
M A R C H 1 9 9 0

WRL
Research Report 90/4

Virtual Memory vs.
The File System

Michael N. Nelson

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Virtual Memory vs. The File System

Michael Nelson

March, 1990

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

14

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

15

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

‘‘Spritely NFS: Implementation and Performance of Jeffrey Y.F. Tang and J. Leon Yang.

Cache-Consistency Protocols.’’ WRL Research Report 90/1, January 90.

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

‘‘Available Instruction-Level Parallelism for Super- Tracy Larrabee.

scalar and Superpipelined Machines.’’ WRL Research Report 90/2, February 90.

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point

Architecture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak

Performance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’

Anita Borg, R.E.Kessler, Georgia Lazana, and David
W. Wall.

WRL Research Report 89/14, September 1989.

16

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel Bartlett.

WRL Technical Note TN-12, October 1989.

17

Abstract

This paper examines the behavior of mechanisms for providing variable-
size file data caches. It presents the results of running virtual-memory-
and file-intensive benchmarks on the Sprite operating system [OCD88];
the benchmarks are designed to simulate real-life applications that
represent the worst case for variable-size cache mechanisms. The results
indicate that variable-size cache mechanisms work well when virtual-
memory- and file-intensive programs are run in sequence; the cache is
able to change in size in order to provide overall performance no worse
than that provided by a small fixed-size cache. However, when interactive
programs are run concurrently with file-intensive programs, variable-size
cache mechanisms perform very poorly if file pages and virtual-memory
pages are treated equally. In order to guarantee good interactive response,
virtual memory pages must be given preference over file pages.

i

VIRTUAL MEMORY VS. THE FILE SYSTEM

ii

VIRTUAL MEMORY VS. THE FILE SYSTEM

Table of Contents
1. Introduction 1
2. Providing Variable-Size Caches 2
3. Benchmarks 2
4. Why Not Just Used Fixed-Size Caches? 4
5. Variable-Size Cache Performance 5

5.1. The ECD Benchmark 6
5.2. The IFS Benchmark 8

6. Biasing Against the File System 9
6.1 Implementation 9
6.2 ECD Benchmark 10
6.3 IFS Benchmark 10
6.4. How Much of a Penalty 10

7. Conclusions 10
8. Acknowledgements 12
9. Bibliography 12

iii

VIRTUAL MEMORY VS. THE FILE SYSTEM

iv

VIRTUAL MEMORY VS. THE FILE SYSTEM

List of Figures
Figure 1: Elapsed Time and Utilization with Fixed-Size Caches 4
Figure 2: Mbytes Transferred with Fixed-Size Caches 5
Figure 3: Elapsed Time and Utilization Variable vs. Fixed 6
Figure 4: Mbytes Transferred Variable vs. Fixed 7
Figure 5: Elapsed Time and Server Utilization with Penalty 9
Figure 6: Network Traffic with Penalty 11

v

VIRTUAL MEMORY VS. THE FILE SYSTEM

vi

VIRTUAL MEMORY VS. THE FILE SYSTEM

List of Tables
Table 1: Edit-Compile-Debug Benchmark 3
Table 2: Traffic between VM and FS 7
Table 3: IFS Benchmark 8
Table 4: IFS Benchmark with Penalty 12

vii

VIRTUAL MEMORY VS. THE FILE SYSTEM

viii

VIRTUAL MEMORY VS. THE FILE SYSTEM

1. Introduction

File data caches have been used in many operating systems to improve file system perfor-
mance. In a distributed system the use of caches can reduce both network and disk traffic. A
study of the use of caches on diskless workstations [NWO88] showed that the use of large
caches can reduce the execution time of application programs by up to 1/3. Unfortunately, if file
data caches are allowed to become too large, then they will conflict with the needs of the virtual
memory system. In particular, if there is insufficient memory to run application programs, then
the programs may slow down by factors of 10 to 100 because of excessive paging activity.
Thus, if a cache is allowed to become too large, the improvement in file system performance
may be more than offset by a degradation in virtual memory performance.

In order to provide both good file system performance and good virtual memory perfor-
mance, several operating systems [BBM72, DaD68, Lea83, RaF86, Ras87] have implemented
variable-size cache mechanisms. In these operating systems the portion of memory used for file
data and virtual memory varies in response to the file and virtual-memory needs of the applica-
tion programs being executed. These mechanisms will obviously work well when there is little
or no contention for memory between file and virtual-memory pages.

This paper examines the behavior of variable-size cache mechanisms in the worst case; that
is, the case when there is a serious amount of memory contention. It looks at both sequential and
concurrent contention. Sequential contention corresponds to a user alternatively running pro-
grams that are either virtual memory or file intensive; an example of this type of contention is an
edit-compile-debug loop where the editing and debugging are virtual-memory intensive and the
compile is file intensive. Concurrent contention is when a user is running file intensive and
virtual-memory intensive programs at the same time; an example of this type of sharing is a user
interacting with a window system while a file intensive program is running.

I evaluated the behavior of variable-size cache mechanisms by running benchmarks that
simulate both sequential and concurrent memory contention. The benchmark results indicate
that variable-size cache mechanisms work well for sequential contention; the cache is able to
change in size in order to provide overall performance no worse than that provided by a small
fixed-size cache. However, when interactive programs are run concurrently with file intensive
programs, variable-size cache mechanisms perform very poorly. The file intensive programs
steal memory away from the interactive programs causing the interactive programs to exhibit
poor response time because of extra page faults. In order to guarantee good interactive perfor-
mance, virtual-memory pages should receive preferential treatment: a file page should not
replace a virtual-memory page unless the virtual-memory page has been idle for a substantial
period (e.g. 5 to 10 minutes).

The rest of the paper is organized as follows: Section 2 looks at mechanisms for providing
variable-size caches including the mechanism provided in Sprite; Section 3 describes the bench-
marks that were used to evaluate the variable-size caching schemes; Section 4 looks at the

1

VIRTUAL MEMORY VS. THE FILE SYSTEM

performance of fixed-size cache schemes; Section 5 sees how well the variable-size cache
schemes compare to fixed-size schemes; Section 6 examines the effect of giving virtual memory
data preference over file data; and Section 7 offers some conclusions.

2. Providing Variable-Size Caches

The approach that has been commonly used to provide variable-size file data caches is to
combine the virtual memory and file systems together; this is generally called the mapped-file
approach. To access a file, it is first mapped into a process’s virtual address space and then read
and written just like virtual memory. This approach eliminates the file cache entirely; the stan-
dard page replacement mechanisms automatically balance physical memory usage between file
and program information. Mapped files were first used in Multics [BCD72, DaD68] and TENEX
[BBM72, Mur72]. More recently they have been implemented in Pilot [Red80], Accent
[RaR81, RaF86], Apollo [LLH85, Lea83] and Mach [Ras87].

The Sprite approach to providing variable-size caches is quite different from the mapped-
file approach. In Sprite, the file system and virtual memory system are separate. Users invoke
system calls such as read and write to access file data. These system calls copy data between the
file cache and the virtual address spaces of user processes. Variable-size caches are provided by
having the virtual memory system and file system modules negotiate over physical memory
usage. In this paper I will only give an overview of the Sprite mechanism; see [NWO88] or
[Nel88] for more details.

In the Sprite mechanism, the file system module and the virtual memory module each
manage a separate pool of physical memory pages. Virtual memory keeps its pages in approxi-
mate LRU order through a version of the clock algorithm [Nel86]. The file system keeps its
cache blocks in perfect LRU order since all block accesses are made through the read and write
system calls. Each module keeps a time-of-last-access for each page or block. Whenever either
module needs additional memory (because of a page fault or a miss in the file cache), it com-
pares the age of its oldest page with the age of the oldest page from the other module. If the
other module has the oldest page, then it is forced to give up that page; otherwise the module
recycles its own oldest page.

The advantage that the Sprite approach has over mapped-file approaches is that it makes it
easy to discriminate between file and virtual-memory pages. This makes Sprite a good vehicle
for running experiments in variable-size cache behavior. Of course, Sprite has the disadvantage
that it requires more copies than mapped-file schemes. However, measurements presented in
[Nel88] demonstrate that the extra copies have an insignificant impact on performance.

3. Benchmarks

In order to measure the performance of variable-size cache mechanisms, I developed two
benchmarks and ran them on the Sprite operating system. The results obtained on Sprite should
be similar to results obtained with the same benchmarks on systems with mapped-files.

The first benchmark that I used is an edit-compile-debug (ECD) benchmark that runs under
the X11 window system on Sprite (see Table 1). This benchmark represents work that is com-
monly done on Sprite, and is both VM and FS intensive. Each program in the benchmark is run
in sequence; no two programs are ever run concurrently. I used this benchmark to determine
how well variable-size cache mechanisms and fixed-size cache mechanisms perform with

2

VIRTUAL MEMORY VS. THE FILE SYSTEM

ii
Phase Description FS I/O VM Image Sizeii
Edit 70 Kbytes 560 KbytesRun window-based editor

on 2500 line file.ii
Compile Compile VM Module 800 Kbytes 1 Mbyteii

Link Link the kernel 8 Mbytes 3 Mbytesii
Debug Run kernel debugger 4 Mbytes 8.5 Mbytesii

Environment -- 5 MbytesThe X window system plus
several typescript
windows and tools.iic

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 1. The phases of the edit-compile-debug benchmark. The first two columns describe the phase of
the benchmark. The third column gives the number of bytes read and written by each phase. The last
column gives the size of the largest virtual memory image of the phase. The last row is not a phase in the
benchmark but rather shows the total amount of memory required by the basic environment in which the
benchmark is running.

sequential memory contention.

The ECD benchmark was run on a Sun-3/75 workstation with from 10 to 16 Mbytes of
physical memory; if less than 10 Mbytes was used then the benchmark did not finish in a reason-
able amount of time because of virtual-memory thrashing. The workstation’s files were stored
remotely on a Sun-3/180 file server with 16 Mbytes of memory†. Although the benchmark was
executed on a diskless workstation, the results should be similar to results obtained by running
the benchmark on a machine with a local disk. Each benchmark consisted of two runs through
the edit-compile-link-debug loop. Each data point was taken from the average of three runs of
the benchmark.

The other benchmark that I used runs a virtual-memory intensive program and a file-
intensive program concurrently. This benchmark is used to determine the impact of variable-
size cache mechanisms on interactive performance; I will refer to this benchmark as the IFS
(Interactive-File-System) benchmark. The virtual-memory-intensive program is a program
which periodically touches many pages in its virtual address space, dirtying some of them‡.
This simulates a user who is interacting with a program. When a user interacts with a program,
the program must have its code, heap and stack pages memory-resident in order to give good
interactive response. In fact, if the user is interacting with a program under a window system
such as X11, then several programs have to be memory-resident in order for the user to get good
interactive response.

The file system component of the IFS benchmark is the UNIX sort program run on a 1-
Mbyte file. The UNIX sort program is an external merge sort which uses many temporary files.
The sort program is run concurrently with the interactive program to simulate a file system
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† In this paper the term client will be used to refer to the diskless workstation that the benchmarks were run on
and the term server will be used to refer to the workstation that stored the client’s files.

‡ The fraction of memory that the interactive program dirties each time it touches the memory in its address
space may impact the performance of the IFS benchmark. Measurements of 5 workstations running Sprite showed
that between 40 and 60 percent of the memory that was being used by user processes was dirty. For this reason the
virtual-memory intensive program dirties half of the pages that it touches.

3

VIRTUAL MEMORY VS. THE FILE SYSTEM

program that attempts to grow its cache by stealing memory from an interactive program.

The IFS benchmark was run on a diskless 8-Mbyte Sun-3/75. The file server was a Sun-
3/180 with 16 Mbytes of memory. 1.3 Mbytes of the 8 Mbytes were used by the kernel, which
left 6.7 Mbytes for user processes. The interactive program used 5.7 Mbytes of memory and left
at most 1 Mbyte for sort and the file system cache. This is small enough that sort will contend
with the virtual memory system for memory.

4. Why Not Just Use Fixed-Size Caches?

The results from previous measurements of file data caches [NWO88] suggest that a large
fixed-size cache will provide the best performance for file-intensive programs. However, for the
two benchmarks used here, a small fixed-size cache is best. Figure 1 gives the elapsed time and
server utilization for the ECD benchmark as a function of the amount of physical memory avail-
able on the client and the size of its file cache. A cache of 0.5 Mbytes provides the lowest
elapsed time, and a cache from 0.5 Mbytes to 1 Mbyte gives the lowest server utilization for the
benchmark; note that this benchmark is so virtual-memory intensive that even with the largest
physical memory the smallest file cache is best.

e
m
i
T

d
e
s
p
a
l
E

Megabytes of Cache

900

800

700

600

500

400

300

200

100

0
6543210

11 Mbytes on client

12 Mbytes on client

14 Mbytes on client

16 Mbytes on client

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes of Cache

25%

20%

15%

10%

5%

0%
6543210

16 Mbytes on client

14 Mbytes on client

12 Mbytes on client

11 Mbytes on client

(a) (b)

Figure 1. Elapsed time and server utilization for the edit-compile-debug benchmark with fixed-size
caches as a function of client physical memory size. In both graphs the X-axis is the size of the client’s
file cache. In graph (a) the Y-axis is the number of seconds to execute the benchmark and in graph (b) the
Y-axis is the percent of the server’s CPU that was utilized while the client was executing the benchmark.
The system thrashed whenever the amount of physical memory left for the virtual memory system
dropped below 10 Mbytes. I did not run the benchmark for points beyond where thrashing occurred
(since elapsed time more than doubles), which explains why some curves have fewer data points than oth-
ers.

4

VIRTUAL MEMORY VS. THE FILE SYSTEM

Figure 2 clearly shows why the smallest cache is best for the ECD benchmark. As the
cache grows in size, the number of file system bytes transferred drops. However, larger file
caches leave less memory for virtual memory, so the number of page faults increases, resulting
in more network traffic to fetch VM pages. This causes an increase in the total number of net-
work bytes transferred and a corresponding increase in client degradation and server utilization.

A small fixed-size cache is also best for the IFS benchmark. This benchmark was designed
so that interactive performance would degrade if more than 1 Mbyte were used for the file sys-
tem cache. In addition, measurements in [NWO88] show that even with a small cache the sort
benchmark will only execute at most 25 percent more slowly than with a large cache. Thus a
small fixed-size cache will give instantaneous interactive response (no page faults required)
while only slightly degrading file system performance.

The results with fixed-size caches demonstrate that different cache sizes are needed for dif-
ferent types of programs. The results in [NWO88] show that when purely file-intensive pro-
grams are run, a large cache is best. However, when a mix of file- and virtual-memory-
intensive programs are run, then a small cache is best.

5. Variable-Size Cache Performance

It is clear from the previous section that different file cache sizes are required for different
types of programs. Variable-size cache mechanisms attempt to provide the ability to adjust the

d
e
r
r
e
f
s
n
a
r
t

s
e
t
y
b
M

Megabytes of Cache

80

70

60

50

40

30

20

10

0
6543210

Total bytes

VM bytes

FS bytes

Figure 2. This graph gives the number of Mbytes transferred across the network for the edit-compile-
debug benchmark with fixed-size caches and 16 Mbytes of memory on the client. Graphs of network
bytes transferred for the other four memory sizes yield similar results. The X-axis is the size of the cache
and the Y-axis is the number of Mbytes transferred. The ‘‘FS bytes’’ line is the amount of file system
data transferred across the network, the ‘‘VM bytes’’ line is the amount of virtual memory data
transferred across the network, and the ‘‘Total bytes’’ line is the total amount of network bytes transferred
which includes file and virtual memory data as well as packet headers and control packets.

5

VIRTUAL MEMORY VS. THE FILE SYSTEM

e
m
i
T

d
e
s
p
a
l
E

Megabytes on Client

1000

900

800

700

600

500

400

300

200

100

0
16151413121110

Variable

Fixed Fixed

Variable

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes on Client

25

20

15

10

5

0
16151413121110

Figure 3. Elapsed time and server utilization for the edit-compile-debug benchmark with a variable-sized
cache and with the smallest fixed-size cache as a function of physical memory size. In both graphs the
X-axis is the amount of cache. In graph (a) the Y-axis is the number of seconds to execute the benchmark
and in graph (b) the Y-axis is the percent of the server’s CPU that was utilized while the client was exe-
cuting the benchmark.

size of the cache based on the types of programs that are being run. This section examines how
the Sprite variable-size cache mechanism affects the performance of the ECD and IFS bench-
marks. Measurements of other variable-size cache mechanisms should yield similar results.

5.1. The ECD Benchmark

For the ECD benchmark, variable-size cache mechanisms work quite well. Figure 3 shows
that, in terms of elapsed time and server utilization, the variable-size and fixed-size cache
mechanisms provide nearly identical performance. The reason why the performance is similar is
demonstrated in Figure 4, which gives the amount of network traffic. The variable-size cache
gives consistently fewer file system bytes transferred than a fixed-size cache, and the fixed-size
cache gives fewer virtual memory bytes transferred. However, in terms of total bytes
transferred, the variable-size cache is slightly better than the best fixed-size cache. Thus, the
poorer virtual memory performance for the variable-size cache is more than offset by the much
better file system performance.

The edit-compile-debug benchmark shifts between file- and virtual-memory-intensive pro-
grams. This requires that there be constant shifts in the allocation of physical memory between
the file system and the virtual memory system (see Table 2). The minimum and maximum cache
size columns from Table 2 show that the file cache varied widely in size during the life of the
benchmark, going from the minimum possible size (0.25 Mbytes) up to over half the amount of
physical memory available. As the amount of physical memory increased, the maximum size of
the cache increased as well; the variable-size cache mechanism allowed the file system to take

6

VIRTUAL MEMORY VS. THE FILE SYSTEM

10 11 12 13 14 15 16
0

20

40

60

80

100

120

Megabytes on Client

M
b
y
t
e
s

t
r
a
n
s
f
e
r
r
e
d

Total - variable

FS - variable

VM - variable

Total - fixed

FS - fixed

VM - fixed

Figure 4. This graph gives the number of Mbytes transferred across the network with variable-size and
smallest-fixed-size caches and 16 Mbytes of memory on the client. The X-axis is the amount of cache and
the Y-axis is the number of Mbytes transferred. There are two lines for file, virtual memory and total
bytes transferred: one for variable-size caches and one for fixed-size caches. The total bytes transferred
lines includes file and virtual memory data bytes plus bytes from packet headers and control packets.

ii
FS Asks VM VM Asks FS

Client Min Max iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mem Cache Size Cache Size
(Mbytes) (Mbytes) (Mbytes)

Num Satisfied Num Satisfied
ii

10 0.25 5.6 8125 1810 2942 1846ii
11 0.25 6.4 7105 1889 2610 1967ii
12 0.25 6.9 5840 1964 2555 2075ii
14 0.25 8.7 4012 1957 2669 2162ii
16 0.34 8.8 3652 1937 2629 2229iic

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 2. Traffic between the virtual memory system and the file system. The first column gives the
amount of physical memory available on the client. The second and third columns give the minimum and
maximum file cache sizes during the benchmark. The fourth and fifth columns are the number of times
that the file system asked the virtual memory system for the access time of its oldest page and the number
of times that it was able to get a page from the virtual memory system. The sixth and seventh columns are
the same as the previous two, except that they are the number of times the virtual memory system asked
the file system for memory.

advantage of the extra physical memory.

Table 2 also quantifies the negotiation between the virtual memory system and the file sys-
tem. As the amount of physical memory increased, the number of times that the file system
attempted to get memory from the virtual memory system dropped dramatically; however, the
number of times that the file system was successful in stealing a page from the virtual memory
system remained fairly constant across all memory sizes. In contrast, the number of requests for

7

VIRTUAL MEMORY VS. THE FILE SYSTEM

memory made by the virtual memory system to the file system remained reasonably constant for
all memory sizes, but the virtual memory system was more successful in taking pages from the
file system as the amount of memory increased.

Table 2 suggests that the virtual memory system is much less elastic in its needs than the
file system, at least for this benchmark; I hypothesize that this is true in general. The low suc-
cess rate that the file system has when asking the virtual memory system for memory implies
that the pages in the virtual memory system are being more actively used than those in the file
system. Thus, the virtual memory system has fairly strict memory needs regardless of the physi-
cal memory size, and it actively uses the pages that it has. On the other hand, the file system
caches files after they are no longer being used so it will grow to fill the available memory.
Since the file system does not actively use many of its cached pages, its pages are the best candi-
dates for recycling.

5.2. The IFS Benchmark

Variable-size caches work poorly for the IFS benchmark (see Table 3). The performance is
dependent on the length of the interactive program’s sleep interval. Short sleep intervals
correspond, for example, to temporary pauses in an editing session. Long sleep intervals
correspond, for example, to windows that have been idle because the user was working in a dif-
ferent window.

Table 3 shows that the interactive response time has a high variance: sometimes it is instan-
taneous and other times it takes up to 22 seconds. This corresponds to a user typing a key stroke
and waiting 22 seconds for a response from the program. The response time gets worse as the
sleep interval is increased. Longer sleep intervals allow the sort program to steal more memory
which causes the interactive program to wait for pages to get faulted in from the file server.

In addition to producing poor interactive response, the use of variable-size caches also
degrades the performance of the sort benchmark. The benchmark takes up to 72% longer to exe-
cute than the standalone case, and 50% longer than when a small fixed-size cache is used. The
performance degrades because the CPU is busy trying to fault in pages for the interactive

ii
Response Time Sort Time Cache Size

Sleep iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Page Page iiiiiiiiiiiii

Interval Min Max Avg Time Deg Ins Outs Min Maxii
1 0.0 4.7 0.1 79.6 33% 173 456 152 784ii
5 0.0 4.5 0.8 83.8 40% 437 509 157 842ii
10 1.9 13.3 5.9 103.4 72% 1605 1177 146 1226ii
30 12.5 22.0 15.8 96.3 61% 1250 983 141 2533iicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 3. Results for the IFS benchmark with variable-size caches. Each data point is the average of the
results from three runs of the benchmark. The first column gives the number of seconds that the interac-
tive benchmark slept before touching all of its memory. Columns 2 through 4 give the minimum, max-
imum and average number of seconds it took the interactive benchmark to touch all of its memory when it
awoke from its sleep. Columns 5 and 6 give the total number of seconds it took to execute the sort bench-
mark, and the amount of degradation relative to the standalone case which took 60 seconds. Column 7 is
the number of pages read in from swap files and Column 8 is the number of pages written to swap files.
Columns 9 and 10 give the minimum and maximum amount of memory in the cache in Kbytes.

8

VIRTUAL MEMORY VS. THE FILE SYSTEM

benchmark; if the interactive benchmark is memory resident, then it utilizes very little of the
CPU.

6. Biasing Against the File System

The results of the IFS and ECD benchmarks demonstrate that virtual memory performance
is the most important factor in determining overall system performance. This was shown with
the ECD benchmark where performance degraded as the size of fixed-size file cache was
increased; fortunately the variable-size cache mechanism worked well in this case and was able
to adjust the size of the cache effectively. Unfortunately, the variable-size cache mechanism did
not work well for the IFS benchmark. These results indicate that it may not be practical to treat
virtual memory and file data equally in a variable-size cache mechanism. This section evaluates
the effect of giving virtual-memory pages preference over file pages.

6.1. Implementation

Since the Sprite mechanism treats virtual memory and file data separately it is quite easy to
implement a scheme that biases against the file system. The method used in Sprite involves
adding a fixed number of seconds to the reference time of each virtual memory page. This
makes each virtual memory page appear to have been referenced more recently than it actually
was. For example, if 5 minutes is added to the reference time of each virtual memory page, then
the file system will not be able to take any page from the virtual memory system that has been

(b)(a)

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

10 11 12 13 14 15 16
0

5

10

15

20

25

Megabytes of Memory

S
e
r
v
e
r

U
t
i
l
i
z
a
t
i
o
n

10 11 12 13 14 15 16
0

100

200

300

400

500

600

700

800

900

1000

Megabytes of Memory

E
l
a
p
s
e
d

T
i
m
e

Figure 5. Elapsed time and server utilization with various penalties as a function of client physical
memory size. In both graphs the X-axis is client memory size. In graph (a) the Y-axis is the number of
seconds to execute the benchmark and in graph (b) the Y-axis is the percent of the server’s CPU that was
utilized while the client was executing the benchmark.

9

VIRTUAL MEMORY VS. THE FILE SYSTEM

referenced within 5 minutes of the oldest file system page.

6.2. ECD Benchmark

Penalizing the file system has little or no effect on the performance of the ECD benchmark.
Figure 5 shows that, regardless of the penalty, the elapsed time and server utilization are about
the same. Figure 6 shows why the penalty has no effect. As the penalty is made larger, the vir-
tual memory performance gets better and the file system performance worse. The result is that
overall performance is about the same regardless of the penalty.

6.3. IFS Benchmark

Penalizing the file system is very effective in improving the performance of the IFS bench-
mark. Table 4 shows that the interactive response is excellent when the file system is penalized.
The 120-second penalty prevents the file system from taking any memory away from the virtual
memory system. Thus the response time is the same regardless of the amount of time that the
interactive program pauses between successive touching of its memory.

Surprisingly, the file system penalty actually improves the execution time of the sort bench-
mark relative to without the penalty (see Tables 3 and 4). When the file system is penalized, sort
takes only 25% longer than the best case. This degradation is nearly identical to the degradation
shown in [NWO88] when sort was run using only a small cache.

6.4. How Much of a Penalty?

The results of the benchmarks in this section show that penalizing the file system can
improve interactive response without degrading overall system performance. In some cases, it
can even make the performance of both file- and virtual-memory intensive programs better.
However, it is not clear what the optimal penalty should be. The penalty should be large enough
so that idle user programs that will be used in the near future will not be removed from memory,
but not so large that the performance of the file system is degraded unnecessarily. The best
value for the penalty will depend on the behavior of the users of the system. In Sprite we nor-
mally set the penalty to 20 minutes. This means that an interactive program’s pages will not be
reclaimed by the file cache until the program has been idle for 20 minutes.

7. Conclusions

Different size file caches are required for different program mixes. As a result, variable-
size cache mechanisms are required to provide good performance for all types of programs.
Unfortunately, standard variable-size cache mechanisms that treat virtual-memory and file data
equally are not good enough. In order to ensure good interactive response to users, virtual
memory data accessed in the last several minutes must be kept memory resident if possible -
even if this requires removing more recently accessed file data. Basically, the file cache should
be limited to those pages that are not required by the virtual memory system.

Fortunately, the Sprite variable-size cache mechanism has the ability to favor virtual
memory pages. This is easy in Sprite because the virtual-memory system and the file system are
kept separate. We use the Sprite file system penalty mechanism as we do our day to day work
on Sprite. Since we began penalizing the file system, we have noticed that a file intensive pro-
gram is no longer capable of ruining interactive response. It is my advice to implementors of
other variable-size caching mechanisms (e.g. mapped files) that they include in their

10

VIRTUAL MEMORY VS. THE FILE SYSTEM

(c)

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

T

l
a
t
o

M

s
e
t
y
b

Megabytes of Memory

110

100

90

80

70

60

50

40

30

20

10

0
16151413121110

10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

Megabytes of Memory

M
b
y
t
e
s

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

s
e
t
y
b
M

Megabytes of Memory

40

30

20

10

0
16151413121110

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

(a) (b)

V
M S

F

Figure 6. These graphs gives the number of Mbytes transferred across the network with various penalties
as a function of client memory size. In all three graphs the X-axis is the total amount of client memory
and the Y-axis is the total number of Mbytes transferred during the benchmark. Graph (a) is virtual
memory traffic, (b) is file system traffic and (c) is total network traffic which includes virtual memory
traffic, file system traffic and packet headers and control packets.

11

VIRTUAL MEMORY VS. THE FILE SYSTEM

iii
Response Time Sort Time Cache Size

Sleep iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Page Page iiiiiiiiiiiii

Interval Min Max Avg Time Deg Ins Outs Min Maxii
1 0.0 0.4 0.03 74.8 25% 1 4 64 178iii
5 0.0 0.1 0.02 72.8 21% 0 0 64 168iii
10 0.0 0.1 0.01 72.1 20% 0 0 64 168iii
30 0.0 0.1 0.03 74.0 23% 0 0 64 168iiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 4. Results for the IFS benchmark with variable-size caches when the file system is penalized 120
seconds. Each data point is the average of the results from three runs of the benchmark. The first column
gives the number of seconds that the interactive benchmark slept before touching all of its memory.
Columns 2 through 4 give the minimum, maximum and average number of seconds it took the interactive
benchmark to touch all of its memory when it awoke from its sleep. Columns 5 and 6 give the total
number of seconds it took to execute the sort benchmark, and the amount of degradation relative to the
standalone case which took 60 seconds. Column 7 is the number of pages read in from swap files and
Column 8 is the number of pages written to swap files. Columns 9 and 10 give the minimum and max-
imum amount of memory in the cache in Kbytes.

implementation the ability to favor virtual-memory pages. This will make interactive users hap-
pier and may even improve the performance of file intensive programs.

8. Acknowledgements

I want to thank the other Sprite developers: John Ousterhout, Brent Welch, Fred Douglis,
and Andrew Cherenson. Without their efforts Sprite would not exist. John Ousterhout, Jeff
Mogul, and Anita Borg provided numerous helpful comments that improved the presentation of
this paper.

The work described here was done as part of my PhD research at the University of Califor-
nia at Berkeley. It was supported in part by the Defense Advanced Research Projects Agency
(DoD) under Contract No. N00039-84-C-0107.

9. Bibliography

References

[BCD72] A. Bensoussan, C. T. Clingen and R. C. Daley, The MULTICS Virtual Memory:
Concepts and Design, Comm. ACM 15, 5 (May 1972), .

[BBM72] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson, TENEX, a Paged
Time Sharing System for the PDP-10, Comm. ACM 15, 3 (Mar. 1972), 1135-143.

[DaD68] R. C. Daley and J. B. Dennis, Virtual Memory, Processes and Sharing in MULTICS,
Comm. ACM 11, 5 (May 1968), 306-312.

[LLH85] P. Leach, P. Levine, J. Hamilton and B. Stumpf, The File System of an Integrated
Local Network, Proc. of the 1985 ACM Computer Science Conference, , Mar. 1985,
309-324.

[Lea83] P. J. Leach, et al., The Architecture of an Integrated Local Network, IEEE Journal
on Selected Areas in Communications SAC-1, 5 (Nov. 1983), 842-857.

[Mur72] D. L. Murphy, Storage organization and management in TENEX, Proceedings
AFIPS Fall Joint Computer Conference 15, 3 (1972), 23-32.

[Nel86] M. N. Nelson, The Sprite Virtual Memory System, Technical Report
UCB/Computer Science Dept. 86/301, University of California, Berkeley, June

12

VIRTUAL MEMORY VS. THE FILE SYSTEM

1986.

[Nel88] M. N. Nelson, Physical Memory Management in a Network Operating System, Phd
Thesis, University of California at Berkeley, 1988.

[NWO88] M. N. Nelson, B. B. Welch and J. K. Ousterhout, Caching in the Sprite Network File
System, TOCS 6, 1 (Feb. 1988), 134-154.

[OCD88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B. Welch, The
Sprite Network Operating System, IEEE Computer 21, 2 (Feb. 1988), 23-36.

[RaR81] R. F. Rashid and G. G. Robertson, Accent: A communication oriented network
operating system kernel, Proceedings of the 8th Symposium on Operating Systems
Principles, , 1981, 164-175.

[RaF86] R. F. Rashid and R. Fitzgerald, The Integration of Virtual Memory Management and
Interprocess Communication in Accent, TOCS 4, 2 (May 1986), 147-177.

[Ras87] R. Rashid, et al., Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures, Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS II), , Oct.
1987, 31-39.

[Red80] D. D. Redell, et al., Pilot: An Operating System for a Personal Computer,
Communications of the ACM 23, 2 (Feb. 1980), 81-92.

13

