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Abstract

The thesis of this project is that incremental collection can be done feasibly and
efficiently in an architecture and compiler independent manner. The design and
implementation of an incremental, generational mostly-copying garbage collector for
C++ ispresented. The collector achieves, ssmultaneously, real-time performance (from
incremental collection), low total garbage collection delay (from generational
collection), and the ability to function without hardware and compiler support (from
mostly-copying collection).

The incremental collector runs on commer cially-available uniprocessors, such as the
DECStation 3100, without any special hardware support. It uses UNIX's user
controllable page protection facility (npr ot ect ) to synchronize between the scanner
(of the collector) and the mutator (of the application program). Its implementation
does not require any modification to the C++ compiler. The maximum garbage
collection pause is well within the 100-millisecond limit imposed by real-time
applications executing on interactive workstations. Compared to its non-incremental
version, the total execution time of the incremental collector isnot adver sely affected.
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Chapter 1
I ntroduction and Related Work

Garbage collection (GC) refers to the memory allocation and recycling mechanisms
for the application program’s data memory area. GC has always been associated with high-
level, symbolic-processing languages such as Lisp and Scheme, where the concept of
automatic storage management for objects of indefinite extent is embedded in the language.
However, in other high-level languages, garbage collection has not gained wide acceptance
because the extra bookkeeping needed often imposes a significant performance penalty.
Traditional garbage collection schemes, like mark-and-sweep and stop-and-copy, lengthen a
program’ s total execution time and adversely affect its interactive performance.

Although copying and generational collection algorithms applied to high-level
languages are hardly new ideas [Fenichel& Y ochelson 69] [Moon 84], garbage collection in
C++ seems to be an odd idea on first sight. In C++, contrary to Lisp and Scheme, the
storage for objects of indefinite extent must be explicitly managed. But the importance of
garbage collection in C++ isincreasing, because as programs become more complicated, GC
can help aleviate the complexity in storage management. Efficient garbage collection
techniques present an attractive alternative to the usual low-level, ad hoc approach to storage
management, where object deallocation is explicitly managed. Indeed, advances in garbage
collection technology have made possible the advent of efficient collectors that do not rely
on specia purpose hardware or compiler support.

Garbage collectors that can operate on various architectures and system environments
contribute substantially to the language system’s portability and interoperability. One
example is Xerox PARC’ s Portable Common Runtime [Weiser 89]. It is a portable, multi-
lingual programming environment where the support for threads and garbage collection is
provided for all languages and is built in as part of the Common Runtime, rather than the
individual language runtimes. PCR’s collector is a paralel and non-copying storage
manager that must be used as part of the runtime package. Although PCR is portable across
many operating systems, it does have a fair amount of CPU specific code. My objective in
this project, however, is to build a collector that can run in existing environments;, a
standalone, incremental, and copying collector that can be used with any C++ compiler the
programmer desires.



This thesis work is based on the work done at Digital Equipment Corporation’s
Systems Research Center and Digital Equipment Corporation’s Western Research Lab.
Appel, Ellis and Li [Appel et al. 88] demonstrate that incremental garbage collection is
feasible using standard virtual memory page protections, without a tagged architecture or
additional hardware support. To detect pointers to from-space objects, a medium grain
synchronization is established between the collector and the mutator at the virtual memory
level. Bartlett invented mostly-copying collection, which makes substantial memory
compaction possible without having to know the actual set of root pointers at the start of the
collection [Bartlett 88]. The result is that a mostly-copying collector can perform in an
environment where stack and register alocation disciplines are not known. Additionally,
Bartlett has incorporated generational collection into his mostly-copying collector [Bartlett
89], and has shown that his strategy works well in systems running Scheme, C, and C++.

Detlefs has already attempted to combine Appel et a.’s and Bartlett’s ideas into
building a concurrent collector for C++ [Detlefs 90]. However, Detlefs's collector is not
generational and not very portable. It requires modifications to be made to the C++
compiler and requires MACH. My thesis is that incremental, generational mostly-copying
collection can be done efficiently in a compiler and architecture independent manner,
without any modification made to the underlying operating system. By combining and
expanding on ideas employed in previous work, | have built such a collector.

1.1 Mostly-Copying Collection

Bartlett’s mostly-copying collector is a compacting, conservative collector that has
knowledge about the heap structure but does not need compiler support. Conservative
means that the collector must assume that any value on the stack or in the registers that could
be a pointer is a pointer. While this may retain objects that could otherwise be collected, it
has the advantage that the collector does not need to know everything about the stack and
registers. Compacting means that objects that can be safely relocated are moved into
contiguous spaces. There are two benefits of compacting collection: (1) heap fragmentation
can be controlled, so that the working set of physical pages occupied by the program in the
virtual space is reduced, therefore lowering the overhead for virtual memory paging; and (2)
compacting collector’s execution time is proportional to the amount of space retained, and
not proportional to the heap size.

-10-
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Figure 1-1: Bartlett’s Mostly-Copying Collector

As shown in figure 1-1, Bartlett’s collector is based upon an old-space/new-space
approach. The heap is divided uniformly into a number of pages (called heap pages) whose
size is independent of the actua physica page size of the underlying paging system.
Current-space and next-space are conceptual counterparts of from-space and to-space,
respectively, of the classical stop-and-copy collector. Note however, that the spaces here are
not necessarily contiguous regions in memory. Thereis a special space identifier associated
with each heap page to indicate the space it is in. In the simplest term, mostly-copying
collection proceeds as follows. First, the collector ‘‘guesses’ which heap pages contain
objects that may be referenced from pointers in the processor stack, registers and the
application program’s static area. These pages are promoted to the next-space. In the
figure, this refers to the pages containing objects A, C and D. Promoting a page means that
the special space identifier of the page is flagged such that the page will be retained when
the collection is over. The objects that point to A, C and D are called ambiguous roots,
because not necessarily al of them are actually real pointers, but they contain the root
objects through which al accessible objects can be traced. Because of this uncertainty,
ambiguous roots cannot be changed. It isimportant that the heap pages pointed to by these
ambiguous roots be *‘locked,”’ so the objects on these pages can be retained.

Once the initial promoted objects have been identified, the collector scans the
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ambiguous root objects and forwards al objects referenced from these roots into a more
compact area in next-space. Scanning refers to the process by which internal pointers (if
any) of an object are examined; and forwarding refers to the copying of the objects
referenced by these internal pointers into next-space. The forward pointers of the copied
objects are updated in the object being scanned. As the figure illustrates, object B is
therefore copied into B’, and the old pointer in A which pointed to B is updated to point to
B’ instead. The same is aso true for object E pointed to by object D. On the other hand,
although D is referenced by object C, D is not forwarded because the heap page containing
D is aready a promoted page. Scanning continues until al promoted and forwarded objects
have been scanned. GC isthen complete.

In contrast with a conservative mark-and-sweep collector, which also makes
‘‘guesses’ on stack and register pointers but leaves all retained storage fragmented, the
mostly-copying collector is able to compact most of the heap because it has knowledge
about the heap structure. By configuring the heap into a set of pages, the collector can
preserve pointers in the root set whose values cannot be changed during a collection by
simply promoting their corresponding page. It isthen possible to compact other objects that
are not in the root set.

1.2 Generational Collection

Bartlett has also incorporated generational collection into his mostly-copying
collector. Generationa collection works on the basis that newly created objects have the
highest probability to be destroyed soon, while old objects that have survived collection(s)
have a tendency to remain around for alonger time. Such observation isin line with the life
times of (i) subroutine local variables, which are created when the subroutine is called and
are immediately abandoned as soon as the subroutine exits; and (ii) entries in a large
database, which are generally long-living objects.

Generational collection improves efficiency because repeated copying of retained
objects is avoided. Bartlett’s generational collector differentiates objects as either *‘young’”’
or ‘‘old.”” Each time garbage collection is invoked only pages containing young objects are
collected. Old objects are retained and they are not scanned unless they have been mutated
(or the collector thinks that they have been mutated) since the last time they were scanned.
Old objects are not collected until more than a certain portion of the heap is allocated.
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The mostly-copying agorithm facilitates generational collection as the space identifier
of each heap page can be used to approximate the age of the object. In the current version,
an even page space identifier represents an ‘‘old’’ page, and an odd one represents a
“‘young’’ page. According to[Bartlett 89], when running with a generational mostly-
copying collector, smaller programs that do not use garbage collection run a bit slower
because of the overhead needed to keep track of mutated old objects, but large batch
programs such as the Scheme compiler run faster, and interactive programs have shorter
pauses during collection. Generational collection is worthwhile whenever the additional
time needed to manage the remembered set -- the set of ‘*old’’ pages that have references to
new pages -- can be offset by the reduction in garbage collection time.

1.3 Incremental Collection

Traditionally, incremental collection is implemented on a tagged architecture with
special hardware support, e.g. Symbolics Lisp Machines. For conventional incremental
stop-and-copy collection, every pointer fetched from memory is examined to see if it points
to a from-space object. If so, then just as in the case of a non-incrementa collector, the
from-space object is copied to to-space and the pointer which points to the object’s old
location is updated. This hardware approach implements a fine grain synchronization
between the mutator and the collector.

Appel, Ellis and Li have a different approach to incrementalize stop-and-copy
collection. Using the standard virtual memory page protection mechanism, a medium grain
synchronization is achieved: avirtual page in to-space is not scanned until an object within it
isreferenced. Their strategy is based upon the following invariants:

At al times, newly-allocated objects contain to-space pointers only.
At al times, user application accesses objects via to-space pointers only.
* During collection, scanned objects contain to-space pointers only.

» During collection, unscanned objects contain both from-space and to-space
pointers.

Figure 1-2 illustrates the basic framework. When garbage collection is initiated, the
root set is identified and the objects pointed to by the root set are copied to to-space. But
these forwarded root objects in to-space may still have references to from-space objects, and
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Figure 1-2: Appd, Ellisand Li’s Incremental Collector

therefore must be scanned. Garbage collection is incrementalized by protecting unscanned
pagesin user mode. With incremental collection, an unscanned page in to-space can then be
scanned when the mutator tries to access an object in it, by triggering a pre-established page
trap thread running in kernel mode. After the page trap handler has scanned the page, the
access mode of that page is adjusted so that execution of the mutator can proceed normally.

Appel et a. used this strategy to build a concurrent, real-time collector on the Firefly
multiprocessor workstations. They added two kernel calls and use facilities particular to the
Taos operating system. Taos extends Digital Equipment Corporation’s ULTRIX ! with virtual
memory primitives, threads, and cheap synchronization [ Thacker& Stewart 87].

1ULTRIX isatrademark of Digital Equipment Corporation.
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The work presented in this thesis experiments with the application of this incremental
collection strategy on the mostly-copying algorithm to build a real-time garbage collector on
sequential workstations such as the DECStation 3100, running standard ULTRIX.
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Chapter 2
Bartlett’s Generational Mostly-Copying Collector

2.1 Programming Interfacein C++

In languages such as Scheme and Lisp, which have their own native garbage
collectors in the language system, objects with indeterminate extent are allocated in the heap
and are garbage collected. In C++ there is no garbage collection facility native to the
language system, and objects with indeterminate lifetime are given storage space by means
of a general-purpose memory block allocation facility. Explicit storage management of
these objects is necessary.

C++ is an object-oriented superset of C. It allows the application to define new object
classes and provides compile time type checking for the classes. For each object class, the
application supplies a constructor, a destructor, and creates other class operations. The
constructor specifies how new objects are initialized. It is caled when a new object is
alocated. Class operations are procedures which clients of the object class use to
manipulate objects. The destructor is called automatically when the object is going out of
scope. Inside the destructor the application can free the memory occupied by the object.
With Bartlett’s generational mostly-copying garbage collector added to the C++ system,
application programmers can decide which C++ classes are alocated on the garbage
collected heap, and which are not. And for the garbage collected classes, the application
does not need to provide a destructor.

Bartlett’s collector is added to the language system like any other library because the
collector is a self-contained module requiring no cooperation from the compiler. The
application calls routines provided by the garbage collector by linking with the collector’s
library at compile time. Thislevel of compiler independence allows the collector to be used
with different C++ compilers.

Figure 2-1 shows an example of how a garbage collected C++ object class is declared.
Only object classes with the special statement GCCLASS appearing in the class structure
declaration are garbage collected. In the example, GCCLASS informs the garbage collector
that the type wor d is garbage collected and has a ‘‘pointer-finding’’ callback method

-16-



struct word {
wor d* | esser;
wor d* greater;
i nt count ;
char synmbol[ 1 ];
word( char* chars );
GCCLASS( word );

}s

wor d: :word( char* chars )

{
GCALLOCV( word, sizeof( word )+strlen( chars ) );
| esser = NULL;
greater = NULL;
count = 1;
strcpy( synbol, chars );
}

void word::GCPointers( ) {
gcpointer( |esser );
gcpointer( greater );

Figure2-1: C++ definition for thewor d object class

wor d: : GCPoi nters. When the collector is scanning an object, it must be able to
identify internal pointers of the object. In this case, the internal pointers of wor d are
wor d* | esser andwor d* greater. Intheword: : GCPoi nt er s calback, thereis
agcpoi nt er statement for each interna pointer. During scanning, the garbage collector
has an efficient way to cal the GCPoi nt ers method of the object being scanned
(described in the last paragraph of section 2.2.2, page 20). Then each of the gcpoi nt er
statements of the method passes an internal pointer of the object to the collector, so that the
object referenced by that internal pointer can be forwarded. If an object class does not
contain any internal pointer, the GCPoi nt er s method is an empty procedure.

Inside the constructor wor d: : wor d, GCALLOCV is responsible for space alocation.
The arguments of GCALLOCV are the class name and the number of bytes the class object
occupies, respectively. GCALLOCV is designed for the alocation of variable-size objects;
for an object class t whose size is known a compile time, a simpler statement,
GCALLOC(t),isusedinstead of GCALLOCV(t, si zeof (t)).
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C++ supports class inheritance; it is possible that a collectible class is a subclass of a
collectible superclass, or a non-collectible subclass has a collectible superclass, and vice
versa. To ensure that the pointer-finding method is consistent and able to find all pointers to
garbage collected objects, the application programmer must adhere to the following rules:

1.ForclassC P {}, C :GCPoi nters must contain P: : GCPoi nters().
That is, for a class C that is derived from a super class P, the pointer-finding
method of C must contain the call to P: : GCPoi nt er s() , whichisclassP's
pointer-finding method.

2. For class ({ X x;}, C : GCPoi nt ers must contain x. GCPoi nters().
That is, for a class C which contains an object x of the garbage collected class
X, Cs pointer-finding method must include the statement
X. GCPoi nt er s( ), which isthe call to invoke the pointer-finding method of
object x.

3.For class ({ X* x;}, C :GCPoi nters must contain gcpoi nter (x).
That is, for a class C which contains a pointer x to an object of the garbage
collected class X, C's pointer-finding method must contain the statement
gcpoi nt er ( x) , which informs the garbage collector about the existence of
thisinternal pointer.

If a subclass does not have any internal pointers, then the GCCLASS statement in the
declaration of the subclass can be omitted and the GCPoi nt er callback method is not
necessary.

2.2 Summary of Bartlett’s Collection Algorithm

Bartlett’s generational mostly-copying collector is a compacting, conservative
collector. The heap is divided into a number of heap pages, each of which is PAGEBYTES
bytes in size. PAGEBYTES is an adjustable parameter independent of the hardware page
size. The collector conservatively treats all words in the processor stack and registers which
could be pointers into the heap as root pointers. Heap pages which are referenced by these
ambiguous roots are retained. Their contents are left intact because the ambiguous roots
may reference their locations in the future. Other objects in the heap that are not referenced
directly by the roots can be compacted, much like the way of a classical stop-and-copy
collector.

Bartlett’s collector uses a dua age group approach for generationa collection.
Newly-allocated objects are considered *‘young’’ while objects which have survived at |east

-18-



one collection are *‘old.”” Old objects are stable and not collected. During each collection,
stable objects (which constitutes the stable set) that have been mutated to reference young,
unstable objects have to be scanned, so that the unstable objects can be forwarded and made
stable. The set of stable objects which the collector needs to scan is called the remembered
set. For ease of implementation, the remembered set in Bartlett’s collector is equal to the
stable set, so no additional bookkeeping is necessary to remember the stable objects which
have been mutated. Stable objects are retained at each collection, until the set of stable
objects occupy a certain fraction of the heap. Then atotal collection isinitiated to collect al
objects regardless of age.

2.2.1 Spaces

The classical stop-and-copy collector divides the heap into two contiguous regions,
from-space and to-space. Objects are allocated in from-space until it is exhausted. Garbage
collection is started, and objects that are salvageable are copied to to-space. When
collection is over, the two spaces swap roles. Bartlett’s collector divides the heap into two
spaces aso: current-space and next-space. They are analogous to from-space and to-space,
respectively, of the classical algorithm; but Bartlett’s spaces are not contiguous. Rather,
each heap page has an associated space identifier to indicate the spaceit isin. There aretwo
variable that the collector maintains, curr _space and next space, to denote two
important space identifiers. The following explains the partition of the spaces:

* current-space -- space where the application alocates heap pages. Heap pages
in current-space have their space identifiersequal to cur r _space.

* next-space -- space where retained heap pages are found during collection. The
collector retains heap pages referenced by the ambiguous roots by setting (i.e.
promoting) the space identifiers of those pages to be next space. Heap
pages allocated to hold forwarded objects also have their space identifiers equal
tonext _space.

Normally cur r _space and next _space are equal when garbage collection is not
going on. Initially, curr _space and next _space are set to 3. When garbage collection
isinitiated, next _space isincremented by 1, to become an even number. When garbage
collection ends, cur r _space isincremented by 2 (i.e. it remains odd), and next _space
isreset to beequal tocurr _space.

The heap pages promoted into next-space as well as those allocated in next-space
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during collection always have even identifiers, while heap pages allocated by the application
in current-space always have odd identifiers. Generational collection takes advantage of this
fact and treats heap pages with even identifiers as the stable set.

2.2.2 Allocation

Allocation in the mostly-copying collector is a two-part process. (i) allocate a free
heap page, and then (ii) allocate space fromit. A new heap page allocated in step (i) always
has its space identifier set to next _space (recal that curr _space == next _space
when garbage collection in not going on). The variable f r eewor ds holds the number of
remaining allocatable words in the current free page. If the remaining f r eewor ds number
of words is insufficient for an allocation request, then the trailing space on the current free
page is discarded and left unused. Another heap page is allocated, and f r eewor ds is reset
to reflect the status of this new free page.

Each heap page has atype identifier associated with it. When a heap page is allocated
to hold objects smaller than one heap page in size, its type identifier is set to OBJECT. To
accommodate a large object, more than one heap page has to be allocated. The first of such
heap pages is of type OBJECT, while the remaining one(s) are of type CONTI NUED. The
trailing space (if any) on the last CONTI NUED page is not used for another object. It is
simply left unused.

The mostly-copying collector can function without hardware and compiler
cooperation because it has perfect knowledge about the heap and the objects inside it.
Besides knowing the space and type identifiers of the heap pages, the collector needs to
know specific information about each object. Thisis achieved by alocating a header word
at the start of each object. The header word contains information about the object size and
an index into an array of GCPoi nt er s callback routines. Using this index the collector is
able to access the appropriate GCPoi nt er s routine for the object type, and it is through
this GCPoi nt er s method that the internal pointers (if any) of an object can be located and
examined.
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2.2.3 Collection

The collector maintains the variable al | ocat edpages so that it knows how many
heap pages have been allocated. Every time the collector enters the allocation routine, it
checks the condition:

al | ocat edpages >= heappages/ 2 && curr_space == next_space
which when true, means that at least half of the heap is already allocated? and that collection
has not been triggered yet. In this situation the collector enters garbage collection mode and
attempts to recycle memory before getting to the allocation routine.

Garbage collection starts with the following assignment:
next _space = curr_space+l;

GC then proceeds with examining the stack, registers and static areas, looking for words
which can be interpreted as pointers into current-space heap pages. These words are referred
to as the ambiguous root pointers. The current-space heap pages which the ambiguous roots
reference are promoted by changing their space identifiersto next _space. The page type
identifier allows large objects to be recognized. When an ambiguous root points into one of
the CONTI NUED heap pages, all the heap pages which together make up the whole object
must be promoted. When such an ambiguous root into an arbitrary CONTI NUED page is
encountered, it is easy to ‘‘search backward’’ to the beginning of the object by simply
checking the type identifier of the page(s) preceding the CONTI NUED page until a page of
type OBJECT is discovered. After the leading OBJECT page is found, the header word
gives the size of the object and the corresponding number of pages are promoted. If an
ambiguous root references a stable heap page (one with an even space identifier), no
promoting is necessary.

After the stack and registers are searched and promoting is done, the garbage collector
sweeps across the set of stable and promoted heap pages and scans the objects inside them.
Scanning is done using a breadth-first discipline. Referring to figure 2-2, object A is the
first object to be scanned, and it contains pointers referencing objects B and C. Assume that
all objects are in current-space before collection begins, and object A is promoted to next-
space during collection. Scanning A discovers internal pointers to B and C (via the
GCPoi nt er s method), and causes B and C to be forwarded, to B’ and C' respectively, on
another heap page allocated in next-space (see figure 2-3). As B and C are forwarded, their

2heappages isthe total number of heap pagesin the heap.
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The dotted lines show the ‘‘levels'’ of
the data structure.

Scanning A causes B and C to be forwarded.
Scanning C causes D to be forwarded (assuming
that B is already forwarded).

Figure 2-2: Scanning objects

Scanning A forwards B and Cto B’ and C’, respectively.

Figure 2-3: Scanning objects - 11

header words are replaced with the forward pointers to the location where the forwarded
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Scanning C' forwardsD toD’.

Figure 2-4. Scanning objects - 1|

Figure 2-5: Scanning objects- 1V

objects B’ and C’, respectively, are found. The flag bit of B’sand C's header words are also
set to indicate that these objects have been forwarded. The references to B and C found in
A’sinterna pointers are changed to reference B’ and C' instead. Scanning of A is complete
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after B and C are copied to B’ and C'. Since B’ and C' are in next-space, they are
considered promoted objects and must be scanned. When B’ is scanned, it does not cause
any forwarding because it does not contain any internal pointers. When C’ is scanned, the
collector attemptsto forward B and D (see figure 2-4). Theflag bit in B’s header shows that
B has already been forwarded and therefore it is not forwarded again. The internal pointer in
C is set to the value of B’sforward pointer found in its header word. Afterwards, object D is
forwarded the normal way -- assuming that it has not been aready forwarded by another
object in the heap. Figure 2-5 shows that as a result of scanning A, objects B, C and D are
copiedto B’, C' and D’, respectively, in next-space.

The collector does not attempt to forward objects that span more than one heap page.
In the above example, objects B, C and D are assumed to be less than one heap page in size.
For larger objects, the collector simply promotes all their heap pages to next-space, thereby
saving the effort of having to find contiguous free heap pages to accommodate the large
object and copying it.

During scanning, if a reference to a stable object is discovered, nothing needs to be
done. Stable objects do not need to be forwarded or promoted because they are retained by
the collector. With generational collection, heap pages in the remembered set are scanned
also, in the same way that promoted heap pages are scanned.

Garbage collection is over when al the next-space and stable heap pages have been
scanned. At this point al live pages have even space identifiers. These even pages
constitute the stable set and are retained in the next collection. Heap pages in current-space
can be recycled as free pages. Garbage collection isterminated by setting

curr_space = curr_space+2;

next _space = curr_space,;
This way once again we have curr_space == next_space, just as it used to be
before garbage collection was initiated. The space identifier cur r _space is incremented
by 2 so that the new heap pages to be alocated in current-space are distinguished from the
reclaimed, used-to-be current-space pages, and from the retained stable heap pages.
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Chapter 3

Incremental, Generational M ostly-Copying Collection

3.1 TheBigPicture

The essence of incremental collection is to minimize garbage collection pauses by
configuring the collector to scan only a bounded number of *‘live’’ objects at atime. After
garbage collection is initiated, and after the necessary bookkeeping and setup work for
incremental collection is completed, the application program can proceed normally even
though garbage collection is not yet finished. While in the non-incremental scheme the
application program can suffer a potentialy long and detectable pause every time garbage
collection takes place; under the incremental scheme the application program is interrupted
intermittently to scan objects for a short duration of time. This way garbage collection is
incrementalized, because the total work needed for garbage collection is divided into a
number of comparable subtasks. The subtasks are spread out over time, each subtask being
executed in asmaller timeinterval.

Incremental collection is synchronized at the granularity of physical pages.
Incremental collection for applications running on commercially-available stock processors
depends crucialy on the virtual memory system’s provision to alow control for virtua
memory page protections. At the start of incremental collection, the virtual memory pages
on which objects referenced by the roots reside are read/write protected, i.e. they are neither
readable nor writable. In the context of the mostly-copying strategy, this means that the
physical pages containing one or more promoted heap pages are protected. The application
is then allowed to resume as normal, while garbage collection is technically still "going on."
When the application attempts to access a protected page, a virtual memory page fault is
generated and program control is transferred to a special trap handler, which triggers the
garbage collector to do all necessary work in order to make the physical page needed by the
application accessible. To avoid the situation where the heap is exhausted by the application
alocation before garbage collection is completed, the collector can randomly select a
protected physical page to scan each time the application causes a new heap page to be
allocated.

The GC work needed to be done at the page fault trap includes unprotecting the
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Figure 3-1: Incremental, Generational, Mostly-Copying Collection
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faulted virtual page and scanning the promoted heap pages inside it.3 This is termed
““mostly-copying’’ collection because objects in the promoted heap pages are not moved.
They are referenced by the ambiguous roots and therefore their contents cannot be changed.
They are allowed to remain intact in the heap. Only objects not directly referenced by the
root objects are copied into a more compact area in the heap, and their forward pointers are
updated in the root objects appropriately.

When generational collection is added, not only do the promoted heap pages need to
be scanned, heap pages in the remembered set have to be scanned also. The remembered set
is the set of stable objects which have been mutated since the last time they were scanned.
To avoid trapping writes into stable objects, this version of the generational collector in fact
treats the entire stable set as the remembered set. Objects become stable once they have
survived at least one collection. They have to be scanned because if they have been mutated
since the last time they were scanned, they may contain pointers into newly-created (and
hence unstable) objects. Similar to the scanning and forwarding strategy described in the
previous paragraph, the unstable objects referenced by the stable ones are forwarded (and
therefore become stable), and their forward pointers are updated in the stable objects. GC
work on the physical page is complete after scanning and forwarding of promoted and stable
objects are done. The physical page can be safely accessed by the application now, the trap
handler can exit, and the application then resumes from the point where it was interrupted.

This process of faulting on a protected page, unprotecting it, and scanning and
forwarding objects inside it repeats until there are no more protected pages left in the heap.
Garbage collection is then complete, and the application executes with no interruptions until
the next time garbage collection is initiated. Successive generational garbage collections
enlarge the set of stable heap pages to be retained in the heap. When more than a certain
fraction of the heap is retained after a generational collection is finished, a total collection
will be carried out such that all live heap pages, whether they are ‘‘young’’ or ‘‘old,’”’ are
collected. In addition, the heap can be expanded, if it is discovered that more than a certain
fraction of the heap is occupied after atotal collection. Figure 3-1 illustrates this scheme for
performing an incremental collection on a single-tasking stock processor utilizing a standard
virtual memory system.

SFor the moment consider only the case in which all the objects in the faulted page lie within the physical
page boundary, that is, only the faulted page will have to be unprotected and scanned. A more elaborate
scheme for dealing with bigger objects spanning across physical pages will be discussed in section 3.2.4.1.
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The following section discusses how the incremental version of the generational
mostly-copying garbage collector is implemented in more detail. In particular, the state-to-
state transitions of the different stages of the collection algorithm are described, along with
various special considerations that have to be taken into account in order to optimize
performance.

3.2 An Incremental, Generational Mostly-Copying Collector

3.2.1 Special Considerations

To integrate Bartlett's generational mostly-copying collection algorithm into the
incremental framework, a few special considerations have to be taken into account. Section
3.2.1.1 explains why the current-space/next-space partition of the heap in the non-
incremental collector must be adjusted to a current-space/previous-space/forward-space
partition. Section 3.2.1.2 states a new restriction on the choice of heap size and heap page
size. Section 3.2.1.3 discusses the effects of the allocation algorithm on real-time
performance. Section 3.2.1.4 describes how the miscellaneous page status information is
handled.

3.2.1.1 Space Numbers

The current-space/next-space approach employed by Bartlett’s collector works well in
the non-incremental framework because application alocation for a particular value of
curr_space is not intermixed with collector allocation for a particular value of
next space. This two-space framework is not sufficient for the incremental collector,
because application allocation and collector allocation are intermixed. After garbage
collection is initiated, all the heap pages that used to be in current-space and were not
promoted are now occupying memory which the collector is trying to reclaim. But the
memory cannot be reclaimed until GC is completely finished, because some of these objects
may be referenced by objects in the promoted heap pages, i.e. objects in this region may
still be salvaged. While the collector is intermittently salvaging objects in this otherwise
reclaimable area, application alocation is going on. Therefore, the reclaimable area which
used to be in current-space must be distinguished from the current-space in which the
application is alocating new heap pages. A three-space approach is necessary because there
are three kinds of heap pages to differentiate: the newly-allocated heap pages, the
salvageable and used-to-be current-space heap pages, and the heap pages containing
forwarded/promoted objects. The following is the modified space designation strategy
designed for incremental collection:
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e current-space -- space where newly-alocated heap pages are found. The
application allocates in the current-space, by setting the space number of the
allocated pagetobecurr _space.

* previous-space -- space where unscanned and (possibly) reclaimable heap pages
are found. Heap pages which used to be in current-space before collection
begins and which are not promoted after collection has been initiated are
entered into previous-space (denoted as prev_space), by asserting that
prev_space be equa curr_space a the start of collection, and
subsequently advancing the value of cur r _space.

« forward-space -- space where promoted heap pages and heap pages containing
forwarded objects are found. The collector promotes pages into or alocates
pages in forward-space by setting the space number of the alocated page to be
f orw_space.

Collection in progress is indicated by the inequality curr_space !=
f orw_space. Current-space and forward-space in the three-space scheme are the same as
current-space and next-space, respectively, in the two-space scheme. The addition of
previous-space holds (temporarily) the used-to-be current-space objects, and allows
application alocation to continue while previous-space objects are being scanned. At the
end of collection, the collector will be able to reclaim the previous-space pages by smply
changing the value of pr ev_space tobeequal tocurr _space.

3.2.1.2 Heap Size and Heap Page Size

The incremental collector performs GC work on the granularity of a unit of page
protection. On the DECStation 3100, a unit of page protection is a physical page. On other
machines, this may be different. Sinceit is undesirable to have the collector protect any part
of memory that does not belong to the garbage collected heap, the heap size must be a
multiple of the protection unit, meaning that for the DECStation implementation the heap
sizeisrounded to the nearest number of physical pages.

To simplify the collector, the size of a protection unit must be evenly divisible by the
size of aheap page. Bartlett has shown in [Bartlett 88] that configuring the collector to have
smaller heap pages generally yields better performance. He chose 512-byte heap pages for
the mostly-copying collector and its generational version, for both Scheme and C++. The
incremental collector presented here also uses 512-byte heap pages, and the heap page and
physical page boundaries are aligned such that there are eight (4096/512=8) heap pages on
each physical page.
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3.2.1.3 Allocation

During each garbage collection pause the collector scans a certain amount of memory
and returns control to the application. The less there is to scan at each GC pause, the better
the real-time performance is. This is because when there is no object crossing page
boundaries at both ends of a physical page, then that physical page can be unprotected and
scanned as a unit. But when there is an object crossing either boundary, then instead of
unprotecting just one physical page, at least two physical pages will need to be unprotected,
and subsequently scanned.

It is important to allocate objects in such a way that will minimize the amount of
memory that needs to be scanned each time. The amount of memory to scan is dependent on
how the objects are laid out on the physical pages. Scanning must be done in units of a
physical page, since aphysical pageis apage protection unit. To illustrate this point with an
extreme example, assume that current-space consists of a set of contiguous physical pages,
and there are objects lying across each physical page boundary. Suppose that all the objects
are promoted to forward-space at the beginning of collection, and al the physical pages they
lie on are protected. When it is necessary to scan any one of these objects, it will be
necessary to scan all of the protected physical pages as one unit. Thus, the collector cannot
incrementally collect.

3.2.1.4 Miscellaneous Bookkeeping

The incremental collector often checks whether a physical page in the heap is
protected. Thisinformation is kept in an array indexed by physical page. When a physical
page is protected, its corresponding protect map entry is set; and when the page is
unprotected, the same entry is cleared. The variable pr ot ect edpages holds the number
of physical pages that are till protected, and is maintained to be consistent with the protect

map.

In the non-incremental collector, al | ocat edpages holds the number of *‘live’
heap pages, and st abl epages holds the number of heap pages with even space numbers.
For the incremental collector, this no longer works because as mentioned in section 3.2.1.1
we have added the notion of previous-space. Instead, the following variables are used to
facilitate accounting:

ecurrentpages -- number of heap pages currently alocated in
curr_space.
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« f or war dedpages -- total number of stable heap pages.

» al | ocat edpages -- total number of ‘‘live’’ heap pages, i.e. pages that are
not free for alocation.

When the heap is first configured, al these variables are initialized to zero.
Application allocation causes both cur r ent pages and al | ocat edpages to increment.
When collection is initiated, what used to be in current-space is ‘‘demoted’’ to previous-
gpace, and cur r ent pages isreset to zero. Promoting pages causes f or war dedpages
to increment. Subsequently application allocation increments current pages and
al | ocat edpages, just as before. When the collector allocates a page in forward-space,
both f or war dedpages and al | ocat edpages are incremented. When collection is
finished, the following assignment happens:

al | ocat edpages=current pages + forwardedpages;
which correctly exclude the reclaimed pages in the statistics.

3.2.2 Before GC

When the heap is first configured, all the heap pages are free and are given a space
number equal to 1. The current-space marker curr _space is set to 3 initialy; and the
following condition istrue

curr_space==f orw_space==prev_space
whenever garbage collection is not taking place. Heap pages are allocated in current-space
until one-third of the heap is exhausted. Unlike the non-incremental collector, the
incremental collector does not wait until collection is completely done before allowing the
application to resume. Therefore collection must start sooner to allow the intermixing of
application alocation and collector alocation (for forwarded objects). If incrementa
collection starts when one-half of the heap is exhausted, and assuming the worst case in
which all the previous-space objects have to be forwarded -- half of the heap will be
occupied by previous-space objects and the other half by their forwarded copies -- then there
will not be enough memory for the application to continue.

3.23 Start GC

The gist of incrementa collection is to protect al the root objects at the start of
collection, and delay the process of scanning them until it is convenient to do so. All the
ambiguous root pointers in the processor stack, registers and the program’s static area are
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identified. The heap pages which the ambiguous root pointers reference are *‘ promoted’’ to
forward-space, by setting the space numbers of those pages to be f or w space. For
incremental collection to be correct, such that before garbage collection is over al the
objects accessible from the roots will be scanned and properly forwarded, the physical pages
containing the ambiguous root objects must be protected.

3.2.3.1 Protecting Objects

When there is an ambiguous root pointer in the stack or registers referencing an object
in the heap, not only the physical page containing that part of the object being referenced
needs to be protected. If the object is big and spans across several physical pages, the entire
object has to be protected by protecting all the physical pages that it lies on. It would be
incorrect to protect an object only partially, since the application would be able to access the
unprotected part, and might therefore access a previous-space pointer.

The collector needs to protect the minimum number of physical pages containing the
ambiguous root object such that no object is protected partially. This set of physical pagesis
called a physical page cluster, and is defined as the set of contiguous physical pages which
have to be protected if any one object in any one of the pagesis referenced by aroot pointer.

Figure 3-2 illustrates three situations the collector has to consider when protecting root
objects. Figure (a) shows the case in which an ambiguous root pointer is pointing at an
object in a physical page which does not have any object crossing its page boundary; thereis
only one physical page in the page cluster. In figure (b) there is one object spanning across
more than one physical pages, so the page cluster contains the set of physical pages from the
one containing the beginning of the object to the one containing the end. In figure (c) there
is more than one object crossing more than one physical page boundary, forming a“‘chan’
of pages which must be protected.

The type identifier of the heap pages is used to determine the extent of the physical
page cluster. There should be no object crossing the page boundaries (one at each end) of
the physical page cluster. The first heap page of the cluster must be of type OBJECT,
because a CONTI NUED heap page would mean the head of the object is outside of the
cluster. The first heap page just after the end of the cluster must be of type OBJECT also,
because a CONTI NUED page there would have meant the continuation of an object is outside
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(a) Objects do not cross physical page boundary, i.e. page cluster has
only one page.
(b) Page cluster has one object crossing physical page boundary.
(c) Page cluster has more than one object crossing physical page boundary.

Figure 3-2: Objects and Physical Page Clusters

of the cluster.# Figure 3-3 illustrates the idea.

3.2.3.2 Forward Region

One reason for using a copying garbage collector is to compact memory. When
objects are copied into f or w_space, it is desirable to have them close to each other.
Because incremental collection distributes the task of scanning objects over several intervals

4Invalid heap pages outside of the heap are of type OBJECT, so this method of determining page clusters
never mistakes an invalid page to be in the cluster.
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First heap page of cluster is OBJECT

First heap page after end of cluster is OBJECT

A physical page cluster
(containing 2 physical pages)

OBJECT CONTINUED
heap page heap page

Figure 3-3: Determining physical page cluster

in time, forwarding objects in garbage collection mode occurs intermittently with allocating
new objects in application mode. If special care is not taken to treat the two kinds of
allocations differently, the resulting heap islikely to be very *‘fragmented’’, with afew heap
pages of forwarded objects, followed by a few of newly-allocated objects, and so on. To
deal with this problem, a ‘‘forward region’’ is reserved at the start of collection, by setting
forw freepage to be equa to curr_freepage and subsequently advancing
curr _freepage to anumber of free heap pages beyond the current value. The variable
curr _freepage holds the page number of the first free page that will be allocated for an
application heap page in current-space; likewise, f or w_f r eepage is the first free page
that will be alocated in forward-space. By spacing out curr_freepage and
forw freepage, a‘‘forward region’’ is set up consisting of a group of heap pages where
the forwarded objects are likely to be copied.



3.24During GC

3.2.4.1 Page Fault Trap

When the application accesses an object on a protected physical page, the virtua
memory system generates a page fault signal. This signal interrupts the application process
and causes program control to be transferred to a fault handler. The fault handler finds out
the faulting address of the protected page, and figures out the physical page cluster that
needs to be unprotected and scanned (see section 3.2.3.1). The handler unprotects the
physical page(s) in the page cluster and then calls the garbage collector’s procedure to scan
the page cluster. All the physical page(s) in the page cluster are unprotected at the beginning
of the scanning, and stay unprotected throughout.

3.2.4.2 Scanning Objects

The basic scanning algorithm for the incremental collector is like that for the non-
incremental collector described in section 2.2.3. The page cluster represents a unit of
scanning work and is therefore also called the scan region. The scanning procedure looks at
al the promoted and stable heap pages in the scan region, and scans the objects by
proceeding in a breadth-first manner. However, there are additional concerns in the
incremental collector which do not arise in the non-incremental one.

The concerns are primarily due to efficiency requirements imposed by the real-time
aspect of the incremental collector. To achieve satisfactory rea-time performance, the
collector must spend as little time as necessary in scanning the scan region, and return
control to the application as quickly as possible. Therefore, the collector should scan all the
necessary objects, but not any more than necessary. This criterion directly affects the
alocation of forward-space heap pages for the forwarded objects. Because the forwarded
objects must be scanned eventually, they will have to be protected. If the forwarded objects
were allowed to be allocated in the scan region, then the scanning routine will have to finish
scanning these newly-forwarded objects before it can revert control to the application.
Additionally, scanning the forwarded objects might in turn cause more to be forwarded into
the scan region.

To avoid scanning more objects than absolutely necessary, a specia forward-space
alocation discipline is enforced where the forwarded objects are always allocated outside of
the scan region. Figure 3-4 shows the same data structure asin figure 2-2, but with object A
being on a different physical page from the rest of the objects. The bold outline of the
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Figure 3-4: Scanning object A

rectangle enclosing A indicates that the physica page containing A is protected and
currently causing a virtual memory page fault.®> Therefore the page cluster has to be
unprotected and scanned. Assume again that objects B, C, and D are less than one heap
page in size, so that they will have to be copied. Figure 3-5 shows the result of scanning A:
the objects B and C that A directly references are forwarded to another physical page
(outside the scan region), and their copies B’ and C' are subsequently protected. The
forward pointers of B and C can be found in B’s and C's header words. A forward pointer
indicates the location of the copied object, so that other objects containing reference to the
forwarded object can subsequently update the reference with the new location. In addition,
A’s internal pointers to B and C are updated to point to the forwarded copies. This
completes scanning, and the physical page containing A can be accessible to the application
now.

Scanning is triggered again when the physical page containing B’ and C' causes a
page fault. Scanning B’ correctsitsinternal pointer (which still pointsto C when the fault is

SNote that although the page containing B, C and D is not protected, by the invariant of the incremental
collector, the application program will never access these objects without going through the pointers in the
forw-space (or stable) objects (seeinvariantslisted in 1.3).
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Figure 3-5: Scanning object A - |1

Figure 3-6: Scanning object A - 111

generated) to point to C' instead, as illustrated in figure 3-6. C' is not copied (again)
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because it is already forwarded and therefore stable. Stable objects are retained by the
collector and their locations do not change. They are also guaranteed to be scanned before
collection is over. Scanning C' is similar to that for scanning A: D is copied into D', on yet
another physical page outside of the current scan region containing B’ and C'. The forward
pointer in D’s header is updated to point to D’, and the internal pointer in C' is updated to
point to D’ aswell. D’ will be protected after this level of scanning is complete. Since D’
does not have any reference to other objects, scanning D’ later in collection does cause any
additional forwarding. (The above describes the basics of the scanning strategy, section
3.2.4.4 will discuss a memory fragmentation problem entailed by this scheme and present a
revised design.)

In general, if a stable pointer is discovered when scanning an object, no further work
needs to be done. For an internal pointer to an unstable object, there are a few possibilities,
as outlined in figure 3-7. In this example, scanning C' discovers a pointer to D, which is a
small object outside of the scan region, so D is forwarded. All (unstable) small objects,
whether outside or inside the scan region, are forwarded in the hope of compacting memory.

OUTSIDE INSIDE
scan region scan region
BIG Promote and Scan object
object protect object before exit
S()'\gj';‘c';L Forward object Forward object

Figure 3-7: Scanning strategy for unstable objects

However, when a pointer to a large object is discovered, the location of the object is
important. If the large object resides outside of the scan region, then its heap pages are
promoted to forward-space, and the physical page(s) where it reside on ig/are protected. It
involves more work if the large object is inside the scan region, because no part of the scan
region can be protected. Therefore the object must be promoted and scanned. Since the
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scan region is always scanned in order -- the scan pointer makes one pass through the region
and scans all objects which need to be scanned -- it can be determined with certainty
whether an object in the scan region has had its chance to be scanned by comparing the
address of that object with the scanning pointer. If the large object about to be promoted has
not been swept by the scanning pointer, then it can be safely assumed that the scanning
pointer will get to it later, realize that it has been made a stable object, and will therefore
scan it. If on the other hand the object has already been swept by the scanning pointer, then
the scanning procedure will have to ‘‘backtrack’ to scan it properly. Correct operation
requires that all the promoted objects in the scan region be scanned before the scanning
procedure exits.

Depending upon the operating system the collector runs on, the cost of physical page
protection facility may dominate the overhead of incremental collection. For this reason, it
is desirable to not only minimize the amount of scanning each time the program pauses for
garbage collection, but to minimize the number of memory protection calls. The naive way
of implementing the forwarding strategy would be:

1. Unprotect the physical page containing the object to be forwarded, if it is
protected.

2. Allocate a heap page in forward-space if necessary.

3. Unprotect the enclosing physical pageif it is protected.

4. Copy the object onto the current actively forward heap page.
5. Protect the physical page containing this forward heap page.

6. Protect the physical page containing the forwarded object if it was unprotected
instep 1.

Although this is a correct implementation, it is unnecessarily inefficient because more calls
to protect/unprotect physical pages would have to be made. It is usually the case that a few
forward-space heap pages are allocated on the same physical page, and a few forwarded
objects are copied on the same forward-space heap page. Therefore it is wasteful to have to
go through steps 3 and 5 on each copying operation. In the case where many forwarded
objects tend to scatter on only a few physical pages, it would be costly to repeat steps 1 and
6 for every forwarded object. To minimize the number of memory protection calls, the
scanning procedure registers those physical pages that are unprotected in steps 1 and 3, and
remember to protect them before scanning exits. This strategy effectively unprotects all the
necessary pages demanded by the scanning process and delays having to reprotect them until
the very end.
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3.2.4.3 Application Allocation

With only minor refinement, the incremental collector’s allocation algorithm for
newly-created current-space (application) objects follows closely from the one for the non-
incremental collector described in section 2.2.2. Regardless of whether there is garbage
collection ‘‘going on,’’ the collector finds a free heap page and allocates it in
curr_space. If there is indeed unfinished garbage collection work, then a protected
physical page is selected (randomly) to be scanned every time a current-space allocation is
requested. This ensures that scanning will catch up with application alocation, so that it is
less likely the heap will run out of space before collection is over.

Another refinement is that the incremental alocation algorithm has to be concerned
with page clusters. Scanning occurs on the granularity of one page cluster at a time, so the
length of a garbage collection pause is directly proportional to the size of the page cluster
(the scan region), thus it is important that page clusters are not allowed to grow arbitrarily
large, or the purpose of incremental collection will be defeated. Recall in figure 3-2 (c) that
a big page cluster spanning several pages is formed when there are objects (larger than one
heap page in size) crossing physical page boundaries on consecutive physical pages. To
limit the size of page clusters, the current implementation forbids page clusters with more
than one object crossing the physical page boundary. By checking the type identifiers of the
heap pages at the neighboring physical page boundaries, the allocation procedure verifies
that the heap page(s) about to be allocated do not contribute to the creation of a page cluster
consisting of more than one object crossing page boundary. It is possible to adjust this
restriction to tune performance on different hardware platforms. For instance, if scanning
can be carried out faster on a high performance machine, then the restriction on page cluster
size could allow more pages and still achieve satisfactory collection pauses.

3.2.4.4 Collector Allocation

Section 3.2.4.2 mentions that forwarded objects are always copied into areas outside
of the scan region, so that scanning proceeds in a breath-first manner and pauses can be kept
short. In the data structure in figure 2-2 on page 22, objects A, B, C and D are linked
together in the same physical page cluster originaly. But as the figure 3-6 on page 37
illustrates, by the time scanning is finished the whole object will be spread out over several
physical pages, determined by the number of ‘*levels’ in the application’s data structure. In
the example, there are only three levels, but conceivably avery largeand ‘‘long’’ linked data
structure can be in the same page cluster, and scanning it will *‘fragment’’ the composite
object onto many physical pages.



Using the allocation strategy discussed so far, A alocates a forward-space page to
copy B and C, into B’ and C’, respectivelyS, and when B’ and C’ are scanned, the trailing
space on their f or w_space heap page is discarded. For a program traversing down a
linked list in order, this means that when the elements are forwarded one by one after
successive page faults, each element will be made to ‘*occupy’’ one whole heap page. If
each element is much less than one heap page in size, the amount of memory fragmentation
issignificant.

To avoid fragmentation two f or w_f r eepage’s are maintained. The ideaisto flip-
flop between the two *‘forward regions’ referred to by the f or w_f r eepage’s, so that
instead of **spreading out’’ the composite object onto potentially many physical pages, it is
separated into two regions. In addition, the original rule saying that ‘‘the forwarded objects
are aways allocated outside of the scan region’” becomes the forwarded objects are always
allocated outside of the scan region, unless the current forward-space free heap page has
enough space remaining for the next forward object to be copied there. Perhaps it is most
appropriate to illustrate with an example.

Figure 3-8 shows alinked list of six objects. Assume that each object occupies half a
heap page, and that they are all residing on different physical pages. For simplicity assume
also that all the physical pages are unoccupied except for the objects shown. The head of the
list A is protected, so eventually the whole list structure will be forwarded into a more
compact area. When a page fault ocurrs on the physical page containing A, A is scanned
which causes B to be forwarded. B is subsequently protected, and the application is allowed
to continue. Without the augmented rule, by the time B is scanned, the trailing space after B
would have been wasted; but with the augmented rule, scanning B causes C to be copied
onto the trailing space after B, and C is scanned immediately afterwards. Scanning C causes
D to be forwarded, but this time onto a different physical page. Then D is protected, and the
application continues. Eventually D is unprotected and scanned, so that E is copied to the
trailing space after D. Like before, E is immediately scanned, which causes F to be
forwarded. F is then protected and once again the application is alowed to proceed.
Finally, when F is unprotected and scanned, there is no more objects to forward. The
ultimate result of the scanning, as shown in the figure, is that the linked structure pointed to
by A is compacted onto three heap pages on two physical pages. Because forward-space
heap page alocation tries to flip-flop between two physical pages, if the linked structure

6Assumes that B’ and C’ are small enough to be on the same heap page.
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Before scanning, all objects are on separate physical pages...

A B

C

D

E F

After scanning, objects B, ..., F are compacted onto two physical pages.

Heap pages

Figure 3-8: Scanning alinked list
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were longer, then the remaining elements would also be compacted on these two physical
pages.

3.25End GC

Garbage collection is finished when all the protected physical pages have been
unprotected and scanned. Each time a current-space heap page alocation is requested, the
collector checks whether pr ot ect edpages==0, and if so, garbage collection is
terminated. The trailing words left in f or w_f r eepage are discarded; since there will not
be any more forward objects to be copied. To mark that collectionisover, f or w_space is
set to be equal to curr_space. To reclam storage, prev_space is set to
curr_space, so that all the heap pages which used to be in previous-space are now free
for alocation -- a heap page is allocatable if and only if its space identifier is not stable and
iIS not equal to prev_space or curr_space. The bookkeeping variable
al | ocat edpages is corrected, and depending on how much of the heap is occupied (by
examining the fraction al | ocat edpages/ heappages), a total collection may be
started. In that situation, all the stable heap pages are made unstable by assigning them the
curr_space spaceidentifier, and a new garbage collection isinitiated.

3.2.6 Heap Page State Transitions

This section recapitulates the process of incremental, generational mostly-copying
collection using state transitions. Figure 3-9 shows a map of all the different possible states
for a heap page. The set of possible states is constructed from the cross product of { space
identifier: free, current-space, previous-space, forward-space, or stable} 7, { page protection:
protected, or unprotected}, and { collection status: scanned, or not scanned}. As the figure
indicates the cross product generates twenty different combinations, but a number of them
do not exist. For instance, only forward-space and stable heap pages are ever scanned, so by
definition, there is not any scanned heap page (protected or otherwise) in either current,
previous, or free space. The collector never allows the application to access unscanned
stable and forward-space heap pages, so unprotected and unscanned forward-space and
stable heap pages are not possible. Then there are some states that heap pages arrive in only

"The difference between forward-space and stable heap pages is that the former has its space identifier set to
f or w_space, while the latter has an even space identifier which is not equal to f or w_space. In this
section, stable heap pages and forward-space heap pages are distinct from each other: the entity *‘ stable heap
page’’ does not include any *‘forward-space heap page’’ and vice versa.
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by coincidence. Since there is more than one heap page in a physical page, heap pages in
current, previous, or free spaces can be found on a protected physical page if there happens
to be unscanned forward-space or stable heap page on the same physical page. When the
protected page is unprotected, the collector scans only the forward-space and stable heap
pages. The collector does not operate on the other heap pages. Heap pages arriving in a
state by coincidence leaves the state eventually, without active work on the part of the
collector.

Free Current Previous Forward Stable
Unprotected,
Scanned
Unprotected, \/ \/ \/
Unscanned
Protected, Adj acent (unscanned
Scanned f orwar d/ stlabl e heap
pages protfected
gr?;cega%ded Adj acent (unscanned) forward/
stabl e heap pages pfotected

— State arrived at by coincidence

\/ State exists

Figure 3-9: Heap page state table

From figure 3-9 one can see that out of twenty states only seven are reachable. Figure
3-10 describes the relationships among these seven states by inserting directed arcs between



Free End GC

Unprotected,

Unscanned Application

Allocation

Current

Unprotected,
Unscanned

Unprotected,
Scanned

Scanning

Start GC

prev_space = curr \space;
curr_space += 2;

Previous

Unprotected,
Unscanned

Forward

Unprotected,

Forwarding, ,..-*""
Scanned

Figure 3-10: Heap page state transitions diagram
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states and annotating how one state transitions to the next. Starting at the top of the figure, a
free heap page is first allocated by the application program in current-space. When garbage
collection is initiated, two possibilities can occur: either the heap page contains an
ambiguous root object and is therefore promoted into forward-space, or the heap page does
not contain any root object and is therefore demoted into previous-space. If the page is
promoted it will have to be protected, but if it is demoted then no protection is necessary.
Sometime during the collection some objects in a demoted page maybe copied into another
forward-space heap page, if they are found to be accessible from the root objects. Thisis
shown with a dotted arc because the previous-space heap page does not actually change
state, only some objects inside it are forwarded. Another possibility is that if the collector
discovers an object it needs to forward is larger than or equal to one heap page in size, it will
just promote and protect the demoted page containing the big object into forward-space
instead. At the end of collection, the previous-space page is reclaimed when it returns to
free-space. A promoted page in forward-space may take a longer time to return to free-
gpace. The protected forward-space page is eventually unprotected and scanned, and at the
end of the collection it becomes a stable heap page. The stable heap page is retained, and is
protected and scanned at each subsequent collection. This goes on until too many heap
pages are retained in the heap, at which point the collector decides to do a total collection,
and the stable heap page are sent into current-space and collected.
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Chapter 4

Experimental Results

An incremental, generational mostly-copying collector has been built which
accomplishes the following objectives:

1. Hardware and compiler independence -- The mostly-copying collection
algorithm does not require any specialized hardware or compiler support to
identify root objects. The result is a highly portable garbage collector that can
be adapted to uncooperative environments.

2. Real-time performance -- The incremental collection strategy distributes the
task of scanning objects over time and reduces the length of GC pauses
typicaly suffered by non-incremental collectors drasticaly. On the
DECStation 3100, the maximum GC pause of the incremental collector is well
within the 100-millisecond limit imposed by most real-time applications. The
average GC pause is merely 4 milliseconds long.

3. Satisfactory total execution time -- With generational collection, total
execution time is reduced because repeated copying of long-living stable
objects can be avoided. Generationa collection is important for the
incremental collector because incremental collection inherently requires more
heap space, while generational collection lessens the contention for heap
Space.

Elaboration of these results can be found in the following sections. Section 4.1 states
the success and limitation of the first objective. Section 4.2 describes the benchmark
programs used and presents the benchmark measurements. Sections 4.3 discusses the
accomplishment of the second objective, and section 4.4, the third objective.

4.1 Hardwar e and Compiler Independence

The incremental collector uses standard virtual memory support for page protection.
It does not require any specialized hardware support. Because of this, the collector is very
portable across different hardware platforms. Any system with support for user controlled
page protection is able to use the collector. The collector currently runs under Digital
Equipment Corporation’s ULTRIX, and is using the operating system’s facility, npr ot ect
to control page protection of the heap. The function npr ot ect is aso found in SUnOS;
and many other versions of UNIX provide similar utilities to perform page protection. The
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collector was developed on the DECStation 3100 platform (MIPS), and has been ported to
the VAX architecture.

The collector also has the advantage of being able to be used with different C++
compilers.  The implementation of the incremental collector does not involve any
modification to the compiler. Thisway, the programmer is not tied to a particular compiler
because of its garbage collection feature; rather, the programmer is free to choose a compiler
that is most suitable to the application. The current implementation (listed in appendix B) is
compatible with AT& T C++ Language Releases 1.2 and 2.0. It runs with both the AT&T
C++ Trandator for version 1.2 and the Glockenspiel C++ compiler for version 2.0.

However, it should be noted that some optimizing compilers which do not necessarily
maintain all accessible pointers (i.e. roots) in the program state may destroy the validity of
the root-finding heuristic used by the mostly-copying collection algorithm. For example,
instead of having two root pointers referencing two different heap objects, an optimizing
compiler may find it more convenient to keep track of just one pointer to one of the objects,
and an integer offset from that pointer to locate the other object. The mostly-copying
collector would then fail to retain the second object because there does not exist a pointer to
it in the registers and stack.

4.2 Benchmark M easur ements

The two benchmark programs chosen to assess the performance of the incremental
collector were written at Digital Equipment Corporation’s Western Research Laboratory,
and used Bartlett’s generational, mostly-copying collector. Since the syntax, semantics and
pointer-finding methods of the new collector remain the same as Bartlett's origina
implementation, it was easy to use the programs with the new collector.

The first program, wor ds, courtesy of Joel Bartlett, reads in a text file and builds a
binary tree of storage records with information about each word in the file. The records are
arranged according to the lexicographical order of the words. (The program listing can be
found in appendix A.) The program’s behavior in constructing, traversing and mutating the
data structure puts heavy demand on efficient allocation and effective memory recycling
mechanisms, which represents the class of applications that usually finds garbage collection
useful.



The second program, bi psctrl, courtesy of Jeremy Dion and Louis Monier, is a
part of the CAD system created at WRL for the design of a bipolar integrated processor chip.
Unlike wor ds, which manipulates only one data type that constitutes the individual
elements of the binary tree; bi psctr| instantiates part of the chip design by creating
instances of many data types to describe the various logical and electrical components. The
program then automatically lays out and wires these components.

The programs were executed on a DECStation 3100 to generate the benchmark
measurements shown in table 4-1. The left half of the table shows the measurements
obtained for the wor ds program, while the right half isfor bi psctr| . For each program,
four versions of the collector are used: (from left to right) they are non-incremental
generational, incremental generational, non-incremental non-generational, and incremental
non-generational. For each version of the collector, each program was run five times
consecutively, and the measurements for the best run (chosen to be the one with the shortest
total execution time) were used. The time measurements were obtained by adding
get rusage cals to the collector. It was verified that get r usage did not significantly
change the running times of the programs.

Reading the table from top to bottom, Tot al ti nme measures the total execution
time of the program in seconds. | niti al Heap isthe size of the heap (in Megabytes)
when it is first configured, and Fi nal Heap is the size of the heap at the end of the
program’s execution. Ti ne i n GC measures the cumulative time (measured in seconds)
the program spends inside the collector module. Ti me i n AP is the cumulative time in
the application program itself, and is obtained by subtracting Ti e i n GC from Tot al
time. Thereading of % i me in CCis the percentage of the total time the program
spends in GC mode, and % i me GC overl aps AP is the percentage of the total time
span when GC is technicaly ‘‘going on’’ (i.e. when curr_space != forw _space);
while AP duri ng CC is the percentage of the GC time span (i.e. the total time GC
overlaps AP) during which application is executing. The number of times garbage
collection is initiated is listed at #col | ecti ons; and the percentage of al the allocated
heap pages that are reclaimed is shown in %¢ol | ect ed. Following %ol | ect ed, Max
Pause indicates the maximum GC pause recorded during the run. The next three entries
show the median, mean and standard deviation of all the non-zero GC pauses.8 The last

8Because of the resolution of get rusage, a large number of the pauses are recorded as having zero
millisecond duration.
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Table 4-1: Comparative Measurements of Benchmark Programs

Total tine (sec)

Initial Heap (MB)

Fi nal Heap (MB)

Time in GC (sec)

Time in AP (sec)

%tinme in GC

% tinme GC overlaps AP

% AP during GC

# col |l ections

% col | ected

Max Pause (nsec)

Medi an Pause (nsec)
(of non-zero pauses)

Mean Pause (nsec)
(of non-zero pauses)

Std. Dev. of Pause
(of non-zero pauses)

Mean Pause (nsec)
. (of ALL pauses)

wor ds<mant ext

GENERATI ONAL

NO NC

14.

[EnY

1.

13.

8.

18

96.

86

66.

18.

66.

65

26

39

64

14

58

80

58

I NC

18.18

3.58

14.6

19. 68

29.21

32. 84

27

96. 04

59

2.85

1.58

NO GENERATI ON

NO NC

15.41

2.04

13. 37

13. 26

17

57.25

176

121

113.5

41. 38

113.5
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23. 86

9.02

14. 84

37. 83

44.99

16. 10

36

7.01

20

1.87

2.74

bi psctrl
GENERATI ONAL NO GENERATI ON
NO NC | NC NO NC | NC
4.29 4.61 4.14 4.78
1 1 1 1
2 2 2 2
1.02 0.8 0.8 1.01
3. 27 3.75 3.29 3.77
23.74 18.57 20.59 21.08
- 25.60 - 28.77
- 28.47 - 27.91
3 3 3 3
36.63 79.4 61.56 58.14
605 86 352 43
207 4 262 4
254.75 6.03 213.25 6.59
250. 96 8.13 142.16 5.76
254.75 3.29 213.25 4.22



entry shows the average GC pause of all the pauses, accounting for both non-zero and zero
pauses.

The next two sections describe the real-time and generational aspects of the collector,
respectively, and interpret some of the resultsin table 4-1.

4.3 Real-Time Performance

The maor benefit of incremental collection is real-time performance. Real-time
applications cannot tolerate the long and potentially unbounded GC pauses imposed by most
non-incremental collectors. Figure 4-1 shows the time profile of the bi psctrl program
running with the non-incremental, generational mostly-copying collector. The dark areas
indicate that program control is inside the application itself, and the lighter areas indicate
that control isinside the garbage collector. The duration of each of the lighter areasis on the
order of hundreds of milliseconds. Thisis unacceptable for real-time performance. Appel et
a. indicate that for a garbage collector to be real-time, the GC pauses must be less than a
very small constant time. And for interactive applications, this maximum pause should be
less 100 milliseconds [Appel et al. 88].

(@)

50ms 100ms 200ms

Figure4-1: Timeprofileof bi psct r| running with the non-incremental collector

With the incremental collector, GC is divided into smaller chunks of work, as
illustrated in figure 4-2. Instead of having pauses of hundreds of milliseconds each time the
program enters garbage collection mode, GC now pauses much more frequently, but the
length of each pause is significantly reduced. Most are less than 10 milliseconds, and the
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maximum pause is still well within 100 milliseconds. Comparing figures 4-1 and 4-2, one
can also notice that the total execution time for the incremental collector is longer. Thisis
due to the overhead for having real-time collection.

0 50ms 100ms 200ms

Figure4-2: Time profile of bi psctrl running with the incremental collector

Looking across the Max Pause and Medi an Pause rows in table 4-1 on page 50,
one can see that the incrementa collector has much smaller maximum pause and median
pause than the non-incremental one for both benchmark programs. However, this is not
achieved without any cost. For instance, the total time for wor ds running with the
incremental generational collector is 24% longer than that running with the non-incremental
generational collector ((18.18-14.65)/14.65 = 24%). This is due to the fact that a larger
number of garbage collection sessions are initiated in the incremental case than in the non-
incremental case (27 timesvs. 18 times). The incremental collector inherently requires more
memory in order to run as efficiently as the non-incremental collector, because the previous-
space heap pages are not reclaimed until the end of the collection, so comparatively less
space is available. Therefore if the heap is not large enough, then collection is called
frequently, resulting in much wasted scanning.

Along the same line of thinking, the reason why the incremental generational version
of bi psctrl isonly 7% sower than the non-incremental generational version (4.61 sec vs.
4.29 sec) is likely because the behavior of the program is such that equal number of garbage
collection sessions (3) are initiated in both cases, and the heap is expanded once equally. It
is likely that the amount of scanning is comparable in both cases, and therefore the
comparable total execution times.
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The costs of incremental collection come not only from scanning and forwarding, but
from the overhead of npr ot ect and page fault trap also. Figure 4-11 itemizes these costs.
On the DECStation 3100, the cost of npr ot ect is 45usec per cal. A page trap takes
200usec, which includes the time it takes to interrupt the program, enter and then exit the
trap handler to return to the main program control. The matrix shows the overhead (in
milliseconds) of the number of pointers to scan versus the size of each forwarded object (in
number of words). For example, to scan a physical page of 1024 pointers and forward the
1024 64-word long objects that these pointers reference takes 16 milliseconds. The scanning
and forwarding operation is essentially free unless the collector has to forward a large
number of relatively large objects, e.g. the collector scans an object with 4096 pointers,
which occupies 4 physical pages, such that each pointer points at a 100-words long objects
to be forwarded. Such an object is somewhat unlikely, but the collector can still handleit in
areasonable amount of time (94 milliseconds). In addition, since the collector does not copy
large objects exceeding one heap page (512 bytes = 128 words) in size, the overhead for
forwarding these objects -- by simply changing the space identifier(s) -- is very low. This
can be observed by the sharp drop in time overhead right past the 128-word mark:
forwarding 4096 100-word long objects takes 94 milliseconds, but forwarding the same
number of 128-word long objects takes only 20 milliseconds.

Figure 4-11 indicates that the costs of each overhead is not overwhelmingly large. But
when the cost is incurred over and again a large number of times, the cumulative overhead
becomes significant. In the original design of the collector when no attempt was made to
minimize the number calls to protect memory, npr ot ect was the dominant overhead. But
with the optimization described in section 3.2.4.2, npr ot ect ceases to be the major cost of
incremental collection. In fact, the combination of npr ot ect and page fault overhead in
the benchmark programs accounts for only 3% of the total execution time. It is, on the other
hand, when GC is initiated too often, then the cost of scanning/forwarding in the incremental
collector becomes the dominating overhead. The data in table 4-1 supports the claim that
total execution time is proportional to the number of collections initiated. When garbage
collection is called for frequently, it is probably because the heap is not big enough for the
application’s allocation need. Instead of spending most effort on reclaiming stale objects,
the collector islikely to expend a disproportionate amount of time scanning objects that have
just been scanned recently.

It is therefore important to tune performance of an application running with the
incremental collector to ensure that the heap is large enough, so that excessive scanning and
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Table4-11: Overhead of page fault trap, npr ot ect and scanning

Hardware platform DECStation 3100

Trap over head

Scanni ng and forwardi ng over head:

R 16

s 32

64|

128

256|

512

1024]

2048|

4096|

11

24

= 200usec/trap Mpr ot ect overhead = 45usec/ cal
# WORDS/ OBJECT
4 8 16 32 64 100 128 256 512 1024 2048
L e
- - 4 - - - - - - - -
- - - 4 4 4 - - - - -
4 - 4 - 4 4 - - - - -
4 3 4 12 8 11 3 4 4 4 4
4 8 8 12 16 24 4 3 4 4 4
19 16 19 19 35 43 12 12 11 11 11
24 27 35 43 66 94 20 20 16 20 24
(Measurenments inside matrix are in nmilliseconds.)



forwarding as a result of too many GC initiations is prevented. But under most
circumstances, figure 4-11 suggests that the real-time performance of the incrementa
collector will still be satisfactory for even very memory intensive codes. The sum of the trap
and npr ot ect overheads, and the time for scanning and forwarding objects are likely to be
within the 100 millisecond limit.

4.4 Soundness of Generational Collection

Generational collection improves performance whenever the extra cost of
bookkeeping is less than the cost of the conducting the additional GC work. The strategy
presented in this thesis treats the entire stable set as the remembered set. Since the
remembered set is scanned at each collection, the desirability of generational collection
decidedly depends upon whether retention of the so-called stable objects is awise choice. It
is beneficial if the stable objects remain aive for a relatively long period of time.
Otherwise, if most of the stable objects ‘‘die’’ right after they become stable, then the heap
space is not efficiently utilized, and generational collection is not saving much GC work at
all -- it would actualy be increasing GC work.

From table 4-1 it can be seen that with generationa collection the benchmarks yield
almost uniformly better total execution time. Except for bi psct r| running with the non-
incremental collector, al the other programs achieve better total time, as they are spending
lesstimein GC. The percentage of GC work saved ranges from about 15%, in the case of
the incremental version of bi psctr | ((1.01-0.86)/1.01 = 15%), to over 60%, in the case of
the incremental version of wor ds ((9.02-3.58)/9.02 = 60%). It is, however, worth noticing
that the heap space requirement for the incremental generational version of wor ds is higher
than its counterparts. This is likely due to the fact that incremental generational collection
tends to retain more stable objects.

Another point worth noticing is that the incremental generational versions of both
benchmarks incur higher maximum GC pauses than the non-incremental versions.
Maximum GC pause for the incremental collector always occurs during the call to start GC.
The more objects to protect, the longer GC initiation takes. With incremental generational
collection, more objects have to be protected during GC initiation because in addition to
protecting the ambiguous roots, the collector has to protect the retained objects in the stable
Set.
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Perhaps the longer GC pause can be viewed as a drawback of generational collection
for the incremental collector; but when considering other more desirable aspects,
generational collection seems to be favorable when used in conjunction with incremental
collection.  Incremental collection spreads out application allocation and collector
scanning/forwarding, so that a any time less memory is available for alocation.
Generational collection can decrease the collector’s contention on heap space, because the
amount of forwarding is reduced as stable objects are never forwarded. Therefore two
benefits are accomplished simultaneously: (1) less overhead for copying forwarded objects;
and (2) more heap space is available for application allocation. The first benefit depends on
whether the stable objects are in fact long-living. The second one helps reduce the number
of garbage collections needed.
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Chapter 5

Summary and Future Work

5.1 Summary

My thesis in this project is that incremental collection can be done feasibly and
efficiently in an architecture and compiler independent manner. To support my thesis, an
experiment in building such a collector was carried out, and the following results have been
gathered:

« Anincremental, generational mostly-copying collector for C++ has been built.

* The collector runs on commercially-available uniprocessors without any special
hardware assist. Currently it runs on both the MIPS and the VAX architectures.

 The collector runs in the UNIX platform, using the operating system’s support

for user controlled page protection (npr ot ect) to synchronize between the
mutator and the scanner.

» The implementation of the collector does not require any modification to the
C++ compiler. It is compatible with both AT& T C++ Language Releases 1.2
and 2.0.

* On the DECStation 3100, the maximum GC pause of the collector iswell within
the 100-millisecond limit imposed by most real-time applications. The mgjority
of the GC pauses (i.e. average pause) are only 4 milliseconds each.

 Thetotal execution times of the application programs are not adversely affected.
This is due in part to generationa collection, which aleviates contention for
heap space and hel ps reduce the number of garbage collections needed.

There are two important lessons obtained from conducting this investigation:

1. An incremental collector requires more heap memory in order to run as
efficiently as its non-incremental version. Incremental collection inherently
demands more memory because collection is spread out over time and storage
is not reclaimed until the end of collection.

2. The costs of trapping, nprotect calls, and scanning objects are not
overwhelmingly large when viewed individually as single units. But when one
or more of these costs are incurred a large number of times, then the
cumulative effect can become prohibitively expensive. To enable efficient
incremental collection, invocations of all of these costs must be kept at a
minimum.
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The second lesson is related to the first one in that when the available heap memory is
insufficient, garbage collection is initiated frequently, resulting in repeated incurrence of
trapping, nmpr ot ect and scanning costs, which otherwise could have been avoided. It is
observed that excessive number of garbage collections can degrade performance reflected in
the total execution time significantly.

5.2 FutureWork

This incremental, non-concurrent collector can be easily extended to become a
concurrent collector. The collector read/write protects the physical pages that the
application is not supposed to access. Because of this, in a multiprocessor environment, the
collector can scan the protected pages in paralel with the application program’s execution.
The concurrent collectors described in [Appel et a. 88] and [Detlefs 90] use this strategy of
virtual memory page protection to synchronize between the mutator and the scanner. With a
concurrent collection scheme, the total execution time for an application can be reduced
significantly. Both [Appel et al. 88] and [Detlefs 90] report reductions in GC overhead by
about 50%.

Presently, generational collection is conducted by protecting al the stable objects at
the start of each collection. When the application accesses a protected stable object, the
program traps and the collector enters to unprotect and scan the physical page cluster
containing the object. This can be potentially wasteful because stable objects would not
need to be scanned if they have not been mutated since the last time they were scanned.
Conceivably more experiments can be done with different generational collection strategies
in the C++ environment. For instance, if stable objects can be grouped together on the same
physical page, and the page is WRITE protected only (so it can be read from but not written
to), then the application will be able to read into stable objects without causing page faults.
Page faults occur only when application tries to overwrite some part of the physical page, at
which point the garbage collection can register that the page has been mutated and must
remember to scan it later. Depending on the behavior of the program, this scheme may save
some amount of scanning and page trap overhead.

Another area to work on is the further incrementalization of the collector, specifically,
the incrementalization the GC initiation process. Maximum GC pause always occurs during
the call to start garbage collection. But since the program faults many times during each

-58-



garbage collection session, the average GC pause is the average time it takes to perform GC
work at each page fault. For the benchmark programs used in section 4.2, the average GC
pause is only 4 milliseconds. It usually takes on the order to 4 milliseconds to unprotect and
scan a physical page cluster (refer to figure 4-11). Even for very memory intensive
programs, the overhead for unprotecting and scanning seems to be fairly well controlled.
However, for the GC initiation process, the overhead is directly proportional to the size of
the root set to be protected, and can approach the vicinity of 100 millisecond limit for avery
large root set. Therefore, in order to reduce maximum pause, it is necessary that the
performance bottleneck found in the GC initiation process be aleviated. It would be
desirable to ‘*spread out’’ the task of initiating GC, much like the concept of incremental
collection, where the task of GC itself is‘*spread out’’ over time.
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Appendix A
Sample C++ program using gar bage collection

The following is the listing of the benchmark program wor ds.

/* Read in words on cin. Build a binary tree with a word record at each
node. Keep a frequency count of a word by updating the 'count’ field
inits word record in the tree. Then output words in al phabetical
order on cout.

Copyright (c) 1989, Digital Equiprment Corp. Al rights reserved.
*/

#i ncl ude <stream h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>

#include "gcalloc.h"

/* The basic data structure is a binary tree made up of itens of the follow ng
form
*/

struct word {
wor d* | esser;
wor d* greater;
int count;
char symbol[ 1 ];
word( char* chars );
GCCLASS( word );

}s
word: :word( char* chars )
{
GCALLOCV( word, sizeof( word )+strlen( chars )+(1-4) );
| esser = NULL;
greater = NULL;
count = 1;
strcpy( synbol, chars );
}

void word::GCPointers( ) {
gcpointer( |esser );
gcpoi nter( greater );

}

/* Aword is read fromCIN and a word entry is nade by the follow ng
function. Wrds are considered to be a string of one nore al phabeti cal
characters, case is ignored.

*/

int nextc ="' ';

wor d* read_word()
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char synbol[ 100 ];
int cnt;

while (isalpha( nextc ) == 0) {
if (nextc == EOF) return( NULL );
nextc = getchar();
}
cnt = 0;
while (isalpha( nextc )) {
if (isupper( nextc )) nextc = nextc+ ’;
synbol [ cnt++ ] = nextc;
nextc = getchar();

}
synmbol [ cnt ] = O;
return new word( symbol );

}

/* The table is printed on COUT by wal king the tree in al phabetical order */

void output_table( word* tree )

{
if (tree !'= NULL) {
out put _tabl e( tree->lesser );
cout << tree->count << "\t" << tree->synbol << "\n";
out put _table( tree->greater );
}
}

/* Aentry is inserted into the table, or the count is increnented for each
word by the follow ng function.

*/
wor d* count_word( word* tree, word* newword )
{
int cnp;
if (tree !'= NULL) {
cnp = strcnp( &newwor d- >synbol [0], &tree->synbol [0] );
if (cnp < 0)
tree->l esser = count_word( tree->lesser, newword );
else if (cnp > 0)
tree->greater = count_word( tree->greater, newword );
el se
tree->count = tree->count+1,;
return( tree );
}
return( newword );
}
main( int argc, char* argv[] )
{
word *wp, *tree = NULL;
while ((wp = read_word()) != NULL) tree = count_word( tree, wp );
output _table( tree );
}
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Appendix B
Sour ce code for the Incremental Garbage Collector

B.1 Header filefor C++ version 1.2

The following is the listing of gcalloc-1.2.h, the header file for C++ version 1.2.

/* This nodul e i mpl ements garbage coll ected storage for C++ (version 1.2)

*/

prograns using an incremental version of the generational
nost | y- copyi ng garbage collection algorithm

Copyright (c) 1991, 1989, Digital Equipment Corp. All rights reserved.

#i f ndef GCALLCCH
#defi ne GCALLOCH 1

/* Defining garbage collected cl asses

Cl asses allocated in the garbage coll ected heap nust have constructor nethod
and a "pointer |ocator" method nane GCPointer. For exanple, a class that
hol ds a variable length string, a reference count, and pointers to strings
that are greater or lesser than it can be defined as follows:

struct word {
wor d* | esser;
wor d* greater;
int count;
char symbol[ 4 ];
word( char* chars );
GCCLASS( word );

b
word: :word( char* chars )
{
GCALLOCV( word, sizeof( word )+strlen( chars )-3);
| esser = NULL;
greater = NULL;
count = 1,
strcpy( symbol, chars );
}

void word::GCPointers( ) {
gcpointer( |esser );
gcpoi nter( greater );

}

The decl arati on GCCLASS inforns the garbage collector that the type word
i s garbage coll ected and has a cal | back met hod word:: GCPoi nters.

The constructor, word::word, allocates space in the heap and then

initializes it. Space allocation is done by the define GCALLOCV that takes
the type and the size in bytes as its argunments. \Wen the size of the type

-62-



is known at conpile tinme, storage can be allocated in the constructor method
by using GCALLOC which takes the object type as it’'s argunent. For exanple,
for a type t, GCALLOCV( t, sizeof( t ) ) can be replaced by GCALLOC( t ).

The "pointer locator" nethod, word:: GCPointers, is used by the garbage
collector to identify all pointers in the object. This is done by

havi ng the method call gcpointer with each pointer in the object that could
point to a garbage collected object. In order to correctly invoke pointer

| ocation nethods for superclasses or class objects contained in the class,
the follow ng rules nust be followed:

1) for class C
2) for class C
3) for class C

P {}, C :GCPointers nust contain P::CGCPointers()
{ X x; }, C:GCPointers nust contain x.GCPointers()
{ X* x; }, C:CCPointers must contain gcpointer( x )

Sonetinmes a class will be a subclass of a garbage collected object, yet
add no pointers to the class. |In this case, it need not specify GCCLASS
in the class declaration, but it nust include a constructor nethod that
al | ocat es garbage collected storage. Oten this nmethod can be expressed
as:

subcl ass: : subcl ass { GCALLOC(subcl ass)}

If the subclass does not provide this constructor, then instances of the
subclass will be allocated fromthe non-garbage-coll ected heap. The base
class may assure that this never happens by including the follow ng test
inits constructor method:

if (gcobject( this ) == 0) abort();

Once the object has been defined, storage is allocated using the nornma
C++ mechani sm

sp = new word( "dictionary" );

Definitions
pointer to an object - a pointer that points to the start of an object.
garbage coll ected object - an object whose storage is allocated by gcalloc

Caveat s

When the garbage collector is invoked, it searches the processor’s
registers, the stack, and the program s static area for "hints" as to what
storage is still accessible. These hints are used to identify objects that
are the "roots" and are to be left in place. bjects that the roots point
to will be noved to conpact the heap. Because of this:

hjects allocated in the garbage coll ected heap MAY MOVE.

Pointers to garbage collected objects MAY BE passed as argunents or stored
in static storage.

Pointers to garbage collected objects MAY NOT be stored in dynamcally
al l ocated objects that are not garbage coll ected, UNLESS one has specified
the GCHEAPROOTS flag in a gcheap decl arati on.

Pointers to garbage collected objects contained in garbage coll ected objects

MUST al ways point outside the garbage collected heap or to a garbage
col | ected object.
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Si zing the heap

In order to make heap all ocated storage as painless as possible, the user
does not have to do anything to configure the heap. This default is an
initial heap of 1 megabyte that is expanded in 1 negabyte increnents
whenever the heap is nore than 25%full after a total garbage collection.
Total garbage collections are done when the heap is nmore than 35% full.

However, if this is not the desired behavior, then it is possible to "tune"
the collector by including one or nore global gcheap declarations in the
program In order to understand the paraneters supplied in a gcheap

decl aration, one needs an overview of the storage allocation and garbage
col l ection algorithm

Storage is allocated fromthe heap until 50% of the heap has been all ocated.
Al'l accessible objects allocated since the |ast collection are retained and

made a part of the stable set. |If less than <collect all percent> of the
heap is allocated, then the collection process is finished. Oherw se, the
entire heap (including the stable set) is garbage collected. |If the anount

allocated following the total collection is greater than <increnent heap
percent>, then an attenpt is made to expand the heap.

gcheap <CCidentifier>( <initial heap size>,
<maxi mum heap size>,
<increment size>,
<col l ect all percent>,
<i ncrement heap percent>,
<i ncrenment stabl e percent>,
<heap | o0g> )

The argunents are defined as foll ows:

<CC-identifier> a legal C++ identifier.

<initial heap size> initial size of the heap in bytes.
DEFAULT: 1048576.

<maxi mum heap size> maxi mum heap size in bytes.
DEFAULT: 2147483647.

<i ncrenent size> # of bytes to add to each heap on each
expansi on. DEFAULT: 1048576.

<col l ect all percent> nunber between 0 and 50 that is the percent

allocated after a partial collection that wll
force a total collection. A value of 0 wll
di sabl e generational collection. DEFAULT: 35.

<i ncrenent heap percent> nunber between 0 and 50 that is the percent
of newy allocated after a collection that
will force heap expansion. DEFAULT: 25.

<i ncrenent stable percent> nunber between 0 and 50 that is the percent
stable after a collection is initiated that
will force heap expansion. DEFAULT: 20.

<fl ags> controls logging on stderr, error checking,
and root finding:

& GCSTATS = log collection statistics

& GCMEM = | og nenory usage statistics

& GCROOTLOG = log roots found in the stack,
registers, and static area

& GCHEAPRQOOTS = treat non-GC heap as roots

& GCHEAPLOG = | og possible roots in non-CGC
heap

& GCTSTOBJ = perform object consistency
tests



& GCGUESSPTRS = guess nunber of pointers in
obj ects

& GCZERO = zero free nmenory after GC

& GCDEBUGLOG = |l og events internal to the
gar bage col |l ector

& GCHEAPMAP = nmmintain nenory allocation
map

DEFAULT: O.

When nul tiple gcheap declarations occur, the one that specifies the |argest
<maxi num heap size> value will control all factors except flags which is
the inclusive-or of all <flags> val ues.

Configured val ues may be overridden by val ues supplied from environment
vari abl es. The user nust set these variables in a consistent manner. The
vari abl es and the val ues they set are:

GCM NBYTES <initial heap size>
GCVAXBYTES <maxi num heap size>

GCl NCBYTES <i ncrenment size>
GCALLPERCENT <col l ect all percent>

GCl NCPERCENT <i ncrenent heap percent>
GCSTABLEPERCENT <i ncrement stable percent>
GCFLAGS <fl ags>

If any of these variables are supplied, then the actual values used to
configure the garbage collector are | ogged on stderr.

No nore than 2046 garbage col |l ected cl asses.
I ndi vi dual objects no larger than 4,193, 788 bytes.
*/
/*******************************************************

* C++ Garbage Collected Storage Interface Definitions *

*******************************************************/

/* Declarations for objects not directly used by the user of the interface. */
typedef int *GCP; /* Pointer to a garbage collected object. */
extern GCCP gcrmove( GCP ptr ); /* Objects are noved by this function. */
extern void gccollect(); /* Invokes the collector. */

t ypedef void (*GCCALLBACKPROC) ( GCP );
/* Cal |l back procedure type */

extern int gcregistercall back( GCCALLBACKPRCC pointers, char* type );
/* Registers a callback method */

/* The followi ng defines are used to conpute the nunber of words needed for
an object. The count includes 1 word for the header. These defines are
used inside GCALLOC and GCALLOCV.

*/

#defi ne GCBYTESt oWORDS( x ) (((x)+7)>>2) /* Word align */

extern GCCP gcalloc( int words, int callback ); /* Actual space allocator */
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/* User defined objects use the following definition to define the class
as garbage collected. It defines the pointer method, a static variable
to hold the index into the garbage collector’s table of nethods, and a
method to return the type nane.

*/

#define GCCLASS( type ) void GCCPointers();
static int __ GCPointers;
char* _ GCType(){ return "type"; }

/* Storage for fixed size objects is allocated by: */

#define GCALLOC( type )
this = ((this==0) ?
(((__CCPoi nters==0) ?
__CCPoi nters=
gcregi stercal | back( ( GCCALLBACKPRCC) &t ype: : GCPoi nt er s,

type::__GCType() )
0),

(type*)gcal | oc( GCBYTESt oWORDS( si zeof (type) ), __GCPointers ))
this )

/* Storage for variable size objects is allocated by: */

#define GCALLOCV( type, bytes )
this = ((this==0) ?
(((__CCPoi nters==0) ?
__CCPoi nters=
gcregi stercal | back( ( GCCALLBACKPRCC) &t ype: : GCPoi nt er s,

type::__GCType() )
0),

(type*)gcal | oc( GCBYTESt oWORDS( bytes ), _ GCPointers ))
this )

/* The procedure gcpointer is called by the callback procedure with each
pointer to a garbage coll ected object in the object.
*/

inline void gcpointer( void*& ptr ) { ptr = (void*)gcmove( (GCP)ptr ); }

/* The following predicate returns 1 if the object is allocated where it wll

be scanned by the garbage collector, otherwise it returns O.
*/

extern int gcobject( void* ptr );
/* The class gcheap is used to configure the heap as earlier described. */

class gcheap {
public:

gcheap( int m nheapbytes,
i nt maxheapbyt es,
int incheapbytes,
int allpercent,
int incpercent,
int stabl epercent,
int flags );
s

const GCSTATS = 1, /* Log garbage collector info */
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GCMVEM = 2, /* Log nenory usage information */

GCROOTLOG = 4, /* Log roots found in registers, stack and
static area */

GCHEAPROOTS = 8, /* Treat non-GC heap as roots */

GCHEAPLOG = 16, /* Log possible non-GC heap roots */

GCTSTOBJ = 32, /* Extensively test objects */

GCGUESSPTRS = 64, /* Cuess pointers in objects */

GCZERO = 128, /* Zero free menory after GC */

GCDEBUGLOG = 256, /* Log events internal to collector */

GCHEAPMAP = 512, /* X-wi ndow di spl ay showi ng all ocation */

GCNO NC = 1024; /* Force non-increnental collection */

#endi f

B.2 Header filefor C++ version 2.0

The following is the listing of gcalloc-2.0.h, the header file for C++ version 2.0.

/* This nodul e i npl enents garbage coll ected storage for C++ (version 2.0)
prograns using an increnmental version of the generational
nmost | y- copyi ng garbage coll ection algorithm

Copyright (c) 1991, 1989, Digital Equipnment Corp. Al rights reserved.
*/

#i f ndef GCALLOCH
#defi ne GCALLOCH 1

/* Defining garbage collected cl asses
Cl asses allocated in the garbage collected heap are denoted by the GCCLASS
statenent in their declaration. For exanple, a class that holds a fixed
I ength string, a reference count, and pointers to strings that are greater
or lesser than it can be defined as foll ows:

struct word {
wor d* | esser;
wor d* greater;
int count;
char symbol[ 4 ];
word( char* chars );
GCCLASS( word );

}
word: :word( char* chars )
{
| esser = NULL;
greater = NULL,;
count = 1,
strcpy( synbol, chars );
}

void word::GCPointers( ) {
gcpointer( |esser );
gcpointer( greater );
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}

The decl arati on GCCLASS inforns the garbage collector that the type word
i s garbage collected. Besides overloading new and delete for this type of
object, it declares the user defined "pointer |ocator" nethod

The "pointer |ocator” nethod, word:: GCPointers, is used by the garbage
collector to identify all pointers in the object. This is done by

havi ng the method call gcpointer with each pointer in the object that could
point to a garbage collected object. In order to correctly invoke pointer

| ocation nmethods for superclasses or class objects contained in the class,
the follow ng rules nmust be followed:

1) for class CP {}, C :GCPointers nust contain P::GCPointers()
2) for class C{ X x; }, C :GCPointers must contain x.GCPointers()
3) for class C{ X* x; }, C :CCPointers nmust contain gcpointer( x )

Once the object has been defined, storage is allocated using the norma
C++ mechani sm

sp = new word( "dictionary" );

Caveat s

Wien the garbage collector is invoked, it searches the processor’s
registers, the stack, and the progranmis static area for "hints" as to what
storage is still accessible. These hints are used to identify objects that
are the "roots" and are to be left in place. bjects that the roots point
to will be noved to conpact the heap. Because of this:

Chjects allocated in the garbage coll ected heap MAY MOVE.

Pointers to garbage coll ected objects MAY BE passed as argunents or stored
in static storage.

Pointers to garbage collected objects MAY NOT be stored in dynamcally
al l ocated objects that are not garbage coll ected, UNLESS one has specified
the GCHEAPROOTS flag in a gcheap decl aration

Pointers to garbage collected objects contained in garbage coll ected objects
MUST al ways point outside the garbage collected heap or to a garbage
col l ected object.

Garbage coll ected arrays are not supported as arrays are always all ocated by
the global ::operator new() (section 5.3.3, AT&T C++ Language System Rel ease
2.0).

Vari abl e size objects

Gar bage col |l ected objects who's size is conputed at runtime have their
storage all ocated by having the class’ constructor nethod have a call to
GCALLOV as its first statenent. GCALLOV takes two argunents, the nanme of
the class and the nunber of bytes needed. For exanple, a variable size
word m ght use the constructor:

word: :word( char* chars )

{
GCALLOCV( word, <SOME FI XED Sl ZE>+strlen( chars ) );

| esser = NULL;
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greater = NULL;
count = 1;
strcpy( symbol, chars );

N.B. As GCALLOCV relies on the "assignnent to this" anachronism it is
subj ect to change in future rel eases of the compiler.

Si zing the heap

In order to make heap all ocated storage as painless as possible, the user
does not have to do anything to configure the heap. This default is an
initial heap of 1 megabyte that is expanded in 1 negabyte increnents
whenever the heap is nmore than 25%full after a total garbage collection.
Total garbage collections are done when the heap is more than 35% full.

However, if this is not the desired behavior, then it is possible to "tune"
the collector by including one or nore global gcheap declarations in the
program In order to understand the paraneters supplied in a gcheap

decl arati on, one needs an overview of the storage allocation and garbage
col l ection algorithm

Storage is allocated fromthe heap until 50% of the heap has been all ocated.
Al'l accessible objects allocated since the |ast collection are retained and

made a part of the stable set. |If less than <collect all percent> of the
heap is allocated, then the collection process is finished. Oherw se, the
entire heap (including the stable set) is garbage collected. |If the anount

allocated following the total collection is greater than <increnent heap
percent>, then an attenpt is made to expand the heap.

gcheap <CCidentifier>( <initial heap size>,
<maxi mum heap size>,
<increment size>,
<col l ect all percent>,
<i ncrement heap percent>,
<i ncrenment stabl e percent>,
<heap | o0g> )

The argunents are defined as follows:

<CC-identifier> a legal C++ identifier.

<initial heap size> initial size of the heap in bytes.
DEFAULT: 1048576.

<maxi mum heap size> maxi mum heap size in bytes.
DEFAULT: 2147483647.

<i ncrenent size> # of bytes to add to each heap on each
expansi on. DEFAULT: 1048576.

<col l ect all percent> nunber between 0 and 50 that is the percent

allocated after a partial collection that wll
force a total collection. A value of 0 wll
di sabl e generational collection. DEFAULT: 35.
<i ncrenent heap percent> nunber between 0 and 50 that is the percent
of newy allocated after a collection that
will force heap expansion. DEFAULT: 25.
<i ncrenent stable percent> nunber between 0 and 50 that is the percent
stable after a collection is initiated that
will force heap expansion. DEFAULT: 20.

<fl ags> controls logging on stderr, error checking,
and root finding:
& GCSTATS = log collection statistics
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GCMEM = | og nenory usage statistics
GCROOTLOG = |l og roots found in the stack,
registers, and static area
GCHEAPROOTS = treat non-GC heap as roots
GCHEAPLOG = | og possible roots in non-GC

heap
GCTSTOBJ = perform object consistency
tests
GCCGUESSPTRS = guess nunber of pointers in
obj ects

GCZERO = zero free nenory after GC

GCDEBUGLOG = | 0og events internal to the
gar bage col |l ector

& GCHEAPMAP = nmintain nenory allocation

map

RO R0 RO R RoRo

DEFAULT: O.

When nul tiple gcheap declarations occur, the one that specifies the |argest
<maxi num heap size> value will control all factors except flags which is
the inclusive-or of all <flags> val ues.

Configured val ues may be overridden by val ues supplied from environnment
vari ables. The user nust set these variables in a consistent manner. The
vari abl es and the val ues they set are:

GCM NBYTES <initial heap size>
GCVAXBYTES <maxi num heap size>

GCl NCBYTES <i ncrenment size>
GCALLPERCENT <col l ect all percent>

GCl NCPERCENT <i ncrenent heap percent>
GCSTABLEPERCENT <i ncrement stable percent>
GCFLAGS <fl ags>

If any of these variables are supplied, then the actual values used to
configure the garbage collector are | ogged on stderr.

No nore than 2046 user defined garbage collected cl asses.
I ndi vi dual objects no larger than 4,193, 788 bytes.
*/
/*******************************************************

* C++ Garbage Collected Storage Interface Definitions *

*******************************************************/

/* Declarations for objects not directly used by the user of the interface. */
typedef int *GCP; /* Pointer to a garbage collected object. */
extern GCCP gcmove( GCP ptr ); /* Objects are noved by this function. */
extern void gccollect(); /* Invokes the collector. */

t ypedef void (*GCCALLBACKPROC) ( GCP );
/* Cal |l back procedure type */

extern int gcregistercall back( GCCALLBACKPRCC pointers, char* type );
/* Registers a callback nmethod */
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/* The following define is used to conpute the number of words needed for
an object. The count includes 1 word for the header. The defines are
used inside GCCLASS and GCALLQOCV.

*/

#defi ne GCBYTESt oWORDS( x ) (((x)+7)>>2) /* Word align */
extern GCCP gcalloc( int words, int callback ); /* Actual space allocator */
/* User defined objects use the following definition to define the class

as garbage collected. It defines the pointer method, a static variable

to hold the index into the garbage collector’s table of methods, and storage
al | ocation met hods.

*/
#defi ne GCCLASS( type ) \
voi d* operator new( unsigned int bytes ) { \
if (__GCPointers == 0) \
_ _GCPointers = \
gcregi stercal | back( ( GCCALLBACKPRCOC) &t ype: : GCPoi nt er s, \
#type ); \
return (void*)gcall oc( GCBYTESt oWORDS( bytes ), _ GCPointers ); \
} \
voi d operator delete( void* ) {} \
void GCPointers(); \
static int _ GCPointers
/* QGCPoi nter methods nove pointers by calling the procedure gcpointer. It is
actually a define enclosing an inline procedure as C++ 2.0 does not
correctly conpile void*& argunents.
*
/
#define gcpointer( x ) _gcpointer( &x )
inline void _gcpointer( void* ptr ){ *((GCP*)ptr) = gcrmove( *((GCP*)ptr) ); }
/* Storage for variable size objects is allocated by the follow ng mechani sm
that depends upon ASSIGNMENT TO THI'S, i.e. this feature might not work in
the future.
*/
#define GCALLOCV( type, bytes ) \
this = ((this==0) ? \
(((__CCPoi nters==0) ? \
__CCPoi nters= \
gcregi stercal | back( ( GCCALLBACKPRCC) &t ype: : GCPoi nt er s, \
#type ) \
0), \
(type*)gcal | oc( GCBYTESt oWORDS( bytes ), _ GCPointers )) \
this )

/* The class gcheap is used to configure the heap as earlier described. */

class gcheap {
public:
gcheap( int mnheapbytes,
i nt maxheapbyt es,
i nt incheapbytes,
int allpercent,
int incpercent,

-71-



int stabl epercent,

int flags );
s
const GCSTATS = 1, /* Log garbage collector info */
GCMVEM = 2, /* Log nenory usage information */
GCROOTLGG = 4, /* Log roots found in registers, stack and
static area */
GCHEAPRQOOTS = 8, /* Treat non-GC heap as roots */
GCHEAPLOG = 16, /* Log possible non-GC heap roots */
GCTSTOBJ = 32, /* Extensively test objects */
GCGUESSPTRS = 64, /* Quess pointers in objects */
GCZERO = 128, /* Zero free menory after GC */
GCDEBUGLOG = 256, /* Log events internal to collector */
GCHEAPVAP = 512, /* X-wi ndow di spl ay showi ng al |l ocation */
GCNO NC = 1024; /* Force non-increnental collection */
#endi f

B.3 Program filefor theincremental collector

The following is the listing of the incremental, generational mostly-copying garbage
collector for C++. It iscompatible with C++ versions 1.2 and 2.0.

/* This nodul e i npl ements garbage coll ected storage for C++ programnms using
an increnental version of the generational "nostly-copying" garbage
collection algorithm The inplenentation is conpatible with AT&T C++
Language System Rel eases 1.2 and 2.0.

Copyright (c) 1991, 1989, Digital Equipnment Corp. Al rights reserved.

For a discussion of the interface, see gcalloc-1.2.h (for C++ version
1.2) or gcalloc-2.0.h file (for C++ version 2.0).

For a discussion of the nostly-copying garbage collection
al gorithm see

Joel Bartlett,
"Conpacti ng Garbage Col | ection with Anbi guous Roots",
WRL Research Report 88/2, February 1988.

Joel Bartlett,
"Most | y- Copyi ng Garbage Col | ection Picks Up Generations and C++",
WRL Technical Note TN-12, COctober 1989.

For a discussion of the increnental, generational nostly-copying
collection algorithm see

G My Yip,
"Incremental, Generational Copying Garbage Collection in
Uncooperative Environnents",
M T SM Thesi s, June 1991.
*/

/* Default is C++ Version 1.2 */
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#if (! COWPILER_VERSION 1_2 & ! COWPlI LER_VERSI ON_2_0)
2

#define COVPI LER VERSI ON 1_

#endi f

1

/* External definitions */

#i

ncl ude <stdio. h> /* Streanms are not used as they might not be

initialized when needed. */

#i ncl ude <sys/ioctl.h>

#i ncl ude <sys/tine. h>

#i ncl ude <machi ne/ param h>
#i ncl ude <sys/mman. h>

#i ncl ude <sys/types. h>

#i ncl ude <signal . h>

#i f def

COWPI LER_VERSI ON 2_0

#i ncl ude <libc. h>
#i ncl ude <osfcn. h>
#i ncl ude <stdlib. h>

#endi f

#i f def
extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern
#endi f

#i f def
extern

extern

extern

extern
#endi f

COVPI LER_VERSI ON_1_2
char* getenv( char* nane );

unsi gned* sbrk( int size );
void bzero( char* string, int length );
free( char* obj );

pipe( int filedes[ 2] );

fork();

close( int d);

dup( int d);

select( int nfds, int *readfds, int *witefds, int *execptfds,
struct timeval *tinmeout);

execl p(char *file, char *arg0 ... );
int getpagesize();
int nprotect( void* addr, int nunmbytes, int protection);
COWPI LER VERSION 2_0
"C' void bzero( char* string, int length );

"C' select( int nfds, int *readfds, int *witefds, int *execptfds,
struct timeval *timeout);

"C' getpagesize();

"C' nprotect( void* addr, int nunbytes, int protection);
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/***********************************

* Processor Dependent Definitions *

***********************************/
/* MPS */
#i fdef m ps
#i ncl ude <machi ne/ vipar am h>
/* Assune stack alignnent on 32-bit words. */
#define STACKINC 4
/* Need to save and exami ne registers s0-s8. */
#define REGQ STER_COUNT 9
#i f def COWPI LER_VERSI ON_1_2
extern unsigned* gcregisters( unsigned* registers );
#endi f
#i f def COWPI LER_VERSI ON_2_0
extern "C' unsigned* gcregisters( unsigned* registers );
#endi f
/* Static area bounds */
extern unsigned end;
#define STATIC 0 ((unsigned*) USRDATA)
#define STATIC_ 1 (&end)
/* Cbjects nust be double aligned */
#i fndef M SALI GN
#defi ne DOUBLE_ALIGN 1
#endi f
/* Physical page size: phys_shift = log[base 2]( size of a physical page ) */
#define phys_shift 12

#endif /* MPS */

/* VAX */

#i f def vax

#i ncl ude <machi ne/ vnparam h>

/* Assune stack alignnent on 32-bit words. */
#define STACKINC 4

/* Need to save and exami ne registers 2-10. */
#define REGQ STER_COUNT 10

#i f def COWPI LER VERSI ON_1_2

extern unsigned* gcregisters( unsigned* registers );

#endi f
#i f def COWPI LER VERSI ON_2_0
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extern "C' unsigned* gcregisters( unsigned* registers );
#endi f

/* Static area bounds */

extern unsigned etext, end;
#define STATIC O ((unsigned*) (((((int)&etext)+NBPG 1)/ NBPG *NBPG))
#define STATIC_ 1 (&end)

/* Physical page size: phys_shift = log[base 2]( size of a physical page ) */
#define phys_shift 10

#endi f [/* VAX */

/* Bottom of stack is computed by the constructor for the global variable
sh.
*/

static struct stackbase {
unsi gned address;
stackbase( int i ) { address = (((unsigned)& +NBPG 1)/ NBPG *NBPG }

}s
static stackbase sb( 0 );

#define STACKBASE (sb. address)

/**************************************

* Garbage Coll ected Heap Definitions *

**************************************/

/* The heap consists of a discontiguous set of nenory bl ocks, called
heap pages, and each heap page is PAGEBYTES |long. There are two
restriction on the size of a heap page: (i) PAGEBYTES nust be
*smal l er* than the virtual menory page size, and (ii) the virtual
menory page size (in bytes) nust be a nultiple of PAGEBYTES

Term nol ogy: for the purpose of docunentation, "page" and "heap page"

both all refer to a PAGEBYTES-1ong nenory in the heap, while

"physi cal page" refers to a virtual nmenory page. Furthernore, whenever
the word "page" is encountered, it is assumed to nmean a page in the heap
unl ess when nodified explicitly, as in "a page in the heap nust be smaller
than a physical page.”

*/
static int firstheappage, /* Page # of first heap page */
| ast heappage, /* Page # of |ast heap page */
heappages, [* # of pages in the heap */
heapspanpages, /* # of pages that span the heap */
physspanpages, /* # of physical pages that span the heap */
curr_freewords, /* # words | eft on the current page */
*curr_freep, /* Ptr to the first free word on the current
page */
forw_freewords, /* # words |left on the forward page */
*forw freep, /* Ptr to the first free word on the forward
page */

firstword_to_scan, /* Address of first word to be scanned */
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lastword_to_scan, /* Address of last word to be scanned */

*scanp, /* Pointer to the object being scanned */

al | ocat edpages, /* # total nunber of pages allocated */
current pages, [* # of pages allocated for current space */
f or war dedpages, [* # of pages in the stable set (forwarded) */
pr ot ect edpages, [ * # of physical pages being protected */
curr_freepage, /* First free page in current space */
forw_freepage, /* First free page in forward space */

ol d_forw freepage, /* Previous value of forw freepage */
*space, /* Space nunber for each page */

*pl i nk, /* Page link for each page */

*type, /* Type of object allocated on the page */
*protect, /* protect map for physical pages */
*firstword, /* Bitmap of 1st words of user objects */
queue_head, /* Head of list of stable set of pages */
queue_tail, [* Tail of list of stable set of pages */
curr_space, /* Current space nunber */

prev_space, /* Previous space nunber */

f orw_space; /* Forward space nunber */

/* During increnental collection, heap pages can be in one of the
followi ng states, depending on their page generation (i.e. space)
nunber :

(*) NEWY ALLOCATED - for recently allocated pages;
space[ page] == curr_space
(*) PREVI QUSLY ALLOCATED - for pages that were allocated before
increnental collection was initiated;
space[ page ] == prev_space
(*) FORWARDED - for pages containing forwarded objects;
space[ page ] == forw_ space
(*) FREE - free pages that could be allocated, either as newy allocated
pages or forwarded pages
space[ page ] != curr_space && space[ page ] != prev_space &&
space[ page ] != forw_space
*/

/* Page types */

#define OBJECT O
#define CONTINUED 1

/* PAGEBYTES control s the nunber of bytes/heap page */

#def i ne PAGEBYTES 512

#defi ne PAGEWORDS ( PAGEBYTES/ si zeof (i nt))
#def i ne WORDBYTES (si zeof (int))

#def i ne HEAPPERCENT( x ) (((x)*100)/heappages)

/* The follow ng variable holds the capacity of a physical page
i.e. # of heap pages/physical page
*/
static int phys_cap;
/* PHYS_PAGEBYTESAES controls the nubmer of bytes/physical page */

#defi ne PHYS_PAGEBYTES (phys_cap* PACEBYTES)
#defi ne PHYS_PAGEWORDS ( PHYS_PAGEBYTES/ si zeof (int))
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/* Number of pages reserved for forwarded objects in the "forward region" */
#def i ne RESERVEDPAGES (heappages/5)

/* The physical page mask can be bitwi se ANDed with an address to obtain
the corresponding starting address of the physical page.

*/

static int phys_pagenask;

/* Simlarly, the heap page mask can be bitwi se ANDed with an address to
obtain the corresponding starting address of the heap page.

*/

static int heap_pagenask;

/* Page nunber <--> pointer conversion is done by the follow ng defines */

#define PAGE_to_GCP( p
#define GCP_to_PAGE( p

((GCP) ((p) * PAGEBYTES))
(((int)(p))/ PAGEBYTES)

~——

/* GC Pointer, ADDRess, PAGE nunber, and Physical Page ADDRess conversion */

#define GCP_t o_PPADDR( gcp ) (int(gcp) & phys_pagenask)
#define ADDR to_PAGE( addr ) (((addr) & heap_pagenask)/ PAGEBYTES)
#define PAGE_to_ADDR( page ) ((page) * PAGEBYTES)

#defi ne PAGE_t o_PPADDR( page ) ((page) * PAGEBYTES & phys_pagenask)
/* Space val ues */

#def i ne UNALLOCATEDPACE -2

#def i ne FREEPAGE 1;

#define STABLE( x ) ((~space[ (x) ]) & 1)
#defi ne UNSTABLE( x ) (space[ (x) ] & 1)

/* Cbjects that are allocated in the heap have a one word header. The form
of the header is:

31 21 20 10
SRS S +- +
| callback indx | # words in obj |1f
e e e oo e e e o - +- +
| user data | <-- user data starts here.
I I
o e m e e e e e e e e e e e e em e eama +

The nunber of words in the object count | NCLUDES one word for the header.

When an object is forwarded, the header is replaced by the pointer to
the new object that will have bit 0 equal to O.
*/

#define MAKE_CALLBACK( index ) ((index)<<21 | 1)

#defi ne MAKE_HEADER( words, callback ) ((words)<<l | (call back))
#def i ne FORWARDED( header ) (((header) & 1) == 0)

#defi ne HEADER_CALLBACK( header ) ((header)>>21 & OX7FF)

#def i ne HEADER_WORDS( header ) ((header)>>1 &OxFFFFF )

#defi ne HEADER BYTES( header ) (((header)>>1 & OxFFFFF)*WORDBYTES)
#i f def DOUBLE_ALI GN
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#def i ne ONEPAGEOBJ_WORDS ( PAGEWWORDS- 1)

#def i ne HEADER_PACES( header ) ((HEADER_WORDS( header ) +PAGEWORDS)/ PAGEWORDS)
#el se

#defi ne ONEPAGEOBJ_WORDS PAGEWORDS

#def i ne HEADER_PACES( header ) ((HEADER_WORDS( header )+PAGEWORDS- 1)/ PAGEWORDS)
#endi f

#defi ne MAX_HEADER PAGES ( OxFFFFF/ PAGEWORDS) /* 8191 = 4,193,792 bytes */
#defi ne MAX_HEADER CALLBACK Ox7FF [* 2047 */

/* The first word of user objects is noted in the firstword bit map. This
allows gcnove to rapidly detect a derived pointer and convert it into an
obj ect and an offset.

*/

#define BI T_BYTES ( PAGEWORDS/ 8)

#define BI T_WORDS ( PAGEWORDS/ 32)

#define | SA FIRSTWORD( p ) (firstword[ ((int)p)/(PAGEBYTES/BIT_ WORDS) ] & \
1<<( ((int)p)>>2 & Ox1F))

#define SET_FIRSTWORD( p ) (firstword[ ((int)p)/(PAGEBYTES/BIT_WORDS) ] |= \
1<<( ((int)p)>>2 & Ox1F ))

/* There is an option to draw the heap map using the EZX program
Chj ects are drawn on ’display’.

*/

static FILE* display;

/**********************************

* Exported Interface Definitions *

**********************************/

#i f def COWPI LER_VERSI ON_1_2
#i ncl ude "gcal l oc-1. 2. h"
#endi f

#i f def COWPI LER_VERSI ON_2_0
#i ncl ude "gcal | oc-2.0. h"
#endi f

/* An instance of the type gcheap is created to configure the size of the
initial heap, the expansion increment, the maxi mum size of the heap, the
al l ocation percentage to force a total collection, the allocation
percentage to force heap expansion, and garbage collection options.

*/

/* Default heap configuration */

const int GCM NBYTES = 1048576, [* # of bytes of initial heap */

GCCMAXBYTES = 2147483647,/* # of bytes of the final heap */
GCl NCBYTES = 1048576, /* # of bytes of each increment */
GCALLPERCENT = 35, /* %allocated to force total
collection */

GCl NCPERCENT = 25, /* % NEWY allocated to force expansion */
GCSTABLEPERCENT = 20, /* %stable to force expansion */
GCFLAGS = 0; /* option flags */

/* Actual heap configuration */

static int gcm nbytes = GCM NBYTES, /* # of bytes of initial heap */
gcmaxbyt es = GCVAXBYTES, /* # of bytes of the final heap */
gci ncbyt es = GCl NCBYTES, /* # of bytes of each increment */
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gcal | per cent GCALL

gci ncper cent

PERCENT, /* % allocated to force tota
collection */

GCl NCPERCENT, / * % NEWLY al |l ocated to force

expansi on */

gcst abl eper cent =GCSTABLEPERCENT, / * Ustable to force expansion */

gcfl ags = GCFLAGS,
gcdefaul ts 1,
gcheapcreated = O;

nt
nt
nt
nt
nt
nt
nt

gcheap: : gcheap( i m nheapbyt es
maxheapbyt es
i ncheapbyt es
al | percent,
i ncpercent,
st abl epercen

flags ) {

(gcheapcreated == 0
(gcdefaults || maxh
gcdefaul ts
gcm nbyt es
gcnaxbyt es
gci ncbyt es
gcal | per cent
gci ncper cent
gcst abl eper cent

if

= al |l per
i ncper

if (gcminbytes <
if (gcmaxbytes <
if (gcallpercent <0

gcal | per cent
i f

gci ncpercent = CCl

(gcincpercent < 0

/* option flags */
/* default setting in force */
/* bool ean indicating heap created */

t,

&% m nheapbytes > 0 &&

eapbytes >= gcmaxbytes)) {

m nheapbyt es;
maxheapbyt es;
i ncheapbyt es;

cent;
cent;

st abl epercent;
4* PAGEBYTES)
gcnmi nbyt es)

gcm nbytes = 4* PAGEBYTES
gcmaxbyt es = gcm nbyt es;

|| gcallpercent > 50)

= GCALLPERCENT;

|| gcincpercent > 50)
NCPERCENT;

if (gcstablepercent < 0 || gcstablepercent > 50)
gcst abl epercent = GCSTABLEPERCENT;
}
gcflags = gcflags | flags;

/* The followi ng structure contains the callback procedures registered with

the garbage collector. It

heap.
*/
static int callbacks_count = O;
static int callbacks_size = 0;
static const int callbacks_ inc
static struct callback_struct
GCCALLBACKPROC proc;
char* type
int nunber;
int bytes;
} *cal |l backs;
/* Freespace objects have a nul

obj ects for doubl e alignnent
header for a one-word double
*/

is allocated fromthe non-garbage collected

100;

{
/* GCPoi nters nethod */

/* Type nane */
/* Number of the type in heap */
/* Nunber of bytes of the type in heap */

cal I back that stored in callbacks[ 0]. Pad
have a null callback in callbacks[ 1]. The
alignnment pad is kept in doubl epad.
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static int freespace_call back = MAKE_CALLBACK( 0 );
static void freespace_pointers( GCP dumy ) {};

#i f def DOUBLE_ALI GN
static int doubl epad;
#endi f

/* Call back procedures are "registered" with the garbage collector by the
following procedure. Calls to it are hidden inside GCALLOC and GCALLQOCV.
*/

int gcregistercallback( GCCALLBACKPROC proc, char* type ) {
if (callbacks_count > MAX HEADER CALLBACK) {
fprintf( stderr, "\n***** gcalloc %l classes already defined\n",
MAX_HEADER _CALLBACK-1 );
abort();

if (callbacks_count == call backs_size) {
cal I back_struct* np = new call back_struct[ call backs_size+
cal I backs_inc ];
for (int i=0; i < callbacks_count; i++) np[ i ] = callbacks[ i ];
del ete call backs;
cal | backs = np;
cal | backs_si ze = cal | backs_si ze+cal | backs_i nc;
if (callbacks_count == 0) {
cal I backs[ 0 ].proc freespace_poi nters;

cal | backs[ 0 ].type = "GCFreeSpace";
cal Il backs[ 1 ].proc = freespace_pointers;
cal | backs[ 1 ].type = "GCDoubl ePad";

cal | backs _count = 2;

}

cal | backs[ call backs_count ].proc = proc;
cal | backs[ call backs_count ].type = type;
return MAKE_CALLBACK( call backs_count ++ );

/****************************

* Mostly Copying Collector *

****************************/

/* CGet heap configuration information fromthe environnent. Return true if
the value is provided.

*/
static int environnent_val ue( char* name, int& value )
{
char* val uestring = getenv( nane );
if (valuestring != NULL) {
value = atoi ( valuestring );
return 1;
}
return O;
}
/* \When run with GCHEAPMAP fl ag set (see gcalloc-??.h), a graphical
display will appear on the screen to nonitor the allocation/
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deal | ocation activities in the heap.

The graphical display is set up by nmeans of a pipe to an EZX process.
Gar bage col l ection can be stepped using the nouse buttons:

button 1 - advance to the next step.
button 2 - enabl e/ di sabl e stepping.
button 3 - Postscript for display to gcheap. PSF.
*/
/* Colors to use for free storage. */
static char* freecolors[16] =
{ 0, "red", 0, "turquoise", 0, "green", 0, "yellow',
0, "red", 0, "turquoise", 0, "green", 0, "yellow" };
/* The follow ng procedure wites the header on the heap display. */

static void display_headers( char* phase )

{
fputs( "(object header", display );
fprintf( display, "(fill-rectangle 10 0 10 10 %)",
freecolors[ (curr_space %8)+2 ] );
fprintf( display, "(fill-rectangle 22 0 10 10 %s)",
freecolors[ (curr_space %8)+4 ] );
fprintf( display, "(fill-rectangle 34 0 10 10 %)",
freecolors[ (curr_space %8)+6 ] );
fputs( "(text 50 10 \"Free space\" \"8x13\")", display );
fprintf( display, "(fill-rectangle 140 0 10 10 %)",
freecolors[ (curr_space %8) ] );
fputs( "(text 156 10 \"Recently Allocated\" \"8x13\")", display );
fputs( "(fill-rectangle 310 0 10 10 bl ack)", display );
fputs( "(text 326 10 \"Stable set\" \"8x13\")", display );
fprintf( display, "(text 420 10 \"9%\" \"8x13\")", phase );
fputs( ")", display );
fputs( "(step #t)", display );
fflush( display );
}

/* Each page is represented by a square of the follow ng size. */
#define PACE_PIXELS 5
/* The following procedure is called to create the heap display. */

static void displayinit()
{

int toezx[ 2 1];

if ((gcflags & GCHEAPMAP) == 0) return
/* Spawn of f an ezx process */
pi pe( toezx );
if (fork() ==0) {
close( 0);
dup( toezx[ O] );
close( toezx[ 0] );
close( toezx[ 1] );
execl p( "ezx", "ezx", 0);
exit( 1);
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di splay = fdopen( toezx[ 1], "w' );

/* Initialize the display */

fprintf( display,
"(wi ndow heap 0 0 % 220 \"C++ Garbage Col | ected Heap\")\n",
PAGE_PI XELS*128 );

fputs( "(click 1 0 0 0 0 (next-step))", display );

fputs( "(click 2 0 0 0 O (set! *stepper* (not *stepper*)))", display );

fputs( "(click 3 0 0 0 0 (ezx-comuand ' (postscript \"gcppheap.PSF\")))",

di splay );
di spl ay_headers( "Application Allocation" );
}

/* A page is colored on the heap map by the follow ng function. */

static void page_map( int page )

{

char* color;

if (STABLE( page ))
col or = "BLACK";
el se
color = freecol ors[ space[ page ] %8 ];
page = page-firstheappage;
fprintf( display, "(object p¥%& (fill-rectangle %d % % % 9%))",
page, (page & 127)*PAGE_PI XELS,
PAGE_PI XELS* ( page/ 2048) +( page/ 128) * PAGE_PI XELS+20,
PACE_PI XELS, PACE_PI XELS, color );
fflush( display );
}

/* The heap is allocated and the appropriate data structures are initialized
by the following function. It is called the first tinme any storage is
all ocated fromthe heap.

*/

static void gcinit( )
{
char *heap;
int i;

/* Log actual heap paraneters if from environnment or
if ((environnent_value( "GCM NBYTES", gcninbytes ) |
envi ronment _val ue( "GCMAXBYTES', gcmaxbytes ) |
envi ronment _val ue( " GClI NCBYTES", gcincbytes ) |
envi ronment _val ue( " GCALLPERCENT", gcall percent ) |
envi ronment _val ue( " GCl NCPERCENT", gci ncpercent ) |
envi ronment _val ue( " GCSTABLEPERCENT", gcstabl epercent ) |
envi ronment _val ue( "GCFLAGS", gcflags )) ||
gcfl ags & GCSTATS) {
fprintf( stderr,
"*x*x*x* Y|P gcall oc gcheap( %, %, %, %, %, %, % )\n",
gcm nbytes, gcmaxbytes, gcincbytes, gcall percent,
gci ncpercent, gcstabl epercent, gcflags );

| oggi ng */

}

voi d page_fault_handler( int sig, int code, struct sigcontext *scp );
#i fdef m ps

signal ( SI GSEGV, (SIG_PF)page_fault_handler );
#endi f
#i fdef vax
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signal ( SIGBUS, (SIG_PF)page_fault_handler );
#endi f

/* Record system paraneters and assi gn page nmask val ues */
i nt physical _pagebytes = getpagesize();

phys_cap = physi cal _pagebyt es/ PAGEBYTES;

phys_pagenmask = ~(PHYS_PAGEBYTES-1);

heap_pagemask = ~( PAGEBYTES-1);

/* heap size rounded up to the nearest physical page size */
physspanpages = (gcm nbyt es+PHYS PAGEBYTES- 1) / PHYS_PAGEBYTES;
heapspanpages = heappages = physspanpages*phys_cap;

/* Al'locate heap and side tables. Exit on allocation failure.

if ((heap=new char[ heappages* PACEBYTES+PHYS PAGEBYTES-1 ]) ==
goto fail;

i f ((unsigned)heap & (PHYS_PAGEBYTES-1))

heap = heap+( PHYS_PAGEBYTES- ( (unsi gned) heap&( PHYS_PACEBYTES-1)));

firstheappage = GCP_to_PAGE( heap );

| ast heappage = firstheappage+heapspanpages-1;

if ((space new i nt[ heapspanpages ]) == NULL |
(plink new i nt[ heapspanpages]) == NULL |
(type = new int[ heapspanpages+l ]) == NULL | ]
(protect = new int[ physspanpages ]) == NULL ||

(firstword = new int[ (heapspanpages+1)*BIT_WORDS ]) == NULL) {

fail: fprintf( stderr,

"\ n****** gcalloc Unable to allocate % byte heap\n",

gcm nbytes );

abort();
}
space = space-firstheappage;
plink = plink-firstheappage;
type = type-firstheappage;
type[ | ast heappage+1] = OBJECT;
firstword = firstword-firstheappage*Bl T_WORDS;
SET_FI RSTWORD( ((int*)((lastheappage+l)*PAGEBYTES)) + 2 );

/* Initialize tables */
for (i = firstheappage ; i <= | astheappage ; i++)
space[ i ] = FREEPAGE;
bzero( (char*)protect, physspanpages*sizeof(int) );
protect = protect - (PACGE_to_ADDR(firstheappage)>>phys_shift);

static void setup_endangered_rec();
set up_endangered_rec();

curr_space = 3,
forw_space = 3;
prev_space = 3;

curr_freepage - firstheappage;

i
curr_freewords = 0;
al | ocat edpages = O0;
f orwar dedpages = O;
current pages = 0;

pr ot ect edpages = O;

queue_head = O0;

gcheapcreated = 1;
#i f def DOUBLE_ALI GN

doubl epad = MAKE _HEADER( 1, MAKE CALLBACK( 1) );
#endi f
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di splayinit();
}

/* Once the heap has been allocated, it is expanded after garbage
coll ection whenever it is appropriate until the maxi numsize is
reached. |f space cannot be allocated to expand the heap, then the
heap will be left at its current size and no further expansions wll
be attenpted. SHOULDEXPANDHEAP is a bool ean that returns true when
the heap shoul d be expanded. EXPANDHEAP is called to expand the

heap. It returns true when the heap coul d be expanded.
*/
static int shoul dexpandheap()
{
if (HEAPPERCENT( all ocatedpages ) < gcincpercent ||
heappages >= gcmaxbyt es/ PAGEBYTES || gcinchytes == 0)
return O;
el se
return 1;
}

static expandfailed = 0;
static int expandheap() {

int incphyspages (gci ncbyt es+PHYS_PAGEBYTES- 1) / PHYS_PAGEBYTES,
i ncheappages i ncphyspages* phys_cap,
new firstheappage = firstheappage,
i nc_firstheappage,
new_| ast heappage = | ast heappage,
i nc_| ast heappage,
new_heappages,
new_heapspanpages,
new_physspanpages,
*new_space = NULL,
*new_plink = NULL,
*new_type = NULL,
*new_protect = NULL,
*new_scanned = NULL,
*new_firstword = NULL,
I
char* heap;

/* Check for previous expansion failure */
if (expandfailed) return O;

/* Al'locate additional heap and determ ne page span */
heap = new char[ incheappages* PAGEBYTES+PHYS_PAGEBYTES-1 ];
if (heap == NULL) goto fail;
if ((unsigned)heap & (PHYS PAGEBYTES-1))
heap = heap+( PHYS_PAGEBYTES- ( (unsi gned) heap&( PHYS_PACGEBYTES-1)));
inc_firstheappage = GCP_t o_PAGE( heap );
inc_|l astheappage = inc_firstheappage+i ncheappages-1;
if (inc_firstheappage < firstheappage)
new firstheappage = inc_firstheappage;
if (inc_l astheappage > | ast heappage)
new_| ast heappage = inc_| ast heappage;
new_heappages = heappages+i ncheappages;
new_heapspanpages = new_| ast heappage- new fi r st heappage+1;
new_physspanpages = new_heapspanpages/ phys_cap;



fail:

/* Allocate contiguous space for each side table, recover gracefully
fromallocation failure. */

if ((new_space = new int[ new _heapspanpages ]) == NULL | ]
(new_plink = new int[ new_heapspanpages ]) == NULL | ]
(new_type = new i nt[ new_heapspanpages+1 ]) == NULL ||
(new_protect = new int[ new _physspanpages ]) == NULL ||
(new_scanned = new i nt[ new_heapspanpages ]) == NULL ||
(new firstword = new int[ (new_heapspanpages+1)*BI T_WORDS ])
== NULL) {

if (heap) delete heap;
if (new_space) delete new space;
if (new_plink) delete new_ plink;
if (new_type) delete new_type;
if (new_protect) del ete new protect;
if (new_scanned) del ete new _scanned,
if (newfirstword) delete new firstword;
expandfailed = 1;
if (gcflags & GCSTATS)
fprintf( stderr, "\n***** gcalloc Heap expansion failed\n" );

return O;
}
new_space = new_space-new firstheappage;
new_plink = new_plink-new firstheappage;

new_type = new_type-new firstheappage;
new firstword = new firstword-new firstheappage*Bl T_WORDS;

/* Initialize new side tables, delete the old ones */

bzero( (char*)new _scanned, new_heapspanpages*si zeof (int) );
new_scanned = new_scanned-new firstheappage;

for (i = new firstheappage ; i < firstheappage ; i++)
new _space[ i ] = UNALLOCATEDPAGCE;

for (i = firstheappage ; i <= |l astheappage ; i++) {
new space[ i ] = space[ i ];

}

for (i = lastheappage+l ; i < new_| astheappage ; i++)
new space[ i ] = UNALLOCATEDPAGE;

for (i = inc_firstheappage ; i <= inc_|astheappage ; i++)

new _space[ i ] = FREEPAGE;
del et e (space+firstheappage);
space = new_space;

for (i = firstheappage; i <= |l astheappage; i++) {
new plink[ i ] =plink[ i ];
new type[ i ] = type[ i ];

}

del ete (plink+firstheappage);

plink = new_plink;

del ete (type+firstheappage);

type = new_type;

bzero( (char*)new protect, new _physspanpages*si zeof(int) );
new_protect =

new _protect - (PAGE_to_PPADDR(new firstheappage)>>phys_shift);
for (int addr_physpage = PAGE_t o_ADDR(firstheappage);

addr _physpage < PAGE_to_ADDR(I| ast heappage);

addr _physpage += PHYS_PAGEBYTES )

*(new_pr ot ect +( addr _physpage>>phys_shift)) =
i s_physpage_prot ect ed( addr_physpage );
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del ete (protect+(PACE_to_ADDR(firstheappage)>>phys_shift));
protect = new protect;

for (i = firstheappage*Bl T_WORDS;
i <= | ast heappage*Bl T_WORDS+BI T_WORDS- 1; i ++)
new firstword[ i ] = firstword][ i ];
delete (firstword+firstheappage*Bl T_WORDS);
firstword = new firstword;

/* To facilitate easy inplenentation of NEXT_OBJECT, SMALL_ CLUSTER,
and DETERM NE_PHYSPAGE _CLUSTER, the follow ng (phony) bookkeeping
i s made about the non-existing "page" just beyond the heap */

new_type[ new_| ast heappage+l | = OBJECT;
SET_FI RSTWORD( ((int*)((new_| ast heappage+1)* PAGEBYTES)) + 2 );

firstheappage = new firstheappage;
| ast heappage = new_| ast heappage;
heappages = new_heappages;
heapspanpages = new_heapspanpages;
physspanpages = new_physspanpages;

if (gcflags & GCSTATS)

fprintf( stderr, "\n***** gcalloc Heap expanded to %l bytes\n",

heappages* PAGEBYTES ) ;

return 1,

}

/* A pointer pointing to the header of an object is stepped to the next
header by the follow ng function.

*/
static GCP next_object( GCP xp )
{

Xp++; /* xp now points at body of object */

while (xp++)

if (1SA_FIRSTWORD( xp ))
return (xp-1);

}

/* A pointer can be verified to point to an object in the heap by the

following function. An invalid pointer will be I ogged and the program

wll abort.
*/

static void verify_object( GCP cp, int old)

{
int page = GCP_to_PAGE( cp );
GCP xp = PAGE_to_GCP( page ); /* Ptr to start of page */
int error = 0;

if (page < firstheappage) goto fail;

error = 1,

if (page > | astheappage) goto fail;

error = 2;

if (space[ page ] == UNALLOCATEDPAGE) goto fail;

error = 3;

if (old && UNSTABLE( page ) && space[ page ] != prev_space)
goto fail;

error = 4;
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if (old == 0 && space] page ] != forw space) goto fail;
error = 5;
if (callbacks[ HEADER CALLBACK( cp[-1] ) ].proc == freespace_pointers)
return;
while (cp > xp+l) xp = next_object( xp );
if (cp == xp+l) return;
fail:
fprintf( stderr, "\n***** gcalloc invalid pointer " );
fprintf( stderr,
"error: % pointer: Ox% nextcp Ox% xp Ox%\n",
error, cp, Ccp+HEADER WORDS(*cp), Xp );
abort ();
}

/* An object’s header is verified by the following function. An invalid
header will be | ogged and the programwi ||l abort.
*/

static void verify_header( GCP cp )
{
int size HEADER WORDS( cp[ -1 1 ),
page GCP_to_PAGE( cp ),
error = 0;

if FORWARDED( cp[ -1] ) goto fail;
error = 1,
if ((unsigned) HEADER CALLBACK( cp[ -1 ] ) >=
(unsi gned) cal | backs_count) goto fail;
if (size <= ONEPAGEOBJ_WORDS) {
error = 2;
if (cp-1+size > PACGE to_GCP( page+l )) goto fail;
} else {
error = 3;
int pages = HEADER PAGES( cp[ -11] ),
pagex = page,
while (--pages) {
pagex++;
if (pagex > | astheappage ||
type[ pagex ] != CONTINUED ||
space[ pagex ] != space[ page ])
goto fail;
}
}
return;
fail: fprintf( stderr,"\n***** gcalloc invalid header ");
fprintf( stderr,
"error: % object& Ox% header: Ox%\n",
error, cp, cp[ -11] );
abort();
}

/* The consistency of the heap is checked by the follow ng function. */

static void verify_heap()
{
GCP cp, lastcp;
for (int page = firstheappage; page < | astheappage; page++) {
cp = PAGE_to_GCP( page );
if ( type[page] == OBJECT &&
( space[ page] == curr_space ||
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( STABLE( page) && space[ page ] !'= UNALLOCATEDPAGE) ) ) {
| astcp = PAGE_to_GCP(page+l) - 1;
while (cp < lastcp &&
(curr_freewords == 0 || cp != curr_freep)) {
verify_object( cp+l, 1);
verify header( cp+l );
cp = cp+HEADER WORDS( *cp );

}

/* The follow ng variable holds the nunber of pointers guessed in an object
by guess_pointer. Note that cp points to the object header.

*/

static int guess_pointer_count;

static int guess_pointers( GCP cp )

{
guess_poi nter_count = 0;
if (HEADER_CALLBACK( *cp ) !'=0) {
for (int i=1; i < HEADER WORDS( *cp ); i++) {
int page = GCP_to_PAGE( (CCP)cp[ i ] );
if (page >= firstheappage && page <= | astheappage &&
space[ page ] != UNALLOCATEDPAGE)
guess_poi nt er _count ++;
}
} .
return guess_pointer_count;
}

/* The stable set is noved into the current_generation by the follow ng
function. A total collection is performed by calling this before calling
gccol l ect. \Wen generational collection is not desired, this is called
after collection to enpty the stable set.

*/

static void makecurrentstabl eset()
{
int pagecount, i;
while (queue_head) {
#i f def DOUBLE_ALI GN
pagecount = HEADER PAGES( *(PAGE_to_GCP( queue_head )+1) );
#el se
pagecount = HEADER PAGES( *PAGE_to_GCP( queue_head ) );
#endi f
i = gqueue_head,;
while (pagecount--) {
space[ i++ ] = curr_space;
if (gcflags & GCHEAPMAP) page_map( i-1);

queue_head = plink[ queue_head ];

}

current pages = all ocat edpages;
f orwar dedpages = O;

}

/* A page index is advanced by the follow ng function */
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static inline int next_page( int page )

{
}

/* A page is added to the stable set page queue by the follow ng function. */

return (page == | astheappage) ? firstheappage : page+l;

static void queue( int page )

{
if (queue_head != 0)
plink[ queue_tail ] = page;
el se
queue_head = page;
plink[ page ] = O;
queue_tail = page;
}

/* Pages that have mi ght have references in the stack or the registers are
pronoted to the forward space (which is stable) by the follow ng function.
*/

static void pronote_page( int page )
{
if (page >= firstheappage && page <= | astheappage &&
space[ page ] == prev_space) {
if (type[ page ] == CONTINUED) {
while (type[ --page ] == CONTI NUED);

}
#i f def DOUBLE_ALI GN
int pagecount

HEADER_PACES( *(PAGE_to_GCP( page )+1) );

#el se
int pagecount = HEADER PAGES( *PACGE to_GCP( page ) );
#endi f
if (gcflags & GCDEBUGLOG)
fprintf( stderr, "pronoted Ox%\n", PACE_ to_GCP( page ) );
queue( page );
f orwar dedpages += pagecount;
if (gcflags & GCHEAPMAP) {
for (int i =0; i < pagecount; i++) {
space[ page+i ] = forw_space;
page_nap( page+i );
}
else do {
space[ page++ ] = forw_space;
} while (--pagecount);
}
}

/******************************************

* Protecting/unprotecting physical pages *
******************************************/

/* Test whether a physical page is protected. */
#define is_physpage_protected( addr ) (*(protect+(addr>>phys_shift)))
/* The following routine registers that a physical page is protected. */

inline static void physpage_set_protected( int addr_physpage )
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*(protect+(addr_physpage>>phys_shift)) = 1,
pr ot ect edpages++;

}

/* The following routine registers that a physical page is unprotected. */

inline static void physpage_set_unprotected( int addr_physpage )
{

*(protect+(addr_physpage>>phys_shift)) = 0;

pr ot ect edpages- -;

}

#define NO_ACCESS 0 /* Page access code (argunent to nprotect) */
/* Inline wapper for call to nmprotect. */

static inline void call _nprotect( void* addr, int nunbytes, int protection)

{
}

/* An endangered physical page is one that has to be protected before
the garbage collector returns control to the application. The
followi ng routi ne marks a physi cal page as endangered.

nmprot ect ( addr, numbytes, protection );

*/
extern voi d add_endanger ed_physpage( int addr_physpage );

/* Bool ean to indicate whether scanning is going on */
extern int scanni ng_physpage

/* The following routine protects a physical page and registers it as

pr ot ect ed.
*/
inline static void protect_physpage( int addr_physpage )
{
if ( 'is_physpage_protected( addr_physpage ) ) {
/* if scanning is going on, then delay protecting of
t he physical page. Mark it as endangered. */
if ( scanning_physpage )
add_endanger ed_physpage( addr_physpage );
el se {
call _nprotect( (void*)addr_physpage, PHYS PAGEBYTES, NO ACCESS );
physpage_set _protected( addr_physpage );
}
}

/* The follow ng routine unprotects a physical page and registers it as
unpr ot ect ed.

*/
inline static void unprotect_physpage( int addr_physpage )
{
if ( is_physpage_protected( addr_physpage ) ) {
call _nprotect( (void*)addr_physpage, PHYS PAGEBYTES, PROT_WRI TE )
physpage_set _unprotected( addr_physpage );
}

/* A physical page cluster is the smallest set of contigous pages in the heap
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whi ch needs to be scanned. The followi ng three functions detern ne
protect and unprotect, respectivenly, the physical page cluster containing
the specified physical page address.

*/

static void determ ne_physpage_cluster( inté& addr_physpage
i nt & num physpages )
{

num physpages = 1;

while (type[ ADDR_to_PAGE(addr_physpage) ] !'= OBJECT) {
addr _physpage -= PHYS PAGEBYTES
num physpages++;

}
while (type[ ADDR to_ PAGE(addr _physpage+PHYS PAGEBYTES* num physpages)]
1 =OBJECT)
num physpages++;

}

static void protect_physpage_cluster( int addr_physpage, int num physpages=0 )
{
if (!'num_physpages)
det er mi ne_physpage_cl uster ( addr_physpage, num physpages );

if (num_physpages == 1) {
if ( !is_physpage_protected( addr_physpage ) ) {
call _nprotect( (void*)addr_physpage, PHYS PAGEBYTES, NO_ACCESS );
physpage_set _protected( addr_physpage );

}
el se {
for (; numphyspages > O;
num physpages--, addr_physpage += PHYS_PAGEBYTES) ({
if ( !is_physpage_protected( addr_physpage ) ) {
call _nprotect( (void*)addr_physpage
num physpages* PHYS PAGEBYTES, NO _ACCESS );
br eak;
}
}
while (num physpages--) {
if (!is_physpage_protected( addr_physpage ))
physpage_set _protected( addr_physpage );
addr _physpage += PHYS_PAGEBYTES
}
}

}

static void unprotect_physpage_cl uster(int addr_physpage, i nt num physpages=0)
{
if (num_physpages)
call _nprotect( (void*)addr_physpage, num physpages* PHYS PAGEBYTES
PROT_WRI TE) ;
el se {
det er mi ne_physpage_cl uster ( addr_physpage, num physpages );
call _nprotect( (void*)addr_physpage, num physpages* PHYS PAGEBYTES
PROT_WRI TE ) ;

while (num_physpages--) {
if ( is_physpage_protected( addr_physpage ) )
physpage_set _unprotected( addr_physpage );
addr _physpage += PHYS_PAGEBYTES
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/* Test whether two addresses are residing on the sane physical page. */
static inline int same_physpage( int addr_a, int addr_b ) {
return ((addr_a & phys_pagenask) == (addr_b & phys_pagemnask));
}
/* I's the address inside the region being scanned? */

static inline int inside_scan_region( int addr ) {
return ( firstword _to_scan <= addr && addr <= lastword_to_scan );

}
/* The following routine perfornms collector allocation to allocate a
free heap page in forward-space. |f space is not available then
the heap i s expanded.
The argunent to allocate_forwpage, badptr, is necessary so that any heap
page on the physical page that badptr is on will not be allocated.
*/

static void allocate_forwage( GCP badptr )
{

int all pages = heapspanpages;

while (allpages--) {
if (space[ forw freepage ] < prev_space &&
UNSTABLE( forw_ freepage ) &&
I'sane_physpage( (int)badptr, PAGE to_ADDR(forw freepage) ) &&
linside_scan_regi on( PAGE_ to_ADDR(forw_ freepage) )) {
forw freewords = PAGEWORDS;
al | ocat edpages++;
f or war dedpages++;
space[ forw_ freepage ] = forw_space;
type[ forw freepage | = OBJECT;
bzero( (char*)&firstword[forw freepage*Bl T_WORDS], BIT_BYTES );
forw freep = PAGE to_GCP( forw freepage );
if (gcflags & GCHEAPMAP) {
page_map( forw freepage );

queue( forw freepage );
/* SWAP ol d_forw_freepage and forw_ freepage

to inprove locality of stable pages */
int tenp = old_forw freepage;
ol d_forw_ freepage = next_page( forw freepage );
forw freepage = tenp;
return;

el se forw freepage = next_page( forw_ freepage );
Failed to allocate space, keep trying iff heap can expand. */

if (expandheap()) {
al | ocat e_f orwpage( badptr );

return;
}
/[* Can’t do it */
fprintf( stderr, "\n***** 3]|ocate_forwpage " );
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fprintf( stderr,
"Unable to allocate % bytes in a % byte heap\n",
PAGEBYTES, heappages* PAGEBYTES );

abort();

}

/* REG STER_GCMOVE_PROMOTED_PAGES renenbers the heap pages that GCMOVE
pronotes inside the scan region. REG STER GCMOVE_PROMOTED_ PAGES
first determ nes whether the scanning pointer has swept past the new y-
pronoted pages already. |f so, the pages are registered so that they
will be scanned | ater; otherw se, these pages are guaranteed to have been
scanned | ater on anyway.

*/

/* An object is scanned iff it is in the scan region and its address is
| ess than the address of the object being scanned (i.e. scanp).

*/

#define SCANNED( addr ) ( addr < int(scanp) )

#defi ne MAX_RESCAN_CHUNKS 8 /* Max number of chunks to rescan */
static int rescan_all = 0; /* Flag to rescan entire scan region */
static int rescanchunks = 0; [ * Chunk count */

static int rescanl] MAX RESCAN CHUNKS ]; /* Record chunks to rescan */
static int rescan2[ MAX RESCAN CHUNKS ]J; /* Alternate with rescanl */
static int *rescan = rescanil; /* Ptr to current rescan record */

static void register_gcnove_pronot ed_pages( int pronoted_page_head )

{

if (rescan_all) return;

if (SCANNED( PAGE to_ADDR( pronoted_page_head ) )) {
if (rescanchunks < MAX_RESCAN_CHUNKS)
rescan[ rescanchunks++ ] = pronoted_page_head;
el se rescan_all = 1;

}

/* An object is forwarded by the follow ng function. The forwarded
obj ect nust be protected because it is yet to be scanned.

*/
GCP gcnove( GCP cp )
{
int page = GCP_to_PAGE( cp ), /* Page number */
header, /* Cbject header */
freep_ppaddr = GCP_to_PPADDR(forw freep); /* freep’s PPADDR */
GCP np; /* Pointer to the new object */
int addr_physpage = O; /* (Object’s Physical Page ADDRess */

/* If out of heap then ok */
if (page < firstheappage || page > |astheappage ||
space[ page ] == UNALLOCATEDPAGE)
return( cp );

/* 1f object in stable storage or in current space then ok */
if (STABLE( page ) || space[page] == curr_space)
return( cp );

if ( space[page] != prev_space ) {
fprintf(stderr,
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"gcnove: space[ %] = %, cp = Ox%, prev_space %\ n",
page, space[page], cp, prev_space);

abort();
}
/* Check for a derived pointer */
if (((int)cp) &3 || [ISAFIRSTWORD( cp ) == 0) {
while (type[ page ] == CONTINUED) page--;
GCP pl, p2 = PAGE to_CCP( page );
if (gcflags & GCTSTOBJ) verify object( p2, 1);
while (p2 <cp) {
pl = pz;
p2 = next_object( p2 );
}
return (GCP)((char*)gcnove( pl+l )+((char*)cp-(char*)(pl+l)));
}

/* Cbject maybe protected */

if (linside_scan_region((int)cp) &% is_physpage_protected((int)cp)) {
addr _physpage = GCP_t o_PPADDR( cp );
unpr ot ect _physpage( addr_physpage );
/* Addr_physpage nust be reprotected on exit from gcnove */

/* Verify that the object is a valid pointer and decrement ptr cnt */
if (gcflags) {

if (gcflags & GCTSTOBJ) verify_object( cp, 1);

if (gcflags & GCAUESSPTRS) guess_pointer_count--;
}

/* If cell is already forwarded, return forwarding pointer */
header = cp[-1];
if (FORWARDED( header )) {
if (gcflags & GCTSTOBI) {
verify_object( (GCP)header, 0 );
verify_header( (GCP)header );

}
if (addr_physpage) {
prot ect _physpage( addr_physpage );

}
return( (GCP)header );
}

/* Move the object */

if (gcflags & GCTSTOBI) {
verify header( cp );

}

int freep_outside_scan_region=!inside_scan_region((int)forw freep);

/* Forward or pronote object */
int words = HEADER WORDS( header );
if (words >= forw freewords) {

/* Cbjects >= a page are pronoted to the stable set */
if (words >= ONEPAGEOBJ_WORDS) {
i nt pagecount = HEADER PAGES( *(cp-1) );
f orwar dedpages += pagecount;
queue( page );
for (int i = 0; i < pagecount; i++)
space[ page+i ] = forw_space;
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if ( inside_scan_region( PAGE_to_ADDR(page) ) )
regi ster_gcnove_pronot ed_pages( page );
el se {
prot ect _physpage_cl uster( PAGE_to_PPADDR( page ) );

}
if (gcflags & GCHEAPMAP) {
for (int i = 0; i < pagecount; i++)
page_nmap( page+i );

if (addr_physpage) {
prot ect _physpage( addr_physpage );

}

return( cp );
}
/* Discard any partial page and allocate a new one */
if (forw freewords !=0) {

if ( freep_outside_scan_region &
i s_physpage_protected( freep_ppaddr ) &&
I sane_physpage( (int)cp, freep_ppaddr ) ) {
unpr ot ect _physpage( freep_ppaddr );
*forw freep = MAKE_HEADER(forw freewords, freespace_call back);
forw freewords = 0;
prot ect _physpage( freep_ppaddr );

else { /* No need to unprotect/protect forw freep */
*forw freep = MAKE_HEADER(forw_ freewords, freespace_call back);
forw freewords = O;

}

al l ocat e_f orwpage( cp );
freep_outside_scan_region=!inside_scan_region((int)forw freep);
freep_ppaddr = GCP_t o_PPADDR(forw_freep);

#i f def DOUBLE_ALI GN

#endi f

forward_

if ( freep_outside_scan_region &&
i s_physpage_protected( freep_ppaddr )) {
unpr ot ect _physpage( freep_ppaddr );

*forw freep = doubl epad,;
forw freewords--

forw freep++;

goto forward_object;

} /* end if (words >= forw freewords) */
/* Forward object, |eave forwarding pointer in old object header */

if ( freep_outside_scan_region &
i s_physpage_protected( freep_ppaddr ) ) {
unpr ot ect _physpage( freep_ppaddr );

obj ect :

*forw freep++ = header;

np = forw freep

SET_FI RSTWORD( forw_ freep );

cp[-1] = (int)np;

forw freewords -= words;

while (--words) *forw freep++ = *cp++
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#i f def DOUBLE_ALI GN
if ((forwfreewords & 1) == 0 && forw freewords) {
*forw freep = doubl epad;
forw_freewords--
forw freep++;

}
#endi f
if ( freep_outside_scan_region ) {
prot ect _physpage( freep_ppaddr );
}
if (addr_physpage) {
prot ect _physpage( addr_physpage );
return( np );
}

/* Pages that have been remenbered w th REG STER GCMOVE_PROMOTED_PAGES
are re-scanned by the follow ng function.
*/

static void rescan_gcnove_pronot ed_pages()
{
int chunks = rescanchunks;
rescanchunks = 0;
int *rescan_record = rescan;

/* Reset RESCAN to point to unused array */
rescan = ( int(rescan) == int(rescan2) ) ? rescanl : rescan2

CCP cp, nextcp;
for (int i=0; i < chunks; i++) {
cp = PAGE_to_GCP( rescan_record[ i ] );
nextcp = cp+PAGEWORDS
#i f def DOUBLE_ALI GN

cp++; /1 skip over doubl epad word
#endi f
while ( cp < nextcp &&
(cp !=forw_ freep || forw freewords == 0)) {
(*cal | backs[ HEADER CALLBACK( *cp ) ].proc)( cp+l);
cp = cp+HEADER WORDS( *cp );
}
}
}

/* To optimze performance nprotect calls are to be avoi ded as nuch as
possible. The followi ng routines inplenents efficient synchronization
bet ween SCAN _PHYSPAGE CLUSTER and GCMOVE, such that physical pages
unprotected in GCMOVE are not reprotected until programcontrol is
about to exit SCAN_PHYSPAGE_CLUSTER

*/

/* Number of physical pages that are endangered */

static int endangered_physpages=0;

/* The data structure to hold the addresses of those physical pages that
need to be reprotected before scanning ends.

*/
const NELEMS = 10
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static struct array_elem {
struct array_el em *next _array_el em
int array[ NELEMS ];

} *endanger ed_head, *endanger ed;

/* The following routine creates the endangered data structure. */

static void setup_endangered_rec()

{
}

/* The follow ng function enters a physical page into the set of
endanger ed physi cal pages.

endanger ed_head = endangered = new array_el em();

*/

static void add_endangered_physpage( int ppaddr )
{
if ( endangered->array[ (endangered_physpages-1) ¥NELEMS] == ppaddr |
(endanger ed_physpages¥NELEMS > 1 ?
endanger ed- >arr ay[ (endanger ed_physpages- 2) ¥YINELEMS] : 0)
== ppaddr )
return;

endanger ed- >array[ endanger ed_physpagesYNELEMS ] = ppaddr;

if ( ++endangered_physpagesYNELEMS == 0 ) {
endanger ed- >next _array_el em = new array_el em();
endanger ed = endanger ed->next_array_el em
endanger ed- >next _array_el em = NULL;

}

/* The followi ng function reprotects all the endangered physical pages.
It is called right before scanning exits and the application is about
to resunme execution.

*/

static void reprotect_endanger ed_physpages()
{
for ( endangered = endanger ed_head;
endangered != NULL;
endangered = endangered->next_array_elem) {

for (int i=0; i < NELEMS && endangered_physpages-- != 0; i ++)
prot ect _physpage(endangered->array[ i ]);

}

if (endangered_physpages != -1) abort();
endanger ed_physpages = 0O;

endangered = endanger ed_head,;
endanger ed- >next _array_el em = NULL;

}

/* The following is a bool ean variabl e indicating whether program
control inside SCAN PHYSPAGE CLUSTER

*/

i nt scanni ng_physpage = 0;

/* The follow ng function scans one physical page cluster. */
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static int scan_physpage_cluster( int addr_physpage )

{

scanni ng_physpage = 1;

/* Find and unprotect the physical page cluster region */

i nt num physpages;

det er mi ne_physpage_cl uster ( addr _physpage, num physpages );
firstword_to_scan=addr _physpage;

| astword_t o_scan=addr _physpage+num physpages* PHYS _PAGEBYTES- Bl T_WORDS;
unpr ot ect _physpage_cluster( firstword_to_scan, num physpages );

/* Scan the cluster */
CGCP next scanp;
rescan_physpage_cl uster:
for (int page = ADDR to_PAGE(firstword_to_scan);
page <= ADDR_to_PAGE( |astword_to_scan);
page++ ) {
if (STABLE( page ) && type[ page ] == OBJECT) {
scanp = PAGE_to_GCP( page );
next scanp = scanp+PAGEWORDS;
#i f def DOUBLE_ALI GN

scanp++; /1 skip over doubl epad word
#endi f
while ( scanp < nextscanp &&
(scanp != forw freep || forw freewords == 0)) {
(*cal | backs[ HEADER _CALLBACK( *scanp ) ].proc)( scanp+l );
scanp = scanp+HEADER WORDS( *scanp );
}
}
}
/* Check if rescanning is necessary */
while (rescanchunks) {
if (rescan_all) {
rescan_all = 0;
goto rescan_physpage_cl uster;
}
el se rescan_gcnove_pronot ed_pages() ;
firstword_to_scan = lastword_to_scan = NULL;
scanni ng_physpage = 0;
repr ot ect _endanger ed_physpages() ;
return num physpages;
}

/* \When incremental collection is going on, the follow ng function
is called to scan "target" number of physical pages.

*/
int scan_few physpages( int target )
{
i nt addr_physpage, /1 Address of physical page being scanned
num physpages, /1 Nunmber of physical pages scanned so far
sum = 0; /1 Total nunber of physical pages scanned

while (target > 0 && protectedpages) {
for (addr_physpage = PAGE_to_ADDR( firstheappage );
addr _physpage < PAGE_to_ADDR( | astheappage ) && target > O;
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addr _physpage += PHYS_PAGEBYTES) {
if ( is_physpage_protected( addr_physpage ) ) {
i f (space[ ADDR t o_PAGE(addr_physpage)] == UNALLOCATEDPACE)
abort();
num physpages = scan_physpage_cl uster( addr_physpage );
sum += num physpages;
target -= num physpages;

}
}
firstword to scan = lastword _to_scan = NULL;
return sum

}

/* During incremental collection, physical pages where unscanned objects
are found need to be protected. Whenever user application accesses one of
these pages, a page fault occurs. The following function is the trap
handl er set up to handl e these page faults. The faulted physical page
cluster is unprotected and scanned before becom ng accessible to the
user again.

*/
static void page_fault_handler( int sig, int code, struct sigcontext *scp )
{
#i fdef m ps
int faulted_addr = scp->sc_badvaddr;
#endi f
#i fdef vax
int faulted_addr = code;
#endi f
int faulted_physpage = GCP_to_PPADDR( faulted_addr ),
faul ted_page = ADDR to_PAGE( faulted_addr ),
error = 0;
/* Non-incremental npbde should NOT cause page fault */
if (gcflags & GCNO NC) goto fail;
error = 1,
/* Error if not garbage collecting */
if (curr_space == forw_space) goto fail;
error = 2;
/* Error if faulted address is outside of heap */
if ( faulted_page < firstheappage || faulted_page > | ast heappage)
goto fail;
error = 3;
/* Finally, go ahead and scan the physical page cluster */
scan_physpage_cl uster( faul ted_physpage );
return;
fail:
fprintf( stderr,
"*x*x* pPage fault error: %l badaddr Ox%\n",
error, faulted_addr );
abort();
}

/* Qutput a newine to stderr if logging is enabled. */

void newine_if_Iogging()
{
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if (gcflags & (GCDEBUGLOG | GCROOTLOG | GCHEAPLOG | GCGUESSPTRS) )
fprintf( stderr, "\n" );
}

/* Aroot is logged to stderr by the followi ng function. */

static void |og_root( unsigned* fp )

{
int page = GCP_to_PAGE( fp );
if (page < firstheappage || page > |astheappage ||
space[ page ] == UNALLOCATEDPAGE ||
(UNSTABLE( page ) && space[ page ] != curr_space))
return;
while (type[ page ] == CONTINUED) page--;
GCP pl, p2 = PAGE_ to_GCCP( page );
while (p2 < (GCP)fp) {
pl = p2;
p2 = next_object( p2 );
}
fprintf( stderr, "***** gcalloc root& Ox% object& Ox¥%& %s\n",
fp, pl, callbacks[ HEADER CALLBACK( *(pl) ) ].type );
}

/* Log the nenory use statistics on stderr. */

static void nmenory_stats()

{

CCP cp;

int page = firstheappage-1;

for (int i =0; i < callbacks_count; i++) {
cal I backs[ i ].nunber = 0;
cal l backs[ i ].bytes = 0;

}

while (++page <= | ast heappage) {
if ((space[ page ] == curr_space ||

(STABLE( page ) && space[ page ] !'= UNALLOCATEDPAGE))
&& type[ page ] == OBJECT) {
cp = PAGE_to_GCP( page );
while (GCP_to_PACGE( cp ) == page &&
(cp '=curr_freep || curr_freewords == 0)) {
int x = HEADER CALLBACK( *cp ),
wor ds = HEADER WORDS( *cp )
cal | backs[ x ].numnber ++;
cal | backs[ x ].bytes += HEADER BYTES( *cp );
if (words > ONEPAGEOBJ_WORDS)
int free = HEADER PAGES( *cp )*PAGEBYTES-
HEADER BYTES( *cp );

if (free) {
cal | backs[ 0 ].numnber ++;
cal l backs[ O ].bytes += free;

}
}
cp = cp+words;
}
}

}
fprintf( stderr, "***** gcalloc nunber bytes type\n" );
for (i =0; i < callbacks_count; i++) ({
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fprintf( stderr, " %d 98d 9%s\n",
cal | backs[ i ].nunber, callbacks[ i ].bytes,
cal Il backs[ i ].type );

}

/* \Wen increnmental collection is over, the following function is called
to perform mi scel | aneous accounti ng and bookkeepi ng t asks.

*/

extern void gcwapup();

/* Garbage collection is initiated by the follow ng procedure. It is
typically called when one-third of the pages in the heap have been
allocated. It may also be directly called.

*/

static unsigned registers[ REG STER_COUNT ]; /* Anbi guous registers */

void gccollect()

{

unsi gned *fp; /* Pointer for checking the stack */
i nt page,
freepages=0; [* # of free heap pages */

/* Check for heap not yet allocated */
if (gcheapcreated == 0) {

geinit();

return;

* Log entry to the collector */
f (gcflags & GCSTATS) {
fprintf( stderr, "***** gcalloc Collecting - %d%%ballocated -> \n",
HEAPPERCENT( al | ocat edpages ) );
new i ne_i f _| oggi ng();

/* Scan a few pages and return if already collecting */
if (curr_space != forw_space) {

scan_f ew_physpages( 1 );

return;

}

/* Discard any remaining portion of current page */

if (curr_freewords !=0) {
*curr_freep = MAKE_HEADER( curr_freewords, freespace_callback );
curr_freewords = 0;

}

/* Verify that heap is consistent */
if (gcflags & GCDEBUGLOG) verify heap();

/* Partition regions for forwarded and new y-al |l ocated objects */
forw freepage = old_forw_ freepage = curr_freepage;
forw freep = curr_freep = PAGE_ to_GCP( curr_freepage );

/* Advance curr_freep so that _if possible_, there will be
" RESERVEDPACES" nunber of free heap pages in "forward" region */
page = forw_ freepage;
freepages = 0;
for ( int i=0; freepages<=RESERVEDPAGES && i <physspanpages; i++ ) {
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if ( UNSTABLE(page) && space[page] != curr_space ) ++freepages;
page = next_page( page );

}

curr_freep = (GCP) PAGE_t o_PPADDR( page );

curr_freepage = GCP_to_PAGE( curr_freep );

/* Change headers on heap display */
if (gcflags & GCHEAPMAP)
di spl ay_headers( "Starting Garbage Collection" );

/* Advance space */
current pages = 0;
forw space = curr_space+l;
curr_space = curr_space+2;
/* Exami ne stack, registers, static area and possibly the non-garbage
coll ected heap for possible pointers */
if (gcflags & GCROOTLOG) fprintf( stderr, "stack roots:\n" );
for (fp = gcregisters( registers ) ;
fp < (unsigned*) STACKBASE ;
fp = (unsigned*)(((char*)fp)+STACKINC) ) {
if (gcflags & GCROOTLOG log root( fp );
pronot e_page( GCP_to_PACGE( *fp ) ):

}
if (gcflags & GCROOTLOG)

fprintf( stderr, "static and register roots:\n" );
for (fp = STATICO ; fp < STATIC 1 ; fp++) {

if (gcflags & GCROOTLOG log_root( fp );

pronot e_page( GCP_to_PAGE( *fp ) );

if (gcflags & GCHEAPROOTS || gcflags & GCHEAPLOG {
if (gcflags & GCHEAPLOG
fprintf( stderr, "non-GC heap roots:\n" );
unsi gned* heapend = (unsigned*)sbrk( 0 );
unsi gned* firstheapp = (unsigned*)PAGE to_GCP( firstheappage );
unsi gned* | astheapp = (unsigned*)PAGE_to_GCP( | ast heappage );
while (fp < heapend) {
if (fp <firstheapp || fp > lastheapp ||
space[ GCP_to_PAGE( fp ) ] == UNALLOCATEDPAGE) ({
if (gcflags & GCHEAPLOG log_root( fp );
if (gcflags & GCHEAPROOTS)
pronot e_page( GCP_to_PACE( *fp ) );
f p++;

else {
fp = fp+PAGEVORDS;
}

}

/* Anbi guous roots have been pronoted, now protect all the
pronoted (stable) pages */

page = queue_head;

while (page) {
prot ect _physpage_cl uster( PAGE_t o_PPADDR(page) )
page = plink[ page [;

if (gcflags & GCSTATS)
fprintf(stderr, "anbiguous roots: %l pages, %%%0 of heap\n",
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f or war dedpages, HEAPPERCENT( f orwar dedpages ));

if (gcflags & GCNO NO) {
if (gcflags & GCHEAPMVAP)
di spl ay_headers( "Copyi ng Retai ned Storage" );
do {

for (int addr_physpage = PAGE_to_ADDR( firstheappage );

addr _physpage < PACE_to_ADDR( | astheappage );
addr _physpage += PHYS_PAGEBYTES) ({

if (is_physpage_protected( addr_physpage )) {
scan_physpage_cl uster ( addr_physpage );
if ( protectedpages == 0 )

) gewr apup() ;

}
} while ( protectedpages );

else if (HEAPPERCENT( forwardedpages ) > gcstabl epercent)
expandheap() ;

}

/* The followi ng procedure is called on the conpletion of garbage collection

before free nmenory is zeroed (nmenory is zeroed only when that special

option is set). It provides a handy place to put a breakpoint.
*/

static void gcdone() {};

/* The followi ng procedure is called to end garbage collection. It
resets various bookkeepi ng paraneters, and deterni nes whether
total collection and heap expansi on are necessary.

*/

static void gcw apup()

{

f orw_space
prev_space

= curr_space; /* Register that GCis over */
= curr_space; /* Reclaimstorage */

/* Discard rest of current forward freepage */

if (forw freewords != 0) {

*forw freep = MAKE_HEADER( forw freewords, freespace_call back);

forw freewords = O;
if’fW_freep = NULL;
if (protectedpages != 0) abort();
i (goflags & GODEBUGLOG) verify_heap():

/* Print menory use statistics if required */
if (gcflags & GCCMEM) nmenory_stats();

/* Change headers on heap display */

if (gcflags & GCHEAPMAP) displ ay_headers( "Application Allocation”

/* Reset bookkeepi ng paraneters */

al | ocat edpages = current pages+f or war dedpages;
current pages=0;

gcdone();
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/* Zero free menory if required */
if (gcflags & GCZERO) {
int page = firstheappage-1
while (++page <= | ast heappage) {
if (space[ page ] != curr_space && UNSTABLE( page ))
bzero( (char*)PACE to_GCP( page ), PAGEBYTES );

/* Check for generational collection and heap expansion */
if (gcallpercent) {
/* Perform ng generational collection */
i f (HEAPPERCENT( al | ocat edpages) >=gcal | percent) {
/* Performa total collection */
makecur r ent st abl eset () ;
int save_gcal | percent = gcall percent;
gcal | percent = 100;
gccol lect();
gcal | percent = save_gcal |l percent;
if (shoul dexpandheap()) expandheap();

}

}

else {
/* Not perform ng generational collection */
i f (shoul dexpandheap()) expandheap();
makecur r ent st abl eset () ;

}

}

/* The following function tests whether a set of contiguous heap pages are
al | unprotected

*/
static int all_unprotected( int page, int num pages )
{
int begi n_physpage = PAGE_to_PPADDR( page ),
end_physpage = PAGE_t o_PPADDR( page+num pages-1 );
do
if (is_physpage_protected( begin_physpage )) return O;
while ( (begi n_physpage += PHYS PAGEBYTES) <= end_physpage );
return 1;
}

/* The following predicate returns 1 if the specified set of heap pages is
not "linked" to other pages to forma physical page cluster that’'s |arger
than the m ni nrum necessary cl uster size.

*/

static inline int SMALL _CLUSTER( int firstpage, int |astpage ) {
return ( sanme_physpage( PAGE_t o_ADDR(fir st page),
PAGE_t o_ADDR( | ast page)) |
(type[ firstpage - firstpage¥%hys_cap ] == OBJECT &&
type[ |astpage - |astpage¥phys_cap + phys_cap ] == OBJECT) );
}

/* \When gcalloc is unable to allocate storage, it calls this routine to
al l ocate one or nore pages. |f space is not available then the garbage
collector is called and/or the heap is expanded.

*/
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static void allocatepage( int pages )

{
int free, /* # contiguous free pages */
firstpage, /* Page # of first free page (unprotected) */
first_prot = -1, /* Page # of first free page (protected) */
al | pages; /* # of pages in the heap */

if (pages > MAX_HEADER_PAGES) {
fprintf( stderr,
"\'n***** gcalloc Unable to allocate objects larger than % bytes\n"
#i f def DOUBLE_ALI GN
MAX_HEADER PAGES* PAGEBYTES-8 );
#el se
MAX_HEADER PAGES* PAGEBYTES-4 ) ;
#endi f
abort();

/* Scan a few pages iff increnental collection is going on */
if (curr_space != forw_space) {
scan_few _physpages( 1 );
/* Check if collection is over */
if ( protectedpages == 0 )
gewr apup() ;

if (curr_space == forw_space) {
[* Start incremental collection if nmore than 1/ N of the
space will be allocated, such that
N =3 if doing increnmental collection,
N = 2 ot herwi se.
*/
if (!(gcflags & GCNO NC)) {
/* incremental collection */
if (allocatedpages+pages >= heappages/ 3)
gccol lect ();
} else {
if (allocatedpages+pages >= heappages/ 2)
gccol lect();

}

/* Try to allocate space */
free = 0O;
al | pages = heapspanpages;
while (allpages--) {
if (space[ curr_freepage ] < prev_space &&
UNSTABLE( curr_freepage )) {
/* make sure that curr_freepage is a "cluster" by itself */
if (free++ == 0) { /* Potential first page */
if ( SMALL_CLUSTER(curr_freepage, curr_freepaget+pages-1) )
firstpage = curr_freepage;
el se {
curr_freepage =
next _page(curr_freepage - curr_freepage¥%phys_cap
+ phys_cap-1 );
free = 0;
continue; // loop "while (allpages--)" again
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if (free == pages) { /* Page(s) found */
curr_freep = PAGE_to_GCP( firstpage );
curr_freewords pages* PAGEVWORDS
al | ocat edpages al | ocat edpages+pages;
current pages current pages+pages
curr_freepage next _page( firstpage+pages-1 );
space[ firstpage ] = curr_space
type[ firstpage ] = OBJECT
bzero( (char*)&f irstword][ firstpage*Bl T_WORDS ],

Bl T_BYTES*pages );
for (int i =1; i < pages; i++) {
space[ firstpage+i ] = curr_space
type[ firstpage+i ] = CONTI NUED

if (gcflags & GCHEAPVAP)
for (i = 0; i < pages; i++)
page_nap( firstpage+i );
if (l'all_unprotected(firstpage, pages))
scan_physpage_cl uster( PACGE_to_PPADDR(firstpage) );
return;

else { /* free < pages */
curr_freepage = next_page( curr_freepage );

if (curr_freepage == firstheappage) free = 0;
}
else { [/* curr_freepage is not free */
free = 0O;

curr_freepage = next_page( curr_freepage );

/* Failed to allocate space, keep trying iff heap can expand. Assure
that mnimumincrenent size is at |east the size of this object.

if (gcincbytes/ PAGEBYTES < pages) gci nchytes = pages* PAGEBYTES
if (expandheap()) {

al | ocat epage( pages );

return;

/* Can’t do it */
fprintf( stderr,
"\n***** qgcalloc Unable to allocate %d bytes in a % byte heap\n",
pages* PAGEBYTES, heappages* PAGEBYTES );

abort();
}
/* Storage is allocated by the followi ng function. |t returns a pointer
to the object. It is up to the specific constructor procedure to assure
that all pointer slots are correctly initialized. The word count includes
one word for the header.
*/

GCP gcalloc( int words, int callback )

{
GCP object; /* Pointer to the object */

/* Try to allocate fromcurrent page */
if (words <= curr_freewords) ({
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*curr_freep = MAKE_HEADER( words, callback );

object = curr_freep+1;

curr_freewords = curr_freewords-words;

curr_freep = curr_freep+words;

#i f def DOUBLE_ALI GN

if ((curr_freewords & 1) == 0 && curr_freewords) {
*curr_freep = doubl epad;
curr_freewords = curr_freewords-1;
curr_freep = curr_freep+l;

}

SET_FI RSTWORD( obj ect );
return( object );

#endi f

* Discard any remaining portion of current page */

if (curr_freewords !=0) {

*curr_freep = MAKE_HEADER( curr_freewords, freespace_callback );
curr_freewords = 0;

* bject is less than 1 page in size */
if (words < ONEPAGEOBJ_WORDS) {
al | ocat epage( 1 );
#i f def DOUBLE_ALI GN
*curr_freep = doubl epad,;
curr_freewords = curr_freewords-1;
curr_freep = curr_freep+1;
#endi f
*curr_freep = MAKE_HEADER( words, callback );
object = curr_freep+l;
curr_freewords = curr_freewords-words;
curr_freep = curr_freep+words;
#i f def DOUBLE_ALI GN
if ((curr_freewords & 1) == 0) {
*curr_freep = doubl epad;
curr_freewords = curr_freewords-1;
curr_freep = curr_freep+l;

}

SET_FI RSTWORD( obj ect );
return( object );

#endi f

}

/* Cbject >= 1 page in size */

#i f def DOUBLE_ALI GN
al | ocat epage( (wor ds+PAGEVWORDS) / PAGEVWORDS ) ;
*curr_freep = doubl epad;
curr_freewords = curr_freewords-1;
curr_freep = curr_freep+l;
#el se
al | ocat epage( (wor ds+PAGEWORDS- 1) / PAGEWORDS ) ;
#endi f

*curr_freep = MAKE_HEADER( words, callback );
obj ect = curr_freep+l;

curr_freewords = 0;

curr_freep = NULL;

SET_FI RSTWORD( obj ect );

return( object );
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/* The following predicate returns 1 if the object is checked by the garbage
col l ector, otherw se 0.
*/

#i f def COMPI LER_VERSI ON_1_2
int gcobject( void* obj )

{
if (obj >= STATIC_.1 && obj < &bj) {
int page = GCP_to_PAGE( obj );
if (page < firstheappage || page > |astheappage ||
space[ page ] == UNALLOCATEDPAGE)
return O;
}
return 1,
#endi f

/* The delete operator is redefined so that the user program may call
del ete on garbage col |l ected objects.
*/

#i f def COWPI LER_VERSI ON_1_2
extern void operator delete( void* p ) {
if (gcheapcreated) ({
int page = GCP_to_PAGE( p );
if (page >= firstheappage && page <= | astheappage &&
space[ page ] != UNALLOCATEDPAGE)
return;

}
if (p) free( (char*)p );

#endi f
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