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Abstract

This paper examines non-uniformities in the distribution of instruction-
level and machine parallelism.  Non-uniformities in instruction-level paral-
lelism include variations between benchmarks, variations within
benchmarks, and variations by instruction class.  Non-uniformities in
machine-level parallelism include variations in latency between different
operations, and variations in parallel execution capability depending on the
instruction opcode.  The results presented in this paper were obtained with a
parameterizable code reorganization and simulation system.

The discussion of machine parallelism is based on the concepts of super-
scalar and superpipelined machines.  Superscalar machines can issue several
instructions per cycle.  Superpipelined machines can issue only one instruc-
tion per cycle, but they have cycle times shorter than the latencies of their
functional units.  These two techniques are shown to be roughly equivalent
ways of exploiting instruction-level parallelism.  The average degree of
superpipelining metric is introduced to account for the non-unit operation
latencies present in most machines.

In this paper a methodology for quickly estimating machine performance
is developed.  A first order estimate is based on the average degree of super-
pipelining. A second order model corrects for the effects of non-uniformities
in instruction-level and machine parallelism and is shown to be accurate
within 25% for three widely different machine pipelines: the CRAY-1, the
MultiTitan, and a dual-issue superscalar machine.

This is a preprint of a paper that will appear in the
IEEE Transactions on Computers, Special

Issue on Computer Performance, December, 1989.
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1. Introduction
The exploitation of instruction-level parallelism was an active area of research in the late

1960’s and early 1970’s [14, 12, 2]. Recently approaches to exploiting instruction-level paral-
lelism have again become increasingly popular areas of research [9, 11, 13, 17, 1], as well as an
emerging area of practice [8].

Much of this research has focused on the effects of adding parallel instruction issue capability
to a specific pipeline. These results are not necessarily broadly applicable because of the
specific machine-dependent timing assumptions made in the context of a specific machine
pipeline. For example, in studies which start from a CRAY-1 baseline, the latency of scalar
addition is three cycles and the load latency is eleven cycles.  But what do parallel issue studies
for these pipeline characteristics imply for a machine with a one-cycle add and a two-cycle load?
By fixing the machine latencies and pipeline characteristics, these studies are restricted to a
single line of increasing parallelism in what is actually a multidimensional space.  In this work
we attempt to present data which covers a large portion of the potential machine design space.
Based on this data a methodology is developed that yields accurate performance estimates for a
wide range of machine pipelines.

Another limitation of previous work is that many times the result data is presented in terms of
averages. Average parallelism can provide a first approximation to machine performance, but
non-uniformities in instruction and machine parallelism can also play a significant part in deter-
mining machine performance.  For example, consider a machine that requires an average of one
addition per cycle for good performance on a benchmark.  Is one adder enough for a machine to
obtain good performance on this benchmark?  If the additions are distributed such that in half the
cycles there are no additions required, but in the other half there are two additions required, and
such that in the non-addition cycles there are other instructions which use the results of the ad-
ditions, then it makes sense to consider machines built with two adders.  Thus the distribution of
instruction-level parallelism is also an important area of work.  In this paper we consider several
non-uniformities in the distribution of instruction-level and machine parallelism and their effects
on machine design and the estimation of a machine’s performance.

There are also several limitations in the scope of this work. The instruction-level parallelism
measured is primarily within basic blocks, except for limited amounts of loop unrolling in the
numeric benchmarks.  Inter-block instruction-level parallelism depends on the particular im-
plementation of branch prediction, trace scheduling, or software pipelining used to make inter-
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block parallelism accessible, and these techniques are beyond the scope of this paper.  However,
once the inter-block instruction-level parallelism made available by these techniques is quan-
tified, the performance estimation techniques developed in this paper are applicable based on the
instruction-level parallelism present.

Section 2 describes the parameterizable compilation and simulation environment used to
*measure the parallelism in benchmarks.  In Section 3 we present a machine taxonomy helpful

for understanding the duality of operation latency and parallel instruction issue. It also presents
simulation data showing the duality of superscalar and superpipelined machines.  Section 4 intro-
duces important non-uniformities in instruction and machine parallelism.  Typical distributions
of these non-uniformities are presented from simulations using the parameterizable compilation
and simulation system.  In conjunction with the investigation of these non-uniformities a
methodology for quickly estimating machine performance is developed.  Resulting estimates are
compared with simulated performance for several machines and differences are discussed.  The
importance of cache miss latencies and other memory system related effects are briefly con-
sidered in Section 5.  Section 6 summarizes the results of the paper.

2. Machine Evaluation Environment
The language system originally designed for the MultiTitan consists of an optimizing compiler

(which includes the linker) and a fast instruction-level simulator.  The compiler includes an inter-
module register allocator and a pipeline instruction scheduler [15, 16]. For this study, we gave
the system an interface that allowed us to alter the characteristics of the target machine.  This
interface allows us to specify details about the pipeline, functional units, cache, and register set.
The language system then optimizes the code, allocates registers, and schedules the instructions
for the pipeline, all according to this specification.  The simulator executes the program accord-
ing to the same specification.

To specify the pipeline structure and functional units, we need to be able to talk about specific
instructions. We therefore group the MultiTitan operations into fourteen classes, selected so that
operations in a given class are likely to have identical pipeline behavior in any machine. For
example, integer add and subtract form one class, integer multiply forms another class, and
single-word load forms a third class.

For each of these classes we can specify an operation latency.  If an instruction requires the
result of a previous instruction, the machine will stall unless the operation latency of the previous
instruction has elapsed.  The compile-time pipeline instruction scheduler knows this and
schedules the instructions in a basic block so that the resulting stall time will be minimized.

Superscalar machines may have an upper limit on the number of instructions that may be
issued in the same cycle, independent of the availability of functional units.  We can specify this
upper limit.  If no upper limit is desired, we can set it to the total number of functional units.

We use our programmable reorganization and simulation system to investigate the perfor-
mance of various machine organizations.  We typically run eight different benchmarks on each
different configuration.  All of the benchmarks are written in Modula-2 except for yacc.

*An early version of Section 3 appeared in [6].
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ccom Our own C compiler.

grr A printed-circuit board router.

linpack Linpack, double precision, unrolled 4x.

livermore The first 14 Livermore Loops, double precision, not unrolled.

met Metronome, a board-level timing verifier.

stan The collection of Hennessy benchmarks from Stanford (including puzzle,
tower, queens, etc.).

whet Whetsones.

yacc The Unix parser generator.

Unless noted otherwise, the effects of cache misses and systems effects such as interrupts and
TLB misses are ignored in the simulations.  For more information on the parameterizable com-
pilation and simulation system see [6].

3. A Machine Taxonomy
There are several different ways to execute instructions in parallel.  Before we examine these

methods in detail, we need to start with some definitions:

operation latency The time (in cycles) until the result of an instruction is available for use as
an operand in a subsequent instruction. For example, if the result of an
Add instruction can be used as an operand of an instruction that is issued
in the cycle after the Add is issued, we say that the Add has an operation
latency of one.

simple operations The vast majority of operations executed by the machine. Operations such
as integer add, logical ops, loads, stores, branches, and even floating-point
addition and multiplication are simple operations.  Not included as simple
operations are instructions which take an order of magnitude more time
and occur less frequently, such as divide and cache misses.

instruction class A group of instructions all issued to the same type of functional unit.

issue latency The time (in cycles) required between issuing two instructions.  This can
vary depending on the instruction classes of the two instructions.

3.1. The Base Machine
In order to properly compare increases in performance due to exploitation of instruction-level

parallelism, we define a base machine that has an execution pipestage parallelism of exactly one.
This base machine is defined as follows:

• Instructions issued per cycle = 1

• Simple operation latency measured in cycles = 1

• Instruction-level parallelism required to fully utilize = 1

The one-cycle latency specifies that if one instruction follows another, the result of the first is
always available for the use of the second without delay.  Thus, there are never any operation-
latency interlocks, stalls, or NOP’s in a base machine.  A pipeline diagram for a machine satis-
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fying the requirements of a base machine is shown in Figure 1.  The execution pipestage is cross-
hatched while the others are unfilled. Note that although several instructions are executing con-
currently, only one instruction is in its execution stage at any one time.  Other pipestages, such as
instruction fetch, decode, or write back, do not contribute to operation latency if they are
bypassed, and do not contribute to control latency assuming perfect branch slot filling and/or
branch prediction.

Successive
Instructions

9

Key:

121110876543210

Time in Base Cycles

Execute WriteBackDecodeIFetch

13

Figure 1: Execution in a base machine

3.2. Underpipelined Machines
The single-cycle latency of simple operations also sets the base machine cycle time.  Although

one could build a base machine where the cycle time was much larger than the time required for
each simple operation, it would be a waste of execution time and resources.  This would be an
underpipelined machine. An underpipelined machine that executes an operation and writes back
the result in the same pipestage is shown in Figure 2.

IFetch & decode

Key:

Execute & write back

Successive
Instructions

Time in Base Cycles
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: Underpipelined: cycle > operation latency
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The assumption made in many paper architecture proposals is that the cycle time of a machine
is many times larger than the add or load latency, and hence several adders can be stacked in
series without affecting the cycle time.  If this were really the case, then something would be
wrong with the machine cycle time.  When the add latency is given as one, for example, we
assume that the time to read the operands has been piped into an earlier pipestage, and the time
to write back the result has been pipelined into the next pipestage.  Then the base cycle time is
simply the minimum time required to do a fixed-point add and bypass the result to the next
instruction. In this sense machines like the Stanford MIPS chip [4] are underpipelined, because
they read operands out of the register file, do an ALU operation, and write back the result all in
one cycle.

Another example of underpipelining would be a machine like the Berkeley RISC II chip [7],
where loads can only be issued every other cycle.  Obviously this reduces the instruction-level
parallelism below one instruction per cycle.  An underpipelined machine that can only issue an
instruction every other cycle is illustrated in Figure 3.  Note that this machine’s performance is
the same as the machine in Figure 2, which is half of the performance attainable by the base
machine.

IFetch Decode WriteBackExecute

Successive
Instructions

Time in Base Cycles

Key:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3: Underpipelined: issues < 1 instruction per cycle

In summary, an underpipelined machine has worse performance than the base machine be-
cause it either has:

• a cycle time greater than the latency of a simple operation, or

• it issues less than one instruction per cycle.
For this reason underpipelined machines will not be considered in the rest of this paper.

3.3. Superscalar Machines
As their name suggests, superscalar machines were originally developed as an alternative to

vector machines. A superscalar machine of degree n can issue n instructions per cycle.  Super-
scalar execution of instructions is illustrated in Figure 4.
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Time in Base Cycles

Key:

0 1 2 3 4 5 6 7 8 9 10 11 12

IFetch Decode WriteBackExecute

13

Figure 4: Execution in a superscalar machine (n=3)

In order to fully utilize a superscalar machine of degree n, there must be n instructions ex-
ecutable in parallel at all times.  If an instruction-level parallelism of n is not available, stalls and
dead time will result where instructions are forced to wait for the results of prior instructions.

Formalizing a superscalar machine according to our definitions:

• Instructions issued per cycle = n

• Simple operation latency measured in cycles = 1

• Instruction-level parallelism required to fully utilize = n

A superscalar machine can attain the same performance as a machine with vector hardware.
Consider the operations performed when a vector machine executes a vector load chained into a
vector add, with one element loaded and added per cycle.  The vector machine performs four
operations: load, floating-point add, a fixed-point add to generate the next load address, and a
compare and branch to see if we have loaded and added the last vector element.  A superscalar
machine that can issue a fixed-point, floating-point, load, and a branch all in one cycle achieves
the same effective parallelism.

3.3.1. VLIW Machines
VLIW, or very long instruction word, machines typically have instructions hundreds of bits

long. Each instruction can specify many operations, so each instruction exploits instruction-level
parallelism. Many performance studies have been performed on VLIW machines [9]. The ex-
ecution of instructions by an ideal VLIW machine is shown in Figure 5.  Each instruction
specifies multiple operations, and this is denoted in the Figure by having multiple crosshatched
execution stages in parallel for each instruction.

VLIW machines are much like superscalar machines, with three differences.

First, the decoding of VLIW instructions is easier than superscalar instructions.  Since the
VLIW instructions have a fixed format, the operations specifiable in one instruction do not
exceed the resources of the machine.  However in the superscalar case, the instruction decode
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(3 operations)
IFetch Execute WriteBackDecode

Key:

Time in Base Cycles
131211109876543210

Successive
Instructions

Figure 5: Execution in a VLIW machine

unit must look at a sequence of instructions and base the issue of each instruction on the number
of instructions already issued of each instruction class, as well as checking for data dependencies
between results and operands of instructions.  In effect, the selection of which operations to issue
in a given cycle is performed at compile time in a VLIW machine, and at run time in a super-
scalar machine.  Thus the instruction decode logic for the VLIW machine should be much
simpler than the superscalar.

A second difference is that when the available instruction-level parallelism is less than that
exploitable by the VLIW machine, the code density of the superscalar machine will be better.
This is because the fixed VLIW format includes bits for unused operations while the superscalar
machine only has instruction bits for useful operations.

A third difference is that a superscalar machine could be object-code compatible with a large
family of non-parallel machines, but VLIW machines exploiting different amounts of parallelism
would require different instruction sets.  This is because the VLIW’s that are able to exploit more
parallelism would require larger instructions.

In spite of these differences, in terms of run time exploitation of instruction-level parallelism,
the superscalar and VLIW will have similar characteristics.  Because of the close relationship
between these two machines, we will only discuss superscalar machines in general and not dwell
further on distinctions between VLIW and superscalar machines.

3.3.2. Class Conflicts
There are two ways to develop a superscalar machine of degree n from a base machine.

1. Duplicate all functional units n times, including register ports, bypasses, busses,
and instruction decode logic.

2. Duplicate only the register ports, bypasses, busses, and instruction decode logic.
Of course these two methods are extreme cases, and one could duplicate some units and not
others. But if all the functional units are not duplicated, then potential class conflicts will be
created. A class conflict occurs when some instruction is followed by another instruction for the
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same functional unit. If the busy functional unit has not been duplicated, the superscalar
machine must stop issuing instructions and wait until the next cycle to issue the second instruc-
tion. Thus class conflicts can substantially reduce the parallelism exploitable by a superscalar
machine. (We will not consider superscalar machines or any other machines that issue instruc-
tions out of order.  Techniques to reorder instructions at compile time instead of at run time are
almost as good [2, 3, 16], and are substantially simpler than doing it in hardware.)

3.4. Superpipelined Machines
Superpipelined machines exploit instruction-level parallelism in another way.  In a super-

pipelined machine of degree m, the cycle time is 1/m the cycle time of the base machine.  Since a
fixed-point add took a whole cycle in the base machine, given the same implementation tech-
nology it must take m cycles in the superpipelined machine.  Figure 6 shows the execution of
instructions by a superpipelined machine. Note that by the time the third instruction has been
issued there are three operations in progress at the same time.

Formalizing a superpipelined machine according to our definitions:

• Instructions issued per cycle = 1, but the cycle time is 1/m of the base machine

• Simple operation latency measured in cycles = m

• Instruction-level parallelism required to fully utilize = m

IFetch Decode WriteBackExecute

Time in Base Cycles

Key:

Successive
Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: Superpipelined execution (m=3)

Superpipelined machines have been around a long time.  Seymour Cray has a long history of
building superpipelined machines: for example, the latency of a fixed-point add in both the CDC
6600 and the Cray-1 is 3 cycles.  Note that since the functional units of the 6600 are not
pipelined (two are duplicated), the 6600 is an example of a superpipelined machine with class
conflicts. The CDC 7600 is probably the purest example of an existing superpipelined machine
since its functional units are pipelined.
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3.5. Superpipelined Superscalar Machines
Since the number of instructions issued per cycle and the cycle time are theoretically or-

thogonal, we could have a superpipelined superscalar machine. A superpipelined superscalar
machine of degree (m,n) has a cycle time 1/m that of the base machine, and it can execute n
instructions every cycle.  This is illustrated in Figure 7.

Key:

Time in Base Cycles
131211109876543210

Execute WriteBackDecodeIFetch

Figure 7: A superpipelined superscalar (n=3,m=3)

Formalizing a superpipelined superscalar machine according to our definitions:

• Instructions issued per cycle = n, and the cycle time is 1/m that of the base machine

• Simple operation latency measured in cycles = m

• Instruction-level parallelism required to fully utilize = n*m

3.6. Vector Machines
Although vector machines also take advantage of (unrolled-loop) instruction-level parallelism,

whether a machine supports vectors is really independent of whether it is a superpipelined, su-
perscalar, or base machine. Each of these machines could have an attached vector unit.
However, to the extent that the highly parallel code was run in vector mode, it would reduce the
use of superpipelined or superscalar aspects of the machine to the code that had only moderate
instruction-level parallelism.  Figure 8 shows serial issue (for diagram readability only) and
parallel execution of vector instructions. Each vector instruction results in a string of operations,
one for each element in the vector.

3.7. Supersymmetry
The most important thing to keep in mind when comparing superscalar and superpipelined

machines of equal degree is that they have basically the same performance.

A superscalar machine of degree three can have three instructions executing at the same time
by issuing three at the same time.  The superpipelined machine can have three instructions ex-
ecuting at the same time by having a cycle time 1/3 that of the superscalar machine, and issuing
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Successive
Instructions

Time in Base Cycles
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 8: Execution in a vector machine

three instructions in successive cycles.  Each of these machines issues instructions at the same
rate, so superscalar and superpipelined machines of equal degree have basically the same perfor-
mance.

So far the assumption has been that the latency of all operations, or at least the simple opera-
tions, is one base machine cycle.  As we discussed previously, no known machines have this
characteristic. For example, few machines have one cycle loads without a possible data interlock
either before or after the load.  Similarly, few machines can execute floating-point operations in
one cycle. What are the effects of longer latencies?  Consider the MultiTitan [5], where ALU
operations are one cycle, but loads, stores, and branches are two cycles, and all floating-point
operations are three cycles.  The MultiTitan is therefore a slightly superpipelined machine.  If we
multiply the latency of each instruction class by the frequency we observe for that instruction
class when we perform our benchmark set, we get the average degree of superpipelining. The
average degree of superpipelining is computed in Table 1 for the MultiTitan and the CRAY-1.
To the extent that some operation latencies are greater than one base machine cycle, the remain-
ing amount of exploitable instruction-level parallelism will be reduced. In this example, if the
average degree of instruction-level parallelism in slightly parallel code is around two, the Mul-
tiTitan should not stall often because of data-dependency interlocks, but data-dependency inter-
locks should occur frequently on the CRAY-1.

To confirm the duality of latency and parallel instruction issue we simulated the eight
benchmarks on an ideal base machine, and on superpipelined and ideal superscalar machines of
degrees 2 through 8.  Figure 9 shows the results of this simulation.  The superpipelined machine
actually has less performance than the superscalar machine, but the performance difference
decreases with increasing degree.

Consider a superscalar and superpipelined machine, both of degree three, issuing a basic block
of six independent instructions (see Figure 10).  The superscalar machine will issue the last in-
struction at time t (assuming execution starts at t ). In contrast, the superpipelined machine will1 0
take 1/3 cycle to issue each instruction, so it will not issue the last instruction until time t .5/3
Thus although the superscalar and superpipelined machines have the same number of instruc-
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Instr. Fre- MultiTitan CRAY-1
class quency latency latency
logical 6% x 1 = 0.06 x 1 = 0.06
shift 9% x 1 = 0.09 x 2 = 0.18
add/sub 21% x 1 = 0.21 x 3 = 0.63
load 34% x 2 = 0.68 x11 = 3.74
store 15% x 2 = 0.30 x 1 = 0.15
branch 10% x 2 = 0.20 x 3 = 0.30
FP 5% x 3 = 0.15 x 7 = 0.35
Average Degree
of Superpipelining 1.7 5.4

Table 1: Average degree of superpipelining
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Figure 9: Supersymmetry

tions executing at the same time in the steady state, the superpipelined machine has a larger
startup transient and it gets behind the superscalar machine at the start of the program and at each
branch target.  This effect diminishes as the degree of the superpipelined machine increases and
all of the issuable instructions are issued closer and closer together.  This effect is seen in Figure
9 as the superpipelined performance approaches that of the ideal superscalar machine with in-
creasing degree.

Another difference between superscalar and superpipelined machines involves operation
latencies that are non-integer multiples of a base machine cycle time.  In particular, consider
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IFetch Decode WriteBackExecute

Time in Base Cycles
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Superpipelined

Superscalar

11109876543 12210 13

Figure 10: Start-up in superscalar vs. superpipelined

operations which can be performed in less time than a base machine cycle set by the integer add
latency, such as logical operations or register-to-register moves.  In a base or superscalar
machine these operations would require an entire clock because that is by definition the smallest
time unit.  In a superpipelined machine these instructions might be executed in one super-
pipelined cycle.  Then in a superscalar machine of degree 3 the latency of a logical or move
operation might be 3 times longer than in a superpipelined machine of degree 3.  Since the
latency is longer for the superscalar machine, the superpipelined machine will perform better
than a superscalar machine of equal degree.  In general, when the inherent operation latency is
divided by the clock period, the remainder is less on average for machines with shorter clock
periods.

Figure 11 quantifies the effects of increasing cycle time granularity.  A family of super-
pipelined machines was simulated, with the latencies of the functional units rounded up to the
nearest multiple of various numbers.  The intrinsic latencies of the functional units were those of
the CRAY-1.  For example, the CRAY-1 has a load latency of 11 cycles.  This results in load
latencies of 11, 12, 12, 12, 15, 12, 14, and 16 cycles in machines where the latencies where
required to be multiples of 1 through 8, respectively. Note that the performance of the resulting
machines is not monotonically decreasing with increasing cycle time granularity, as the load
latency in the previous example decreases from 15 to 12 when going from cycle time multiples
of 5 to 6. Since load latency is an important contributor to machine performance, the perfor-
mance of the benchmarks shown in Figure 11 also improves when latencies change from mul-
tiples of 5 to 6.  The difference in performance between the intrinsic superpipelined machine and
those machines where functional unit latencies must be a multiple m of the basic cycle time
approximates the loss in performance in a superscalar machine of degree m as compared to a
superpipelined machine of equal degree due to its increased granularity of functional unit
latency. For degrees of 2 and 3, this results in about a 10% penalty for the superscalar machine
as compared to the superpipelined, and the penalty increases to approximately 15% for degree 4.
This loss in superscalar performance due to increased latency granularity is larger than that lost
by superpipelined machines due to increased start-up penalties (see Figure 9), giving a slight
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overall preference to superpipelined machines for small degrees of machine parallelism, and a
larger preference for increasing degrees of machine parallelism.
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Figure 11: Loss in performance due to increased latency granularity

Although latency is a dual of parallel instruction issue, latency is often ignored when parallel
issue methods are discussed.  For example, instruction issue methods have been compared for
the CRAY-1 assuming all functional units have 1 cycle latency [1]. This results in speedups of
up to 2.7 from parallel issue of instructions, and leads to the mistaken conclusion that the
CRAY-1 would benefit substantially from concurrent instruction issue.  In reality, since the
average degree of superpipelining of the CRAY-1 is 5.4, we would expect the performance of
the CRAY-1 to benefit very little from parallel instruction issue.  Most of the instruction-level
parallelism is absorbed by filling up the long latency functional-unit pipelines in the machine.
We simulated the performance of the CRAY-1 assuming single cycle functional unit latency and
actual functional unit latencies, and the results are given in Figure 12. As expected, since the
CRAY-1 already executes several instructions concurrently due to its average degree of super-
pipelining of 5.4, there is almost no benefit from issuing multiple instructions per cycle when the
actual functional unit latencies are taken into account.
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Figure 12: Parallel issue with unit and real latencies

3.8. A First-Order Performance Approximation
An understanding of the average degree of superpipelining of a machine leads to a simple

first-order method of estimating the performance of a machine. First, by multiplying the average
degree of superpipelining (S ) by the degree of parallel issue (i.e., superscalar degree S ), we getP S
the average degree of machine parallelism (MP).

MP = S * SP S

If the average parallelism in the benchmark (BP) exceeds the average parallelism of the
machine, then usually most of the parallelism of the machine will be utilized and the perfor-
mance will be limited by the parallelism of the machine.  Similarly, if the average parallelism in
the benchmark is less than the average parallelism of the machine, then the performance will be
limited by the parallelism inherent in the benchmark.  We can approximate the overall perfor-
mance as two piecewise linear regions (see Figure 13).  In the region on the left the performance
is limited by the machine parallelism, and on the right the performance is limited by the
benchmark parallelism.  In other words, relative to a base machine with an equivalent cycle time,

if (BP >= MP) then performance = MP
if (MP >= BP) then performance = BP

The performance given in Figure 13 is in comparison to a base machine that can only issue
one instruction per cycle, with cycle time S times larger than that of the machine in question, onP
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Figure 13: Piecewise linear approximation to performance vs. machine parallelism

a benchmark with BP equal to 2.  From this information we can derive an estimate of the ab-
solute performance of the processor (neglecting cache misses and other memory system or I/O
factors). We can calculate the average CPI (cycles per instruction) of the machine by dividing its
average degree of superpipelining by its performance relative to the base machine. For example,
if a machine has an average degree of superpipelining of 4 and twice the performance of a base
machine, then the machine will have an average CPI of 2.  Similarly, if a superscalar machine
has a average degree of superpipelining of 1 and outperforms a base machine by a factor of two,
then it achieves 0.5 CPI on the average.  Finally by dividing the number of cycles per second by
the CPI we can get an absolute performance estimate in instructions per second.  Since the ab-
solute cycle time is a simple multiplicative factor in our performance comparisons, in the
remainder of this paper we will discuss machine performance relative to a base machine with an
equivalent cycle time.

Consider three examples using this first-order performance approximation.  The MultiTitan
has an average degree of superpipelining of 1.7 over the eight benchmark set.  The average
instruction-level parallelism within the eight benchmarks is 2.16.  Since this is larger than the
average machine parallelism of the MultiTitan, the MultiTitan performance will be limited by its
machine parallelism.  Its performance will be 1.7 times that of a base machine with a cycle time
1.7 times larger than its own.  These factors cancel giving an estimated CPI of 1.0 (ignoring
cache misses).  The relative performance when simulated with with zero-cycle cache misses is
1.22 CPI.  Thus the estimate is within 22% of the relative performance.
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As a second example, consider a dual-issue superscalar machine with the same pipeline
latencies as the MultiTitan.  Its average machine parallelism would then be twice that of the
MultiTitan (assuming no class conflicts), giving MP = 3.4.  This machine’s performance should
be limited by the benchmark parallelism, since its average machine parallelism is larger than the
average benchmark parallelism, 2.16. This would give an estimated speedup of 2.16 over a base
machine with a cycle time 1.7 times larger. This would make its estimated CPI 0.79 (i.e., 1.7 /
2.16). The simulated performance was 0.91 CPI when ignoring cache misses. Thus the es-
timated performance is about 15% less than the simulated performance.

As a third example consider the CRAY-1.  It has an average degree of superpipelining of 5.4
on the eight benchmarks. This is greater than the average instruction-level parallelism present in
the benchmarks.  This means the performance will be limited by the benchmark parallelism, and
a significant amount of the parallelism available in the machine will go unused.  The CRAY-1
performance on the benchmarks should be 2.16 times that of a base machine with a cycle time
5.4 times that of the CRAY-1.  This means that the average CPI of the CRAY-1 executing the
benchmarks is estimated to be 2.50.  Actual simulation of the benchmarks on the CRAY-1 yields
a CPI of 3.75.  This is 50% larger than the estimate.

What can cause this large error?  Up to now the analysis has only considered averages.  Unfor-
tunately machine and instruction-level parallelism within benchmarks is not uniformly dis-
tributed. For example, most of the latencies of the CRAY-1 are relatively short compared to the
load latency of 11 cycles.  Imagine three instructions that can be executed in parallel, and the
instructions are a load, an add, and a logical operation. Although we could issue the load fol-
lowed by the add and the logical operation in successive cycles, a wait for the result of the load
would stall the issue of instructions for 8 more cycles.  Thus the CPI for these three instructions
is 11 (the delay of the load) divided by 3 (the number of instructions executed), or 3.67.  This is
much closer to the simulated performance.

Significant non-uniformities in machine latency, in instruction-level parallelism, in parallelism
by benchmark, and in the distribution of instructions by instruction class all cause the actual
performance of the machine to be less that that of the piecewise linear performance estimate.  In
reality, depending on the range of non-uniformities, the actual performance vs. machine paral-
lelism is closer to the dotted line in Figure 14 than the solid piecewise linear approximation. The
larger the range of non-uniformities from their averages the lower the performance will be for a
given machine parallelism.  We will examine each of these sources of non-uniformities in detail
in the next section.  Inclusion of the effects of these non-uniformities into the model will allow
us to develop a more accurate second-order performance model.  This second-order model will
account for non-uniformities in the region limited by benchmark parallelism by lowering its
asymptote (see Figure 14). Similarly, by accounting for the effects of non-uniformities when
performance is approximated by the machine parallelism, the asymptote for this region will have
a reduced slope.
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Figure 14: Performance vs. machine parallelism with non-uniformities

4. Non-uniformities in Instruction-Level Parallelism

4.1. Variations in Parallelism by Benchmark
The first non-uniformity in instruction-level parallelism we consider is variation in instruction-

level parallelism from benchmark to benchmark.  The eight benchmarks introduced in section 2
actually have different amounts of instruction-level parallelism.  The performance improvement
in each benchmark when executed on an ideal superscalar machine of unlimited parallelism is
given in Figure 15.  Yacc has the least amount of instruction-level parallelism.  Many programs
have approximately two instructions executable in parallel on the average, including the C com-
piler, PC board router (grr), the Stanford collection, metronome, and whetstones.  The Livermore
loops approaches an instruction-level parallelism of 2.5.  The official version of Linpack has its
inner loops unrolled four times, and has an instruction-level parallelism of 3.2.  The total range
in average parallelism among the eight benchmarks is almost a factor of two.  This range would
be further increased if more aggressive loop unrolling was applied to the numeric benchmarks.
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Figure 15: Average instruction-level parallelism by benchmark

4.2. Variations in Machine Operation Latency
The second non-uniformity in parallelism to consider is the variation in operation latency in

real machine designs.  For example, in a machine with an average degree of superpipelining of 2,
some operations may have single cycle latencies while other operations may have large latencies.
Some of the issues to analyze when considering variations in machine operation latency are
shown in Figure 16.  In order to better quantify the performance degradation due strictly to
machine operation latency non-uniformity, we assume that all other effects are uniform.  The
sample expression has constant instruction-level parallelism of 2.  If a machine with uniform
machine latencies equal to 2 and unlimited parallel issue capability executes this expression, the
operation latency (e.g., 2) divided by the benchmark parallelism (e.g., 2) will yield the perfor-
mance relative to a base machine (e.g., 1). However, if the operation latencies are not uniform,
the performance of the benchmark is likely to be degraded.  Consider the second column where
operations with larger latency are in series with each other.  Then the performance is limited by
the long latency operations because these form a critical path in the expression. The remaining
instruction-level parallelism is not enough to fill in the empty slots in the execution of the critical
path and sustain the expected performance.  Finally, if the long latency operations are executable
in parallel with each other, the effects of the long latencies are mitigated. For example, consider
the rightmost column of Figure 16.  Here the long latency operations can be executed in parallel
with each other.  As a result, the total execution time of the expression is the same as if there
were uniform operation latencies.

18



THE DISTRIBUTION OF INSTRUCTION-LEVEL AND MACHINE PARALLELISM AND ITS EFFECT ON PERFORMANCE

execution
complete

complete
execution

7,8

execution
complete

5,6

Parallel
Non-uniform

Serial
Non-uniform

Uniform

7,8
5,6

3,4

1,2

Operations <= 4
have latency = 3,
operations > 4
have latency = 1 

Odd operations
have latency=3,
even operations
have latency=1

7

5

3,8
6
4
1,2

All operations
have latency=2

13
12
11
10

3,4

1,2

87

65

43

21

9
8
7
6
5
4

Cycle

3
2
1

Figure 16: Variations in machine operation latency

To get a better understanding of the effects of non-uniform latencies, imagine a machine
where the latency for one operation is much larger than the others.  In the limit, the performance
is not given by the long operation latency divided by the benchmark parallelism, but rather by
the long latency divided by the parallelism between long latency operations (as was illustrated in
Figure 16).  For example, consider a machine where the latency of all operations is 1 except one
operation has a latency of 1,000.  Then the number of short latency instructions in parallel with a
large latency instruction is basically insignificant for typical amounts of instruction-level paral-
lelism (e.g., <4).  The only important factor is the parallelism of these long latency operations
between themselves.  The first-order approximation which divides the latency of an operation by
the benchmark parallelism (e.g., 2.16) will underestimate the time required for program execu-
tion. In the limit, with no long latency operations in parallel with each other, the first-order
approximation underestimates performance by a factor equal to the benchmark parallelism.

How can the effects of non-uniformities in operation latency be accounted for in the perfor-
mance estimation model? From the previous example it is clear that the frequency of long
latency operations occurring in parallel with each other must be known.  Given this information
the effects of non-uniform latencies can be approximated as follows.  First, we can compute the
proper contribution of a long latency operation to performance by dividing its latency by the
parallelism of long-latency operations instead of the parallelism of all operations. Then we can
subtract the erroneous first-order contribution to performance, which is the latency divided by
the parallelism among all operations.  This gives a correction to the original first-order perfor-
mance estimate that properly accounts for the effect of long-latency operations.
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Figure 17 shows the average parallelism within typical instruction classes.  This data was ob-
tained by simulating an unlimited issue superscalar machine.  For most benchmarks except the
unrolled version of linpack, if an operation in a particular instruction class is executed, then the
average number of instructions in the same class executable in parallel with the first operation is
between 0.1 and 0.25.  For example, the data for loads shows that on cycles in which there were
a non-zero number of loads issued there were 1.25 loads issued on average.  Note that this is not
saying that on every cycle an average of 1.25 loads were issued, but only that whenever a load
was issued there were 0.25 other loads in parallel with the load.  The standard version of Linpack
used has its inner loop unrolled four times, and so there are many operations of the same class
executable at the same time in the inner loop. Similar behavior is expected in other unrolled
benchmarks, but has not yet been verified.
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Figure 17: Average parallelism within instruction classes by benchmark

Given the data in Figure 17 we can correct our performance estimate for time that the machine
is stalled waiting for the completion of an operation with significantly larger than average
latency. For example, consider the performance estimate of the CRAY-1 in section 3.8.  The
only operations with latency larger than the average degree of superpipelining in the CRAY-1
are load and FP operations.  Table 2 shows the result of the correction calculation. (WCP is the
within-class parallelism.)

When the CPI correction (1.38) is added to the previous CPI calculation (2.50), an estimate
(3.88) much closer to the simulated CPI (3.75) is attained. The CPI correction calculated is
based only on the overlap of long operations in the same class.  The inclusion of overlaps be-

20



THE DISTRIBUTION OF INSTRUCTION-LEVEL AND MACHINE PARALLELISM AND ITS EFFECT ON PERFORMANCE

Instr. Fre- x [ [CRAY-1  / avg.] - [Cray-1  / avg.]] = correction
class quency [ [latency WCP ] [latency BP ]] to 1st order
load 34% x ( ( 11 / 1.25 ) - ( 11 / 2.16) ) = 1.26
FP 5% x ( (  7 / 1.25 ) - (  7 / 2.16) ) = 0.12
Total common-class parallelism correction 1.38

Table 2: Calculation of non-uniform latency correction factor

tween different classes will increase the divider to a value larger than the common-class paral-
lelism of 1.25 used in the calculation.  This will reduce the magnitude of the overall CPI correc-
tion. To the extent that the load latency is much larger than the other latencies, however, the
importance of cross-class parallelism within long operations is reduced.

To summarize, when the performance is limited by the benchmark parallelism, non-
uniformities in machine parallelism (e.g., latency) can cause errors in the estimated performance.
By properly accounting for these non-uniformities in machine parallelism, we can lower the
asymptote for this region and improve the accuracy of the performance estimate.

4.3. Variations in Aggregate Instruction Parallelism
The third non-uniformity we consider is non-uniformity in the cycle-by-cycle amount of in-

struction parallelism.  For example, consider the situation in Figure 18.  Here the average num-
ber of instructions executed in parallel is two.  A machine with unlimited machine parallelism
could execute this expression in three cycles.  However, because this parallelism is not uniformly
distributed with two instructions in parallel at each level in the expression graph, a machine that
can only issue two instructions per cycle would take four cycles to execute the expression.  Thus
non-uniformities in instruction-level parallelism will decrease the performance achieved.  This is
especially true in the region where the machine parallelism is approximately equal to the average
benchmark parallelism.
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Figure 18: Variations in the number of instructions executable in parallel

To quantify the scale of variations in the number of instructions executable in parallel, simula-
tions were performed for an ideal superscalar machine with unlimited issue parallelism.  Results
of this simulation are presented in Figure 19.  This figure shows what percentage of cycles had a
given number of instructions issue in that cycle.  For example, the chart shows that all the
programs had only one instruction issue in a cycle about 40% of the time, even with unlimited

21



THE DISTRIBUTION OF INSTRUCTION-LEVEL AND MACHINE PARALLELISM AND ITS EFFECT ON PERFORMANCE

issue parallelism.  We call this the single-issue bottleneck, and will discuss it further.  The issue
of more than three instructions per cycle is relatively rare.  The notable exception to this is lin-
pack which had a cycle with eight instructions issue in the inner loop.  There were only a negli-
gible number of cycles where more than ten instructions were issued in a cycle, so they are
omitted from the graph.

Averaging the number of instructions executed in parallel for each benchmark from Figure 19
gives the average parallelism by benchmark shown in Figure 15.  The spike at 2.16 is the
hypothetical uniform distribution of parallelism at the average parallelism on the eight
benchmarks. If a machine could issue exactly 2.16 instructions per cycle and the benchmark
parallelism was a constant 2.16, then the performance would be 2.16 times that obtained by a
base machine with the same cycle time.  This performance point would be at the intersection of
the two piecewise linear approximations.
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Figure 19: Distribution of parallel instruction issue frequency

To better understand the significance of performance degradations due purely to the non-
uniformity of instruction-level parallelism, the performance of the benchmarks on superscalar
machines of various degrees were simulated.  The results of these simulations are shown in
Figure 20.  The dotted and dashed lines are the actual performance obtained, while the solid lines
are the piecewise linear approximations based on the average parallelism for each benchmark.
The largest deviation from the piecewise linear approximation occurs under the transition from
one approximation to the other.  The largest deviation for the machine parallelisms simulated
was 27% for grr, metronome and the stanford benchmarks at an instruction issue multiplicity of
2.
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Figure 20: Instruction-level parallelism by benchmark

One of the largest components of non-uniformity in instruction-level parallelism are single-
issue bottleneck cycles where data dependencies neck down to a single instruction.  Based on
Figure 19, in a superscalar machine with unlimited parallel issue capability, single-issue bot-
tlenecking occurs on about 40% of all cycles over a wide range of benchmarks.  However if the
degree of the superscalar machine is limited, code reorganization will migrate relatively uncon-
strained instructions to be in parallel with bottlenecks instead of being executed in parallel with
earlier instructions.  Thus as the degree of the superscalar machine decreases from an unlimited
number down to two, the number of single-issue cycles decreases.  (Of course it becomes 100%
for superscalar machines of degree 1.)  This behavior was observed when superscalar machines
of various degrees were simulated (see Figure 21).

We can compensate the asymptote for the region where the performance is limited by the
machine-parallelism using the percentage of single-issue cycles.  This uses the single-issue bot-
tleneck data from an ideal superscalar machine to improve the accuracy of the estimated perfor-
mance for a specific machine.  Since a certain number of cycles will be single-issue bottlenecks,
increases in machine parallelism will only improve the performance of non-bottleneck regions.
Based on Figure 21, 27% of the cycles on average in a machine with parallelism 2 will be single-
issue cycles.  Thus, as the machine parallelism is increased from 1 to 2, only 73% (i.e., 100 - 27)
of the instructions will benefit from the increased machine parallelism.  This has the effect of
decreasing the slope of the machine-parallelism limited performance asymptote.  Instead of ach-
ieving a speedup of 2 at a machine parallelism of 2, the speedup will only be 1.73.  Figure 22 is a
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Figure 21: Frequency of single-issue cycles vs. machine parallelism

version of Figure 20 where the machine-limited performance asymptote has been adjusted for
each benchmark based on the number of single-issue cycles in the benchmark at a machine paral-
lelism of 2.  These new asymptotes are much closer upper bounds to the the performance of the
benchmarks than the old unit slope asymptote.

We can apply a correction for single-issue cycles to the earlier performance estimate for the
MultiTitan CPU.  In Section 3.8 its performance was estimated to be 1.00 CPI because its perfor-
mance was limited by its own machine parallelism.  Correcting just for single-issue cycles would
decrease the performance improvement from 1.7 over a base machine to 1 plus 73% of the .7
extra machine parallelism, or 1.51 times a base machine with a 1.7 times larger cycle time.  This
is equivalent to a CPI of 1.13 (i.e., 1.7 / 1.51).  Thus the correction for single-issue cycles
reduces the difference between the estimated CPI (1.13) and the simulated CPI (1.22) to less than
10%.

To summarize, when the performance is limited by the machine parallelism, non-uniformities
in benchmark parallelism can cause errors in the estimated performance.  By properly accounting
for these non-uniformities in benchmark parallelism, we can lower the slope of the asymptote for
this region and improve the accuracy of the performance estimate.
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Figure 22: Single-issue correction for machine-parallelism limited asymptote

4.4. Variations in Parallelism by Instruction Class
A fourth important non-uniformity for machines with class conflicts is the distribution of in-

structions by instruction class.  In the example of Figure 23 the expression can be executed in
three cycles by a superscalar machine of degree three with no class conflicts.  Consider instead a
superscalar machine with three instruction classes:  load-store, arithmetic-logical-shift, and
branches. If the superscalar machine can only execute at most one instruction of each class each
cycle, it will take five cycles to execute the six instructions.  This is a reduction of over 50% in
the speedup obtained as compared to classless multiple issue capability.

Class conflicts can be a significant factor in machine performance.  In general, there are a
large number of class conflicts and resource conflicts (e.g., limited number of ports to the
register file) to be considered.  A comprehensive analysis of class and resource conflicts is
beyond the scope of this work.  However, a simplified analysis of the effect of major class con-
flicts for 10 different machine organizations is given in Figure 24.  The maximum number of
instructions issuable (i.e., the superscalar degree) varies from 1 to 16.  Each machine has a num-
ber of copies of each functional unit specified by the class multiplicity.  Most machines have
either 4 or 16 different instruction classes.  In the case where the machine has its class mul-
tiplicity equal to its superscalar degree, the number of classes is irrelevant and is denoted by an
"X". Machines with 4 classes are organized as in Table 3.  This class structure was chosen to
minimize the required machine resources. For example, this four-class structure only requires
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Figure 23: Non-uniform distribution by instruction class

one data port to the memory system.  Similarly, if the machine has separate floating-point and
integer register files, this four-class structure may not require any additional ports to the register
file over a non-superscalar machine (assuming each register file has 1 write and 2 read ports for
ALU operations, 1 independent read/write port for loads and stores, and branches test condition
codes). Machines with 16 classes have a class for each of the instruction types listed in Table 3.
In the remainder of this section we refer to each machine by the 3-tuple of its superscalar degree,
number of classes, and class multiplicity.  For example, the leftmost machine structure is (1,X,1).
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Figure 24: The effect of class conflicts on machine performance
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Machine Instructions
class in class
Load/Store CPU load, CPU store, transfer,

FPU load, FPU store
CPU ALU CPU (integer) ops: add/sub, logical,

shifts, multiply, divide
FPU ALU FPU (floating-point) ops: add/sub,

multiply, divide, conversions
Branch branch/jump/JSR, trap

Table 3: The instruction classes of Figure 24

Figure 24 shows that class conflicts can have a very significant effect on machine perfor-
mance. For example, machine (2,4,1) only exploits an average of 41% of the available
instruction-level parallelism, and an average of 61% of the parallelism exploited by a machine of
the same degree with no class conflicts (e.g., (2,X,2)). Similarly machine (3,4,1) only exploits
51% of the parallelism exploited by machine (3,X,3).

Simply increasing the degree of a superscalar machine has little effect on performance, unless
the number of classes or their multiplicity are increased commensurably.  For example, machine
(3,4,1) has on average only 3% better performance than machine (2,4,1).  This is not surprising,
since the percentage of floating-point and branch instructions in most programs is lower than that
of load/stores or CPU ALU operations to begin with, so even if all floating-point operations or
branches could be executed in parallel with load/store and CPU operations, there would still be
many cycles with only load/store and CPU operations issuing.

In general, increasing the multiplicity of the functional units is more important than increasing
the number of instruction classes. For example, the increase in performance from increasing the
multiplicity of functional units from 1 to 2 is greater than that from increasing the number of
classes from 4 to 16.  This is because when there are two copies of a functional unit, it can issue
any two instructions of the class, whereas in a machine with many classes two instructions still
may conflict.  For example, machine (3,4,2) can issue any two load instructions in the same
cycle, whereas machine (3,16,1) can only issue two load instructions if one is a CPU load and
the other is an FPU load.

The impact of class conflicts has implications for the choice between superscalar and super-
pipelined implementations.  Since a superpipelined machine is less likely to have class conflicts
than a superscalar machine (in general it is cheaper to pipeline a functional unit than to duplicate
it), the effects of class conflicts can give a significant performance advantage to superpipelined
machines over superscalar machines.  For example, on average the machine (2,4,1) only attains
84% of the performance of a degree 2 superscalar machine without class conflicts, and machine
(3,4,1) only attains 79% of the performance of a degree 3 superscalar without class conflicts.

5. Other Important Factors
The preceding simulations have concentrated on the non-uniformities in instruction-level and

machine parallelism under ideal circumstances.  Unfortunately there are a number of other fac-
tors which will have a very important effect on actual machine performance.  The most impor-
tant of these factors is usually cache performance.
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Cache performance is becoming increasingly important, and it can have a dramatic effect on
speedups obtained from parallel instruction execution. Figure 4 lists some cache miss times and
the effect of a miss on machine performance. Over the last decade, cycle time has been decreas-
ing much faster than main memory access time.  The average number of machine cycles per
instruction has also been decreasing dramatically, especially when the transition from CISC
machines to RISC machines is included.  These two effects are multiplicative and result in
tremendous increases in miss cost.  For example, a cache miss on a VAX 11/780 only costs 60%
of the average instruction execution.  Thus even if every instruction had a cache miss, the
machine performance would only slow down by 60%! However, if a RISC machine like the
WRL Titan [10] has a miss, the cost is almost ten instruction times.  Moreover, these trends seem
to be continuing, especially the increasing ratio of memory access time to machine cycle time.
In the future a cache miss on a superscalar machine executing two instructions per cycle could
cost well over 100 instruction times!

Machine cycles cycle mem  miss miss
per time time cost cost
instr (ns) (ns) cycles instr

VAX11/780 10.0 200 1200  6 .6
WRL Titan 1.4 45 540 12 8.6

? 0.5 5 350 70 140.0

Table 4: The cost of cache misses

Cache miss effects decrease the benefit of parallel instruction issue.  Consider a 2.0 CPI
machine, where 1.0 CPI is from issuing one instruction per cycle, and 1.0 CPI is cache miss
burden. Now assume the machine is given the capability to issue three instructions per cycle, to
get a net decrease down to 0.5 CPI for issuing instructions when data dependencies are taken into
account. Performance is proportional to the inverse of the CPI change.  Thus the overall perfor-
mance improvement will be from 1/2.0 CPI to 1/1.5 CPI, or 33%. This is much less than the
improvement of 1/1.0 CPI to 1/0.5 CPI, or 100%, as when cache misses are ignored.

6. Concluding Comments
In this paper we have shown superscalar and superpipelined machines to be roughly equiv-

alent ways to exploit instruction-level parallelism.  The duality of latency and parallel instruction
issue was documented by simulations.  Ignoring class conflicts and implementation complexity,
a superscalar machine will have slightly worse performance than a superpipelined machine of the
same degree due to the larger cycle time granularity of the superscalar machine, although this is
partially offset by the larger startup transient of the superpipelined machine.  For example,
reducing the granularity of the functional unit latencies in the CRAY-1 by factors of 2 to 4
results in a 10% to 15% performance loss, respectively.  Moreover, if the superscalar machine
has significant class conflicts these could further reduce the performance of a superscalar
machine by 15% or 20% relative to a superpipelined machine of equal degree without conflicts.

Several non-uniformities in instruction-level parallelism were investigated including varia-
tions between benchmarks, within benchmarks, and by instruction class within benchmark.  The
instruction-level parallelism measured varied by a factor of two from benchmark to benchmark,
with most non-numeric benchmarks close to two in instruction-level parallelism and numeric
benchmarks closer to three on average.  The range of instruction-level parallelism would be in-
creased further if more aggressive loop unrolling were used in the numeric benchmarks.
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Unit-parallelism bottlenecks in benchmarks can have a significant effect on machine perfor-
mance. The effect of these constrictions in parallelism increases as the machine parallelism in-
creases. For machines that can issue an unlimited number of instructions in parallel, single-
instruction issue cycles typically accounted for 40% of all cycles.

Variations in machine parallelism (i.e., latency) were also investigated in conjunction with the
development of a simple model of machine performance.  The model estimates machine perfor-
mance using a piecewise linear approximation.

In the first region, performance is limited by machine parallelism.  The first-order perfor-
mance estimate is simply the machine parallelism times that of the base machine performance at
the equivalent cycle time.  The accuracy of this estimate can be improved by considering the
effect of non-uniformities in benchmark parallelism.  The number of single-issue cycles is a use-
ful correction factor.

In the second region, performance is limited by benchmark parallelism.  The first-order perfor-
mance is simply the benchmark parallelism times the performance of a base machine with the
equivalent cycle time.  The accuracy of this estimate can be improved by considering the effects
of non-uniformities in machine parallelism. A correction factor can be computed using the
latency of operations greater than the average degree of superpipelining, their frequency, and
their frequency of occurrence in parallel with each other.

Cache misses and other memory system related effects are also very important contributors to
machine performance. Much existing excellent work in this area can be used to augment the
performance modeling of instruction-level and machine parallelism presented in this paper.

Overall, an understanding of non-uniformities in intra-basic-block instruction-level parallelism
and machine parallelism allows the estimation of machine performance to within 15% of simu-
lated performance for fully-pipelined machines without significant class or resource conflicts.
Finally, a remaining area of research is the exploration of the non-uniformities in the distribution
of inter-basic-block instruction-level parallelism obtained in code with large amounts data paral-
lelism transformed into instruction-level parallelism through techniques such as aggressive loop
unrolling, software pipelining, trace scheduling, or branch prediction.
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