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Abstract

This report describes the problem of printed circuit board routing. An
overview of circuit board construction is given. The agorithms in a
printed circuit board router used for fully automatic routing of high-
density circuit boards are described. Running times of a few minutes
have resulted from a new data structure for efficient representation of the
routing grid, quick searches for optimal solutions, and generalizations of
Lee’ s agorithm for maze routing.



1. Introduction

Even though printed circuit board routing is a venerable problem in computer-aided design, fully
automatic routing of densely packed boards remains an elusive goal. In current industry practice, a
program is used to make most connections automatically. The remainder is left for manual completion.
This procedure is a poor second to fully automatic routing. It leaves the possibility for introducing errors
in the routing of the final connections. More serioudly, it is an investment in time and effort that makes
subsequent logic changes more difficult.

It is always easy to specify a routing problem that is too hard for a program to solve. One need only
add wiring to the problem, or remove routing layers. In this sense, designing a completely automatic
router is an impossible task. A better program will simply encourage engineers to design harder problems.
The only realistic goal for a routing program is to solve practical layout problems well enough that
manual intervention is unnecessary.

This report describes the printed circuit board router grr (greedy router). Grr was developed during the
construction of the Titan computer [Nielsen 86], a high-performance scientific workstation designed at
the Digital Equipment Western Research Laboratory. It was used to route al thirteen boards of the Titan,
with run times of 5 to 30 minutes of VAX 11/785 CPU time and no failures.

2. Printed Circuit Boards

A digital logic circuit consists of a collection of interconnected parts. Most parts are integrated circuits,
but in practical designs there are usually a number of passive components and connectors. Each part has
one or more pins, which are terminals at which electrical connections are made. Integrated circuits may
have hundreds of pins on a single package. The pins are interconnected by nets. Each net is a collection of
pins that must be electrically interconnected in the final realization.

A circuit board is built as a stack of layer pairs. Each pair starts as an insulating sheet with copper
deposited on one or both sides. The copper sides of the sheet are first etched with different wiring pat-
terns. Then the sheets are stacked into a sandwich separated by insulating material. Small holes are
drilled into the board. Finaly, the holes are plated with metal, so that electrical contact is made with each
layer that has copper left at the hole location. This means that a hole can form a conductive path between
two or more layers called avia.

There are two ways of attaching parts to boards. The current industry standard is to solder the pins into
avia pattern in the circuit board!. The solder connects the pin to any layers that have metal pads at the
via locations. This method is simple and reliable, but does not alow the pins to be packed very closdly.
Spacings of 100 mils (thousandths of an inch) are common for through-hole pins. The second newer
method is surface mounting. In this technique, the pins are flat strips that are soldered to the surface of the
board without penetrating it. Surface mounting allows increased pin density, and so larger numbers of
pins for a given package size. Surface mounting aso leads to a harder routing problem, but not one that is
gualitatively different. In the body of this report, only through-hole pins will be considered, and surface

1In more modern PCB technologies, the drill holes used for vias can be made very much smaller than those in which pins must
be inserted. This can result in substantial increases in via density, but does not substantially affect the problem or algorithms
described here.



mounting will be revisited in the Limitations section. For our purposes, the term via will mean either a
hole that connects two or more signal layers, or a hole that connects a pin of a part to one or more signal
layers.

In al but the simplest printed circuit boards, the nets that interconnect the pins of chips are divided into
two classes. A small number are singled out for special treatment as power nets. These supply power and
ground to the parts on the board, and nearly every part will be connected to at least two of them. Because
a power net carries large currents, one or more layers of the circuit board are devoted entirely to it, and
become power layers. It is not uncommon to have one power layer for each of the supply voltages, and
severa for ground. In multi-layer circuit boards, often half of the copper layers are reserved for power
and ground.

The etching pattern for power layers is simple. The layer is left as solid copper except at pin and via
locations that are not to be connected to the power net. At these locations, a small disk is etched away so
that no electrical contact will be made during drilling and plating. Figure 22 on page 25 shows an ex-
ample of a power layer. The generation of power layer patterns is straightforward once the complete
pattern of viasis known. More details are given in the appendix.

The remainder of the nets are signal nets, which carry the digital logic values. These connect to far
fewer pins than the power nets and have small current flows, but there are thousands of them. Signal nets
are routed on the remaining signal layers by adding traces and vias to the circuit board. A trace is a thin
wire lying entirely on one signal layer that is formed by etching away the surrounding metal. Figure 21 on
page 24 shows a signal layer.

Figure 1 shows actual board dimensions for an example process. In the figure, traces must be at least 8
mils wide and at least 8 mils apart. Pads for vias must be 60 mils in diameter to allow for error in drilling
and plating a 37 mil via.
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Figure 1. Printed Circuit Board Dimensions

3. Stringing

Any graph of traces and vias may be chosen to connect a net subject to the constraints of technology
[Soukup 81]. Some logic families, such as TTL, permit arbitrary interconnection patterns. Others, such as
ECL, require nets to be transmission lines, so that the pins of a net must be connected in a chain, with the
output at one end and aterminating resistor at the other end.



The router described here was optimized for ECL circuits. (In fact it was designed to replace the
inadequate commercial router that had been used in the first attempts to route the Titan boards.) Because
of this, a very simple approach to net topology was taken. Nets are connected as chains, and the connec-
tion order is chosen by a separate program, the stringer, which prepares input for the router.
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Figure2: Stringing an ECL Net

Stringing is done as shown in figure 2. Starting at the output pin for the net, the next nearest input pin
is repeatedly added to the chain, until the whole net has been connected. Then for ECL nets, the nearest
free terminating resistor is added to the end of the net. Sometimes ECL nets have multiple output pins.
Any output may start the chain, but all output pins must precede the input pins. In this case, and for TTL
nets where pin order is not important, the stringing is repeated for each lega starting pin. The shortest
overal path isthen chosen.

Stringing prior to routing results in a simplification of problem presented to grr. The router input
consists of a number of pin-to-pin connections, which can be considered independently and in any order.
Any realization that makes the required connections will connect the nets correctly. In the remainder of
this report, only pin-to-pin connections will be discussed, and their relation to nets will be ignored. Figure
20 on page 23 shows atypical example of router input produced by the stringer. Each line in this figure
represents one connection in asignal net.

It is clear that this stringing agorithm is suboptimal. TTL allows nets to be joined by trees, not just
chains. Also pin order is decided before any routing congestion information is known. It is clear from
experience that net ordering is very important. In one experiment, the router was given two versions of
the same routing problem that differed only in the stringing. In one, the stringing was chosen by the
method described above. In the other, it was random. The router completed both problems successfully,
but there was factor of 25 difference in the run times. The random problem took 50 minutes of CPU time,
and the better ordered problem took 2 minutes.

4. Data Representation

The choice of a data representation is fundamental and critical. For printed circuit board routing, the
choice lies in the generality of the patterns that must be represented. If arbitrary width wires at arbitrary
angles are required, and vias may be at any location on the circuit board, then avery general list structure
must be used. This structure will be expensive to search and update. However, if restrictions can be



placed on the location of vias and wires, then more efficient data representations can be used. This
trade-off between generality and efficiency istypica of design automation problems.

The major restriction in grr isto introduce a routing grid on which all traces must lie. The points of the
grid are spaced so that parallel traces on adjacent grid lines are legal under the manufacturing rules. As a
further simplification, only rectilinear traces are allowed and diagonals are forbidden?.

Vias and pins are restricted to lie at regular intervals on the routing grid, on a coarser viagrid. Thisvia
grid must be fine enough to represent the pin arrangements on all parts that will be used. In Figure 3, an
open circle denotes a point on both the routing and via grids. A small filled circle denotes a point on the
routing grid only.
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Figure3: The Routing Grid

The grid of Figure 3 matches the manufacturing process illustrated in Figure 1. The embedding of the
viagrid in the routing grid was chosen as follows. The minimum pin pitch on the parts to be used was 100
mils. This fixed the via grid at 100 mils between adjacent via points. The fabrication process allows two
signal traces between vias at this pitch. So two routing points could be placed between via points.
Repeated symmetrically in two dimensions, these constraints produced Figure 3.

Note that the routing grid is irregularly spaced. Between a via point and the nearest routing point there
is a space of 42 mils. Between two adjacent routing points there is a space of 16 mils. Because of this
distortion the model can't represent the 4 minimum-spaced traces that could be put in place of a single 60
mil via pad. This means that the grid model cannot represent wiring at maximum density.

The second restriction for efficiency is that on any particular layer, traces are presumed to be
predominantly horizontal or vertical. In any circuit board, therefore, one or more horizontal and one or
more vertical layers are required.

Given these restrictions, an efficient data structure for representing traces and vias can be built. It is not
a bit map, with one bit for each grid point. Bit maps are large, show poor locality of reference (since
adjacent bitsin some dimension in the map are far away in memory), and are inefficient to read and write.
Instead, each layer is represented as an array of channels. For a vertical layer the channels are aligned
vertically, so the array runs in the horizontal dimension. For a horizontal layer, the array runs vertically.
Each channel isadoubly linked list of segments. A segment defines an interval in the channel that is used

2In Figure 21 on page 24 there are many diagonal traces. These are caused by postprocessing the rectilinear output of grr.



by some trace. It is linked to the next lower and next higher segments in the same channel. Another link
through each segment connects the segments of a single trace, so that all space occupied by atrace can be
found easily. Free space is not represented explicitly. It isinferred by the absence of a segment.
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Figure4: AnExample Trace

Figure 4 shows an example trace on the routing grid. It shows a trace running over aviasite, but thisis
avoided where possible in practice. Figure 5 shows the way the trace would be representated on horizon-
tal and vertical layers. Each dark line represents a segment stored in a channel. The arrows in the figure
indicate the array of channel list heads. Note that any trace can be represented on both layer types, so any
rectilinear wiring pattern can be described on a layer. However, the representation will be more efficient
if the trace is put on a layer with the appropriate orientation. This example is artificial in that there is no
best orientation.
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Figure5: Representing the Same Trace on Different Layers

Vias and pins are represented in the channel array by covering the grid coordinates of the via by a
segment of unit length. Thisis done on all routing layers because a drill hole makes a potential connection
to all layers. However, inquiries about the availability of via sites are two to four orders of magnitude
more frequent than updates of via site usage. An inquiry requires a probe of the grid location on each
layer, because atrace on any layer will prevent avia being drilled there. To make viainquiries efficient, a
separate via map is maintained, and updated each time segments are added and deleted from alayer. The
viamap isindexed by (x,y) in via coordinates (simple integer quotients of the grid coordinates) and holds
the number of traces that are using this via location on any layer. This number will be zero if the via
location is free. It will be greater than zero if traces on different layers run over the vialocation. It will be
egual to the number of signal layersfor a used via. Since updates to the routing layers are much rarer than
probes, maintaining the via map results in significant performance improvements.



5. Routing Strategies

The routing algorithms used by grr can be grouped into a collection of strategies, which will be
presented in the next sections. Connection sorting is used prior to routing so that the best connections are
attempted first. While routing each connection, the single-layer algorithms are used to attempt connec-
tionson asingle layer. If these fail, the multiple-layer algorithms join traces on several layers to complete
the connection.

6. Connection Sorting

Connection sorting is the first routing strategy used by grr. In any routing problem such as shown in
Figure 20, there will be thousands of connections to be made. Attempting the connections in the correct
order can make the difference between success and failure.

Grr attempts the easiest connections first, but deciding which are the "easiest” connections may not be
immediately obvious. They are not, for instance, simply the shortest connections. If routing is made by
rectilinear traces, then there are many Manhattan paths between any two points. Some of these are of
minimal length, and in general, there are many of these as well. The easiest connection to route is the one
that has the fewest possihilities for aminimal path between its end points.

If the endpoints of a connection are separated by dx horizontally and dy vertically, then any minimal
path will have horizontal length dx, vertical length dy, and total length dx + dy. Thus the total number of
minimal paths is the number of ways of choosing dx horizontal or dy vertical steps from the total path
length of dx + dy steps.

An approximation to this ordering results from sorting the connections using two sort keys. The keysin
decreasing order of importance are min (dx, dy) and max (dx, dy). So the keys sort by straightness, then by
length within straightness. The shortest straight connections will attempted first. The longest diagonal
connections will be attempted last.

7. Single-Layer Algorithms

The connections to be routed are treated one by one in the order given in the last section. For each
connection, several strategies are used to route the connection. These strategies divide into two parts. The
single-layer algorithms are concerned with making connections on one routing layer only, and have no
knowledge of multiple routing layers. The multiple-layer algorithms make connections using traces on
more than one layer. These algorithms deal with the choice of viasto connect traces on different layers.

All the information that needs to be known about routing on a single layer can be encapsulated in three
procedures. These are the single-layer agorithms, and they are simple variations of one underlying
method. Trace tries to find a path between two given vias. It is used to construct all routes in the fina
output. Vias finds out which free via sites can be reached from a given via. It is used to find the "neigh-
bors" of aviain Lee's maze routing algorithm. Obstructions finds the connections that are near a given
via. It is used to select victims to be ripped up when a connection cannot be made.



7.1. Trace

The basic single-layer algorithm is the procedure Trace. It answers the question "Is there a trace
between a and b on layer | lying entirely within box?". If thereis, then alinked list of channel segmentsis
returned which leads from a to b. An example of the problem is shown in Figure 6.

Trace attempts to find a list of free segments, the first touching a and the last touching b, in which
successive segments are in adjacent channels and have a non-empty overlap. The method used is a depth-
first recursive search of free space. In Figure 6, the search starts at the segment covering a heading for b,
and the free segments traversed are shown in gray. The action of the recursive procedure is straightfor-
ward. Given a free segment, the two channels on either side are searched for further free segments. The
one nearest the destination is searched first. In Figure 6, the search at segment sO would encounter the
used segment sl and the free segment s2 in the search of the channel above. The next recursive call would
be with s2. The search stops either when some free segment covers b, or when all free segments in box
have been examined. If the target is reached, the resulting segment list is constructed as the recursive calls
unwind. As shown in Figure 6, adjacent free segments can have large overlaps. During the unwinding,
these overlaps are trimmed back to a single point as the segment list is built. Figure 7 shows the trace that
would be created in this example.

Each recursive invocation of the procedure takes a free segment and enumerates its adjacent free
segments in best-to-worst order. The cost of the agorithm is thus proportional to the number of segments
examined, and not to the distance between the end points. In the absence of obstacles, it isjust as fast to
make a connection across the board as to the neighboring pin.
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Figure6: Trace(a, b, I, box)
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Figure 7: Resulting Trace



0O} + @+ -0+ O+ +6m—0::0++0+10

QO o ¢ O ¢ ¢ O ¢ ¢ O ¢ ¢ O ¢ ¢ O e ¢ O e ¢ O e ¢ O
Figure8: Vias (& I, box)

7.2.Vias

The second of the three single-layer algorithms, Vias, is a minor variation of Trace. It answers the
question "What via sites are reachable from point a on layer | by paths lying entirely within box?'. The
reply isgiven in an array of (x,y) pairs.

Figure 8 shows an example of a call to Vias and its solution. Again, the algorithm uses recursive
examination of free space, but this time, al free segments accessible from the starting point a are ex-
amined. In Figure 8, the gray areas show the free segments searched. The coordinates of all via sites
covered by free segments are added to the output array. These would be the ringed via sitesin the figure.

7.3. Obstructions

The third of the single-layer algorithms is Obstructions. This procedure answers the question "What
connections are near point a on layer | lying in box?'. The reply is given as an array of connection
identifiers.

As for Vias, the method is recursive enumeration of the free space surrounding a. The enumeration is
exhaustive, and in Figure 8 the same set of free segments would be searched. This time, however, the
connection identifier of each used segment and via encountered in the search is added to the array. So a
call of Obstructions produces the list of immediate obstacles that surround a point on a given layer. It
gives the information needed to rip up previously routed connections near some point.

8. Multiple-Layer Algorithms

The single-layer algorithms determine the wiring patterns on individual routing layers. The multiple-
layer algorithms manage the choice of vias to join traces on different layers. They use only Trace, Vias
and Obstructions to access each individual routing layer.

The multiple-layer agorithms represent a collection of strategies of increasing desperation applied in
turn to each connection until a solution is found. Connections that cannot be realized as simple traces on
one layer are constructed as a chain of traces joined by vias. As we shall see, these strategies always
succeed, athough in the worst case they may rip up previously routed connections. The strategies in the
order they are applied are: try the optimal solution; try Lee’ s algorithm; rip up obstructions.



8.1. Optimal Connections

Before describing optimal connections, a control parameter called the radius must be introduced. This
parameter controls the degree to which orthogonal movement is alowed on a routing layer. Orthogonal
movement is horizontal movement on a vertical layer, and vertical movement on a horizontal layer. The
parameter radius is specified in via grid units, and defines a strip of accessible vias on each layer as
shown in figure 9. Suppose a connection from point a to point b is to be made, and that the points differ
by dx via units in their X-coordinates and dy via units in their Y-coordinates. Then a direct connection
from a to b can be attempted on a horizontal layer only if dy < radius, and on avertical layer only if dx <
radius. In figure 9, radius = 1, dy = 1, and a direct connection on a horizontal layer is permitted. A
connection on a vertical layer would not be permitted. Typical values of radius are 1 or 2. Increasing
radius allows more vias to be reached, but increases channel blockage for later connections. Large values
of radius are counterproductive for this reason.
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Figure9: Radius

The first routing strategy applied to each connection is the ssimplest. Its dx and dy are tested against
radius to seeif azero-via solution is acceptable on some layer. If so, then acall of Trace is made for each
such layer, and we stop after the first successful call.

If thereis no such layer, or if the board is sufficiently congested to block the zero-via solution, then the
next best choiceis aone-viasolution. Figure 10 shows this situation.
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Figure 10: One-Via Solutions

To find a one-via solution connecting a to b, we must find an intermediate via v for which there are
two zero-via solutions a to v and v to b. The number of candidate via sites for v is determined by the
radius parameter. As Figure 10 shows, there are (2radius+1)? vias in each of the two squares at
diagonally opposite corners of the rectangle bounding a and b. Figure 10 only shows one of these squares



for clarity. In this example, radius = 1, and 9 of the 18 candidates for v are shown. Clearly, there are
marginally better and worse candidates. The vias at the center of each square, for instance, are the best
since connections to them will block the fewest channels. To find the optimal one-via solution, the can-
didates for v are enumerated in best-to-worst order. For each candidate the two zero-via problems are
attempted.

As amatter of practical experience with heavily congested circuit boards, it is essential that about 90%
of the connections be routed with these optimal strategies. A figure much below thisindicates that too few
routing layers have been provided and that successful completion of the problem will be impossible.
Aramaki [Aramaki 71] also optimizes simple connections before trying more expensive methods.

Thisis a divide-and-conquer approach to finding one-via solutions. A candidate via is chosen, and two
simpler zero-via problems are attempted. It is tempting to consider extending this method to two-via
solutions, and in fact this strategy was tried early in the development of grr. When a one-via solution
can't be found, one might choose an intermediate via and attempt a zero-via connection to one of the pins
and a one-via connection to the other. This proposal has the merit of being simple to program, and is
similar to pattern-based routers[Asano 82]. Unfortunately there are usualy too many possibilities to
examine exhaustively. The problem is that the large number of candidate viasistried in a pre-determined
order without concern for local congestion. The approach becomes combinatorialy intractable for three-
via solutions, and a more effective method must be found.

8.2. Lee'sAlgorithm

After 90% of the connections are completed with optima zero- and one-via solutions, hundreds of
connections may remain. Finding solutions for these represents well over 90% of CPU time for difficult
boards. The method used in grr is Lee's agorithm [Moore 59, Lee 61], perhaps the oldest algorithm in
design automation.

Lee' s Algorithm: Suppose we want to find a connection between vias a and b. Begin by marking one of
the vias, say a, and put it on alist of routing points, the wavefront. Now repeatedly remove the first point
on the wavefront list, and examine al the immediately neighboring points at distance 1 from it. For each
neighbor:

« If the neighbor is b, then we're done. Retracing the path to the starting via a gives a connection
fromatob.
« If the neighbor is already marked or covered by an obstacle, ignoreit.

* If the neighbor is free and not marked, mark it and put it on the end of the wavefront list.

The agorithm as described above is O(n?) in the distance between the vias. Three modifications can
be made to make it much faster. The first modification arises from the concept of a"neighbor" of a point.
As stated, the "neighbors’ of a point are those at distance 1 from it, that is, the adjacent points on the
routing grid. This choice leads to very slow searches, since many individual grid points must be scanned
to advance a small distance across the board surface. It aso leads to paths with a large number of un-
necessary bends.

There is, however, a much better definition of "neighbor”. All that is required of neighborsis that they
should be connectable as the completed route is retraced. This leads to the following modification.

Modification 1: The neighbors of avia are those via sites that can be directly connected to it by atrace
lying entirely on one layer.
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A "neighbor" of aviaisthus avia site reachable in one "hop". Thisis exactly the purpose of the Vias
procedure described in the last section. To find the neighbors of avia, Vias is called once for each layer,
and the result added to an accumulating list. As a result, the neighbors of a via may lie across the board
from it. As Figure 11 shows, the potential neighbors lie in a cross shape centered on the via. The vertical
strip is due to vias reachable on vertical layers within the radius constraint, and the horizontal strip is due
to horizontal layers.

This concept of neighbors radiating in lines from a viais a generalization of the line-searching method
of Hightower [Hightower 69]. Combinations of the Lee and Hightower algorithms have also been made
by Mikami [Mikami 70] and Heyns [Heyns 80].
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eighboring Vias of aPoint

The second modification to Lee's agorithm results from considering blocked connections. The fact
that a connection is impossible is important, because it means that the current connection can only be
completed by ripping up others. A blocked connection is detected when the wavefront becomes empty
without ever reaching the destination. Unfortunately, the common case is that one of the ends of the
connection is heavily congested and can reach only one or two free vias. The other end of the connection
is usually uncongested and can reach most other points on the circuit board. If the marking starts from the
free end, the blockage will be detected only after marking a very large number of points. This suggests the
second modification to Lee' s algorithm;

Modification 2: Spread wavefronts from both ends of the connection simultaneously. When the
wavefronts touch, retrace from the point of meeting to the two sources. If either one of the wavefrontsis
exhausted, the connection is blocked.

The third modification to Lee' s agorithm is to introduce a cost function [Rubin 74, Korn 82, Clow 84].
Lee' s algorithm guarantees that if a connection can be made between two points, then the one found is of
minimum distance. But a high priceis paid for this guarantee. The algorithm ensures that before any path
of length n is examined, all paths of length n-1 have been examined. Restated in the light of modification
1, the new guarantee is that n-via solutions are attempted only after all (n-1)-via solutions have been tried.
The cost function is used to direct the attention of the algorithm to places where a solution seems likdly,
rather than in al directions impartialy. The guarantee of minimum number of vias in the solution is
traded for a probability, and a much shorter search time.

Modification 3: For each point p we define a cost function cost(p). We maintain the wavefront lists for
the two ends of the connection in increasing cost order. At each step, only the lowest cost point p on alist
is examined. For each neighbor n of p, cost(n) is used to determine n’s point of insertion in the wavefront
list.
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The choice of cost function iscritical. The original behavior of Lee' sagorithm is characterized by
cost(n) = cost(p) + 1
This cost function minimizes the number of viasin the solution. A better cost function takes into account

the position of n in relation to the target. If we are connecting point a to point b, and n is being inserted
into a’'s wavefront list, then define

cost(n) = distance(n, b)
to be the Manhattan distance between n and b. This cost function has the effect of concentrating effort on
those points that seem to be leading towards the target. It can also lead to solutions that use many vias to

circumvent minor obstacles near the target. The cost function actually used after much experimentation is
a compromise between the goals of minimum number of vias and minimum searchtime. It is

cost(n) = distance(n, b) * hops(n, a)
where hops(n, a) is the number of vias between the neighbor n and the source of the wavefront of which it
is a part. The effect of this cost function is to magnify the distance remaining to the target by the number

of vias in the tentative path from the source. Its intuitive meaning is to insist that each via used in a path
must bring progress towards the target.

Figures 12 through 15 show how the implemented a gorithm operates. In Figure 12, the neighbors of a
are found using Vias and inserted into a's wavefront list. In Figure 13, the neighbors of b are found using
Vias and inserted into b's wavefront list. In Figure 14, the lowest cost neighbor of a is chosen, and its
neighbors are found using Vias. One of them is a neighbor of b, and the search terminates. The completed
route found by retracing from the meeting point to a and b and joining the halves is shown in Figure 15.
Thelinksin the retraced path are constructed with Trace. They may all be on different layers.
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Figure 12: Finding Neighbors of a

8.3. Ripping Up

The combination of optimal search and the improved Lee's algorithm is sufficient for complete routing
of al but the densest boards. Occasionaly, a connection cannot be completed due to local congestion at
one or other of the ends. When this happens one or more already-routed connections must be ripped up to
make room for the new connection [Dees 82].

Recall that failure of Lee's agorithm is signalled by one of the wavefront lists becoming empty. To
select the victims for ripping up, additional information is recorded. For each wavefront list, the identity
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Figure 13: Finding Neighbors of b
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Figure 14: Best Neighbor of a
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Figure 15: Resulting Connection

of the least cost point ever inserted into it is remembered. Thus when the list is exhausted, the point that
made the most progress towards the target is known. This is the point around which obstacles are

removed. To do this, the last of the three single-layer procedures, Obstructions, is called once for each

routing layer. This procedure returns the identities of the connections that are using vias or traces in the

immediate neighborhood of this point. These connections are ripped up, but a record of where they were

is kept so that they can be re-inserted at very low cost. Now the attempt to route the current connection is
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restarted from the beginning. This process of ripping up and restarting continues until enough obstacles
have been removed that the route can be completed. At this stage, the new connection has been added, but
tens of previous connections have may been ripped up. Now, an attempt is made to put the ripped-up
connections back exactly where they were. Most can be re-inserted, since the new trace is unlikely to
have blocked very many others. The remaining few must be marked for re-routing in the connection list.

8.4. The Complete Algorithm

The complete routing algorithm can now be presented. Recall that the list of connections in the
problem isinitially sorted. In the absence of rip-ups, it will take only one pass through the list, routing the
connections one by one, to solve the problem. If there have been rip-ups, random connections in the list
must be re-done, and so a further passis made.

(* sort the connections using the two sort keys *)
sort (connections)
whil e progress and (unrouted > 0) do
(* one pass through the connections *)
for i := 1 to lastconnection do
(* route connection[i] froma to b *)
| oop
if alreadyrouted (a, b)
or zerovias (a, b)
or onevia (a, b)
or lee (a, b) then
(* the connection is nmade *)
exit
el se
(* rip up connections near sel ected point *)
ri pup (bestpoint)
end
end;
(* put back as many rip-ups as possible *)
put back ();
end;
end;

Experience shows that there is a very fine line between ripping up a few connections to deal with local
congestion and ripping up connections indefinitely when attempting a problem that is too hard. The
symptom of an impossible problem is that on average one wire must be ripped up for each wire routed. In
the above code fragment, progress is true only while each successive pass through the connection list
leaves fewer unrouted connections. This stops infinite looping on impossible problems.

9. Resaults

Grr has been used to route all the circuit boards of the Titan, several boards from the Firefly computer
designed at Digital’s Systems Research Center [Thacker 87], and a number of production boards at
Digital’s Mid-Range Systems Group in Littleton. There are 13 different board types in the Titan. These
range from 16 by 22 inch processor boards, to a 15 by 15 inch backplane, to 11 by 16 inch 1/O and
memory boards. Most are completely filled with SSI and MSI parts. All boards were routed entirely
automatically with no manual intervention. Logic revisions were always made by re-routing the entire
board, never by manual wiring fixes.
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board | layers | conn | pins| % | % | rip | vias| CPU
in? | chan | lee | ups min
kdj11 211184 |275| 76.7 >300
nmc 412253299 523| 14| 20| .99| 285
dpath 6|5533|37.3| 460| 8 1| 65| 215
coproc 65937360 405| 6 0O 62| 11.3
kdj11 411184|275| 38.4 8 0| .70 4.6
icache 6|5795|36.6| 36.5| 3 0| 41 6.1
nmc 6(2253|299| 349| 3 0| .68 2.2
dcache 6|5738|36.4| 335| 2 0| .40 5.2
tna 6|2789|434| 27.1| 3 6| .50 4.8

Tablel: Results

The results for the more difficult boards are shown in decreasing order of difficulty. All boards but
kdj11 and nmc are from the WRL' s Titan computer. Kdj11 is a single-board PDP-11, and nmc isthe VAX
8800 memory controller board. The first line shows the router failing on a problem that is too hard. The
program gave up after about 30 minutes having completed about 80% of the connections. The same
problem is easily solved by adding two more routing layers, as the fifth line shows. The layers column
shows the number of routing layers allowed. All the successfully routed boards have four or six layers.
Routing boards of even medium density on two routing layersis difficult.

The conn column gives the number of connections in the problem. The ping/in? column is the average
pin density of the board in number of pins per square inch. The % chan column is an estimate of the
wiring density of the problem. This figure is calculated by dividing the total Manhattan length of al
connections to be made by the total available channel space on all layers. This gives the percentage
channel demand to channel supply. As arough estimate, it is clear that completely automatic routing will
fail where channel demand is much more than 50% of channel supply.

The % lee column shows the percentage of all connections that were routed by Lee's agorithm. In
denser boards with lower free space ratios, the percentage is higher, since congestion prevents optimal
solutionsto later connections.

The rip ups column shows the number of connections ripped up during the routing process. This
number is very small in proportion to the number of connections, except in the case of the failure. Ripping
up is clearly only being used to alleviate local congestion in a few areas, but does enable entirely
automatic routing in marginal cases.

The vias column shows the number of vias added per connection. This number is below 1 for all
examples, which indicates that most connections are routed with zero or one vias. To some extent thisis
due to the large number of straight terminating resistor connections in these ECL boards (10% to 25% of
connections). These connections can be routed simply because the terminating resistors were chosen
carefully by the stringer.

The CPU min column shows the number of CPU minutes on a VAX 11/785 (about 1.5 MIPS) required
by each problem. Most real problems take only a few minutes, and the harder ones take less than half an
hour. The Titan can route its own printed circuit boardsin less than two minutes each.
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10. Extensions

Asin many engineering situations, actually building the high-speed circuit boards of the Titan required
solving problems that appeared to be peripheral at the outset. These problems took a substantial part of
the total effort. They required two extensions to the algorithms presented above. The first extension was
the ability to tune specific connections to precise lengths. The second was a method to separate traces
carrying ECL signals from those carrying TTL signals.

10.1. Length Tuning

Since a routing program is designed to make connections as short as possible, it is perhaps surprising
that making connections longer is also important. In ECL circuits, signa nets are connected as trans-
mission lines for highest speed. This is done so that logic values propagate from the output in a single
voltage transition that is absorbed by the resistor at the far end without electrical reflections. Because of
this, the distance between the output and an input determines the time it will take the signal to travel
between them. In TTL circuits, the voltage change reflects many times, and there is no such ssimple
relationship. The transmission-line nature of ECL circuits means that adjusting the length of connections
is a way of controlling the delays in the circuit. This precise control of signal timing is the largest
difference between ordinary and high-speed logic design. In common epoxy/glass printed circuit boards,
signals propagate at around six inches per nanosecond. So length tuning can be used to adjust propagation
delays to accuracies of afew hundred picoseconds.

clock board backplane logic board

buffer . register

i buffer
buffer : N

buffer

register

Figure 16: Clock Distribution Tree

The best example of delay tuning isin clock generation3. In the Titan, all clock pulses are derived from
a single oscillator. The oscillator is at the root of a tree of nets as shown in figure 16. The nets are
connected by buffers. These amplify and distribute copies of the clock to the pipeline registers at the
leaves of the tree. It is essential that clock pulses reach each register simultaneously, so the delays from
the root of the tree to each leaf must be the same. If the buffer delays are matched, the root-to-leaf delays
can be matched by making the trace delays equal at each level in the clock tree. For instance, the trace
delays of all clock signals on the backplane must be equal.

3Although in the Titan, this technique was also used to adjust register set-up and hold times.
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Length tuning is complicated by the fact that signal propagation speeds on different layers of a circuit
board are not the same. Signals propagate about 10% faster on the two outer layers than on inner layers.
Unfortunately, the user is interested in specifying the delays of particular connections, not their lengths.
Constructing a tuned connection from traces on different layers is a complicated optimization, especialy
when there islocal routing congestion.

Length tuning isimplemented in grr by specifying a propagation time for each pin-to-pin connection to
be tuned. This time must of course be greater than the propagation time on the minimum-length path on
the fastest layer. Two attempts were made at implementation. The first attempt modified the cost function
of Lee's algorithm to do length tuning. The cost function was adjusted to select points whose total path
delay from the source plus estimated delay to the destination is close to the target delay. Unfortunately,
the delay to the destination proved difficult to estimate. The path could be constructed either on fast
layers, or slow layers, or a mixture of the two. Also, it might not be close to the Manhattan length. This
meant that many candidate solutions for the path were found, which when completed with Trace proved
to be too fast or too slow. The variation in layer speeds made the cost function inaccurate enough that
Lee’ s algorithm was overwhelmed with false solutions. Length tuning implemented this way turned out to
be unacceptably slow.

7 $
| |
| |

I :

Figure 17: Length Stretching by Detour

The second and current implementation is based on adding detours to shorter paths. This method starts
from a path created by the standard method, and then attempts to stretch it by adding a detour. Figure 17
shows the types of detour attempted. Between every pair of pins or vias in the shorter path, the stretching
algorithm attempts to add a two-via detour. The search for detours of two vias only is done by restricting
a Lee search to add only points one via away from the source to the wavefront. The restriction is needed
to make length tuning run in acceptable time by searching only a small class of detours. If a detour is
found that lengthens the path, but not enough, the detour process is repeated using the newly added viasin
the path. This algorithm leads to acceptable performance if there are afew tens of length-tuned wireson a
board. It is slow for hundreds of tuned wires.

It was unsatisfying and surprising that the simple modification to the cost function could not extend
Lee's algorithm to do length tuning as well. It is probable that the variation in layer speeds had much to
do with this. It probably caused too many plausible but unacceptable solutions to be generated. It is quite
possible that by restricting length tuning to inner layers of uniform speed, the Lee approach could work
well. This situation is typical of the heuristics employed in design automation. Relatively small algorith-
mic changes often lead to large changes in performance. Usually the only optionisto try it and see.

10.2. Separating ECL and TTL

The second extension to grr to construct real circuit boards was to find a way to route boards with
mixed ECL and TTL parts. Even though the Titan is an ECL computer, the memory subsystem and the
1/0 adapters needed chips available only in TTL. The problem here liesin the different signal propagation

17



characteristics of the two technologies. Because ECL signal swings are less than 1 volt, a nearby TTL
signal change of 5 volts can induce enough noise to cause a false ECL logic value. Signals of the same
family can be placed close together on the same layer, but ECL and TTL signals must be separated to
prevent this problem.

ECL
TTL

TTL

TTL
ECL

Figure 18: Tesselation for ECL/TTL Separation

Grr uses a method developed by J. Prisner and R. Kao of WRL to solve this problem. This method
effectively pushes the problem of ECL/TTL separation back to the designer. Each signal layer can be
tesselated into areas reserved exclusively for ECL or TTL wires. Figure 18 shows an example layer. For
each TTL (or ECL) connection, grr will run traces and allocate vias only in TTL (ECL) tiles of the signal
layers. The designer must arrange that under every TTL pin thereis at least one signal layer witha TTL
tile. And there must be an overlapping sequence of TTL tiles, possibly on different layers, leading to the
other pin of the connection. In general, this arrangement is easy to find. Usually the chips of one or other
technology can be arranged in a compact area on the board. The signal layers under this area are reserved
for that technology. Where there are ECL/TTL level trandator chips, some of the signal layers under
these chips are marked as ECL and some as TTL#. Thus, placement must be done with a tesselation in
mind, and the tesselation is defined precisely after the placement is fixed. In practice, this has been an
easy task for board designers.

To route boards with mixed ECL and TTL, grr treats the board as two separate but superimposed
routing problems. The algorithms described in the previous sections are applied in two passes over the
board. Before starting the ECL pass, grr fills all empty space in TTL tiles, making them unavailable for
traces or vias. Routing of ECL signals is then done as described above. After al ECL connections are
made, the TTL "filler" is removed. Then to route the TTL connections, the ECL tiles are filled before the
routing pass begins. The ECL filler is removed after the end of the pass. In the boards routed to date, this
method of separating ECL and TTL has worked well, with little effort required on the part of the board
designer or the programmer.

4|f there is a power plane between them, or they run in orthogonal directions, two adjacent signal layers can carry ECL and
TTL signals at the same point on the circuit board.
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11. Limitations

The data structure presented in this report imposes four limitations on the circuit boards that can be
routed:
» There is no easy way to represent traces of different widths, or non-rectilinear geometries.
This makes the routing algorithms presented here inappropriate for analog PCB design. It
does not appear to be an important limitation for digital PCB design except in the older
design style that mixed signal and power routing on the same layers.

*» The grid model does not allow traces to be placed at minimum pitch. Because drill holes are
usually larger than trace widths, the routing grid positions occupied by vias cover severd
legal trace widths, not just one. So where there are many parallel traces but no vias, the
traces cannot be spaced at the minimum legal pitch.

* Pins are assumed to be connected to al routing layers. This excludes surface-mount devices,
whose pads connect only to the surface routing layer.

* Pins are restricted to lie on the via grid. The via grid must be defined to be at the finest pitch
of the pins of any part on the board. In practice, this was 100 mils for the examples in this
report.

The limitation on trace density is difficult to quantify. It is true that the imposition of the grid model
reduces the maximum trace density on any signal layer, but the availability of viasites at regular intervals
increases the connectivity between the signal layers. Thus the grid model trades the ability to route dense
bundles of parallel connections for the ability to route irregular crossing connections.

Removing the restriction on surface-mount devices is straightforward. It smply requires that the router
not assume that it can start a connection on any layer. Surface mount devices have been used with grr,
though in a somewhat clumsy way. A hand-designed dispersion pattern was generated to connect the
pads to aregular array of vias by traces lying only on the top surface. The router was told to consider the
vias as the end points of the connections. If the pin pitch of the parts is small compared to the via and
trace pitch of the circuit board, using a dispersion pattern is probably the correct practice to follow.
Allowing the router to drill vias as needed would result in an irregular via pattern, which would almost
certainly create blockages around some of the pads. Where the trace and via pitch of the board are similar
to the pad pitch of the surface-mount parts, the fully automatic approach would be better.

Forbidding off-grid pins has proved to be an annoying rather than a serious limitation, and is not
fundamental to the data structures or algorithms. In the boards routed to date, parts with off-grid pins
were also handled by manually creating a dispersion pattern to nearby vias. The reason for the existence
of the via grid is to allow rapid searches for available via sites. This is one of the critical paths of the
routing algorithm. However, there is no particular reason to restrict the end points of a connection to lie
on the via grid. In the author’s opinion, this restriction can (and should) be removed by generalizing
Trace to connect arbitrary grid points rather than only via points. This would alow off-grid pins, though
all viaswould till be on the viagrid.

12. Conclusions

The router described here uses a collection of heuristic methods to solve the printed circuit board
routing problem. These include initial sorting of the connections, attempts to find optimal solutions
quickly, and a generalized version of Lee's algorithm. These methods take advantage of a compact
representation of the board wiring, and follow a consistent strategy of trying the simplest solution first.
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Printed circuit board routing is a global optimization problem in which choices made about individual
connections interact. Decisions made early in the solution may turn out to be wrong later. In view of this,
a genera approach underlies the algorithms presented here. When many interacting decisions are made
that may have to be revised, it is much more important to make a quick reasonable choice than an optimal
choice. This approach is based on the following assumption. Though the optimal solution to the routing
problem may be very difficult to find, there are a large number of acceptable solutions that can be found
in reasonable time.

One of the surprises in the development of this set of heuristic algorithms is the number of times that a
large increase in speed has been gained by a relatively minor change to the algorithms. In this sense they
are unstable. A small change to one of the algorithms can cause unpredictable global effects when
repeated in thousands of connections. One example is the representation of the channel data structure. In
the current data structure, a channel is a linked list of segments. In earlier versions, each channel was
represented as a binary tree of segments, since binary trees have better performance for random probes. In
reality, however, the access pattern to a channel is far from random. It is localized to a small part of the
channel when routing any given connection. The change from binary tree to doubly linked list with a
moving head-of-list pointer halved the running time on most problems. Similar sensitivity was shown to
changes in the way that the Trace procedure constructs traces between vias. Unfortunately, of the many
changes made in the hopes of improving speed or routing density, only a few were beneficial, and these
could not be predicted ahead of time. It is likely that improvements remain to be made in the algorithms
asthey stand. Nearly all heuristic methods seem attractive when proposed; amost none work in practice.

The most effective tools for improving program performance were careful analysis of the router output
to find inefficient routing patterns, statistical measures of routing patterns, and profiles of the CPU usage
of each procedure in the program. The profiles allowed design effort to be concentrated in that small part
of the program where there were large potential performance gains.

Rapid, entirely automatic routing of printed circuit boards is feasible with today’s board technology
and algorithms. Manual editing of circuit boards is unnecessary for most digital logic circuits. The
development of denser PCB technologies with smaller vias can only improve this situation, and there
seems no fundamental reason why the pin densities associated with surface mount devices should pose
serious obstacles.
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13. Appendix

The four figuresin this appendix show areal routing problem and its solution. The problem is the Titan
floating point coprocessor, the coproc board of table 1. This circuit board has six power planes and six
signal layersfor atotal of 12 manufactured layers.

Figure 19 shows the board placement. Each of the 330 24-pin ECL 100K integrated circuits is flanked
by a 12-pin single in-line package containing termination and pull-up resistors. The placement was
generated manually using an interactive graphics editor over a period of months. Most of the time was
devoted to shortening the critical timing paths found by the timing verifier.

Figure 20 shows the routing problem this placement poses. This is a graphical representation of the
stringer output. Each line in the figure is a pin-to-pin connection that must be made in the solution.

Figure 21 shows one of the six routing layers of the solution found by grr. This is a photographic
positive, so copper is left only where the image is black. The rectilinear grr output was postprocessed to
generate this photoplot. Local modifications were made to produce the rounded corners and diagonal
traces, and also to spread apart long parallel trace runs. These optimizations improve the manufacturing
yield and electrical characteristics of the circuit board.

A ground plane of the solution is shown in figure 22. It was automatically generated after routing. It is
shown as a photographic negative, so that copper is etched away where the image is black. The small
round circles prevent connections to non-power pins and vias. The circles with dashed outlines indicate
power pin connections to this layer. Some metal is removed near a power connection to provide thermal
resistance. This prevents the heat needed for soldering from passing straight into the copper mass of the
power layer. The large black circles in the image prevent the power layer connecting to the mounting
screws holding the circuit board to its frame.
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Figure 20: Titan Coprocessor Routing Problem
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Flgure 22: Titan Coprocessor Ground Plane
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