial. This allows us to use results from the area of polynomial

rootfinding.

Assuming the �i are rational, they can be expressed as the ratio of integers �i = ni=�lcd

where �lcd is their least common denominator. Then the transformation of variables:

y = e�t=�lcd (84)

results in a polynomial in y:

p(y) = k0 + k1y
n1 + k2y

n2 + k3y
n3: (85)

Because y varies from 1 ! 0 as t varies from 0 ! +1, we are interested in the largest

root of p(y) in the region y 2 [0; 1].

However, it is not practical to simply track down all the roots because the powers to

which y is raised (and hence the number of roots) may be extremely large. Instead, theorems

that predict the number of roots that lie along segments of the real axis allow us to narrow in

on the single real root of interest. In particular we employ Decartes’ rule of signs[Hou70]:

Definition 1 Given a sequence of real numbers a0; a1; : : : an a variation in sign occurs if

aiai+1 < 0 or if aiai+j < 0 and ai+1 = ai+2 = : : : = ai+j�1 = 0.

Theorem 1 (Decartes’ Rule of Signs) Let p(x) be a polynomial p(x) = a0+a1x+a2x
2+

:::+ anx
n. If the sequence of its coefficients has V variations in sign and the number of

roots on the positive real axis is r then V � r is a nonnegative even integer.

Note that this theorem only utilizes the signs of the coefficients of the polynomial and

doesn’t actually require the computation of the exponents. After sorting the poles in order

of increasing frequency magnitudes (left to right, starting from the DC “pole”, k0) it is only

necessary to scan the signs of the coefficients.
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Often, Decartes’ rule of signs provides sufficient information to bracket the root. The

simplest example is if there is no variation in sign. In that case we quickly conclude there

is no root. For a more complex example, consider the case when the sequence of signs is

��++. Since there is one variation in sign, there must be exactly one root. Additionally,

because the coefficient of the DC pole is negative the final value is negative. Thus if

b(t = 0) > 0 then the interval t 2 [0;+1] brackets the root. Otherwise t 2 [�1; 0]

brackets the root and the root is of no interest. There are 16 possible combinations of the 4

signs. In 13 of those 16 cases the root can be bracketed by merely inspecting the signs of

the coefficients.

When the signs of the coefficients alone don’t provide enough information, a general-

ization of the technique used for two-pole waveforms is employed. That is, the stationary

points are used to partition the function into disjoint monotonic segments. The problem of

finding stationary points of b(t) is equivalent to seeking the roots of its derivative, b0(t):

b0(t) = �k1�1e
��1t � k2�2e

��2t � k3�3e
��3t (86)

= e��1t(�k1�1 � k2�2e
�(�2��1)t � k3�3e

�(�3��1)t) (87)

= e��1tw(t) (88)

where w(t) is given by:

w(t) = �k1�1 � k2�2e
�(�2��1)t � k3�3e

�(�3��1)t (89)

Because e��1t 6= 0, w(t) has the same roots as b0(t) but has one fewer poles. Thus, the two

pole techniques described above can be used to find the roots of w(t). Since these roots are

also the stationary points of b(t) they can be used to bracket the smallest positive root, after

which a general purpose rootfinding algorithm can be used to converge to it. Note that this

technique can be applied recursively to waveforms consisting of larger numbers of simple

poles.

Simple Pole Plus Complex Conjugate Pair

The most difficult case is when the waveform consists of a simple pole plus a complex

conjugate pair.

b(t) = k0 + k1e
�1t +Me�2t cos (!t+ �); (90)
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In this case the smallest positive root is bracketed by constructing a piecewise quadratic

approximation to the response that is guaranteed not to deviate from the true waveform

by more than an error voltage. The reasoning is that a change of region that erroneously

occurs because of a small voltage perturbation (� 1 mV) will probably be short lived and

have little effect on the global behavior of the circuit.

The piecewise quadratic segments are constructed one at a time starting from t = 0

(Figure 72). After each segment is constructed, its end points and extremum are checked

b(t)

t

Figure 72: Rootfinding using Piecewise Quadratic Segments

to see if the segment crosses zero. If so, the desired root can be bracketed. When a segment

is constructed an attempt is made to maximize its length (that is the time between its end

points) subject to the constraint of keeping the maximum deviation bounded. Thus, as the

waveform decays with time the lengths of successive segments tend to increase. Finally, the

maximum possible negative contribution of each of the terms in Equation (90) is monitored

so that the search can be terminated when it is clear that the remaining waveform cannot

cross zero.

This technique is more general than the preceding techniques in that it can be applied

to any combination of simple and complex conjugate poles. In fact, the technique was

initially used to handle all waveforms. Unfortunately, experience with the technique

revealed efficiency problems. Sometimes time must be advanced very far into the future

and large numbers of segments must be constructed in order to conclude that there is
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no root. Unfortunately, this work often turns out to be unnecessary because some other

device switches very early on. Because switching events for different devices are sought

independently we are performing what amounts to a depth first search for the segment

bracketing the first switching event. Unfortunately, this particular root finding technique

would benefit from a breadth first search organization.

Another problem is that large numbers of segments are needed to approximate wave-

forms with large voltage swings. In Chapter 4 it was observed that occasionally waveform

approximations have voltage swings that far exceed what is physically possible. In those

cases only an infinitesimal initial portion of the waveform approximation is used before

some device switches. Unfortunately, the root finding algorithm doesn’t take this into

account and searches the entire waveform for roots. Because the waveform is so large, this

entails searching through an excessive number of segments.

6.5 Root Polishing

The previous section showed how to find the roots of waveforms consisting of three or fewer

poles. However, remember that these low order waveforms are only approximations of the

original boundary waveform in Equation 75. In fact, the roots produced by this procedure

may differ slightly from the roots of the actual boundary waveform. Unfortunately even

slight differences can lead to inconsistencies in the event driven simulation algorithm. For

example, suppose that because of an approximation error a diode is scheduled to turn on

slightly prematurely. When that event fires the voltage across the diode will be insufficient

to turn it on. If the simulator fails to check this and turns the diode on anyway it will

recompute the response of the cluster only to find that the diode’s next event will be to

turn off immediately! To avoid this unnecessary work the simulator must check that a

device’s terminal voltages are consistent with the event. If an inconsistency is detected the

event should be discarded and the device rescheduled. We refer to the discarded events as

spurious events. In this section we will show that root polishing and hysteresis can be used

to eliminate spurious events.

By checking each event for consistency the simulator eliminates the biggest expense

associated with spurious events, that is the needless recomputation of a group’s response.
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However, it doesn’t avoid the cost of rescheduling the device. Therefore, a number of steps

were taken to to reduce the probability of spurious events. First += � 1mV of hysteresis

was introduced into every switching decision. For example, if a diode is off then it isn’t

turned on until Vdiode > :801 volts (assuming a nominal threshold of .800 volts) and if it

is on it isn’t turned off until Vdiode < :799 volts. Surprisingly, this was not sufficient to

completely eliminate spurious events. In fact, for some simulations as many as 50% of the

events that fired had to be discarded and rescheduled. When statistics about the voltages

of the actual boundary waveform at the estimated root times were collected (Table 4) it

100uV < Verr < 1mV 24%
1mV < Verr < 10mV 58%
10mV < Verr < 100mV 9%
100mV < Verr < 1V 9%

Table 4: Voltage Error at Estimated Root of Boundary Waveform.

became apparent that errors in the switching time often led to scheduling devices to turn on

when their terminal voltages were more than 1mV short of the switching thresholds. In fact

in 9% of the cases the voltages were more than 100mV short of the switching thresholds.

Similarly, statistics about the difference between the estimated switching time and the actual

switching time (Table 5) revealed that some events were being scheduled as much as 100ps

0 < Terr < 1ps 85%
1ps < Terr < 10ps 9%

10ps < Terr < 100ps 6%

Table 5: Time Error of Boundary Waveform Root Estimate.

too early.

To eliminate the errors in the switching time estimate, root polishing is employed. That

is the root of the reduced order waveform serves as the starting point for a few additional

Newton-Raphson steps using the real boundary waveform. Table 6 shows that typically

only a couple of iterations are needed to polish a root. It was found that root polishing

completely eliminated spurious events.



CHAPTER 6. DETECTING REGION CHANGES 102

number of fraction of
iterations total number

of roots
0 70.7%
1 23.2%
2 5.9%
6 0.1%

Table 6: Number of Iterations for Root Polishing.

6.6 Measurements

From the description of the algorithms it is apparent that the amount of time needed to

find roots increases with the number of poles in the waveform. Table 7 shows the average

Pole Configuration Simp1 Simp2 Conj2 Simp3 Conj3
Cost 54 490 350 790 1900

Table 7: Average Number of Cycles for Root Finding.

number of machine cycles2 spent finding roots for each pole configuration. “Simp1” is one

simple pole, “Simp2” two simple poles, “Conj2” a complex conjugate pole pair, “Simp3”

three simple poles, and “Conj3” a complex conjugate pole pair combined with a simple

pole. The data indicate that execution time grows somewhat faster than linearly with the

number of poles, although the complex conjugate / simple pole combination stands out as

being particularly inefficient. Thus the cost of rescheduling devices can be expected to rise

as the complexity of waveforms increases.

The simulator was instrumented to print out the distribution of pole configurations for a

number of circuits (Table 8). (For descriptions of the circuits see Table 2.) The table reflects

the previously noted increase in the number of poles for circuits and models of increasing

complexity. When there are two poles they are most likely to be simple poles whereas when

there are three poles they are most likely to include a complex conjugate pair. Unfortunately,

for the circuits employing floating capacitors, the least efficient configuration, conj3, is the

2These numbers exclude the cost of boundary waveform approximation and root polishing. Estimates
of machine cycles are for the MIPS R2000 CPU and were estimated using the pixie execution profiling tool
created by MIPS Computer Systems, Incorporated.
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Pole Configuration %Simp1 %Simp2 %Conj2 %Simp3 %Conj3
CMOS0 Inverter Ring 100.0 0 0 0 0
CMOS0 NAND Ring 98.1 1.9 0 0 0
CMOS1 Inverter Ring 21.4 76.2 1.2 1.2 0
CMOS1 NAND Ring 18.6 80.7 0.6 0.1 0
BJT0 ECL Ring 10% 25.0 24.6 13.1 17.0 20.2
BJT0 ECL Ring 20% 37.5 37.5 25.0 0 0
BJT1 ECL Ring 12.2 11.1 8.2 22.0 46.4
BJT2 ECL Ring capLevels=0 0 6.1 35.0 0 37.8
BJT2 ECL Ring capLevels=1 2.6 15.8 2.7 21.1 57.8
BJT2 ECL Ring capLevels=2 3.8 15.3 1.6 16.8 62.2
BJT2 ECL Ring capLevels=1 5.6 11.2 7.3 24.8 51.1

Table 8: Pole Configurations for Root Finding.

most common.

6.7 Summary

The incorporation of more general piecewise linear devices complicates the detection of

when devices change regions because their regions may be bounded by multiple hyper-

planes, those hyperplanes may depend on multiple terminal voltages, and the terminal

voltages may have multiple poles. Consequently, the task of rescheduling devices is sig-

nificantly more expensive for Mom than for Rsim.

The time of the soonest region change of a device is found by computing the smallest,

positive root of all of its boundary waveforms. However, no general purpose root finding

technique exists which provides any guarantees about convergence for all problems. There-

fore it is necessary to take advantage of special characteristics of the sums of exponentials.

The procedure involves three steps. First, the problem is simplified by finding an approxi-

mation of the boundary waveform that has three or fewer poles. Then, depending upon the

particular pole configuration, the root of that approximation is found either explicitly or by

using some combination of root bracketing and Newton-Raphson iteration. Finally, small

errors introduced by the waveform approximation are eliminated using root polishing.

The algorithms for detecting region changes have been instrumented. Not surprisingly,
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measurements made on a number of benchmark circuits indicate that the complexity of

boundary waveforms also grows with increased model complexity and decreased error

tolerances. In turn the cost of finding roots increases with the complexity of the boundary

waveforms. In fact, it can take 40 times as much CPU time to find the roots of a third order

boundary waveform as a first order boundary waveform. In Chapter 7 we shall see that

one consequence of this is that the task of rescheduling devices can dominate the overall

execution time of the simulation.



Chapter 7

Evaluation

The objective behind producing Mom was to create a simulator that extended the accuracy

and flexibility of existing MOS and bipolar switch level simulators while simultaneously

preserving much of their efficiency for the simple cases. This chapter evaluates the extent

to which we have achieved those goals. It begins by examining the application of Mom to a

number of CMOS, ECL and BiCMOS circuits that appear to be just beyond the capabilities

of existing switch-level simulators. Those simulations show that the additional flexibility

is obtained with significant speedups over the circuit simulator SPICE–3d2. Then the

performance of Mom is compared with that of the existing switch-level simulators, Irsim

and Bisim,1 on circuits that can be simulated at the switch-level. The benchmarks show

that when the simplest switch-level models are used Mom is able to achieve switch-level

accuracies with only a moderate degradation in performance compared to dedicated switch-

level simulators. However, the benchmarks also reveal that Mom’s efficiency degrades

precipitously with increasing model complexity. Further measurements reveal that the

causes of this degradation appear to be fundamental to this approach to simulation. It

appears that this approach loses its speed advantage for those cases where the full accuracy

and flexibility of circuit simulation are desired.

1SPICE–3d2 is a derivative of the circuit simulator SPICE[Nag75], Irsim[SH89] is a derivative of the
MOS switch level simulator Rsim[Ter83], and Bisim is an ECL switch-level simulator[KAHS88]. Although
Irsim is an incremental simulator, its incremental capabilities aren’t used here and don’t adversely affect the
efficiency of normal simulation.

105
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7.1 Extending Switch-Level Simulation

In this section the use of Mom is demonstrated on a number of small MOS, ECL, and

BiCMOS circuits that can’t be simulated by Irsim or Bisim. It is shown that the more general

transistor models and circuit analysis techniques allow Mom to handle these “difficult”

circuits. Even for these circuits a large fraction of transistors can be modeled using switch-

level models. Therefore significant speedups over SPICE can be obtained.

A word of caution is probably in order regarding the choice of benchmarks. SPICE

does not take advantage of circuit latency whereas Mom, Irsim, Bisim, and most of the

timing simulators do. Therefore in a comparison it is possible to make the latter simulators

seem arbitrarily good compared to SPICE by simply using benchmark circuits with large

amounts of latency. Such benchmarks are not unrealistic because large circuits tend to have

large amounts of latency.

However, Mom’s ability to take advantage of latency is not the primary issue of interest

here. Techniques for partitioning circuits and avoiding the analysis of latent subcircuits

have been applied to many circuit, timing, switch, and gate-level simulators. Instead the

questions of particular interest here are:

1. How does the use of approximate piecewise linear transistor models and moment

analysis compare with the use of accurate nonlinear models and numerical integra-

tion?

2. How much does the ability to handle more general piecewise linear models impair the

efficiency of Mom compared to the efficiency of a dedicated switch level simulator?

Because it is in common use we would like to use SPICE as an example of a simulator

employing numerical integration. Therefore in this chapter the issue of latency has been

neutralized by considering only small circuits with little latency.

7.1.1 CMOS

To achieve efficient simulation Irsim takes advantage of characteristics shared by most

MOS digital circuits. However, circuits are occasionally encountered that violate some
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of its assumptions. The static RAM sense amplifier previously described in Chapter 3

(repeated here for convenience in Figure 73 (a)) is an example of such a circuit. Because
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Figure 73: Sense Amplifier for Static RAM.

the circuit has outputs that do not swing from rail to rail, has inputs whose thresholds are not

halfway between the power rails, has NMOS and PMOS transistors that are simultaneously

on and pull the output in opposite directions, and has a device whose input is connected to

one of the circuit’s outputs (feedback) it can be difficult for Irsim to simulate. In contrast,

Mom’s more accurate transistor models and its ability to handle more diverse topologies

(including feedback) enable it to do a better job of matching SPICE (Irsim simply reports

that the state of all nodes are undefined). Figure 73 (b) compares the response of SPICE

using nonlinear models with the response of Mom using Level-1 models. The parameters

for the Level-1 models were chosen by linearizing the SPICE transistors when the circuit

is biased at its switching threshold. The fit is remarkable considering the simplicity of the

transistor model.

However, the additional accuracy comes at the expense of reduced simulation efficiency.

Table 9 compares the execution times of SPICE and Mom for a number of circuits to be

considered in this section. From this table we see that for this example Mom is 61 times

faster than SPICE. In contrast (as we shall see in a following section) Irsim is usually at

least 3 orders of magnitude faster than SPICE.
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SPICE Mom SPICE
Mom

SRAM Sense Amp 1.9 .031 61
DRAM Cell 18.8 .075 250
ECL RAM Cell 4.2 .102 41
Diode Decoder 8.2 .102 81
BiCMOS Buffer 7.5 .054 140
BiNMOS Buffer 5.1 .008 650
BiCMOS RAM Cell, Read 2.3 .008 250
BiCMOS RAM Cell, Write 4.6 .012 390

Table 9: Execution Time of Example Circuits (seconds).

The dynamic RAM cell and sense amplifier[SSD72] in Figure 74 is, perhaps, a more

dramatic demonstration of the capabilities of Mom. Although Irsim can be coerced to yield

a logically correct simulation of the SRAM sense amplifier if the resistances and thresholds

of the transistors are specially selected, the DRAM cannot be similarly accommodated.

The DRAM stores data as charge on capacitors in the memory cells. A read cycle

begins with both bit lines, bit and bit precharged to Vdd and s precharged to (Vdd � Vtn).

When wordLine is raised, charge sharing takes place between the bit lines and the selected

cells with the result that the two bit lines are charged to slightly different voltages. Then

the sense amplifier is turned on to magnify this voltage difference. When T3 turns on, s

begins to fall which will cause either T1 or T2 to turn on, depending upon which bit line is

higher. For example, if bit is higher then T2 will turn on, bit will be pulled to ground and

bit will be pulled to Vdd.

However, note that T1 and T2 are turned on by pulling the source terminals low.

Because the switched resistor model can only be turned on by pulling the gate terminal

high it is incapable of modeling the behavior of those two transistors. However, if those

transistors are simulated using Mom’s MOS Level-1 model, the correct circuit behavior

can be obtained. Figure 75 shows plots of the bit line waveforms generated by SPICE

and Mom for a read cycle followed by a precharge. For Mom’s simulation the Level-1

model was only used for T1, T2, and T3. Everywhere else Level-0 models were employed.

Although Mom’s response differs from SPICE’s, it is probably adequate for a first order

verification of the entire DRAM.
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Table 9 shows that for this example Mom is 250 times faster than SPICE. The im-

provement in efficiency is probably due to the extensive use of the simple switched resistor

model.

7.1.2 ECL

The ECL switch-level simulator, Bisim, is based upon tracing paths through current steering

networks formed by bipolar transistors (Figure 76). Negative current can be thought of as

Vcc

Figure 76: ECL Current Steering Networks.

originating from the current source at the bottom of the network and rising towards the top.

When the current encounters a node with multiple emitters attached, it is steered through

the transistor with the highest base. If the current encounters a resistor then it has reached

an output and the resulting voltage drop causes the output to fall. Thus a simple path tracing

algorithm is sufficient to determine the behavior of textbook ECL logic gates.

However, real IC’s often contain a greater variety of circuit forms. For example in

order to lower an output’s logic high level a resistor Tee (Figure 77) is sometimes used.

Thus, the simulator must be prepared to deal with resistor networks in place of the load

resistor. Heuristics can be used to handle simple networks, but the diode decoder described

in Chapter 5 (Figure 78) is an extreme example of a network that can’t be handled by Bisim.
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Figure 77: Resistor Tee as ECL Load.
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Not only does the network contain nonlinear devices, but it also contains loops. However,

because Mom can handle arbitrary networks of piecewise linear devices it can successfully

simulate the circuit. Figure 79 depicts responses at three diode decoder outputs when one

time
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Figure 79: Diode Decoder Response.

of the address lines changes. The figure illustrates a reasonable match between Mom and

SPICE. For this example Mom utilizes Level-0 bipolar models and is 81 times faster than

SPICE.

Another problem arises when current is shared between multiple transistors. In the

current steering algorithm described above it was assumed that one transistor’s base was

sufficiently higher than all the others such that all the current went into a single transistor.

However, sometimes several bases are so close that the current is divided between them. In

fact, degeneration resistors are sometimes deliberately inserted in series with the emitters

(Figure 80) in order to achieve an even division of current. For many simple cases the

current steering algorithm can be modified to split the current correctly. However the

Schottky clamped ECL RAM[KSM+78] shown in Figure 81 has proven to be beyond the

capabilities of Bisim. Each cell stores data using a cross coupled pair T1 and T2 which

requires a small standby current. In order to avoid the overhead of a separate current source

for each cell, the standby currents are obtained by dividing the current from a single current

source, Ibwl shared by all cells in a row. Bisim’s problem is that in order to divide the

current entering the bottom word line, bwl, it needs to know the voltages of the cell nodes
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Figure 80: Emitter Degeneration Resistors to Cause Current Sharing.
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Figure 81: Schottky Clamped ECL RAM.
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d; db; d2; db2; : : :. In turn, in order to determine the voltages of the cell nodes, Bisim needs

to know how to divide the current.

For our example the standby current is 50�A. Thus depending upon whether a 1 or a 0

is stored, either d or db will be 300mV below the the top word line, twl. A cell is read by

raising the top word line and supplying current Ibl and Iblb to the bit lines bl and blb. Then

the emitter follower attached to the highest cell node will turn on raising the corresponding

bit line. For example, if d is high then T4 will turn on pulling up blb. The Schottky diode

D2 prevents the bit line current from driving T4 into saturation. The bases of T5 and T6 are

biased halfway between the high and low logic levels of the cell and are used to sense the

state of the bit lines. To write the cell the top word line is raised and current is supplied to

only one bit line. For example if twl is raised and bl gets current then that current will flow

through T3 thereby setting d to a logic level 0.

A RAM fragment consisting of one row of two cells was constructed and simulated using

SPICE and Mom. As a compromise between modeling the effects of floating capacitance

between tightly coupled nodes, and allowing the independent analysis of loosely coupled

nodes, the Mom simulation utilized Level-1 bipolar models for the cross coupled cell

transistors (T1 and T2) but Level-0 models everywhere else. Figure 82 (a) shows the data
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Figure 82: ECL RAM Cell Internal Nodes.

nodes of a cell during a write operation. Note that for a brief instant of time (t � 1:5ns)
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both members of the cross coupled pair are on and the response includes an unstable pole.

During a read operation (Figure 82 (b)) one of the limitations of our bipolar transistor

models becomes evident. Because Mom neglects the base current, it fails to take into

consideration the degradation of the high level caused by the base current of the emitter

follower pulling up the bit line. For example, if d is high then (Iblb=�) � 80�A will flow

into node d thereby degrading its logic high level by about 50mV. Although the cell nodes’

errors appear to be moderate, the actual bit line swing is only about 100mV and hence Mom

significantly over estimates the bit line swing (Figure 83 (a)) and under estimates the read
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Figure 83: ECL RAM Read.

delay (Figure 83 (b)).

However, note that the ECL RAM is not typical of ECL circuits. The desire to minimize

both the power consumption and access time of the RAM leads to large ratios of bit line

to standby current. In addition the need to keep the cell size small leads to high current

densities in the access transistors which in turn causes some � rolloff at the high bit line

current levels.

7.1.3 BiCMOS

An increasing number of circuit designs utilize both bipolar and MOS transistors on the

same chip. Unfortunately neither Irsim nor Bisim can handle these new BiCMOS designs.
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Figure 84 (a) shows one of several variations of the BiCMOS buffer[GM88]. In general,
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Figure 84: BiCMOS Buffer.

BiCMOS buffers attempt to take advantage of the high current driving capabilities of bipolar

transistors to charge and discharge large capacitive loads. In this circuit T1 is used to pull

the output up to within a diode drop of the upper power supply rail while T2 is used to pull

the output down to within a diode drop of the lower power supply. Hard saturation of T2

is avoided by arranging for its base drive (via T3) to disappear once the output has reached

its low level. This circuit was simulated by Mom using Level-0 models for all MOS and

bipolar transistors. However unlike for ECL, this circuit has no current sources to provide

convenient hints about the operating regions of the bipolar transistors. Therefore, the

bipolar operating regions were estimated by examining the slopes of the waveforms from

a circuit simulation.2 The results are compared with SPICE in Figure 84 (b). The falling

output transition predicted by Mom is too rapid and incorrectly drops below the power rail

because Mom neglects base current and T2 actually saturates momentarily. Mom’s rising

output transition takes the form of a simple exponential rather than a ramp because node

b is driven by switched resistors and consequently has a single time constant waveform

2Further experiments reveal that the exact choice of region of operation has little affect on the parameters
of our model because the high current levels cause the transconductance of the exponential device to be
swamped by the parasitic emitter resistance.
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estimate. However, the loss of accuracy comes in exchange for a speedup of 140 over

SPICE.

Another variant of the BiCMOS buffer[WR83] is shown in Figure 85 (a). This buffer,
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Figure 85: BiNMOS Buffer.

sometimes referred to as the BiNMOS buffer, replaces the bipolar pulldown with an NMOS

in order to obtain a larger output swing. The circuit was simulated by Mom using Level-0

models everywhere. The responses predicted by SPICE and Mom are compared in Figure 85

(b). Because the falling output transition is now determined by a switched resistor model,

it too is a simple exponential. Additionally the more extensive use of switched resistor

models results in an improved speedup over SPICE of 650:1.

The final example in this section is a BiCMOS RAM cell (Figure 86) that combines

techniques from CMOS and ECL RAM design[YHW88]. In common with CMOS static

RAMs, the memory cell consists of a pair of cross coupled CMOS inverters (T1–T4).

However, instead of being connected to the top power supply rail, the sources of T1, and

T2 are connected to a read word line driven by an emitter follower, T5. In common with

ECL RAMs, the cell is read by raising the read word line and sensing the change in a cell’s

logic high level via the emitter follower T6. For example, if cell node db is high then T6

will turn on and pull up the read bit line. The cell is written by placing the write data on

the write bit line, and raising the write word line. The write access transistor, T7 is sized so
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that it overpowers T1 and T3. This circuit was simulated by Mom using Level-0 transistors

everywhere. The results for both read and write operations were compared with SPICE.

Figure 87 (a) shows the data output for a read operation. The earliest rising transition is
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Figure 87: BiCMOS RAM Response.

the input to the read word line driver (T5) which initiates the read operation. Figure 87 (b)

shows the cell nodes during a write operation. The write bit line is zero so d is written to

zero. In the plot the earliest rising pair of waveforms are of the write word line transitions

which initiate the write. The falling pair of waveforms are d and the later rising pair

of waveforms are db. Note that there is a significant mismatch between the SPICE and

Mom waveforms for db. One factor that contributes to this mismatch is the inappropriate

parameterization of T2. The PMOS Level-0 model was characterized for static CMOS

logic gates which presume that jVgs�Vtpj � 4 volts. However during a write operation the

read word line sits 1.3 volts below the top power supply rail and hence jVgs � Vtpj � 2:7

volts. Thus for this circuit Mom overestimates the current drive of T2 by at least a factor

of 1.5. On the other hand, for the read and write operations, Mom’s speedup over SPICE is

250 and 390, respectively.
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7.2 Performance Compared to Switch-Level Simulation.

The previous section illustrated the additional flexibility obtained by incorporating piece-

wise linear models into the switch-level framework. However, increased generality usually

comes at the expense of decreased efficiency. To investigate this issue a number of circuits

were simulated by Mom, Irsim, and Bisim. Examinations of the execution times, execution

profiles and statistics of the simulations lead to a better understanding of the overhead.

The selection of benchmark circuits for comparing circuit simulators and switch-level

simulators can be tricky. On one hand we would like the benchmark to be long enough

so that execution times of the switch-level simulators are large enough to swamp overhead

functions not of interest (reading the wirelist, command parsing, etc.). On the other hand,

we would like the benchmark to be short enough so that the execution times of the circuit

simulators can complete in a reasonable time. However, these goals can conflict. Even for

small circuits with little latency, Rsim can easily achieve speedups of 4000 over SPICE.

Therefore a benchmark that takes Rsim 1 minute will take SPICE 2.7 days.

Ring oscillators were selected for benchmarking because it is easy to adjust the simula-

tion interval for each simulator to obtain reasonable execution times. Each ring oscillator

was simulated by three simulators: SPICE-3d2, Mom, and (as possible) either Bisim or

Irsim. For each simulator the simulation interval was adjusted to guarantee that at least 60

seconds of CPU time were used and that at least 10 periods were simulated. Since faster

simulators end up simulating more periods the execution times are reported in terms of the

amount of CPU time used to simulate a single logical transition of a logic gate in the ring.

For example, if a simulator takes 1 second to simulate 10 periods of a 5 stage ring oscillator

its performance is reported as [1sec=(10 � 5 � 2)] = :010 seconds per logic gate transition

(in 1 period each of the 5 gates in the ring switches twice).

Table 10 reports the results. The CMOS and ECL ring oscillators used in the benchmark

were described in Chapter 4. In addition ring oscillators using the two BiCMOS buffers

described in the preceding section were included (although they obviously couldn’t be

simulated by Irsim or Bisim). The left most three columns report the amount of CPU

time consumed by each of the simulators in units of milliseconds per logic gate transition

(msec/LGT). The two middle columns compute the speedup of Mom over SPICE-3d2 and
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CPU time (msec/LGT) Ratio CPU times Period

SPICE (Bi/Ir)sim Mom SPICE
Mom

Mom
(Bi/Ir)sim Error

CMOS0 Inverter Ring 932 .22 0.59 1600 2.7 0.4
CMOS0 NAND Ring 1850 .54 0.79 2300 1.5 28.0
CMOS1 Inverter Ring 932 .22 11.70 80 53.2 2.6
CMOS1 NAND Ring 1850 .54 22.70 81 42.0 4.7
BJT0 ECL Ring 10% 824 1.08 38.20 22 35.4 10.2
BJT0 ECL Ring 20% 824 1.08 3.53 230 3.3 16.5
BJT1 ECL Ring 824 1.08 33.70 24 31.2 5.7
BJT2 ECL Ring CapLev=1 824 1.08 76.00 11 70.4 1.2
BiCMOS Buffer Ring 5800 — 30.98 187 — 9.9
BiNMOS Buffer Ring 3260 — 2.25 1400 — 10.5

Table 10: Simulator Performance on Ring Oscillators.

the degradation of Mom relative to the switch-level simulators. The last column reports the

percentage error in Mom’s prediction of the period of oscillation relative to SPICE.

One thing to note from this table is that Mom’s performance relative to SPICE appears

to be slightly better than indicated by Table 9. While Mom was 140 and 650 times faster

than SPICE for the BiCMOS and BiNMOS buffers, it is 187 and 1400 times faster for ring

oscillators formed from those buffers. This is probably because the simulations are long

enough to amortize the cost of various overhead functions.

Also evident is the efficiency of switch-level simulation. Irsim and Bisim are between

4200 and 760 times faster than SPICE. In addition, Mom’s increased generality extracts

only a moderate performance penalty when switch-level models are employed. For circuits

using the MOS switched resistor model (“CMOS0 Inverter Ring” and “CMOS0 NAND

Ring”) Mom is between 2.7 and 1.5 times slower than Irsim. For the circuit using the

bipolar switched resistor model (“BJT0 ECL Ring 20%" and “BJT0 ECL Ring 10%”) Mom

is between 3.3 and 35 times slower than Bisim (although as discussed later, the last case

is an anomaly). Note that for these models the accuracy of Mom is comparable to that of

switch-level simulation.

However, as more accurate models are used Mom’s efficiency decreases rapidly. When

MOS Level-1 models are used in the CMOS ring (“CMOS1 Inverter Ring”) Mom slows

down by an additional factor of 20. When bipolar Level-2 models are used in the ECL ring
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(“BJT2 ECL Ring CapLevel=1”) Mom slows down by an additional factor of 2. In return,

Mom achieves increased accuracy. For this pair of circuits the period estimated by Mom

is off by only 2.6% and 1.2% relative to SPICE. Such low errors are generally beyond the

capabilities of Irsim and Bisim.

These data raise some interesting questions. Before constructing Mom we did not

anticipate the extent to which more complex models would slow down the simulation. For

example, the MOS Level-1 model is just the MOS Level-0 model with one additional region

of linearity. It seemed surprising that one additional region would slow down the simulation

by a factor of 20 or 30. In order to find out what was going on additional statistics were

gathered from the simulations. Table 11 shows profiles of Mom’s execution time for a

number of benchmarks. The total execution time is first broken down into three categories:

the time spent computing the responses of nodes, the time spent rescheduling devices, and

the time spent on miscellaneous functions unrelated to the first two categories (reading the

wirelist, parsing commands, etc.). Then each of the first two categories is broken down

further. Computing the response of nodes involves constructing the group, computing the

moments, and computing waveform approximations from those moments. Rescheduling

devices involves reducing the order of the boundary waveform, finding the root of the

reduced boundary waveform, polishing the root, and miscellaneous other functions.

Table 12 shows additional statistics gathered from the simulations. The first column

gives the average number of nodes in a group. The second column gives the average

number of poles in a waveform approximation. The third column gives the average number

of waveform segments making up a single logical transition of a node.

From these tables it can been seen that as more detailed transistor models are used, the

number of segments in a node transition increases. Whereas the Level-0 CMOS rings have

1 segment per node transition, the Level-1 versions of those rings have 5 and 7 segments.

While the Level-0 ECL rings have 3 segments per node transition the Level-1 and Level-2

versions have 18 and 8 segments, respectively. The increase in the number of segments

has a couple of causes. First, models with more regions of linearity generate more events

as they move between those regions. Second, floating capacitance and gain propagate the

effect of one device’s region change to other nodes. In the extreme (“BJT1 ECL Ring”)

floating capacitors couple all nodes together (there are a total of 18 nodes in that ring) such
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68:5% nodeResponse
27:2% buildGroup
35:7% computeMoments

5:6% waveformApprox
17:8% reschedule

0:0% orderReduction
8:6% findRoot
0:0% rootPolish
9:2% other

13:7% other

(a) CMOS0 Inverter Ring

25:3% nodeResponse
8:5% buildGroup

12:9% moments
3:9% waveformApprox

69:0% reschedule
11:6% orderReduction
30:4% findRoot
10:2% rootPolish
16:8% other

5:7% other

(b) CMOS1 Inverter Ring

68:3% nodeResponse
25:6% buildGroup
33:2% computeMoments

9:5% waveformApprox
24:9% reschedule

0:7% orderReduction
15:1% findRoot

0:0% rootPolish
9:1% other

6:8% other

(c) BJT0 ECL Ring 20%

10:0% nodeResponse
2:9% buildGroup
3:4% moments
3:7% waveformApprox

89:4% reschedule
1:2% orderReduction

86:2% findRoot
0:8% rootPolish
1:2% other

0:6% other

(d) BJT0 ECL Ring 10%

68:7% nodeResponse
15:7% buildGroup
18:0% moments
35:0% waveformApprox

29:7% reschedule
10:7% orderReduction
13:3% findRoot
1:7% rootPolish
4:0% other

1:6% other

(e) BJT2 ECL Ring

47:7% nodeResponse
15:6% buildGroup
23:7% moments

8:4% waveformApprox
47:6% reschedule

1:1% orderReduction
37:7% findRoot

0:9% rootPolish
7:9% other

4:7% other

(f) BiCMOS Ring

Table 11: Mom Execution Profiles for Various Benchmark Circuits.
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nodes
group

poles
segment

segments
node transition

CMOS0 Inverter Ring 1.0 1.0 1.0
CMOS0 NAND Ring 2.0 1.3 1.0
CMOS1 Inverter Ring 1.3 1.9 5.0
CMOS1 NAND Ring 2.8 1.8 7.0
BJT0 ECL Ring 10% 2.4 2.2 3.0
BJT0 ECL Ring 20% 2.4 1.5 3.0
BJT1 ECL Ring 18.0 2.5 18.3
BJT2 ECL Ring CapLev=1 23.2 2.7 8.4
BiCMOS Buffer Ring 1.7 1.6 3.3
BiNMOS Buffer Ring 1.2 1.1 3.0

Table 12: Mom’s Simulation Statistics for Ring Oscillators.

that every switching event of every transistor generates a new segment in the response of

every node.

Apparently another affect of coupling is that waveforms become more complex. Note

that while the “CMOS0 Inverter Ring” has only 1 pole in a waveform approximation the

“BJT2 ECL Ring CapLev=1” has, on average, 2.7 poles in an approximation. Unfortunately

an increase in the number of poles can have a serious impact upon efficiency. Tables 1

and 7 show that the costs of generating waveform approximations and finding the roots of

boundary waveforms increase by factors of 20 and 40, respectively, as the number of poles

increases from 1 to 3.

Thus the 20� degradation caused by the introduction of Level-1 models into the

“CMOS0 Inverter Ring” can be explained. The table reveals that the Level-1 ring has

5 segments per node transition and that each segment consists of, on average, 1.3 poles. In

contrast the Level-0 ring has only one segment per transition which consists of a single pole.

However, the table of execution profiles indicates that something else is going on. For the

Level-1 ring Mom spends almost 70% of its time rescheduling devices as compared with

18% for the Level-0 ring. Note that for the MOS Level-0 model each region of linearity

is bounded by a single hyperplane. Thus when a Level-0 MOS is rescheduled it is only

necessary to find the root of a single boundary waveform. However each region of the MOS

Level-1 model is bounded by two hyperplanes. Thus it is necessary to find the roots of two

boundary waveforms when rescheduling a Level-1 MOS. Also, the region of linearity of a
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Level-0 MOS is determined by the gate voltage alone. However, for the Level-1 MOS the

region of linearity depends upon all three terminal voltages. Thus after a new waveform

segment is computed for a node it is necessary to reschedule only those Level-0 MOS’s

with a gate attached to the node, but all Level-1 MOS’s with either a gate, source, or drain

attached to the node. For the inverter ring this means that twice as many Level-1 devices

must be rescheduled as Level-0 devices for each waveform segment. In all, the “CMOS1

Inverter Ring” requires Mom to perform 5�2�2 = 20 times as many boundary waveform

root computations per logic gate transition as the “CMOS0 Inverter Ring”.

An additional problem with device rescheduling is apparent from the execution time of

“BJT0 ECL Ring 10%”. The tenfold increase in execution time resulting from decreasing

the error threshold of “BJT0 ECL Ring 20%” seems somewhat surprising. More startling,

however, is the fact that its execution time exceeds that of “BJT1 ECL Ring” which

combines the entire ring into one group! The program profile reveals that the problem is

once again with device rescheduling: “BJT0 ECL Ring 10%” spends almost 90% of its

time rescheduling devices. A more detailed breakdown of the execution profile reveals

that almost all this time is spent finding the roots of boundary waveforms consisting of 1

simple plus 2 complex conjugate poles. On average 195 piecewise quadratic segments are

examined before a root is found! Clearly the simple, general algorithm used for this case

needs to be replaced by an algorithm employing better root bracketing. However, “BJT0

ECL Ring 10%” is an anomaly. No other circuit demonstrated such poor performance. For

example, both “BJT1 ECL Ring” and “BJT2 ECL Ring CapLev=1” have more than twice

the number of simple plus complex-conjugate pole boundary waveforms (46.4% and 57.8%

vs 20.2% according to Table 8) and yet the average number of segments examined is only

2.6 and 2.9, respectively.

The most striking conclusion to be drawn from the execution profiles is the relatively

high cost of rescheduling devices. Although most of the time in Irsim is spent computing

delay approximations, for Mom the cost of rescheduling devices often dominates. Even

in the best case device rescheduling never takes less than 18% of the total execution

time. What’s worse, only fairly simple models are considered here. If transistor models as

accurate and flexible as SPICE’s were implemented we would expect that Mom could easily

be slower than SPICE! Thus it appears that device rescheduling is fundamental problem
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with Mom’s approach to simulation which will limit its utility in those cases where the full

accuracy and generality of circuit simulation are desired.

7.3 Summary

The objective behind producing Mom was to create a simulator that extended the accuracy

and flexibility of existing MOS and bipolar switch level simulators while simultaneously

preserving much of their efficiency for the simplest cases. This chapter evaluates the

extent to which we have achieved those goals. First, the additional flexibility obtained by

incorporating piecewise linear models into the switch-level framework was demonstrated.

Mom was applied to a number of circuits that appear to be just beyond the capabilities of

existing switch-level simulators. Then Mom’s efficiency was compared to that of existing

switch-level simulators. It appears that Mom is just a factor of 1.5 to 3.3 times slower than

switch-level simulation for comparable accuracy. However, Mom’s efficiency decreases

rapidly as more sophisticated models are used to obtain greater accuracy. More elaborate

models increase the size of groups, increase the number of segments per logic transition,

and increase the complexity of waveforms. In addition, the use of more elaborate models

can cause device rescheduling to dominate the cost of simulation. More complex models

must be rescheduled more frequently, and require more work to reschedule.



Chapter 8

Conclusion

By constructing a prototype simulator, Mom, we have shown that it is possible to modify

Rsim’s switch-level simulation framework to allow more general piecewise linear transistor

models in place of the switched resistor model. In addition we have shown that many of

Rsim’s restrictions can be removed: Mom allows floating capacitors, non-tree circuit

topologies, and feedback. Although these enhancements require extensive changes, they

don’t seriously impair the simulator’s efficiency for the simplest cases. That is when the

simplest switch-level models are used Mom achieves speeds and accuracies comparable to

those of dedicated switch-level simulators. In addition the ability to handle more general

piecewise linear models gives the simulator a great deal more flexibility. Mom can simulate

circuits that can’t be simulated by Rsim or Bisim and yet with substantial speedups over

SPICE.

This approach looks particularly promising for simulating circuits that are just beyond

the capabilities of switch-level simulation. Frequently most of a circuit can be simulated

using switch-level models and only small portions require more accurate models. Because

Mom has been structured such that the additional generality is paid for only where it is used

it can simulate those circuits with only a minor degradation of efficiency.

However our experiments uncovered some limitations to the approach. Apparently

the overhead of rescheduling devices will prevent Mom from replacing circuit simulators.

Benchmarks show that Mom’s speed falls precipitously as the complexity of transistor

models is increased. Unfortunately increased model complexity fundamentally requires
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much more work to be done in order to determine when devices change regions of linearity.

We expect that the approach will lose its speed advantage when models having the full

accuracy and generality of SPICE’s nonlinear models are used.

Perhaps the most important contribution of this thesis is that it addresses the question:

is moments matching a practical alternative to numerical integration for computing the

transient response of nonlinear electrical networks? The results from this thesis indicate

that the answer is “it depends”. Consider the space bounded by circuit simulators at one

end and switch-level simulators at the other (Figure 88). Remember that the timing

increasing speed

increasing accuracy

circuit
simulation
(SPICE)

switch-level
simulation
(Rsim)

timing
simulation
(MOTIS)

piecewise linear
moment-based
simulation
(Mom)

Figure 88: Simulation Space

simulators attempted to adapt the basic techniques used by circuit simulators (nonlinear

device models and numerical integration) in order to extend the capabilities of circuit

simulation in the direction of switch-level simulation. Despite some very impressive

speedups, a gap remained; timing simulators never became fast enough to replace switch-

level simulators. In an analogous fashion we have tried to adapt some basic techniques used

by switch-level simulators (piecewise linear device models and moment analysis) in order to

extend the capabilities of switch-level simulation in the direction of circuit simulation. The

result is a simulator that fills the gap between timing simulation and switch-level simulation,

although the initial indications are that this approach will not yield a replacement for circuit

simulation.
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An interesting perspective on the tradeoffs faced by the two approaches can be gained

by considering both from the standpoint of waveform approximation. The numerical

integration techniques used by circuit simulators approximate the time domain response

using a polynomial in t, where the polynomial is chosen to match the low order terms of

the Taylor series expansion of the actual response:

h(t) = h0 + h1t+ h2t
2 + : : : (91)

This produces an approximation (Figure 89) that converges to the actual response as t! 0.

t

v(t)

Figure 89: Numerical Integration Approximation

The consequence of this approach is that the size of the time step is limited by the need

to maintain good convergence between the approximate and actual response. If the device

models are strongly nonlinear then past samples of the response are probably not going to

be good predictors of the future behavior. In that case it will probably be necessary to take

small time steps anyway. However if the models are linear or nearly linear then moments

matching offers a better alternative.

The moments matching techniques used by switch-level simulators approximate the

Laplace transform of the response using a ratio of polynomials in s, where the polynomials

are chosen in order to match the low order terms of the Taylor series expansion of the

Laplace transform of the actual response:

H(s) = m0 +m1s+m2s
2 + : : : (92)

The result is a frequency domain approximation that converges to the actual Laplace

transform as s! 0 or equivalently a time domain approximation (Figure 90) that converges

as t!1. Thus the region of convergence begins at t =1 for low order approximations
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t

v(t)

Figure 90: Moments Matching Approximation

and moves in towards the origin only as the order of the approximation is increased. For the

case of Rsim the models are linear and we are only interested in the response at its 50% point.

Apparently this point is far enough away from the origin that low order approximations

are usually sufficient. However, as more complex piecewise linear models are used to

approximate more strongly nonlinear behavior it becomes more likely that some device

will switch in the vicinity of t � 0. When this happens the work that went into getting

a good match for large t is wasted and the simulator retains what is essentially the worst

part of the approximation. It appears that moments matching is a poor choice when the

piecewise linear models are very detailed and have many regions of linearity.

From this perspective some related approaches appear to be worth investigating. Since

numerical integration appears to be advantageous when devices are strongly nonlinear, and

moments matching when devices are strongly linear, a hybrid approach could dynamically

choose between the two approaches based upon the anticipated step size. This would

avoid the work of generating a waveform approximation accurate at t = 1 in those

cases when only a small portion around t = 0 will be used. Simultaneously the accuracy

problems (described in Chapter 4) associated with generating extremely large waveform

approximations could be avoided. If a waveform approximation has an amplitude of several

thousand volts, probably only a small portion around t = 0 will be used. In those cases

numerical integration (or some other waveform approximation technique accurate near the

origin) should be selected.

Other waveform approximation techniques are possible[McC89, Cha91]in addition to
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those described above. Our experience with Mom indicates that the principle problem that

must be addressed when trying to improve the efficiency of our simulator is the overhead of

rescheduling devices. To a large extent this overhead is due to the difficulty of finding the

roots of weighted sums of exponentials. Therefore, it would be worthwhile to investigate

other waveform approximation techniques with the goal of finding one which produces

approximate waveforms whose roots can be more readily computed. Such a technique

could easily yield a faster approach to simulation.



Appendix A

MOS Level-1 Threshold

One of the peculiar aspects of the MOS Level-1 model is that the gate–source threshold

depends upon the drain voltage. This was done to preserve the continuity of current just

as the transistor turns on. In the saturation region, the current through the MOS Level-1

gV

g o

V d

sV

)t( V-gsVgmi =
Vgs � (Vt � go

gm
Vds) > 0 (93)

glVds � gm(Vgs � Vt) > 0 (94)

Figure 91: Piecewise Linear MOS Model: Saturated Region

model (repeated above for convenience) is given by:

Id = gm(Vgs � Vt) + goVds (95)

Unfortunately, when Vgs = Vt the model yields nonzero current due to the output conduc-

tance:

Id = goVds (96)

If the model turns on precisely at Vgs = Vt, the resulting discontinuity in current can result

in a non-physical staircase response for some source follower circuits (Figure 92).
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Vg

Vs
Vg

t

Vs

V

Figure 92: Staircase Response from Source Follower

However, when the hyperplane bounding the saturation region is changed from

Vgs = Vt (97)

to Vgs = Vt � go
gm

Vds (98)

this undesirable non-physical discontinuity is eliminated. That Id = 0 at the new threshold

can be verified by substituting Equation (98) into Equation (95.)
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MOS Level-1 Polytopes

In order to verify the hyperplane equations it is useful to plot the polytopes of the various

regions of operation. Since the model has no internal connection to ground, we can

arbitrarily set the source to ground and plot the polytopes in the two dimensions Vd and Vg

(Figure 93). Note that the regions in this figure are slightly more general than those of the

V

gV

Linear

Reverse
Saturation

Vd

Forward
saturation

Off

t

Figure 93: Polytopes of MOS Level-1 model

Level-1 model because they include the reverse (Vds < 0) as well as the forward modes of

operation.

To plot the boundary between the forward saturation and off regions, set Vs = 0 in

Equation (23) and solve for Vg

Vg = � go
gm

Vd + Vt (99)
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We see that this boundary is a negatively sloped line through the point (0; Vt). Similarly

the equations for the linear — forward saturation, reverse saturation — linear, and off —

reverse saturation boundaries are

Vg =
gl
gm

Vd + Vt (100)

Vg = (1� gl
gm

)Vd + Vt (101)

Vg = (1 +
go
gm

)Vd + Vt; (102)

respectively.

Note that all four hyperplanes pass through the point (0; Vt). Therefore they partition

space into four disjoint regions, and each region is bounded by exactly two hyperplanes.

However, rather than model all four regions, our implementation restricts the model to the

three forward regions by installing a hyperplane at Vd = 0 and interchanging the source

and drain terminals anytime it is crossed. This simplifies the implementation because fewer

regions need to be modeled, although it is probably less efficient because extra model state

changes may be required.



Appendix C

Linearization of Bipolar Transistor

Capacitances

The SPICE model for the bipolar transistor incorporates four nonlinear parasitic capaci-

tances (Figure 94). The capacitors: Cje, Cjc, and Cjs are the capacitances associated with

Rb

Re

Rc

Cjs
Cjc

Cje Cqb

Figure 94: Nonlinear Capacitances in SPICE bjt model

the base-emitter, base-collector, and collector-substrate junctions. The fourth capacitor:

Cqb represents the storage of active charge in the base.

It is well known that semiconductor junction capacitances are well approximated by an

“average” capacitance formed by dividing the change in depletion charge by the change in
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voltage[HJ83, page 137]:

Ceq = � Cj0�0

(V2 � V1)(1�m)

24 1� V2

�0

!1�m

�
 

1� V1

�0

!1�m
35 (103)

Here, Cj0 is the zero bias capacitance of the junction, V1 and V2 are the limits of the voltage

swing, �0 is the built in junction potential, and m is the junction grading coefficient (for

abrupt junctions m = 1=2, for linearly graded junctions m = 1=3).

This result is accurate if the junction is reverse biased or forward biased slightly (Vf <

�0=2). For larger forward voltages it can be modified to reflect SPICE’s model[AM88,

page60] of the capacitance of junctions under heavy forward bias:

Ceq =
Q(V2)�Q(V1)

V2 � V1
(104)

Q(V ) =

8>>>>>>>><>>>>>>>>:

�Cj0�0

1�m

��
1� V

�0

�1�m � 1
�

V � �
2

�Cj0�0

1�m

h
2m�1 � 1

i
+

Cj02m
�
(1�m)

�
V � �0

2

�
+ m

�0

�
V 2 � �2

0
4

�� V � �0
2

(105)

It less well known that the small signal model for stored base charge provides a good

model for the base charge of an ECL inverter. Our piecewise linear model is roughly the

small signal model of a bipolar transistor linearized about the switching point of the ECL

gate. For our model:

Ic = gm(Vbe � Von) (106)

qb = �fIc (107)

Ib =
dqb
dt

(108)

= �f
dIc
dt

(109)

= �fgm
dVbe
dt

(110)

Thus the base charge is modeled by the capacitance: gm�f [MK77, page 276]. Figure 95

compares the response of ECL inverters using SPICE and piecewise linear models. (The

output of each inverter is loaded by another inverter.) To highlight the effect of the base
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Figure 95: Linearized Base Charge Model

charge model, all other capacitances have been set to zero. The plots reveal that the model

is quite good. (The sawtooth response predicted by SPICE is an artifact of SPICE’s solution

method and is not indicative of the actual behavior of the model.) Although there are minor

deviations between the two responses these will be averaged out once other capacitors are

added to the transistor model.
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Optimal Frequency Scaling

D.1 Algorithm

It is interesting to note that it is possible to perform “optimal” frequency scaling of moments.

That is, if the moments are scaled by 1=s units of time:

m̃i = mis
i (111)

then an s can be found that minimizes ratio of the largest moment’s magnitude to the

smallest moment’s magnitude:

max
i jm̃ij

min
j jm̃j j

(112)

The solution is obtained by considering the logarithm of the magnitudes of the scaled

moments:

li = log(jm̃ij) (113)

= log(
���mis

i
���) (114)

= log(jmij) + i log(s) (115)

= qi + i� (116)

where we define qi = log(jmij); � = log(s). Then the objective is met when that value of

� is found that minimizes the maximum of all pairwise differences: �ij = li � lj .
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However, each difference is now a linear function of �:

�i;j(s) = qi � qj + (i� j)� (117)

Figure 96 shows a plot of pairwise differences. At each � the shaded region is bounded by

Log Magnitude Variation

1

2
3

4

5

sigma

Figure 96: Difference Functions

the line representing the largest difference. This problem can be solved using techniques

similar in spirit to those employed by the Simplex Method from linear programming.

Because the shaded region is convex, the minimum must lie on a corner point. Therefore

the search can start at a point on the boundary and jump from corner point to corner point

until the minimum is found.

D.1.1 Implementation

However a considerable number of parallel lines can be pruned before the search is begun.

The set of differences: f�j+1;jg are parallel because they all have the term�; the differences:

f�j;j+1g are parallel because they all have the term ��; the differences: �j+2;j , are parallel

because they include the term 2�, etc. For each set of parallel lines only the highest line

need be retained:

4j =
max

i
�
�i+j � �i

�
(118)
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If there are k moments then after all redundant parallel lines are eliminated only 2(k � 1)

will remain.

The general form of the difference functions will be:2666666666666666666666666664

41(�)

42(�)

43(�)
...

4k�1(�)

4�1(�)

4�2(�)

4�3(�)
...

4�k+1

3777777777777777777777777775

=

2666666666666666666666666664

1

2

3
...

k � 1

�1

�2

�3
...

�k + 1

3777777777777777777777777775

� +

2666666666666666666666666664

b1

b2

b3
...

bk�1

b�1

b�2

b�3

...

b�k+1

3777777777777777777777777775

(119)

where bi is the y-axis intercept of 4i(�). The objective is to find the � that satisfies:

min
�

�
max
j
�4j

��
(120)

A reasonable place to begin the search is at the highest point of intersection of the y

axis with the difference functions (point 1 in the Figure). That point becomes the current

point, and difference function passing through it becomes the current line.

Subsequent points are selected to reduce the maximum difference. Candidates for the

next point are found by computing the points of intersection of the current line with all

other lines. In general, the abscissa of the point of intersection between 4p and 4q is:

�cross = �bp � bq
p � q

: (121)

If the current line has a positive slope, the closest point to the left of the current point is

selected. Otherwise the closest point to the right of the current point is selected. For our

example the current line is negatively sloped so the search proceeds to point 2 (point 4 is

closer but increases the maximum difference, point 5 reduces the difference but is further

from point 1 than point 2). Note that it is important to stop at the closest intersection point

to avoid leaving the shaded (in linear programming terms feasible) region.
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Finally, the slope of the new line at the newly selected point is examined. If it has

the same sign as the slope of the current line then it becomes the new current line, the

intersection point becomes the new current point, and the procedure iterates. Otherwise the

global minimum has been found and the optimal scaling factor is given by e�cross . For our

example the search continues through point 2 but terminates at point 3.

D.2 Efficiency

The biggest drawback of optimal frequency scaling is its inefficiency. If the scaling factor

is computed from the ratio of two moments then frequency scaling is O(n) in the number

of moments. In contrast the complexity of optimal frequency scaling is O(n2). The

complexity of the pruning algorithm is O(n2) in the number of moments because the there

are n(n � 1)=2 ways of pairing n moments. The complexity of the search algorithm is

also O(n2) because at each search step 2n � 3 intersection points must be considered and

as many as 2n � 2 corner points may have to be traversed (although the experience with

linear programming indicates this unlikely). Thus when the procedure was implemented,

it was found to be too expensive to justify the small improvement for the large majority of

waveforms.

However, although they haven’t been tried, there are a few possibilities for tuning the

routine. A very expensive part of the optimal computation is taking the logarithm of each of

the moments. It may be possible to efficiently approximate the logarithm by extracting the

exponent bits from the machine’s floating point representation. Also note that the divisions

in Equation 121 can be turned into multiplies if the constants: 1=2; 1=3; 1=4; 1=5; : : : 1=2n

are precomputed and stored. Finally, the efficiency of the algorithm can be improved if a

less demanding criterion for optimality is used. If instead of minimizing the ratio of the

largest moment to the smallest moment, we simply minimize the largest ratio of adjacent

moments, then the complexity of the algorithm reduces to O(n).



Appendix E

Unstable Waveforms

Chapter 6 ignored the problem of finding the roots of waveforms containing unstable poles.

In fact, unstable responses present little additional difficulty because an unstable waveform

can be easily mapped into a stable waveform with the same roots. To illustrate, suppose we

have the unstable waveform:

b(t) = k0 + k1e
�1t + k2e

�2t + : : :+ kpe
�pt (122)

where �1 = �1 + j�1 is assumed to be the frequency with the most positive real part. If we

factor out the exponential e�1t we get a new function w(t):

b(t) = e�1t
�
k0e

��1t + k1e
�1t + k2e

(�2��1)t + : : : kpe
(�p��1)t

�
(123)

= e�1tw(t) (124)

Again note that w(t) has the same roots as b(t) because e�1t 6= 0. Furthermore, the

assumption that �1 has the most positive real part implies that all the frequencies of w(t)

have real parts that are less than or equal to zero. Thus w(t) is a stable waveform with roots

identical to b(t).
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