
F E B R U A R Y 1 9 9 1

WRL
Research Report 91/1

Writing Fast X Servers
for Dumb Color
Frame Buffers

Joel McCormack

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Writing Fast X Servers for
Dumb Color Frame Buffers

Joel McCormack

February 1991

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

Processor speeds are improving faster than memory access speeds. The
current generation of RISC processors can perform many 2-dimensional
graphics operations at or near memory or bus bandwidth speeds, rendering
specialized hardware unnecessary for all but the most demanding applica-
tions. This paper describes the DECStation 3100 and DECStation
500/200CX color frame buffer hardware and several of the graphics al-
gorithms used in the X server implementation. Measured performance num-
bers are presented and compared to memory bandwidth speed, and the most
important contributors to the frame buffer’s performance are summarized.

This report is a preprint of a paper that will appear in the special
X11 issue of Software---Practice and Experience 20(2),

and supersedes WRL Technical Note TN-9.

Copyright  1990 John Wiley and Sons, Ltd. Reprinted with permission.

i

1. Introduction
Color workstations have typically had a screen size of 1024 to 1280 columns by 768 to 1024

rows, 8 bits per pixel, and a processor capable of executing one to three million instructions per
second. Color workstations are traditionally equipped with special-purpose graphics accelerators
in order to achieve reasonable performance.

1The DECstation 3100 supports a 1024x864x8 color display, but uses no special graphics
2hardware. The MIPS R2000 processor paints directly into a simple frame buffer. We originally

hoped to obtain graphics performance equivalent to the VAXStation 3100, which is rated at
about three million instructions per second and has two specialized graphics chips built using old
technology. We ultimately found that the frame buffer offers graphics performance roughly two
to four times better than the chip set. In fact, for many operations the frame buffer offers perfor-
mance comparable to modern graphics accelerators.

The DECstation 5000/200CX builds upon experience with the DECstation 3100. Like its
predecessor, the DECstation 5000’s MIPS R3000 processor also paints directly into the frame
buffer. However, circuitry to exploit ‘‘page-mode’’ access to the video RAMs more than
doubles available write bandwidth.

This paper discusses the video memory system and some useful characteristics of the MIPS
instruction set. Graphics algorithms for painting lines and text and for copying data illustrate
how the server exploits a fast processor, and show the memory bandwidths these algorithms are
capable of using. The most desirable characteristics of an instruction set and memory system are
summarized, and the relative merits of frame buffers and graphics accelerators are discussed.

1DECstation 3100, DECstation 5000, VAX, VAXStation 3100, and TURBOchannel are trademarks of Digital
Equipment Corporation.

2MIPS, R2000, and R3000 are trademarks of MIPS Computer Company. The ‘‘MIPS instruction set’’ refers
specifically to the R2000 and R3000 CPU chips, and unless otherwise noted refers to the R6000 chip set and future
MIPS CPUs as well.

1

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

2. Frame Buffer Hardware
The DECstation 3100 color frame buffer is arranged as 1024 scanlines of 1024 8-bit pixels.

The display hardware uses each pixel as an index into a 256-entry colormap, which delivers 24
bits of RGB data to the digital-to-analog video converter. The smallest address in a scanline (last
ten bits are all 0) displays at the leftmost edge of the screen; the largest address in a scanline (last
ten bits are all 1) displays at the rightmost edge of the screen.

Only the first 864 scanlines are actually displayed. In systems with hardware graphics ac-
celerators, the extra 160 kilobytes would be used as an off-screen cache for font information or
pixmaps. We don’t bother using this memory: it offers no performance advantage over main
memory, and would add to the complexity of memory management.

Main memory and video memory share the same internal bus and timing logic. The processor
can read or write any contiguous group of one to four pixels in a word with one memory access.
Measured memory access times are 400 nanoseconds for a write, 410 nanoseconds for a read,
and 760 nanoseconds for a read followed by a write. Sustained write bandwidth is 10.0
megabytes per second; sustained copy bandwidth is 5.3 megabytes per second.

The frame buffer has an 8-bit planemask, which is replicated 4 times across the word. A 1 in
the planemask allows the corresponding destination bit to be overwritten, a 0 in the planemask
leaves the destination bit unchanged. This allows the server to avoid a read/modify/write cycle
when a graphics request specifies a planemask with one or more 0 bits.

The DECstation 5000/200CX frame buffer memory is arranged identically to the DECstation
3100. Video memory is not tightly coupled to the processor, but is accessed across the TUR-
BOchannel I/O bus. Most writes are fast, as the frame buffer includes ‘‘page-mode’’ logic. The
first write to a VRAM page uses a normal memory cycle, measured at 360 nanoseconds. Sub-
sequent writes to the same page use a fast page-mode cycle, measured at 180 nanoseconds. (One
VRAM page spans two scanlines of the frame buffer.) Sustained write bandwidth is 22
megabytes per second. A lack of board real-estate prohibited the frame buffer from performing
page-mode writes in the 120 nanosecond minimum transaction time supported by the bus.

Measured read times are 610 nanoseconds for the first access to a VRAM page, and 440
nanoseconds for page-mode reads. The slow read times result in part from the the TURBOchan-
nel bus design, which has a minimum read cycle of 160 nanoseconds, and in part from the R3000
chip design, which optimizes multiple-word reads from the cache over single-word reads. Sus-
tained copy bandwidth is 6.0 megabytes per second, just a little better than the DECstation 3100.

The page-mode logic uses too much board space to also include planemask logic. Software
techniques described below lessen the need for a hardware planemask, and so trading the
planemask for page-mode memory access improves the performance of most applications. There
are a small class of painting operations, however, that execute more slowly on the DECstation
5000/200CX than on the older DECstation 3100.

2

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

3. CPU Hardware
The DECstation 3100 uses a MIPS Computer System R2000 processor [6] with a 60

nanosecond clock. This processor is generally rated at 12-14 times the speed of a VAX 11/780
on integer operations. The DECstation 5000 uses an R3000 processor with a 40 nanosecond
clock; this processor is about 20 times the speed of a VAX 11/780.

On both machine, the processor has a 64 kilobyte direct-mapped instruction cache, and a 64
kilobyte write-through direct-mapped data cache. We assume that small amounts of code and
small data tables are cached if they have been accessed recently. Information from the data
cache is not available to the instruction immediately following a load, but the MIPS instruction
scheduler usually fills this load-delay slot with useful work.

On the DECstation 3100, writes to both cached and uncached memory go through a 4-word
deep write buffer. The buffer is useful for unrolling loops: the processor executes several store
instructions, then performs loop overhead ‘‘for free’’ while the write buffer drains to memory.
The write buffer also coalesces sequential writes to contiguous bytes, but the algorithms
described below usually write contiguous bytes in one memory access anyway.

The DECstation 5000 has a 6-word deep write buffer that does not coalesce bytes. Since
coalescing rarely helps the X server, and benchmarks showed that it wouldn’t help normal ap-
plications much either, we got something useful instead: two extra words of write buffer.

The MIPS chips can be configured for ‘‘big-endian’’ or ‘‘little-endian’’ byte order. For com-
patibility with the VAX architecture, all DECstations are little-endian: byte 0 of a word is the
least significant 8 bits, byte 3 of a word is the most significant 8 bits. All algorithms described
are little-endian, but would work nearly as well on a big-endian CPU with minor modifications.

4. Addressing the Frame Buffer
In theory, the MIPS memory addressing architecture offers four possibilities for accessing the

frame buffer: addresses can be physical or virtual, and the referenced data can be cached or un-
cached.

In reality, physical addressing is available only in the protected kernel mode; the processor
traps a user program attempting to use a physical address. The X server can use physical ad-
dresses if the server is incorporated into the operating system kernel, but this makes it hard to
debug and update the server, and reduces the reliability of the kernel. (A previous attempt to put
the X10 server into the kernel by another group made these facts painfully obvious.) As a result,
the server runs in user mode, and uses virtual addresses to access the frame buffer; this causes
some performance degradation that is discussed later.

We don’t cache accesses to frame buffer memory for several reasons. First, the displayed
portion of the screen is 864 kilobytes, but the data cache is only 64 kilobytes. Painting the
contents of even a small window would saturate the cache with screen data, pushing aside large
amounts of useful data already in the cache. Second, nearly all accesses to the color frame buffer
are write instructions. Finally, we measured performance of cached and uncached access to the
monochrome frame buffer, which has 108 kilobytes of screen memory mapped onto 32 kilobytes
of the data cache. Unlike the color code, monochrome painting code often performs several

3

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

read/modify/write cycles on the same word. Even with these advantages, benchmarks showed
that caching improved monochrome painting at most 10%, and often degraded performance.
The results were so disappointing we didn’t bother to measure cached performance for the color
server.

5. Useful MIPS Instructions
The MIPS architecture has several instructions, particularly loads and stores for data smaller

than a 32-bit word, that are not found in all RISC architectures. This section describes the
semantics of these instructions; later sections show how the server uses them to avoid various
read/modify/write idioms, and thus increase performance.

This section describes only the store instructions; there are corresponding load instructions in
each case. Also note that all load and store instructions contain a 16-bit signed byte offset,
which makes unrolled loops quite efficient. The server uses a small constant offset for each
unrolled source and destination reference, then at the end of the loop increments both pointers by
the total number of bytes processed.

Store Byte (sb) stores the least significant byte of a register into the specified destination.
Store Halfword (sh) stores the least significant two bytes of a register into the specified
destination, which must be halfword-aligned (the lowest bit of the address must be 0). Store
Word (sw) stores all four bytes into the specified destination, which must be word-aligned (the
low two bits of the address must be 00).

Store Word Right (swr) writes the least significant bytes of the source register to the
most significant bytes of the destination word. It writes one to four bytes, depending upon the
alignment of the destination address. Conceptually, it starts at the lowest byte in the source
register, copying byte by byte until it reaches the highest byte of the destination word. If the
destination address is word-aligned, swr writes all four bytes, and acts just like a Store Word
instruction. If the destination address points to the highest byte of a word (the low two bits of
the address are 11), swr writes the lowest byte of the register into the highest byte of the word.
Figure 1 shows an example of Store Word Right in action.

swr src, 0(pdst)

source register

Before

After

33 22 11 00

DD CC BB AA

destination pointer

22 11 00 AA

aligned memory word

aligned memory word

Figure 1: The Store Word Right instruction

4

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

Store Word Left (swl) writes the most significant bytes of the source register to the
least significant bytes of the destination word. It writes one to four bytes, conceptually starting
at the highest byte in the source register, copying byte by byte until it reaches the lowest byte of
the destination word. If the destination address points to the highest byte of a word, swl writes
all four bytes of the register to the destination word. If the destination address points to the
lowest byte of a word, swr writes the highest byte of the register to the lowest byte of the word.
Figure 2 shows an example of Store Word Left in action.

swl src, 0(pdst)

source register

Before

After

33 22 11 00

DD CC BB AA

destination pointer

DD CC 33 22

aligned memory word

aligned memory word

Figure 2: The Store Word Left instruction

While it is easy to use type declarations in the C language to gain access to the byte and
halfword instructions, there is no direct way to use the Load/Store Word Left/Right in-
structions from C. We defined four assembly-language procedures that execute two instructions:
one Load/Store Word Left/Right instruction, and one return instruction. Though pro-
cedure overhead is apparently minimal, using a procedure call substantially reduces the effec-
tiveness of the register allocator. The allocator doesn’t know how innocuous the assembly pro-
cedure actually is, and so makes inefficient use of the caller-saved registers. Still, in most cases
this is the fastest alternative available. The few painting routines written in assembly language
use swl and swr directly with no negative impact on the human register allocator.

6. X Graphics Functions and the Planemask
X imaging can be broken into three independent problems: computing the shape of the image

to paint, computing the source pixels to paint, and finally combining the source pixels with the
existing destination pixels. Conceptually, the shape of an image is broken down into a list of
‘‘spans,’’ where each span is a contiguous sequence of pixels on a scanline. Each span is con-
verted into a (possibly non-contiguous) sequence of source pixels according to the specified fill
style, and the source pixels are then combined with the destination pixels according to the
specified graphics function (‘‘raster op’’). In reality, many algorithms fill each span im-
mediately, and may also precompute information common to all spans in an object. This section
describes how to deal with graphics functions; the two subsequent sections describe how to paint
the various fill styles efficiently and how to handle problems specific to common X drawing
requests.

5

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

The X protocol allows a source pixel and a destination pixel to be combined using any of the
16 possible 2-operand Boolean functions. If a pixel contains more than one bit, the same
graphics function applies to all bits (or ‘‘planes’’) of the pixel. Table 1 shows the name and
definition of each graphics function.

Function Definition

Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src

AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst

Nor NOT (src OR dst)
Equiv NOT (src XOR dst)
Invert NOT dst
OrReverse src OR (NOT dst)

CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand NOT (src AND dst)
Set 1

Table 1: X11 graphics functions

The protocol also supports a planemask: wherever the planemask has a 1 bit, the result of the
graphics function is written to the corresponding destination bit; wherever the planemask has a 0
bit, the corresponding destination bit is left unmodified. If FUNC represents one of the 16
Boolean functions, planemask semantics can be expressed as:

((src FUNC dst) AND planemask) OR (dst AND (NOT planemask))

Note that if every bit in the planemask is 1, this reduces to the much simpler equation:
src FUNC dst

While the DECstation 3100 frame buffer has a hardware planemask, the DECstation 5000/200
frame buffer does not. Neither frame buffer has logic to implement the 16 graphics functions.
And main memory, where off-screen images (pixmaps) reside, has no special logic for graphics
functions or for the planemask. Therefore, we needed an efficient software implementation of
the X11 graphics functions and the planemask.

A simple-minded approach might implement each graphics painting routine 32 times: once for
each of the 16 graphics functions with complete planemask semantics, and once for each with
the simplified all-1 planemask semantics. This obviously uses a lot of code memory.

Another technique is dynamic code generation, in which the inner loops of painting algorithms
are generated at run-time. While this has worked well in simple graphics systems, X11 allows
too many combinations of shapes, fill styles, and graphics functions. The color server has nearly
three hundred calls to the low-level painting macros, many of them in the depths of complex
rendering algorithms. Dynamically generating code for all these cases is impracticable.

6

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

We instead reduced the number of different graphics functions by deriving more general func-
tions. We kept the following goals in mind:

• Make the most commonly used functions (especially Copy) run fast.

• Avoid reading the destination pixels for the functions Copy, Clear, Set, and
CopyInverted.

• Incorporate planemask semantics into the derived functions when possible, rather
than using the separate planemask equation above.

• Exploit the fact that most painting uses a known source value---the foreground or
background pixel.

Just to get the DECstation 3100 server running, we initially compiled each painting routine
three times: once for Copy, once for Xor, and once for everything else. Copy and Xor were
implemented as defined, while the remaining 14 functions used a switch statement to branch
to the appropriate code each time the routine needed to paint. This scheme had several draw-
backs: it didn’t incorporate planemask semantics, any request that used a function other than the
Copy or Xor painted quite slowly, and the code files generated using the switch statement
were four to eight times large than files for the Copy and Xor cases.

Our next release used parameterized functions to avoid the deadly switch statements. The
16 functions were reduced to four functions for filling operations (in which a known foreground
and background are painted), and six functions for CopyArea, PutImage, and tiling (in which
the source pixels are fetched from some area of memory, so it is hard to preprocess them into a
useful form). The fill functions required from 0 to 7 logical operations; the CopyArea family
of functions required from 0 to 8 logical operations. Though we compiled each source file more
times than in our first scheme, the total code size was smaller, and painting with any of the 14
‘‘other’’ functions was substantially faster.

I told Keith Packard at MIT about our results, and he immediately attacked the problem from
the other end. Our derived functions fell into three general forms and showed a distinct lineage
from the original X11 functions. Keith knew that reduction to three functions was possible, and
so tried to find a single logic equation to express all 16 functions. His first generic equation for
fill operators was:

((dst XOR xorbits) AND andbits) OR orbits

where the parameters xorbits, andbits, and orbits were derived from the known source
pixel. He soon reduced this to:

(dst AND andbits) XOR xorbits

Since one general equation can implement all 16 functions, each plane in the pixel can have a
different function applied to it by the appropriate selection of andbits and xorbits. Forcing
the NoOp function (andbits = 1, xorbits = 0) for each plane in which the planemask con-
tains a 0 bit automatically implements planemask semantics with no additional logic operations.

The general function can be split into more specific functions in order to avoid reading the
destination when it isn’t used, and to avoid logical operations that accomplish nothing. We use
the three derived fill functions DFcopy, DFxor, and DFgeneral. Table 2 shows how
andbits and xorbits are derived from the known source pixel (the specified foreground or

7

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

background), and which specific derived function is actually used. To add planemask semantics,
we force a NoOp in planes with a 0 by computing

andbits = andbits OR (NOT planemask)
xorbits = xorbits AND planemask

X11 Function Fill Function andbits xorbits

Clear DFcopy 0 0
And DFgeneral src 0
AndReverse DFgeneral src src
Copy DFcopy 0 src

AndInverted DFgeneral ~src 0
NoOp DFxor 1 0
Xor DFxor 1 src
Or DFgeneral ~src src

Nor DFgeneral ~src ~src
Equiv DFxor 1 ~src
Invert DFxor 1 1
OrReverse DFgeneral ~src 1

CopyInverted DFcopy 0 ~src
OrInverted DFgeneral src ~src
Nand DFgeneral src 1
Set DFcopy 0 1

Table 2: Reduced graphics functions for fill painting request

Table 3 shows the definitions of the specific fill functions, which are all of the form
Function(dst, andbits, xorbits)

Fill Function Definition

DFcopy xorbits

DFxor dst XOR xorbits

DFgeneral (dst AND andbits) XOR xorbits

Table 3: Definitions of the three fill functions

Note that DFcopy cannot implement planemask semantics if any bit in the planemask is 0. In
this case, we fall back to the DFgeneral code. (DFcopy and DFxor are identical to our
previous derived functions, but Keith’s DFgeneral function is far simpler than our previous
DFandpix and DFcopypix functions.)

CopyArea, PutImage, and tiling are fundamentally different from all other X11 painting
operations. In general, the values being copied are not known, and so we cannot preprocess the
source the way that the fill functions do. The general CopyArea equation is a recursive expan-
sion of the fill equation:

(dst AND ((src AND andbits1) XOR xorbits1))
XOR ((src AND andbits2) XOR xorbits2)

8

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

X11 Function Copy Function andbits1 xorbits1 andbits2 xorbits2

Clear DCgeneral 0 0 0 0
And DCgeneral 1 0 0 0
AndReverse DCgeneral 1 0 1 0
Copy DCcopy 0 0 1 0

AndInverted DCgeneral 1 1 0 0
NoOp DCxor 0 1 0 0
Xor DCxor 0 1 1 0
Or DCgeneral 1 1 1 0

Nor DCgeneral 1 1 1 1
Equiv DCxor 0 1 1 1
Invert DCxor 0 1 0 1
OrReversed DCgeneral 1 1 0 1

CopyInverted DCgeneral 0 0 1 1
OrInverted DCgeneral 1 0 1 1
Nand DCgeneral 1 0 0 1
Set DCgeneral 0 0 0 1

Table 4: Reduced graphics functions for CopyArea and friends

Again, the general function can be split into more specific derived functions for improved
efficiency. Table 4 shows the values for the four parameters, and which specific function is
actually used. To add planemask semantics, we force a NoOp in planes with a 0 by computing

andbits1 = andbits1 AND planemask
xorbits1 = xorbits1 OR (NOT planemask)
andbits2 = andbits2 AND planemask
xorbits2 = xorbits2 AND planemask

Table 5 shows the definitions of the copy-related specific functions, which are all of the form
Function(src, dst, andbits1, xorbits1, andbit2, xorbits2)

Copy Function Definition

DCcopy src

DCcopySPM (dst AND xorbits1) XOR (src AND andbits2)

DCxor dst XOR ((src AND andbits2) XOR xorbits2)

DCgeneral (dst AND ((src AND andbits1) XOR xorbits1))
XOR ((src AND andbits2) XOR xorbits2)

Table 5: Definitions of the four CopyArea functions

Note that DCcopy cannot implement planemask semantics if any bit in the planemask is 0. In
this case, we use a special routine DCcopySPM.

Whenever the foreground pixel, background pixel, planemask, or graphics functions changes,
the server computes several parameters for the derived fill and copy functions. The server uses
the graphics function and the planemask to compute andbits1, xorbits1, andbits2, and

9

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

xorbits2 for use in the generalized copy functions. The server then derives fgandbits and
fgxorbits from the foreground pixel for use in the generalized fill functions, and likewise
derives bgandbits and bgxorbits from the background pixel. These values are replicated
four times to 32 bits in width, so that the server can paint the interior of spans four pixels at a
time.

Each source file that uses the generalized fill function is compiled three times, and each source
that uses the generalized copy function is compiled four times. The source code always ‘‘in-
vokes’’ the generalized fill or copy function using C macros; the Makefile passes in the ap-
propriate actual derived graphics function. If a derived function doesn’t use all of its parameters,
then those unused parameters are never referenced by the code emitted by the C preprocessor.
Thus, when a painting routine is compiled for functions like DFcopy the routine never reads the
destination pixels or andbits.

7. X Imaging Modes
There are four fill styles in X: solid, opaque stipple, transparent stipple, and tile. This section

describes these fill styles and techniques to paint them efficiently. All fill styles are described in
terms of a single span, but remember that a shape really consists of an arbitrary number of spans.
The word ‘‘merged’’ is used as shorthand for ‘‘the graphics function is applied to the source
pixel and the destination pixel, and the result is written into the destination pixel using
planemask semantics.’’

7.1. Solid fill
A solid fill style is the simplest possible. The server merges the foreground pixel into the

destination pixels using the specified graphics function. Figure 3 shows the first three pixels of a
solid fill.

Solid Fill

foreground register

Before

After

fg fg fg fg

DD CC BB AA

destination pointer

fg fg fg AA

aligned memory word

aligned memory word

Figure 3: Solid fill style

The server uses 32-bit writes (and reads, if the graphics function requires them) to fill the
interior of the span at maximum bandwidth. However, spans are aligned to pixel boundaries, not
word boundaries, so the server must treat the left and right edge of a span specially. These

10

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

‘‘ragged’’ edges may not fill an entire word: at the left edge of a span the server might have to
paint one to three bytes into the highest bytes of a word; at the right edge it might have to paint
one to three bytes into the lowest bytes of a word.

On most architectures, the server could paint the ragged left edge in one of two ways. The
server could use the bottom two bits of the destination address to perform shifting and masking
operations, or to branch into four separate pieces of code. At the right edge, the server could use
the same technique, but use the bottom two bits of the number of pixels still left to paint.

On the MIPS architecture, the partial word instructions Load Word Left, Load Word
Right, Store Word Left, and Store Word Right---which were originally intended
for accessing unaligned 32-bit words---prove unexpectedly useful for painting ragged edges.

To paint the ragged left edge, the server reads the destination using lwr (if necessary), com-
bines this data with fgandbits and fgxorbits, writes the result back out using swr, then
increments the destination pointer and decrements the width count by the number of bytes writ-
ten. Since lwr and swr read and write one to four bytes, the server uses this idiom even when a
pointer is already word-aligned. (If a span is so short that it is completely contained within a
single word, then the server usually just uses byte accesses to paint the span.)

Painting the ragged bytes at the right edge of a span is similar. The server exits the word
painting loop when there are still one to four bytes remaining to paint. The server then uses lwl
(if necessary) and swl with the address of the last byte to be painted. Again, since these instruc-
tions access one to four bytes, the server unconditionally uses them at the right edge of a span.

Figure 4 shows a prototype of the solid fill painting code. This fragment is used only if the
span is wide enough to touch two words in the frame buffer.

Pixel8 *pdst;
int width, raggedLeftBytes;
Pixel32 fgandbits, fgxorbits;

/* Paint ragged left edge */
CFBFILLLEFT(pdst, fgandbits, fgxorbits);
raggedLeftBytes = 4 - (pdst & 3);
width -= raggedLeftBytes;
pdst += raggedLeftBytes;

/* Paint full words until 1-4 pixels left */
while (width > 4) do {

CFBFILL((Pixel32 *)pdst, fgandbits, fgxorbits);
width -= 4;
pdst += 4;

}

/* Paint ragged right edge */
CFBFILLRIGHT(pdst+width-1, fgandbits, fgxorbits);

Figure 4: Solid fill painting code

11

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

7.2. Opaque stipple
Opaque stipple maps a bitmap into pixels. For each 0 in the bitmap the server merges the

background pixel into the corresponding destination pixel; for each 1 it merges the foreground
pixel into the destination. Figure 5 shows the first three pixels of an opaque stipple fill.

Opaque stipple

stipple bits

Before

After

DD CC BB AA

destination pointer

fg bg fg AA

. . . 1 0 1

aligned memory word

aligned memory word

Figure 5: Opaque stipple fill style

As with solid fill, the server paints the interior of a span four pixels at a time. It maps each
four bits of the stipple into the two 32-bit parameters andbits and xorbits using a 16-entry
table of (andbits, xorbits) pairs. These pairs are constructed from fgandbits,
fgxorbits, bgandbits, and bgxorbits, as shown in table 6; ‘‘bga’’ stands for 8 bits of
bgandbits, etc. Each 32-bit entry is the concatenation of four pixels from the appropriate
background or foreground bits.

Glyph bits andbits xorbits
0000 bga bga bga bga bgx bgx bgx bgx
0001 bga bga bga fga bgx bgx bgx fgx
0010 bga bga fga bga bgx bgx fgx bgx
.

1110 fga fga fga bga fgx fgx fgx bgx
1111 fga fga fga fga fgx fgx fgx fgx

Table 6: Foreground/background mapping table for opaque stipple

When the server has at least 32 bits of stipple data to paint, it unrolls the loop 8 times. This
brings painting time down to about 5.5 instructions for four pixels with the DFCopy graphics
function, which includes loop overhead but not the instructions that may be need to fetch the
stipple bits. (Remember that graphics functions like DFCopy don’t use andbits and only
fetch xorbits from the table.)

When applications fill rectangles and other objects using stipples, they often use patterns that
are of nice sizes, for which the server has special painting routines. In particular, the server
paints stipples that are 32 bits wide extremely efficiently. (The server replicates stipples that are
2, 4, 8, and 16 bits wide in order to use the 32-bit painting code.) When the server paints a span,
it rotates the stipple bits appropriately at the beginning of the span, then reuses these bits every
32 pixels.

12

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

With this optimization, the DECstation 3100 saturates memory bandwidth but the DECstation
5000 does not. If a span is wide enough, it is faster to look up andbits and xorbits once
for each four pixels, then skip across the span painting this data every 32 bytes. On the DECsta-
tion 5000, the breakover point occurs when the span is long enough to paint each group of four
pixels at least three times.

At the ragged left edge, the server uses Store Word Right. At the right edge, it shifts
data to the most significant bytes of the source register before using Store Word Left.

7.3. Transparent stipple
Transparent stipple maps a bitmap into pixels. For each 0 in the bitmap the server leaves the

corresponding destination pixel unmodified; for each 1 it merges the foreground pixel into the
corresponding destination pixel. Figure 6 shows the first three pixels of a transparent stipple fill.

Transparent stipple

stipple bits

Before

After

DD CC BB AA

destination pointer

fg CC fg AA

. . . 1 0 1

aligned memory word

aligned memory word

Figure 6: Transparent stipple fill style

Again, we’ll focus on ways to paint the middle words of a span. The traditional implemen-
tation of transparent stipple reads the destination word, masks out the pixels to be overwritten,
merges in the new pixels, and finally writes the modified word back out to memory. Figure 7
shows this process graphically, as well as the C code to implement it.

The main problem with this technique is performance. On the DECstation 3100, the best pos-
sible unrolled code takes nearly 16 cycles for each 4 stipple bits. The numbers are even worse
on the DECstation 5000 due to the relatively poor read times. This technique must also be
adapted to deal with graphics functions that depend upon the existing destination pixels, rather
than merely overwrite them. The server cannot simply zero out the destination pixels and merge
in the foreground pixels, but must perform equivalent operations appropriate to the graphics
function. For example, Xor shouldn’t mask anything from the destination, while Invert must
invert the appropriate destination bits and ignore the foreground completely.

Instead, the four graphics functions that overwrite the destination pixel avoid reads entirely.
By using the store instructions judiciously, the server can write almost any group of one to four
contiguous bytes of a word in one memory cycle, as shown in figure 8. (The fg register has the
foreground pixel in all four bytes.)

13

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

. . . 1 0 0 1

00

00 FF FF 00

Glyph bits

Foreground

00 00

Destination

00

index = srcbits & 0xf; /* Get 4 bits of stipple */
mask = masktable[index]; /* Get mask */
dst = *pdst & mask; /* Mask destination */
src = foreground & ~mask; /* Mask foreground */
pdst = dst | src; / Merge the two */
srcbits = srcbits >> 4; /* Next 4 stipple bits */

Figure 7: Transparent stipple implemented with read/modify/write

There are a total of 21 write instructions for the 16 patterns represented by four bits. If each
case is equally likely, each four bits require an average of 1 5/16 writes. This is 8.75 cycles on
the DECstation 3100, and 5.9 cycles on the DECstation 5000/200 (assuming page-mode writes).
Since most stipples have contiguous groups of bits more often than random chance, and painting
stops as soon as all remaining bits in a word are zero, we expect fewer writes on average. But
even the worst case of two writes for each four bits is better than the read/modify/write strategy.

How quickly can the processor examine four bits of the stipple and branch to the right se-
quence of writes? The MIPS C compiler is quite good overall, but falls apart in this case. The C
front end generates excessive code to dispatch a switch. The instruction scheduler does not
move code up through the case branches in order to fill load-delay and jump-delay slots, nor
does it copy tiny (one or two instruction) basic blocks up to blocks that unconditionally jump to
them. The resulting code has tests that needn’t be executed, unfilled delay slots, and a high
branching frequency. The compiler generates 16 instructions for branch and loop overhead; ad-
ding in our average of 1 5/16 write instructions, this totals 17 5/16 instructions.

The color server uses assembly code in a few select places to implement the above technique.
Coding in assembler allows optimizations that even a very good compiler and code scheduler
would probably miss. In the assembly language version, all 16 case branches are exactly 8 in-
structions long. Rather than using a case branch table, the assembly code computes an offset
from a known instruction, then branches directly to the computed location. Each case paints the
appropriate bytes, then executes loop termination code for all loops surrounding the painting
code. And in the assembly version, all delay slots are filled with useful work.

14

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

sb fg, 0(pdst)

sb 1(pdst)

sh fg, 0(pdst)

sb fg, 2(pdst)

swl fg, 2(pdst)

sb fg, 3(pdst)

sh fg, 2(pdst)

swr fg, 1(pdst)

sw fg, 0(pdst)

(no writes)

sb fg, 0(pdst); sb fg, 2(pdst)

sb fg, 1(pdst); sb fg, 2(pdst)

 3 2 1 0

sb fg, 0(pdst); sb fg, 3(pdst)

sb fg, 1(pdst); sb fg, 3(pdst)

sh fg, 0(pdst); sb fg, 3(pst)

sb fg, 0(pdst); sh fg, 2(pdst)

Bytes writtenWrites required Write instructions

0

1

1

1

2

1

2

2

2

1

1

2

2

1

1

1

Figure 8: Transparent stipple using only write instructions

The assembly code paints four stipple bits, including loop overhead, in an average of 8 5/16
cycles. This is slightly below the (pessimistic) average memory write time of 8.75 cycles on the
DECstation 3100, and somewhat larger than the write time of 5.9 cycles on the DECstation
5000. In both cases assembly language nearly doubles the painting rate for transparent stipples.

As with opaque stipples, the server uses special routines for transparent stipples that are, or
can be replicated to, 32 bits wide. Unlike opaque stipples, transparent stipple code to paint four
pixels is quite large, so the server doesn’t unroll the loop that cycles through all 32 bits. But the
server does invert the loop logic for spans wider than 96 pixels: for each four bits of the stipple,
the server paints the appropriate data at intervals of 32 bytes.

15

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

The server exploits the ‘‘no-op’’ behavior of 0 at the left and right edges of a span. At the left
edge of a span, the server always aligns the destination pointer to a word boundary by setting the
bottom two bits to 00. It compensates for this in the stipple by logically shifting the stipple bits
left, using the bottom two bits of the destination pointer to determine the length of the shift. If
the bottom bits are 00, the server shifts the stipple left 0 bits; if the bottom bits are 11, the server
shifts the stipple left 3 bits.

At the right edge, the server masks off any stipple bits past the end of the span. These adjust-
ments to the stipple data effectively make all transparent stipple spans word-aligned at both the
left and right edge.

The server also exploits the no-op property of 0 to stop painting a 32-pixel segment of a span
when the remaining stipple bits are 0.

If the server is painting a transparent stipple with a graphics function that depends upon the
destination pixels, then a 16-way branch doesn’t work well unless the stipple pattern is very
sparse. The fast write instructions become slow read/modify/write sequences. Fortunately, the
generalized graphics functions adapt well to this situation. The server uses a 16-entry table
similar to that constructed for opaque stipples, but instead of using entries that paint the back-
ground pixel where the stipple is 0, the server uses entries that implements NoOp (andbits all
1, xorbits all 0). The resulting code looks much like opaque stipple code, but the server still
uses the no-op properties of 0 for alignment and for loop termination.

7.4. Tile
The tile fill style copies pixels from a tile to the destination. Source and destination can be in

any alignment with respect to one another. Figure 9 shows the first two pixels of a tile fill.

Pixel Copy

source pointer

Before

After

33 22 11 00

DD CC BB AA

destination pointer

22 11 BB AA

aligned memory word

aligned memory word

aligned memory word

Figure 9: Tile fill style

Again, the server fills the interior of the span four pixels at a time. This is easy when the
source and destination are aligned (the bottom two bits of the source and destination address are
identical). The MIPS instruction set should make the misaligned case easy as well. Ideally, the

16

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

server would use Load Word Left and Load Word Right to read each word of the tile.
Since tiles are always stored in main memory, which is cached, this adds a single cycle per word
over the aligned case. Unfortunately, it is impossible to gain direct access to these instructions
from C, so the server uses the slower CopyArea techniques described later.

The server optimizes tiles that are 32 bits in width. This is only four pixels wide, but this is
often sufficient, as each pixel may be any color. For example, the Display PostScript

3System [7, 1] uses a tile four pixels wide by six pixels high for color half-toning. As with
stipples, the server rotates the tile bits appropriately. Since the generalized copy functions are
more complicated than the fill functions, the server also preprocesses the 32 bits of pixel data
into the corresponding andbits and xorbits, then uses a fill function.

8. X Graphics Requests
The X protocol contains several types of drawing requests. This paper discusses a handful of

them to illustrate how the techniques for various fill styles can be modified to better suit par-
ticular painting operations. PolyText and ImageText show how to modify transparent and
opaque stipple painting for bitmaps that are narrow and non-repeating. CopyArea shows tech-
niques for pixel copies where the source may not reside in cached memory. Finally, the section
on line drawing shows how published algorithms are often expressed in a form that is non-
optimal, and how these algorithms can be rewritten into more efficient forms using simple math-
ematical transformations.

All performance numbers were gathered by running the x11perf server evaluation program,
4with the server and x11perf running on the same machine and communicating via UNIX

sockets. The x11perf program measures elapsed time for the server to execute various
graphics and window management requests; we used it extensively in order to time and tune our
code.

8.1. PolyText
The PolyText request paints a string of characters onto the screen. The server first looks up

the font-specific glyph (bitmap picture) for each character. The server then paints one glyph at a
time using transparent stipple semantics: it paints the foreground pixel where there is a cor-
responding 1 in the glyph, and leaves the destination unmodified where there is a 0 in the glyph.
Figure 10 shows how the character code for ‘‘Z’’ is painted.

PolyText is most often used by WYSIWYG editors, which allow the user to mix fonts of
different heights on the same line. These editors paint a line of characters by painting a back-
ground rectangle as high as the tallest font in the line, then stencilling characters onto the back-
ground with PolyText.

3Display PostScript System is a trademark of Adobe Systems, Inc.

4UNIX is a trademark of AT&T Bell Laboratories.

17

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

 1 1 1 1

 0 0 1 0

 0 1 0 0

 1 1 1 1

‘‘Z’’

Foreground

Existing pixels

Character Glyph bitmap Screen

Figure 10: PolyText paints a ‘‘Z’’

Using the techniques described above for transparent stipple, the C implementation of
5PolyText paints the variable-pitch font Times-Roman (10-point, 75 dots per inch) at 31,000

characters per second on the DECstation 3100, and 57,000 characters per second on the DECsta-
tion 5000. It paints the fixed width and height font 6x13 at 38,000 characters per second on the
DECstation 3100, and 46,000 characters per second on the DECstation 5000.

These are respectable numbers, but don’t approach what is possible. Since glyphs are quite
small, the compiler spends a relatively large amount of time fetching the glyph bits. On the
DECstation 5000 the server crosses video RAM pages frequently, so many of the writes can’t
use a short page-mode cycle. And as noted before, the compiler generates poor code for the case
branching.

The color server uses assembly code to implement the above algorithm. The assembly code
paints Times-Roman (10-point, 75 dpi) at 64,000 characters per second on the DECstation 3100,
and 91,000 characters per second on the DECstation 5000. With one more improvement
described in the section below, the assembly code paints the 6x13 font at 69,000 characters per
second on the DECstation 3100, and 102,000 characters per second on the DECstation 5000.

8.2. ImageText
The ImageText request is similar to PolyText, but paints each glyph using opaque stipple

semantics. Since different glyphs in the font may have different heights and widths---the charac-
ter ‘‘:’’ might map to a 2x7 glyph, while the character ‘‘H’’ might map to a 5x9 glyph---each
glyph is conceptually extended up and down with 0 bits to the overall font height. The space
between glyphs is also conceptually filled with 0 bits.

ImageText is intended mainly for terminal emulators, which use ‘‘fixed-metric’’ fonts.
Every glyph in such a font has the same width and height (for example, every glyph in 6x13 is 6

5Times-Roman is a trademark of Linotype.

18

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

bits wide by 13 bits high). Some text windows that allow only one (possibly variable-pitch) font
also use ImageText, since it automatically extends all glyphs in the font to the same height.

The easiest way to implement ImageText is to clear a background rectangle, then use the
PolyText code to paint in the foreground pixels. This simple technique works surprisingly
well, and the color server paints all variable-pitch fonts this way. Trying to paint background
and foreground simultaneously in these fonts is hard: each glyph must be extended up and down,
the space between glyphs must be filled in, and in some fonts information from two adjacent
glyphs can overlap (as with an overstrike character). Rather than deal with these complications,
we ultimately settled for an ImageText rate of 46,000 (DECstation 3100) and 71,000 (DECsta-
tion 5000) characters per second for the Times-Roman font (10-point, 75 dpi).

The server painted the 6x13 font at 35,000 characters per second using this technique on the
DECstation 3100. We thought we could get better performance using the opaque stipple paint-
ing techniques. Since fixed-metric fonts contain glyphs that are all the same size and never
overlap, it is easy to paint the background and foreground simultaneously.

The results were disappointing. Even when coded in assembly language to get direct access to
swl and swr, the opaque stipple technique improved painting of 6x13 by 3%. The problem lies
in the narrowness of the glyphs. The PolyText technique clears a large rectangle, and deals
with alignment effects only at the left and right edges. It then dabs the foreground onto this area
by painting a few pixels here and there. The ImageText code deals with alignment on every
glyph; averaging over the four possible alignments of a 6-bit wide glyph yields 1.5 writes per
four bits of glyph. And overhead is quite high, as the inner ‘‘loop’’ executes at most once.

Several people had suggested that text painting be done a scanline at a time, rather than glyph
by glyph. That is, the server should paint the entire top scanline of a string, then the next scan-
line, etc. Sketch implementations suggested that this would shuffle overhead around without
improving painting rates, as the write-through cache can’t be used to assemble data efficiently.

However, this technique works well on a smaller scale, using a register to hold one row of
information from a small number of glyphs. The improved ImageText code processed four
glyphs at a time for fixed-metric fonts of width 8 or less. All four glyph rows fit into a single
32-bit word, and assembling the word is easy. This code writes partial words only at the begin-
ning and end of each group of four glyphs, and the painting loop is unrolled. This technique
painted 6x13 ImageText at 60,000 characters per second on the DECstation 3100, or 4.7
megabytes per second. This technique also resulted in the final performance numbers described
for PolyText above.

Keith Packard improved this technique with a slight variation. He had no easy access to the
special MIPS instructions from C, so dealing with the ragged edges at the left and right edge of a
group was more difficult. His code avoids all partial word writes except at the beginning and
end of the text string. This means reading an extra byte of glyph information to assemble each
32-bit word, but his C code is marginally faster than the above assembly code for 6x13; avoiding
the extra write every sixth word pays off. Moral: don’t descend to assembly code until you’ve
exhausted every other possibility.

19

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

We also noted that fixed-metric glyphs often have rows that contain only 0 bits, as each glyph
has been expanded with 0 bits to fit the fixed character size of the font. Even when multiple
glyphs rows are combined, there are still a lot of 0 rows. The server detects these rows and
immediately generates the appropriate number of stores of the background pixel.

Incorporating all these techniques into the assembly code resulted in 71,000 characters per
second on the DECstation 3100, and 110,000 characters per second on the DECstation 5000.
Assembly yields only modest improvement over the corresponding C code, but most of the code
was already there, so we kept it.

The server now uses this technique to paint five glyphs at a time for fixed-metric fonts of
width 4 to 6, three glyphs at a time for fonts of width 9 or 10, and two glyphs at a time for fonts
of width 11 to 16. This technique might profitably be extended to variable-pitch fonts if each
glyph in a font were padded out to the same height. Combining glyphs into a group would be
more difficult, but the ability to paint more bits at a time should more than compensate for the
extra work.

8.3. CopyArea
The CopyArea request copies pixels from one rectangle to another rectangle of the same

size. If the origins of the source and destination rectangles are assumed to be random, they are
aligned (have the same two low-order bits) 1/4 of the time. In reality, many applications scroll
data vertically, so the aligned case occurs much more frequently.

It would seem an easy matter to optimize the scrolling case, but experience proved otherwise.
The server does some extra work at the left and right edges, but copies all words in the middle
directly from source to destination, with no data massaging necessary. The hardware designers
claimed that turning around the memory controller chip from read to write mode took two
cycles; in order to reduce this cost, the server read in four words from the source, then wrote four
words to the destination. This code should have achieved just over 5 megabytes per second, but
we measured only 4.7 megabytes per second.

Some time later, we measured performance of the X11 Release 3 color frame buffer code from
MIT, which scrolled large areas at 4.95 megabytes per second. We examined our code, and
discovered that the instruction scheduler had pessimized our code: it had moved all loop over-
head code before the stores, so that it no longer executed in the write buffer’s shadow. But
rescheduling the code by hand didn’t improve performance.

We examined the MIT code, which copies four words at a time in an unwound loop, but al-
ways writes each word as soon as it reads it. We tried an even simpler loop, which copies a
single word per iteration, and achieved a scrolling rate of 5.3 megabytes per second.

No one has adequately explained this oddity. The fastest memory writing loop takes about
400-410 nanoseconds per word. The fastest memory reading loop is about 10 nanoseconds
slower. The fastest read/write loop takes a mere 760 nanoseconds per word. The moral: 2 + 2
does not always equal 4, and tuning based on measured performance may get better results than
tuning based on theoretical calculations.

20

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

For unaligned source and destination pointers, the tiling technique described earlier would of-
ten be inefficient, even if written in assembly language to get direct access to lwl/lwr. If the
source data resides on the screen, then it is uncached, and the lwl/lwr pair becomes quite
expensive. Instead, the server reads each source word exactly once, and writes each destination
word once, which requires the processor to rotate and merge words. On the MIPS, this operation
takes three instructions: shift one data word left, shift the other data word right, and merge the
shifted words. The server uses logical shifts that bring in 0 bits in order to avoid masking opera-
tions. (Some RISC machines, such as the WRL Titan [9], offer a register extract instruction.
This instruction gets a 32-bit word from any position in the concatenation of two registers, al-
lowing the rotate and merge operation to execute in one cycle.)

Loop overhead plus merging words is slower than the available memory bandwidth, so the
server unrolls the loop eight times. When source and destination are evenly distributed among
all four alignments, this code copies large areas at 4.9 megabytes per second.

On the DECstation 5000, aligned copies switch between reading and writing as infrequently as
possible to take advantage of the faster page-mode accesses. For very wide copies, the server
reads and writes as many as 64 pixels at a time, and achieves a scrolling rate of nearly 6
megabytes per second. Unaligned copies use the same code as the DECstation 3100, and
achieve 5.1 megabytes per second.

8.4. Lines
The X protocol precisely specifies which pixels are affected for a line of width of 1 or greater.

The protocol attaches looser constraints to a line of width 0; servers paint a line approximately
one pixel in width, but are free to use fast software algorithms or existing graphics hardware.
This section deals only with painting 0-width lines.

Bresenham’s line drawing algorithm [4] uses integer arithmetic to keep track of a line’s dis-
tance from the nearest pixel, and paints one pixel in each iteration. For a line with a slope be-
tween 0 and 1, the algorithm always steps right one pixel. If the vertical distance to the line from
this new position is less than 1/2 pixel, the algorithm stays on the same scanline; otherwise, it
steps up one pixel as well.

In the literature, Bresenham code for lines is almost always non-optimal for a software im-
plementation. For example, References [5], [8], and [10] show algorithms akin to the following:

*pdst = fg;
if (e > 0) {

pdst = pdst + scanlineWidth;
e = e + e2;

} else {
e = e + e1;

}
pdst = pdst + 1;

The variable e represents the distance of the pixel from the line. The adjustment e1
represents the incremental distance to add for a horizontal step, while e2 is the incremental dis-
tance to add for a diagonal step.

21

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

The derivation of integer algorithms for lines and conic sections in Reference [10] have a clear
advantage over the other works. The resulting algorithms show how the derivations were ach-
ieved, and keep terms broken into pieces that are easy to rearrange into more efficient forms.

For example, the else part can be removed entirely by unconditionally adding e1 to e, and
compensating for this by using e2’ = e2 - e1. Though not an issue on RISC machines, the
if usually generates a test instruction to set condition codes on CISC machines. This test is
unnecessary if the new value of e is computed immediately before the test. We can move the
computation if we offset e’ = e - e1. The improved algorithm is:

*pdst = fg;
e’ = e’ + e1;
if (e’ > 0) {

e’ = e’ + e2’;
pdst = pdst + scanlineWidth;

}
pdst = pdst + 1;

The color server unrolls the loop surrounding this code four times. Each point averages 5 3/4
instructions for lines with slope less than 1, and 6 3/4 instructions for lines with steeper slopes.

Early benchmarks of line drawing on the DECstation 3100 showed performance at least five
times slower than projected. A program that measures handling of Translation Lookaside Buffer
(TLB) traps showed that the kernel was taking 38 microseconds every time it accessed a page of
frame buffer memory not currently in the TLB. On the R2000 and R3000, the TLB effectively
contains 56 4-kilobyte pages. Each scanline of the color frame buffer is one kilobyte, so a page
spans four scanlines. The entire screen is 216 pages, or almost four times the size of the TLB.
Any line that covered much vertical distance spent most of its time faulting, not painting.

The kernel is capable of handling most TLB faults in 17 instructions, which is a tad longer
than a microsecond. But the kernel had incorrectly set up the virtual memory interface to the
frame buffer, which caused every frame buffer TLB fault to take a slow refill path. Once this
problem was remedied, line drawing sped up about nine times, and many other operations sped
up two to three times. The moral: sometimes 2 + 2 should equal 4, and discovering why things
don’t add up may improve measured performance.

Even with fast TLB filling code, any line with a slope greater than 1 pays a substantial penalty
every four pixels. While it is theoretically possible to paint long lines evenly distributed among
all orientations at 2.5 megabytes per second, TLB filling reduces this rate to 2.3 megabytes per
second.

The trend toward larger page sizes will reduce TLB faulting on frame buffer accesses some-
what, but frame buffers are getting larger at the same time. The best solution is to include a
special TLB entry dedicated to mapping a frame buffer into virtual memory; if this entry points
to a 16 megabyte page, accesses to even a very large frame buffer never cause a TLB fault.

Unconnected lines that are 10 pixels long and evenly distributed among all orientations paint
at 75,000 lines per second, or about 30% of available bandwidth. If lines are connected, the
DECstation 3100 can paint 110,000 lines per second. The DECstation 5000 paints 10-pixel un-
connected lines at 125,000 per second, and connected lines at 160,000 per second.

22

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

9. Ingredients for a Fast Server on a Dumb Frame Buffer
Both frame buffer implementations perform remarkably well, even when compared against

accelerators that were designed specifically for X. This section summarizes the factors that con-
tribute to this level of performance.

A fast processor is essential. Not only does a fast processor paint pixels quickly, but it also
dispatches X11 requests and computes window clipping information quickly. RISC processors
appear superior to CISC processors for graphics operations due to the following advantages:

• Many graphics routines use 20 or more registers. RISC processors tend to have at
least 32 registers, while CISC machines typically have only 16 registers.

• RISC processors usually start an integer multiply with one instruction, and fetch the
result with another, which allows the the multiply to proceed in parallel with instruc-
tion execution. CISC machines usually specify a destination register as part of the
multiply instruction, and stall unless they implement register scoreboarding.

• Many inner loops take the same number of instructions on CISC and RISC architec-
tures, so the faster instruction execution time of RISC processors really pays off.

• RISC instructions don’t vary in size, so assembly code can compute jump addresses
directly rather than use branch tables.

The MIPS swl and swr instructions improve painting of small objects by avoiding branching
logic or read/modify/write cycles. On a DECstation 3100, solid-filled 10x10 pixel rectangles
paint 60% faster using swl and swr than the equivalent read/modify/write code. This advan-
tage is even larger on the DECstation 5000 due to the long read cycle. A byte write instruction is
essential for line drawing performance. And transparent stipples and PolyText make good use
of every write instruction available on the MIPS.

In order to gain maximum benefit from unrolled loops, load and store instructions should have
either a constant offset, or an auto-increment addressing mode. Neither of these should take
longer than a simple indirect load.

Several algorithms make extensive use of shifting, so the CPU should include a barrel shifter.

A deep write buffer helps keep the processor from stalling after generating several writes to
memory. This is especially important for ‘‘bursty’’ algorithms like text painting, where a large
amount of data fetching and rearranging is followed by a large number of write instructions.

Ideally, the memory addressing architecture should support at least one large virtual address
page. If not, the kernel should handle TLB faults quickly, and the base address of the frame
buffer in virtual memory should meet whatever restrictions the kernel may impose.

Write bandwidth should be as high as possible, and the frame buffer should incorporate page-
mode logic. Read bandwidth is less important for most applications, especially with a hardware
planemask. Still, we would have liked faster reads on the DECstation 5000 frame buffer.

The frame buffer should incorporate a hardware planemask if at all possible. In particular,
some imaging applications use a planemask with a graphics function of Copy. A hardware
planemask avoids the read/modify/write used to implement a software planemask.

23

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

If there is room, hardware support for the 16 graphics functions is helpful. Most video RAMs
support a read/write cycle that is only tens of nanoseconds longer than a write cycle, which is far
better than sending data all the way back to the CPU.

Finally, a good compiler is vital. The compiler must be able to fit variables and partial expres-
sions into registers over the most appropriate lifetime (i.e., much better than can be done with
C’s register declarations), and must be able to schedule useful work into delay slots. Overall, the
MIPS compiler does quite a good job, which kept use of assembly code to a minimum.

10. Frame Buffers vs. Graphics Processors
Frame buffers are simple and cheap to build, and you don’t have to get everything right to ship

a machine. Each release of the DECstation 3100 color server has incorporated significant perfor-
mance enhancements. Even so, some graphics requests are still slow; as we work out improved
algorithms for these requests, we can offer better performance with no hardware changes. The
initial port to the DECstation 5000 was trivial, and the page-mode logic increased performance
substantially with no code changes. Performance increased even more when we tightened or
unrolled loops in which overhead was larger than a page-mode write cycle.

Graphics accelerators take longer to build, but provide two advantages: the proximity to video
memory allows higher memory bandwidths, and the separate graphics processor allows the serv-
er to overlap drawing with more mundane tasks.

6Graphics processors from Sun Microsystems and Silicon Graphics have memory bandwidths
in the range of 80 to 110 megabytes per second, which is 8 to 11 times faster than the DECsta-
tion 3100 and 4 to 5 times faster than the DECstation 5000/200CX. High-speed graphics proces-
sors may get bandwidth in several ways: they use memory interleaving, they don’t communicate
with memory over a general-purpose bus, and they often use a 64-bit (or wider) path to memory.
Note that this bandwidth is very asymmetric: wide objects paint at 80 megabytes per second, but
vertical lines usually paint at less than 5 megabytes per second.

The TURBOchannel I/O bus supports a minimum write cycle of 120 nanoseconds, which
translates to about 30 megabytes per second in practice. Even on a faster bus that allows 80
nanosecond writes, a dumb frame buffer could get only half the write bandwidth that is ob-
viously achievable in a graphics accelerator.

On-screen copy performance shows the same bandwidth discrepancy between frame buffers
and accelerators. The Sun GX manages to scroll large areas over 6 times faster, and copy large
areas 3.7 times faster. Even if read performance were improved on the frame buffer, there is still
a big advantage to specialized hardware here.

Note, however, that even the DECstation 3100 can fill its screen in less than a tenth of a
second, and copy it in less than a fifth of a second. High memory bandwidths are usually re-
quired by 2D double-buffered animation applications, but frame buffer bandwidths appear to be
adequate for most other applications. Further, some simple logic can make frame buffer
bandwidths comparable to these graphics accelerators.

6Silicon Graphics is a trademark of Silicon Graphics, Inc.

24

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

More important to most applications is the speed at which the server can paint small objects.
CAD programs may paints hundreds of thousands of small overlapping lines and rectangles. A
frame buffer offers no parallelism between setting up painting requests and performing the actual
painting. Assuming all dots in a line are painted independently, both DECstations paint short
unconnected lines at about 30% of available bandwidth, and the hardware doesn’t even deliver
the maximum bandwidth that the video RAM can provide. A server might paint short lines
many times faster if some of this work were off-loaded to a specialized graphics processor.

Ironically, preliminary X11 performance numbers for accelerators from Silicon Graphics and
Sun show that the dumb frame buffer code outperforms these implementations on all small ob-
jects, and only falls behind on large objects. Even the best accelerators from DEC paint 10-pixel
lines less than twice as fast as the DECstation 5000 frame buffer. Short line performance is
often limited by set-up time for each line, by data copying between application and server, and
by context switching times; painting is just a portion of the total time.

Further, the ratio of memory access time to instruction cycle time is on the rise. The greater
this ratio, the less time a frame buffer server spends setting up Bresenham parameters and per-
forming Bresenham steps between each memory access. Even with today’s processor speeds,
note how much of this paper is devoted to fill styles, and how little is devoted to computing the
outline of an object. Outline computation is already almost fast enough in most cases.

Specialized graphics hardware can offer better 2-dimensional performance than a frame buff-
er, but this advantage will soon be inconsequential for most applications. Like nuclear arsenals,
at some point enough is enough. Users don’t care if they can paint text at 200,000 characters per
second using a graphics accelerator, but a mere 150,000 characters per second on a frame buffer:
both devices paint a page of text instantaneously for all practical purposes. The frame buffer,
once a poor man’s graphics device, is sufficient for all but the most demanding applications.

11. Acknowledgements
Susan Angebranndt, Raymond Drewry, Phil Karlton, and Todd Newman wrote most of the

X11 sample server and documented how to port it [2, 3].

Todd Newman wrote code to fill spans, copy pixels, paint window backgrounds, and draw
polygons. Vasudev Bhandarkar and Rich Hyde wrote the device driver and driver interface.

Susan Angebranndt, Chris Kent, and Phil Karlton wrote the original x11perf program,
which I later rewrote and added to. If you are writing or tuning X servers, you should get
x11perf via anonymous ftp from expo.lcs.mit.edu:/contrib/x11perf.tar.Z.

Bob Alverson wrote the thrash program to measure TLB fault handling time.

Thanks to Keith Packard at MIT for always trying to outperform my code, and for the tech-
niques and code I’ve stolen from him whenever he succeeded.

Mary Jo Doherty made useful comments on an earlier version of this paper.

25

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

12. References

[1] Adobe Systems, Inc.
PostScript Language Color Extensions
Adobe Systems, Inc., Mountain View, CA, 1988, 1989.

[2] Susan Angebranndt, Raymond Drewry, Phil Karlton, Todd Newman, Bob Scheifler,
Keith Packard.
Definition of the Porting Layer for the X v11 Sample Server
X Version 11 Release 4 edition, Software Distribution Center, Massachusetts Institute of

Technology, Cambridge, MA, 1990.

[3] Susan Angebranndt, Raymond Drewry, Phil Karlton, Todd Newman, Bob Scheifler,
Keith Packard.
Strategies for Porting the X v11 Sample Server
X Version 11 Release 4 edition, Software Distribution Center, Massachusetts Institute of

Technology, Cambridge, MA, 1990.

[4] J. E. Bresenham.
Algorithm for Computer Control of a Digital Plotter.
IBM Systems Journal 4(1):25-30, 1965.

[5] J.D. Foley, A. Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley , Reading, Massachusetts, 1982.

[6] Gerry Kane.
MIPS R2000 RISC Architecture.
Prentice Hall, Englewood Cliffs, NJ, 1987.

[7] Christopher A. Kent.
XDPS: A Display PostScript System Extension for DECwindows.
Digital Technical Journal 2(3):64-73, Summer, 1990.

[8] William M. Newman, Robert F. Sproull.
Principles of Interactive Computer Graphics.
McGraw-Hill Book Company, New York, NY, 1979.

[9] Michael J. K. Nielsen.
Titan System Manual.
WRL Research Report 86/1, Digital Equipment Corporation, Western Research

Laboratory, September 19, 1986.

[10] Jerry Van Aken and Mark Novak.
Curve-Drawing Algorithms for Raster Displays.
ACM Transactions on Graphics 4(2):147-169, April, 1985.

26

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

27

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’‘‘Spritely NFS: Implementation and Performance of
Jeffrey Y.F. Tang and J. Leon Yang.Cache-Consistency Protocols.’’
WRL Research Report 90/1, January 1990.V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.
‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’‘‘Available Instruction-Level Parallelism for Super-
Tracy Larrabee.scalar and Superpipelined Machines.’’
WRL Research Report 90/2, February 1990.Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.
‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.‘‘A Unified Vector/Scalar Floating-Point Architec-
WRL Research Report 90/3, March 1990.ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David
‘‘Virtual Memory vs. The File System.’’W. Wall.
Michael N. Nelson.WRL Research Report 89/8, July 1989.
WRL Research Report 90/4, March 1990.

‘‘Architectural and Organizational Tradeoffs in the
‘‘Efficient Use of Workstations for Passive Monitor-Design of the MultiTitan CPU.’’

ing of Local Area Networks.’’Norman P. Jouppi.
Jeffrey C. Mogul.WRL Research Report 89/9, July 1989.
WRL Research Report 90/5, July 1990.

‘‘Integration and Packaging Plateaus of Processor
‘‘A One-Dimensional Thermal Model for the VAXPerformance.’’

9000 Multi Chip Units.’’Norman P. Jouppi.
John S. Fitch.WRL Research Report 89/10, July 1989.
WRL Research Report 90/6, July 1990.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
‘‘1990 DECWRL/Livermore Magic Release.’’sor with High Ratio of Sustained to Peak Perfor-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,mance.’’

Don Stark, Gordon T. Hamachi.Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 90/7, September 1990.WRL Research Report 89/11, July 1989.

‘‘Pool Boiling Enhancement Techniques for Water at‘‘The Distribution of Instruction-Level and Machine
Low Pressure.’’Parallelism and Its Effect on Performance.’’

Wade R. McGillis, John S. Fitch, WilliamNorman P. Jouppi.
R. Hamburgen, Van P. Carey.WRL Research Report 89/13, July 1989.

WRL Research Report 90/9, December 1990.

‘‘Long Address Traces from RISC Machines:
‘‘Writing Fast X Servers for Dumb Color Frame Buf-Generation and Analysis.’’

fers.’’Anita Borg, R.E.Kessler, Georgia Lazana, and David
Joel McCormack.W. Wall.
WRL Research Report 91/1, February 1991.WRL Research Report 89/14, September 1989.

28

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Predicting Program Behavior Using Real or Es-

Brian K. Reid and Christopher A. Kent. timated Profiles.’’

WRL Technical Note TN-4, September 1988. David W. Wall.

WRL Technical Note TN-18, December 1990.
‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Technical Note TN-15, December 1990.

‘‘The Effect of Context Switches on Cache Perfor-
mance.’’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’
Aaron Goldberg and John Hennessy.

WRL Technical Note TN-17, December 1990.

29

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

ii

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

Table of Contents
1. Introduction 1
2. Frame Buffer Hardware 2
3. CPU Hardware 3
4. Addressing the Frame Buffer 3
5. Useful MIPS Instructions 4
6. X Graphics Functions and the Planemask 5
7. X Imaging Modes 10

7.1. Solid fill 10
7.2. Opaque stipple 12
7.3. Transparent stipple 13
7.4. Tile 16

8. X Graphics Requests 17
8.1. PolyText 17
8.2. ImageText 18
8.3. CopyArea 20
8.4. Lines 21

9. Ingredients for a Fast Server on a Dumb Frame Buffer 23
10. Frame Buffers vs. Graphics Processors 24
11. Acknowledgements 25
12. References 26

iii

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

iv

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

List of Figures
Figure 1: The Store Word Right instruction 4
Figure 2: The Store Word Left instruction 5
Figure 3: Solid fill style 10
Figure 4: Solid fill painting code 11
Figure 5: Opaque stipple fill style 12
Figure 6: Transparent stipple fill style 13
Figure 7: Transparent stipple implemented with read/modify/write 14
Figure 8: Transparent stipple using only write instructions 15
Figure 9: Tile fill style 16
Figure 10: PolyText paints a ‘‘Z’’ 18

v

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

vi

WRITING FAST X SERVERS FOR DUMB COLOR FRAME BUFFERS

List of Tables
Table 1: X11 graphics functions 6
Table 2: Reduced graphics functions for fill painting request 8
Table 3: Definitions of the three fill functions 8
Table 4: Reduced graphics functions for CopyArea and friends 9
Table 5: Definitions of the four CopyArea functions 9
Table 6: Foreground/background mapping table for opaque stipple 12

vii

