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Abstract

A combinational circuit can be tested for the presence of a single stuck-at fault by

applying a set of inputs that excite a veri�able output response in that circuit. If the

fault is present, the output will be di�erent than it would be if the fault were not

present. Given a circuit, the goal of an automatic test pattern generation system is

to generate a set of input sets that will detect every possible single stuck-at fault in

the circuit.

This dissertation describes a new method for generating test patterns: the Boolean

satis�ability method. The new method generates test patterns in two steps: First,

it constructs a formula expressing the Boolean di�erence between the unfaulted and

faulted circuits. Second, it applies a Boolean satis�ability algorithm to the resulting

formula. This approach di�ers from most programs now in use, which directly search

the circuit data structure instead of constructing a formula from it. The new method

is quite general and allows for the addition of any heuristic used by the structural

search methods. The Boolean satis�ability method has produced excellent results on

popular test pattern generation benchmarks.
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Chapter 1

Introduction

Reliably functioning computers are not a luxury. A company perceived by its cus-

tomers to sell unreliable digital systems will not be in business very long. Every

customer expects a reliable product, but some customers need computer systems

that are dependable in the extreme; these customers are willing to pay a premium for

systems that can be counted on in situations of crucial importance|even of life and

death. To produce reliable computer systems, defect-free components must be avail-

able. In this dissertation we present a method of distinguishing defective components

from defect-free components.

More formally, we present a method of generating test patterns for single stuck-

at faults in combinational circuits. The rest of this chapter will describe both the

problem of test pattern generation and current approaches used to solve the problem.

Our approach, generating a test pattern by extracting a formula for all possible tests

for a fault and then satisfying that formula, will be described fully in Chapter 2 and

Chapter 3.

1.1 The Problem

We will only be generating tests for combinational circuits, which have no feedback

loops or memory elements. Figure 1.1 shows a simple combinational circuit. In a

following section we will explain how techniques for testing combinational circuits

1



2 CHAPTER 1. INTRODUCTION

A

B

C

D

E

X

0/1

Figure 1.1: Combinational circuit with D stuck at 1

can be used to test sequential circuits.

A test pattern for a potentially defective circuit is a set of inputs for the circuit

that will cause the circuit outputs to be di�erent if the circuit is defective than if it

is defect-free. To derive the input set, we must have some model for possible defects

(faults) in the circuit. We will use the model most popular with existing testing

systems: the single stuck-at model. In this model, a defective circuit is assumed to

behave as if it were defect-free, with the exception of one wire that is tied to either a

logic 0 or a logic 1 (instead of correctly varying as a function of the circuit inputs).

Logically equivalent inputs may fail independently. For example, in Figure 1.2 A1

can be stuck-at 1 while A2 takes on the value 0.

To generate a test pattern for a circuit with a wire stuck at 1, we must ensure

A

B

C

D

E

A

B

A

B2

2

1

1

Figure 1.2: Line A1 can fail independently from line A2
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that the wire in question would take on the logic value 0 in a correctly functioning

circuit. If this is not the case, the circuit outputs will be the same whether or not the

circuit is malfunctioning because the faulty circuit and the good circuit would carry

the same values. In Figure 1.1, line D is labeled with a 0/1 to denote that line D

is the site of a fault such that D will carry the value 0 if the circuit is functioning

correctly (is unfaulted) and will carry the value 1 if the circuit is defective (is faulted).

When a line has a di�erent value in the faulted and unfaulted circuits, it is said to

have a discrepancy. Figure 1.3 shows a test pattern that detects D stuck-at 1 and

Figure 1.4 shows a test pattern that does not detect D stuck-at 1. We say that the

test pattern of Figure 1.3 covers D stuck-at 1 and the test pattern of Figure 1.4 fails

to cover D stuck-at 1.

A

B

C

D

E

X

0

0

1

0/1

0

0/1

Figure 1.3: Test pattern covering D stuck-at 1

A

B

C

D

E

X

0

0

0

0/1

1

1/1

Figure 1.4: Test pattern not covering D stuck-at 1
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As we will discuss in the next section, test pattern generation is known to be an

NP-complete problem[FT82]. This does not mean that we can a�ord to give up on the

problem. We must try to �nd methods of test pattern generation that have excellent

expected case behavior on actual circuits. In Chapters 2 and 3 we will present such

a method and the evidence that it is workable.

1.1.1 The Complexity of the Problem

We can quickly demonstrate that test pattern generation is an NP-hard problem by

showing how a known NP-complete problem can be reduced to it. As our known NP-

complete problem we will choose 3SAT [Coo71]: the problem of satisfying a boolean

formula written in three-element conjunctive normal form (3CNF).

First, we take a 3CNF formula (also known as a product of sums formula where

each sum has at most three literals) and naively build the circuit corresponding to it.

We can do this by creating one OR gate for each clause and feed the outputs of all

the OR gates into one AND gate. In Figure 1.5 we show a circuit corresponding to

the 3CNF formula (A + B + C) � (A + B + C). Next, we generate a test pattern for

the output of the circuit stuck at 0. If it were possible to generate the test pattern in

polynomial time, it would be possible to satisfy a 3CNF formula in polynomial time.

Stated formally, 3SAT is polynomial-time reducible to test pattern generation.

It would be possible to generate a test pattern in linear time if it were not for

A

C

X

B

Figure 1.5: Circuit corresponding to the formula (A+ B + C) � (A + B+ C)
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reconvergent fanout [IS75]. In a combinational circuit, reconvergent fanout occurs

whenever there is more than one path of logic elements between any two lines in

the circuit. For example, in Figure 1.5, there is more than one path between line

A and line X. The presence of reconvergent fanout introduces potentially unsatis�-

able dependencies into the problem of test pattern generation. We will discuss the

nature of the potentially unsatis�able dependencies when we discuss backtracking in

Section 1.2.1.

It may not be possible to generate a test pattern for every single stuck-at fault

in a circuit. Figure 1.6 shows an example of a circuit with an untestable fault (B2

stuck at 1) and the truth table for the circuit both without the fault (the good

machine) and with the fault (the bad machine). The truth table shows that the

output of the circuit will be the same whether or not the circuit is faulted, so there is

no test pattern that can detect the presence of B2 stuck at 1: the fault is untestable.

Because the circuit uses three AND gates to implement the function A � B, it is

not surprising that the presence of a single fault on an internal wire is undetectable.

Circuits often have redundant circuitry that make the detection of certain single

stuck-at faults impossible. We say that these untestable faults are redundant faults.

A

B

C

D

E

A

B

A

B2

2

1

1

A
0
0
1
1

B
0
1
0
1

0
0
0
1

Good
0
0
0
1

Bad

Figure 1.6: Circuit and truth table for B2 stuck-at 1

The fact that a fault is redundant does not mean that it is uninteresting. Like

test pattern generation, the question of whether or not a fault is redundant is an NP-

complete problem, but identifying the redundant faults in a circuit can be crucial.

We want to be able to ensure that we have generated a test for every possible fault
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in a given circuit, so we must be able to identify redundant faults as part of our test

pattern generation.

1.1.2 The Scope of the Problem

The ability to test combinational circuits can be used to test sequential circuits. In

the 1960's and 70's, proponents of design for testability, who believe that a good logic

design not only works but can be economically tested, began publishing schemes

for segregating a sequential circuit into portions with and without state [CMPR64,

WA73, EW77]. Today such scan path techniques are used by many industrial and

academic organizations.

There are many variations on scan path techniques, but each involves using design

rules and additional logic to allow the �nished circuit to operate in two modes: normal

mode, in which the additional logic is transparent, and test mode, in which the circuit

state can be arbitrarily initialized or read out. In Figure 1.7 we show a circuit designed

using a simple scan path technique.

Combinational 
Logic
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Figure 1.7: Scan Path: Isolating circuit state

Each memory element is a member of a shift register called the scan chain. When

in normal mode, the registers act in parallel and their membership in the scan chain

is undetectable. When in test mode, the registers act serially, and an arbitrary test

pattern may be shifted into the memory elements. For our testing purposes, the

circuit can be viewed as a set of initializable registers feeding into a collection of
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combinational logic with results going back into another set of registers. To test the

circuit, we use test mode to shift in a test pattern, use normal mode for one clock

cycle, and then use test mode to shift out the result of the combinational operation.

1.2 Existing Solutions

There are several algorithmic automatic test pattern generation systems (ATPG sys-

tems) for combinational logic. Some ATPG systems work by generating algebraic

equations and performing symbol manipulation on the equations, but the most suc-

cessful ATPG systems perform their search for a solution in a topological, or struc-

tural, manner. In this section we will describe structural search and algebraic methods

and give examples of each.

1.2.1 Structural Search Methods

Structural search methods work using a data structure representing the circuit to be

tested. To generate a test pattern, they assign values corresponding to the discrepancy

at the faulted line (the fault site) and then search for consistent values for all circuit

lines such that the discrepancy is visible at a circuit output. The search is performed

using three basic operations:

Fault sensitization is the process of generating a discrepancy at the fault site. As

described in the �rst section, if we are looking for a test for a particular line

stuck at 0, then this line must take on the value 1 in the correctly functioning

circuit. Figure 1.8 shows the line values needed to sensitize the fault D stuck-at 1

in our sample circuit.

Fault propagation is the process of moving a discrepancy closer to a circuit output.

Using our notation, we want to get a 0/1 or a 1/0 to a circuit output. Figure 1.9

shows the line values needed to propagate D stuck at 1 to an output of our

sample circuit. Note that if line E were given the value 1 instead of the value 0,

the discrepancy would not be visible at a circuit output.
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X
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0/1

Figure 1.8: Fault sensitization

A
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C

D

E

X

0/1

0

1/0

Figure 1.9: Fault propagation

Line justi�cation is the process of assigning consistent values to all of the lines in

the circuit that were not assigned values through fault sensitization or fault

propagation. To perform line justi�cation on our sample circuit after the as-

signment of the values given in Figures 1.8 and 1.9, the only thing we need do

is give line C the value 1. The �nal assignment is shown in Figure 1.3.

If the circuit under test has no reconvergent fanout, the three steps described

above yield a test pattern without searching. Because of reconvergent fanout, it is

possible to assign a value to a line that will eventually be found to be inconsistent

with previously assigned values. For example, using Figure 1.6 again, suppose that

our ATPG system binds a logic value of 0 to the line E. At this point there are three

di�erent pairs of assignments that could be made to lines C and D. If the system
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chooses to assign the value 0 to line C and 1 to line D, it will be forced to assign 1

to A2 and B2 and a 0 to either A1 or B1. Either assignment is inconsistent since A1

must equal A2 and B1 must equal B2. In this case the ATPG system must backtrack

to the point when values were given to C and D and choose a di�erent assignment.

If the ATPG system then chooses to bind C to 1 and D to 0, it will eventually have

to backtrack again. Only when C and D are both bound to 0 can a solution be

found. Note that the system may have to backtrack during fault sensitization, fault

propagation, or line justi�cation.

When generating a test pattern for a complicated circuit, an ATPG system is likely

to spend all of its time in an unpro�table portion of the search tree unless it uses

some heuristics to raise the probability of �nding a solution. Structural search systems

di�er mostly in the heuristics that they use. We will mention four groundbreaking

ATPG systems and describe their seminal contributions. In the following chapters we

will describe how our system exploits the advances made by each of the four systems.

The D-algorithm [Rot66] (introduced in 1966 by Roth) was the �rst published al-

gorithmic topological search method; it is still popular today. The D-algorithm

is the basis for all existing structural search ATPG systems; it uses fault sensi-

tization, fault propagation, and line justi�cation as we have just described. The

D-algorithm uses heuristics that try to guarantee that all line assignments are

made with the goal of pushing a discrepancy toward a circuit output.

PODEM [Goe81] (introduced in 1981 by Goel) �rst described the problem of test

generation as a classic search through the binary tree describing all possible

circuit input values. PODEM uses the framework and formalisms of the D-

algorithm, but always binds line values at the circuit inputs (all other line

values are determined by implication). PODEM uses a backtrace operation that

is similar to line justi�cation to determine which circuit inputs should be bound

(and to what value). PODEM is faster than the D-algorithm for most circuits.

FAN [FS83] (introduced in 1983 by Fujiwara) improves on PODEM through three

new strategies:
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1. FAN has an improved backtrace operation that follows each possible path

back from the discrepancy to the circuit input: the improved backtrace

procedure allows FAN to avoid assignments that will eventually be proved

inconsistent.

A

D

E

F

G

B

C

Figure 1.10: D and F are points of unique sensitization for a fault at B

2. FAN performs an analysis of the circuit topology to identify points of

unique sensitization. When all paths from a discrepancy to a circuit output

must pass through a given line, that line is a point of unique sensitization.

In Figure 1.10, if there is a discrepancy at B, then E and G are points of

unique sensitization. Points of unique sensitization are valuable because

they must carry a discrepancy if the fault is detectable. This can imply

values for many di�erent circuit lines. For example, for a discrepancy at

B in Figure 1.10 to be detectable, we know that A and C must be bound

to 1.

3. FAN reduces its search space by taking advantage of the fact that it re-

quires no search to determine if the output of a circuit that is free of

reconvergent fanout can be set to a given value. Fujiwara divides all lines

in the circuit into free lines and bound lines. Bound lines are lines that lie

on any path between a fanout point and a circuit output. All lines that are

not bound lines are free lines, and free lines that are adjacent to a bound

line are head lines. In Figure 1.11, the bound lines, shown with bold lines,
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Figure 1.11: Circuit with head lines A and D

are D1, D2, E, and F; all other lines are free lines. Of the free lines, lines

A and D are head lines.

Subcircuits composed only of free lines are fanout free and may be ignored

until consistent values have been given to every bound line, so FAN stops

its backtrace operation at head lines (instead of continuing to a circuit

input as PODEM does).

FAN is faster than PODEM for most circuits [Fuj85a].

SOCRATES [STS88] (introduced in 1988 by Schulz et al) is an improvement on

FAN. SOCRATES improves on FAN's unique sensitization procedure, but more

importantly, SOCRATES is the �rst ATPG system that uses information from

non-local implications. We will use Figure 1.12 to illustrate how non-local im-

plications can be used by an ATPG system (this process is called learning by

the designers of SOCRATES).

In Figure 1.12, if B is bound to 1, then by direct implication, D and E must

be bound to 1, and therefore F must be bound to 1. However, if we bind F

to 0, it is impossible to conclude anything about the value of D and E because

they could be bound to any of three separate pairs of values (01, 10, or 00).

The fact that we don't know the values of D and E does not mean that we

don't know the value of B: if B bound to 1 implies F bound to 1, F bound to 0

implies B bound to 0. This means that if F is bound to 0 during any stage
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F

E

D
A

B

C

Figure 1.12: B = 1 implies F = 1, so F = 0 implies B = 0

of test pattern generation we can immediately conclude that B is 0. This kind

of added information is very valuable when the ATPG system is attempting to

determine if it has made an inconsistent assignment, and it can be crucial when

it comes to identifying redundant faults.

Socrates collects non-local implications on the circuit as a whole (static learning)

and non-local implications given a partial assignment of circuit values (dynamic

learning). It uses heuristics to guess whether a given non-local implication is of

value during test pattern generation.

SOCRATES is the most e�cient test pattern generation system available today

[SE88].

1.2.2 Algebraic Manipulation

Instead of performing a search on a data structure representing a circuit, algebraic

methods produce an equation describing all possible tests for a particular fault and

then simplify that equation. To see how it is possible to generate a formula that

describes a test set, we will look again at Figure 1.1. The formula for the output of

this circuit is

X(A;B;C) = A � B+ C:

If we use D as an intermediate variable, we can write the formula as

X(A;B;C) = F(D(A;B;C);A;B;C)
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where D(A;B;C) = A � B and F(D;A;B;C) = D + C:

Given this formula, the formula for the faulted circuit with D stuck-at 1 is

X0(A;B;C) = F(1;A;B;C)

To generate a test for D stuck-at 1, we want to ensure that X0, the output of the

faulted circuit, is di�erent from X, the output of the unfaulted circuit; we want

X(A;B;C) 6= X0(A;B;C):

Substituting in for X and X0 and substituting XOR for the di�erence operator, we

rewrite the formula as

F(D(A;B;C);A;B;C)� F(1;A;B;C):

Since we know that F(D(A, B, C), A, B, C) can only be di�erent from F(1, A, B, C)

if D(A, B, C) is not 1, we can transform the formula into

D(A;B;C) � (F(0;A;B;C)� F(1;A;B;C)):

Substituting for F and D, our formula for the set of tests for D stuck-at 1 is

(C� 1) � (A � B)

which simpli�es to

C � (A + B):

So the set of tests for D stuck-at 1 are those where C is bound to 1 and at least one

of A and B is bound to 01.

1One thing to notice here that will be important in the next chapter is that the validity of the
formula does not change if we introduce intermediate variables. If we introduce an intermediate
variable, we do not change the permissable values for the original variables. We do change the
solution set, but only because each satisfying binding will also contain bindings for the introduced
variables that are consistent with the original variables. In the example above, we could have
assigned the new intermediate variable X to the output of X(A,B,C,0) and the new intermediate
variable X0 to the output of X(A,B,C,1). Then the �nal formula for the test sets would be written

(X �X0) � (X = X(A;B;C; 0)) � (X0 = X(A;B;C; 1)) �D(A;B;C):

If we want we can introduce intermediate variables for every line in the circuit.
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We can generalize this procedure: Given any circuit with an output function of

F(X1; :::;Xn) and a fault site with intermediate variable Y and function Y(X1; :::;Xn),

we can rewrite the function as F(X1; :::;Xn;Y): Now the test set for Y stuck at 0 is

F(X1; :::;Xn; 0)� F(X1; :::;Xn; 1) �Y(X1; :::;Xn)

and the test set for Y stuck at 1 is

F(X1; :::;Xn; 0) � F(X1; :::;Xn; 1) �Y(X1; :::;Xn):

Both the formula for Y stuck at 1 and Y stuck at 0 have in common the formula

F(X1; :::;Xn; 0)� F(X1; :::;Xn; 1):

This formula is known as the Boolean di�erence of F with respect to Y and is written

dF/dY. To restate it, the Boolean di�erence of any function F with respect to its

variable Xi is written as

dF=dXi � F(X1; :::;Xi�1; 0;Xi+1; :::;Xn)� F(X1; :::;Xi�1; 1;Xi+1; :::;Xn):

The set of tests for Xi stuck at 0 is Xi � dF=dXi and the set of tests for Xi stuck at 1

is Xi � dF=dXi.

Once the formula using the Boolean di�erence is obtained, it is simpli�ed using

the basic laws of Boolean algebra. It can also be simpli�ed using identities speci�c

to the Boolean di�erence. For example, the following is an incomplete list of proven

Boolean di�erence identities [Ake59]:

1. dF=dXi = dF=dXi

2. d(dF=dXj)=dXi = d(dF=dXi)=dXj

3. d(F �G)=dXi = F � dG=dXi �G � dF=dXi � dF=dXi � dG=dXi

4. d(F + G)=dXi = F � dG=dXi �G � dF=dXi � dF=dXi � dG=dXi

5. d(F�G)=dXi = dF=dXi � dG=dXi
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The tedious nature of the algebraic manipulations involved in solving formulas

using the Boolean di�erence led to its disfavor as a practical tool for test pattern

generation. As examples of the prevailing attitude in the testing community toward

the Boolean di�erence method, here are several quotations from major texts that

touch on combinational logic test:

The algebraic methods, relying on symbol manipulation, are not as readily

implementable within the framework of a design automation system since

the design automation data bases are generally topological. A. Miczo,

Digital Logic Testing and Simulation [Mic86]

The [algebraic algorithms are] not very practical since the heuristics re-

quired to tolerate the NP-completeness of the test generation problem

are not available. Yet this group of algorithms serves the very important

purpose of enlightening the fundamental nature of testing problems. J.

A. Abraham and V. K. Agarwal, Fault-Tolerant Computing Theory and

Techniques [Pra86]

The Boolean di�erence is not used directly for practical test pattern gen-

eration. [...] The usefulness of the Boolean di�erence is as a tool for the-

oretical studies of testing and checking methods. E.J. McCluskey, Logic

Design Principles [McC86]

For all but very simple networks the calculation of the Boolean di�erence

is not practical. E.J. McCluskey, Logic Design Principles [McC86]

We agree that the symbolicmanipulation implicit in the Boolean di�erencemethod

is impractical. However, our method, which is neither a purely topological method

nor an algebraic one, involves using the topological structure of the circuit to extract

a formula equivalent to the formula produced by the Boolean di�erence method; it

is not only practical but performs better than most systems now in use. Instead of

performing symbol manipulation on the extracted formula, we run a Boolean Satis�-

ability algorithm on it. We will describe the Boolean satis�ability method in full in

the next chapter.



16 CHAPTER 1. INTRODUCTION



Chapter 2

The Boolean Satis�ability Method

In this chapter we describe our solution to the problem of generating a test pattern

for a single stuck-at fault in a combinational circuit. Our approach is to divide the

problem into two pieces: First, we extract a formula that de�nes the set of test

patterns that detect the fault. Second, we use a Boolean satis�ability algorithm to

satisfy the formula. The rest of this chapter is devoted to describing these two steps

in detail.

2.1 Extracting the Formula

2.1.1 The Representation of the Circuit

We use a directed acyclic graph (DAG) as a topological description of the circuit.

The nodes of the graph are circuit inputs, outputs, gates and fanout points, the edges

of the graph are circuit lines (wires), the sources of the graph are circuit outputs, and

the sinks of the graph are the circuit inputs. Every edge has an associated variable.

Figure 2.1 shows the DAG representation of the circuit in Figure 1.12. By walking

the graph starting at any circuit output, we can reach every node that can a�ect the

value of the output.

Every node of the DAG is tagged with a formula that represents the function

performed by that gate or fanout point. For example, an inverter with an input X

17
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Figure 2.1: The DAG representation of the circuit in Figure 1.11

and an output Y will be be tagged with the formula Y = X; an AND gate with the

inputs X and Y and the output Z will be tagged with the formula Z = X �Y. Every

node has a formula that contains only variables for its incoming and outgoing edges.

2.1.2 Translating Formulas into 3CNF

We will use 3-element conjunctive normal form, or 3CNF (also known as product of

sums form where each sum has at most three literals). Formulas written in 3CNF are

easy to manipulate programmatically. To get the 3CNF formula for an AND gate,

we start with the formula

Z = X �Y:

Using the identity P = Q � (P) Q) � (Q) P), we transform the formula into

(Z) (X �Y)) � ((X �Y)) Z):

Next, the identity P) Q � P +Q transforms Z) (X �Y) into (Z + X) � (Z + Y) and

(X �Y)) Z into X + Y + Z. So the �nal formula for an AND gate is

(Z + X) � (Z + Y) � (X + Y + Z):

This formula evaluates to 1 if and only if the values of the variables are consistent

with the truth table for an AND gate. For comparison, the disjunctive normal form

(sum of products) version of the same formula is

(X �Y � Z) + (X �Y � Z) + (X �Y � Z) + (X �Y � Z):
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In 3CNF formulas, one sum is called a clause. A clause with only one element is

a unary clause, a clause with two elements is a binary clause, and a clause with three

elements is a ternary clause. A formula with no ternary clauses is said to be in 2CNF

(2-element conjunctive normal form).

X

Y
Z

(Z + X)•

(Z + Y)•

(Z + X + Y)

X

Y
Z

(Z + X)•

(Z + Y)•

(Z + X + Y)

Z
(Z+ X)•

(Z+ Y)•

(Z+ X+ Y)

X

Y

Z
(Z+ X)•

(Z+ Y)•

(Z+ X+ Y)

X

Y

X
(X + Y)•

(X + Y) Y

X
(X + Y)•

(X + Y) Y

Figure 2.2: The formulas for the basic gates

We display the 3CNF formulas for the basic gates in Figure 2.2, but the gates need

not be basic to be included in this scheme: With the introduction of new variables,

we can produce the 3CNF form of any formula in time and space linear in the size of

the original formula. For example, the 3CNF formula for an AND gate with inputs

X, Y, and W and output Z, is

(Z + X) � (Z + Y) � (Z +W) � (X + Y +V1) � (V1 +W+ Z);

where V1 is an introduced variable. The formula for an XOR gate with inputs X and

Y and output Z is

(X + Y+ Z) � (X + Y + Z) � (X + Y + Z) � (X + Y + Z):

Later in the chapter we will explain that it is easier for us to satisfy CNF formulas

that have a preponderance of clauses in 2CNF, so we introduce intermediate variables

and change Z = X�Y into Z = (V1 +V2) � (V1 = X �Y) � (V2 = X �Y). The �nal

formula for the XOR gate looks like this:

(Z + V1) � (Z + V2) � (Z + V1 +V2)�

(V1 +X) � (V1 +Y) � (V1 +X+Y) � (V2 +X) � (V1 +Y) � (V1 +X+Y);
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where the �rst line corresponds to Z = (V1 +V2) and the second line corresponds to

(V1 = X �Y) � (V2 = X �Y).

2.1.3 Formulas for Unfaulted and Faulted Circuits

Because each gate and fanout point is tagged with a formula, we can extract a charac-

teristic formula for any circuit output (or subcircuit output) by starting at the output

and walking the graph, taking the conjunction of all of the formulas for the visited

nodes. The circuit of Figure 1.1 is repeated here as Figure 2.3; the gates have been

labeled by their characteristic formulas. The formula for the output is

(X + D) � (X + E) � (X + D + E) � (D + A) � (D + B) � (D + A + B) � (C + E) � (C + E):

We can represent a faulted version of an unfaulted circuit by making a copy of

the circuit, renaming the variables, and inserting two new nodes that represent the

presumed disrupted connection in the faulted circuit. That is, if the circuit has the

fault we want to test for, one value will be generated at the fault site, but another

value will forwarded on to the rest of the circuit. We tag the new nodes with unary

clauses that indicate the behavior of the fault we are interested in. For example,

Figure 2.4 shows the faulted version of the circuit in Figure 2.3. We add the formula

(D) to the node representing the correct behavior at the fault site, and we add the

formula (D0) to the node representing the faulted behavior at the fault site.

A

B

C

D

E

X

(D + A)•

(D + B)•

(D + A + B)

(X+ D)•

(X+ E)•

(X+ D+ E)

(C + E)•

(C + E)

Figure 2.3: Combinational circuit with labeled gates
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D'
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(D + B)•
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Figure 2.4: Circuit of Figure 2.3 with D stuck at 1

Because the unfaulted and faulted circuits will have identical behavior except at

those nodes that are a�ected by the fault, only the variables that are associated with

wires that lie on a path between the fault site and a circuit output need to be renamed.

We can extract a formula for the faulted output in the same way as we extracted

a formula for the unfaulted circuit: by starting at the faulted output, walking the

DAG, and taking the conjunction of all encountered nodes of the DAG. The formula

for the faulted circuit of Figure 2.4 is

(X0 +D0) � (X0 + E) � (X0 +D0 + E) � (D0) � (C + E) � (C + E):

We need not include the clause (D) in the formula for the faulted circuit because of

the implied discontinuity at the fault site.

To test for the given fault, we need only �nd a set of inputs that cause the faulted

output to di�er from the unfaulted output. We will have a formula for all possible

tests if we take the conjunction of the two extracted formulas and add an additional

formula for the XOR of the faulted and unfaulted output. We will call the result

of this �nal XOR, BD. The formula resulting from the XOR of the output of the

unfaulted circuit of Figure 2.3 and the faulted circuit of Figure 2.4 is

(X0 +D0) � (X0 + E) � (X0 +D0 + E) � (D0) � (C + E) � (C + E)�

(X + D) � (X + E) � (X + D + E) � (D + A) � (D + B) � (D + A+ B)�

(X + V1) � (X
0 +V1) � (V1 +X+X0) � (X + V2) � (X0 +V2) � (V2 +X+X0)�

(BD + V1 +V2) � (V1 + BD) � (V2 + BD);
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where the �rst line is contributed by the faulted circuit, the second line is contributed

by the unfaulted circuit, and the last two lines are contributed by the �nal XOR.

Figure 2.5 shows the circuit form of the formula to be satis�ed. There are several

clauses that appear in both the formulas for the faulted circuit and the unfaulted

circuit, but they need not be repeated because AND is idempotent.

A
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D

D'
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B

C

D

E

X

BD

Figure 2.5: The XOR of the faulted and unfaulted circuits must be 1

2.1.4 Boolean Di�erence Method Formula Equivalence

The extracted formula is equivalent to the formula that would be produced by the

Boolean di�erence method, in the sense that they are both satis�able or both un-

satis�able: every set of satis�able bindings for the formula produced by the Boolean

di�erence method is consistent with a satisfying binding for our formula, and every

set of satis�able bindings for our formula is a superset of a satisfying binding for

the formula produced by the Boolean di�erence method. The formula extracted by

our system is not exactly the same as one that would be produced by the Boolean

di�erence method because our formula has extra variables in it. These redundancies

will be helpful in �nding a satisfying assignment for the formula.

Looking again at the formula produced by the Boolean di�erence method, if the
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output of an unfaulted circuit is F(X1; :::;Xn;Y), and Y is the fault site, the formula

for Y stuck at 1 is

F(X1; :::;Xn; 0) � F(X1; :::;Xn; 1) �Y(X1; :::;Xn);

as noted in the last section of Chapter 1. The formula extracted for the faulted

circuit corresponds to F(X1; :::;Xn; 1); the formula extracted for the unfaulted circuit

corresponds to F(X1; :::;Xn; 0) �Y(X1; :::;Xn): The conjunction of all of the formulas

tagging nodes that lie between the fault site and any circuit input is Y(X1; :::;Xn);

the conjunction of all of the formulas tagging nodes that were not used to produce

Y(X1; :::;Xn) is F(X1; :::;Xn; 1).

To generate a test for the fault in question, we need to �nd a satisfying assignment

for the formula; if it cannot be satis�ed, the fault is undetectable.

2.2 Satisfying the Formula

As we saw in Chapter 1, 3SAT, the problem of satisfying a 3CNF formula, is an NP-

complete problem [Coo71]. So we have transformed one problem that in the worst case

will take exponential time in the number of its circuit inputs into another problem

that in the worst case will take exponential time in the number of its variables.

However, the class of formulas generated by combinational circuits is an interesting

sub-class of all 3CNF formulas, and we can use this fact to try to avoid the worst

case behavior of 3SAT. Many researchers have recognized that the average behavior

of a 3SAT algorithm can be improved dramatically if the set of formulas to be solved

�t a restricted pro�le [DP60, PB82]. The set of formulas produced by combinational

circuits �ts such a restricted pro�le.

At least two thirds of the clauses generated for the Boolean di�erence of a com-

binational circuit have only two disjuncts (are in 2CNF). This is true because each

two-input unate gate contributes two binary (2CNF) clauses and one ternary clause

(the basic unate gates are pictured in Figure 2.2) . Unate gates with more than two

inputs contribute more than two thirds binary clauses, and fanout points, bu�ers, and

inverters contribute only binary clauses. In practice we have found that 80% to 90%
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of the clauses are in 2CNF. The problem of satisfying a 2CNF formula, 2SAT, is sat-

is�able in time linear in the number of clauses plus the number of variables [APT79].

We may have an exponential number of 2SAT solutions, but we can use information

from the ternary clauses to guide the iteration through the 2SAT assignments.

2.2.1 Using 2SAT to Solve 3SAT

We use an algorithm from the 1970's for satisfying a 2CNF formula [APT79]. The

�rst step is to construct an implication graph. Each 2CNF clause (X + Y) can be

viewed as two implications: X) Y and Y) X . The implication graph for a 2CNF

formula shows all of the constraints imposed by 2CNF clauses on the logic values of

the variables involved.

More formally, for each variable X occurring in the 2CNF clauses, there are two

vertices in the graph, labeled X and X. For every 2CNF clause (X + Y) there are

two edges in the graph: one from X to Y, and one from Y to X. The edge represents

the logical implication between the two literals. We can now bind logic values to the

variables in the graph. Any assignment is legal as long as it does not cause a node

labeled 1 (true) to precede (or imply) a node labeled 0 (false). Before we label the

graph, we can simplify it by reducing strongly connected components to single nodes.

A strongly connected component is a maximal set of nodes in a graph such that every

node in the set is reachable from every other node in the set.

A strongly connected component represents a set of variables that are in an equiv-

alence class. If any equivalence class contains both a literal and its negation, the for-

mula is unsatis�able. After each strongly connected component is reduced to a single

node, the graph will not contain any cycles. Now we can �nd a binding for the 2CNF

formula by visiting the vertices in any topological order. We choose a topological

order that maximizes the number of variables in ternary clauses that are bound to 0

and thus narrowed to 2CNF or unary clauses.

As an example of how 2SAT works, consider the small circuit in Figure 2.6; imagine

that we wish to iterate through all possible bindings to the variables A, A1, A2, B,
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Figure 2.6: A simple circuit and its implication graph

and C. The formula for C is

(A + A1) � (A + A1) � (A + A2) � (A + A2)�

(A1 + B) � (A1 + B) � (C + A2) � (C + B)�

(A2 + B+ C);

where the �rst two lines are the 2CNF portion of the formula and the last line is the

ternary portion of the formula. The implication graph of the 2CNF portion of this

formula is shown in Figure 2.6. The graph has two strongly connected components:

fA2;A;A1;Bg and its compliment, fA2;A;A1;Bg: we will replace these strongly

connected components with the unit nodes E1 and E1, which results in the graph

shown in Figure 2.7. The �nal graph clearly shows that C implies C, and therefore

C must be bound to 0. Given this restriction, only one unbound node in the graph

remains, and it can assume either Boolean value and remain consistent with the

ternary clause.

2.2.2 Iterating through 2SAT Bindings

We have just described a method for constructing a satisfying assignment for the

2CNF portion of the formula by assigning values to the literals so that no node
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C

E1

C

E1

Figure 2.7: The reduced implication graph

labeled 1 has a directed path to a node labeled 0. Clearly there are many such

assignments: We want to construct a 2SAT assignment that is consistent with the

ternary clauses. We will do this by de�ning an order for the 2SAT assignments and

then constructing each assignment only so far as it is consistent with the ternary

clauses.

We order the 2SAT assignments by ordering the variables that appear in the 2CNF

clauses (we will discuss the metrics used to order the variables in Chapter 3). This

de�nes a total order on the 2SAT solutions: One total assignment precedes another

if the n-bit binary number representing the values of the variables (in the previously

�xed order) precedes the n-bit binary number for the other assignment. On partial

assignments, we use lexicographic order with unbound variables treated as less than

0. We can consider the 2SAT solutions in either ascending or descending order, but

until we discuss this further in Chapter 3, we will assume (without loss of generality)

that we consider them in descending order.

We start with V, the array of 2CNF variables (initially unbound), i, which points

to the �rst unbound variable in the array (initially set to 0), and dir, which keeps

track of whether or not we are backtracking (initially set to Forward). We call the

current pre�x of V the sequence of bound values V[0], V[1], . . . , V[i-1]. V[j] is bound

for all 0 � j < i. Our goal is to either �nd an assignment for the variables in V that is

consistent with the ternary clauses or to prove that no such binding exists. Figure 2.8

shows a loop (with loop invariants) that achieves this goal.
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The loop invariant:

1. Any binding that precedes the current pre�x falsi�es the formula.

2. If dir = Backward, any complete binding that extends the current pre�x falsi�es
the formula.

3. If dir = Forward, the current pre�x is consistent with the formula.

4. Any variables that are bound but are not part of the current pre�x are implied
by the current pre�x.

V  all Unbound; i  0; dir  Forward;

loop

if dir = Forward then
while i 6= size(V) and V[i] is bound do i  i + 1 end;
if i = size(V) then exit successfully end;
V[i-1] 0;
Set direct implications of V[i-1];
i  i + 1

elsif dir = Backward then
if i = 0 then exit unsuccessfully end;
temp V[i-1];
Undo direct implications of V[i-1];
V[i-1] Unbound;
if temp = 0 then

V[i-1]  1;
Set direct implications of V[i-1]

else

i  i - 1
end

endif

if no clause falsi�ed then dir  Forward else dir  Backward end
endloop

Setting or undoing direct implications: we keep a count of how many times
each variable is set to 1 or set to 0; a variable with a count of 3 has been
forced to 1 three times and a variable with a count of -3 has been forced to 0
three times. A variable is only bound when its count changes from 0 and is only
unbound if its count goes to 0.

Figure 2.8: 2SAT iteration loop
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A B C

D E F

Figure 2.9: Place a queen in every row of the board

Figures 2.9 through 2.11 show an example of 2SAT iteration (another example

will be presented in Section 3.3). In Figure 2.9 we show an abbreviated version of

a familiar constraint problem: the N-Queens problem. In this problem, we wish to

place two queens on a board with two squares on one side and three on the other

such that neither queen attacks the other. We can translate this problem into 3CNF

in the following manner:

Each of the six squares is associated with a variable A, B, C, D, E, or F that

is bound to 1 if a queen is placed in the square with the associated label and 0 if

no queen is placed in that square. We can require that a queen must be placed in

each row through two ternary placement clauses, and we can prevent a queen from

attacking another by adding 13 binary attack clauses. For example, the attack clause

(A + B) prevents queens from being simultaneously placed in squares A and B. The

complete list of clauses is

(A + B + C) � (D + E + F)�

(A + B) � (A + C) � (A + D) � (A + E) � (B + C) � (B + D) � (B + E) � (B + F)�

(C + E) � (C + F) � (D + E) � (D + F) � (E + F):

Figure 2.10 shows the implication graph generated from the attack clauses.

From the implication graph we can see that variables B and E each have �ve

outgoing implications, and variables A, C, D, and F each have four. Each of the

six variables appears once in the ternary (placement) clauses. We want to order

the variables so that the variables that place the most constraints on other variables

appear �rst. Since variables B and E have more outgoing edges, this means that they

must be assigned values before variables A, C, D, and F. The variable order B, E, A,
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A D B E C F

A D B E C F

Figure 2.10: The implication graph from the 2-queens problem

C, D, F is acceptable.

Having determined a variable order, Figure 2.11 illustrates an attempt to search

for a legal binding by stepping through the 2SAT bindings in descending order. The

�rst legal binding for the implication graph, 100000, cannot be extended to satisfy

the placement clauses because it allows for the placement of only one queen. The

second legal binding, 010000, is similarly unsatisfactory. However, the third legal

binding, 001001, satis�es the ternary clauses, and successfully concludes our search.

B E A C D F

0 0 1 0 0 1

Figure 2.11: A variable order for the 2-queens problem

2.2.3 Terminating the Search

We terminate the search for a 2SAT binding that satis�es the entire formula in one

of three ways:

1. We �nd a satisfying binding.

2. We prove that no binding exists.

3. We exceed the amount of computational e�ort we are willing to spend.
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As we mentioned earlier, though we can solve a 2SAT problem in linear time, there

may be an exponential number of solutions. In the absence of signi�cant theoretical

advances, there will always be instances of NP-complete problems that take more

time to complete than we want to wait; we would rather generate tests for all but

one of the faults of a circuit in a small number of seconds than wait four hours and

still not know if we will be given a successful test in the near future.

Pragmatics require that any implementation of our method stop searching for an

answer after a certain number of 2SAT solutions have been unsuccessfully extended

to a 3SAT solution. In the implementation that we describe in Appendix A, the

number of unsuccessful 2SAT solutions we will tolerate is equal to the size of the vari-

able array mentioned in Section 2.2.2. This backtrack limit was determined through

experimentation and is not derived from the theoretical behavior of the search. In

Chapter 3 we will discuss modi�cations to the satis�er so that instead of giving up

when no solution is found after a given number of tries, we reorder the variables using

a di�erent metric and try again.

2.3 Results

In Appendix A we describe a system implemented using the Boolean satis�ability

method and a set of benchmark circuits used by ATPG system designers. While

the detailed breakdown of the system performance is presented in Appendix A, in

Table 2.1 we present the summary of the system performance on the ten benchmark

circuits. Table 2.1 contains the total time the system spent on each circuit, the

percentage of total faults covered by the system, the percentage of faults proved

redundant by the system, and the percentage of faults that the system aborted.

The performance reported is that of a system that includes heuristics not yet

described. Speci�cally, this system includes active clauses, critical value clauses, non-

local implication clauses, and repeated modi�cation of 2SAT variable order. Each of

these heuristics will be described in detail in the next chapter.
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Time Percent of Faults
Circuit (seconds) Covered Redundant Aborted
C0432 10.7 99.09 0.97 0.00
C0499 10.6 98.73 1.27 0.00
C0880 44.2 100.00 0.00 0.00
C1355 28.1 99.45 0.55 0.00
C1908 128.9 99.49 0.51 0.00
C2670 380.9 95.08 4.92 0.00
C3540 354.3 95.84 4.16 0.00
C5315 111.2 98.79 1.21 0.00
C6288 197.5 99.55 0.45 0.00
C7552 639.0 98.18 1.82 0.00

Table 2.1: Base level system summary

Our system is one of only two published that have produced tests for or proved

redundant every fault in the benchmark circuits.
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Chapter 3

Heuristics

The algorithm we described in the previous chapter is complete: If no test pattern for

a fault exists, we will eventually prove it; if a test pattern exists, we will eventually �nd

it. However, we can speed up the satis�er tremendously by �guring out how to quickly

determine that some portions of the search tree contain no solutions and therefore

do not need to be searched. Like topological ATPG systems, we can take advantage

of structural information to avoid searching unpro�table sections of the search tree:

any heuristic that can be stated in the topological domain can be translated into a

modi�cation of the formula to be satis�ed.

In this chapter we will describe how we translate several topological heuristics into

modi�cations to our algorithm, and we will describe the e�ect that these modi�cations

have on the e�ciency of the base level system. When we conclude that a change

improves the e�ciency of our method, we will be drawing upon experiments run with

a complete ATPG system using the Boolean satis�ability method. At the end of

Chapter 2 we presented a system summary for a system that includes many of the

heuristics we will be presenting. For each heuristic included in the base-level system,

we will give a performance summary for the system without the chosen heuristic.

For each heuristic not included in the base-level system, we will give a performance

summary for a system that includes the heuristic. In Appendix A we will describe

the complete system, describe a set of benchmarks used to evaluate our system (and

other systems), and give precise performance measures for the system as a whole.

33
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Each of the heuristics we will discuss is implemented in our system by adding to

or subtracting from the formula to be satis�ed. By adding or subtracting clauses we

can avoid portions of the search tree. When we subtract variables we are making the

search tree shorter, and when we add certain restrictive clauses we ignore branches of

the search tree. In either case, we must ensure that the change preserves satis�ability.

3.1 Adding Clauses to the Formula

We can take the basic formula and add clauses that explicitly state information that

the satis�er can eventually derive, but perhaps only after a great deal of search. The

simplest example of such redundant information is the value of the faulted line with

the unfaulted circuit. For example, the formula for the fault shown in Figure 2.5

contains the unary clause (D0) (in English, the faulted value of the line is 1). The

satis�er can derive that the variable D must take on the value 0 (for the XOR of the

faulted and unfaulted circuits to be equal to 1), but we add that information explicitly

by adding the clause D to the formula. Adding this kind of derivable information can

speed up the satis�er by an order of magnitude. In this section we will describe several

di�erent kinds of redundant information as well as what e�ect the added redundancies

have on our system.

3.1.1 Non-local Implications

As we discussed in Chapter 1, it is possible to explicitly derive non-local implications

by examining the reconvergent fanout in a circuit. Figure 1.12 is repeated here (with

tagged gates) as Figure 3.1. Once again, if line B has the value 1, line F has the

value 1; conversely, if line F has the value 0, line B has the value 0. SOCRATES

discovers this implication by performing a structural analysis of the circuit [STS88];

we �nd it by analyzing the formula representing the circuit.

Given the formula for an unfaulted circuit, we can list all the non-local implications

of a given variable assignment by binding the variable and then noting the direct

implications that use a ternary clause. Any implication that involves a ternary clause
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F

(F + D)•

(F + E)•

(F + D + E)

(D + A)•

(D + B)•

(D + A + B)

(E + B)•

(E + C)•

(E + B + C) E

D
A

B

C

Figure 3.1: Non-local implications: Add (B + F)

must come from reconvergent fanout. For example, the complete formula for the

circuit in Figure 3.1 is

(F + D) � (F + E) � (F + D + E)�

(D + A) � (D + B) � (D + A + B) �

(D + A) � (D + B) � (D + A + B)

Binding B to 1 causes the binary clauses (D + B) and (E + B) to be promoted to

the unary clauses (D) and (E). When D and E are bound to 1, the ternary clause

(F + D + E) is promoted to a unary clause, which causes F to be bound to 1. The

fact that a ternary clause was used to derive the direct implication that B bound

to 1 implies F bound to 1 means that it is a non-local implication. By adding the

explicit clause (B + F) we insure that any time F is bound 0, B will also be bound

to 0 without having to do any case-splitting.

We could add all the non-local implications for a circuit to every formula that we

try to satisfy, but we only add the non-local implications if the satis�er fails on the

original formula. The process of �nding the implications can be time consuming, and

we do not want to spend the time when the formula would be easy to solve without

the added information.

As we can see by comparing Table 3.1 with Table 2.1 on page 31, the great majority

of patterns can be generated without non-local implications, but the few that could

not be generated easily without non-local implications could not be generated even
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when the satis�er was allowed to run 1000 times as long as it normally does. Non-local

implications are vital when it comes to processing di�cult faults.

Time Percent of Faults
Circuit (seconds) Covered Redundant Aborted
C0432 10.7 99.09 0.91 0.00
C0499 10.6 98.73 1.27 0.00
C0880 44.2 100.00 0.00 0.00
C1355 28.0 99.45 0.55 0.00
C1908 128.9 99.49 0.51 0.00
C2670 301.5 94.84 4.62 0.44
C3540 354.3 95.84 4.16 0.00
C5315 110.8 98.79 1.21 0.00
C6288 195.8 99.55 0.45 0.00
C7552 638.3 98.18 1.82 0.00

Table 3.1: System performance without non-local implications

3.1.2 Active Clauses

When the D-algorthm was introduced, Roth concentrated on trying to get a discrep-

ancy to a circuit output [Rot66]. We might say that of the three steps for test pattern

generation, Roth saw fault sensitization and propagation as more important than line

justi�cation. This approach made intuitive and practical sense: �rst discover if it is

possible to create a path from the fault site to a circuit output such that every line

on that path has a discrepancy (�nd a sensitized path to a circuit output) and then

try to justify the values needed for the path.

We can modify our formula so that our approach also looks for a sensitized path.

But there is a di�erence between the sensitized path of the D-algorithm and a sensi-

tized path that we need for our formula: The D-algorithm searches for a solution by

explicitly enumerating all possible combinations of sensitized paths, but we are only

speeding up our search by taking advantage of the existence of at least one sensitized

path for any detectable fault.



3.1. ADDING CLAUSES TO THE FORMULA 37

If a fault is detectable, there must be at least one sensitized path from the fault site

to a circuit output. There may be more than one path, but we only need to �nd one:

we will call this particular sensitized path the active path. Each line that is a member

of the active path is an active line. Every active line must have a discrepancy, but

since there may be other sensitized paths, not all lines with discrepancies are active

lines. Figure 3.2 shows active paths for two circuits with a fault at line D.

A
B

C

D

E

A

B

C
D

D

D

E

F

1

2

F

Figure 3.2: An active path for D faulted is shown with thick lines

To �nd an active path, we add clauses that describe how we would go about

�nding such a path manually: First, we know that the fault site is on the active

path (if one exists). As for the other lines, if a line is on an acceptable active path

and it is an input to a single output gate, the output must also be on the active

path; if it is an input to a multiple output gate, one of the outputs must be on the

active path. To put it formally, for each line that lies between the fault and a circuit

output we allocate a variable (called the active variable for the line), and for each

gate that lies between the fault and a circuit output we add several clauses (called

the active clauses for that gate). We will use the notation that if a line has the name

(variable) X, its active variable is ActX. For each single output gate with input X and

output Y we add the clause (ActX +ActY) (in English, if X is active, Y is active).

For each multiple output gate with input X and output Y and Z we add the clause
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(ActX +ActY +ActZ) (in English, if X is active, either Y is active or Z is active).

Figures 3.3 and 3.4 show examples of these clauses.

X

Y
Z

Figure 3.3: If X is active, Y must be active: (ActX +ActY)

X

X

X

1

2

Figure 3.4: If X is active, either X1 or X2 must be active: (ActX +ActX1
+ActX2

)

If we only added the clauses we have described so far, we would �nd any path

from the fault site to a circuit output and call it the active path (whether or not

it was possible to sensitize it). We must also add clauses that ensure that the path

is made up entirely of lines with discrepancies. For each potentially active line X,

we add the formula (ActX +X+X0) � (ActX +X+X
0

) (in English, if X is active, the

unfaulted value of X di�ers from the faulted value of X). For example, for the circuit

in Figure 2.5 we allocate the variables ActD and ActX, and add the formula

(ActD +D +D0) � (ActD +D+D0) � (ActX +X+X0) � (ActX +X+X0)

to the basic formula we mentioned in Chapter 2.

As we can see by comparing Table 3.2 with Table 3.1, by adding the active implica-

tion clauses, we greatly increase the e�ciency of our system. Without the implication

clauses we abort on many of the faults.
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Time Percent of Faults
Circuit (seconds) Covered Redundant Aborted
C0432 9.6 99.03 0.73 0.24
C0499 109.6 98.64 0.00 1.36
C0880 63.9 99.60 0.00 0.40
C1355 137.8 99.45 0.00 0.55
C1908 344.1 98.62 0.52 0.86
C2670 1410.6 94.22 0.67 5.11
C3540 8105.2 93.21 1.72 5.07
C5315 615.4 98.34 0.71 0.95
C6288 14007.3 99.55 0.24 0.21
C7552 3384.4 97.14 0.14 2.72

Table 3.2: System performance without active clauses or non-local implications

3.1.3 Requiring Critical Values

If a gate is on the active path, we know that it must propagate the discrepancy. This

means that the gate inputs not on the active path must take on certain critical values

that will allow the fault to be propagated. For example, if an AND gate is on the

critical path, none of its non-active inputs can take on the value 0: if they did, the

AND gate would always have the output 0, and no discrepancy could be propagated.

On the other hand, a non-active input to an AND gate on the active path could have

a discrepancy. In this case, if the non-active discrepancy is the same as the active

discrepancy, the fault is propagated (0/1 AND 0/1 is 0/1); if the discrepancy is the

opposite of the active discrepancy, the fault is not propagated (0/1 AND 1/0 is 0/0).

Figure 3.5 shows two legal critical assignments for a 4-input AND gate (the active

path is shown by a bold line), and Figure 3.6 shows illegal assignments for the same

gate.

We can come up with similar rules for all the basic gates: Non-active inputs to

gates implementing monotonic functions must either have a discrepancy identical to

that of the active input, or have no discrepancy and assume a static critical value

(AND and NAND gates require static critical values of 1, and OR and NOR gates

require static critical values of 0). For XOR and XNOR gates on the active path, we
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must require that their non-active inputs have no discrepancies (0/1 XOR 1/0 is 1

and 0/1 XOR 0/1 is 0).

Given these requirements, we can now add clauses requiring critical values for

every gate between the fault site and a circuit output. For example, the OR gate in

Figure 2.4 is on the active path, and its input E cannot carry a discrepancy. We could

add the clause (ActD + E) (in English, if D is active, E must be 0) to the formula to

be satis�ed.

1/0

1/01

1
1

1/0
1

1
1/0

1/0

Figure 3.5: Legal critical assignments

1/0

01

1
0/1

1/0

01

1
0

Figure 3.6: An illegal critical assignment

Explicitly requiring critical values for gates propagating a discrepancy is of great

value for the topological ATPG systems; in our case, the added clauses are not as

valuable. The added clauses not only add redundant information, but the information

they add is usually derived by the satis�er in a few simple steps.

Adding the critical clauses is inexpensive, and they can never retard the search

for a solution, so we add the critical clauses to our base level system. As we can see

by comparing Table 3.3 with Table 3.1, there are cases where critical value clauses

are useful.
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Time Percent of Faults
Circuit (seconds) Covered Redundant Aborted
C0432 9.5 99.03 0.97 0.00
C0499 10.3 98.64 1.36 0.00
C0880 42.5 100.00 0.00 0.00
C1355 27.5 99.45 0.55 0.00
C1908 177.2 99.43 0.51 0.06
C2670 528.6 94.84 4.62 0.44
C3540 351.2 95.89 4.11 0.00
C5315 103.7 98.76 1.24 0.00
C6288 185.8 99.55 0.45 0.00
C7552 658.3 98.15 1.82 0.03

Table 3.3: System performance without critical clauses or non-local implications

3.1.4 Determining Unique Sensitization Points

We can build a preprocessor that identi�es all of the unique sensitization points for

each possible fault site by generating the active clauses for every gate in the circuit

and determining the non-local implications of the active clauses. For example, looking

at Figure 3.1 again, just as we generated the non-local implication (B + F) from the

formula for the circuit, we can also generate (ActB +ActF). That is, we can derive

that if B is active, F must be active.

Many authors of topological ATPG systems place great importance on prepro-

cessing the circuit structure to derive the unique sensitization points (points of total

reconvergence) in the circuit [FS83, STS88], but such a preprocessing step is not nec-

essary for us. In the process of �nding an active path, our satis�er will always �nd all

the unique sensitization points without explicitly searching for them. We have never

found a case where explicitly deriving the unique sensitization points improved the

performance of our system.
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3.2 Removing Clauses from the Formula

We can remove a variable from the formula (along with all the clauses containing the

variable) if we are guaranteed that removing the variable will not cause a satis�able

formula to appear to be an unsatis�able one (even if removing a variable will remove

some satisfying bindings from the solution set for the original formula). We don't

need to �nd all satisfying bindings|we only need to �nd one.

We can mimic structural heuristics that avoid searching some portions of the

circuit by removing variables from the formula.

3.2.1 Avoiding Fanout-Free Subcircuits

As described in Chapter 1, the FAN algorithm stops its backtrace procedure at head

lines so that it can avoid searching fanout-free portions of the circuit [FS83]. We can

can restrict our search space in a similar manner by removing variables and clauses

corresponding to fanout-free portions of the circuit. To explain our method, we must

�rst explain the determines relation.

We say that variable V determines variable W if either an assignment of 0 or 1

to V will cause W to appear in the formula only negated or only unnegated. In this

case, we may remove all clauses containing W from the formula and postpone the

assignment of W until after the �nal assignment of V has been made.

As an example, in the Boolean di�erence formula presented for the circuit in

Figure 2.5, E determines C but C does not determine E. In fact, every variable in

the formula but BD is determined by some other variable. Since the circuit from

which we produced the formula is completely fanout free, it is not surprising that a

satisfying binding can be found with no search.

A more interesting example appears in Figure 3.7 (where the triangle with input

E and output E1 and E2 represents a fanout point). The characteristic formula for

G would normally consist of 13 clauses, but the removal of all clauses containing

variables A, B, and C will leave only 8 clauses in the remaining formula because F

determines A and E determines B and C.

Unfortunately, our technique as stated will not remove as many variables as may
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Figure 3.7: All clauses containing A, B, or C can be removed from the formula

be safely removed from the formula. In Chapter 2 we mentioned that we had a choice

of using a 4-clause or a 9-clause characteristic formula for an XOR gate: in neither

representation can we determine that the output of the XOR gate determines the

input. For example, the 4-clause formula for an XOR gate with inputs X and Y and

output Z is

(X + Y+ Z) � (X + Y + Z) � (X + Y + Z) � (X + Y + Z):

Binding Z to 1 leaves the formula (X + Y) � (X + Y); in which both X and Y appear

negated and unnegated (the formula says X is not equal to Y). Similarly, binding

Z to 0 leaves the formula (X + Y) � (X + Y); which also leaves X and Y appearing

negated and unnegated (the formula says X equals Y). Even though we know that

given the output of an XOR gate, we can set the inputs without searching, we can't

get that information using the determines relation. This seems to be a case of one

variable determining two variables jointly instead of one variable at a time.

As we can see by comparing the times fromTable 3.4 with the times fromTable 3.1,

even on circuits with no XOR gates (only the C0432 and C0499 circuits contain

XOR gates), we have found that minimizing the search tree by removing determined

variables does not help our system (neither does it hurt it). We speculate that our

satis�er does not spend much time in the portion of the search tree being eliminated

by the FAN heuristic, but we need to design further experiments to con�rm this.
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Time Percent of Faults
Circuit (seconds) Covered Redundant Aborted
C0432 12.7 99.09 0.97 0.00
C0499 13.1 98.73 1.27 0.00
C0880 55.3 100.00 0.00 0.00
C1355 33.1 99.45 0.55 0.00
C1908 149.5 99.49 0.51 0.00
C2670 244.1 95.08 4.92 0.00
C3540 403.3 95.84 4.16 0.00
C5315 131.9 98.79 1.21 0.00
C6288 218.8 99.55 0.45 0.00
C7552 742.1 98.18 1.82 0.00

Table 3.4: System performance with FAN-reduced formulas

3.3 Modifying 2SAT Variable Order

We want to iterate through the 2SAT solutions in an order that maximizes our chances

of quickly discovering a solution that can be extended to a satisfying assignment for

the entire 3CNF formula. In Chapter 2 we explained how we use a metric to determine

the order of variable assignment. In fact, we do not use one metric, we use three. Like

others who produce ATPG systems [MR89], we have noted that independent search

strategies are often e�ective on di�erent classes of faults. To use the terminology

of Min and Rogers, search strategies that have largely disjoint solution sets (with a

given search or backtrack limit) are called orthogonal search strategies. By limiting

the search with a given strategy and switching to a new strategy when no perceivable

progress is made in a given period, we can increase our coverage.

Each of the three heuristics for variable order that we use make intuitive sense

because each attempts to keep the search as constrained as possible. If the search is

not constrained, we often �nd that the �rst half of the variables are given an initial

assignment, and then the second half of the variables 
uctuate wildly, never counting

enough to exit the �rst half of the search tree.
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Figure 3.8: Implication graph for (A + B) � (B + C) � (A + C)

As we explain the three strategies, we will use the following example: Given

the 3SAT formula

(A+ B) � (B + C) � (A + C) � (A + B + C);

Figure 3.8 shows the implication graph for the 2SAT portion of the formula. We will

describe how the search for a satisfying assignment for this formula would di�er under

the three strategies. The three orderings are:

1. We order the variables from high to low by the number of other variables they

directly force to 0 when bound. We then step through the 2SAT solutions in

descending order. That is, if we are not forced to assign a given variable to 0,

we will bind to 1. Figure 3.9 shows the search tree for our example. First A

will be bound to 1, which will force B to be bound to 0. After we bind C to 1,

the �nal binding is A = 1, B = 0, C = 1.

By using this strategy, we are attempting to assert the strongest constraints

at every opportunity|whether the variable is bound to 1 or to 0. The more

constraints we trigger at the beginning of a search, the fewer guesses we will

have to make because so much of our search will be directed.

2. We use the same variable order as in Strategy 1, but we step through the

solutions in ascending order. That is, if we are not forced to assign a given

variable to 1, we will bind it to 0. The search tree is the same as for Strategy 1,

except that instead of searching the tree from right to left, we search it from
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Figure 3.9: The search tree for the �rst two strategies

left to right. We didn't �nd a solution in the high-ordered section of the tree, so

we look in the low ordered section. For our example, �rst A will be bound to 0,

which will force C to be bound to 0. Upon binding B to 0 we have a solution

consistent with our ternary clause: A = 0, B = 0, C = 0.

3. Like Strategy 1, we order the variables by the number of other variables that

they force to 0, but unlike Strategy 1, we are interested only in the number

of other variables that are forced to 0 when the variable is bound to 1. An

additional di�erence with Strategy 1 is that this ordering is a lexicographic

ordering: variables that force an equal number of other variables through 2SAT

implications are ordered by their occurrence in the ternary clauses. We step

through the 2SAT solutions in descending order. Figure 3.10 shows the search

tree for our example. First we bind B to 1, which will force A and C to be bound

to 0, leaving us a solution consistent with the ternary clause: A = 0, B = 1,

C = 0. By using this strategy, we are also attempting to assert the strongest

possible constraints at every opportunity, but this time we will trigger the most

constraints only if the variables are bound to 1. Since we are stepping through

the bindings in descending order, the constraints triggered by binding a variable

to 1 are more likely to come into play.
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Figure 3.10: The search tree for the third strategy

The strategies we have just described are only three of the many possible search

strategies we could have used. In practice, we have found the three strategies work

well in concert. Strategy 2 will often �nd a solution when Strategy 1 will not. Since

they explore the same solution space, but in opposite orders, it is easy to see that

they are orthogonal searching strategies. Strategy 3 builds a markedly di�erent tree

from the �rst two only in cases where the assumptions used to build the �rst tree

were invalid. That is, Strategy 1 may place a variable high in the ordering because it

causes many constraints when it is bound to 0, but if the variable is only ever bound

to 1, those constraints do not direct the search. By switching to an ordering that

will strongly direct the search in the expected case, we can come up with a di�erent

solution set. Table 3.5 shows how many faults are aborted by the system using each

strategy without the other two strategies.
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Circuit Strategy 1 Strategy 2 Strategy 3 Composite
C0432 2 6 2 0
C0499 0 25 2 0
C0880 6 0 0 0
C1355 0 0 0 0
C1908 2 1 11 0
C2670 10 14 14 10
C3540 0 4 0 0
C5315 4 15 2 0
C6288 0 0 0 0
C7552 27 18 84 0

Table 3.5: Aborted Faults for three strategies (without non-local implications)



Chapter 4

Conclusions

In this dissertation we presented the Boolean satis�ability method for generating test

patterns for single stuck-at faults in combinational circuits: we extract a formula for

the test set of a fault and then we satisfy that formula. This chapter summarizes the

main conclusions and suggests possible future work.

4.1 Summary

The Boolean satis�ability method is general, 
exible, and e�ective. By separating the

solution from the exact form of the problem, we can solve a larger class of problems

than can more restrictive systems. As we discussed in Chapter 3, we can translate

traditional structural heuristics into our domain, and as we discussed in Section 2.2,

we can incorporate heuristics that would be di�cult to implement in a structural

search system.

Our system achieves total test coverage: SOCRATES is the only other system to

achieve 100% coverage on the Brglez-Fujiwara benchmarks. It is not the fastest system

available today (that honor goes to the SOCRATES system), but the strength of our

model leads us to believe that we will gain signi�cant performance improvements as

the system matures. The structural search methods have had the bene�t of more

than a decade of program development and craftmanship; we look forward to the

bene�t the Boolean satis�ability method will obtain through similar attention.
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4.2 Future Work

We would like to exploit the 
exibility of our method by extending the system to

handle additional fault models. By separating the form of the problem from the

form of the solution, we can solve a larger class of problems than those we originally

designed the system to handle. We already know how to extract a logical formula for

the set of tests for single stuck-at faults. If we can extract formulas for non-classical

faults, we can use our Boolean satis�er to produce test patterns for non-classical

faults.

Faults that can be described as additional circuit logic can be more easily de-

scribed in our system than in the traditional structural search methods. We can

easily generate formulas for multiple stuck faults, or for bridging faults without feed-

back (commonly modelled as wired-and or wired-or failures). Bridging faults that

cause feedback may also be possible. Using the Boolean satis�ability method, we

can add constraints that prevent or cause oscillation, depending on our goal (for

some technologies, the mere presence of a bridging fault causing oscillation could be

detected by a change in circuit power consumption).

Another fault model receiving increasing attention is delay fault testing. In order

to test for delay faults, we need a pair of input patterns. An algebra for test generation

for delay faults has been developed by Iyengar et al. [IRS88a, IRS88b]. This algebra

may be translatable into the Boolean satis�ability domain; our preliminary assessment

is that it is a good match for our technique because of the ease of including constraints.

For example, given a pair of patterns, it is possible to add constraints that avoid

generating hazards on the lines that propagate the delay fault error to a circuit

output.

One major enhancement to our system would be to modify it to detect faults

in sequential circuits. Our model lends itself to application on sequential circuits by

having a variable represent the value of the faulted or unfaulted circuit during a given

clock cycle. We look forward to discovering if this natural extension can be made as

e�cient as it is conceptually simple.

One �nal enhancement to the current system that we would like to work on is
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the development of a parallel version of the system. Much theoretical work has been

done on the parallelization of satis�ability algorithms: the use of some of these ideas

for something as practical as test pattern generation would be quite educational.
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Appendix A

The Data

This appendix contains performance numbers for the Boolean satis�ability method

described in Chapters 2 and 3 of this dissertation. Before we present the results, we

need to describe the remaining pieces of the system and how they work in concert

with the algorithmic test pattern generation.

A.1 The System as a Whole

Our system accepts circuit descriptions in Tegas Description Language (TDL). Be-

fore test pattern generation begins, we translate the TDL into an internal form and

produce a collapsed fault list.

We collapse the faults by visiting each gate in the circuit and replacing equivalence

class members with one representative. For example, since AND gate inputs stuck-

at 0 and an AND gate output stuck-at 0 cause the same behavior in the output of the

AND gate, any inputs stuck-at 0 may be replaced by the output stuck-at 0. Other

gates are treated similarly: NAND gates with inputs stuck-at 0 and output stuck-

at 1, OR gates with inputs stuck-at 1 and output stuck-at 1, and NOR gates with

inputs stuck-at 1 and output stuck-at 0. Faults on the inputs of bu�ers or inverters

are translated to the outputs. Since we never visit a circuit output before visiting all

of its inputs, it is common for faults to be translated through many gates. Figure A.1

shows the faults remaining on the circuit from Figure 1.6 after fault collapsing; the
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stuck-at 0 faults on the inputs of the �rst two AND gates are translated to the

outputs, and then these two faults are translated to the output of the �nal AND

gate. Although the circuit has 18 potential stuck-at faults to be tested, it can be

completely tested for these faults by generating test patterns for only 12 faults.

A

B

C

D

E

A

B

A

B2

2

1

1

Figure A.1: Collapsed Faults: 2 for stuck-at 1 and � for stuck-at 0

After wirelist translation and fault collapsing, two phases of test pattern genera-

tion follow: random and algorithmic.

The �rst phase of test pattern generation is the random phase: We use the logic

word operations of the computer to simulate 32 pseudo-random patterns against one

target fault. The system is modeled after the parallel-pattern, single fault propagation

(PPSFP) simulator reported by Waicukaski et al [WEF+85]. Figure A.2 shows how

a 3-bit word can be used to simulate three patterns on the circuit from Figure 1.1. In

this way we generate patterns for the easily tested faults (generally 80% to 99% of the

total faults). When one complete PPSFP pass produces fewer than a predetermined

number of patterns (currently two), the second phase, algorithmic pattern generation,

begins.

During the algorithmic pattern generation phase, each pattern generated is sim-

ulated (using a simple single pattern, single fault propagation simulator) so that any

faults detected by the new pattern may be removed from the fault list. If the system

backtracks too many times during the 2SAT iteration (described in Chapter 2), the

fault is abandoned.

We produced test sets for ten sample circuits collected by Franc Brglez and Hideo
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Figure A.2: Using word operations to simulate three patterns simultaneously

Fujiwara and distributed at the 1985 ISCAS Conference [BF85].

The test generation was run on a Titan, an experimental RISC machine devel-

oped at the Digital Equipment Corporation Western Research Laboratory. A Ti-

tan is about 10 times faster than a VAX-11/780. The implementation is written in

Modula-2.

A.2 The Numbers

Table A.1 shows the time spent for each individual circuit during each of �ve phases:

translation of the wirelist into internal form, generating and simulating semi-random

test patterns, extracting formulas, satisfying formulas, and simulating the patterns

found by formula satisfaction. For all circuits but the C6288, our system spends most

of its processing time satisfying extracted formulas.

Table A.2 shows the number of faults that require test patterns, the number of

faults after fault collapsing, the number of faults covered by the semi-random test

pattern generation and simulation, the number of faults covered by extracting and

satisfying a formula, and the number of faults proved redundant by extracting and

falsfying a formula.

Table A.3 shows the number of patterns produced by each phase and the percent-

age of faults covered, proved redundant, or aborted by the complete system.
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Time in Seconds
Circuit Parsing Random TPG Extraction Satisfying Simulation Total
C0432 .5 .9 .5 8.7 .1 10.7
C0499 .6 1.0 .9 7.9 .2 10.6
C0880 .9 2.1 1.2 39.5 .5 44.2
C1355 1.4 9.6 1.9 14.7 .5 28.1
C1908 2.0 9.7 9.7 101.8 5.7 128.9
C2670 2.9 5.3 19.5 350.0 3.2 380.9
C3540 3.7 37.3 41.6 260.7 11.2 354.3
C5315 5.4 8.5 10.8 84.7 1.8 111.2
C6288 6.9 128.1 27.0 35.5 0.0 197.5
C7552 7.9 20.9 51.0 536.9 22.3 639.0

Table A.1: Base level system timing

Faults in Circuit Faults covered by Proved
Circuit Uncollapsed Collapsed Random Algorithmic Redundant Aborted
C0432 864 438 421 13 4 0
C0499 998 628 595 25 8 0
C0880 1660 798 760 38 0 0
C1355 2710 1436 1389 39 8 0
C1908 3816 1754 1469 276 9 0
C2670 5340 2357 1890 351 116 0
C3540 7080 3292 3036 119 137 0
C5315 10630 4858 4762 37 59 0
C6288 12576 7616 7582 0 34 0
C7552 15104 7170 6518 521 131 0

Table A.2: Base level system number of faults
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Number of Patterns Percentage of Faults
Circuit Random Algorithmic Covered Redundant
C0432 70 7 99.09 0.91
C0499 53 19 98.73 1.27
C0880 94 21 100.00 0.0
C1355 90 18 99.45 0.55
C1908 64 110 99.49 0.51
C2670 95 81 95.08 4.92
C3540 190 79 95.84 4.16
C5315 191 27 98.79 1.21
C6288 47 0 99.55 0.45
C7552 297 146 98.18 1.82

Table A.3: Base level system patterns and percentage coverage
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