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Abstract

The accurate analysis of cache designs is becoming ever more important as
processor speeds rapidly outstrip memory speeds and cache misses become a
more significant factor in system performance.  It can easily be shown that a
factor of 10 decrease in processor cycle time with no change in the memory
system may increase execution speed by only a factor of 2, the difference be-
ing due only to the increased relative cost of servicing cache misses.

The primary tool for cache analysis is simulation based on address traces
of running systems.  The accuracy of the results depends both on the simula-
tion model and the accuracy of the trace data.  Existing methods of generat-
ing and analyzing traces suffer from a variety of limitations including com-
plexity, inaccuracy, lack of system references, short length, inflexibility, or
applicability only to CISC machines.

We have built a system for generating and analyzing traces that addresses
each of these problems.  Trace generation is based on link-time code
modification that makes the generation of a new trace easy. The slowdown of
trace-linked code is small enough to allow reasonably accurate traces of
user/system interaction.  The system is flexible enough to allow great control
of what is traced and when it is traced.  On-the-fly analysis removes most
limitations on the length of traces.  The system is designed for use on RISC
machines.

In this paper we describe the implementation of trace generation and on-
the-fly analysis.  We then review preliminary results from the analysis of
user traces containing many billions of memory references.  Very long traces
are both useful and necessary for understanding the behavior of large, fast
systems. We experiment with overall size, block size, and associativity in
second level caches.
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1. Introduction

1.1. Background
For 20 years traces of memory access patterns have provided a window into program execu-

tion, allowing the simulation of memory systems with the goal of evaluating different cache
designs [14]. The analysis of cache designs is becoming even more crucial as caches become
dramatically faster than main memory and cache misses are an ever more important factor in
system performance.  For example, on today’s RISC machines, it typically takes ten times longer
to retrieve data from main memory than from the cache, whereas on machines currently being
designed the ratio will be 100 to 1. Many new processor designs use RISC technology with very
fast on-chip caches.  Since it is infeasible to put sufficiently large caches on chip, somewhat
slower, but very large, off-chip second level caches will be used to improve performance.
Second Level caches of 16 megabytes or more may sit between the processor and a gigabyte of
main memory.

Simulation is the primary tool for determining the appropriate sizes and characteristics of
memory systems for the new RISC machines. To be able to accurately simulate the behavior of
very large caches, very long RISC traces are needed.  We are unaware of any existing traces that
represent more that O(10 million) memory references.  Existing traces are usually sufficient for
the simulation of small caches on CISC machines, but they are too short to simulate multi-
megabyte caches.  We also believe that RISC traces are sufficiently different from CISC traces
to warrant the generation of fresh traces.  RISC code for a program is often twice as large as
corresponding CISC code, increasing the number and range of instruction references.  Also, ef-
fective use of the large register sets built into RISC machines reduces the number of data
references compared to code for a CISC machine.  At the very least, the balance of instruction
and data references will change markedly.

Unfortunately, existing methods are inappropriate for generating long traces and for use on
RISC machines.  The most common software method involves the simulation of a program’s
execution to record all of its instruction and data references. This method is both slow and
limited. Simulation is slow for CISC programs and may be slower for RISC programs because
they contain more instructions each requiring a pass through the main simulator loop.  A 1000x
or more slowdown makes traces of real-time behavior, including kernel and multiprogrammed
execution, impossible to accurately simulate.  Some hardware methods spy on address lines to
trace execution in real time, but these usually have limited capacity. In ATUM [1], trace genera-
tion involves microcode modification.  The microcode for a machine is modified to trap address
references and generate trace data.  A microcode-modified machine runs only 10 times slower
than an untraced machine.  The method is not applicable to RISC machines since there is no
microcode to be modified.

An additional problem with most existing methods is that they require the generation and
storage of entire traces for later analysis.  The requirement that traces be retained limits the
length of the trace.  The storage of many traces consisting of tens or hundreds of gigabytes of
data is at best very expensive and at worst infeasible. The TRAPEDS [16] technique handles
this by doing analysis on-the-fly within the traced program.  Though TRAPEDS works well for
multiprocessor tracing of single users, it does not trace operating system code or multiple users
running in separate address spaces.
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At WRL, where we design, build, and use high performance RISC machines, we have
developed a method of trace generation that is appropriate for use on those machines.  We make
use of link-time code modification to generate code that will create a record of data and instruc-
tion references.  Both user and operating system execution can be traced with 8 to 12x slow-
down. On-the-fly trace analysis, in which trace data is analyzed as it is collected, eliminates the
need to store traces and makes the analysis of very long traces feasible.

1.2. Goals and Status
The primary goal of this project is to implement a set of tools for trace generation on RISC

machines, and to use them to analyze the memory system designs for our next machine.  We
require that:

• The traces must be complete.  They must represent kernel and multiple users as they
execute on a real machine.  The memory references must be interleaved as they are
during execution rather than being artificially interleaved separate traces.

• Traces must be accurate.  The mechanism used must not slow down execution to the
extent that the behavior of the system is no longer realistic.

• Tracing must be flexible.  We must be able to pick and choose the processes to be
traced, optionally trace kernel execution, and turn tracing on and off at any time.

• The traces must be long enough to make possible the realistic simulation of very
large caches.

A new trace generation mechanism can satisfy the first three requirements, but new analysis
techniques are required to meet the fourth. Since the trace lengths we require can outstrip storage
capacity, analysis that is done off-line against stored traces is unacceptable. Therefore our
research extends into methods of managing and analyzing long traces.

Initially, the traces will be used to analyze the behavior of multi-level cache hierarchies in
very fast machines.  Eventually, we will be interested in exploring other uses for the traces we
generate. For example, Sites [1, 13] has had considerable success in using his traces as a debug-
ging tool that gives a much more detailed picture of program execution than does profiling infor-
mation. McFarling [10] discusses the use of profiling information to place code for cache op-
timization. Traces may also be a useful tool for determining code placement.

This paper describes an ongoing project.  The first portion presents the design of the trace
generation mechanism and on-the-fly analysis.  At the time of this report, user tracing with on-
the-fly analysis works extremely well.  Kernel traces can be generated but do not yet work with
on-the-fly analysis.  The paper proposes solutions to problems still in the way of accurate kernel
tracing. In later sections, we review the results of preliminary experiments tracing single and
multiple user processes.  The experiments validate our claim that long traces are both useful and
necessary to understand the behavior of large multi-level cache systems. They provide insight
into different mapping schemes, the usefulness of associativity, and effects of changing block
size and overall cache size.
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2. Trace Generation

2.1. Environment: The Titan
The original RISC machine designed and built at WRL was the Titan.  It is currently our

primary workhorse and the machine whose execution we have traced.  The Titan is an ex-
perimental, high performance, 32-bit RISC workstation with a 45ns cycle time, different register
sets for user and kernel, and a maximum memory configuration of 128 megabytes.  A program
may reference 64 general purpose registers. Titans run a modified version of Ultrix called

Tunix (Titan Unix ) in which all process and memory management functions have been rewrit-
ten.

2.2. Link-time Code Modification
Our trace generation method relies on the ability to do link-time code modification.  All com-

pilers at WRL translate programs into an intermediate language, Mahler, which defines the
abstract machine, hiding the details of the hardware from the compilers.  The Mahler implemen-
tation [17, 18] consists of a translator and an extended linker.  Object modules produced by the
Mahler translator contain sufficient supplementary information to allow the linker to do global
register allocation and pipeline scheduling, as well as the code modification we require for trace
generation. In particular, basic blocks and their sizes are identifiable at link-time.

An option to the linker causes branches to trace code to be inserted in the program wherever a
referenced address is to be recorded.  A return address is saved in a reserved register, thereby
avoiding a complex call/return mechanism.  Trace code uses reserved registers to access its ar-
guments so that memory accesses are minimized.  When executed, the trace code computes a
virtual address (physical address for the kernel) and writes the address in a trace buffer. An
instruction address computed and written into the trace buffer is the address at which the instruc-
tion would have been located had the code not been expanded with trace branches.  A trace
resulting from the execution of trace-linked code represents an execution of normally linked
code. An example of the effect of code expansion follows:

Original code:

(addr1) lab1: r1 := 4[r2]
r1 := r1 + 1
8[r2] := r1
if r1>0 goto lab2
null

(addr2) r1 := r9 + r10
...
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Expanded Code (symbolic):

lab1: call InstrTrace(5,addr1)
call LoadTrace(ADDR(4[r2]))
r1 := 4[r2]
r1 := r1 + 1
call StoreTrace(ADDR(8[r2]))
8[r2] := r1
if r1>0 goto lab2
null
call InstrTrace(7,addr2)
r1 := r9 + r10
...

where ADDR(d[rn]) means the address in memory described by displacement d
and the contents of base register rn.

Expanded Code :

lab1: r48 := pc, goto InstrTrace
r49 := 5
.word (addr1)
r48 := pc, goto LoadTrace
r50 := loadaddr 4[r2]
r1 := 4[r2]
r1 := r1 + 1
r48 := pc, goto StoreTrace
r50 := loadaddr 8[r2]
8[r2] := r1
if r1>0 goto lab2
null
r48 := pc, goto InstrTrace
r49 := 7
.word (addr2)
r1 := r9 + r10
...

A Titan references memory addresses only during load and store instructions and instruction
fetches. The linker inserts a branch to trace code at each load, each store, and at the beginning of
every basic block.  A basic block is a sequence of instructions with a single entry and a single
exit. The trace code for loads and stores inserts into a trace buffer the address to be referenced
together with a bit indicating whether the reference was a load or store.  The trace code for basic
blocks inserts the instruction address as well as the size of the basic block.  Since all of the
instructions in a basic block are executed if the first one is, a single trace entry is sufficient to
later simulate the correct sequence of instruction fetches.  The only information absent in the
current implementation is the interleaving of loads and stores with instruction fetches within
each basic block.  The information is obtainable, but to keep traces compact and allow longer
uninterrupted runs before the trace buffer fills, we do not keep it.
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2.3. Operating System Support
The operating system’s primary trace-related job is the management of the trace buffer.  The

trace must reflect the actual sequence of memory references made by a mixture of user and ker-
nel programs.  Therefore, the trace buffer is shared among the kernel and all running processes.
Only those processes that have been linked for tracing actually use the buffer.

At boot time, the trace buffer is allocated from the free page pool.  The current system runs on
a Titan with 128 megabytes of memory.  The trace pages are permanently associated with the
trace buffer and are not pageable. During execution, the machine behaves as if it had less physi-
cal memory.  We have experimented with 32 and 64 megabyte trace buffers.

From within the operating system, the buffer is referenced directly using its physical ad-
dresses. To make user references to the trace buffer sufficiently fast, the buffer is mapped into
the high end of every user’s virtual address space, as shown in Figure 1.

Segment Tables
  Per Process

  Page Tables
Pages
User

 Trace
Buffer
Pages

Trace
Segment

Trace
Segment

Figure 1: Mapping of the shared trace buffer

This mapping allows the user trace code to write directly to the trace buffer, referencing it by
its virtual address. The Tunix implementation of a process’s virtual memory as a variable sized
set of segments, each associated with a page table, makes this particularly easy. By default, each

5



LONG ADDRESS TRACES fROM RISC MACHINES

process has text, initialized data, uninitialized data and stack segments.  The trace pages make up
a shared fifth segment.  The stack, which usually resides at the high end of the 1 gigabyte virtual
address space, is moved to below the trace buffer.  The address space is large enough that this
does not constrain user programs. Since a single trace segment with its page table is set up at
boot time to be shared by all processes, the operations required on creation of a new process are
minimal, involving only the copy of a pointer to the segment.

2.4. The Trace Code
For efficiency, the trace code itself was written in TASM (Titan Assembly Language) using

registers to avoid memory references.  The only memory references in the trace code are writes
to the trace buffer.  All other values needed to manage tracing (pointer to the next available trace
location, value to be written, return address, trace flag, etc.)  are kept in registers.  A simple
branch instruction is used to return from the trace code.  In user programs, 18 TASM instructions
are executed to generate a data trace and 22 to generate an instruction trace.  In the kernel, 14
and 18 are executed, respectively.

A Titan register set contains 64 general purpose registers, 58 of which are normally available
to user programs.  We use 8 of these registers for trace generation.  As a result, the operating
system and code linked for tracing each have 50 registers available.

The kernel uses a separate register set from user processes.  To assure that the trace registers
are always correct, some of their values must be copied back and forth between register sets
when moving between user and kernel mode.  On every transfer from one register set to another,
two values (the current buffer index and buffer pointer) must be copied from one register set to
the other via memory.  If the transfer is between a kernel register set and a user register set the
buffer pointer is not copied, but is recalculated from the index and virtual or physical buffer base
address as appropriate.  The translation to a virtual address is the same for all processes since the
buffer resides at exactly the same virtual address in all processes.

Kernel execution on the Titan is uninterruptible, however, user execution can be interrupted at
any time, in particular in the midst of trace code.  This complicates the trace code and the code
executed on entry to and exit from the kernel.  Additional code must assure correct synchroniza-
tion among the users of the trace buffer.  Since interrupts can occur between arbitrary instruc-
tions, a lock value (requiring a register) is used to indicate that a user was interrupted mid-trace
and that the kernel must take special action.  The kernel’s trace registers must be made consis-
tent, and the user’s registers must be properly restored to continue mid-trace on return from ker-
nel mode.  This complication accounts for the difference in length between the kernel and user
trace code.  The only inelegant result of this is that a user trace entry can be split, with an ar-
bitrary amount of trace data generated by the kernel or other users in between the two parts of
the entry.

2.5. Controlling Tracing
The set of programs traced is determined by which ones are specially linked.  They may run

side by side with programs that are not traced.  The kernel is traced only if it is trace-linked.
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Tracing is done only when a trace flag kept in one of the trace registers is turned on. Before
writing to the trace buffer, the value of the trace flag if checked.  If it is off, control returns to the
program without writing to the trace buffer.  Tracing is turned on at the first interrupt following a
write to a location in /dev/kmem, a UNIX device corresponding to kernel memory that allows
privileged users to modify kernel values.  Tracing is turned off in an analogous fashion.

When tracing is off, 4 to 6 additional instructions are executed at every trace point.  No ad-
ditional cost is incurred during the execution of user code that is not linked for tracing whether or
not tracing is turned on.  The modified kernel, even when not linked for tracing, is slower by a
factor of about 2 because even a non-traced kernel must do extra work on every kernel entry to
assure that the trace registers are kept consistent.

2.6. Explicit Trace Buffer Entries
In addition to the automatic generation of address reference information as the result of linker

inserted branches, it is possible to explicitly call trace routines from either the user or the kernel
to insert arbitrary informative items into the trace.  Currently we make use of this in the kernel.

The addresses inserted in the trace buffer by the kernel are physical addresses, whereas those
inserted by user processes are virtual addresses.  It is essential for the analysis code to be able to
tell one from the other.  It is also useful to be able to associate sequences of virtual addresses
with a particular process when more than one is being traced.  Therefore, on every transfer into
or out of the kernel a change mode entry is made in the trace buffer.  The entry indicates whether
the change is from user to kernel or kernel to user and which user process is involved.

2.7. Format of Trace Buffer Entries
Entries in an address trace can be divided into two types based on whether they fill one or two

32-bit words of the trace buffer.  Data reference entries, the majority of all entries, are one word
long. All others are two words long.  An address generated in kernel mode is physical.  An
address generated in user mode is virtual.

Data Load/Store entries take up a single 32-bit word.  Since we trace word addresses from a 1
gigabyte address space, the two high order bits are always available as a type field. Any trace
entry with non-zero high order bits is a data entry.  The first word of other types of entries
contain type information in the high order byte.

Load Address

AddressStore

1 0

0 1

< 2 >< >30

< 2 >< >30

Figure 2: Data entry format
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An Instruction entry represents the beginning of a basic block.  The essential characteristic of
a basic block is that all instructions in the block are presumed to execute sequentially.

< >< >

0000 00001 Count

248

First Word

AddressSecond Word

Figure 3: Instruction entry format

Count is the number of instructions in the basic block starting at the address in the second word.

2.8. Kernel Tracing: A Few Special Considerations
Our goal is to be able to relink the kernel just as we do a user program in order to trace its

execution. This is possible for nearly all kernel code, with the exception of a portion written in
TASM and never modified by the linker.  This section corresponds to the very low level
machine-dependent code in Unix and is currently not traced.  In Tunix, the code determines the
cause of traps and interrupts, saves and restores coprocessor state and process state (register
contents), manipulates the clock and translation look aside buffer (TLB), and manages returns
from interrupts.  It also includes the idle loop.  We will eventually want to trace the TASM code.
To do this, calls to trace routines will be selectively inserted into the code (all but the idle loop)
by hand.

3. Trace Management

3.1. Extracting the Traces from Memory
The system as described thus far can very quickly gather an address trace whose length is the

size of the trace buffer.  Tracing slows execution by about 8 to 12 times.  Even with a 64
megabyte trace buffer (half of the Titan’s memory), the trace represents only about 2 seconds of
untraced Titan execution time or 30 to 35 million memory references.  While such traces are
much longer than those commonly available and are interesting for some purposes, they are not
nearly long enough to analyze the behavior of a very large cache.  This means that the trace data
must be extracted from the buffer in such a way that execution can continue without too much
disruption, in particular, without affecting the accuracy of the trace data.

Neither extraction nor analysis of the data can be done simultaneously with tracing because
either is orders of magnitude slower than trace generation.  Thus, all methods of dealing with
long traces require that tracing be periodically interrupted for a significant amount of time.  The
challenge is to assure that the resulting traces are seamless, that is, that they reflect address refer-
ence patterns that would have occurred had the machine continued tracing without interruption.

The interruption may entail extracting the partial trace and writing it, possibly in a compressed
form, to some storage medium for later analysis.  Alternatively, the partial trace might be
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analyzed immediately, eliminating the need to save the trace.  The first possibility does little to
solve the ultimate problem of very long traces where storage is impractical or impossible.  Trac-
ing of 5 minutes of Titan execution could generate nearly 10 gigabytes of uncompressed trace
data.

While we have implemented a mechanism to extract, compress, and write partial traces to high
density tape, our preferred method is to analyze the trace data on the machine being traced as it is
generated. When the trace buffer becomes nearly full, the operating system turns off tracing and
runs a very high priority analysis process.  As with any other process running on the traced
machine, the trace buffer is mapped directly into the analysis program’s address space so that the
data can be directly accessed.

Execution of the analysis program is controlled by the use of a read system call on a special
file. The program opens the file and attempts to read it.  The read returns the virtual address of
the beginning of the trace buffer and the number of available entries only when the buffer is full
(or nearly full).  The program may then do anything it chooses with the trace data.  The operating
system guarantees that during the execution of the analysis program, tracing is turned off and
traced programs are not scheduled for execution.

When all current data in the buffer has been processed, the special read is once again ex-
ecuted, tracing is turned back on, and traced user programs can once again execute.

3.2. Reproducibility of Results
A valuable characteristic of stored traces is the reproducibility of simulation results. When

traces are generated and stored for later use, the identical trace can be used to simulate and com-
pare different cache organizations.  On-the-fly analysis does not provide that capability.  While
sub-traces of executions of any single deterministic user program will be identical, the inclusion
of multiple processes will cause traces to vary from one run to the next. Likewise, kernel traces
will never be identical from run to run.

There are a couple of potential solutions to this problem.  First, it might be possible to simu-
late more than one cache organization at a time.  The utility of this approach is clearly limited
because it does not allow old results to be compared with new ones.  Another possibility is to do
a sufficient number of controlled runs to determine the variance in results for each cache or-
ganization so that any statistically significant difference between two different caches organiza-
tions can be determined.  While this is more painful and time consuming than either stored traces
or multiple simultaneous simulation, the results will more accurately represent the reality of ex-
ecution on an actual machine.

4. Accuracy of the Trace Data
An accurate address trace represents the actual run-time sequence of memory references made

by a set of trace-linked programs.  There are a number of ways in which the trace data can be
distorted so that it does not accurately reflect untraced execution.  These result either from not
tracing code that would normally be executed, or from tracing extra code that is executed only in
a traced system, or from tracing code that is executed at a different time in a traced system.
Factors affecting the distortion are the design of the tracing mechanism, the slowdown caused by
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tracing, and the interruption of traced programs in order to execute trace extraction and analysis
code.

4.1. Eliminating Gaps for Seamless Traces
For a trace to accurately represent real execution, there must be no gaps in the trace.  One

cause of such gaps can be the interruption in tracing during trace extraction and analysis.

If only user programs that are not time dependent are traced, seamlessness is not an issue.
Traced users are excluded from execution while the analysis program is run and resume execu-
tion at precisely the point they were stopped once the trace buffer has been emptied.  Since the
cache simulation analysis we do takes approximately two orders of magnitude more time than
does execution of the traced code, time dependent programs will behave very strangely, if they
work at all.

The effect of analysis breaks is more difficult to deal with when the kernel is traced.  The
kernel cannot be prevented from executing while the analysis program runs and tracing is turned
off. While it is not appropriate to trace kernel operations that are executed on behalf of the
analysis program, the trace should include code that services interrupts belonging to the traced
process, such as the completion of I/O initiated by a traced user process.

Careful placement of the code that turns off tracing prior to running the analysis program as-
sures that the trace sequence is a realistic one that could have actually occurred in the absence of
tracing. We have not yet come up with a solution to missing interrupt traces.  For the moment,
we will analyze the problem to understand how often this happens and to determine the effect on
the accuracy of the analytical results.

4.2. Trace-Induced TLB Faults
The second type of inaccuracy occurs when code is traced that is solely an artifact of tracing.

Since the only extra code executed in user mode is the trace code itself, which is not traced, this
inaccuracy occurs only during kernel tracing.

For example, a TLB fault that would not occur during the execution of untraced code is
generated whenever a user process first references a new page of the trace buffer.  Since TLB
faults are handled in software in the kernel, a kernel trace would contain a record of the execu-
tion of the TLB fault handler.  If the trace of the fault handler were sufficiently long, the next
user reference to the trace buffer could be to the next page of the buffer and could generate
another TLB fault.  Execution would thrash in a nasty loop filling the trace buffer only with fault
execution traces.  This situation did occur during the early debugging of the system. Note that
references to the trace buffer never cause page faults because the buffer is locked into memory.

To solve this problem, it is not sufficient to turn off tracing whenever the user’s trace code is
entered because other types of interrupts, which should be traced, are very likely to occur during
the tracing code.  After all, one is eight times as likely to be in the middle of tracing code as in
regular code when an interrupt occurs.  It is also possible for multiple interrupts to be handled on
a single trip into the kernel. For example, an I/O interrupt could occur while a TLB fault on the
trace buffer was being handled.  One would like to ignore the TLB fault but trace the handling of
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the I/O interrupt.  Our solution is to modify the low level TASM interrupt code in the kernel to
detect this situation and turn off tracing whenever a TLB fault on an address in the range known
to be the trace buffer occurred, and to turn it on again on return to user mode or if additional
work is to be done prior to returning to user mode.

Another cause of trace induced TLB faults is the modification of the tlb during trace extraction
and analysis.  Execution of the analysis code and references to many trace buffer pages are
guaranteed to substantially modify the TLB.  After the analysis program has run, the traced user
process would normally have to re-fault in its relevant translations.  To solve this, we may save
the contents of the TLB after turning off tracing but before running the analysis program.  The
contents of the TLB are then restored prior to turning tracing back on.

4.3. Interrupt Timing
Traces may not accurately represent normal execution because code segments are executed at

a different time, i.e. in a different order, when tracing is on.  Any slowdown in execution means
that various interrupts happen sooner or more frequently than they would without tracing.  This
will affect traces for user code that does asynchronous I/O or relies on signals. I/O will appear to
be considerably faster because less user code (and more trace code) is executed between initia-
tion and completion of an I/O operation.  We consider this distortion a necessary evil.

Also problematic are the additional timer interrupts that are not only traced (in kernel mode)
but affect the rate at which process switching is mandated.  This effects the scheduling of user
processes because less code will be executed before a single process’s time quantum runs out.
This can be fixed by changing the quantum associated with traced processes.  If the effect of
additional timer interrupts in kernel traces turns out to be problematic, it will have to be ac-
counted for in the analysis program rather than by modifying the traces.

4.4. Process Switch Interval
The decreased execution speed for traced processes influences the accuracy of multiple

process traces.  Since the process switch interval is measured in time rather than instructions, the
number of original instructions executed between process switches is 8-12 times less than nor-
mal. If such traces are used to simulate cache behavior, the resulting performance will be er-
roneously low.  To account for this we increased the process switch interval.  This was done
without changing the interval at which clock interrupts were serviced to check for external inter-
rupts since interrupts still need to be recognized quickly.

Initially, we increased the process switch interval by a factor of 8 to reflect actual switching on
a Titan.  This corresponds to the execution of approximately 200,000 user instructions between
switches. Since we are interested in simulating machines that are faster than the Titan we also
experimented with an interval corresponding to 400,000 instructions between switches.  We do
not know of any other multiprocess trace generation system which attempts to take this into ac-
count.

The multiprocess results presented later in the paper were all run with a 400,000 instruction
maximum interval.  The actual average number of instructions executed between process
switches for our multiprocess benchmark is about 175,000 in part because the quantum is
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measured in cycles rather than in instructions.  With no stalls, the Titan would issue one instruc-
tion per cycle, but it does not run at that rate.  Also, only compute bound programs regularly use
their entire time quantum on each switch.

5. Verification
It is difficult to verify the absolute correctness of many gigabytes of trace data, however, we

were able to use a number of techniques to convince ourselves of their accuracy.

5.1. Comparison with Simulation Results
An instruction level simulator existed for the Titan.  The simulator already produced cache hit

and miss data and was modified to produce traces for short, but real, user programs.  For ease of
comparison, our regular cache analysis program was modified to write out traces in exactly the
form produced by the simulator.  The resulting trace files were compared and the number of
cache hits and misses were compared.

The differences we noted first exposed bugs and then showed some surprising cache perfor-
mance results that would not have been obvious using only one trace method.  While instruction
addresses matched, we were puzzled by differences in data addresses and data cache hit rates.  It
turned out that the simulator made different assumptions about the virtual address at which the
user process’s stack began from that made by the operating system.  This affected the cache
locations used by stack references.  The surprising result was that this small change resulted in as
much as a 15% difference in the hit rate in the data cache.

While the simulator could not be used to simulate kernel details, it was still extremely useful.
We were able to verify that the trace sequence was correct and that the addresses computed in
the trace code corresponded to the correct addresses referenced by executing code that was not
expanded for tracing.  Since the link-time modification is the same for user and kernel code, we
believe that this justifies confidence in the accuracy of both kernel and user traces.

5.2. Checking for Gaps
In addition to checking the correctness of the information created by the trace code, it was

necessary to assure that kernel and user accesses to the trace buffer were properly synchronized,
and that no gaps in traces were produced when the analysis program ran.

Two techniques were used to verify correct synchronization.  First, we traced a program that
infinitely executed a very simple tight loop, thus generating an easily recognizable pattern, and
then ran a variant of the analysis program that checked whether anything was missing or out of
place.

Second, the trace entry generated by the operating system on entry to the kernel was extended
to include a sequence number that was incremented on each kernel entry.  Again, the analysis
program checked that no entries into kernel mode were missed or overwritten in the trace buffer.

12
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6. Trace Analysis

6.1. Panama: A Cache Analysis Program
Panama is our first and most general cache analysis program.  The requirements were that it be

flexible and easily modifiable so that cache characteristics could be changed from run to run.
The program should take up as little space as possible so that we can run large user programs
without additional paging overhead. Since analysis is the slowest part of the process taking
easily 10 times as long as trace generation, it should be as fast as possible.

To achieve speed and small size, we sacrificed run-time flexibility and were satisfied with
compile-time flexibility.  Constants whose values are specified at compile-time define the fol-
lowing cache characteristics:

• Number of cache levels (1 or 2)

• Split or integrated data and instruction caches

• Degree of associativity

• Number of cache lines

• Line size

• Write policy (write through or write back)

• Cost of hit and miss (in units of processor cycles)

A version of the program is compiled for each cache configuration, thus minimizing space
allocated for run-time data structures and eliminating code that is not executed for that con-
figuration. Panama can also simultaneously simulate a fully associative version of the second
level cache.

Output of the trace analysis is generated at intervals that can be based on the number of in-
structions, trace entries, or memory references encountered.  The data written includes both in-
terval and cumulative summaries of the following information:

• For each cache:
• number of references

• miss ratio

• contribution to the cycles per instruction (CPI )cache

• the percent of misses that resulted from user/kernel conflicts

• Contribution to the CPI by second level cache compulsory misses (first time
references)

• Second level cache contribution to the CPI if fully associative

• For user mode and kernel mode:
• Number of cycles executed and CPI

• CPI broken down by instruction, load and store contributions

13
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Panama works well, but remains a candidate for speed optimization.  When simulating split
instruction and data first level caches and a direct-mapped second level cache, analysis plus trace
generation take about 100 times as long as untraced execution.  For example, tracing and analyz-
ing a run of TV, a WRL timing verification program, extends the run time from 25 minutes to 45
hours.

6.2. Tycho: Evaluating Associativity
Tycho is a cache simulation program developed by Mark Hill [6] that allows many different

single level cache configurations to be simulated concurrently.  The algorithm used is the special
case of all-associativity simulation [9]. Although our primary interest is with multi-level caches,
we used Tycho to determine whether very long traces produced different results than short traces
and whether such effects varied with the degree of associativity.

6.3. Saving Traces for Later Analysis
On-the-fly analysis techniques allow us to analyze traces of unlimited length, but the need for

long traces outside of WRL convinced us to generate and save a set of traces for distribution.
Data storage was the primary problem to be overcome.  We decided to put the data on tape for

two reasons: capacity and portability.  Sony 8mm video cartridges used with an Exabyte
drive chosen for their large storage capacity, 2 gigabytes, and their convenience. The cartridges
are the size of a normal audio cassette tape.

Techniques similar to the Maching scheme used in [12] were used to pack massive amounts of
trace data on each tape.  The original trace data is first converted into a cache difference trace
consisting of reference points and differences.  Addresses are represented as the difference from
a previous address, rather than as an absolute address.  This differencing creates many repeated
patterns in the trace reference string.  The cache difference trace is then run through the Unix
compress program. Compress uses Lempel-Ziv [20] compression to recognize common se-
quences of data and compress these sequences into single code words.  Reference locality and
the regularity of trace entry formats allows trace data to be very effectively compressed. We
were able to reduce the storage requirements to between 0.38 and 3.0 bits per memory reference,
with most traces in the 2-3 bit range.  This allowed us to store a trace of about 8 billion memory
references on a single tape.

7. Experiments with Single and Multiple Process User Traces

7.1. Base Case Cache Organization Assumptions
A number of assumptions have been made about the type of machine we are interested in

analyzing. They are based on discussions with WRL’s hardware engineers and represent some
broadly accepted projections for workstations of the future.  The assumptions define the basic
cache organization whose characteristics we then varied and simulated.

The only assumption related to the generation of traces is that of a RISC architecture in which
instruction fetches and explicit data loads and stores are the only forms of memory reference.
This makes the simple form of the traces useful even though they contain no information about
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instruction types other than loads and stores.  The remaining assumptions are built into the
Panama analysis program.

We assume a pipelined architecture where, in the absence of cache misses, a new instruction is
started on every cycle. This is possible when the page offset is simultaneously used to retrieve
the real page from the TLB and to index the correct line in the cache.  Since we do not consider
delays other than those caused by cache misses, we count the base cost of instruction as one
cycle. The goal of the memory hierarchy design is to keep the CPI as close to 1 as possible.

We also assume the machine is fast enough to require two levels of cache.  The additional cost
of going to the second level cache, in case of a miss in the first level cache, is assumed to be 12
cycles. This is the same as the cost of going to main memory on a Titan.  The cost of going to
main memory is assumed to be 200-250 cycles depending on the size of block that is retrieved.

The first level data cache is presumed to be a write through cache with an associated write
buffer. In our experiments, the capacity of the write buffer is 4 entries.  If there is a entry avail-
able, the write occurs at no additional cost, otherwise the write stalls.  An entry is retired, that is,
it commits in the second level cache and frees space in the write buffer, every 6 cycles.  In other
words the write buffer behaves like a 4-entry FIFO, queuing up the writes to the second level
cache.

The second level cache is write back.  It may be either virtually or physically addressed.  We
have used a mapping based on virtual user addresses and physical kernel addresses. It is
described in detail in Section 7.5.

7.2. Choice of User Programs
Our choice of user programs to trace is based upon the assumption that in the future machines

will have much larger memories and that programs will be written to use that memory.  Ideally,
the programs should characterize the average workload of a future system.  Unfortunately, an
"average" workload is difficult to define. Not only are there wide variations in use from one user
to another, but the usage changes with time.  Prediction of a future workload is a difficult
problem. We are confident of one thing.  Applications will grow to use the large amounts of
memory available in future machines.

Most programs today have working sets of less than 16 megabytes. Some programs have
large address spaces but only use very small portions at a time to avoid thrashing on small
memory machines.  Nearly every program we have chosen to trace is real and currently in use on
existing large machines.  Many are memory hogs by today’s standards, but not simply because
they are poorly written.  They require large amounts of memory because the problems they are
solving are inherently large.

Figure 4 describes the programs we have traced thus far.  In the remaining sections we will
focus on the following four examples.

• TV is a timing verifier for VLSI circuits which is in regular use at WRL. It
generates a linked data structure and then traverses it.  It was written in Pascal by
Norm Jouppi.  The program is traced while analyzing the MultiTitan CPU, which
has 180,000 transistors.  For this run it requires 96 Mbytes of memory.
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Traced User Programs

Name Description

Make Unix program to maintain, update, and regenerate groups of programs.
The make program was used to generate a sequence of compiles and loads.
It made calls to cc, rm, and cat.

Cc C compiler front end.  It initiates the C pre-processor, C compiler,
Mahler compiler, and loader.

Cpp C language preprocessor.

Ccom First phase of C compilation on the Titan.

Mc Titan Mahler [18] intermediate language compiler.

Xld Titan extended linker and loader.

Cat Unix utility to concatenate files.

Cp Unix utility to copy files.

Vi/Ex Unix text editor.

Ps Unix utility to read process status.

Ls Unix utility to list directory contents.

rm Unix utility to remove a file.

Tcsh Unix shell program.

Magic VLSI editor [11]. It has a number of features not found in other editors,
including design rule checking, plowing, etc.

Grr Printed circuit board router [4].

TV Circuit timing verifier [7].

SOR Fortran implementation of the successive overrelaxation algorithm [3, 8]
that uses sparse matrices.

Linear Program to solve linear systems of equations using sparse matrices [15].

Tree Compiled Scheme program which builds a tree data structure and searches
for the largest element in the tree [2].

Figure 4: Descriptions of programs used in trace experiments

• SOR executes Renato De Leone’s implementation of the successive overrelaxation
algorithm using sparse matrices.  It is written in Fortran with static array allocation.
It operates on a 800,000 by 200,000 sparse matrix with approximately 4 million
(0.0025%) non-zero entries and takes 62 Mbytes.

• Tree is a compiled Scheme program, written by Joel Bartlett, which builds a tree
data structure and searches for the largest element in the tree.  Bartlett’s implemen-
tation of Scheme uses a garbage collection algorithm in which memory space is split
into two halves.  When no memory is left in one of the halves, data is compacted
into the empty half.  It uses 64Mbytes of memory.
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• Mult is a multiprogramming workload consisting of:
• a make run compiling (from C) portions of the Magic source code

• grr routing the DECstation 3100 printed circuit board

• Magic design rule checking the MultiTitan CPU chip

• Tree on a smaller problem given 10Mbytes of working space

• another make run that calls xld on the Magic code

• an infinitely looping shell of interactive commands (cp, cat, ex, rm, ps -aux,
and ls -l /*)

This set of programs uses approximately 75 Mbytes of memory.
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Figure 5: User trace characteristics

Figure 4 contains the characteristics of the example traces.  Not surprisingly, the number of
instructions as a percent of memory references is higher than in CISC programs.  The average
percent of references that are instructions is 70.5%, whereas the average value for traces ex-
amined in [6] was 53.3%.  All of the programs had been compiled with all available optimization
including global register allocation [17].

7.3. CPI as a Measure of Cache Behavior
The most common measure of cache performance is the miss ratio, the fraction of requests

that are not satisfied by a cache.  Though the miss ratio is useful for comparing individual
caches, it does not give a clear picture of the effect of a cache’s performance on the performance
of the machine as a whole, or of the relative importance of the performance of each cache in a
multi-cache system. For example, one cache may have a much higher miss ratio than another,
but be used much less frequently and result in less overall performance degradation than the first.

A better measure of performance in a multi-cache system is CPI, the average cycles per
instruction. CPI accounts for variations in the number of references to the different caches and
differences in the costs of misses to the caches, and can be broken down into the components
contributed by each part of the memory hierarchy.  We are concerned only with memory delays
and ignore all other forms of pipeline stalls, assuming one instruction is issued per cycle.  There-
fore, for our base machine the total CPI over some execution interval is:

CPI = 1+ CPI + CPI + CPI + CPItotal data inst level2 wtbuffer
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where CPI is the contribution of a cache and CPI is the contribution of the writecache-type wtbuffer
buffer.

If for each cache,

m = number of misses during the intervalcache-type

c = cost in cycles of a misscache-type

i = the number of instructions in the interval

then

CPI = (m × c ) / icache−type cache−type cache−type

The goal is to minimize the total CPI.

Admittedly, CPI is an architecturally dependent measure, but machine designers are most of-
ten interested in the performance of a specific architecture rather than cache performance in a
vacuum. CPI tells much more about the performance of our base architecture than do thetotal
miss ratios of the individual caches.

For example, the top graph in Figure 6 shows the miss ratios for the three caches during a 3
billion instruction segment of a run of the Mult set of programs.  The bottom graph shows the
total CPI and CPI contribution of each cache for the same run.  While the miss ratio for the data
cache usually exceeds that of the instruction and second level caches, its actual contribution to
the total CPI is much smaller than that of the instruction or second level caches.  The CPI graph
also shows that the second level cache often contributes nearly twice as much to the overall
performance degradation as do either the instruction or data caches.

In the rest of this paper, we will present trace results in terms of two different measures of
CPI, the interval CPI and the cumulative CPI. The interval CPI is measured at regular intervals
over the course of a trace and simulation run and at each point is the average for the previous
interval. The cumulative CPI is the CPI averaged over the entire preceding portion of a run.

7.4. Long Traces are Nice and Necessary
Some of the earliest data collected validated our belief that long traces were necessary to un-

derstand the behavior of large caches.  Each point in Figure 6 represents an average over 100
million instructions, or approximately 150 million memory references.  Most existing traces are
less than 10 million references long.  Each point in Figure 6 is ten times that.  The variation in
the CPI over the length of the trace makes clear the necessity of long traces.total

A more dramatic example is shown in Figure 7.  The graphs represent a run of TV that ex-
ecuted for 12.5 billion instructions.  The graphs show the data for 1.5 billion instructions, from
instruction 10.6 billion to 12.1 billion.  Each point on the graph represents an average over the
previous 10 million instructions, near the entire length of most available traces.  Analysis done
on only 10 million instructions could conclude that the CPI was anywhere between 1.7 andtotal
6.8. Moreover, interesting behavior did not begin until after 9 billion (!) instructions had been
executed. Up until that point, the graph was flat with a constant CPI of 1.7.total
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Figure 6: Interval miss ratios (top) and interval CPIs (bottom) for Mult

In the above examples, the CPIs and miss ratios were measured at intervals of 100 million instructions.
The instruction and data caches are both 4K bytes consisting of 256 4-word lines.  The second level cache
is 16M bytes made up of 4096 32-word lines.  All three are direct-mapped.

This example also illustrates how the behavior of each phase of the TV program is identifi-
able. The two major phases of the computation, max and min delay analysis, start about 1065
and 1140, respectively. Note the similarity in the graphs of CPI for each phase.  Each of eightinst
subphases corresponding to the rising and falling of the four clock phases of the simulated chip
are also clearly identifiable.  The high points in the graphs of CPI and CPI that matchdata level2
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Figure 7: Interval CPIs for TV in two parts

This example used a 4K byte instruction cache with 64 byte lines, a 4K byte data cache with 32 byte
lines, and a 16M byte second level cache with 256 byte lines.
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Figure 8: Miss ratios for short (500K refs) and long (150M refs) traces

Data was collected for 5 cache sizes, 4K to 1M.  The data are for single level mixed instruction and
data caches. * Note that there is no data for the 4K byte cache with 4-way associativity.

The usefulness of long traces is not limited to large multi-level caches.  Using Tycho, we
examined the effects of trace length on performance results for single level caches, varying cache
size and the degree of associativity.  Running Tycho on traces of increasing length showed that
even the performance of programs on single level caches is not accurately modeled by short
traces. We ran Tycho against two sets of traces generated by Tree and SOR.  The first run used
500,000 references, the second more than 150,000,000.  In the two cases shown in Figure 8, miss
ratios dropped when analyzed for the longer trace.  The results are not due simply to cold start
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problems since Tycho accounts for them.  The miss ratio will not always be lower for long
traces. The difference depends on where in a long trace the short trace is chosen.  Were we to
run the same experiment with TV, choosing an early part of the run for the short trace, the miss
ratio would undoubtedly go up. In general the results show that the differences are greater, and
so long traces are more essential for large caches and higher degrees of associativity.

We have shown that very long traces give a great deal of information about a program’s be-
havior and that using traces that are too short can lead to erroneous performance estimation.  We
have not yet dealt with the question of how long a trace must be to get valid performance data.
How long is long enough?  Unfortunately, that depends on the application or set of applications
running. The graphs in Figure 9 show this clearly.  Tree terminates before it stabilizes.  SOR
gradually stabilizes after 10 billion references.  TV appears to stabilize early and then takes a
jump after 10 billion references. Only Mult seems to stabilize reasonably well, and even so takes
at least 1 billion references to do so.  It appears that even to have the cache warm up one needs a
trace of 500 million references!
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Figure 9: Cumulative CPI for the four examples with a 512K second level cache.total

In each case, both first level caches had 4K bytes with 16 byte lines.  The second level cache had 512K
bytes in 128 byte lines.  All were direct-mapped.

7.5. Address Mapping to the Second Level Cache
Recall that the trace addresses generated for user programs are virtual addresses, but the Titan

and future machines at WRL will have physically addressed caches.  Simulating small physically
addressed caches using virtual addresses is not problematical.  If the cache size divided by its
associativity is less than or equal to the page size, then the high order bits of the page offset,
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which is the same for virtual and physical addresses, can be used to identify the appropriate
cache line.  A process id field associated with each cache line determines whether the contents of
the cache line is from the correct address space.  In this case, misses will be identical to those
occurring in a physical cache where the pid field is replaced by a physical page number field.
When the cache is very much larger than the page size, as will almost certainly be the case for
the second level cache, the page offset maps to only a tiny proportion of the cache.

If an address’s offset relative to the cache size is used as a mapping, sequential virtual ad-
dresses will map sequentially into the cache, wrapping around only when they are larger than the
cache size.  Since the cache may be larger than the address space of many programs, all of those
programs will conflict in those portions of the cache associated with commonly used virtual ad-
dresses. Even for large programs, instruction addresses, which map into the low addresses, will
conflict.

A similar mapping based on physical addresses should provide better distribution throughout
the cache.  Physical addresses, which are sequential only within pages, will be scattered through-
out the cache in page-sized chunks, assuming that the physical memory is very much larger than
the second level cache.  Their distribution in the cache will depend on the memory management
algorithm. Unfortunately, using the actual physical address from the Titan in our simulations is
unrealistic. Not only is the Titan’s physical memory too small, but the physical addresses for
user code correspond to the expanded trace code rather than the unexpanded real code.

Since the cache is so large, one should be able to spread out references from different
processes, eliminating interprocess conflicts, and assuring that much of a process’s working set
remains in the cache after process switches.  The two-level cache simulations performed by
Panama use a simple pid hashing algorithm to distribute mappings in the cache.  The goal of pid
hashing is to reduce cache conflicts due to the "bunching" of references to particular areas in the
address space.  The pid is exclusive-ORed with the part of the address that indexes into the sets
of the cache.  Thus, the same virtual address from different address spaces will map into dif-
ferent areas of the cache, reducing conflicts.  This method may be viewed as a possible im-
plementation for a virtually addressed cache or as an approximation of the distribution naturally
provided by physical addressing.

The graphs in Figure 10 compare the cumulative CPIs for three sizes of second level cache
when pid hashing is used (dotted lines) and when the address modulo the cache size is used
(solid lines).  The upper graph shows CPI . The lower graph shows CPI . Pid hashinglevel2 total
effectively reduces CPI only when the cache is quite large.  Even in the best case, when itlevel2
reduces the second level contribution for a 16 megabyte cache by about 30% it has less than 1%
effect on the CPI . As cache size increases, pid hashing more effectively reduces the misstotal
rate and thus the CPI . On the other hand, as cache size increases, the miss rate andlevel2
CPI decrease so that even a large proportional reduction has a smaller effect on the CPI .level2 total
A question to be considered is whether a heavier work load applied to a large cache would in-
crease the second level miss ratio but still benefit greatly from pid hashing, or whether this
would result in reduced effectiveness as in the case of the 512K cache.
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Figure 10: Effectiveness of pid hashing for 512K, 4M, and 16M second level caches

Cumulative CPIs for 5 billion instruction runs of Mult with pid hashing (solid lines) and without pid
hashing (dotted lines).  The upper graph shows only the CPI . The lower graph shows the CPI .level2 total

7.6. Multiple Process Traces
A feature of our system is that we do not need to save traces.  To analyze a program with a

different cache organization, we need only rerun the program with a differently parameterized
analysis program.  This works well for single user programs that are deterministic; they generate
identical traces on different runs.  For multiple processes, however, the pattern of memory
references is no longer deterministic, resulting in variations in cache behavior from run to run.
The same set of programs can be interleaved differently depending on a variety of external un-
controllable factors.  This is not necessarily bad. Differences in the results for the same set of
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programs represent differences that will occur on a real machine.  On the other hand, variations
between runs may make it difficult to precisely understand the significance of variations due to
cache modifications.
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Figure 11: Variations in multiprocess runs

For all eight runs the first level caches were 4K bytes with 16 byte lines.  The second level caches
were 1M and 4M bytes with 128 byte lines and 16M with 256 byte lines.

Figure 11 shows the cumulative CPI for repeated runs of Mult at three second level cachetotal
sizes. The variations between same sized runs are quite small, usually less than 1%.  In all of our
experiments, variations in cache characteristics caused changes in the CPI results that were ei-
ther significantly and consistently greater than 1% or the fact that they were smaller was by itself
a useful result.  In cases were more specific detailed distinctions between similar results are
needed, we will modify the cache analysis program to simulate multiple caches at the same time.
The need for this has not yet risen.

7.7. Second Level Cache Size
Next, we present the results of varying only the size of the second level cache.  We did not

simulate the case without a second level cache but can easily argue that its performance would
be unacceptable.  Assuming miss ratios of 5% for the data and instruction caches, a 200 cycle
cost for each miss, and that the data cache is used 40% as often as the instruction cache, the
CPI would be 15!  A slower processor in which the time to handle a miss was 10, wouldtotal
have a CPI of 1.7.  The actual increase in performance of the machine with a 20 fold increasetotal
in processing speed, would be only 2 times.
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Figure 12: Interval CPI for three second level cache sizeslevel2

CPI for the previous 100M instructions plotted against instructions executed for three secondlevel2
level cache sizes: 512K, 4M, and 16M.  Note the difference in the scale on the y-axis and the difference
in trace length on the x-axis.
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Figure 12 shows the CPI for three sizes of the second level cache: 512K, 4M, and 16M.level2
Except during the early part of the TV run, there is a dramatic reduction in CPI when thelevel2
cache size is increased to 4M but a considerably smaller improvement resulting from the jump to
16M.

Interval CPI gives a good picture of the different behaviors of the programs, however, the
cumulative CPIs shown in Figure 13 shows the effect of cache size increases on long run
average system performance.  SOR, with its periodic behavior, is the only program that greatly
benefits from an increase to 16M.  This is most likely because it actually references a large part
of its large address space.  We can conclude from these examples that most of the programs we
have chosen do not have large working sets. Mult is the most realistic of the examples, however,
its usefulness is limited by the relatively small size of each of the individual programs it runs.
There is definitely a need to put together much larger multiprocessing workloads.

We can get a bit more insight into the existing data by dividing level 2 cache misses into three
categories defined by Hill [6]: compulsory, capacity, and conflict. Compulsory misses happen
the first time an address is referenced and and occur regardless of the size of the cache.  Our
simulator computes the compulsory, fully associative, and direct-mapped miss ratios. The
capacity miss ratio is the difference between the fully associative miss ratio and the compulsory
miss ratio. The conflict miss ratio is the difference between the direct-mapped miss ratio and the
associative miss ratio.  From these values we have computed the percent of misses in each cate-
gory for the Mult runs for each cache size shown in Figure 14.

Capacity misses are due to fixed cache size.  The percent of capacity misses decreases
markedly when the cache size in increased to 4M bytes, but very little more as the result of the
increase to 16M.  Conflict misses result from too many mappings of addresses to the same cache
lines. The percent of conflict misses increases slightly from 512K to 4M, but decreases substan-
tially when the cache size is increased to 16M.  Thus, beyond 4M, increases in size primarily
allow interfering blocks to be spread out more effectively.  This corresponds to the increased
effectiveness of pid hashing to reduce the miss rate for a 16M cache.

7.8. Direct-Mapped vs Associative Second Level Caches
In this section, we examine the effects of associativity in large second level caches.  Increasing

associativity can decrease the miss ratio of a cache, but it may have limited effect or even an
adverse effect on the performance of the system as a whole [5]. If the cache is very large, having
a low miss ratio in the direct-mapped case, then reducing the miss ratio can only have a small
effect on overall performance, even if associativity comes with no cost.  It is more likely that for
large caches, the cost of implementing associativity outweighs its benefits.  The positive effects
of associativity are related to the cache’s miss ratio, but the negative effects in added cost are
related to the total number of references to the cache.  Though increased associativity may
decrease the number of misses and thus the total cost of misses, it makes every reference to a
cache more expensive.

Our simulations measure the miss ratios and CPIs for direct-mapped and fully associative
caches under the extremely optimistic assumption that associativity is free.  That is, the cost of a
reference in both cases is assumed to be equal.  LRU replacement is used in the fully associative
case. The results should bound the improvement possible from set associativity.  Figure 15
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Figure 13: Cumulative CPI for three second level cache sizestotal

Cumulative CPI for the four example programs with three second level cache sizes: 512K, 4M, andtotal
16M. Only SOR substantially benefits from an increase in size to 16M.  Note the differences in scale on
the y-axis.

28



LONG ADDRESS TRACES fROM RISC MACHINES

-- --

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Categories of level 2 misses iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Cache Size conflict capacity compulsory

i (%) (%) (%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
512K 40.4 57.6 2.0

4M 41.5 47.3 11.2
9i 16M 32.0 45.1 22.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

cc
c
c
c
c
c
c
c

Figure 14: Compulsory, capacity, and conflict misses

shows the cumulative CPI in the direct-mapped and associative cases for Mult runs with fourtotal
second level cache sizes.  The results show that even in the most optimistic case, associativity is
minimally effective for large caches (4M and 16M) but may be useful for 1M or 512K caches.
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Figure 15: CPI for direct mapped and fully associative casestotal

Cumulative CPI for Mult for direct-mapped (solid) and fully associative (dotted) for four cachetotal
sizes.

A more useful measure to implementors of the benefits of associativity is the effect on the
total CPI of associativity as a function of the cost per reference of the associativity.  We derive
the formulas for this below.
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Using subscripts a and d to indicate associative and direct-mapped, respectively,

CPI = CPI + ∆CPIa d
= CPI + R ⋅ ( A − A )d 1 a d

where A and A are the average cost per reference to the second level cache, and R is the firsta d 1
level miss ratio (combined for data and instruction caches).

Letting

∆A = A − Aa d

and

h = cost of a hit in the associative cachea

h = cost of a hit in the direct-mapped cached

m = cost of a second level cache miss (same direct-mapped and associative)

R = miss ratio for a second level associative cachea

R = miss ratio for a second level direct-mappedd

then,

∆A = h ⋅R + m ⋅ (1 − R ) − (h ⋅R + m ⋅ (1 − R ) )a a a d d d

= h ⋅R − h ⋅R + m ⋅ (R − R )a a d d d a

Expressing this as a function of h and the ratiod

hdk =
ha

we get

1∆A = h ⋅ ( ⋅R − R ) + m ⋅ (R − R )d a d d ak
and

1
CPI = CPI + R ⋅ (h ⋅ ( R − R )+ m ⋅ (R − R ))a d 1 d a d d ak

Since the miss ratios do not depend on reference costs, we use the miss ratios and CPI fromd
our simulations to plot the CPI versus k for the values of h and m used in the simulation.  hea d
results are shown in Figure 16.  The horizontal lines represent CPI , the direct-mapped value, ford
each cache size. The corresponding sloping lines represent CPI , the fully associative value, fora
various values of k. The diamonds note the crossover points at which the CPI is the same in the
associative and direct-mapped cases.  The distance between the points at which corresponding
horizontal and sloping lines intersect the vertical at k = 1 is the maximum gain to be expected
from associativity, assuming that full associativity provides an upper bound on that gain.

The graphs for Mult, Tree and TV show that associativity will not help for a second level
cache of 16M or probably even 4M.  For caches sizes of 512K or less, we should do more
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Figure 16: CPIs for fully associative caches as function of implementation cost

detailed simulations using realistic costs and degrees of associativity.  In these three case, as
expected, all diamonds are to the right of k = 1.  That is, performance improves with full as-
sociativity. Yet, the intersection in the 16M case is very close to k = 1 implying that as-
sociativity would have to be nearly free to get even a small gain.  On the other hand, for a cache
size of 512K, if associativity could be implemented for a cost per reference of 10% or less, all
three of the benchmarks would see some improvement in performance.

SOR is anomalous because in the 4M case, full associativity does worse than direct-mapped.
This is a result of the size of data structures and the cyclic way they are used.  Evidently, the
LRU replacement strategy results in the frequent replacement of data items which are about to be
used. Clearly, increasing cache size has a much greater effect on SOR than does increasing
associativity.
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7.9. Line Size in First and Second Level Caches
We have done some preliminary experiments with changes in line size in both the first and

second level caches.  The solid lines in Figure 17 show the effects of doubling and then quad-
rupling the line size for both the first level caches.  These runs were made with a 512K second
level cache, but the reduction in first level contributions are independent of the second level size.
Most of the improvement is due to the deceased contribution of the instruction cache. CPIdata
stayed nearly constant.  The improvement in memory system performance as the result going
from 16 to 32 byte lines without changing the capacity of the cache is about the same as that of
increasing the size of the second level cache 8 times.  The dotted line shows CPI for a 4Mtotal
second level cache and 16byte lines in the first level cache.  Unfortunately, doubling the line size
of an on chip cache is not a trivial matter.  It may be that using some form of prefetch will be less
difficult and nearly as effective.
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Figure 17: Three lines sizes for the first level caches

Solid lines show variations in the line size of the first level caches with a second level cache size of
512K. The dotted line is from a run with a 4M second level cache and 16 byte lines in the first level
cache.

Doubling the length of lines in the second level cache from 128 bytes to 256 bytes made al-
most no difference in performance as shown in Figure 18.  The difference is within the 1% varia-
tion found between runs of Mult with constant cache characteristics.  This is the case even
though the cost of retrieving the two line sizes was identical in the tow runs.  Apparently, there is
too much conflict for long line sizes to be beneficial.

7.10. Write Buffer Contributions
We were initially surprised to find that there was a great deal of variation in the performance

of the write buffer from program to program.  In SOR, the CPI was nearly alway zero, butwtbuffer
in runs of Mult and Tree it was as high as .5 cycles, or nearly 20% of the total CPI over a 100
million instruction interval.

32



LONG ADDRESS TRACES fROM RISC MACHINES

0 2500500 1000 1500 2000
Instructions executed (millions)

1

3

1.5

2

2.5

C
um

ul
at

iv
e 

to
ta

l C
PI 128 byte/16M

256 byte/16M

Figure 18: Two line sizes a 16M second level cache

Closer examination showed the reason to be the the sensitivity of write buffer performance to
both the proportion and distribution of writes in the instructions executed.  A write buffer entry is
retired every six cycles.  One would expect it to perform badly if on average more than one in six
instructions was a write.  In addition, bunching of the writes, rather than even distribution com-
pounds the problem.

The graphs in Figures 19 and 20 show the clear relationship between the proportion of writes
in a program and the write buffer performance.  Whenever the percent of writes goes about one
in six or 17%, the CPI takes a proportionally greater jump. The change in CPI inwtbuffer wtbuffer
the 2000M-5000M instruction range in the Mult graph of Figure 19 is most likely the result of
the smaller run of Tree executed as part of the Mult set of programs.  This lead us to look more
closely at the difference between the compiled Scheme code for Tree and that for the other
programs.

To determine this correlation more precisely, we plotted the CPI against percent of in-wtbuffer
structions that are writes. The graphs in Figures 21 and 22 show both the effect of the proportion
of writes and the distribution of writes.  Although our simulations do not measure the distribu-
tion of writes, some trends are apparent from the graphs.  The tendency of CPI valueswtbuffer
associated with a percent of writes to be very close together indicates a consistent degree of
bunching. Variations in the distribution of writes shows up as a spread of values for each per-
centage.

Inspection of the code generated for Tree showed that nearly all of the store instructions are
used to save values in registers on procedure entry.  Because of the large number of very small
procedures and the recursive nature of the program, it is nearly impossible for global register
allocation to optimize out the stores.  Thus, there are often both a high number of stores and the
stores are necessarily bunched together. The bunching was not an artifact of trace generation.
As a result, on most procedure entries, the write buffer becomes full causing delays and a posi-
tive contribution to the CPI.
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Figure 19: CPI compared with proportion of writes in Tree.wtbuffer
All runs are identical so only one is shown.

The graph for Mult shows greater variation.  The grouping of points above 0.2 CPI cor-
responds to the influence of the included Tree run averaged with other processes with which it
interleaves execution.  Below 15% writes, the CPI is mostly dependent on the degree of bunch-
ing. Not surprisingly, this varies most in the multiprocess example.  We would expect to see
more bunching of writes and worse write buffer performance had we used per-procedure rather
than global register allocation.  In the absence of recursion, global register allocation very effec-
tively reduces the number of loads and stores necessary on procedure call and return [17, 19].

For TV, the lower CPI for higher percentages of writes shows that writes are morewtbuffer
evenly distributed.  This is expected because TV does not do nearly as many procedure calls as
either Mult or Tree.
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Figure 20: CPI compared with proportion of writes in Mult.wtbuffer
Three runs are shown.

We believe that a third factor, the first level data cache miss ratio, comes into play for SOR.
There, even though the percent of writes is frequently in the 15-20% range, CPI is usuallywtbuffer
zero. If writes are uniformly distributed below 18% the write buffer will never fill and a sub-
sequent write will never be delayed.  At points above 18% we expect some delays.  Since the
second level cache is assumed to be pipelined into 3 stages, the processing of a single miss gives
the write buffer a chance to retire two entires.  Frequent enough misses interspersed among the
writes could cause the write buffer to work smoothly without delays.  We do not yet have the
data to verify this hypothesis.

In programs with large basic blocks our method of generating traces can exaggerate the write
buffer’s contribution to the CPI. Since there is only one instruction entry per basic block in a
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Figure 21: CPI vs proportion of writes for all runs of Tree and Multwtbuffer

trace, we simulate all instruction references followed by all data references in their correct order.
Writes that are interspersed with other instructions will be bunched together more in the traces
than in reality.  The larger the basic block, the more likely that writes at the end will be suf-
ficiently bunched to show up as write buffer delays when simulated.  We expect that simulations
of numeric programs which have been optimized using loop unrolling, resulting in greatly in-
creased basic block size, would suffer from this distortion.
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Figure 22: CPI vs proportion of writes for all runs of TV and SORwtbuffer

8. Conclusion
We have presented a new software method for generating extremely long traces of program

execution on RISC machines.  The system is designed to allow tracing of multiple user processes
in different address spaces and the operating system.  On-the-fly analysis solves the storage
problem for the billions of bytes generated.  On-the-fly data collection allows long traces to be
compacted and written to tape if necessary.  The system is easy to use, requiring only the relink-
ing of programs to be traced.

We have used the system to generate and analyze traces for a variety of single and multiuser
programs. A conservative estimate of the number of references we have traced and analyzed is
500 billion.  We have produced tapes of compressed traces containing 45 billion references.
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The trace analysis has provided insights into the behavior of systems with large second level
caches. While secondary caches are clearly necessary, our traces do not justify sizes over 4M
bytes. Only individual programs such as SOR with large working sets rather than just large
address spaces benefit from the largest caches.  Block size is a very important factor in first level
instruction caches, but sizes above 128 bytes in the second level cache had little effect on overall
performance. Write buffer behavior can be a big factor in performance if the proportion of
writes in code is too high.  Associativity in large second level caches is not justified.

The project is by no means complete. It remains to be seen whether we can generate long,
accurate, seamless traces of operating system code.  This is our next goal.  Should kernel tracing
be successful,we will port the system to a more accessible architecture, probably the MIPS-based
DECStation 3100.  We hope that the system will make it possible to do detailed performance
comparisons of operating systems such as Ultrix, Sprite and Mach.
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