
J U L Y 1 9 8 9

WRL
Research Report 89/8

A Unified Vector/Scalar
Floating-Point
Architecture

Norman P. Jouppi, Jonathan Bertoni, and David W. Wall

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

A Unified Vector/Scalar
Floating-Point Architecture

Norman P. Jouppi, Jonathan Bertoni, and David W. Wall

July, 1989

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

In this paper we present a unified approach to vector and scalar computa-
tion, using a single register file for both scalar operands and vector elements.
The goal of this architecture is to yield improved scalar performance while
broadening the range of vectorizable applications. For example, reduction
operations and recurrences can be expressed in vector form in this architec-
ture. This approach results in greater overall performance for most applica-
tions than does the approach of emphasizing peak vector performance. The
hardware required to support the enhanced vector capability is insignificant,
but allows the execution of two operations per cycle for vectorized code.
Moreover, the size of the unified vector/scalar register file required for peak
performance is an order of magnitude smaller than traditional vector
register files, allowing efficient on-chip VLSI implementation. The results of
simulations of the Livermore Loops and Linpack using this architecture are
presented.

This is a preprint of a paper that will be presented at the
3rd International Conference on Architectural Support for

Programming Languages and Operating Systems,
IEEE and ACM, Boston, Massachusetts, April 3-6, 1989.

An early draft of this paper appeared as WRL Technical Note TN-3.
Copyright  1989 ACM

i

1. Introduction
Specialized vector hardware has been available on supercomputers since the mid 1970’s [13].

Recently, specialized vector hardware has also been appearing on traditional mainframes [7],
minisupercomputers [15, 9] and even workstations ("solo supercomputers") [6]. This specialized
vector hardware often adds substantial complexity to the scalar machine, especially at the high
and low end (i.e., supercomputers and workstations).

Vectorization improves the peak performance of an application. However, even if the portions
that do vectorize run arbitrarily fast, the net performance only improves by the percentage of
vectorizable code. Since the range of vectorization in general-purpose scientific computing is
typically 0.3 to 0.7 [16], infinitely fast vector performance would only improve the performance
of the entire benchmark by 1.4 to 3.3 times. Rather than trying to improve performance by
increasing the peak vector computation rate, in the MultiTitan FPU we obtained more leverage
by improving scalar performance, while broadening the range of vectorizable applications. This
leads to better overall performance for most applications with small or modest amounts of clas-
sically vectorizable code.

In this paper we present a unified approach to vector and scalar floating-point computation.
This floating-point architecture was developed as part of the MultiTitan project from 1985
through 1987. The approach stresses very high performance scalar operation. It then adds an
insignificant amount of hardware to provide a relatively small (2x) performance improvement
for classically vectorizable code. However, this additional hardware also yields improved per-
formance for operations not normally vectorizable, such as reductions and recurrences. The net
result is to improve the non-peak performance as well as broadening the range of peak perfor-
mance.

The hardware architecture of this approach is given in Section 2. Section 3 presents results of
simulation studies for vectorized and non-vectorized versions of various benchmarks. Section 4
concludes the paper.

2. Hardware Architecture
Figure 1 shows the system context for the floating-point architecture. The floating-point unit

(FPU) consists of one chip of approximately 120,000 transistors. A 64-bit data and 32-bit ad-
dress bus are shared by the CPU chip and the FPU chip. At this level in the design the vector

1

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

capability of the FPU is not visible. All loads and stores of FPU registers take place from the
64KByte direct-mapped data cache shared with the CPU. This cache has 16 byte lines and a 14
cycle miss penalty.

10 CPU Op & RR|RA

64 data

32 address

32 system bus
Memory System
Interface
(TTL and ECL
latches and
buffers)

CCU chip
(custom VLSI)

512 entry TLB

FPU chip
(custom VLSI)

32 fromMemory bus

CPU chip
(custom VLSI)

2KB I-Buffer

22 16Kx4 25ns
External
Cache RAMs

64KB
Data

64KB
Instr.

Figure 1: Block diagram of one MultiTitan processor

Figure 2 gives an overview of the architecture of the FPU. The FPU has three fully pipelined
independent functional units: add, multiply, and reciprocal approximation. (Reciprocal ap-
proximation, coupled with use of the multiply unit, is used to implement division.) Any func-
tional unit can accept a new set of operands each cycle and produce a new result each cycle. The
latency of the functional units is three cycles for all operations (i.e., the result of a computation is
available three cycles after it is issued to the functional unit.)

A register file, containing 52 general-purpose 64-bit registers, sits between the functional units
and the data cache. The register file has four ports: two ALU source operands are read from the
A and B ports, ALU results are written on the R port, and loads write and stores read the memory
(M) port. In addition the FPU PSW is conceptually in the register file.

There are two separate instruction registers for controlling the operation of the FPU. One
holds Load/Store instructions which are transmitted from the CPU over a 10-bit coprocessor in-
struction bus. The 10 bits supply an opcode (4 bits) and source or destination register specifier
(6 bits). The second instruction register is 32 bits wide and holds FPU ALU instructions. These
are transferred over the address bus from the CPU. The separate Load/Store and ALU instruc-
tion registers allow FPU loads and stores to proceed in parallel with the issue of FPU ALU
operations.

Three key features distinguish our work in floating-point architecture: a unified approach to
scalar and vector processing, low latency floating-point functional units, and simplicity of or-
ganization.

2

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

4666

64

64

64

64

-1+1+1+1

Ra, Rb, and Rr control

Rm control

ALU IR
From CPU instruction buffer

Load/Store IR

Multiply

Fully pipelined

fully independent

functional units

Reciprocal

Add

Rb

Rr

Ra

Rm

PSW

R0

R51

32

10
From coprocessor instr bus

Off-chip

Data Cache

Rr Ra Rb VL

Figure 2: Microarchitecture of the FPU

2.1. A Unified Vector/Scalar Register File
Traditionally, machines that support vectors and use a load/store architecture (supporting only

register-to-register arithmetic) provide separate register sets for vector and scalar data. This
creates a distinction between elements of a vector and scalars, where none actually exists. This
distinction makes mixed vector/scalar calculations difficult. For example, when vector elements
must be operated on individually as scalars they must be transferred over to a separate scalar
register file, only to be transferred back again if they are to be used in another vector calculation.
This distinction is unnecessary. The MultiTitan floating-point architecture provides a single
unified vector/scalar floating-point register file. Vectors are stored in successive scalar registers.
This allows individual vector elements to be addressed and accessed with scalar operations, un-
like classical vector machines. Each arithmetic instruction contains a vector length field, and
scalar operations are simply vector operations of length one.

2.1.1. Vector ALU operations
The format of FPU ALU instructions is given in Figure 3. Figure 4 summarizes the operation

of the func and unit fields. Vector instructions are issued by merely incrementing register fields
in the instruction register and issuing the resulting instructions with the same mechanism used
for scalar operations. The vector length field specifies the number of elements in the vector,
from 1 to 16. The only means of specifying vector length is statically in the instruction itself;
there is no dynamically loadable vector length register. After issuing the first instruction in the
vector, the vector length field is checked. If it is zero, the instruction is cleared from the instruc-

3

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

tion register. If it is non-zero, the vector length field is decremented and the appropriate register
specifiers are incremented. This instruction is then treated the same as any other instruction
newly placed in the instruction register. If the SRa (stride Ra) bit is zero, register source field Ra
does not increment (i.e., it is a scalar). If the SRb bit is zero, register source field Rb does not
increment. If both bits are zero then "vector := scalar op scalar" is performed.

|< 4 >|< 6 >|< 6 >|< 6 >|<2>|<2>|< 4 >|1|1|
+-------+-----------+-----------+-----------+---+---+-------+-+-+
				u-	fu	vector	S	S
6	Rr	Ra	Rb	nit	nc	length	R	R
						-1	a	b
+-------+-----------+-----------+-----------+---+---+-------+-+-+

Figure 3: FPU ALU instruction format

With this organization, operations that are not vectorizable on other machines can be vec-
torized. Since the normal scalar scoreboarding is used for each vector element, reduction and
recurrence operations can be naturally expressed in vector form. For example, the inner loop of
matrix multiplication consists of a dot product in which the elements of a vector multiply must
be summed (i.e., a reduction). Since there is no distinction between vector and scalar registers,
the reduction can be performed with scalar operations without moving the data from the result
registers of the vector multiply. In fact there are several different ways in which the reduction
may be performed.

operation unit func
reserved 0 X
add 1 0
subtract 1 1
float 1 2
truncate 1 3
multiply 2 0
integer multiply 2 1
iteration step 2 2
reserved 2 3
reciprocal 3 0
reserved 3 1-3

Figure 4: Func and Unit field operation

First, consider an implementation of the sum utilizing scalar add instructions. Assume the
elements to be summed are in registers R0 through R7 (see Figure 5). We can sum adjacent
pairs of elements of the vector multiply result, placing the partial sums in temporary registers R8
through R11. For each sum we need to transfer a FPU ALU instruction over the address bus
from the CPU. (We could also reuse the vector multiply result registers, but extra temporary
registers have been used for clarity.) Next we can pairwise sum R8 through R11 into R12 and
R13. Note that the sum of R10 and R11 cannot issue in cycle 5 since R11 is not yet available. A
simple result reservation mechanism stalls the issue until cycle 6 when both operands are avail-
able. If some other independent CPU or FPU instruction is available, it would typically be
scheduled before the sum of R10 and R11 to prevent the cycle from being wasted. Similarly, the
final addition of R12 and R13 to complete the sum cannot issue until cycle 9. The total time
required to sum 8 elements of a vector is 12 cycles.

4

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

L/S IRALU IR
Instr xfer
from CPU

R8 := R0 + R1

R9 := R2 + R3

R10 := R4 + R5

R11 := R6 + R7

R12 := R8 + R9

R13 := R10 + R11

R14 := R12 + R13

12119876543210 10

Cycle

Figure 5: Summing with a tree of scalar operations

A second way to implement the reduction is with a vector ALU instruction. (Actually, all of
the scalar adds in the previous example were vectors of length 1.) This is illustrated in Figure 6.
In this example, we initialize R8 to 0 and sum each of the registers R0 through R7 with R8. This
is not a particularly time-efficient way of performing the sum but it illustrates an important point.
Since the normal scalar issuing hardware is used for issuing each element of the vector, arbitrary
data dependencies between elements of a vector are possible. This is in contrast with classical
vector architectures, where arbitrary data dependencies between elements are not allowed. In
this case, each element depends on the result of the previous element’s computation, so the over-
all computation takes 24 cycles. While the vector instruction is executing, other instructions
may be issued by the CPU. However, while the vector is issuing the FPU ALU instruction
register is occupied, so no other FPU ALU instructions can be issued.

Instr xfer
from CPU

R8 := R8 + R7 VL0

R8 := R8 + R6 VL1

R8 := R8 + R5 VL2

R8 := R8 + R4 VL3

R8 := R8 + R3 VL4

R8 := R8 + R2 VL5

R8 := R8 + R1 VL6

R8 := R8 + R0 VL7

ALU IR

24232221201918171615141312119876543210 10

Cycle

Figure 6: Summing with a linear vector

A third way to implement the sum is to use a tree of vector operations (see Figure 7). This
computation is identical to the scalar tree version of the computation with two exceptions. First,
since the register specifiers are incremented only by 0 or 1 between elements of a vector, the

5

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

pairs summed must be (R0,R4), (R1,R5), (R2,R6), and (R3,R7) instead of (R0,R1), (R2,R3),
(R4,R5), and (R6,R7) as in the scalar example. Second, only three instructions must be issued
by the CPU to perform the sum. This frees the CPU to issue more instructions concurrent with
the summation. In this example there are 9 cycles out of the 12 in which the CPU may issue
other instructions. In this matrix multiply example it would allow the 8 elements of the next row
to be loaded in parallel with the reduction of the current row.

L/S IRALU IR

R9 := R1 + R5 VL2

R8 := R0 + R4 VL3

R10 := R2 + R6 VL1

R11 := R3 + R7 VL0

Instr xfer
from CPU

R12 := R8 + R10 VL1

R13 := R9 + R11 VL0

R14 := R12 + R13 VL0

12119876543210

Cycle

10

Figure 7: Summing with a tree of vector operations

Since data dependencies are allowed between vector elements, recurrences can also be ex-
pressed in vector form. For example, the first 10 Fibonacci numbers (i.e., a recurrence) can be
computed by initializing R0 and R1 to 1 (Fib and Fib) and executing R2 <- R1 + R0 (length 8)0 1
(see Figure 8).

ALU IR
Instr xfer
from CPU L/S IR

Cycle

100 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R2 := R1 + R0 VL7

R3 := R2 + R1 VL6

R4 := R3 + R2 VL5

R9 := R8 + R7 VL0

R5 := R4 + R3 VL4

R6 := R5 + R4 VL3

R7 := R6 + R5 VL2

R8 := R7 + R6 VL1

Figure 8: Vectorization of recurrences

6

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

2.1.2. Vector Loads and Stores
The FPU registers can be loaded or stored individually, but the MultiTitan does not have vec-

tor load or store instructions. Vector register load or store instructions in a virtual memory en-
vironment share many problems with multi-word memory references present in CISC machines.
For example, the vector load can cross a page boundary, and the machine must save enough state
to properly restart it. Vector memory references can result in a significant performance improve-
ment for vectorizable portions of code on machines with large memory bandwidth. However,
the MultiTitan has more limited bandwidth than these machines, in keeping with the goal of
maximizing average (i.e., scalar) and not peak (i.e., vector) performance. Also, in many applica-
tions the most important advantage of vector instructions is the ability to overlap floating-point
computations, memory references, and normal loop overhead. In the MultiTitan, this is possible
to a large extent without the use of vector memory references. Once a vector arithmetic opera-
tion is begun, the CPU is free to issue loads for future computations, stores of previous results,
and loop overhead instructions.

For fixed stride applications, the MultiTitan can issue one load per cycle by folding the stride
into the load offset (see Figure 9). Combined with the ability to independently issue one FPU
ALU operation per cycle during vector operations, this allows a peak issue rate of two operations
per cycle. Since the loading and storing of vector elements is performed under program control,
full flexibility is retained and operations such as scatter and gather are easily implemented. Vec-
tor elements could even be gathered from a linked list with only a doubling of the time otherwise
required, even though loads have a one cycle delay slot. This is illustrated in Figure 9. (Loads
that follow the linked list alternate between an even and odd temporary register (even^ and odd^)
so that the load of the floating-point data can use the pointer concurrent with the load of the next
pointer.)

Fixed stride c From a linked list
Load R0,0(base) Load even^,0(odd^)
Load R1,c(base) Load R0,4(odd^)
Load R2,2c(base) Load odd^,0(even^)
Load R3,3c(base) Load R1,4(even^)
Load R4,4c(base) Load even^,0(odd^)
Load R5,5c(base) Load R2,4(odd^)
Load R6,6c(base) Load odd^,0(even^)
Load R7,7c(base) Load R3,4(even^)

Figure 9: Loading of vectors with scalar loads

Traditional vector register banks, where registers are grouped into vectors of fixed length and
operated on as a group, reduce the opcode space required to represent instructions but also limit
the flexibility of use of the individual registers. For example, in these static allocation schemes,
the user cannot select between 8 banks of 64 registers or 64 banks of 8 registers. In MultiTitan,
the user can dynamically partition the 52 64-bit registers into any number of 1 to 16-element
register groups on an instruction-by-instruction basis. The MultiTitan FPU register file requires
3.3K bits of dual port storage (time multiplexed to be four ports). This easily fits on the same
chip as the functional units. Other vector register architectures require much larger amounts of
storage. For example, 8 64-element 64-bit registers would require 32K bits of storage, or about
ten times that of the unified vector/scalar register file. It is not possible to put 32K bits of mul-
tiported register (in which each cell is larger than a SRAM cell) on the same chip as the func-

7

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

tional units in today’s technologies. Systems with large vector register files thus require off-chip
accesses, increasing the latency of operations. The benefits of the small unified vector/scalar
register file size will continue into the future. When technology has advanced enough to put a
large vector register set on the same chip as the functional units, the unified vector/scalar register
set will fit on the same chip as the functional units, the integer portion of the CPU, the instruc-
tion buffer, etc. A final benefit of the small register file size is that the context switch cost is
smaller than that of traditional vector machines when the vector register state must be saved.

2.2. Low Latency Functional Units
The net performance of a vector operation is a function of its peak performance as well as its

latency. If a pipelined functional unit has a latency of l cycles, then it is not operating at peak
performance unless its pipeline is filled with l operations. At the beginning and end of every
vector operation the functional unit will be operating at less than its peak rate. The functional
unit will never attain its peak performance if the vectors are shorter than its latency. The vector
half-performance length (n) [3] is the vector length required to achieve half of the maximum1/2
performance.

Low latency functional units are essential in the MultiTitan for two reasons. The first is
specific to the unified vector/scalar register file of the MultiTitan, and the second is from the
applications executed.

2.2.1. Latency Constraints of the Unified Vector/Scalar Register File
In a machine with a unified vector/scalar register file all of the FPU registers must be directly

addressable. Thus, there must be a limited number of them in order for 3-operand FPU ALU
instructions to be encoded in 32 bits. The 6-bit MultiTitan register addresses form a constraint
on the maximum vector size. Since this six bit field is also used to address registers in other
coprocessors, the actual FPU register address space is limited to 52 registers. Often the 52
registers are used as six vectors of length 8 and four scalars.

Thus, in order for good performance to be obtained, the vector half-performance length on the
MultiTitan (n) must be kept to less than 8. The vector half-performance length achieved by1/2
the MultiTitan is approximately 4. This is due to the single-cycle load/store latency from the
cache and the three cycle latency of FPU ALU operations. This minimum vector length for
half-performance is much smaller than the minimum for traditional vector machines, such as the
CDC Cyber 205 (n =100), array processors such as the ICL DAP (n =2048), or even the1/2 1/2
Cray-1 (n =15).1/2

2.2.2. Latency Constraints from the Applications
Low latency operations are essential for high performance on scalar applications with data

dependencies. The latency of operations also determines the minimum vector half-performance
length. Many applications will always have very short vectors. For example, 3-D graphics
transforms are expressed as the multiplication of a 4 element vector by a 4x4 transformation
matrix.

8

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

2.2.3. Implementation Latencies
In the MultiTitan FPU the latency of all floating-point operations is three cycles, including the

time required to bypass the result into a successive computation. This is very short in com-
parison to most machines. (Division is implemented as a series of six 3-cycle operations.) The
functional units support only double precision floating-point operations, simplifying the design
of the functional units. It also enables special cases specific to the double-precision format to be
exploited, further reducing functional unit latency.

Each functional unit uses novel structures to reduce the latency of its operations. For example,
the add unit uses separate specialized paths for aligned operands and normalized results [2], as
well as specialized paths for positive and negative results. The multiply unit uses a novel
"chunky binary tree" which is faster in practice than a Wallace tree. The reciprocal approxima-
tion unit uses linear interpolation to develop a 16-bit reciprocal approximation. Additional
details of the functional unit design are beyond the scope of this paper, but may be found in other
documents [4].

As a reference, the latency of various operations in the Cray X-MP (with a 9.5ns cycle time)
are compared with the latency of the functional units in the FPU in Figure 10. However, due to
the MultiTitan’s 4 times slower vector element issue rate, lack of chaining, and less powerful
memory subsystem, the peak performance relative to the Cray X-MP can be significantly less
than that implied by the latency ratios.

Operation FPU X-MP
Latency Latency

Addition, Subtraction 120ns 57ns
Multiplication 120ns 66.5ns
Division (via 1/x) 720ns 332.5ns

Figure 10: MultiTitan FPU and Cray X-MP latencies

2.3. Simplicity of Organization
There are two types of control logic in the floating-point architecture: logic that supports both

fast scalar execution and vector execution, and logic specific to vector execution. The only
vector-specific hardware required by the architecture is three six-bit incrementers for the register
specifiers, one four bit decrementer for the vector length, and a very small amount of pipeline
control to reissue instructions whose count is non-zero.

2.3.1. Control Logic for Fast Scalar Execution
The FPU control logic provided in the MultiTitan for scalar execution is much simpler than in

most high-performance machines. For example, the FPU has a lock step pipeline like the CPU,
greatly simplifying the control logic. Also, since all functional units have the same latency, the
functional unit write port to the register file need not be reserved or checked for availability
before instruction issue.

Vector instructions that overflow on one element discard all remaining elements after the
overflow. The destination register specifier of the first element to overflow is saved in the PSW.
Note that vector ALU instructions may continue long after an interrupt. For example in the case
of vector recursion (e.g., r[a] := r[a-1] + r[a-2]) of length 16, the last element would be written 48
cycles later, even if an interrupt occurred in the meantime.

9

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

The FPU control is split into two parts. The first part manages the operation of FPU loads and
stores. The second part manages FPU ALU instructions. These two parts of the machine com-
municate through the register file, the inter-chip pipeline control signals, and the scoreboard.

Central to the scoreboard is a register write reservation table. This table consists of one bit
for each register in the register file. The bit is set when there is an outstanding operation which
will write the associated register. This bit is used to prevent subsequent instructions from read-
ing the register before it has been written. Five ports are required on the register write reser-
vation table every cycle:

• 2 read with source operands for ALU operations

• 1 set for destination upon ALU operation issue

• 1 cleared for destination of retired ALU operation

• 1 read for loads and stores

Of the five required scoreboard ports, all ports are accessed at the same time as their as-
sociated data, except for the port that sets a bit on issue of FPU ALU instructions. For example,
the ALU source operand reservation bits are read at the same time as the ALU source operands.
Moreover, one of the writes is always a set, while the other is always a clear. We will take
advantage of these restrictions in the following implementation. This implementation has the
advantage that it requires only one extra decoder besides those already required for the register
file, and for a single reservation bit the decoder area greatly exceeds that of the RAM cell.

Reservation bits are stored as an extra bit on each word in the register file. The register file R
port word line of the extra bit is partitioned into two separate word lines. One segment is con-
trolled by the same word line as the rest of the word. The other is controlled by the destination
of the provisionally issued instruction. Since we will never want to write a reservation bit with
an arbitrary value, but only set it or clear it, we can do both by single-ended writes. The true
bitline can be used to clear a bit at the same time as the complement bit line is used to set another
bit.

The FPU uses a distributed result bypass in which each functional unit in the FPU does its
own bypassing. If the bypass logic were centralized at the register file, results would have to be
put out on the global result bus, then transferred to a global source bus. But since the result bus
goes to all functional units, they can select between each source and the result bus based on
control signals from the scoreboard. Thus, with distributed bypass logic, the delay from driving
the result to the latching of a source is only one global wire delay, not two.

2.3.2. Control Logic for Support of Vector Execution
The reservation of vector result registers is a difficult problem. Three approaches exist:

1. Reserve all elements of the result register at once before issue of the first element.

2. Handle reservations in software.

3. Reserve each element’s result register upon issue of the element.
Note that in traditional vector machines like the Cray-1, vector registers are treated as an in-
divisible resource and the vector result register reservation problem is simplified to reserving a
single resource.

10

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

Two difficulties occur if all result registers of a vector operation are reserved at once before
issue of the first element’s computation. First, special hardware must be provided beyond that
required for scalar operations in order to reserve more than one register at a time. Second, ad-
ditional hardware must be provided to check for prior reservations on all result registers simul-
taneously. Otherwise the vector register reservation may reserve an already reserved register, in
which case the second reservation will be lost on the retiring of the first reservation. One solu-
tion would be to compute the remaining source and result register ranges of in-progress vector
instructions each cycle, and compare load and store register operands against these ranges before
issuing them. This would add a fair amount of hardware, and is the approach taken in the

*recently announced Ardent Titan. [6]

Reservation of vector result registers could also be handled by code reorganization. In most
machines, floating-point operations have relatively long latencies (e.g., 7-30 cycles). This
coupled with potentially long vector lengths makes the scheduling of operations well enough to
prevent insertion of NOP’s very unlikely. Although all operations in the MultiTitan FPU have a
three cycle latency, and the maximum vector length is 16, vector recursion can yield vector ex-
ecution times of up to 48 cycles. This is still far too long to pad with NOPs. Instead we must
rely on a hardware reservation mechanism.

Reservation of individual vector element result registers upon issue of each element can
provide hardware interlocks with very low cost. This is the approach used by the MultiTitan.
By reserving result registers at the issue of each element, the reservation hardware already in
place for scalar operations can be used. Unfortunately this causes a synchronization problem:
while the elements of the vector are issuing one by one, a load or store instruction may issue and
retire. In particular, the register operand of the load or store may be the same as a source or
result register operand of a vector element which has not already issued, but whose vector in-
struction was issued before the load or store. In order to prevent out-of-order execution (with
non-deterministic results), execution constraints must be placed between the vector instruction
and any following loads and stores that issue before every element of the vector has issued.

If dependencies occur between loads and stores or elements in a vector other than the first, the
compiler must break the vector into smaller vectors so that the normal scalar interlocks are effec-
tive. However, in most code sequences this will not be necessary: for example, if a vector opera-
tion is followed by stores of each result register, the stores can be performed in the same order as
the result elements are produced. Only when operands must be stored out of order, or when the
first elements of a vector are not stored but later elements are, will the compiler need to break a
vector in order for the normal scalar interlocks to be effective. Note that if an entire vector were
required to issue before loads or stores were honored, most useful overlap of transfers and com-
putations would be precluded.

In summary, when the scalar issue logic is used to issue vector instructions, only a very small
amount of extra logic (a few counters) is required to support vector execution.

*The Ardent Titan should not be confused with the unrelated DECWRL Titan or MultiTitan.

11

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

2.4. Benefits of Additional Vector Support
There are several obvious limits of the performance of this floating-point architecture:

• only 1 FP ALU operation may issue per cycle

• only 1 Load/Store may issue per cycle

• only a total of two operations may issue per cycle

In the MultiTitan concurrent issue is only supported between loads and ALU operations, or
ALU operations and stores, but not between multiple operations. Why isn’t the simultaneous
issue of multiple ALU operations supported? There are two basic reasons.

First, the cost of issuing multiple ALU operations per cycle is very high. Each additional
operation would require 3 additional register file ports, and three additional busses. The three
busses already present consume about 10% of the chip area.

Second, and more important, the ability to issue multiple ALU operations per cycle would not
significantly improve performance. The additional hardware resources would improve peak per-
formance, but not scalar performance. If the basic vector capability already places the machine
past the point of diminishing returns, investing heavily to push it even further past is pointless.

This argument also applies to many other suggestions for additional hardware, such as mul-
tiple load/store ports to the cache, etc. For example, consider Figure 11, where the overall per-
formance obtained for various degrees of vectorizability is plotted versus the ratio of peak vector
performance to scalar performance. This shows that the speedup of two obtained by the basic
vector capability in the MultiTitan obtains a significant portion of performance improvement
available from vectorization, at least for code with low to average amounts of vectorizable opera-
tions. Supercomputers, on the other hand, are biased towards higher peak performance. The
ratio of peak vector performance to scalar performance is about 10 for the Cray-1S and the Cray-
XMP.

Finally, further increasing the size and complexity of the machine to support higher peak per-
formance is dangerous. If it slows down non-peak performance significantly, the overall perfor-
mance of the machine can easily be reduced.

3. Simulation Results
To experiment with the MultiTitan vectors, we extended the Mahler [14] intermediate lan-

guage for our compiler system with a primitive vector capability that corresponds fairly closely
to the machine. Vector variables can be declared with a specified constant number of elements,
and any consecutive subsection of this vector can be used in a vector operation, provided that the
offset and size of the subset is fixed at compile time. Moreover, memory may be referenced
directly as a vector with a size and stride fixed at compile time.

The usual scalar floating-point operations may be performed on two vectors of the same
length, or on a vector and a scalar. We also added an operator that summed a vector, by per-
forming a vector sum to add its two halves and then doing the same thing to the resulting smaller
vector, until left with one or two scalar additions. Loads and stores of the vector variables could
be specified by an assignment from or to a memory vector, respectively. Such an assignment

12

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

1 102 4 6 8
Ratio of peak vector performance to scalar performance

1

5

2

3

4

5

O
ve

ra
ll

pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 s
ca

la
r

m
ac

hi
ne

20% vectorized

Livermore Loops 13-24

40% vectorized

Livermore Loops 1-24
60% vectorized

80% vectorized

Livermore Loops 1-12

100% vectorized

Key:

MultiTitan

Cray-1S

Figure 11: Potential vector performance obtained

was implemented by a series of loads or stores. Memory vectors could also be used directly as
operands or destinations, in which case the values would be loaded into or stored from a series of
registers not used for vector variables.

Each vector mapped directly to a group of registers. Registers were allocated on a per-
procedure basis, on the assumption that they would be used only for the duration of an inner
loop. If the total amount of space needed for the declared vectors and temporaries was too large,
a compile error was raised. In most cases this meant that our vector operations had lengths of 4
or 8.

These primitives were then used to manually recode the benchmarks we studied. The recoded
benchmarks were then simulated on an instruction-level simulator. The Mahler code was in-
tended to represent what the compiler would generate from a program written in an extended
version of Modula-2 that provided vector primitives, not what could be produced from the
original FORTRAN sources. Our strip-mining followed standard techniques [8]. (Strip-mining
is the process of dividing a vector computation of possibly indeterminate length into a loop that
performs independent vector computations of a fixed length. Code also must be provided to
compute any remainder of the original vector computation not handled by the loop.) Register
allocation was done by checking lifetimes of subexpressions, which gave the number of vector
values live at any point in the code. Knowing that value and the number of registers on the FPU
allows a compiler to choose vector lengths. The Mahler code was produced without extensive
hand optimization other than induction variable analysis, strip-mining, and careful vector register
allocation.

13

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

Because the vectors had to be short, we were not hampered by the fact that they also had to be
of fixed length. When a loop could not be unrolled an integral number of times, the leftover was
always small. When the leftover was of known size, it could be done as a shorter vector opera-
tion. However, even when it had to be done as a scalar loop, it was still fast because the scalar
operations are themselves fast.

3.1. Graphics Transform
This section describes a graphics routine to transform a point by multiplying a vector by a

transformation matrix. It is representative of many possible applications for the FPU. The
problem and register allocation are given in Figure 12. Assume that many points will be trans-
formed by one matrix. Thus the transformation matrix will already be loaded into R0..R15. If
the transformation matrix is not loaded, this will require an extra 16 cycles (assuming no cache
misses).

Problem:

[x y z w] * |a11 a12 a13 a14| = [x’ y’ z’ w’]
|a21 a22 a23 a24|
|a31 a32 a33 a34|
|a41 a42 a43 a44|

Register allocation:

[R32 R33 R34 R35] |R0 R4 R8 R12| = [R36 R37 R38 R39]
|R1 R5 R9 R13|
|R2 R6 R10 R14|
|R3 R7 R11 R15|

Figure 12: Graphics problem and register allocation

For each element of the initial point vector we will load it and issue a vector floating-point
multiply of the element by a column in the transform matrix, resulting in a total of 16 result
elements. Once these multiplications have been issued, we will start adding together rows of the
4x4 result elements. Each row is added together in a binary tree, and the four trees are summed
in parallel using four element vectors. Finally we will store the result vector. Figure 13 gives
the code sequence and cycle timings for this routine. Each instruction requires one cycle, with
two exceptions. First, back-to-back stores require two cycles. Second, arithmetic operations
cannot issue until a previous vector operation has completely issued all of its elements at a max-
imum rate of 1 element per cycle. There is only one scoreboard stall for data dependencies in the
routine. It is assumed that there are no instruction buffer misses during the routine. This ex-
ample has been run on the MultiTitan simulator and achieves 20 MFLOPS. The total latency in
this example is 35*40ns cycles (1.4us), for double precision computations. This performance is
better than that often provided by special-purpose graphics hardware [4].

14

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

Solution: Cycles:
/* load and multiply initial vector. */
R32:=(x); 1
R[16..19]:=R32*R[0..3]; 1
R33:=(y); 1
R[20..23]:=R33*R[4..7]; 3 (issue busy)
R34:=(z); 1
R[24..27]:=R34*R[8..11]; 3 (issue busy)
R35:=(w); 1
R[28..31]:=R35*R[12..15]; 3 (issue busy)

/* sum products in parallel binary trees. */
R[16..19]:=R[16..19]+R[20..23] 4 (issue busy)
R[24..27]:=R[24..27]+R[28..31] 4 (issue busy)
R[36..39]:=R[16..19]+R[24..27] 4 (issue busy)

/* store result vector. */
(x’):=R36; 3 (wait for result)
(y’):=R37; 2
(z’):=R38; 2
(w’):=R39; 2
Total latency: 35

Figure 13: Code and timing for graphics transform

3.2. Livermore Loops
The simulation results obtained for the Livermore Loops running on the MultiTitan are shown

in Figure 14. The performance of each loop was highly dependent on whether the data
referenced by the loop was present in the cache. The performance figures for the warm cache
were obtained by running the loops twice, thus preloading the code and the data. The numbers
shown for the cold cache performance assume that both the instruction and data caches are
empty at the start of the simulation. The performance of the cold cache simulations is quite low
compared to the warm cache numbers, by factors of about three to six. Because the MultiTitan
lacks the pipelined memory access of the Cray, its performance suffers greatly from cache
misses. The actual cache miss rate depends on the size of the cache and the size of the data set.
Studies of some scientific workloads indicate that good cache hit ratios (much greater than 90%)
can be obtained [10, 11], so we expect numbers closer to the warm cache numbers for real
programs.

The primary bottleneck keeping the MultiTitan from obtaining higher performance in these
benchmarks is its limited memory bandwidth. Even when a cache hit is made, only one load can
issue per cycle, and stores can only issue every other cycle. For a two-operand vector add this
requires about 4 cycles per result - two loads, a compute, and then a partially overlapped store.
(Stores take two cycles, but half of the time for the stores can be overlapped with the
computation). However, since memory bandwidth in excess of one operand per cycle is very
expensive and primarily improves peak performance, the current design seems to be very cost-
effective. The benchmarks that do better than 4 cycles per result do so because operands can be
kept in the registers and used multiple times across a single vector expression. For this reason,

15

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

loop MultiTitan Cray Cray
cold warm -1S X-MP
cache cache (from [5] & [12])

1* 4.3 19.0 68.4 164.6
2* 2.8 17.3 16.4 45.1
3* 2.8 17.3 63.1 151.7
4* 2.3 14.5 20.6 65.9
5 2.0 8.0 5.3 14.4
6* 3.4 5.2 6.6 11.3
7* 6.9 23.4 82.1 187.8
8* 6.0 19.9 65.6 145.8
9* 3.6 20.3 80.4 157.5
10* 1.5 7.1 28.1 61.2
11 1.7 6.6 4.4 12.7
12* 1.4 7.9 21.8 74.3
harmonic mean
1-12 2.5 10.8 14.4 35.8

13 1.4 1.8 4.1 5.8
14 2.6 3.1 7.3 22.2
15 1.5 1.6 3.8 5.2
16 2.3 2.5 3.2 6.2
17 4.0 4.9 7.6 10.1
18* 7.4 14.8 54.9 110.6
19 2.6 4.2 6.5 13.4
20 4.5 4.7 9.6 13.2
21* 15.9 21.4 32.8 108.9
22* 2.4 2.7 39.9 65.8
23 3.0 7.4 10.4 13.9
24 1.1 1.6 1.6 3.6
harmonic mean
13-24 2.4 3.2 5.6 10.0

harmonic mean
1-24 2.5 4.9 8.0 15.6
* indicates loop vectorized on Cray

Figure 14: Uniprocessor Livermore Loops (MFLOPS)

even some of the cold cache performance figures are good, particularly Livermore loops 1
through 3 and 7 through 9. In these loops a performance improvement of at most 25-33% would
be gained from additional load and store bandwidth. Note that the warm cache MultiTitan had
better performance than the Cray-1S on Livermore Loops 5 and 11, which were not vectorized
on the Cray.

Livermore Loops 13-24 in general have larger and more complex kernels than loops 1-12.
The difference in performance between the cold cache numbers and the warm cache results were
less than that for the first set of loops. This is because the later loops contain more branching
and index calculations, so the relative data bandwidths were less, and hence the effects of cache
misses diluted. Due to the complexity of the later loops, loops 13, 15, 17, 19, 20, 22, and 23

16

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

were coded in Modula-2 instead of Mahler. Since the loop induction-variable elimination was
not effective in Modula-2, the performance of these loops on the MultiTitan would improve for
more sophisticated compiler technology. Also, because of the complexity of the procedures,
some routines written in Mahler are not well-tuned. Loops 14, 16, and 18 suffer the most in this
regards. The performance of the MultiTitan on loop 22 is the worst in proportion to the numbers
for the Crays. This is because it contains an exp() call and is vectorized by the Cray, but the
MultiTitan version is implemented with a scalar subroutine call.

Overall, the warm-cache MultiTitan performance was about one-half that of the Cray 1-S and
about one-third that of the Cray X-MP.

3.3. Linpack
Linpack has been run on the MultiTitan simulator. The scalar Linpack performance obtained

was 4.1 MFLOPS, while the vector Linpack performance obtained was 6.1 MFLOPS. The scalar
performance is approximately 25 times the performance of a VAX 11/780 with FPA. However,
the vector performance is only 1/4 that of the Cray 1-S Coded BLAS and 1/8 that of the Cray
X-MP [1]. The MultiTitan vector performance for Linpack is worse in relation to the Cray than
for the Livermore Loops because Linpack has a higher degree of vectorization and increased
memory bandwidth requirements in comparison to the Livermore Loops.

4. Conclusions
The MultiTitan unified vector/scalar floating-point architecture is a very powerful yet simple

and cost-effective architecture. This architecture emphasizes improved scalar performance while
broadening the applicability of vectorization. This results in higher and more cost-effective
overall performance for most applications than emphasizing peak vector performance. Only an
insignificant amount of additional hardware (a few incrementers) is required to provide a vector
capability. Rather than issuing vector operations as a whole, each vector element is issued with
the existing scalar issue hardware. This enables reduction operations and recurrences to be ex-
pressed as vectors, unlike most traditional vector machines.

The unified vector/scalar register file, coupled with low latency functional units, allows a
much smaller register file to be sufficient for peak performance compared to traditional vector
register machines. Thus the unified vector/scalar register file can easily fit on the same chip as
the functional units in today’s CMOS technology. (In the next CMOS technology they could
easily fit on the CPU chip.) The pipeline control is extremely simple. For example, all floating-
point operations take the same amount of time, simplifying the scoreboard logic.

Separate Load/Store and ALU instruction registers provide load/store bandwidth that is well
balanced with the computation bandwidth. This also enables execution of two operations per
cycle during vector execution. Sustained execution rates of 15 double-precision MFLOPS with
vectorization and 7 MFLOPS without vectorization are attainable for many applications with
current CMOS technology.

17

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

5. Acknowledgements
The authors wish to thank Michael L. Powell for helpful discussions, his encouragement, and

Linpack simulations. Mike Nielsen contributed the graphics transform simulations. Mary Jo
Doherty, John Ousterhout, and Richard Swan provided valuable comments on an early draft of
this paper.

References
[1] Dongarra, Jack J.

Performance of Various Computers Using Standard Linear Equations Software in a
Fortran Environment.

Computer Architecture News 16(1):47-69, March, 1988.

[2] Farmwald, P. Michael.
On the Design of High-Performance Digital Arithmetic Units.
PhD thesis, Stanford University, 1981.

[3] Hockney, R. W., and Jesshope, C. R.
Parallel Computers.
Adam Hilger, 1981.

[4] Jouppi, Norman P., Dion, Jeremy, Boggs, David, and Nielsen, Michael J. K.
MultiTitan: Four Architecture Papers.
Technical Report 87/8, Digital Equipment Corporation Western Research Lab, April,

1988.

[5] McMahon, F. H.
The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range.
Technical Report UCRL-53745, Lawrence Livermore National Laboratory, December,

1986.

[6] Miranker, Glen S., Rubinstein, Jon, Sanguinetti, John.
Squeezing a Cray-Class Supercomputer into a Single-User Package.
In Compcon Spring ’88, pages 452-456. February, 1988.

[7] Padegs, A., Moore, B. B., Smith, R. M., and Buchholz, W.
The IBM System/370 Vector Architecture: Design Considerations.
IEEE Transactions on Computers 37(5):509-520, May, 1988.

[8] Padua, David A., and Wolfe, Michael J.
Advanced Compiler Optimizations for Supercomputers.
Communications of the ACM 29(12):1184-1201, December, 1986.

[9] Perron, R., and Mundie, C.
The Architecture of the Alliant FX/8 Computer.
In Compcon Spring ’86, pages 390-393. March, 1986.

[10] Smith, Alan J.
Cache Memories.
ACM Computing Surveys 14(3):473-530, September, 1982.

18

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

[11] So. Kimming, and Zecca, Vittorio.
Cache Performance of Vector Processors.
In The 15th Annual Symposium on Computer Architecture, pages 261-268. IEEE Com-

puter Society Press, May, 1988.

[12] Tang, J.H., and Davidson, Edward S.
An Evaluation of Cray-1 and Cray X-MP Performance on Vectorizable Livermore

Fortran Kernels.
In 1988 International Conference on Supercomputing, pages 452-457. July, 1988.

[13] Theis, D. J.
Vector Supercomputers.
IEEE Computer 7(4):52-61, 1974.

[14] Wall, David W., and Powell, Michael L.
The Mahler Experience: Using an Intermediate Language as the Machine Description.
In Second International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 100-104. IEEE Computer Society Press, Oc-
tober, 1987.

[15] Wallach, S.
The CONVEX C-1 64-bit Supercomputer.
In Compcon Spring ’86, pages 452-457. March, 1986.

[16] Worlton, Jack.
What is the Right Benchmark for Your System?
Supercomputing Review 1(2):16-23, December, 1988.

19

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

20

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

21

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point

Architecture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak

Performance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.
WRL Research Report 89/11, July 1989.

‘‘Leaf: A Netlist to Layout Converter for ECL

Gates.’’

Robert L. Alverson and Norman P. Jouppi.

WRL Research Report 89/12, July 1989.

22

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

23

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

ii

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

Table of Contents
1. Introduction 1
2. Hardware Architecture 1

2.1. A Unified Vector/Scalar Register File 3
2.1.1. Vector ALU operations 3
2.1.2. Vector Loads and Stores 7

2.2. Low Latency Functional Units 8
2.2.1. Latency Constraints of the Unified Vector/Scalar Register File 8
2.2.2. Latency Constraints from the Applications 8
2.2.3. Implementation Latencies 9

2.3. Simplicity of Organization 9
2.3.1. Control Logic for Fast Scalar Execution 9
2.3.2. Control Logic for Support of Vector Execution 10

2.4. Benefits of Additional Vector Support 12
3. Simulation Results 12

3.1. Graphics Transform 14
3.2. Livermore Loops 15
3.3. Linpack 17

4. Conclusions 17
5. Acknowledgements 18
References 18

iii

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

iv

A UNIFIED VECTOR/SCALAR FLOATING-POINT ARCHITECTURE

List of Figures
Figure 1: Block diagram of one MultiTitan processor 2
Figure 2: Microarchitecture of the FPU 3
Figure 3: FPU ALU instruction format 4
Figure 4: Func and Unit field operation 4
Figure 5: Summing with a tree of scalar operations 5
Figure 6: Summing with a linear vector 5
Figure 7: Summing with a tree of vector operations 6
Figure 8: Vectorization of recurrences 6
Figure 9: Loading of vectors with scalar loads 7
Figure 10: MultiTitan FPU and Cray X-MP latencies 9
Figure 11: Potential vector performance obtained 13
Figure 12: Graphics problem and register allocation 14
Figure 13: Code and timing for graphics transform 15
Figure 14: Uniprocessor Livermore Loops (MFLOPS) 16

v

