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Abstract

This paper describes a method of determining which procedures to merge
for machines with instruction caches.  The method uses profile information,
the structure of the program, the cache size, and the cache miss penalty to
guide the choice.  Optimization for the cache is assumed to follow procedure
merging. The method weighs the benefit of removing calls with the increase
in the instruction cache miss rate.  Better performance is achieved than pre-
vious schemes that do not consider the cache.  Merging always results in a
savings, unlike simpler schemes that can make programs slower once cache
effects are considered.  The new method also has better performance even
when parameters to simpler algorithms are varied to get the best perfor-
mance.
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1 Introduction

This paper presents a method of deciding which procedure calls should be merged to get the
best performance on machines with instruction caches. While procedure merging has been
studied extensively, the choice of which procedures to merge has remained unclear. In most
studies, somewhat arbitrary parameters control the decision. Choosing the right parameter
involves a trade-off between the number of instructions executed and the size of the program
after merging. For most recent machine designs, the key cost of increasing program size is
the impact on the instruction cache. This cost is reflected in the probability that the next
instruction to be executed is not available in the instruction cache or the instruction cache
miss rate.

Procedure merging can have both positive and negative effects on the instruction cache
miss rate. As more procedures are merged, code size can increase exponentially. The
larger programs become, the less likely they are to fit the cache and the higher the miss
rate. Alternately, merging can reduce the miss rate. Some procedures may be smaller
than the call itself. Merging such procedures reduces both the code size and the miss rate.
However, code size is not the only important factor in determining the miss rate. For
example, expanding the amount of code that is never executed has no effect on the cache.
Also, merging can reduce the miss rate by improving program locality.

Several recent papers have discussed methods of optimizing programs for instruction
caches [McF89, HC89a, PH90]. In this paper, optimization for the cache is assumed for
two reasons. First, if the instruction cache miss rate is of concern, then programs should
be optimized for the cache. Second, a model of the change in miss rate expected from
merging particular calls is needed to decide which calls to inline. After optimization,
the cache behaves much like an optimal cache. Here, an optimal cache refers to a cache
that replaces the instructions used farthest in the future as in Belady’s page replacement
algorithm [Bel66]. Optimal caches not only have ideal miss rates, they are also relatively
simple to model. For example, the placement of instructions in memory can be ignored.
This paper proposes an accurate model of optimal caches which makes use of profile
information and the structure of the program including both the call and flow graphs. This
model is then used to guide procedure merging.

Section 2 discusses other work on procedure inlining. Section 3 discusses why the
decision of which calls to merge is complex. Section 4 describes the model for predicting
miss rates. Section 5 uses the model to predict the benefit of merging any given call.
Section 6 uses this to determine the set of calls to merge. Section 7 shows that this new
algorithm performs better than simpler methods that do not explicitly consider the cache.
Finally, Section 8 summaries the contributions of this paper.

The MIPS-X project has been supported by the Defense Advanced Research Projects Agency under
contract N00014-87-K-0828.
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2 Related Work

Numerous compilers implement procedure merging. This section highlights work that
discusses the decision of which procedures to merge.

Scheifler [Sch77] studied a method of inlining procedures that used profile information.
Calls were inlined in the following order:

1. procedures so small that inlining reduces overall program size.

2. procedures with the highest ratio of dynamic calls to procedure size until an overall
program size limit is reached.

3. procedures called from only one site.

Scheifler justifies using heuristics by showing that computing the best procedures to merge
is at least NP-complete. The program size limit is arbitrary since the algorithm has no way
of trading off program size with the number of instructions executed.

Ball [Bal82] considered how optimization might affect the benefit of doing a merge.
Calls with constant arguments may be better to merge since dead code can be removed and
arithmetic performed at compile time. Ball also discussed inlining only parts of procedures
or creating a specialized version of procedures to be called from several sites with common
characteristics.

Richardson and Ganapathi [RG89a, Ric90] compared procedure merging to optimiza-
tion using interprocedural data flow analysis. They showed that the primary gain from
procedure merging is primarily from removal of calls and returns. The savings from merg-
ing is largely orthogonal to optimization savings. Using this fact, they propose optimizing
before merging to reduce the execution time of optimization.

Davidson and Holler [DH88, DH89] implemented a source to source procedure inliner
for the language C. Deeply nested calls are inlined first. Inlining stops when there are no
more registers available to hold the variables assigned to registers by the programmer. If
user assignments are ignored, inlining can slow the program down without a sophisticated
register allocation pass. The authors found that the main benefits from inlining come from
the removal of:

� call and return instructions,

� parameter movements,

� stack adjustments, and

� register saves and restores around calls.

Chow [Cho83, Sch83] showed that other optimizations are largely independent of
merging for a set of small benchmarks. The savings from both merging and optimization
is close to the sum of each performed independently.
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size (instr) description
bigfm 8231 graph partitioning
ccal 11526 desk calculator
compare 10112 file comparison
dnf 11411 logic normalization
hopt 16767 compiler optimizer
macro 33689 macro expansion
pasm 12332 assembler
pcomp 35536 pascal compiler
simu 18706 disk simulator
upas 61795 pascal front end

Table 1: Benchmarks Used for Evaluation

Steenkiste [Ste87] implemented a procedure merger that inlined calls to procedures
smaller than a size threshold. As the threshold was increased, code size increased roughly
exponentially and the number of instructions executed decreased logarithmically. Combin-
ing these two effects together, the overall performance went through a maximum improve-
ment of 4%.

Hwu and Chang [HC89b, Cha87] implemented a procedure merger that merged calls
in decreasing order of the number of times they were executed until the code size increase
reached a threshold. For their set of benchmarks 59% of dynamic calls were removed for a
code size increase of 17%.

3 Procedure Call Characteristics

The decision of which calls to merge depends on two factors: the dynamic manner in
which procedures are called and the sizes of procedures. If procedures are typically called
dynamically from only one place then the decision of which call sites to merge is simple:
just merge the site that is frequently executed. Merging this call actually reduces the
number of instructions that must be kept in the cache. This is true however many static
calls to each procedure there are. Alternately, if most calls are to small procedures, then
the choice of which procedures to merge is again simple. Merging small procedures has
little effect on program size and thus all calls to small procedures could conceivably be
merged. Unfortunately, neither of these simple properties exist in most programs. The set
of benchmarks described in Table 1 will be used as examples.

Figure 1 shows that most procedures are called frequently from several sites. For each
of the benchmarks, the dynamic distribution of calls is plotted against the dynamic fraction
of calls to each procedure. Let cj;k be the number of times the k’th call site to procedure
j is executed. Let Tj =

P
k cj;k, the total number of dynamic calls to procedure j, and
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Figure 1: Distribution of Calls to Procedures

T =
P

j;k cj;k, the total number of dynamic calls. Figure 1 plots the function:

y(f) =
1
T

X
fj;kjcj;k�fTjg

cj;k

for each of the benchmarks in Table 1. For any given fraction f , only those calls are included
which account for less than or equal to f of the calls to that procedure. For example, if
each procedure is called from only one site, then the curve would lie along the x-axis. If
each procedure is called frequently from a very large number of sites, then the curve would
follow the line y = 1. A simple program with one subroutine called the same number of
times from two sites would have the distribution:

y =

(
0 f < 0:5
1 f � 0:5

The distributions in Figure 1 vary widely between benchmarks. In one benchmark, 40%
of the dynamic calls were the only calls executed to their respective callees. However, most
procedures are called frequently from multiple sites. Over all the benchmarks, roughly
40% of calls are from sites that constitute less than half the calls to the callee. This shows
that if the majority of dynamic calls are to be removed, many procedures will need to be
duplicated and the duplicated code will be frequently executed.

Figure 2 shows the dynamic distribution of callee sizes for the set of ten benchmarks.
Most calls are to relatively small procedures with fewer than 100 instructions. However,
very few calls are to procedures as small as the call and return code. In combination with the
observation of the previous paragraph, this means that merging will have to increase both
the static and dynamic code size to remove the majority of calls. If merging several levels

4



|
1

| | | | | | | | |
10

| | | | | | | | |
100

| | | | | | | | |
1000

| | | | | | | | |
10000

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 Callee Size (instr)

 C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 A
ll 

D
yn

am
ic

 C
al

ls

Figure 2: Dynamic Distribution of Callee Size

in the call graph is considered, the situation is even more extreme. Code size can increase
exponentially. An ideal merging algorithm must consider both the size and frequency of
procedures to get the best results.

4 Miss Rate Model for Merging

We begin the description of a new method of determining which procedure calls to merge
by presenting a model of how instruction caches behave after optimization. In the model, a
single number is calculated for each loop that gives the average size of each loop iteration.
Each instruction executed within a loop adds to the average by min(1; f) where f is the
average number of times the instruction is executed per loop iteration. When f � 1, each
instruction adds f to the average loop iteration size. When f > 1, each instruction adds
only one word to the average because each instruction needs at most one cache location no
matter how many times per iteration it is executed.

The average loop iteration size can be used to estimate the number of misses. With
cache optimization, each cache location can usually hold one useful instruction just like
an optimal cache would. If the loop size is larger than the cache, the surplus instructions
miss. If an instruction fits in the cache, it hits when repeated. Whether an instruction
misses the first time it is executed in a loop depends on whether there is space to keep in
the cache for the duration of the next outer loop. If the current loop is outermost, the first
execution always misses. This analysis leads to the estimate of misses for each loop given
in Equation 2.

sl =
X

sbmin(1; f) (1)
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Figure 3: Prediction Accuracy by Benchmark

Ml = max(0; l� 1)max(0; sl � S) (2)

where
sl : effective loop body size
sb : basic block size
f : average frequency block is executed

per loop iteration
Ml : number of misses per loop instance
l : average number of loop iterations
S : cache size

Figure 3 shows how well the model predicts miss rates for an optimal cache for the
set of benchmarks described in Table 1 for a cache size of 2048 instructions. For most
benchmarks, the average loop size model is quite close. Figure 4 shows the miss rate
prediction accuracy for various cache sizes using the average across the ten benchmarks.
Again, the prediction is quite close.

5 Modeling Merge of One Call

Merging a single call affects performance by reducing the number of instructions executed,
and by changing the instruction cache miss rate. The change in the number of instructions
executed has several causes:

1. removal of call and return code.

2. removal of loads and stores of parameters.
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Figure 4: Prediction Accuracy by Cache Size

3. opportunities for optimization across procedure boundaries.

Accurate prediction of all these effects is complex. For example, Ball [Bal82] spent
considerable effort just calculating the degree inlining procedures with constant param-
eters enables additional optimization. However, for the MIPS-X architecture [HCe87],
the removal of call and return code tends to dominate the other factors. Richardson and
Ganapathi [RG89b] along with Davidson and Holler [DH88] found similar results for other
architectures. Thus, a simple estimate can be used based on the typical number of instruc-
tions eliminated for each removed call. More complex estimates would produce better
results, but this simple method is sufficient to demonstrate the usefulness of considering the
cache during procedure merging.

To estimate how merging changes the instruction cache miss rate, the loop average
size model described in the previous section can be used. Usually, merging a procedure
increases code size. To see how this affects the miss rate, the new average sizes of the loops
containing the call are computed. The new sizes can then be substituted into Equation 2
to calculate the new number of misses for each loop. If the procedure to be merged is
frequently called from only one place, then the average sizes will be reduced by the amount
of the call and return code. If the merged procedure is called from multiple sites, then some
of the loop sizes may increase and the model will predict more misses. Whether a given
call should be merged depends on what else is in the loops that contain it.

Figure 5 shows several examples of how these factors can affect whether or not a merge
is beneficial. In the figure, circles represent loops, A and B represent procedures, and the
arcs represent calls and lexical nesting. Figure 5(a) shows a procedure called only once
in each loop it is in. Merging such a call will always increase performance because the
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Figure 5: Example Merge Decisions

number of instructions that need to be kept in the cache over any loop lifetime is decreased.
Similarly, merging is always beneficial if there is only one call to a procedure or if only one
call is ever executed.

Figure 5(b) shows a procedure called from two places in a loop. One call is executed
on every iteration and the other is rarely executed. If both calls are merged, the procedure
body from the frequent call will need to be in the cache every iteration. This corresponds
closely to the need to keep the original procedure in the cache each iteration. The code
from the rare call will demand additional space in the cache, but very infrequently. This
corresponds to a small increase in the loop body size as calculated by the model. Unless
the called procedure is huge, the reduction in the number of call and return instructions
executed will more than compensate for any additional cache misses.

Figure 5(c) shows a loop that contains calls to procedures A and B with B called from
one site and A called from two sites. Merging B is always worthwhile since this merge
reduces the size of the program. Whether A should be merged depends on the sizes of the
procedures relative to the size of the cache. If the loop body will fit in the cache even if
procedure A is duplicated, then clearly A should be merged. If A is large and the cache is
already full, then A should not be merged since each copied instruction will miss on each
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loop iteration.
In Figure 5(d), procedures A and B are called from two sites within a loop. Whether or

not either procedure should be merged depends on the their sizes and the size of the cache.
Since the savings in instructions executed from merging either procedure is approximately
the same, it is usually better to merge the calls to the smaller procedure first. Subsequently,
if there is still space in the cache, the calls to the other procedure should be considered. As
described in Section 6 in more detail, smaller procedures should be considered for merging
before larger procedures called the same number of times.

In Figure 5(e), there are two calls to procedure A nested more deeply than a call to
procedure B. Whether or not A should be merged depends on the sizes of the procedures
and the number of iterations of the inner loop. If procedureB will not fit in the cache ifA is
copied then the additional misses in B must be weighed against the removal of instructions
within the inner loop. This can be calculated using the model from the average number of
iterations of the inner loop, the sizes of A and B, and the size of the cache.

6 Deciding What to Merge

The previous section discussed how the benefit of merging a particular call can be calculated.
This section describes a method for using this knowledge to decide which combination of
calls to merge. The problem is difficult because the decisions for each call interact. Merging
one call affects how much space is left in the cache and how often other calls are executed.
From the knapsack problem, it can be shown that finding the best set of procedures to
merge is at least NP-hard. In addition, merging one procedure causes the calls within the
merged procedure to be copied. Deciding whether these new calls should be merged further
complicates the problem.

Algorithm MergeDecision in Figure 6 shows a greedy algorithm for making the deci-
sions. The calls are decided in decreasing order of the frequency of the call divided by the
average size of the called procedure. In other words, calls are considered in decreasing order
of the expected path length savings versus the amount inlining might increase demand for
the cache. Small frequently called procedures are considered first. Each loop that contains
the call is analyzed to determine the expected change in the number of misses. The change
in misses is then weighted by the miss penalty or cost of each miss and compared with the
expected savings in path length to determine whether merging the call will be beneficial.
If the model recommends merging the call, the representation of the program is modified
to reflect the situation after inlining. If the callee has internal calls that have not been
considered for merging, both the original call and the new copy are placed on the undecided
list. Any calls already decided keep their current status. Finally, the duplication of the
inlined procedure body may create new loops. These loops are analyzed during any future
merge decisions.
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Procedure MergeDecision
begin

while more calls
pick aCall with highest (call frequency/callee size)

savings := aCall.timesCalled * CostOfCall;
cost := additionalMisses * CostPerMiss;

if savings < cost then
Mark aCall to be merged
update data structures

end;
end;

end MergeDecision

Figure 6: Merge Decision Algorithm using Loop Model

7 Evaluation

This section shows that using the loop average size model can increase the benefits of
procedure merging. Again, the set of ten benchmarks described in Table 1 are used as the
basis for the evaluation. For comparison, two simple methods of deciding which procedures
to merge are considered. The first does not use profile information at all, just the sizes of
procedures. With this method, all calls to procedures with sizes less than a threshold are
merged. The second method uses both the size of the callee and the number of times
each call site is executed. Calls are merged when the ratio of the number of calls to the
size of the procedure exceeds a threshold value. This method is similar to that used by
Scheifler [Sch77] except there merging continued until a target code size increase was
reached.

Figure 7 shows the average reduction in execution time from merging across the ten
benchmarks using both the loop average size model and the size and ratio threshold methods
for a range of cache miss penalties. The cache here is direct mapped with the ability to
exclude some instructions from the cache, optimized as described in [McF89], and able to
hold 2048 instructions. Figures 8 and 9 split the performance change into the path length
and miss rate components respectively. The average loop size method uses the miss penalty
to decide which procedures to merge. The threshold methods do not. The best threshold to
use for a particular miss penalty varies. If the penalty is high, then a threshold that merges
fewer calls produces a better result. With the loop average size model, merging is more
successful than either threshold method with any threshold value.

Figure 8 shows that as the miss penalty increases, the loop average size model will
suggest fewer procedures be merged. As Figure 9 shows, this results in progressively fewer
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Figure 7: Merging Savings with Increasing Miss Penalty (S=2048 instr)

misses as misses get more expensive. With the threshold methods, the miss rate and the path
length are independent of the miss penalty. As the miss penalty increases, the improvement
with the threshold methods decreases until the programs are actually substantially slower.
Figure 9 also shows that unmerged code has a lower miss rate than that of any of the merging
decision methods considered here. Of course, the higher miss rate is more than made up
for with fewer instructions executed when merging with the loop average size model.

As Table 2 shows, a ratio threshold of 2 gives about the same amount of merging as the
loop model with a miss penalty of one cycle in terms of the increase in code size. Figure 8
shows that the resulting savings in instructions executed is also close. However, the miss
rate obtained using the cache model is lower. With the procedure size method, a smaller
reduction in the number of instructions executed results in a 55% code size increase. The
resulting miss rate is substantially higher as well. Merging using the loop model resulted in
an increase in code size of only 14%. A small increase is preferable because it minimizes
storage costs and the time required to compile the merged code. Again, the primary
execution time penalty of increased code size is in the instruction cache and as already
shown, the removal of calls more than makes up for this.

Figure 10 compares the loop model improvement to that with a ratio threshold of 2
for a range of cache sizes with a miss penalty of one cycle. The loop model is better
across most of the cache size range. While the overall amount of merging is roughly the
same, the loop model better finds calls that reduce the number of instructions executed
with fewer additional misses. However, for very small caches, the ratio method is slightly
better. When miss rates are very high an implicit assumption in the loop model becomes
invalid. If a procedure is called multiple times within a loop then an optimal cache will
typically keep it in the cache because of its importance. Merging such a procedure results
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Figure 8: Merging Decrease in Pathlength for Increasing Miss Penalty (S=2048 instr)
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size < 400 ratio > 2 loop model
bigfm 1.29 1.08 1.08

ccal 1.59 1.27 1.32
compare 1.38 1.13 1.18

dnf 1.20 1.07 1.03
hopt 2.15 1.14 1.10

macro 1.07 1.07 1.04
pasm 1.50 1.24 1.23

pcomp 1.57 1.07 1.03
simu 1.96 1.27 1.32
upas 1.77 1.04 1.05

average 1.55 1.14 1.14

Table 2: Relative Code Size Increase (S=2048 instr, miss penalty=1 cycle)

in other procedures being forced out of the cache for loops larger than the cache size. This
effect is accounted for in Equation 2. However, if the cache size is very small, even the
procedures kept out of the cache may be executed multiple times per iteration. Merging
such a procedure increases the size of the loop but does not result in any additional misses
since the procedure always misses anyway. Procedure mergers for machines with a very
small caches, should add this effect to the model.

Since the loop model uses profile information, it is sensitive to how close the programs
behave for different inputs. Figure 11 shows how the results match when two different sets
of inputs for each benchmark are used to guide the merger and each benchmark is run with
one of the two inputs. As the figure shows, merging is fairly insensitive to changes in the
profile data. Most of the performance gain remains when the profile information comes
from a different set of inputs. This is not true where one set of inputs exercised a completely
different part of the benchmark than the other. For best results, the profile information for
each program should be collected from several runs that accurately reflect how the program
is used in practice.

8 Conclusion

This paper has shown that the decision of which calls to merge is complicated because
typical programs frequently call large procedures from multiple sites. Thus, if most calls
are to be removed, increased code size and additional instruction cache misses are unavoid-
able. A method of choosing which procedures to merge was given that improves overall
performance considering both program path length and the impact on the instruction cache.
The technique is preferable to other methods because it does not use ad hoc thresholds, it
improves performance across wide ranges of cache sizes and miss penalties, and it produces
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better performance than algorithms that do not model the instruction cache.
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