
MultiTitan: Four Architecture Papers:

MultiTitan Central Processor Unit

MultiTitan Floating Point Unit

MultiTitan Cache Control Unit

MultiTitan Intra-Processor Bus

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94301

Version of 5 April 1988

Copyright  1988
Digital Equipment Corporation

1

1. Introduction to the MultiTitan
This document is a revised collection of four working architecture documents for the MultiTitan project originally
published in 1986. The MultiTitan was a research project at the Western Research Lab from mid 1984 through
1987. Because of delays, primarily due to lack of staff in critical stages of the project, and the consequent loss of
research potential in several areas of the program, in January 1988 WRL redirected its efforts beyond the
MultiTitan.

Since it was research project, it was specifically intended not to be a product in itself, but rather a testbed for many
different ideas. Thus ideas proved in the project and experience gained in the project can be useful in future product
designs. Research beyond product development is important in that research can afford to try out high payoff but
high risk ideas that would be too risky to directly incorporate into products.

2. Research Goals of the MultiTitan
There were four main research areas in the MultiTitan. In general each area has the potential to improve system
performance by a factor of 2x or more, however specific aspects of each research area may only contribute a few
percent. The four areas were:

• Small-grain multiprocessing

• Architecturally explicit caches

• High performance / low cost floating point

• Software instruction set architectural definition

These four areas will be explained more completely in the next four sections. As well as these four explicit research
areas, the MultiTitan provided a testbed for research on VLSI CAD tools and low-latency machine design
techniques.

2.1. Small-Grain Multiprocessing
The MultiTitan was to consist of 8 processors. This number was chosen as the most that could be supported by the
existing Titan memory and I/O system. We intended to investigate the speedup of single application programs
broken up into pieces on the order of 100 instructions. This relatively fine-grain parallelism has wider applicability
than large-grain or process-level parallelism, since a system efficient enough for small-grain parallelism can support
large-grain parallelism, but not necessarily vice versa. The parallelism within an application was to be scheduled by
the compilers, since such small threads could not afford the overhead of a call to the operating system for
scheduling. The MultiTitan hardware provided Send and Receive instructions that processors could use to
synchronize and transfer cache lines between processors in less time than required for a main memory access. The
usual test-and-set instruction was also provided without changing the original Titan memory system. The resulting
shared memory model was to be explored with a relatively small number of processors, but the work was intended
to be extensible to many processors.

2.2. Architecturally Explicit Caches
Until recently, it has been taught that caches are an implementation technique, and should not be visible in an
instruction set architecture. However, with the advent of multiprocessors, much faster individual processors, and
relatively constant main memory access times, caches have become a very important component of system
performance. For example, a cache miss on a VAX 11/780 takes 0.6 average instruction times to refill, but a cache
miss on a Titan takes 10 average instruction times to refill, and the Titan main memory is twice as fast as the 780
memory. This trend seems to be increasing further in proposed future machines with two-level caches. Similarly,

2 INTRODUCTION TO THE MULTITITAN

caches have a significant effect on multiprocessor performance. If a process is assigned to a different processor for
every quantum of its execution time, it could spend the majority of its time loading the current cache from main
memory or its previous processor’s cache. Likewise, if a program is decomposed over several processors, and there
is much contention for shared data, the program may waste much of its time passing data between caches or
invalidating stale cache lines.

First, it seems clear that something that can be the most significant term in a program’s performance should not be
hidden from the program, but should be visible and controllable by software techniques that can improve the
performance of the program. Second, the effort required to hide the caches from the architecture has increased
significantly from single-level uniprocessor caches to recent multi-level multiprocessor cache coherency proposals.
Finally, if access of shared data between caches is known to be relatively infrequent (less than one sharing access
per 100 machine cycles), a hardware cache consistency mechanism which decreases non-shared data performance
by only 7% (one additional level of logic in a machine with 15 gate levels per cycle) will be a net performance loss
unless its performance for shared data is faster by a factor of 7 over methods which manage cache consistency by
cache directives generated by the compiler. These hardware cache consistency methods are also harder to scale to
larger numbers of processors and require more design time than a machine without hardware cache consistency,
especially since the asynchronous consistency traffic is hard to model exhaustively.

Each MultiTitan processor has a write-back non-snoopy cache. Three cache management instructions are provided
for control of the cache by the compiler:

Clear This instruction allocates a cache line for the specified address. If the line is already
allocated, this instruction has no effect. This instruction can be used to prevent normal
fetch-on-write of cache lines that will be completely overwritten, hence improving
machine performance.

Write-back This instruction writes back a cache line for the specified address if it is dirty. It has no
effect if the line is clean, or if the specified address is not present in the cache. This
instruction can be used in cases where data is needed by either another processor or by
the I/O system, but it is also required by this processor in the future.

Flush This instruction removes a cache line for the specified address from the cache and writes
it back to main memory if it is dirty. It has no effect if the address is not present in the
cache. This instruction is useful when a new version of data must be acquired, so the old
version must be discarded so that a new version can be fetched from main memory by the
normal cache miss refill mechanism.

2.3. High Performance / Low Cost Floating Point
High performance floating point is becoming increasingly important. This is true even in mid-range and low-end
computing where cost is important. In general, scalar floating point performance is more important than vector
performance. Many applications do not vectorize, and often more time is spent in the non-vectorizable parts of
"vector" benchmarks such as Livermore Loops than in the vectorizable parts when running on vector machines.
Clearly if scalar computations could be made almost as fast as vector computations, the distinction between scalar
and vector computations would diminish. It would diminish even more if vector support did not require the addition
of hardware equal to or greater than the hardware required for the scalar processor. Not only is scalar performance
more important than vector performance, but the start-up costs of vector floating-point operations determine the
vector length required for efficient operation. Although 100x100 Linpaks have given way to 300x300 Linpaks in
supercomputer benchmark popularity, many applications will always have very short vectors. For example, 3-D
graphics transforms are expressed as the multiplication of a 4 element vector by a 4x4 transformation matrix.
Finally, in scalar operations data dependencies between operations are very important. Being able to perform many
scalar floating point operations in parallel is of little use if each one has a high latency.

Research Goals of the MultiTitan 3

Three key features distinguish our work in floating point support: a unified approach to scalar and vector
processing, low latency floating point, and simplicity of organization.

2.3.1. A Unified Approach to Scalar and Vector Processing
Existing machines that support vectors and use a load/store architecture (i.e., they support only register-to-register
arithmetic) provide a separate register set for vectors from scalar data. This creates a distinction between elements
of a vector and scalars, where none actually exists. This distinction makes mixed vector/scalar calculations difficult.
When vector elements must be operated on individually as scalars they must be transferred over to a separate scalar
register file, only to be transferred back again if they are to be used in another vector calculation. This distinction is
unnecessary. The MultiTitan provides a single unified vector/scalar floating-point register file. Vectors are stored
in successive scalar registers. Each arithmetic instruction contains an operand length field, and scalar operations are
simply vector operations of length one.

With this organization, many operations that are not vectorizable on most machines can be vectorized. For example,
since the normal scalar scoreboarding is used for each vector element, reduction and recurrence operations can be
naturally expressed in vector form. For example, the inner loop of matrix multiplication consists of a dot product in
which the elements of a vector multiply must be summed (i.e., a reduction). This can easily be performed without
moving the data from the multiply result register with either individual scalar operations, a vector directly
expressing the reduction, or the summation expressed as a binary tree of vector operations of decreasing length (e.g.,
8, 4, 2, 1). Likewise, the first 16 Fibonacci numbers (i.e., a recurrence) can be computed by initializing R0 and R1
to 1 (Fib and Fib) and executing R2 <- R1 + R0 (length 14).0 1

2.3.2. Low Latency Floating Point
Data dependencies increase the value of low latency floating point, as compared to high bandwidth but high latency
approaches. Optimizing compiler technology often increases the importance of low latency operations by removing
redundant or dead code which would otherwise be executed in parallel with multi-cycle data-dependent operations.
In the MultiTitan the latency of all floating-point operations is three cycles, including time required to bypass the
result into a successive computation. This is very short in comparison to most machines. (Division is a series of 9
3-cycle operations.) When multiplied by the 40ns cycle time of the MultiTitan, these result in latencies that are only
2-3 times larger than a Cray X-MP, and provide unparalleled scalar performance for a single-chip floating-point
unit.

2.3.3. Simplicity of Organization
The MultiTitan floating point is a very powerful yet simple and cost-effective architecture. All floating-point
functional units (including scalar/vector floating-point registers) easily fit on one CMOS chip in today’s technology.
(In the next CMOS technology they could easily fit on the CPU chip.) All floating-point coprocessor operations
take the same amount of time, greatly simplifying the scoreboard logic. Sustained execution rates of 20 double-
precision MFLOPS with vectorization and 15 MFLOPS without vectorization are attainable.

2.4. Software Instruction Set Architectural Definition
One aspect of the original Titan work was an architecture defined at a software level instead of as hardware
object-code compatibility. This software definition of the architecture is called Mahler. All of the compilers
available on the Titan produced Mahler instead of machine language, and with very rare exceptions so did any user
who wanted assembler-level code.

The Mahler compiler translates from Mahler to the specific (and different) object code for each machine in the
Mahler family. The feasibility of this approach is difficult to verify given only one machine in a family; one

4 INTRODUCTION TO THE MULTITITAN

research goal of the MultiTitan was to test the flexibility of Mahler. For example, the Titan and MultiTitan have
different instruction encodings and substantially different interlocks. The Titan also has more general-purpose
registers than the MultiTitan but does not have the MultiTitan’s floating-point register set. Finally, the MultiTitan
supports vector operations while the Titan does not.

The goal was that the Mahler code for both machines be the same. This goal was attained for most practical
purposes. The only changes made to the front end compilers was to implement as double-precision reals those data
types that are usually implemented as single-precision reals, because the latter are not supported by the MultiTitan.
We would also have needed front-end extensions to exploit the MultiTitan vectors, but this would have required no
changes to the Mahler base language generated by the front ends.

The Mahler system, including preliminary results of retargeting to the MultiTitan, is described more fully in WRL
Research Report 87/1, "The Mahler Experience: Using an Intermediate Language as the Machine Description" by
David W. Wall and Michael L. Powell.

3. Acknowledgements
Many people have contributed to the MultiTitan over the three and a half year history of the project. The following
is a list of the people and their contributions:

Bob Alverson Multiplier design, RSIM enhancements (summer intern).

Joel Bartlett GPIB and tester software.

Jon Bertoni Livermore Loops benchmarks.

David Boggs Uniprocessor system design, Multiprocessor system design.

Anita Borg MultiTitan Unix locore, proposed operating system structure.

Jeremy Dion MultiTitan system architecture and design, MultiTitan system simulations, Cache
Controller architecture and design, PCB router.

Mary Jo Doherty Floating-point unit pipeline control and simulations.

Alan Eustace Floating-point multiplier and reciprocal approximation, schematics tools, CAD
environment.

John Glynn Fab support (at Hudson).

Norm Jouppi MultiTitan CPU, floating-point, and system architecture; CPU design, timing
verification, Magic ports and enhancements, Versatec plotter software, CAD
environment.

Chris Kent MultiTitan system design.

Brian Lee Floating-point adder (intern).

Jud Leonard Floating-point algorithms.

Jeff Mogul Proposed operating system structure.

Scott Nettles Magic well-checker, Magic under X, fab support.

Michael Nielsen MultiTitan system simulations.

John Ousterhout Proposed operating system structure.

Michael Powell Compilers, operating system architecture, synchronization primitives, benchmark results,
SPICE port from VMS.

Don Stark Resistance extraction, whole-chip power noise simulation, Magic enhancements (summer
intern).

Patrick Stephenson GPIB and tester software (summer intern).

Jeff Tang Cache Controller design, clock generator, pads, electrical issues, SPICE, fab support.

Acknowledgements 5

Silvio Turrini Floating-point adder.

David Wall Mahler, instruction-level simulations.

Tat Wong Process engineer (at Hudson).

Acknowledgements i

Table of Contents
1. Introduction to the MultiTitan 1
2. Research Goals of the MultiTitan 1

2.1. Small-Grain Multiprocessing 1
2.2. Architecturally Explicit Caches 1
2.3. High Performance / Low Cost Floating Point 2

2.3.1. A Unified Approach to Scalar and Vector Processing 3
2.3.2. Low Latency Floating Point 3
2.3.3. Simplicity of Organization 3

2.4. Software Instruction Set Architectural Definition 3
3. Acknowledgements 4

MultiTitan CPU

Norman P. Jouppi

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94301

Version of 5 April 1988

Copyright  1988
Digital Equipment Corporation

Introduction 1

1. Introduction
MultiTitan is a high-performance 32 bit scientific multiprocessor implemented in CMOS. Each processor consists
of three custom chips: the CPU, floating point coprocessor, and external cache controller. They are abbreviated
"CPU", "FPU", and "CCU" in this document. This document describes the central processor unit.

Each processor of MultiTitan is similar in many resects to the ECL Titan, but different in several others. MultiTitan
is not object code compatible with the ECL Titan. Like the ECL Titan, it is a very simple RISC machine with a
branch delay of one. Unlike the ECL Titan, the MultiTitan has hardware support for small-grain parallel processing,
vector floating point registers and operations, and a different pipeline and method for handling exceptions. Figure
1-1 is an overview of one MicroTitan processor, while Figure 1-2 illustrates a MultiTitan system consisting of eight
MicroTitan processors.

10 CPU Op & RR|RA

64 data

32 address

32 system bus
Memory System
Interface
(TTL and ECL
latches and
buffers)

CCU chip
(custom VLSI)

512 entry TLB

FPU chip
(custom VLSI)

32 fromMemory bus

CPU chip
(custom VLSI)

2KB I-Buffer

22 16Kx4 25ns
External
Cache RAMs

64KB
Data

64KB
Instr.

Figure 1-1: Block Diagram of One MicroTitan Processor

Each MicroTitan processor has a large instruction buffer on the CPU chip as well as a large external cache
containing both instructions and data. The CPU instruction buffer is a cache containing 512 words, and is direct-
mapped with a line size of 4 words. The instruction buffer is addressed with virtual addresses. The 128K byte
external cache is partitioned into 64K bytes of data and 64K bytes of instructions, also with a line size of 4 words.
Both the data storage and tag storage are constructed from commercial 16Kx4 20ns static RAMs. The external
cache is a physically addressed cache, and the TLB access is in parallel with the cache access. In order for this to
occur (without sharing of unmapped and mapped bits resulting in restrictions on page placement in main memory)
the page size must be greater than or equal to the cache size. The smallest page size given these constraints has been
chosen, resulting in a page size of 64K bytes. The external cache is write-back (as opposed to write-through). The
instruction buffer and instruction partition of the external cache do not monitor D-stream references, so writing into
the instruction stream will have unpredictable effects unless the caches are flushed appropriately. The entire on-chip
instruction buffer is cleared by all context switches. The external cache may be cleared on a line by line basis with a
cache flush instruction.

2 MULTITITAN CPU

o o o
#8#2#1

Micro-Titan
CPU, FPU, cache,
and bus interface

Titan I
Memory and
I/O System

32 system bus

32 fromMemory bus

Micro-Titan
CPU, FPU, cache,
and bus interface

Micro-Titan
CPU, FPU, cache,
and bus interface

Figure 1-2: MultiTitan System Block Diagram

The CCU handles virtual to physical address translation, interface to I/O devices, low overhead processor to
processor communication, interactions with the memory system, and control of the cache during CPU memory
references. It provides support for software control of shared data, as opposed to hardware control of shared data
(e.g., a snoopy bus). In direct mapped caches (where data store and tag store are implemented with the same speed
RAMs), provisional data is available a significant amount of time before hit or miss is known. The CPU takes
advantage of this property; it starts using the data a cycle before hit or miss is required from the CCU. Similarly,
page faults are not known until after the data may have been written back into the register file. Thus, when a
memory reference page faults, the instruction is allowed to complete in error before an interrupt occurs. Kernel
software resumes execution with the instruction that caused the page fault. Note that this requires all memory
references to be idempotent. The details of virtual address translation are orthogonal to the CPU chip itself. Please
consult the CCU specification for details.

The floating point coprocessor performs G-format double precision (64 bit) floating point addition, subtraction,
multiplication, reciprocal approximation, conversion to and from integer, and single precision (32 bit) integer
multiplication. These operations take place concurrently with normal instruction processing of the CPU, except that
the CPU and CCU wait for completion of operations when they need a result from the coprocessor. The FPU has 52
general purpose registers, and supports vector arithmetic operations. The CPU chip is the only chip to generate
memory addresses. In coprocessor loads and stores the CPU chip generates addresses as if it were a load or store of
its own register file, but ships the register address to the coprocessor. The coprocessor then either latches or sends
out the data.

The floorplan of the CPU is given in Figure 1-3. The pipeline and CPU organization is given in Figure 1-4. Note
that the organization chosen is efficient in its use of datapath resources. For example, only one ALU is required: it
is shared between address computations and arithmetic operations, and is used at the same time for both. This plus
other efficiencies allows the datapath to be small, even though MicroTitan has more registers than most machines.

Introduction 3

L
o
g
o
s

Pad
con-
trol
dri-
vers

PC
Queue,
PC
Incr.,
+ misc.

Instruction Decode, Pipeline Control,
and Data Path control line drivers

Instruction bus

D
e
c
o
d
e
r
s

a
n
d

d
r
i
v
e
r
s

C
l
o
c
k
s

Data and Address Pads

Data and Address Pads

6.8 mm

Scale: 1/2" = 0.75mm in CMOS-2

C
o
n
t
r
o
l

a
n
d

E
x
t
e
r
n
a
l

I
n
t
e
r
f
a
c
e

P
a
d
s

8.7 mm

D
a
t
a

a
n
d

A
d
d
r
e
s
s

P
a
d
s

Data Write Logic

Sense amps and comparators

512 instructions
Direct mapped
4 words per line

Instruction
Buffer

Register
File
(48 GPR’s)

B
y
p
a
s
s

A
L
U

S
h
i
f
t
e
r

Figure 1-3: CPU Floorplan

4 MULTITITAN CPU

DataData

Parity
Checker

Parity
Gener-
ator

R

A,WB

P
S
W

P
C

RR|RA

CPU Op

External
Cache
memory
access

Address

"0"

+1

IR[ALU] IR[WB]IR[MEM]

WB

512 words
Direct mapped
4 word lines

On-chip
Instruction
Buffer Register

File
(48 GPR’s)

W
W

disp

MEMALU

Logical
Unit

Shift +
Extract

Adder/
Subtractor

IF

B

A

Figure 1-4: CPU Pipeline and Machine Organization

Instruction Set Architecture 5

2. Instruction Set Architecture
Several overriding concerns determined the encoding of the instruction set.

First, in order for instruction source registers to be fetched in parallel with decoding of the opcode, the register
sources must be in one and only one position in all instructions. Since store instructions read their operand to be
stored at the same time as loads write their target, and arithmetic operations write their destination at the same time
as loads, both store sources, load destinations, and arithmetic destinations must be in the same place. Some
instructions, like add immediate, have only one register source and destination, so this constrains one source and the
destination register to be specified by the high order halfword, since the displacement is in the low order halfword.
As in the ECL Titan, there is enough encoding space for 64 registers (although only 48 GPR’s are implemented).
With a four bit opcode we will neatly use the upper halfword: the opcode resides in the highest four bits, followed
by the destination (rr) and the first source (ra).

Second, the opcode should be trivial to decode. Thus, the instruction opcodes are arranged so that one or two bits
determine most functions. For example, all instructions with 16 bit displacements have as their highest bit "1". As
another example, all the instructions with a valid destination register can be covered with two boolean n-cubes. The
encodings are given in Figure 2-1.

Opcode Instruction

0 trap
1 extract
2 undefined operation
3 variable extracts
4 CPU to coprocessor transfer
5 coprocessor to CPU transfer
6 coprocessor ALU (+,-,*,/,convert to or from FP)
7 CPU ALU
8 undefined operation (reserved for CPU store byte)
9 test operation (formerly CPU load byte)
10 coprocessor store
11 coprocessor load
12 CPU store
13 CPU load
14 conditional jump
15 add immediate (replaces Titan I jump, RTI, and set oldpc)

Figure 2-1: MultiTitan Instruction Opcodes

2.1 CPU Registers
CPU registers are named r0 through r63. The expression "rx" refers to the contents of the register whose number is
encoded in the rx field of the current instruction, where rx is either ra, rb or rr. There are two instruction formats,
illustrated in Figure 2-2.

CPU registers 48 through 63 are special registers. They cannot be read and written in all circumstances as can
general purpose registers. For example, the program counter (special register 63) can only be read as the first source
and not as the second. The circumstances in which specials may be used are discussed later. To avoid confusion,
the special registers will be referred to by their name and not by their number in this document. They can only be
accessed by CPU instructions (not CCU or FPU instructions). The special CPU registers are listed in Figure 2-3.
Using special registers as sources for instructions in circumstances other than those in the listed restrictions will
return undefined data but will not cause any exception or errors in that or other instructions. Moreover, using the

6 MULTITITAN CPU

|< 4 >|< 6 >|< 6 >|< 6 >|< 10 >|
+-------+-----------+-----------+------------+-----------------+
|opcode | rr | ra | rb | miscellaneous |
+-------+-----------+-----------+------------+-----------------+

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
|opcode | rr | ra | displacement |
+-------+-----------+-----------+------------------------------+

Figure 2-2: Instruction Formats

PSW as a destination, since it is write-only, will also have no effect. Thus the recommended No-op is "PSW :=
PSW op PSW", where op is any ALU or shift operation.

Number Name Restrictions
--
63 PC Only for rr in ALU or add imm, ra in all instructions
62 PSW Only for rb in ALU or var byte (it is read only)
61 PCQE Only for rb in ALU or var byte, rr in ALU or add imm
60 PCQ Only for rb in ALU or var byte, rr in ALU or add imm
59-48 reserved for future use

Figure 2-3: CPU Special Registers

PCQ is a queue of four address: IFpc, ALUpc, MEMpc, and WBpc. When the processor is not in kernel mode,
successive values of the pc enter the queue. When a trap occurs, WBpc contains the pc of the instruction which was
in its WB pipestage, MEMpc the next instruction, ALUpc the third, and IFpc the address of the instruction in its IF
pipestage. If nil instructions are inserted into the pipeline as a result of interlocks or instruction buffer misses, the
nil instructions have the same pipestage pc as the next valid instruction in the pipeline. For example, if WBpc,
MEMpc, and ALUpc all contain the same value, only ALUpc refers to a valid instruction. Reading PCQ reads
WBpc, while writing it writes IFpc. Note that since instruction PC’s are duplicated by interlocks or instruction
buffer misses, WBpc cannot be used in user mode as the address of a previous instruction. Reading PCQE
(PCQExit) reads WBpc, but has the side effect of exiting kernel mode after a branch delay of one instruction.

2.2 Coprocessor Registers
Coprocessors share a 6 bit register address space; the registers are named c0 through c63.

The FPU has 52 GPR’s and 3 special registers: FPU PSW, time-of-day clock, and interval timer. They are
addressed 0 to 54. The special registers can only be accessed by coprocessor load and store instructions; when
accessed by FPU ALU instructions they return the constants 0, 1/2, and 1.

Instructions that access registers in the CCU use coprocessor registers 55 to 63. Access to some registers may cause
a CPU interrupt if the process is not running in kernel mode. The specific encoding is given in the CCU
Architecture document. It encompasses the functionality shown in Figure 2-4.

Instruction Set Architecture 7

Function
--

Flush cache line
Clear cache line
Test and set line in main memory
I/O operations
Load/store another processor’s cache
Load/store CCU PSW
Load/store TLB fault register
Load/store TLB tag (set 1 through 4)
Load/store TLB data (set 1 through 4)

Figure 2-4: CCU Register Addresses

8 MULTITITAN CPU

2.3 Instructions
For each instruction, we list its name, its assembly language form, its memory format, and a brief description of its
operation. The syntax for the Titan assembler has been extended to provide for the MultiTitan. Note that c0 - c63
denote the coprocessor registers, .. and .: denote variable extracts (bit field and byte respectively).

2.3.1 Trap

TASM Format

trap literal

Memory Format

|< 4 >|< 28 >|
+-------+--+
0	Optional trap literal
+-------+--+

This instruction causes a trap (i.e., software interrupt) in user mode. During kernel mode it is a No-op. The
interrupt is asserted duing the instruction’s WB pipestage. The optional trap literal is not saved in any CPU register
but must be obtained by examining the instruction itself.

Example: trap;

2.3.2 Extract Field

TASM Format

rr := ra,rb.[size, pos];

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 5 >|< 5 >|
+-------+-----------+----------+-----------+---------+---------+
1	rr	ra	rb	size	position
				-1	
+-------+-----------+----------+-----------+---------+---------+

Registers ra and rb are concatenated to form a 64 bit word, with ra on the left. A contiguous field is extracted from
this quantity, right justified and zero-extended to 32-bits, and stored in register rr.

Field extraction is accomplished by right shifting rb by the value in the position field, filling in the high order bits
from ra. Thus a zero in this field implies that rb will appear unshifted in the result, while 31 in the position field
implies that most significant bit of rb will be the least significant bit of the result, and all but the most significant bit
of ra will appear in the upper 31 bits of the result.

The size of the extracted field is one greater than the value in the size field of the instruction; e.g. zero in the size
field of the instruction causes a single bit to be extracted, while 31 in the size field obtains a 32-bit result.

Examples:
r3 := r4,r4.[0,31]; /* puts sign bit of r4 in r3 lsb */
r3 := r10,r10.[31,4]; /* rotates r10 right by 4 */
r3 := r7,r7.[7,24]; /* extract high order byte of r7 */

Instruction Set Architecture 9

2.3.3 Undefined Operation

TASM Format

no TASM format

Memory Format

|< 4 >|< 28 >|
+-------+--+
2	
+-------+--+

This instruction causes an unpredictable operation. It will not cause an illegal instruction opcode trap, since there is
no such trap. However, it may cause a privilege violation, write a register, or write a memory location, but its
operation is unknown and implementation dependent. This instruction should never be generated.

2.3.4 Variable Extract

TASM Format

rr := (ra,rb)..[size];
rr := (ra,rb)..-[size];
rr := (ra,rb).:[size]; (byte ref)
rr := (ra,rb).:-[size]; (byte ref)

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 5 >|<2>|1|1|1|
+-------+-----------+----------+-----------+---------+---+-+-+-+
						N	-	
3	rr	ra	rb	size		*	N	
				-1		8		
+-------+-----------+----------+-----------+---------+---+-+-+-+

A field extract is performed with the position field taken from the least significant 5 bits of the contents of ra. Note
that ra is used both as the high order word of the field to be selected from, and as the position count. This position is
interpreted according to the N*8 and -N bits. If the -N bit is on, the position is complemented (e.g., in a right bit
shift of 30 becomes a right shift of 1). This results in a big endian (i.e., IBM order, where the most significant bit is
numbered 0) variable shift being performed. If the -N bit is off, then a little endian right shift is performed (i.e.,
VAX order, where the most significant bit is numbered bit 31). If N*8 is on, then the position is shifted left 3 bits
and filled with zeros. This results in a variable byte right shift. Both the N*8 and -N bits may be asserted at the
same time, in which case a big endian byte shift results.

The size of the extracted field is one greater than the value in the size field of the instruction; e.g. zero in the size
field of the instruction causes a single bit to be extracted, while 31 in the size field obtains a 32-bit result.

In the notation used to describe the extract field instruction:

10 MULTITITAN CPU

if (-N)
then pos = ~ra
else pos = ra
if (N*8)
then pos = 8 *(pos mod 4)
else pos = pos mod 32
lbit = 32 + pos - size
rbit = 32 + pos.

Examples:
r2 := r3,r4.[0]; /* one bit */
r2 := r3,r4.-[0]; /* one bit, reversed ordering */
r2 := r3,r4.:[7]; /* one byte */
r2 := r3,r4.:-[15]; /* 2 bytes, reversed ordering */
r2 := r3,r4.:[4]; /* low 5 bits of indicated byte */

Instruction Set Architecture 11

2.3.5 CPU to Coprocessor Transfer

TASM Format

ca := rr;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
4	rr	ca	
+-------+-----------+-----------+------------------------------+

Rr is a CPU register, ca is a coprocessor register. The CPU performs a store instruction, but the CCU does not
enable the memory. The CPU outputs rr onto the high order data lines during its WB pipestage (i.e., word "1"). A
coprocessor writes the high order word of register ca with the data, and the low order half of register "ca" becomes
undefined. This instruction is useful for transferring operands to the FPU for integer multiplies. The register
address "ca" plus the opcode are transferred to the coprocessors in the ALU pipestage.

2.3.6 Coprocessor to CPU Transfer

TASM Format

rr := ca;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
5	rr	ca	
+-------+-----------+-----------+------------------------------+

Rr is a CPU register, ca is a coprocessor register. The CPU performs a load instruction, but the CCU does not
enable the memory. A coprocessor outputs the high order word of ca onto the high order data lines (i.e., word "1").
The CPU reads the data at the beginning of its WB pipestage. This is useful for obtaining results from the FPU for
integer multiplies. It is also used to transfer the result of FPU comparisons to the CPU for testing by conditional
branches. If the coprocessor register specified by ca is not yet available due to a computation in progress, the
coprocessor will deassert LoadWB until it can output the result. The register address "ca" plus the opcode are
transferred to the coprocessors in the ALU pipestage. This instruction cannot appear in the branch delay slot of any

branch immediately following a CPU->Coprocessor transfer. If it does, unpredictable operation may result.

12 MULTITITAN CPU

2.3.7 Coprocessor ALU

TASM Format

cr := ca(ALU)cb;

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 10 >|
+-------+-----------+-----------+-----------+------------------+
6	cr	ca	cb	function
+-------+-----------+-----------+-----------+------------------+

A coprocessor performs an ALU operation. The CPU ships the coprocessor the entire instruction over the address
lines during its unused mem pipestage. Please consult the FPU architecture document for more details about this
instruction.

2.3.8 CPU ALU

TASM Format

rr := ra op rb;

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|< 5 >|< 4 >|1|
+-------+-----------+-----------+-----------+---------+------+-+
						l
7	rr	ra	rb	function	unit	i
						t
+-------+-----------+-----------+-----------+---------+------+-+

The ALU performs boolean or arithmetic operations on the A and B operands, storing the result in register rr. The B
operand is register rb. The A operand is register ra if the literal select bit is clear, otherwise it is the ra field of the
instruction, zero-extended to 32 bits. The unit field selects a functional unit. Codes with more than one bit set (and
hence more than one unit selected) produce the logical AND of the results of the selected units. The unit codes are:

0: all one’s
1: add and sub
2: comparisons
4: logical (boolean)
8: reserved

The function is interpreted depending on the unit specified. The first tables below specify the logical operations
performed by each functional unit and how they are encoded. Subsequent tables and information provide
implementation specific description of how the functional units work. If checks for arithmetic overflow are enabled,
and an arithmetic overflow occurs, then an overflow trap is generated during the instruction’s WB pipestage.

Add and Subtract: Function Field
Value Operation

0xxV0 a+b xx denotes 2 "don’t care" bits.
1xxV1 b-a V=1 specifies trap on overflow
0xxV1 a+b+1
1xxV0 b-a-1

Instruction Set Architecture 13

Logical: Function Field
(Most significant bit of field doesn’t matter)
Hex
Value Operation

8 and
1 nor
E or
6 xor
A B bus
C A bus
9 eqv
5 not B
3 not A
0 False (0)
F True (1)
2 B and (not A)
4 A and (not B)
7 not (A and B)
B (not A) or (A and B) => not (A and not B)
D (not B) or (A and B) => not (B and not A)

Comparison: Function Field
(Most significant bit must be 1)
Hex
Value Operation

1A a <u b \
1B a <=u b \ unsigned
15 a >u b / comparisons
14 a >=u b /
1E a < b \
1F a <= b \ signed
11 a > b / comparisons
10 a >= b /

Add and subtract function encoding:
(msb and lsb both on for subtract, both off for add)
msb: complement A src

(don’t care)
(don’t care)
trap if overflow detected

lsb: carry in

Logical function encoding:
results for each bit in the data path (0<=i<=31):
msb: (don’t care)

output[i] if A[i]B[i]=11
output[i] if A[i]B[i]=10
output[i] if A[i]B[i]=01

lsb: output[i] if A[i]B[i]=00

For example, subtract (without trap on overflow) is selected by asserting unit code 0001b (the b suffix denotes a
boolean number) and function code 10001b. The logical unit is a four input multiplexor for each bit (0<=i<=31) in
the data path, controlled by the Asrc and Bsrc for that bit. For example, a logical AND is performed when the unit
code is 0100b and the function bits are x1000b.

14 MULTITITAN CPU

A B
Y
|\

output if AB=11 -| |
output if AB=10 -| |_ output
output if AB=01 -| |
output if AB=00 -| |

|/

Comparison instructions set the sign bit of rr to 1 if the relation is true, 0 otherwise. The value of the other bits in rr
is 1. The compares denoted with a trailing u are unsigned compares, the others are signed compares. Note that there
is no ra <> rb or ra = rb instruction. There are four input control lines for comparisons. They are determined by
consulting the table below. "S" is the sign of the resulting sum of rb-ra. B[msb] is the sign bit of rb. The
comparisons are chosen by specifying the sense of the result for each combination of A[msb] and B[msb] and by
providing the carry in. A sense of "1" implies the value in the table (e.g., "S") is complemented.

Comparison function encoding:
msb: must be 1 (for subtract)

sense of result if A[msb],B[msb] = {1,1}
sense of result if A[msb],B[msb] = {0,1} or {1,0}
sense of result if A[msb],B[msb] = {0,0}

lsb: carry in

Function is A cond B
| A[msb] B[msb] || <u | <=u | >u | >=u | < | <= | > | >= |
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
| 1 | 1 || ~S | ~S | S | S | ~S | ~S | S | S |
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
| 1 | 0 || B31 | B31 |~B31 |~B31 |~B31 |~B31 | B31 | B31 |
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
| 0 | 1 || B31 | B31 |~B31 |~B31 |~B31 |~B31 | B31 | B31 |
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
| 0 | 0 || ~S | ~S | S | S | ~S | ~S | S | S |
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
+-------+-------++-----+-----+-----+-----+-----+-----+-----+-----+
| Cin || 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
+---------------++-----+-----+-----+-----+-----+-----+-----+-----+

Instruction Set Architecture 15

2.3.9 Undefined Operation (Reserved for CPU Store Byte)

TASM Format

no TASM format

Memory Format

|< 4 >|< 28 >|
+-------+--+
8	
+-------+--+

This instruction causes an unpredictable operation. It will not cause an illegal instruction opcode trap, since there is
no such trap. However, it may cause a privilege violation, write a register, or write a memory location, but its
operation is unknown and implementation dependent. This instruction should never be generated.

2.3.10 Test Operation (Formerly CPU Load Byte)

TASM Format

? TASM format

Memory Format

|< 4 >|< 28 >|
+-------+--+
9	
+-------+--+

This instruction has the same effect as a Coprocessor ALU instruction. The instruction is placed on the address pins
during the MEM pipestage. This is instruction is used is test sequences for the instruction buffer, since it can be set
to the complement of a Coprocessor ALU instruction, and both these instructions make themselves visible at the
pins.

16 MULTITITAN CPU

2.3.11 Coprocessor Store

TASM Format

(disp[ra]) := cr;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
10	cr	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding register ra. The three low-order bits of the address are ignored (i.e., assumed zero) and register cr of
the coprocessor is stored into the 64-bit doubleword at that address. The register address "cr" plus the opcode are
transferred to the coprocessors in the ALU pipestage.

2.3.12 Coprocessor Load

TASM Format

cr := (disp[ra]);

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
11	cr	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding register ra. The three low-order bits of the address are ignored (i.e., assumed zero) and the 64-bit
doubleword at that address is loaded into register cr of a coprocessor. The CPU sends the register address "cr" along
with the opcode to the coprocessors in the ALU pipestage.

Instruction Set Architecture 17

2.3.13 CPU Store

TASM Format

(disp[ra]) := rr;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
12	rr	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding register ra. The two low-order bits of the address are ignored (i.e., assumed zero) and register rr is
stored into the 32-bit word at that address. Stores probe the external cache in the MEM pipestage, and send out data
to the cache in WB. If a hit has been detected during the probe, the CCU enables writing from the data bus into the
RAMs in the second half of the WB pipstage. Interactions with other instructions will be discussed in the timing
section.

Example: -3[r4] := r5;

2.3.14 CPU Load

TASM Format

rr := (disp[ra]);

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
13	rr	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding register ra. The two low-order bits of the address are ignored (i.e., assumed zero) and the 32-bit
word at that address is loaded into register rr. Ra and rr should not be the same or else this instruction is not

restartable in the presence of page faults and other interrupts.

Example: r3 := 1[r4];

18 MULTITITAN CPU

2.3.15 Conditional Jump

TASM Format

if ra cond goto disp

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
14	cond	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding the pc (the address of the conditional jump instruction). This address is loaded into pc if register ra
meets the condition specified by the cond field (otherwise the pc increments normally). This results in a conditional
transfer of control to the instruction at the computed address, following execution of the next instruction in line.
Note that this instruction requires implicit addressing of the pc (the only such case). It is also the only instruction
with three sources: ra, pc, and displacement. The instruction after the branch is always executed.

The table below details the "cond" values for the conditional jump instruction. Following this table there is more
information of an implementation nature that details how the conditional jump gets decoded by the MultiTitan.

Conditional Jump Values
(The two highest order bits of the cond field are ignored
Note that all comparisons are made against "zero".)
value utasm

0 always goto disp
1 never goto disp
5 if ra < goto disp
6 if ra = goto disp
7 if ra <> goto disp
3 if ra > goto disp
2 if ra <= goto disp
4 if ra >= goto disp
9 if ra % goto disp (if ra odd goto disp)
8 if ra & goto disp (if ra even goto disp)

The condition is the logical NOR of up to three selected bits: the lsb, the sign bit, and a bit which is true if the word
is greater than zero. If the sense bit is on, then the condition is true if the logical OR of the selected bits is one. For
example, equality to zero can be tested for by selecting >0 and <0.

COND(ra) is:
msb: unused

unused
select lsb
select <0
select >0

lsb: sense of OR

Example: if r4 <> 0 goto someLabel;

Instruction Set Architecture 19

2.3.16 Add Immediate (or Load Address, or ..)

TASM Format

rr := ra + disp;
or goto disp[ra];

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
15	rr	ra	word displacement
+-------+-----------+-----------+------------------------------+

An address is computed by left shifting the displacement field of the instruction by two bits, sign-extending it to 32
bits, and adding register ra. The result is stored in register rr. Note that assignments to the PC take effect after
executing the next instruction. Add immediate can be used to synthesize many other instructions, but since the
displacement is shifted by two bits it can only add or subtract multiples of four.

Examples:
r33:= pc + 2; /* subroutine call, part 1 */
pc := pc - 1025; /* subroutine call, part 2 */
pcq:= r27; /* set first element in oldPC queue */

20 MULTITITAN CPU

Exception Architecture 21

3. Exception Architecture
As well as having a simplified instruction set, MultiTitan also has a simplified exception architecture. For example,
interrupts, page faults, coprocessor traps, and bus error are all signalled by pulling down a common interrupt line in
the cycle after the exception. But before individual exceptions and trap handling is described in detail, we must first
examine the pipeline and its timing.

3.1 Pipeline Timing
The MultiTitan CPU has a four stage pipeline. The stages are instruction fetch (IF), compute (ALU), memory
access (MEM), and result write back (WB). A description of the actions taken in each pipestage is given in Figure
3-1. Each pipestage is broken into four clock phases. One and only one of the clock phases is high at all times,
subject to small amounts of skew which may result in zero or two clock phases being high for a few nanoseconds.
In the following discussions, store instruction will be used generically to refer to CPU store, coprocessor store, and
CPU->coprocessor transfer, which all use the data and/or address busses in the WB stage. Load instruction will be
used to refer to CPU load, coprocessor load, coprocessor->CPU transfer, and coprocessor ALU instructions, which
all use the data and/or address busses in the MEM pipestage.

Pipestage Function

IF p1 PC->IBuf decoders

p2 IBuf decoders->sense amp outputs
p3 sense amp outputs->register file decoders
p4 register file decoders->sense amp outputs

ALU p1 operand sources->functional units
p2 compute
p3 compute
p4 functional units -> result bus

MEM p1 if load or store, memory address computed
above->memory, otherwise idle

p2 cache access
p3 cache access
p4 cache access

WB p1 memory data->functional units if load
p2 write register file if load, read if store
p3 memory data->memory if store
p4

On every pipestage:
p1 precharge register file, and IBuf bit lines;

drive address and store data off chip
p2
p3 precharge register file bit lines and R bus
p4 precharge M bus

Figure 3-1: Pipeline Phase-by-Phase Timing

In the absence of exceptional conditions, one instruction is issued every cycle (40 nsec). All instructions commit in
their WB pipestage; this implies if an instruction causes an interrupt it can only do so in WB.

Load Interlock If a CPU register is written by a load instruction, and used as a source in the next
instruction, one additional cycle is lost.

22 MULTITITAN CPU

Store Interlock If the instruction following a store class instruction is a load class or store class
instruction, one cycle is lost.

Coprocessor->CPU Transfer Interlock
If a Coprocessor->CPU transfer instruction follows a coprocessor load or store, one
additional cycle is lost.

CPU->Coprocessor Transfer Interlock
If a Coprocessor->CPU transfer instruction attempts to issue two cycles after a
CPU->Coprocessor transfer, one additional cycle is lost. Note that if a
CPU->Coprocessor transfer is followed immediately by a Coprocessor->CPU transfer, a
store interlock will occur on the first attempted issue of the Coprocessor->CPU transfer,
and then the CPU->Coprocessor transfer interlock will occur, increasing the spacing
between the two transfers to three.

Instruction Buffer Miss
Any instruction fetch which misses in the instruction buffer will incur at least a two cycle
delay, assuming a hit in the external instruction cache. An instruction buffer miss that
occurs while a store is in its MEM stage will be delayed one additional cycle. If the
missing instruction is on word 3 of the line, or if there is a taken branch in the ALU
pipestage, one additional delay cycle will occur at the end of an instruction buffer miss.

External Cache Miss
A load, store, or instruction buffer miss which misses in the external cache results in a
delay of 14 cycles. If a load or store instruction immediately follows a load or store
instruction that misses, one extra delay cycle will occur.

Coprocessor Stall Wait for completion of the coprocessor can cost up to 48 cycles.

Trap or Interrupt Any trap condition costs a three cycle delay until the instruction at the location specified
by the upper 28 bits of PSW is executed. This will be followed by a further delay
because the I-buffer will miss (since it is cleared on all context switches).

3.2 Program Status Words
Although page faults, coprocessor traps, and bus errors are all signalled via the same interrupt pin, these conditions
are differentiated by program status words (PSW’s) in each of the CPU, CCU, and FPU. Figure 3-2 gives the format
of the CPU PSW. It is read only and reading it is not privileged.

|< 23 >|1|< 3 >|1|1|1|1|1|
+--+-+-----+-+-+-+-+-+
| zero |S|PrId |B|T|V|K|P|
+--+-+-----+-+-+-+-+-+

Figure 3-2: CPU PSW format

The B bit is on if the processor is being booted. It is generated internally from the CPU by delaying the Reset input.
The PrId field is the hardware processor id. It is directly connected to three external pins and can range from 0 to 7.
During boot sequences the upper 28 bits of the PSW (the other bits are zero) is used as a base address; the PrId field
allows different processors to execute different code. The PrID field is placed in the PSW so that different
processors will execute different cache lines. The S bit is on if the processor is being booted and is requested to save
its state before booting. The S bit is a chip input, and is driven from the clock/scan board.

The T bit is ’1’ if a software trap occurred when the last interrupt was taken. The V bit is ’1’ if an instruction having
an arithmetic overflow trap was in its WB pipestage when the last interrupt was taken. The K bit is ’1’ if the
instruction in the IF pipestage is in kernel mode. In Kernel mode all interrupts are disabled and privileged
instructions are enabled. The P bit is ’1’ if a hard parity error occurred in the cycle before the interrupt.

Note that since interrupts are not encoded or prioritized, other interrupts could have occurred at the same time (e.g.,

Exception Architecture 23

TLB fault, FP divide by zero, etc.). In order to determine whether other exceptions occurred, the FPU and CCU
PSWs must be examined. The encoding of the CCU and FPU PSWs are given in the CCU and FPU architecture
documents, respectively.

24 MULTITITAN CPU

3.3 Pipeline Advancement
There are seven possible ways in which the pipeline advances from one cycle to the next. Figure 3-3 lists them in
increasing order of priority. There are also eight control lines which determine pipeline advancement either directly
or indirectly: LoadIF (internal to CPU), LoadALU, LoadMEM, LoadWB, AllowInterrupt, Interrupt, Reset, and
Kernel.

1) Normal pipeline advance:
WB := MEM;
MEM := ALU;
ALU := IF;
IF := PC + 4;

2) Branch taken pipeline advance:
WB := MEM;
MEM := ALU;
ALU := IF;
IF := Branch target;

3) Interlock (LoadIF deasserted; LoadALU, LoadMEM, and LoadWB are not)
WB := MEM;
MEM := ALU;
ALU := NIL; delay slot injected here
IF := Recirculate;

4) IBuf miss (LoadALU deasserted; LoadMEM and LoadWB are not):
WB := MEM;
MEM := IBM refill; a load class instr
ALU := Recirculate; ALU does not advance
IF := Recirculate;

5) Memory Reference Retire (LoadMem deasserted, LoadWB is not):
WB := NIL;
MEM := Recirculate;
ALU := Recirculate;
IF := Recirculate;

6) LoadWB deasserted (i.e., "stall"):
WB := Recirculate;
MEM := Recirculate;
ALU := Recirculate;
IF := Recirculate;

7) Interrupt: (Interrupt and AllowInt asserted, or Reset asserted)
WB := NIL;
MEM := NIL;
ALU := NIL;
IF := PC = PSW[31..4];

8) Uninterruptible Stall (LoadWB and AllowInterrupts deasserted):
WB := Recirculate;
MEM := Recirculate;
ALU := Recirculate;
IF := Recirculate;

Figure 3-3: Pipeline Advancement

LoadWB, LoadMEM, LoadALU, and LoadIF control whether each of the four pipestages stalls or advances. If the

Exception Architecture 25

advance signal for a later pipestage is deasserted, the advance signals for all previous pipestages must be stalled as
well. This is required so that instructions don’t overtake (i.e., crash into each other) in the pipeline. For example, if
LoadMEM is deasserted, LoadALU and LoadIF must be deasserted as well. (Since the LoadIF signal only exists
inside the CPU, it deasserts LoadIF internally when it sees LoadALU deasserted.)

If all signals have their load signal asserted, there is no interrupt, and the instruction in ALU is not a taken branch,
all pipestages advance and the new IFpc is IFpc+4 (case 1). If an unconditional branch or a taken conditional
branch is exiting its ALU pipestage, all signals have their load signal asserted, and there is no interrupt, then the
branch target specified by the branch in ALU is the next IFpc (case 2). An interesting variation on this appears in
the case of interlocks (case 3). In an interlock, LoadIF is deasserted, but all the other pipeline advance signals are
asserted and there is no interrupt. If a taken branch instruction is in ALU during an interlock, it must advance since
LoadALU and LoadMEM are asserted. However, the branch target cannot be immediately loaded into the IF
pipestage since the interlock mandates that the instruction in IF be held. Thus interlocks are not allowed if a taken
branch is in ALU. The only way to generate an interlock in IF concurrent with a taken branch in ALU is with a
CPU->Coprocessor transfer followed by a taken branch with a Coprocessor->CPU transfer in the branch delay slot.
This code sequence should never be generated or else unpredictable operation may result.

In the IBuf miss sequence (case 4) the ALU pipestage must not advance into MEM and thereby use the address pins.
The IBuf miss sequence usually occurs for two cycles, but may require an additional cycle at the start of the
sequence if a store class instruction is in Mem when the IBuf misses. During an instruction buffer miss, a total of
two load-class pseudo instructions are inserted into the MEM pipestage in successive non-stall cycles. The first
loads the requested doubleword into the cache line and the second loads the non-requested doubleword. The
additional cycle delay that occurs when the instruction buffer misses with a store in the MEM pipestage is just a
special case of the store interlock. An additional cycle is required at the end of the sequence if the next instruction is
not on the same cache line. This is determined (slightly pessimistically) in the miss cycle by checking if the miss
instruction is at word 3 of a cache line or if a taken branch is in the ALU pipestage. (In reality, the branch could be
to the same cache line, and no extra cycle would be required.) The next instruction must be on the same line as the
miss instruction so that the non-requested doubleword of the buffer line can be written into the buffer.

During stalls LoadWB and all earlier Load signals are deasserted (case 6). This results in all pipestages being
stalled. If LoadMem is deasserted during an external cache miss but LoadWB is not, this signifies the requested
data is on the data bus, and the instruction in WB should be retired (case 5). However, the following instructions
may not advance until the memory operation completes.

If Interrupt and AllowInt (allow interrupt) are asserted, an interrupt is taken (case 7). AllowInt (and all the pipeline
Load signals) may be deasserted during phase 3 if the CCU is in the process of a memory transaction. Thus
AllowInt disables the effects of the Interrupt signal (case 8). To prevent exceptions from being handled, interrupts
are ANDed with AllowInt. Inside the CPU the External Reset signal is OR’ed with the result of the AND’ing of
AllowInt and Interrupt. Thus, reset has the same effect as an enabled interrupt, except that reset should be asserted
at least 7 cycles so that all pipeline state can be reset. Although interrupt receivers must check AllowInt to tell if an
interrupt is valid, interrupt sources must check the Kernel signal before generating interrupts. Interrupts should
never be asserted in kernel mode, since if it is taken the return addresses will not have been saved in the PCQ.

Figure 3-4 gives the operation of each pipestage given the values of LoadMem, Interrupt, LoadWB, IBuf Miss, and
Interlock. Int is actually "Reset or (AllowInt and Interrupt)" in the table.

26 MULTITITAN CPU

Control Int LoadWB LoadMEM LoadALU LoadIF

1 X X X X nop
WB 0 1 0 X X nop

0 0 0 X X WB
0 1 1 X X MEM

1 X X X X nop

MEM 0 X 1 0 X nop
0 X 0 0 X MEM
0 X 1 1 X ALU

1 X X X X nop

ALU 0 X X 1 0 nop
0 X X 0 0 ALU
0 X X 1 1 IF

1 X X X X nop

IF 0 X X X 0 IF
0 X X X 1 next PC

Figure 3-4: Operation of Each Pipestage

3.4 Interrupts
Upon any of a set of special circumstances, the processor interrupts the normal sequence of instruction execution,
sets the program status word to kernel mode (interrupts disabled, privileged instructions enabled), disables address
translation, and forces the upper 28 bits of the PSW as the new PC. In addition it sets bits in the program status
word indicating if a trap instruction or arithmetic overflow was one cause of the interrupt (there may be more than
one cause). If an interrupt occurs in kernel mode, the processor follows these same steps. However, since in kernel
mode the PCQ does not advance, no record of the trap PC will be saved. Thus, all interrupt generators must check
the Kernel bit and only generate interrupts if the Kernel bit is off.

3.4.1 Determining Instructions in Progress
The PCQ records the PC associated with each pipestage. The PCQ is read from WBpc and written to IFpc. When
the PCQ is read, WBpc is output and the PCQ shifts by one. Similarly, when IFpc is written the PCQ shifts by one
to make room for the new entry. Whenever a nop (i.e., "bubble") is inserted into the pipe, the nil instruction has as
its PC the PC of the next valid instruction in the pipeline. Nil instructions can be inserted between WB and MEM
during cache misses, between MEM and ALU during instruction buffer misses, and between ALU and IF during
interlocks (see Figure 3-5). In fact, in some circumstances there may be as few as two distinct PC’s in all four PCQ
registers: in other words, only two valid instructions exist in the pipeline. For example, if an instruction buffer miss
occurs two successive nil instructions will be inserted in the MEM pipestage. If the instruction buffer miss faults in
the TLB, this will be detected when the first pseudo-load instruction for the I-buffer reload is in its WB pipestage.
At this point the instruction in IF is the faulting instruction, and the PC’s in ALUpc, MEMpc, and WBpc are all the
PC of the instruction in its ALU pipestage at the time that the instruction buffer miss occurred.

Exception Architecture 27

Code sequence

51: r1 := 0[r2];
52: r3 := r1 + r7;
53: pc := pc - 43;
54: r4 := 2[r3];

time ->
PCQ Sequence 1 2 3 4 5 6

WBpc - - - 51 52 52
MEMpc - - 51 52 52 53
ALUpc - 51 52 52 53 54
pc in IF 51 52 52 53 54 10

Figure 3-5: Operation of the PC Queue during Load Interlock

3.4.2 Parity Errors and Interrupts
The MultiTitan chip set maintains parity on its 64-bit local data bus. This parity is odd byte parity. Checking of
parity is controlled by the CheckParity signal, output by the CCU from its PSW. On all CPU load and Cop->CPU
transfer instructions the CPU checks the parity of the word written into its register file (see Figure 1-4). If the parity
is incorrect, and CheckParity is asserted, the CPU asserts interrupt in the following cycle (assuming AllowInt is
asserted). Thus, the parity error is associated with the instruction before the instruction recorded in WBpc (unless a
stall was in progress with AllowInt asserted at the time of the interrupt). Since the values of LoadWB at the time of
the interrupt is not saved, the instuction causing the parity error can not be determined precisely, and is usually not
even one of the instructions in the PCQ. But hard parity errors are not restartable in software anyway, so this
impreciseness is of little consequence except to diagnostic programs.

The CPU places proper parity on the driven word of the data bus in CPU stores and CPU->Cop transfers. In order
to drive the parity bits at the same time as the data bits, the parity bits must be available when the data is read out of
the register file (i.e., the parity bits must be stored in the register file too.) Data is written into the register file from
two sources: the local data bus, or a functional unit within the CPU (e.g., ALU, barrel shifter, and compare unit).
The local data bus has parity; to provide proper parity in the case of results of CPU functional unit results written
into the register file, parity is computed on the R bus during the ALU, shift or extract instruction’s normally idle
MEM stage. On each write of the register file the parity of the written word is checked. This checks incoming data
in the case of a CPU load-class instruction, and also checks the parity generator in the case of a CPU ALU, shift, or
extract instruction. Since parity is stored in the register file, parity errors in the register file as well as the external
data busses and data cache can also be detected. However, since the CPU does not check the parity of operands read
out of the register file, a parity error in the register file is only detected if the erroneous register is written back to
main memory or is written into the data cache and loaded back into the register file.

Instructions fetched from the external instruction cache on an instruction buffer miss also have parity since they are
fetched over the local data bus. This parity is not checked when data is written into the instruction buffer, but rather
when each instruction is read from the instruction buffer. Thus parity errors originating in the instruction buffer are
also detected, as well as errors originating in the external data busses and instruction cache. If a parity error occurs
on a instruction fetch that hits in the instruction buffer, the hit is forced to be a miss, independent of CheckParity.
Then the normal instruction buffer miss sequence fetches the instruction from the external instruction cache. If the
parity error originated in the instruction buffer, either through a transient error or a hard error within a RAM cell, the
normal IB miss refill bypass will result in correct parity when the instruction is fetched. If a parity error occurs

28 MULTITITAN CPU

during the write of the requested word in an instruction buffer miss refill sequence, the error is assumed to be in the
data busses or external instruction cache; if CheckParity is asserted the CPU asserts interrupt in the following cycle.

A parity error could also occur in two cases during an instruction buffer miss refill sequence on the instruction
following the instruction causing a miss. If the following instruction is in the same doubleword as the missing
instruction, it will be written into the instruction buffer at the same time as the missing instruction, and when it is
read it will be read from the RAM cells instead of from the bypass path. A parity error in this case could originate
either in the instruction buffer of in external circuits. If the following instruction is in the non-requested
doubleword, when it is read it will read from the bypass path. A parity error in this case would be independent of
the instruction buffer RAM array (i.e., it would probably originate externally). Since these two cases are not
distinguished, the CPU just forces a miss on a parity error on the instruction following a miss. Then if the parity
error occurs on the refetch of the instruction from off chip, the error will occur during the write of the requested
doubleword and will cause an interrupt (assuming AllowInt is asserted). Thus a bit cell error in the instruction
buffer, whether transient or due to defects, will simply cause additional instruction buffer misses but will not prevent
execution of programs. Up to one cell in every byte of every instruction in the instruction buffer may fail and the
chip will still work (albeit more slowly).

3.4.3 Returning from an interrupt
In general, the last two uncommitted "valid instructions" must be restarted when returning from an interrupt. If the
last valid instruction is in WB, it should only be restarted in the presense of page faults since in other circumstances
the instruction in WB will have already committed. Note that in order to be restarted, load instructions cannot have
ra=rr since they will have already written rr.

Although there may be as few as two valid instructions in the pipeline, there may be only one restartable instruction
in the pipeline after an interrupt. This occurs in the case of a Coprocessor->CPU transfer that follows immediately
after a CPU->Coprocessor transfer. The Coprocessor->CPU transfer instruction will have two successive interlocks.
At this point, the address of the CPU->Coprocessor instruction will be in WBpc and the address of the
Coprocessor->CPU transfer instruction will be in IFpc, ALUpc, and MEMpc. If an I/O interrupt occurs in this
situation, the CPU->Coprocessor instruction in WB will not be restarted, which leaves only one valid instruction to
restart. In there is only one valid PC in the PCQ, then there can be no pending branches, and the instructions
specified by IFpc and IFpc+4 should be restarted.

Once the PC’s to be restarted have been found, they must be placed back into MEMpc and WBpc, with the first
instruction to be restarted placed in WBpc. PCQ may be written by specifying it as the rr field in CPU ALU or add
immediate instructions. The write will take place in the MEM pipestage; the PCQ is read in the ALU pipestage.
Thus writes to the PCQ will commit one cycle earlier than other instructions, and reads will occur one cycle later.
(But since all interrupts must be off to execute these instructions, we are safe.)

To return from an interrupt, the values placed in the PCQ must be transferred to the PC. The transfer must be done
by an add immediate instruction with PCQ or PCQE in the rb field and PC in the rr field. Reading the PCQE
register reads the PCQ with the side effect of exiting kernel mode. The first transfer of addresses from the PCQ to
the PC when exiting kernel mode must use the PCQE register address. The jump to the transferred address and the
exit from kernel mode take place after a delay of one instruction, just as other conventional branches have a branch
delay of one. Next, PCQ->PC must be executed in the branch delay slot, which restarts the instruction formerly in
MEMpc but now in WBpc. The next instruction after this will be the first restarted instruction in user mode. The
instruction buffer is automatically flushed on interrupts and return from kernel mode. Thus the restarted instructions
will always miss in the instruction buffer. If one of the values restarted from the PC queue causes a translation

Exception Architecture 29

buffer fault, an interrupt will occur. However, if the TB fault was on the instruction access of the first restarted
instruction, the PC queue will contain an undefined value in ALUpc (and hence also the same value in MEMpc and
WBpc due to the instruction buffer miss). If after processing this exception, the values in ALUpc and IFpc were
restarted, incorrect operation would result from the undefined address in ALUpc. Therefore for correct operation
the first return PC must have a valid translation.

The Kernel signal (i.e., pin) is associated with the instruction in the IF pipestage. It is the responsibility of the
coprocessors to track the Kernel bit through the remaining pipestages, just as they track Op and Reg. The ability of
an instruction to perform a privileged instruction in a particular pipestage is dependent on the value of the Kernel bit
associated with the instruction in that pipestage.

30 MULTITITAN CPU

Interface Architecture 31

4. Interface Architecture
Figure 4-1 summarizes the CPU pin assignments. Pads for the two words in the data bus doubleword plus the
address bus are three-way interleaved. Although an entire data bus doubleword may be read into the CPU, at most
one data word is written from the CPU. Similarly, data pad drivers are only active during store instructions, and the
address bus is not active when the data bus is active. Thus, since there are at most 8 pads between I/O power and
ground pins, at most three of these will be active at the same time.

of Pins Type Function

64 I/O Data bus
8 I/O Data byte parity
32 O Address bus
1 O Iaddress
1 I address alternate doubleword (CCU -> CPU)
1 I check parity enabled
1 O user/kernel mode
1 I/O NotInterrupt
1 I AllowInterrupts
1 I/O LoadIF
1 I/O LoadALU
1 I/O LoadMem
1 I/O LoadWB
1 I enable data bus drivers (from CCU)
6 O Cr (or ca) register address for FPU and CCU
4 O Instruction opcode for FPU and CCU
3 I PrId
1 I SaveState
4 O phi1..4 output
1 I power-up reset
1 I Clock In
1 I/O Spare

------ ------------------------------
136 signal pads used of 144 available

plus:
16 I/O Vdd
16 I/O GND
2 internal Vdd
2 internal GND

Figure 4-1: CPU Pinout

For more details on signal function and timing, please consult the MultiTitan Intra-Processor Bus Definition and
Timing document.

32 MULTITITAN CPU

Table of Contents i

Table of Contents
1. Introduction 1
2. Instruction Set Architecture 5

2.1 CPU Registers 5
2.2 Coprocessor Registers 6
2.3 Instructions 8

2.3.1 Trap 8
2.3.2 Extract Field 8
2.3.3 Undefined Operation 9
2.3.4 Variable Extract 9
2.3.5 CPU to Coprocessor Transfer 11
2.3.6 Coprocessor to CPU Transfer 11
2.3.7 Coprocessor ALU 12
2.3.8 CPU ALU 12
2.3.9 Undefined Operation (Reserved for CPU Store Byte) 15
2.3.10 Test Operation (Formerly CPU Load Byte) 15
2.3.11 Coprocessor Store 16
2.3.12 Coprocessor Load 16
2.3.13 CPU Store 17
2.3.14 CPU Load 17
2.3.15 Conditional Jump 18
2.3.16 Add Immediate (or Load Address, or ..) 19

3. Exception Architecture 21
3.1 Pipeline Timing 21
3.2 Program Status Words 22
3.3 Pipeline Advancement 24
3.4 Interrupts 26

3.4.1 Determining Instructions in Progress 26
3.4.2 Parity Errors and Interrupts 27
3.4.3 Returning from an interrupt 28

4. Interface Architecture 31

ii MULTITITAN CPU

List of Figures iii

List of Figures
Figure 1-1: Block Diagram of One MicroTitan Processor 1
Figure 1-2: MultiTitan System Block Diagram 2
Figure 1-3: CPU Floorplan 3
Figure 1-4: CPU Pipeline and Machine Organization 4
Figure 2-1: MultiTitan Instruction Opcodes 5
Figure 2-2: Instruction Formats 6
Figure 2-3: CPU Special Registers 6
Figure 2-4: CCU Register Addresses 7
Figure 3-1: Pipeline Phase-by-Phase Timing 21
Figure 3-2: CPU PSW format 22
Figure 3-3: Pipeline Advancement 24
Figure 3-4: Operation of Each Pipestage 26
Figure 3-5: Operation of the PC Queue during Load Interlock 27
Figure 4-1: CPU Pinout 31

MultiTitan Floating Point Coprocessor

Norman P. Jouppi

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94301

Version of 6 April 1988

Copyright  1988
Digital Equipment Corporation

Introduction 1

1. Introduction
The MultiTitan Floating Point Unit (FPU) is a single chip high performance coprocessor implemented in CMOS. It
has multiple pipelined functional units and support for vectors. It can retire one arithmetic operation and one load or
store instruction per cycle. It embodies the RISC philosophy in that hardware resources are dedicated to decreasing
the latency of frequently used operations as much as possible, while infrequently used operations must be
synthesized from these high-performance primitives. MultiTitan has a machine cycle time of 40ns, composed of
four equal 10ns clock phases.

This document assumes some familiarity with floating point arithmetic. In particular, knowledge of published
floating point implementation techniques such as Booth multiplier recoding, Wallace trees, and division via

1reciprocal approximation is assumed. Knowledge of Cray-1 or Cray X-MP machine organization is very helpful as
2well.

1.1 Hardware Resources
There are four functional units in the FPU. Their characteristics are given in Figure 1-1. All floating point
computations are performed in 64-bit double-precision G format. G format is the VAX 64-bit floating point format
(except for byte order) with a sign bit, 11-bit exponent, and 52-bit fraction.

Unit Operations Supported Latency (in cycles)

Register File 2 reads, 1 write, and 1 other read or write per cycle

52 64-bit general purpose registers
Program Status Word (PSW)
Time-of-Day Clock (TOD)
Interval Timer
Floating-point constants 0, 1/2, 1

Adder Addition 3
Subtraction 3
Float (integer to floating) 3
Trunc (floating to integer) 3

Multiplier Multiplication 3
Integer multiplication (returns lsw) 3
Iteration step (2-A*B) 3

Reciprocal 16 bit reciprocal approximation 3

Figure 1-1: FPU Functional Units

The functional units are controlled by a scoreboard and instruction registers. Coprocessor load, store, and transfer
instructions are transferred from the CPU over the coprocessor instruction bus. Coprocessor arithmetic (ALU)
instructions are wider than the coprocessor instruction bus, so they are transferred over the address bus.

As a reference, the latency of various operations in the Cray X-MP (with a 9.5ns cycle time) are compared with the
latency of the functional units in the FPU in Figure 1-2. However, due to the MultiTitan’s 4 times slower vector
element issue rate, lack of chaining, and less powerful memory subsystem the overall performance can be
significantly less than implied by the latency ratios.

1Hwang, K., "Computer Arithmetic," John Wiley & Sons, New York, 1979.

2Siewiorek, D., Bell, G., and Newell, A., "Computer Structures: Principles and Examples, McGraw-Hill, New York, 1982, Chapter 44.

2 MULTITITAN FPU

Operation FPU Latency X-MP Latency

Addition, Subtraction 120ns 57ns
Multiplication 120ns 66.5ns
Division (reciprocal approx.) 720ns 332.5ns

Figure 1-2: Latency in MultiTitan FPU and Cray X-MP Functional Units

1.2 Data Formats
Two data formats are supported in the FPU: 64-bit double-precision G-format floating point and 32-bit integers.
However, the G format is the only data format directly supported by all functional units. Figure 1-3 shows the
format for a double-precision floating point number. The s bit is the sign of the fraction field. The exp field is the
1024-biased exponent.

|1|< 11 >|< 52 >|
+------------+---+
|s| exp | fraction |
+-+----------+---+
^ ^
bit 0 bit 63

Figure 1-3: 64-Bit, Double-Precision Floating Point G Format

In the G floating point format, the actual fraction is always assumed to be normalized, but the normalizing bit is not
present in the physical representation; there is a hidden bit. An exponent field of 0 does not signify the most
negative exponent, but instead means that the number is assumed to be 0 if the sign and fraction fields are zero, and
a reserved operand if the sign bit is 1.

32-bit integers are the same format as used by the CPU. They reside in the high-order half of coprocessor registers,
and thus may be moved to and from the CPU with transfer instructions. (Transfer instructions are limited to 32 bits,
and must transfer the high-order word since transfers of floating-point numbers to the CPU for comparison against
zero must obtain the sign, exponent, and high-order fraction bits.) The Float and Integer Multiply instructions (the
only instructions that operate on integers) ignore the low order bits. The Trunc and Integer Multiply instructions
(the only instructions that produce integer results) place their results in the high order word.

Bytes and words on the 64-bit data bus are numbered in "Little Endian" order: the most significant half of a
doubleword on the data bus corresponds to an odd address (i.e., 1 mod 2), and the sign bit is in byte 7 mod 8.

1.3 FPU Registers
The FPU has a general purpose register set of 52 registers, addressed <0..51> in the MultiTitan coprocessor register
space. It also has a PSW (address 52), time-of-day clock (TOD) (address 53), and an interval timer (address 54)
which can be used in all FPU instructions except FPU ALU. When these registers are read in FPU ALU
instructions, they return the floating point constants 0, 1/2 and 1, respectively. Writes of these registers by FPU
ALU instructions have no effect. Note that the FPU shares the coprocessor register address space with the CCU and
other undefined coprocessors. The FPU determines that a coprocessor instruction is intended for it by examining the
destination register specifier for coprocessor ALU, coprocessor load, and CPU->coprocessor transfers and the
source register for coprocessor store and coprocessor->CPU transfers. Coprocessor ALU instructions with an FPU
destination but source register specifiers outside the FPU address range will execute with undefined results. Note
that CPU->coprocessor and coprocessor->CPU transfer instructions only transfer the high-order word of registers;
this is true for the PSW, TOD, and timer as well as the GPR’s.

Introduction 3

1.3.1 GPRs
These can be individually loaded, stored, and used in arithmetic operations. They can also be used in vector
arithmetic operations. In contrast to other machines, the MultiTitan does not have vector register banks and vector
register load/store instructions.

Vector register load/store instructions in a virtual memory environment share many problems with other multi-word
memory references present in CISC machines. For example, the vector load can cross a page boundary, and the
machine must save enough state to properly restart it. Although vector memory references can result in a significant
performance improvement on machines with large memory bandwidth, the MultiTitan has more limited bandwidth
than these machines. Also, in many applications the most important advantage of vector instructions is the ability to
overlap floating point computations, memory references, and normal loop overhead. In the MultiTitan, this is still
possible to a large extent without the use of vector memory references. Once a vector arithmetic operation is begun,
the CPU is free to issue loads for future computations, stores for previous results, and loop overhead instructions.

Vector register banks, where registers are grouped into vectors of fixed length and operated on as a group, reduce
the op code space required to represent instructions but also limit the flexibility of use of the individual registers.
For example, in these static allocation schemes, the user can not select between 8 banks of 64 registers or 64 banks
of 8 registers. In MultiTitan, the user can dynamically partition the 52 GPRs through software into any number of 1
to 16 element register groups.

1.3.2 PSW
The FPU program status word (PSW) is read only. It is addressed by coprocessor loads and stores as register 52 in
the MultiTitan coprocessor register space. It is loaded every cycle while the CPU is in user mode with interrupt not
asserted, and held during kernel mode or when interrupt is asserted. (Interrupt may be asserted on a previous phase
3 without forcing kernel mode on the next cycle if memory transactions are in progress (i.e., LoadMEM is
deasserted).) Upon return to user mode it is again latched each cycle. Its format is given in Figure 1-4. The P bit is
set if there was a privilege violation (interrupt is also asserted). The only cause of this is a user program that
attempts to set the TOD clock or interval timer. This privilege violation trap can be useful when implementing
virtual machines. The O bit is set if an arithmetic overflow (including zero divide) occurs during an arithmetic
operation (interrupt is also asserted). Rov is the destination register specifier of the element whose result
overflowed. If there is more than one arithmetic overflow in a vector ALU instruction, Rov is the destination
register specifier of the first to overflow. After an arithmetic overflow all subsequent result elements are discarded
(i.e., not written into the register file) until an interrupt is taken. If a computation underflows, the destination is set
to zero and interrupt is not asserted. The PSW can only be read with a coprocessor store or an FPU->CPU transfer
instruction. It is defined as the floating-point constant 0 if read in an FPU ALU instruction. The T bit is set if the
interval timer becomes zero.

|1|1|< 6 >|1| 55 >|
+-+-+-----+-+--+
|P|O| Rov |T| undefined |
+-+-+-----+-+--+

Figure 1-4: FPU Program Status Word

1.3.3 TOD Clock
The time-of-day clock is a 54-bit counter that increments every clock cycle, and is addressed as coprocessor register
number 53 by coprocessor loads and stores. It can be read in user or kernel mode, but can only be written in kernel
mode. Attempted writes in user mode cause a privilege violation interrupt. It is of sufficient length not to overflow

4 MULTITITAN FPU

in 20 years of 40ns clock cycles. The TOD clock can only be read with a coprocessor store or an FPU->CPU
transfer instruction, and written with a coprocessor load or a CPU->FPU transfer instruction. It is defined as the
floating-point constant 1/2 if used in an FPU ALU instruction. When read with a coprocessor store instruction, the
upper 10 bits are zero.

|< 10 >|< 54 >|
+-------+--+
| zero | time-of-day counter |
+-------+--+

Figure 1-5: FPU Time-of-Day Counter

1.3.4 Interval Timer
The interval timer is a 54-bit counter that increments every clock cycle, and is addressed as coprocessor register
number 54 by coprocessor loads and stores. The T bit in the PSW is set and an interrupt occurs when the interval
timer increments to zero. The interval timer can be read in user or kernel mode, but can only be written in kernel
mode. Attempted writes in user mode cause a privilege violation interrupt. It is of sufficient length to time 20 years
of 40ns clock cycles. The interval timer can only be read with a coprocessor store or an FPU->CPU transfer
instruction, and written with a coprocessor load or a CPU->FPU transfer instruction. It is defined as the floating-
point constant 1 if used in an FPU ALU instruction. When read with a coprocessor store instruction, the upper 10
bits are zero.

|< 10 >|< 54 >|
+-------+--+
| zero | interval timer |
+-------+--+

Figure 1-6: Interval Timer

1.3.5 Floating-Point Constants
As described in the previous sections, the floating-point constants 0, 1/2, and 1 are available in FPU ALU
instructions as registers 52, 53, and 54 respectively. These constants are useful in synthesizing FPU register-to-
register move instructions (Cx <- Cy + 0), since this operation is not present in the basic instruction set. These
constants are also useful in providing the round operation by the addition of 1/2 followed by the trunc operation. If
a constant is specified as the target of an operation, the operation has no effect but the normal issuing checks and
interlocks apply. An interesting FPU NOP is provided by C52 <- C53 + C54, in that it can synchronize the CPU
with the issuing of the last element of a previous vector. (The FPU NOP will stall until the last element has issued
and left the FPU ALU instruction register. This is useful when only the last result of a long vector is desired, since
all vector element results are not reserved immediately, but only as each element issues. Without an intervening
FPU NOP between a long FPU vector ALU instruction and a store of the last element, the store would save the old
value of the specified register, unless there was an intervening interrupt.)

Instruction Set 5

2. Instruction Set
There are two classes of instructions: data transfer (loads/stores/CPU->FPU/FPU->CPU) and arithmetic operations.
Coprocessor registers are designated by "cx" while CPU registers are designated by "rx".

2.1 Coprocessor Load

TASM Format

cr := (disp[ra]);

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
11	cr	ra	word displacement
+-------+-----------+-----------+------------------------------+

Description

The CPU computes a byte address by left shifting the displacement field of the instruction by two bits,
sign-extending it to 32 bits, and adding register ra. The three low-order bits of the address are ignored
(i.e., assumed zero) and the 64-bit aligned doubleword at that address is loaded into register cr of the
FPU if cr is in the range <0..54>. The CPU sends the register address "cr" along with the opcode to the
coprocessors in the ALU pipestage.

2.2 Coprocessor Store

TASM Format

(disp[ra]) := cr;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
10	cr	ra	word displacement
+-------+-----------+-----------+------------------------------+

Description

The CPU computes a byte address by left shifting the displacement field of the instruction by two bits,
sign-extending it to 32 bits, and adding register ra. The three low-order bits of the address are ignored
(i.e., assumed zero) and register cr of the FPU is stored in the 64-bit aligned doubleword at that address if
cr is in the range <0..54>. If the coprocessor register specified by cr is not yet available due to a
computation in progress, the FPU will deassert LoadWB until it can output the result. The CPU sends the
register address "cr" along with the opcode to the coprocessors in the ALU pipestage.

6 MULTITITAN FPU

2.3 CPU to Coprocessor Transfer

TASM Format

ca := rr;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
4	rr	ca	
+-------+-----------+-----------+------------------------------+

Description

The CPU performs a store instruction, but the CCU does not enable the memory. The CPU outputs rr onto
the high order data lines (i.e., word "1") during the WB pipestage. The FPU loads the high order half of
register ca with the data put out by the CPU if the register address ca is in the range <0..54>. The
contents of the low-order half of register ca are undefined after CPU->Coprocessor transfers. This
instruction is useful for transferring operands to the FPU for integer multiplies. The register address ca
plus the opcode are transferred to the coprocessors in the ALU pipestage. Note that the FPU pipeline
must input data one pipestage later than during loads from memory, and only 32 bits are transferred.

2.4 Coprocessor to CPU Transfer

TASM Format

rr := ca;

Memory Format

|< 4 >|< 6 >|< 6 >|< 16 >|
+-------+-----------+-----------+------------------------------+
5	rr	ca	
+-------+-----------+-----------+------------------------------+

Description

The CPU performs a load instruction, but the CCU does not enable the memory. If ca is in the range
<0..54> the FPU outputs the high order half of register ca onto the high order data lines (i.e., word "1").
The CPU reads the data at the beginning of its WB pipestage. This instruction is useful for obtaining
results from the FPU for integer multiplies. It is also used to transfer the most significant word of
G-format numbers to the CPU for testing by conditional branches. If the coprocessor register specified by
ca is not yet available due to a computation in progress, the FPU will deassert LoadWB until it can
output the result. The register address ca plus the opcode are transferred to the coprocessors in the ALU
pipestage. Note that the FPU pipeline must output data one pipestage earlier than during stores to
memory, and only 32 bits are transferred.

Instruction Set 7

2.5 Coprocessor ALU

TASM Format

cr := ca (<function> {,<length> {,sca} {,scb}}) cb;

where <function> is zero, add, sub, trunc, float, fmul, imul or recip;
<length> is in the range [0..15] and defaults to 0.

Memory Format

|< 4 >|< 6 >|< 6 >|< 6 >|<2>|<2>|< 4 >|1|1|
+-------+-----------+-----------+-----------+---+---+-------+-+-+
				u-	fu	vector	S	S
6	cr	ca	cb	nit	nc	length	c	c
						-1	a	b
+-------+-----------+-----------+-----------+---+---+-------+-+-+

Description

Coprocessor ALU instructions are transferred from the CPU over the address bus lines at the beginning of
the MEM pipestage. The FPU executes coprocessor ALU instructions whose destination is in the range
<0..47>. In operations with only one source operand, ca and cb must both be set to the source. In
operations with no source operands, ca and cb must be set to the destination register. All FPU ALU
instructions are potentially vector instructions; scalar instructions have a vector length of 1. Vector
instructions are issued by merely incrementing register fields in the instruction register and issuing the
resulting instructions with the same mechanism used for scalar operations. The vector length field
specifies the number of elements in the vector, from 1 to 16. The only means of specifying vector length
is statically in the instruction itself; there is no dynamically loadable vector length register. After issuing
the first instruction in the vector, the vector length field is checked. If it is zero, the instruction is cleared
from the instruction register. If it is non-zero, the vector length field is decremented and the appropriate
register specifiers are incremented. This instruction is then treated the same as any other instruction
newly placed in the instruction register. If the Sca bit is set, register source field ca does not increment
(i.e., it is a scalar). If the Scb bit is set, register source field cb does not increment. If both bits are set
"vector := scalar op scalar" is performed. Scoreboard hardware already in place for scalar operations
allows vector recursion to be performed. For example, one vector instruction could be equivalent to "DO
I := 1 to 16 A[I] := A[I-1] + A[I-2]", although this instruction would take three times longer to execute
than a non-recursive 16 element vector add instruction.

The unit field selects the functional unit for the computation:

Unit, 2 bits:
0: reserved
1: adder
2: multiplier
3: reciprocal approximation

The func field specifies the function requested and is specific to the functional unit selected:

8 MULTITITAN FPU

Function, 2 bits:
Function is reserved if zero unit selected.
Function if adder unit selected:
0: addition
1: subtraction (cb-ca)
2: float
3: trunc

Function if multiplier unit selected:
0: G-format multiplication
1: integer multiplication
2: iteration step (2-A*B)
3: reserved

Function if reciprocal approximation unit selected:
0: reciprocal approximation
1-3: reserved

The operation of the func and unit fields are summarized below:

operation unit func

reserved 0 X
add 1 0
subtract 1 1
float 1 2
trunc 1 3
multiply 2 0
integer multiply 2 1
iteration step 2 2
reserved 2 3
reciprocal 3 0
reserved 3 1-3

Instruction Set 9

2.6 Operations Synthesized in Software
A number of operations common in other machines are not directly supported in the FPU hardware. These must be
synthesized in software using the previously described high-performance primitives.

2.6.1 F, D, and H format floating point
The adder and multiplier obtain their high performance in part through eliminating control logic and being almost
exclusively combinatorial logic. Support for other formats would slow down the frequently used double precision G
format operations. D format is antiquated, and hardware for H format operations is prohibitively expensive yet
unnecessary for most applications. The single precision F format is the most common format besides G format,
although there are important applications where it is not present (e.g., the portable C and Berkeley Pascal compilers
for the VAX do not generate F format operations). The low latency of the G format operations eliminates the speed
advantage enjoyed by F format on most machines. The other F format advantage of compact data storage can
obtained by converting G format numbers to and from F format using shift and extract instructions in the CPU.
Converts between F and G format were considered for minimal F format support in the FPU, but these operations
introduced several complexities inherent in full support for both F and G formats, while yielding F format operations
of lower performance than G format. For example, in order to load and store F format numbers without transferring
them first to the CPU, single precision coprocessor load and store instructions would be required. However, no
available opcodes existed in the CPU instruction set. The use of only double precision floating point format also has
historical precedent in machines designed by Seymour Cray.

2.6.2 IEEE Standard Floating Point
There are several features of IEEE standard floating point which can significantly degrade the performance of
frequently used operations. Among these are gradual underflow, complicated rounding modes, and good to the last
bit multiplication and division. For example, the multiplier array would need to be almost twice as large in order to
always correctly compute the least significant bit of the result. Moreover, there is a significant installed base
without IEEE standard floating point arithmetic (e.g., VAX, 370, Cray).

2.6.3 Integer Division
This is supported through Float, G format division, and Trunc. (G format division itself consists of an initial
reciprocal approximation ROM lookup followed by two Newton iterations.) This obtains about the same
performance as integer division implemented by 32 single-cycle 1-bit restoring division steps.

2.6.4 Explicit Comparisons with Conditional Branches
Conditional jumps based on data in coprocessor registers can be efficiently performed given the available
instructions. A FPU->CPU instruction can transfer integer results or the most significant word of a G format
number to the CPU in one cycle. There it can be tested for less than zero, zero, etc. by CPU conditional branch
instructions. To compare of two G format numbers, the numbers can be subtracted one from the other and the result
tested for less than zero (e.g., less than), zero (e.g., equality, etc.) as above.

2.6.5 Square Root and Other Functions
ROM look up tables could provide an initial approximation for many functions besides division. These functions
are relatively infrequent, and this extra support would not dramatically increase their performance.

10 MULTITITAN FPU

Implementation 11

3. Implementation
The FPU is implemented in Hudson’s CMOS-2 process. This results in a die size of 9.0x10.0mm.The floorplan of
the FPU is given in Figure 3-1.

LSW Data Pads

M
S
W

D
a
t
a

P
a
d
s

A
d
d
r
e
s
s

B
u
s

P
a
d
s

R
e
g

D
e
c
o
d
e

Instr

reg

9.0 mm

10.0 mm

CPU <-> Coprocessor Interface Pads

Scale: 1/2" = 0.75mm in CMOS-I

Bypass logic

Slope
1/X ROM

1/X
Multiplier
and final
product
adder

Base

1/x

and

Mult.

Exp.

C
o
n
t
r
o
l

(3 64 bit busses + control)

A, B, and R busses

Interval Timer

TOD Clock

P
S
W

Register

File

48 GPR’s

plus scoreboard

Adder

Pipe

+,-,float, trunc

Bypass logic

Multiplier

 Array

Dual final product adders
M
u
l
t
i
p
l
i
e
r

C
o
n
t
r
o
l

A
d
d
e
r

E
x
p
o
n
e
n
t

A
d
d
e
r

C
o
n
t
r
o
l

R
e
g

D
e
c
o
d
e

1 read/write port

2 read, 1 write port

Figure 3-1: FPU Floorplan

Figure 3-2 gives an overview of the microarchitecture of the FPU. The FPU extends the CPU four stage pipeline to
a total of seven. The additional pipestages are EX2 (execute stage two; execute stage one is WB), EX3, and PA

12 MULTITITAN FPU

(write back ALU result; this is called put away to prevent confusion with WB). The FPU has four major data path
blocks: the adder, multiplier, reciprocal approximation unit, and the register file. The register file has four ports:
two are read for A and B ALU source operands, the ALU results are written on the R port, and loads/stores/tranfers
read or write the memory (M) port. In addition, a time-of-day counter, an interval timer, and the FPU PSW are
above the register file. There are seven instructions registers (IR’s). IR[ALU] and IR[MEM] hold instructions in
the ALU and MEM pipestages, respectively. IR[WB[LST]] holds load/store/transfer instructions in the WB
pipestage. Similarly IR[MEM[ALU]] holds ALU instructions in the MEM pipestage, and IR[WB[ALU]] holds
ALU instructions in the WB stage. IR[EX2], IR[EX3], and IR[PA] hold ALU instructions in the EX2, EX3, and PA
pipestages. All instruction registers except IR[MEM[ALU]] and IR[WB[ALU]] consist of an opcode and one
register specifier; IR[MEM[ALU]] and IR[WB[ALU]]contains an entire 32 bit FPU ALU instruction.

Data

Data

Reciprocal Approx. Pipe

Multiplier Pipe

Adder Pipe

IR[MEM[ALU]]

Addr

A,RB,M

IR[ALU]

RR|RA

CPU Op

IR[MEM]

ALU

Timer

PSW

TOD Register
File
(52)

M

R

B

A

MEM

IR[PA]IR[EX3]IR[EX2]

PAEX2 EX3WB

IR[WB[ALU]]

IR[WB[LST]]

Figure 3-2: Microarchitecture of the FPU

3.1 Adder
3The adder performs G-format floating point addition, subtraction, trunc, and float with a three cycle latency. It

requires about 15% of the total chip area.

3Silvio Turrini has implemented the adder. This section is contributed with his assistance.

Implementation 13

3.1.1 Addition and Subtraction
The normal structure of floating point addition involves some of the following seven steps, depending on the values
of the operands:

1. Calculation of the absolute value of the exponent difference.

2. Alignment of the fractions by shifting right the fraction of the smaller operand.

3. Addition or subtraction of the aligned fractions.

4. Two’s complement the difference if negative.

5. Normalization of the sum or difference.

6. Rounding of the normalized sum or difference.

7. Renormalization if necessitated by rounding.
4A number of different methods have been used to reduce the latency of the basic addition and subtraction

operation. The adder structure is given in Figure 3-3, and its timing is given in Figure 3-4.

First, the adder implements two major parallel datapaths for the cases where the alignment shift is greater than one
or not. If the alignment shift is greater than one, then the normalization step will require at most one bit of shift.
Also, large normalization shifts (i.e., greater than one bit) are only required in cases where the alignment shift is less
than or equal to one. Thus, the three steps of align, add, and normalize can be reduced to two parallel paths of align
and add ("align pipe") or add and normalize ("normalize pipe"). This effectively eliminates a cycle in each of the
paths since a barrel shifter requires two clock phases to finish shifting, while the one bit shift may be implemented
with either static or domino multiplexors in less than a clock phase. This partition also simplifies the control logic
and the sign calculation in each of the cases. Note that this optimization does not increase the number of barrel
shifters over that required for a one pipe implementation, but does require an extra adder (which is about half the
height of a barrel shifter) and a multiplexor to select between the two pipes. Both major parallel paths finish in two
clock cycles and then the path containing the correct result is selected for continuation into the rounding unit.

Second, when subtracting two numbers with equal exponents, the sign of the result is not known until completion of
the actual fraction subtraction. To avoid having to perform a two’s complement operation on a negative result, two
fraction adder/subtractors are implemented so that the positive result is always calculated. This replaces the time
required for a two’s complement operation with the the time delay of a simple multiplexor.

Third, the rounded result and the renormalized result after rounding are calculated concurrently to further reduce
latency.

Fourth, advanced high-speed circuit design techniques are used. For example, the count leading zeroes function
(required before the large normalization step) is similar to the propagation of the carry signal in adder circuits; thus
similar techniques may be applied to increase its speed. The count leading zero logic uses two levels of group skip
circuitry and a pass transistor ripple circuit within bit groups to reduce its count time to two clock phases.

3.1.2 Float and Trunc
The basic hardware required to perform the trunc and float operations corresponds to the floating point adder’s align
and normalize units. A large saving in chip area is realized by performing these operations within the adder at the
expense of increasing the number of cycles required to produce a result from one (trunc) and two (float) to three.
During trunc or float the adder generates its own B source operand, which is added to the A source operand to effect

4Jud Leonard, unpublished communication, "Fast Addition", November 1985.

14 MULTITITAN FPU

Align pipe
align >= 0
normalize <= 1

Normalize pipe
align <= 1
normalize >= 0 Shift

control

Count leading zeroes

Shifter
Normalize

Round (+)

B R

select +

-+/-

Phase

4

3

2

1

4

3

2

1

4

3

2

1

Shift
control

select +

+/-

drive result

A

Shifter
Align

1

ExpA-
ExpB

ExpB-
ExpA

Latch inputs; possibly bypass result

Figure 3-3: Timing vs. Structure of the Adder

its conversion. A small amount of extra hardware is also required to account for the difference between the two’s
complement integer representation and the sign-magnitude representation of the floating point fraction. Note that an
integer number driven from the register file will reside on the high 32 bits of the bus.

3.1.2.1 Float
Converting an integer to a floating point number requires a normalization shift. Setting up the integer and its special
operand as shown in Figure 3-5 will cause utilization of the correct parallel path to perform this conversion.

The integer is taken from the high-order half of the A source bus, placed directly into the low order 32 bits of the

Implementation 15

cycle phase align pipe operation normalize pipe operation
--
1 1 operands driven to adder

2 exponent comparison set up add/sub control
3 exponent comparison addition
4 operand alignment addition

2 1 operand alignment select positive result
2 addition count leading zeros
3 addition count leading zeros
4 addition normalize

3 1 mux align and normalize pipe output
2 round, calculate new exponent
3 round
4 round

4 1 drive result

Figure 3-4: Adder Phase by Phase Timing

biased
sign exp. |fraction including hidden bit|

integer (A source) int sign 1077 |<sign ext.>< integer >|
special (B source) int sign 1077 |< 0 >|

Figure 3-5: Hardwired Second Operand for Float

fraction, and sign extended to fill the remaining higher order bits. Both operands are given the same exponent value
so that the result will be taken from the pipe with the normalization barrel shifter. A biased exponent of 1077 is the
correct initial exponent value. The B-A and A-B adders generate both the integer and its two’s complement, and the
same hardware used in floating point addition selects the positive result.

3.1.2.2 Trunc
Converting a floating point number to an integer requires an alignment shift. Adding the value shown in Figure 3-6
will produce the desired direction of shift.

biased
sign exp. |fraction including hidden bit|

special sign 1077 |< 0 >|

Figure 3-6: Hardwired Second Operand for Trunc

This value contains all zeros in its fraction, has a biased exponent of 1077, and has the same sign bit as the number
to be converted. If the floating point number is negative then it is subtracted from this value to obtain the necessary
two’s complement representation, otherwise it is added. Extra hardware is provided to check for integer overflow,
since a positive floating point number with an unbiased exponent larger than 31 and a negative floating point

32number less than -2 can not be converted to a two’s complement integer representation. The result is placed onto
the high order half of the result bus.

3.2 Multiplier
5The multiplier is the largest functional unit, using about 30% of the total chip area. It performs a complete

G-format multiplication, an integer multiplication returning the least significant word of the integer product, or an

5Alan Eustace has implemented the multiplier. This section is contributed with his assistance.

16 MULTITITAN FPU

iteration step (2-A*B) in 3 clock cycles. The multiplier achieves this performance by a combination of different
high speed techniques.

First, all summands are generated in the same cycle. This is in contrast with iterative approaches where one or
several summands are generated each cycle. This allows the addition of all summands (shifted appropriately) to
begin in parallel.

Second, a modified two bit Booth algorithm is used which reduces the number of summands from 53 to 27. A
higher order (e.g., three bit) multiplier recoding was not pursued because this would entail the generation and
distribution of 3x the multiplicand, which would itself require a clock cycle and an extra metal track (although one
metal track might be saved due to fewer summands and offset this). The 2 bit Booth recoding and its distribution to
summand generation logic is performed in one clock phase by domino logic.

6Third, a new method of combining summands is used that has time equal to that required in a Wallace tree but with
wiring approaching a binary tree in complexity. An overview of the method follows. Because interconnect is not
free, both in terms of area and delay, the new method attempts to reduce the summands more rapidly than the 3/2
reduction factor found in Wallace trees (see Figure 3-7). For example, an extreme application of this approach
would be to use carry lookahead adders to sum each pair of summands; four ranks would reduce the 27 Booth output
terms to two, at the cost of making each rank take a full carry lookahead add time -- probably five to six times the
delay of the single add cell in each rank of the Wallace tree. However, the fact that each rank has only half as many
outputs as inputs makes a dramatic improvement in the vertical interconnect problem. A moderate approach is to
add pairs of partial product terms in small "chunks" of N bits, so that each chunk takes 2*N + 1 bits in, (1 for the
carry signal into the chunk) and produces N + 1 bits out. The full adder cell in the Wallace tree is the degenerate
case of this arrangement with N=1. Figure 3-8 shows an example of this method of summand reduction for N=5.
By staggering a group of N chunks, we can arrange that the carries in and out of chunks in the group do not line up,
so N rows collapse 2*N+1 terms to N+1 terms. With N=4, for example, we can reduce the 27 Booth partial product
terms to 3 in four ranks, then use a single rank of carry-save adder cells, as in the Wallace tree, to reduce these to 2
for the carry lookahead adder. This compares to seven ranks (2 * ((3/2) ^7) > 34) in the Wallace tree, so the
propagation delay through the N=4 cell and interconnect would have to be less than 1.4 times the delay of a loaded
adder cell to win on performance. This is achieved by the use of an optimized Manchester carry chain within the
chunk. Finally, this approach is particularly attractive in CMOS domino logic in which xor gates are relatively
expensive, since both the new approach and the Wallace tree require only one 3-input xor per rank. A chunk size of
N=5 is implemented in the FPU multiplier array. A chunk size of N=5 is advantageous because it is a prime
number, and partial summands that start every four bits do not line up or overlap the chunk carries. Carries out of a
chunk appear every 5 bits in a rank, and are treated as 1/5 of a partial summand.

Fourth, the array is "double pumped" to further reduce its area: half the summands are generated on phase 2 and the
remainder are generated by the same circuitry on phase 4. This allows the multiplier to start a new multiplication
every cycle while cutting the size of the array in half. In other words, the sum of the odd numbered summands is
one half clock cycle ahead of the sum of the even numbered summands. This delays the summation of the even
summands by half a clock cycle, but this additional latency is made up for by the reduction in wire delay due to a
smaller array. Instead of reducing the odd summands and even summands each to a single number, the reduction of
the even summands is stopped one reduction earlier than the reduction of the odd summands. At this point the even
summands have been reduced to 1 + 4/5 partial sums; these are combined with the 1 + 1/5 partial sum from the odd
summands by a carry save adder into two partial sums. These two partial sums are then input into fast 64-bit carry

6Jud Leonard, unpublished communication, "Fast Multiplication", November 1985.

Implementation 17

Front view of entire Wallace tree

i=0i=18

A column slice of
a Wallace tree

Rank 1

Side view of entire Wallace tree

Rank 4

Rank 3

Rank 2

Ci-1

Ci+1

Ci-1

Ci+1

Ci-1

Ci+1

Ci-1Ci-1Ci-1

Ci+1Ci+1Ci+1

ABC

ABC

ABCABC

ABCABC

partial summands (9)

C S

C S

C SC S

C SC SC S
ABC

Figure 3-7: Wallace Tree for Reducing 9 18-bit Partial Products

skip adders. The reduction in area obtained by this and the next technique are shown in Figure 3-9.

Fifth, the low order 42 bits of the multiplier array (out of a total of 106) are truncated to further reduce its size by
about one half. As an extra benefit from reducing the size of the array, the size of the final carry skip adder is
reduced to 64 bits, allowing it to operate significantly faster than the 106 bit adder required in a full array. The
maximum error generated by this approach occurs when the truncated portion of the Booth multiplier array contains

-64all ones and is equal to 20.667*2 . The minimum occurs when the truncated portion contains all zeros. This
truncation can produce errors in the LSB compared to non-truncated approaches, but is correct in over 99.5 percent
of all cases. This error can be made more symmetric by adding the average value of the truncated portion. The
effect of truncation without compensation is a result fraction at most one lsb smaller than expected from a full
multiplier array. With compensation, the resulting fraction can range from one lsb smaller to one lsb larger than
expected from a full multiplier array. Unfortunately truncated multiplies do not remain commutative if Booth
encoding is used. Since the Booth encoding logic took nearly as much area on the chip as the additional level of
adders and significantly increased the complexity of the multiplier array, future implementations would probably not
use Booth encoding.

18 MULTITITAN FPU

A 5 column slice of
a the near-binary tree

i=1i=2i=3

Front view of entire near-binary treeSide view of entire near-binary tree

Ci-1 Ci+1

Ci-1 Ci+1

Ci-1 Ci+1

Ci-1 Ci+1

Ci-1 Ci+1

Ci-1 Ci+1Ci-1 Ci+1

55

1

11

1111 1111

5

Rank 3

Rank 2

1

55

+

1

55

+1

55

+

Rank 1

partial summands (9)

1

55555555

++++

Figure 3-8: New Method for Reducing 9 15-bit Partial Products

Sixth, two carry save adders and two high speed carry skip adders are used to form the final 3 to 1 partial product
reduction (see Figure 3-10). The results of a multiplication can be in the range 1/4 <= x < 1. In order to perform
rounding at the same time as the final partial product reduction, the final magnitude of the fraction would need to be
known in order to add the rounding bit into the correct place. However, this is only known after the final partial
product reduction is complete. In the approach implemented, two paths are used to converge from 3 partial products
to the final sum. The first path assumes a final sum in the range 1/2 <= x < 1 and adds 1/2 the least significant bit in
the unused low order bits of one of the partial products. The second path assumes a final range of 1/4 <= x < 1/2,
adds 1/4 the least significant bit, and always performs a one bit normalization shift and decrements the exponent by

Implementation 19

Multiplier
array after
optimization
5 (trunca-
tion)

Multiplier
array after
optimization
4 (double
pumping)

Multiplier
array after
optimization
3 (near
binary tree)

Figure 3-9: Reduction in Multiplier Area from Techniques Four and Five

one. Then the proper rounded sum and its associated exponent are late multiplexed into the output register,
according to the table of Figure 3-11. This approach requires one additional carry save adder, but reduces the two
serial 64 bit adds to a single 64 bit add. Note that the final rounded product is never greater than or equal to 1. This

0 -53can be seen as follows. The largest initial fraction is 2 -2 . The product of the two largest initial fractions is
0 -53 2 0 -53 -53*2 0 -52 -106(2 -2) = 2 -2*2 +2 = 2 -2 +2 . This number will remain less than 1 after rounding since it has a zero

in the lsb.

Seventh, high performance circuit designs are used. The timing of the multiplier is given in Figure 3-12.

20 MULTITITAN FPU

C+1/2 lsbC+1/4 lsbB BAA

Before optimization # 6

CBA

CSA

+

1 bit shift

1 bit shift

+

CSACSA

+

After optimaztion # 6

1 bit shift

+

"1/2 lsb"

Figure 3-10: Concurrent Final Sum Generation and Rounding

Possible outcomes of 1/4 lsb and 1/2 lsb roundings:

Unrounded Round by Addition of
Product 1/4 lsb 1/2 lsb
--------------------------------------- Range Key:

L L L "L" = 1/4 <= x < 1/2
L L H "H" = 1/2 <= x < 1
L H H
H H H

Late Selection Rule: if (1/4 lsb rounded version in L range)
then product := (2 * 1/4 lsb rounded version)
else product := 1/2 lsb rounded version;

Figure 3-11: Late Selection of Proper Rounded Sum

3.2.1 Integer Multiplication
In this mode, the multiplier takes two 32-bit integers residing in the high order bits of the source operands and
multiplies them yielding a 32-bit result. The 32-bit integers are taken off the source busses via different lines than
those used for floating point numbers, so that they are repositioned in the part of the multiplier array normally used
for the high 32 bits of the fractions. Similarly, on output the low 32 bits of the 64 bit product is placed on the
high-order half of the result bus. The multiplier array must be at least 64 bits wide for this operation; thus only
((53*2)-64) => 42 bits of the array may be truncated. Although floating point multiplications operate on unsigned
(i.e., sign and magnitude) fractions and integer multiplications take signed operands (i.e., two’s complement),

Implementation 21

cycle phase operation
--
1 1 operands driven to multiplier

2 2 bit Booth recode; generate even summands - odd
3 14 summand to 7 + 7/5 = 8 + 2/5 reduction | sum-
4 8 + 2/5 to 4 + 4/5 reduction | mands

2 1 4 + 4/5 to 2 + 4/5 reduction | are 2
2 2 + 4/5 to 1 + 4/5 reduction | phases
3 1 + 4/5 to 1 + 1/5 reduction - later
4 wait for odd summands 2 phases behind

3 1 CSA the two pumpings (1+1/5+1+4/5 = 3 to 2)
2 begin final 64 bit add
3 continue final 64 bit add
4 complete final 64 bit add

4 1 late mux and drive result

Figure 3-12: Multiplier Phase by Phase Timing

hardware for signed partial products must already be in place for the two bit Booth algorithm, which may add in -1x
or -2x the multiplicand. Thus floating point multiplicands are treated as positive quantities with an extra leading "0"
bit for the sign. Booth’s algorithm correctly handles signed multipliers. Special circuits are provided on the

7boundaries of the array to implement sign extension without extending the multiplier array itself.

3.2.2 Iteration Step
Each reciprocal approximation iteration consists of two multiplications and a subtraction: R := R * (2 - R *D).i i-1 i-1
The iteration step instruction performs a multiplication and a subtraction, yielding the (2 - R *D) part of eachi-1
iteration. Although most subtractions may require either a large alignment or normalization shift, in the case of a
reciprocal iteration step we know the product R*D approaches 1. That is, on each iteration R*D will be in the range
1+e > R*D > 1-e, and s = (2 - R*D) will also be in the range 1+e > s > 1-e. Since the significance of the product
fraction is known, it allows the subtraction from 2 to occur concurrently with the reduction of the final partial sum
and partial carry into the product.

Iteration step is implemented as follows. First, the Booth recoding is changed to swap +1 multiplicand with -1
multiplicand, and to swap +2 multiplicand with -2 multiplicand. This results in a product of -R*D. Then we add 2
while adding the partial sum, partial carry, and rounding bit. The result is in the range 1+e > (2-R*D) > 1-e. Both
fast carry skip adders must be used since the rounding bit must be added into different positions when 1+e >
(2-R*D) >= 1 and 1 > (2-R*D) > 1-e. These positions correspond to the 1/2 lsb and 1/4 lsb roundings performed for
conventional multiplications. The decision criterion for choosing between the two adders is the same as that for
multiplications: if the 1/4 lsb rounded result is normalized then we will chose the 1/2 lsb rounded result, else we
will choose the 1/4 lsb rounded result and normalize it with a one bit left shift. Finally, note that the addition of 2 to

1-R*D can be effected by simply ignoring all bits to the left of .1*2 in -R*D.

3.3 Reciprocal Approximation
8Division in the MultiTitan FPU is performed by multiplying the dividend by the reciprocal of the divisor. The

reciprocal approximation unit provides a 18 bit approximation (accurate to 16 bits) to the reciprocal of its input.
This is used to start two Newton iterations for a G format reciprocal. The final reciprocal will have both a maximum

7These techniques are described in F100183 data sheets.

8Alan Eustace has implemented the reciprocal approximation unit. This section is contributed with his assistance.

22 MULTITITAN FPU

Using 1/4 lsb rounding adder: Using 1/2 lsb rounding adder:
2-R*D < 1 2-R*D >= 1

s|<. fraction >| exp s|<. fraction >| exp
1 12: 001.0000..00..00 * 2 001.0000..00..00 * 2
1 1R*D: 000.1000..0X..XX * 2 000.0111..1X..XX * 2
1 1-R*D: 111.0111..1X..XX * 2 111.1000..0X..XX * 2

_____________________ _____________________
1 12-R*D: 000.0111..1X..XX * 2 000.1000..0X..XX * 2

rounded
1 12-R*D: 000.0111..1X..XX * 2 000.1000..0X..XX * 2

or
1000.1000..0X..XX * 2

Figure 3-13: Iteration Step Operation

and average error residue from the initial approximation which is less than those present in the multiplier due to the
truncation of the multiplier array. A block diagram of the reciprocal unit is given in Figure 3-14. The reciprocal
unit requires about 8% of the total chip area.

Once the initial reciprocal approximation R of a divisor D is obtained from the reciprocal unit, its accuracy must be0
increased by two Newton iterations. Each iteration produces a new approximation R with twice the accuracy of thei
last approximation R , by the following computation: R := R * (2 - R * D). Once the two iterations arei-1 i i-1 i-1
complete, then the dividend must be multiplied by the reciprocal. Note that the multiplier performs (2 - R * D) ini-1
a single three cycle operation when in iteration mode. Thus each iteration (for a scalar) requires six cycles.
Therefore the initial approximation, two iterations, and final multiply require a total of 18 cycles. However, since
the multiplier and reciprocal unit are pipelined this reduces to 6 cycles per element for vectors of length three or
more.

9The reciprocal approximation fraction is produced by piecewise linear approximation. First, the 8 most significant
bits of the fraction (excluding the hidden bit) are used to index a ROM that contains a 18-bit base and an 8-bit slope.
The next 8 bits of fraction (local) are multiplied by the slope and added to the base. The ROM logically has 256
word lines and 26 output bits (not including the hidden bit). It is implemented as a ROM with 32 word lines and
208 outputs, with eight words interdigitated on one word line and a multiplexor to select between eight adjacent bit
lines. The internal timing of the reciprocal approximation unit is given in Figure 3-15.

The exponent of the reciprocal is the two’s complement of the input exponent plus one. This will be shown by first
considering what happens when we take the reciprocal of a number with a fraction of one, and then consider

2normalized fractions. First, the reciprocal of a biased exponent is its two’s complement. For example, 2 has an
-2exponent of 1000000010, and 2 has an exponent of 0111111110. Second, for an input fraction in the range 1/2 <=

x < 1, the reciprocal without normalization is in the range 1 < x <= 2. To normalize it into the range 1/2 <= x < 1,
we need to increment the exponent. (We will also return the largest fraction less than one in the case where the
input is 1/2 to prevent the need for a two bit normalization.)

The reciprocal unit will generate an overflow error in two situations: if the initial exponent is zero (i.e., divide by
zero), or if the initial exponent is the smallest possible exponent -1023 (i.e., the two’s complement plus one of its
biased exponent will overflow.)

9Jud Leonard, unpublished communication, "Reciprocal Approximation", July 1986.

Implementation 23

818

8 x 8
Multiplier
and Base
Adder

+

(two’s complement of
source exponent) + 1

(Multiplicand)
Local

Multiplier

8
"1"

-

drive result

Additional summand

ROM
index

fraction
exponent

Booth
recoder

SlopeBase

R
Phase

4

3

2

1

4

3

2

1

4

3

2

1

A

Latch input; possibly bypass result bus

Figure 3-14: Timing vs. Structure of the Reciprocal Approximation Unit

A quadratic approximation that returns 32 good bits was investigated in order to reduce the number of required
10Newton iterations to one. for optimal methods of approximating the reciprocal function over a wide range of

lookup table sizes and polynomial degrees.] Although half the precision of the mantissa is 27 bits, 32 good bits
were desired for two reasons. First, with 32 good bits integer division would not require any iteration steps.
Second, since the multiplier is truncated to 64 bits, 32 bits are required to provide rounding bits in the non-truncated

10See Anderson, Ned, "Minimum Relative Error Approximations for 1/t," Digital Equipment Corporation Technical Report, 1987.

24 MULTITITAN FPU

cycle phase fraction operation exponent operation
--
1 1 operand driven to reciprocal unit

2 start ROM access start 2’s compl. + 1
3 finish ROM access finish 2’s compl. + 1
4 Booth recode slope wait

2 1 4 + base -> 3 reduction .
2 3 -> 2 CSA .
3 begin final sum .
4 finish final sum .

3 1 wait .
2 . .
3 . .
4 . .

4 1 drive result

Figure 3-15: Reciprocal Approximation Phase by Phase Timing

portion of the array. Unfortunately the hardware and time required for the computation were prohibitive. The ROM
required for the quadratic approximation method considered would be about eight times that for the linear method.
Also, a 12x12 and a 24x24 multiplier would be needed. The approximation would also require four cycles to
compute, which would not fit into to the simplified control model with uniform three-cycle latency.

3.4 Register File
The register file contains 52 64-bit general purpose registers, and uses 10% of the total chip area. It logically sits
between the 64-bit external data bus and the functional units (see Figure 3-2). The register file logically has four
ports A, B, R, and M, which are implemented as two ports used twice per cycle. The A and B ALU source operands
are read from the A and B register file ports during phase 4 and unconditionally driven onto the A and B source
busses on phase 1. Port R is used to write back results of functional units on phase 2. Port M, the memory access
port, is active on phase 2. It is read during FPU->CPU transfers and FPU stores. It is written in CPU->FPU
transfers and FPU loads. During FPU stores and FPU->CPU transfers in which there is concurrently a write of the
same register from the R port, the M port will switch to reading the R port in order to implement a bypass. In cycles
where a R port write and M port write target the same destination register, the results are undefined.

3.5 Scoreboard and Internal Timing
This section first describes the phase by phase timing of the major busses, signals, and units in the FPU. Then the

11scoreboard, which is responsible for issuing instructions, is described. Finally, the method used to synchronize the
CPU and FPU pipelines is described.

Central to the scoreboard is a register write reservation table. This table consists of one bit for each register in the
register file which is set when there is an outstanding operation which will write the associated register. This bit is
used to prevent subsequent instructions from reading the register before it has been written. This hides the pipeline
from the software.

11Mary Jo Doherty has implemented the scoreboard and pipeline control logic. This section is contributed with her assistance.

Implementation 25

3.5.1 Internal Timing
In contrast to most high performance floating point engines, the FPU has a lock step pipeline like the CPU, greatly
simplifying the control logic. For example, since all functional units have a three cycle latency, the functional unit
write port to the register file need not be reserved or checked for availability before instruction issue.

The FPU control is split into two parts. The first part manages the operation of FPU loads, stores, and transfers.
The second part manages FPU ALU instructions. These two parts of the machine communicate through the register
file, register reservation bits, and the inter-chip pipeline control signals. The use of the pipeline control signals will
be explained in detail in Section 3.5.2.3, however an overview of their use follows. LoadWB (and hence
LoadMEM, LoadALU, and LoadIF) are deasserted by the FPU ALU control section and stall the control section for
FPU loads, stores, and transfers (i.e., the LST section). This is used to prevent FPU loads, stores, or transfers from
executing before prior FPU ALU instructions have issued. (In the case of vector FPU ALU instructions, only one
element must be issued for the stall to be cleared.) There is no dual of this situation to prevent FPU ALU
instructions from executing ahead of previous loads, stores, and transfers because they all use the data bus and are
serialized by it. Figure 3-16 is a composite timing description for all types of FPU loads, stores, and transfers.
Figure 3-17 describes the timing for an FPU ALU instruction.

stage phase operation

ALU 1 read CPU opcode bus

2
3
4

MEM 1
2 read register if FPU->CPU

read register reservation bit
3 deassert LoadWB if register reserved
4 drive data bus if FPU->CPU

latch data bus (for FPU load)
WB 1
(EX1) 2 read or write register for FPU store or load

read register reservation bit
3 deassert LoadWB if FPU store register reserved

latch data bus (for CPU->FPU)
drive data bus if Store

4
EX2 1

2 write register if CPU->FPU

Figure 3-16: FPU Load/Store/Transfer Instruction Timing

Once an ALU instruction gets into the WB pipestage, it is guaranteed to complete. This is required for compatibility
with CPU instructions, which also commit in the WB pipestage. Vector instructions that overflow on one element
discard all remaining elements after the overflow. The destination register specifier of the first element to overflow
is saved in the PSW. Note that vector ALU instructions may continue long after an interrupt. For example in the
case of vector recursion (e.g., r[a] := r[a-1] + r[a-2]), if there was an interrupt just after the instruction entered WB
the last element would not be written for 48 cycles.

26 MULTITITAN FPU

stage phase operation

ALU 1 read CPU opcode bus

2
3
4

MEM 1 coproc ALU instr driven from CPU
2
3 set up register file predecoders
4 read and latch source registers

send op code to FU’s
read register reservation table
compute if this was a valid FPU ALU instr
compute if bypass required - tell FU’s
if interrupt, nop instr leaving MEM

WB 1 drive sources to FU’s
(EX1) provisionally issue the instruction

FU’s latch sources or result if source bypass
FU’s start computing, first FU pipestage

2 if instr was valid and ready when issued
then begin reserve destination reg;

increment appropriate register specifiers;
decrement vector length

end
3 if ((CPU is sending another ALU instr) and

(vector length remaining <> -1))
or register interlock

then deassert LoadWB
4

EX2 1 continue computing, second FU pipestage
2 .
3 .
4 .

EX3 1 continue computing, third FU pipestage
2 .
3 .
4 .

PA 1 FU drives result
clear reservation bit

2 write result if IR[PA]<>nop
3 assert interrupt if IR[PA]<>nop and overflow

Figure 3-17: FPU ALU Instruction Phase by Phase Timing

3.5.2 Scoreboard
Five ports are required on the register write reservation table every cycle:

• 2 read with source operands for ALU operations on phase 4

• 1 set with destination for ALU operation issue on phase 2

• 1 cleared for destination of retired ALU operation on phase 2

• 1 read for loads, stores, and transfers on phase 2
Note that ALU destinations are not checked for pending writes; these can only happen when the first write is a dead
computation, and since instructions retire in order the live result will overwrite the dead result. However, the
reservation bits are read during loads or CPU->FPU transfers; if an ALU operation is in progress with a pending
write for that register, the load or CPU->FPU transfer will stall until the ALU operation is complete. Note that this

Implementation 27

would be another example of dead code, but if a load was not stalled the load might retire first followed by the write
of the dead result. Since dead code should not exist, this check is not necessary. However, it is cheaper to
implement than to omit because we must check the scoreboard on stores and FPU->CPU transfers.

Both FPU ALU source specifiers are always checked for pending writes (i.e., unused ALU source specifiers are
checked for pending writes in unary FPU ALU operations.) In order to prevent this from causing unnecessary
delays, in unary operations the unused cb source specifier should be the same as the ca source specifier.

Of the five required scoreboard ports, all ports are accessed at the same time as their associated data, except for the
port that sets a bit on issue of FPU ALU instructions. For example, the ALU source operand reservation bits are
read at the same time as the ALU source operands. Moreover, both writes of reservation bits occur on the same
phase, and one is a set while the other is a clear. We will take advantage of these restrictions in the following
implementation. This implementation has the advantage that it requires only one extra decoder besides those
already required for the register file, and in the case of a single reservation bit the decoder area greatly exceeds that
for the RAM cell.

Reservation bits are stored as an extra bit on each word in the register file. The R port word line of the extra bit is
partitioned into two separate word lines. One segment is controlled by the same word line as the rest of the word.
The other is controlled by the destination of the provisionally issued instruction during phase 2 and the usual source
operand during phase 4. Since we will never want to write a reservation bit with an arbitrary value, but only set one
or clear one, we can do both by single-ended writes. On phase 2 both bitlines are driven low; the true bitline will be
used to clear a bit at the same time as the complement bit line is used to set a bit. Where the same register is to be
cleared and set, the clear is disabled so that undefined values will not result.

3.5.2.1 Functional Unit Bypasses
Unlike the CPU, each functional unit in the FPU does its own bypassing. If the bypass logic was centralized at the
register file, results would have to be put out on the global result bus, then transferred to a global source bus. But
since the result bus goes to all functional units, they can select between each source and the result bus based on
control signals from the scoreboard. Thus with distributed bypass logic the delay from driving the result to the
latching of a source is only one global wire delay, not two.

3.5.2.2 Load/Store/Transfer Bypasses
The results of functional units are driven onto the result bus on phase 1 and written into the register file R port on
phase 2. The M port of the register file is also read on phase 2 for loads, stores, and transfers. In cases where the M
port is reading the same value as the R port is writing, the new value may not propagate through the register cell in
time to prevent false triggering of the sense amps. When identical register addresses are detected on the M and R
ports, the read logic on the M port is switched to the R port to make sure the new value is obtained.

3.5.2.3 Vector Result Reservation
The reservation of vector result registers is a difficult problem. Three approaches exist:

1. Reserve all elements of the result register at once before issue of the first element.

2. Handle reservations in software.

3. Reserve each element result register upon issue of the element.
Note that in machines like the Cray-1, vector registers are treated as an indivisible resource and the vector result
register reservation problem is simplified to reserving a single resource.

Two difficulties occur if all result registers of a vector operation are reserved at once before issue of the first

28 MULTITITAN FPU

element’s computation. First, special hardware must be provided above that required for scalar operations to reserve
more than one register at a time. Second, additional hardware must be provided to check for prior reservations on
all result registers simultaneously, otherwise the vector register reservation may reserve an already reserved register,
in which case the second reservation will be lost on the retiring of the first reservation.

Reservation of vector result registers can be handled by code reorganization. In most machines, where floating point
operations have relatively long latencies (e.g., 7-30 cycles), scheduling operations well enough to prevent insertion
of NOP’s is unlikely. Furthermore, for large delays at least three instructions must be inserted (e.g., 1: initialize
loop counter, 2: branch if done, 3: decrement loop counter), leading to poor code density. Since all operations in the
FPU have a three cycle latency, the longest delay required would be 2 cycles, or two NOPs. This is more attractive.
However, the next paragraph presents a more attractive hardware reservation method.

Reservation of individual vector result registers upon issue of each element can provide hardware interlocks with
very low cost. By reserving result registers at the issue of each element, the reservation hardware already in place
for scalar operations can be used. Unfortunately this causes a synchronization problem: while the elements of the
vector are issuing one by one, a load or store instruction may issue and retire. In particular, the register operand of
the load or store may be the same as a source or result register operand of a vector element which has not already
issued, but whose vector operation was issued before the load or store. In order to prevent out-of-order execution
(with non-deterministic results), execution constraints must be placed between the vector instruction and any
following loads and stores that issue before every element of the vector has issued. One solution would be to
compute the remaining source and result register ranges of in-progress vector instructions each cycle, and compare
load and store register operands against these ranges before issuing them. This would add a fair amount of
reasonably complex hardware. A far simpler solution is provided by use of the existing inter-chip pipeline control
signals.

LoadWB (and hence LoadMEM, LoadALU, and LoadIF) is deasserted in two LST/ALU synchronization situations.
Both assume a prior FPU ALU instruction (of one or more elements) is being held in the ALU instruction register,
waiting for a pending write of a source operand to complete. Also, in both cases no register addresses are compared,
so this approach is simple at the expense of possibly generating unnecessary stalls. First, LoadWB is deasserted
when a FPU store enters WB, or an FPU->CPU instruction enters MEM, preventing it from retiring until at least the
first element of the prior ALU instruction has issued. Without deasserting LoadWB in this situation FPU stores or
FPU->CPU transfers of the ALU destination might execute ahead of the ALU instruction issue. But if the ALU
instruction had not yet been able to issue and reserve its result register, the store could execute getting the old value
even though it came after the FPU ALU instruction. However once the ALU instruction has issued, the scoreboard
will be able to properly handle register dependencies between the ALU instruction and the LST instruction. Second,
LoadWB is deasserted when the next FPU load or CPU->FPU transfer instruction enters MEM, preventing the load
from writing its result register until at least the first element of the ALU instruction has issued and hence read both
its source operands. Without deasserting LoadWB in this situation FPU loads or CPU->FPU transfers might
execute ahead of the ALU instruction issue. But if the ALU instruction was waiting for a pending write of one
source operand, and the other source operand was the target of the load or transfer, the load could replace its second
operand with its new value before its old value was used.

If dependencies occur between elements in a vector other than the first and following loads and stores, the compiler
must break the vector into smaller vectors so that the LST/ALU synchronization using LoadWB has effect.
However, in most code sequences this will not be necessary: for example, if a vector operation is followed by stores
of each result register, the stores can be performed in the same order as the result elements are produced. Only when
operands must be stored out of order, or when the first elements of a vector are not stored but later elements are, will
the compiler need to break a vector in order for the LST/ALU synchronization via LoadWB to be effective. Note

Implementation 29

that if an entire vector was required to issue before loads and stores were honored, most useful overlap of transfers
and computations would be precluded.

3.5.3 CPU - FPU Synchronization
The FPU must track the pipeline of the CPU, so that they are synchronized during transfers. It tracks the CPU by
observing the LoadALU, LoadMEM, LoadWB, and NotInterrupt signals (see Figure 3-18). Pending source is an
internal signal asserted if there is a valid FPU ALU instruction that can not issue because the scoreboard detects a
source register is reserved for writing by a previous FPU ALU instruction. Vector in progress (VIP) is an internal
signal asserted if after issuing an FPU ALU instruction and decrementing its vector length field its "vector length -
1" field is not -1. Because the FPU can retire both a LST instruction and an ALU operation each cycle, two MEM
and two WB instruction registers are required. The instruction register for LST instructions in the MEM pipestage is
called MEM[LST]; the instruction register for FPU ALU instructions in the MEM pipestage is called MEM[ALU].
Similarly, the instruction register for LST instructions in the WB pipestage is called WB[LST]; the instruction
register for FPU ALU instructions in the WB pipestage is called WB[ALU].

Pipe Load- NotIn- Load- Load- Pending Vector Next
stage MEM terrupt WB ALU source InProg. stage

ALU 0 X X X X X ALU

1 0 X X X X nop
1 1 0 X X X ALU
1 1 1 0 X X ALU
1 1 1 1 X X nop
1 1 1 1 X X opcode bus

MEM 0 X X X X X MEM

1 0 X X X X nop
1 1 0 X X X MEM
1 1 1 0 X X nop
1 1 1 1 X X ALU

WB[LST] 0 X 0 X X X WB

0 X 1 X X X nop
1 0 X X X X nop
1 1 0 X X X WB
1 1 1 X X X MEM

WB[ALU] X X X X 1 X WB

X X X X 0 1 next element
0 X X X 0 0 nop
1 0 X X 0 0 nop
1 1 0 X 0 0 nop
1 1 1 X 0 0 MEM

EX2 X X X X 1 X nop

X X X X 0 X WB

EX3 X X X X X X EX2

PA X X X X X X EX3

Figure 3-18: FPU Pipeline Control

The CPU opcode and register specifier are latched into IR[ALU] on phase 1 of every cycle in which LoadALU and

30 MULTITITAN FPU

NotInterrupt are asserted. When latched, the opcode and register specifier correspond to the instruction in the ALU
pipestage of the CPU. The instruction in IR[ALU] advances to IR[MEM] on phase 1 in cycles without LoadALU,
LoadMEM, LoadWB or NotInterrupt deasserted on the previous phase 4. If NotInterrupt or LoadALU is deasserted
on the previous phase 4 IR[MEM] is cleared.

If the instruction in IR[MEM] is a coprocessor ALU instruction, then the CPU will send out the ALU instruction
over the address lines this cycle, and it will be latched in IR[MEM[ALU]]. The contents of the address lines are
always evaluated as an FPU ALU instruction during the MEM pipestage; however they are only advanced into WB
if it is a valid FPU ALU instruction. If the instruction in IR[MEM[ALU]] is an FPU ALU instruction it will
advance to IR[WB[ALU]] in the absence of ~LoadWB, ~LoadMEM, pending source and vector in progress.
Pending source and vector in progress have higher priority than ~LoadMEM or interrupt; if a source operand is
reserved then IR[WB[ALU]] will recirculate. Similarly if a source is not reserved, but a vector has not been fully
issued, the next element of the vector will be latched into IR[WB[ALU]] independent of all external conditions.
Only when neither pending source or vector in progress are asserted will ~LoadMEM, interrupt or ~LoadWB force
IR[WB[ALU]] to nop.

If the instruction in IR[MEM] is a load, store, or transfer instruction, it will advance to IR[WB[LST]] unless
LoadMEM, NotInterrupt or LoadWB are deasserted. IR[WB[LST]] is cleared if it is a LST instruction and interrupt
is asserted or LoadMEM is deasserted and LoadWB is asserted.

Instructions in IR[WB[ALU]] advance to IR[EX2] unless their source operand is reserved, in which case IR[EX2] is
nop.

Instructions in IR[EX2] and IR[EX3] always advance to IR[EX3] and IR[PA], respectively.

3.6 Pinout and External Interface
Figure 3-19 lists the pins of the FPU. For more details on signal function and timing, please consult the MultiTitan
Intra-Processor Bus Definition and Timing document.

Implementation 31

of Pins Type Function

64 I/O Data bus
8 I/O Data bus byte parity
32 I Address bus
6 I Cr (or Ca) register address from CPU
4 I Instruction opcode from CPU
1 I User/kernel mode
1 I LoadALU
1 I LoadMEM
1 I/O LoadWB
1 I/O NotInterrupt
1 I AllowInterrupts
1 I enable data bus drivers (from CCU)
1 I check parity enabled
1 I Power-up reset
1 I Clock In
4 C Phi1 though Phi4 output
2 I/O Spare

------ ------------------------------
130 signal pads used of 144 available

plus:
16 I/O Vdd
16 I/O GND
2 internal Vdd
2 internal GND

Figure 3-19: FPU Pinout

32 MULTITITAN FPU

Sample Applications 33

4. Sample Applications

4.1 Graphics Transform
This section describes a graphics routine to transform a point by multiplying a vector by a transformation matrix. It
is representative of many possible applications for the FPU. The problem and register allocation are given in Figure
4-1. Assume that many points will be transformed by one matrix. Thus the transformation matrix will already be
loaded into C0..C15. If the transformation matrix is not loaded, this will require an extra 16 cycles (assuming no
cache misses).

Problem:

[x y z w] * |a11 a12 a13 a14| = [x’ y’ z’ w’]
|a21 a22 a23 a24|
|a31 a32 a33 a34|
|a41 a42 a43 a44|

Register allocation:

[c32 c33 c34 c35] |c0 c4 c8 c12| = [c36 c37 c38 c39]
|c1 c5 c9 c13|
|c2 c6 c10 c14|
|c3 c7 c11 c15|

Figure 4-1: Problem Statement and Register Allocation for Graphics Transform

For each element of the initial point vector we will load it and issue a vector floating point multiply of the element
by a column in the transform matrix, resulting in a total of 16 result elements. Once these multiplications have been
issued, we will start adding together rows of the 4x4 result elements. Each row is added together in a binary tree,
and the four trees are summed in parallel using four element vectors. Finally we will store the result vector. Figure
4-2 gives the code sequence and cycle timings for this routine. Each instruction requires one cycle, with two
exceptions. First, back-to-back stores require two cycles. Second, arithmetic operations can not issue until a
previous vector operation has completely issued all of its elements at a 1 element per cycle maximum rate. There is
only one scoreboard stall for data dependencies in the routine. It is assumed that there are no instruction buffer

12misses during the routine. This example has been run on the MultiTitan simulator and achieves 20 MFLOPS. The
total latency in this example is 35*40ns cycles (1.4us), for double precision computations.

4.1.1 Comparison with Other Approaches
Another possible solution to this problem would be to build a custom register file and reciprocal ROM chip that
interfaced to Weitek chips for multiplications and addition/subtraction. Two copies of each custom chip would be
required in each system; this is because due to pin limitations each custom chip could only connect to half the 64 bit
MultiTitan processor data bus, half of the two Weitek 32-bit source operand busses, and half of the Weitek 32-bit
result bus. The Weitek 1264 and 1265 do double precision operations; however, in double-precision mode the
multiplier chip accepts operands at half its maximum rate. Thus the fastest system would consist of a
adder/subtractor chip with two multiplier chips in parallel: one for operations initiated in odd cycles and one for
operations initiated in even cycles. This system could transform a point by the previous algorithm in 4.56us.

This approach seems attractive on the surface, but it has some hidden problems. It is attractive because it is only 2.5

12Mike Nielsen, unpublished communication, "MultiTitan Simulator and Test Programs",May 1986.

34 MULTITITAN FPU

Solution: Cycles:
--
/* load and multiply initial vector. */
c32:=(x); 1
c[16..19]:=c32*c[0..3]; 1
c33:=(y); 1
c[20..23]:=c33*c[4..7]; 3 (issue unit busy)
c34:=(z); 1
c[24..27]:=c34*c[8..11]; 3 (issue unit busy)
c35:=(w); 1
c[28..31]:=c35*c[12..15]; 3 (issue unit busy)

/* sum rows of products in parallel binary trees. */
c[16..19]:=c[16..19]+c[20..23] 4 (issue unit busy)
c[24..27]:=c[24..27]+c[28..31] 4 (issue unit busy)
c[36..39]:=c[16..19]+c[24..27] 4 (issue unit busy)

/* store result vector. */
(x’):=c36; 3 (wait for result)
(y’):=c37; 2
(z’):=c38; 2
(w’):=c39; 2
--
Total latency: 35

Figure 4-2: Code and Cycle by Cycle Timing for Graphics Transform

times slower than the full custom FPU. However, it does require a fair amount of custom design to build the register
file and reciprocal ROM chip. Second, the Weitek chips are specified for 60ns cycles; the CPU needs to match this
if synchronous design is to be maintained. This would adversely affect all operations. Third, the resulting design is
five chips instead of a single FPU chip. Fourth, design time spent building the Weitek interface side of the chip
could be more interestingly applied to the design of an on-chip adder/subtractor and multiplier. Fifth, several
functions in the MultiTitan FPU would not be performed by the Weitek chips directly, such as trunc, float, and
iteration step. Sixth, in other applications the latency of each operation is more important. In these applications a
system using Weitek chips would have performance degradations of 4 and 5 for multiplications and
addition/subtraction, respectively.

As another point of comparison, the 1986 10-chip Geometry Engine pipeline can transform, clip, and scale points at
approximately 90,000 per second, or about 11us apiece. Finally, this application was also implemented with the

13Weitek 1163, 1164, and 1165 interface, multiplier, and ALU chips hosted by an Intel 80386 , which required 250
60ns cycles, or 15us, for single precision computations.

4.2 Linpak
14Linpak has been run on the MultiTitan uniprocessor simulator. The scalar Linpak performance obtained was 4.1

MFLOPS, while the vector Linpak performance obtained was 6.1 MFLOPS. The scalar performance is
approximately 25 times the performance of a VAX 11/780 with FPA.

13Electronic Design, May 1, 1986, pg 213-219

14Mike Powell, unpublished communication, "Linpak Performance", September 1987.

Sample Applications 35

4.3 Livermore Loops
15Several Livermore Loops have been on the MultiTitan simulator. The results obtained for one processor are

shown in Figure 4-3. The performance of each loop was highly dependent on whether the data referenced by the
loop was present in the cache. Simulations were run assuming a cold start cache as well as a cache that had just
previously run the loop. These two scenarios differed by over a factor of four in performance. Since the loops are
kernels of programs that perform many operations on a data set, the assumption that the loop has just previously run
is probably more realistic than assuming that the cache is completely cold upon execution of the loop.

cold cache warm cache
loop MFLOPS MFLOPS

1 4.3 19.0
2 2.8 17.3
4 2.3 14.5
5 1.8 8.6
7 6.9 23.4
8 6.0 19.9
9 3.6 20.3
10 1.5 7.1
12 1.4 7.9

arithmetic mean 3.4 15.3

Figure 4-3: Uniprocessor Livermore Loops Performance

15Jon Bertoni, unpublished communication, "MultiTitan Floating-Point Performance", September 1987.

36 MULTITITAN FPU

Table of Contents i

Table of Contents
1. Introduction 1

1.1 Hardware Resources 1
1.2 Data Formats 2
1.3 FPU Registers 2

1.3.1 GPRs 3
1.3.2 PSW 3
1.3.3 TOD Clock 3
1.3.4 Interval Timer 4
1.3.5 Floating-Point Constants 4

2. Instruction Set 5
2.1 Coprocessor Load 5
2.2 Coprocessor Store 5
2.3 CPU to Coprocessor Transfer 6
2.4 Coprocessor to CPU Transfer 6
2.5 Coprocessor ALU 7
2.6 Operations Synthesized in Software 9

2.6.1 F, D, and H format floating point 9
2.6.2 IEEE Standard Floating Point 9
2.6.3 Integer Division 9
2.6.4 Explicit Comparisons with Conditional Branches 9
2.6.5 Square Root and Other Functions 9

3. Implementation 11
3.1 Adder 12

3.1.1 Addition and Subtraction 13
3.1.2 Float and Trunc 13

3.1.2.1 Float 14
3.1.2.2 Trunc 15

3.2 Multiplier 15
3.2.1 Integer Multiplication 20
3.2.2 Iteration Step 21

3.3 Reciprocal Approximation 21
3.4 Register File 24
3.5 Scoreboard and Internal Timing 24

3.5.1 Internal Timing 25
3.5.2 Scoreboard 26

3.5.2.1 Functional Unit Bypasses 27
3.5.2.2 Load/Store/Transfer Bypasses 27
3.5.2.3 Vector Result Reservation 27

3.5.3 CPU - FPU Synchronization 29
3.6 Pinout and External Interface 30

4. Sample Applications 33
4.1 Graphics Transform 33

4.1.1 Comparison with Other Approaches 33
4.2 Linpak 34
4.3 Livermore Loops 35

ii MULTITITAN FPU

List of Figures iii

List of Figures
Figure 1-1: FPU Functional Units 1
Figure 1-2: Latency in MultiTitan FPU and Cray X-MP Functional Units 2
Figure 1-3: 64-Bit, Double-Precision Floating Point G Format 2
Figure 1-4: FPU Program Status Word 3
Figure 1-5: FPU Time-of-Day Counter 4
Figure 1-6: Interval Timer 4
Figure 3-1: FPU Floorplan 11
Figure 3-2: Microarchitecture of the FPU 12
Figure 3-3: Timing vs. Structure of the Adder 14
Figure 3-4: Adder Phase by Phase Timing 15
Figure 3-5: Hardwired Second Operand for Float 15
Figure 3-6: Hardwired Second Operand for Trunc 15
Figure 3-7: Wallace Tree for Reducing 9 18-bit Partial Products 17
Figure 3-8: New Method for Reducing 9 15-bit Partial Products 18
Figure 3-9: Reduction in Multiplier Area from Techniques Four and Five 19
Figure 3-10: Concurrent Final Sum Generation and Rounding 20
Figure 3-11: Late Selection of Proper Rounded Sum 20
Figure 3-12: Multiplier Phase by Phase Timing 21
Figure 3-13: Iteration Step Operation 22
Figure 3-14: Timing vs. Structure of the Reciprocal Approximation Unit 23
Figure 3-15: Reciprocal Approximation Phase by Phase Timing 24
Figure 3-16: FPU Load/Store/Transfer Instruction Timing 25
Figure 3-17: FPU ALU Instruction Phase by Phase Timing 26
Figure 3-18: FPU Pipeline Control 29
Figure 3-19: FPU Pinout 31
Figure 4-1: Problem Statement and Register Allocation for Graphics Transform 33
Figure 4-2: Code and Cycle by Cycle Timing for Graphics Transform 34
Figure 4-3: Uniprocessor Livermore Loops Performance 35

MultiTitan Cache Control Unit

Jeremy Dion

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94301

Version of 7 April 1988

Copyright  1988
Digital Equipment Corporation

Introduction 1

1. Introduction
A MultiTitan is an eight-processor multiprocessor connected to a Titan memory and I/O subsystem. Each of the
eight processors consists of the following major pieces:

• a CMOS processor unit (CPU)

• a CMOS floating point unit (FPU)

• a CMOS cache control unit (CCU)

• 128 KBytes of memory used as a per-processor cache, built from 23 16K x 4 KBit static RAMs.

• an interface to the memory system and shared processor bus consisting of a few TTL buffer registers
and controlled by the CCU.

In each MultiTitan processor, the principal communication path is the 64-bit data bus with byte parity, to which each
of the major units is connected. There is also a 32-bit address bus with no parity which only the CPU drives. Part of
this bus addresses the direct-mapped cache, and part is used in memory translation as described in a following
section. In transactions with the memory subsystem, the local address and data busses are driven to and from the two
32-bit memory controller busses at appropriate times. See the MultiTitan Bus Specification for more details.

Two notes about terminology:

• the MultiTitan CPU contains an on-chip instruction buffer. The CCU manages external instruction and
data caches. In this document, "instruction cache" will mean the instruction half of the external cache.

• 1 word contains 32 bits

1.1 Cache Control Unit Functions
The CCU has the following major functions:

• Address translation: The CCU has an on-chip translation buffer containing mappings for 512 pages of
64 KBytes organized as a 256-entry table with a set size of 2. The total memory mapped by the TB is 32
MBytes. Addresses are looked up in this table in parallel with the access to the cache RAMs. If the TB
holds no translation for this page, the CCU interrupts the CPU. The CPU can read and write TB entries
using privileged instructions.

• Cache reloading: In parallel with TB lookups, a translation is read from the tag field of the selected
line of the instruction or data cache, and the translations are compared. If the cache line holds the
incorrect address, the CCU performs a transaction with the memory system to replace it. The cache
policy is write-back, not write-through; that is, lines are written back to main memory only when they
need to be replaced in the cache.

• Cache consistency: The CCU has instructions to allow the CPU to control the contents of the cache. A
line can be flushed back to memory (for instance, before releasing a software lock), to override the
write-back cache policy. A line can also be cleared (mapped into the cache, but not read from memory)
if the CPU intends to overwrite all its data. Clearing a line is an optimization for program speed and is
not necessary for program correctness.

• Multiprocessor Synchronization: A test-and-set primitive is provided for coarse-grained
synchronization.

• Two operations, Send and Receive, are provided for fine-grain synchronization combined with high-
bandwidth data transfer. These operations allow processors to synchronize and transfer cache lines with
very low overhead, and are intended for parallelizing small sequences of code within single application
programs.

• I/O: Using privileged instructions, the CPU can direct the CCU to perform simple I/O interactions with
the memory subsystem.

• Interrupts: The CCU ensures that external interrupts are eventually taken by the CPU, and provides an
instruction which allows a CPU to send an external interrupt to any other processor.

2 MULTITITAN CCU

1.2 Address Translation
Translation of virtual addresses is performed as shown in figure 1-1. The data structures involved in address
translation are a translation buffer held on the CCU, and a real address cache held in external RAMs. The real
address cache is direct-mapped, that is, a cache line index selects exactly one cache line, and there is no
associativity. This arrangement allows the data read out of the cache RAMs to be driven back to the CPU before the
cache hit or miss signal is computed.

16

16

7

9

PSW in CCU

PID

8

8 1611

Translation Buffer in CCU

7
high
page

real pagepid

w
r
i
t
e
a
b
l
e

i
n
v
a
l
i
d

d
i
r
t
y

i
n
v
a
l
i
d

XOR

hit
COMPARE

229 127

bwlinelow pagehigh page

Virtual Address from CPU

instruction/data
from CPU

Real Address Cache in Cache RAMs

7

real page

1611

13

128

data

112

CONCAT

Figure 1-1: Address Translation

All virtual addresses are in bytes. The translation of a virtual address proceeds as follows. The MultiTitan page size
is 64 KBytes, so the low order 16 bits give the position within a page, and the high order 16 bits give the page

Introduction 3

number. The low order 7 bits of the page number (low-page in the diagram) are exclusive-ORed with the low-order
7 bits of the current process id in the CCU status register to get a 7-bit index into the on-chip translation buffer. This
index selects a set of 4 translation buffer entries, and if the pid in the CCU status register and the high page bits
match one of these entries, and if the invalid bit of this entry is not set, a valid translation exists. If this is a store
operation, and the writeable bit is 0, then an interrupt is generated. If the translation buffer has two valid translations
for a virtual address, the result of referencing that address is undefined. If no translation exists for this virtual page,
the CCU generates a translation buffer fault. The total amount of memory mapped by this TB organization is 512
pages of 64 KBytes, or 32 MBytes. Instruction and data entries share the single translation buffer.

Meanwhile, the high 12 line bits of the low order 16 address bits are concatenated with the instruction/data reference
bit to generate a 13-bit cache line index. Each cache line is 16 bytes long. This is the unit of interaction of the CCU
with the memory system. If the selected entry has a translation field that matches the 16 bit translation obtained
from the translation buffer, and if the invalid bit of that entry is not set, then the desired line is in the cache. If the
line is not in the cache, then it is loaded from real memory automatically by the CCU. If the current occupant is
dirty, then it is written out first. Since each cache entry is 16 bytes long, the next two virtual address bits, w in the
diagram, select the appropriate word of the cache entry. The low order two bits of the virtual address, b in the
diagram, select a byte within a word. These bits are ignored by the CCU and cache RAMs, which always load

1doublewords and store single or doublewords .

In kernel mode the TB lookup is omitted; this means that the virtual page number translates to the same real page
number, and TB faults are never generated. In this mode all pages are writeable. Cache access occurs in the normal
way.

Real addresses which result from translation consist of the 16-bit translated page number, the 12-bit line number
from the virtual address, and the 2-bit word number from the virtual address for a total of 30 bits. Real addresses are
word addresses. All interactions between CCUs and between a CCU and the memory controller use real addresses.

1.3 Pipelining Issues
Address translation in the MultiTitan is pipelined so that the CCU can translate one virtual address per cycle. This
means that a sequence of load instructions can execute at a rate of one per cycle. Stores, however, are required to
output the virtual address for two cycles, so that a sequence of store instructions can be executed at a rate of one
every two cycles.

2The pipelining of address translation is shown in Figure 1-2. When a memory reference instruction is in the
instruction pipeline, the virtual address emerges from the CPU at the beginning of Phase 1 of the MEM stage. The
remainder of this cycle is used for a RAM read, even in the case of a store instruction. The data must be valid at the
CPU pins by the end of Phase 4. However, the detection of a cache miss can be delayed until Phase 3 of the next
cycle; in the diagram, hit/miss detection corresponds to the value of the loadWB signal. So when a memory
reference misses in the cache, the pipeline has already advanced and the instruction stalls in the WB stage, not the
MEM stage. This means that the cycle time of the processor can be less than the cache hit/miss decision time, and
equal to the cache data access time.

1Although the logical organization of the external cache has a 128-bit data line as shown in figure 1-1, it is physically implemented as two
64-bit data lines. This is because the per-processor data bus is only 64 bits wide, so all 128 bits of data are never needed simultaneously. So, the
most significant bit of the word field is also used in addressing the data cache RAMs (but not the tag cache RAMs, as there is only one tag per
pair of doublewords). This means that the data RAMs are addressed with 14 bits, leading to full utilization of 16 KBit * 4 SRAMs.

2For the timing of inter-chip signals, see the MultiTitan Intra-Processor Bus Specification.

4 MULTITITAN CCU

Address Valid
 from CPU Data Valid

 from RAMs

RAM
Write

RAM Write Enable
 for Store

Time

MEM WB

Phi4Phi3Phi2Phi1Phi4Phi3Phi2Phi1

RAM
Read

Store Data
Valid from CPU

~loadWB Valid
 from CCU

Figure 1-2: Address Translation Pipeline

In the case of a store instruction, the CPU puts its data onto the data bus in Phase 3 of the WB stage, whether or not
a miss is signalled in this cycle. However, there is enough time in the CCU between the computation of the hit/miss
bit (in Phase 1 internally) and the time that the RAMs must be enabled to write (the CCU pin must be driven in
Phase 2 because it fans out to many RAM chips) that the write can be cancelled if the cache missed.

1.4 Bootstrapping
Because the cache state and parity bits are stored in the cache RAMS, after power-up the cache will be in an
unknown state. The processor must execute a special instruction sequence to initialize the caches and clear out any
potential parity errors. To make this possible, the CCU program status word contains three special bits, the
bootROM, the checkParity and miss bits. After a hardware reset, both the bootROM bit and the miss bit will be set to
1, the checkParity bit will be set to 0, and the CPU will begin execution at PC = 0 in kernel mode.

If the miss bit in the CCU status register is 1, then the CCU generates a clean miss on every cache access, whether or
not the cache tags match the requested virtual address. Thus all memory references bypass the cache, and a cache
line is reloaded on each access. This behavior allows the CPU to clear the instruction cache by executing a page of
instructions, and the data cache by loading one value per cache line. Both caches can be cleared simultaneously by
executing a page of load instructions. Once every cache line has been reloaded, the miss bit should be cleared. Note
that while the miss bit is set, stores instructions will have no effect, so no useful computation can be done.

The bootROM bit in the CCU status register is directly connected to an external CCU pin. On processor number 0,
this pin is connected to the memory controller signal of the same name. It is unconnected for the other processors.
This bit serves the same function as on the Titan, namely to cause the memory controller to read from ROM in low
real addresses. It can be used in the same way to copy a bootstrap program from ROM to RAM. See the Titan
System Reference Manual for more details.

The translation buffer also is in a random state after a reset, and must be initialized. This is simpler than initializing
the cache RAMs, and no special hardware is required. Since the CPU is in kernel mode after a reset with address
translation disabled, it can invalidate translation buffer entries in the normal way.

Introduction 5

This is the cold-start sequence. There is also hardware provision for restarting after a serious software error. In this
case, the current contents of caches, the TB and memory are valid, and should be saved in order that a dump can be
taken. The difference between a "cold" and a "warm" start is the save signal, which is sent to each CPU and CCU.
In the CCU, this bit controls the setting of the bootROM and checkParity bits in the PSW. When save is 0, then
bootROM and miss are both set to 1 during reset. If save is 1, then they are set to 0, and the CPU can execute code to
flush its register, cache, and TB contents back to memory.

6 MULTITITAN CCU

Instruction Set 7

2. Instruction Set
The CPU and its coprocessors communicate by means of the coprocessor registers, a set of 64 registers divided
between the FPU (with 51) and the CCU (with 8). In the FPU, these coprocessor registers are floating point or timer
registers. In the CCU, some of the coprocessor registers are actual data registers, and some are pseudo-registers
which are only useful for the side effects which occur when instructions are issued on them. These pseudo-registers
are the mechanism by which the special CCU functions are implemented.

The CPU can issue two kinds of instruction referring to coprocessor instructions; data transfer instructions and ALU
instructions. Formats and operation of these instructions are described in detail in the MultiTitan CPU
Specification.

The CCU only interprets coprocessor data transfer instructions on its registers, and the result of issuing a
coprocessor ALU operation in which any register is a CCU register is undefined. In addition, for some of the
pseudo-registers, only certain of the data transfer operations have defined results.

The following figure shows which instructions are implemented for which registers. Instructions marked with an
asterisk cause a privilege fault when attempted in user mode. The results of attempting an undefined instruction are
undefined.

Reg Name CopLoad CopStore CpuToCop CopToCpu
--- ---- ------- -------- -------- --------
56 TBTag ReadTBTag* WriteTBTag* LoadTBTag* StoreTBTag
57 TBData ReadTBData* WriteTBData* LoadTBData* StoreTBData
58 IO StartIO* GetCtl* LoadIO*
59 Fault WriteBack StoreFault
60 PSW Flush LoadPSW*
61 TAS TestAndSet Clear LoadTAS* StoreTAS
62 Remote Send Receive

Figure 2-1: CCU Instructions

In the following instruction descriptions, all addresses are virtual, and all translation occurs as described in the
Address Translation section. Wherever a virtual address is used, it is subject to TB faults, write protect faults and
cache misses as described above.

2.1 TBTag Register
The TBTag Register is a register through which translation tags can be read and written. The TBTag register has the
format shown below:

|< 8 >|< 9 >|1|1|< 13 >|
+---------------+-----------------+-+-+-------------------------+
process id	high page			undefined
+---------------+-----------------+-+-+-------------------------+

| valid
| writable

Figure 2-2: Translation Buffer Tag Register Format

process id is the identity of the process for which the translation is being inserted, and high page is the most
significant part of the virtual address. If valid is 1 then this is a valid translation. If writable is 1 then user-mode
stores into the page are permitted.

8 MULTITITAN CCU

2.1.1 LoadTBTag

TASM: ccu_tbtag := rr;

Transfers the contents of the CPU register to the TBTag register. Executable only in kernel mode.

2.1.2 StoreTBTag

TASM: rr := ccu_tbtag;

Transfers the current contents of the TBTag register to the CPU register. ReadTBTag can be used before this
instruction to load a translation tag into the TBTag register. Executable only in kernel mode.

2.1.3 ReadTBTag

TASM: ccu_tbtag := (disp[ra]);

Writes a translation tag from the translation buffer into the TBTag register. The virtual address (disp[ra]) is used to
select a translation buffer entry according to the following format, and the tag of the selected entry is read into the
TBTag register.

|< 5 >|1|1|1|1|< 7 >|< 16 >|
+-------+-+-+-+-+---------------+------------------------------+
undef	s	s	s	s	row	undefined
	3	2	1	0		
+-------+-+-+-+-+---------------+------------------------------+

Figure 2-3: Interpretation of a Virtual Address as a TB entry

The row bits of the virtual address is used with the current PID to select a line in the translation buffer as described
in the Address Translation section. Bits s0 through s3 of the address select one of the four cache lines at this TB
index. Set i is selected if bit si is 1. For a ReadTBTag operation, exactly one of the si must be 1.

Executable only in kernel mode.

2.1.4 WriteTBTag

TASM: (disp[ra]) := ccu_tbtag;

Writes the contents of the TBTag register into the the tag part of a translation buffer entry. The entry modified is
selected by the virtual address as defined in figure 2-3. All sets for which the set bit is one are written. This can be
used to initialize all sets at a particular row simultaneously. Executable only in kernel mode.

Example

write a translation buffer tag value
ccu_tbtag := r1; { transfer tag value to CCU }
(0[r2]) := ccu_tbtag; { write into entry defined r2 }

read a translation buffer tag value
ccu_tbtag := (0[r2]); { load with entry defined by r2 }
r1 := ccu_tbtag; { and transfer to CPU }

Instruction Set 9

2.2 TBData Register
The TBData Register is a register through which the data parts of translation buffer entries can be read and written.
The TBData register has the format shown below:

|< 16 >|< 16 >|
+-------------------------------+-------------------------------+
translation	undefined
+-------------------------------+-------------------------------+

Figure 2-4: Translation Buffer Data Register Format

The translation is the real page number which is the translation for virtual pages matching this translation buffer
entry. See the Address Translation section for more details.

2.2.1 LoadTBData

TASM: ccu_tbdata := rr;

Transfers the contents of the CPU register to the TBData register. Executable only in kernel mode.

2.2.2 StoreTBData

TASM: rr := ccu_tbdata;

Transfers the current contents of the TBData register to the CPU register. ReadTBData can be used before this
instruction to load a translation data value into the TBData register. Executable only in kernel mode.

2.2.3 ReadTBData

TASM: ccu_tbdata := (disp[ra]);

Writes a translation data value from the translation buffer into the TBData register. The translation buffer entry read
is defined by the virtual address (disp[ra]) as shown in figure 2-3. Exactly one of the set select bits in the virtual
address must be 1. The data of the selected entry are written into the TBData register. Executable only in kernel
mode.

2.2.4 WriteTBData

TASM: (disp[ra]) := ccu_tbdata;

Writes the contents of the TBData register into the the data part of a translation buffer entry. The entry modified is
selected by the virtual address as defined in figure 2-3. Each set for which the set select bit is 1 is updated, which
can be used to initialize several entries simultaneously.Executable only in kernel mode.

Example

10 MULTITITAN CCU

write a translation buffer data value
ccu_tbdata := r1; { transfer data value to CCU }
(0[r2]) := ccu_tbdata; { write it into entry defined by r2 }

read a translation buffer data value
ccu_tbdata := (0[r2]); { load with entry defined by r2 }
r1 := ccu_tbdata; { and transfer to CPU }

2.3 I/O Register
The I/O Register contains control information for the next I/O operation for the memory controller. It is write-onely
and can be changed by the CPU only in kernel mode. StartIO and GetCtl use the I/O Register contents to perform
I/O operations. The I/O Register has the format shown below:

|1|1|1|< 3 >| 26 >|
+-+-+-+-----+---+
			mcreg	undefined
+-+-+-+-----+---+				
setctl				
ioread				
iowrite				

Figure 2-5: IO Control Word Format

• setctl, ioread, iowrite determine the operation to be performed.

• mcreg is the selected memory controller register for GetCtl and SetCtl operations.

2.3.1 LoadIO

TASM: ccu_io := ra;

This instruction loads the I/O register with a new value. It has no side effects. Executable in kernel mode only.

2.3.2 StartIO

TASM: ccu_io := (disp[ra]);

This instruction performs an IORead, IOWrite, or SetCtl operation with the memory controller. Disp[ra] must be
doubleword-aligned, and the word at disp[ra] is used as the data word for the I/O operation. Executable only in
kernel mode.

Exactly one of setctl, ioread and iowrite must be 1 or the results of the operation are undefined.

• If the ioread bit is set, the value at disp[ra] is used as the address in an IORead operation. This address
is sent to the I/O device currently selected in the memory controller status register, and the device
responds with a 32-bit data value which is written to the memory controller ioRData register.

• If the iowrite bit is set, the value at the word-aligned address disp[ra] is used as the address in an
IOWrite operation. This value, along with the 32-bit data value in the memory controller ioWData
register, are sent to the I/O device currently selected by the memory controller status register.

• If the setctl bit is set, the value at the word-aligned address disp[ra] is written to the memory controller
register whose number was in mcreg of the CCU I/O register when the previous StartIO or GetCtl
operation was issued.

Instruction Set 11

2.3.3 GetCtl

TASM: (disp[ra]) := ccu_io;

None of setctl, ioread or iowrite may be set in the I/O register.

The instruction stores the value of a memory controller register in disp[ra], which must be doubleword-aligned. The
register is the one whose number was in the mcreg field of the I/O register at the time of the previous StartIO or
GetCtl operation. Executable only in kernel mode.

Example
I/O read operation:

ccu_io := r1; { select getctl, status register }
(0[r2]) := ccu_io; { null GetCtl to select status register }
ccu_io := r3; { select setctl, status register }
ccu_io := 8[r2]; { setctl to write the status register }
ccu_io := r4; { select ioread and status register }
ccu_io := 16[r2]; { StartIO }
ccu_io := r1; { select getctl, status register }
{ memory controller busy for 3 cycles; next GetCtl will stall }
0[r2] := ccu_io; { GetCtl to read status register }
r6 := 0[r2]; { load status register }
if r6 < then goto done; { test whether device heard us }

2.4 Fault Register

|< 16 >|1|1|1|1|1|< 11 >|
+------------------------------+-+-+-+-+-+---------------------+
fault page						undefined
+------------------------------+-+-+-+-+-+---------------------+

| instruction page
| translation buffer fault
| write protect fault
| privilege fault
| external interrupt

| send/receive restart

Figure 2-6: CCU Fault Register Format

The fault register records the reason for the most recent CCU fault (if any). The register is read-only by the CPU,
and its value is undefined in user mode. It is updated in every user-mode cycle, is held in kernel mode, and is cleared
during the kernel exit sequence. In user mode, the CCU interrupts the CPU if any of the four fault bits in the fault
register is 1. In kernel mode, the fault register records the state of the last user-mode instruction.

A 1 in a fault bit position means that the fault occurred at the time of the most recent entry into kernel mode. Several
of the bits may be set simultaneously.

The possible fault reasons are:

• translation buffer fault: an instruction or data reference generated a virtual address for which no
translation existed in the CCU’s translation buffer. The virtual page for which there was no translation
is fault page. If instruction page is 1 then the instruction currently in the IF stage of the pipeline caused
an instruction address translation fault. If the instruction page bit is 0, then the instruction in the WB
stage of the pipeline caused a data translation fault. If the instruction is a CPU or coprocessor load, then
an incorrect result has been written to the destination register. For this reason, CPU loads which

12 MULTITITAN CCU

overwrite their base registers must not be generated by software. If the instruction is a CPU or
coprocessor store, no cache locations have been modified. For both loads and stores, therefore, software
can insert a translation for the missing data page, and restart the WB-stage instruction.

• privilege fault: a privileged CCU instruction was attempted in user mode by the WB-stage instruction.

• external interrupt: some other processor or the memory controller has requested an interrupt.

• write protect fault: attempt to store into a read-only page by the WB-stage instruction. No cache data
have been modified. This bit is undefined if translation buffer fault is 1.

The fault page is undefined when the translation buffer fault bit and the write protect fault bits are both zero.
Otherwise, it defines the virtual page which caused the translation buffer interrupt.

The send/receive restart bit is set when a send or receive instruction which has not completed is in the WB-stage of
the pipeline. This bit is set when an external interrupt occurs while a send or receive is waiting for a partner to
arrive. If it is set, then the WB-stage instruction must be restarted on return from the interrupt. See the interrupt
section for more details.

2.4.1 StoreFault

TASM: rr := ccu_fault;

Sets the CPU register to the current value of the fault register.

2.4.2 WriteBack

TASM: (disp[ra]) := ccu_writeback; or (disp[ra]) := ccu_psw;

This operation is provided to allow software to selectively force data in the cache back to memory.

The virtual address disp[ra] is translated and looked up in the cache. If it is not present, or is present but not dirty,
the operation has no effect. If the line is present and dirty, the CCU stalls the pipeline, writes the line back to
memory, and marks the line clean but valid.

2.5 PSW Register
The CCU Program Status Word Register contains state information for the CCU. It is write-only, and can be
changed by the CPU only in kernel mode.

The PSW Register has the following format:

|1|1|1|< 8 >|< 8 >|< 13 >|
+-+-+-+---------------+---------------+-------------------------+
			pid	interrupt	undefined
+-+-+-+---------------+---------------+-------------------------+					
miss					
bootROM					
checkParity					

Figure 2-7: CCU PSW Register Format

The miss bit selects whether the cache should miss on each reference (miss = 1) or should operate normally. See the

Instruction Set 13

Bootstrapping section above for more details.

The bootROM bit selects whether the memory controller should read from ROM in the low-numbered addresses, or
whether it should read from RAM. It is connected only for processor number 0, and has no effect for other
processors. See the Bootstrapping section above for more details.

The checkParity bit selects whether the CPU, CCU, and FPU should check parity on the per-processor data bus and
on the cache RAMs. If this bit is 1, parity is checked. If it is zero, parity is not checked. Parity in the CCU is
checked on TB and cache entries. In either case, invalid parity is converted into an invalid entry. So, invalid parity
on a TB entry will cause a translation buffer fault. Invalid parity on a cache line will cause a cache miss.

The pid is the number of the currently running process, which is used in all address translations and in TB reads and
writes.

The interrupt bits generate external interrupts for other processors. The ms (left) bit is for processor 7 and the ls
(right) bit is for processor 0. Each interrupt bit which is 1 generates an external interrupt for the corresponding
processor, which will be seen in that processor in the external interrupt bit of the fault register. A processor may set
its own interrupt bit. Detection of when the destination processor has taken the interrupt must be by software
convention.

2.5.1 LoadPSW

TASM: ccu_psw := rr;

Transfers the CPU register to the PSW register. Executable only in kernel mode.

2.5.2 Flush

TASM: (disp[ra]) := ccu_flush; or (disp[ra]) := ccu_psw;

This operation is provided to allow software to selectively remove data in the cache.

The virtual address disp[ra] is translated and looked up in the cache. If it is not present, the operation has no effect.
If it is present but not dirty, the line is invalidated in a single cycle. If the line is present and dirty, the CCU stalls the
pipeline, writes the line back to memory, and marks the line invalid.

2.6 Test-And-Set Register
The TAS register stores the result of the most recent test-and-set operation. After a test-and-set, the sign bit of this
register is 0 if the lock has been claimed, and 1 if attempt to claim the lock failed.

The Test-And-Set Register has the format shown below:

2.6.1 LoadTAS

TASM: ccu_tas := rr;

Transfers the CPU register to the TAS register. Executable only in kernel mode.

14 MULTITITAN CCU

|1|< 31 >|
+-+---+
	undefined
+-+---+	
tas	

Figure 2-8: Test-And-Set Register Format

2.6.2 StoreTAS

TASM: rr := ccu_tas;

Transfers the TAS register to the CPU register. Executable in user mode.

2.6.3 TestAndSet

TASM: ccu_tas := (disp[ra]);

The word-aligned virtual address disp[ra] defines a data cache line on which a test-and-set is performed. There must
be a valid TB translation for the line, or an interrupt is generated. The operation of test-and-set is independent of
whether the line is present in the cache or not; this instruction operates only on the quadword in main storage, and
does not read or alter a cached copy of any line.

In an atomic memory transaction, a fixed pattern is written to the real memory quadword, and its old value is read
into the TAS register. The fixed pattern written has a "1" in the lock bit, which is the sign bit of the doubleword
selected by disp[ra]. The remaining 127 bits of the line are undefined, and should not be used by software. Software
convention must ensure that all test-and-set operations on a given line use the same real address of the sixteen
possible choices.

The sign bit of the TAS register is set to the old value of the lock bit in the line in memory. Thus it is 0 if the lock bit
was 0 but is now 1 (and the lock has been claimed) and 1 if the lock bit was 1 (and the lock has not been claimed).
To clear a lock, a 1 should be written to the lock bit and flushed to memory.

Example

claim a lock:
ccu_tas := (lock); {test and set; no flush needed}
r2 := ccu_tas; {get result of test and set}
if r2 >= then goto locked;

release a lock:
r1 := 0; { lock clear when lock bit = 0 }
(lock) := r1; { clear lock bit }
ccu_flush := (lock); {flush cache line back to memory}

Instruction Set 15

2.6.4 Clear

TASM: (disp[ra]) := ccu_clear; or (disp[ra]) := ccu_tas;

The virtual address disp[ra] defines a quadword which is mapped into the data cache and marked clean. If the same
quadword is already mapped, or if a different quadword is mapped and clean, then the operation takes a single cycle.
If a different quadword is mapped and dirty, it is written back to memory first. In user mode, an interrupt is
generated if there is no TB translation for this address, or if it is not writeable. After execution of this instruction,
reading data from this line will return undefined results.

2.7 Remote Register
The Remote Register is a pseudo-register which can neither be read nor written. It is useful only for the side effects
of Send and Receive which are encoded as load and store on this register.

2.7.1 Send

TASM: ccu_remote := (disp[ra]);

This instruction stalls the processor until a quadword has been sent to some other processor.

The virtual address disp[ra] defines the cache line which is to be send. The address need not be quadword-aligned.
The address must have a valid translation in the TB, and be writeable, or an interrupt is generated. The CCU stalls
its CPU, and if the line is not present in the cache, it is read from memory in the normal way. The CCU now
repeatedly broadcasts the translated doubleword address on the system bus. After each broadcast in which no
receiver signals a match, the CCU waits for the arrival of a new receiver before retrying. Matching is done after
translation on real doubleword addresses, not virtual byte addresses. More than one CCU may receive the line, but
no indication will be given as to how many receivers there were, nor which processors received the line. On
completion, the line will have been copied to the receiving caches, and will be marked invalid in the sending cache.
While the CCU is waiting in user mode for a new receiver to arrive the processor can be interrupted.

2.7.2 Receive

TASM: (disp[ra]) := ccu_remote;

This instruction stalls the processor until a quadword has been received from some other processor

The quadword-aligned virtual address disp[ra] defines the cache line which is to be received. The address must have
a valid translation and be writeable, or an interrupt is generated. If the cache line is not mapped in the cache, then the
equivalent of Clear on this line occurs (the current occupant is written to memory if necessary, and the line is
mapped; if the line is already mapped, clean or dirty, nothing happens). On beginning this instruction, the CCU
deasserts the ~receive line on the shared system bus for one cycle to indicate to other CCUs executing Send that a
new listener has arrived. The CCU executing Receive now stalls its CPU and waits for Send broadcasts to occur on
the system bus. Each time one occurs, it matches the translated real doubleword address from the Receive
instruction with the address on the system bus. Matching is done after translation on real doubleword addresses, not
virtual byte addresses, and translation happens in the standard way as described above. When a match occurs, an
entire quadword line will be copied into the receiving cache. On completion, the received line will be marked dirty.
While the CCU is waiting in user mode for a sender to transmit, the processor can be interrupted.

16 MULTITITAN CCU

Interrupts 17

3. Interrupts
For the various reasons defined in the Fault Register section, the CCU may interrupt the processor pipeline. After
the interrupt is dealt with, the operating system software must decide which of the four available PC’s in the user
pipeline should be restarted. The default condition is that the WB-stage instruction has completed, and should not be
restarted. The CCU defines the following exceptions to this rule by the state of the Fault Register:

• if the translation buffer fault bit is set, and the instruction page bit is not set, the WB-stage data
reference did not complete because of a missing address translation. The instruction should be restarted.

• if the write protect bit is set, the WB-stage store did not take effect. If the user program is resumed, the
WB-stage instruction must be restarted.

• if the external interrupt bit is set and the send/receive restart bit is set, then a send or receive instruction
in the WB pipeline stage was interrupted by an external processor interrupt before the cache-to-cache
transfer had occurred. It must be restarted on return to the user program.

Since several interrupt conditions may be simultaneously presen (for instance, a send instruction may provoke a
write protect violation simultaneously with an external interrupt), the WB-stage instruction should be restarted if any
of the above three conditions is true. In all other circumstances, the WB-stage instruction should not be restarted.

18 MULTITITAN CCU

Instruction Timing 19

4. Instruction Timing
The following table shows the time taken by the CCU special functions in the absence of other pipeline stalls and
memory system contention.

Operation Cycles
--------- -----
Cache Miss 14 whether cache line is clean or dirty

ReadTBTag 1
WriteTBTag 1
LoadTBTag 1
StoreTBTag 1
ReadTBData 1
WriteTBData 1
LoadTBData 1
StoreTBData 1
StartIO 3
GetCtl 3
LoadIO 1
StoreFault 1
Flush 1 if line is not dirty

8 if line is dirty
Clear 1 same line or other clean line is mapped

8 if different dirty line is mapped
LoadPSW 1
TestAndSet 14
LoadTAS 1
StoreTAS 1
Send 9 if receiver is waiting
Receive 12 if sender is waiting

20 MULTITITAN CCU

Cache Control Unit Organization 21

5. Cache Control Unit Organization
Figure 5-1 shows the floorplan of the CCU. Most of the chip is occupied by the Translation Buffer, which has about
the same storage capacity as the CPU Instruction Buffer, and is similarly organized. The remainder of the translation
data path is below the translation buffer. The CCU registers are at the lower left, and the lower part of the chip is
occupied by three state machines which sequence interactions with the memory controller and other CCU’s.

C
o
n
t
r
o
l

(16)

A
d
d
r
e
s
s

8.4 mm

C
o
n
t
r
o
l

(16)

C
a
c
h
e

T
a
g

Registers State Machines

Scale: 1/2" = 0.75mm in CMOS-I

Control

6.8 mm (pad limited)

Data Bus

Data Bus

Data Pads <0..31>

Write Logic

TB Tag comparator

Sense amps and comparators

512 translations
256 sets
2 entries per set

Translation Buffer

D
e
c
o
d
e
r
s

a
n
d

d
r
i
v
e
r
s

Figure 5-1: CCU Floor Plan

22 MULTITITAN CCU

Cache Control Unit Pins 23

6. Cache Control Unit Pins

76 localBus per-processor bus
32 IO bus ms half of the 64-bit localBus
4 IO parity byte parity
16 I address page number from the virtual address
1 I insAddr address is PC
1 O altAddr address other half of cache line
1 I wordInPair word bit from the virtual address
1 I reset global reset
1 I save save processor state to memory on reset
1 I clock master clock
1 IO interrupt coprocessor interrupt for CPU
1 IO allowInterrupt interrupts are allowed now
1 IO loadwb load wb stage
1 O loadmem load mem stage
1 I loadalu load alu stage
1 I loadif load ifetch stage
1 I kernel CPU in kernel mode
4 I opCode instruction opcode
6 I register instruction register
1 O checkParity whether bus parity should be checked or not

20 racTag real address cache tag
16 IO realPage real page number
2 I parity real page parity
1 IO valid cache line valid
1 IO dirty cache line dirty

4 racCtl controls for real address cache
2 O ~dataCs don’t enable cache data
1 O ~we don’t write data and tags
1 O ~tagCs don’t enable line tags

13 globalCtl controls for global interprocessor bus
1 O busReq request to use global bus
1 I busMaster bus master
8 IO ~interrupt no interrupt from other processors
1 IO send CCU starting send broadcast
1 IO ~receive no CCU starting receive instruction
1 IO ~match no send/receive address match

10 memCtl.toMem controls to memory controller
1 O memRead start read request
1 O memWrite start write request
1 O specialOp do a non-memory operation
1 O ioRead do an I/O read operation
1 O ioWrite do an I/O write operation
1 O setCtlReg do a SetCtl operation
3 O ctlReg memory controller register to select
1 O bootROM memory controller reads from ROM

3 memCtl.fromMem controls from memory controller
1 I memRdy ready for a new memory request
1 I ioRdy ready for a new I/O request
1 I dataRdy first data word ready

13 intfCtl TTL interface chip controls
2 O fromMemCk clocks for 374 fromMem register
1 O ~fromMemOE output enable for 374 fromMem register
1 O globalAddrCk clock 646 address register
1 O ~globalPageOE output enable page register
1 O ~halfLineOE output enable for halfline register

24 MULTITITAN CCU

2 O globalDataCk clock globalBus register
2 O ~globalDataOE output enable for globalBus reg
1 O outward direction of transfer in globalBus reg
2 I lineMatch receive/send octal address comparators.

139 total

in a 176-pin package with 144 signal pins

Table of Contents i

Table of Contents
1. Introduction 1

1.1 Cache Control Unit Functions 1
1.2 Address Translation 2
1.3 Pipelining Issues 3
1.4 Bootstrapping 4

2. Instruction Set 7
2.1 TBTag Register 7

2.1.1 LoadTBTag 8
2.1.2 StoreTBTag 8
2.1.3 ReadTBTag 8
2.1.4 WriteTBTag 8

2.2 TBData Register 9
2.2.1 LoadTBData 9
2.2.2 StoreTBData 9
2.2.3 ReadTBData 9
2.2.4 WriteTBData 9

2.3 I/O Register 10
2.3.1 LoadIO 10
2.3.2 StartIO 10
2.3.3 GetCtl 11

2.4 Fault Register 11
2.4.1 StoreFault 12
2.4.2 WriteBack 12

2.5 PSW Register 12
2.5.1 LoadPSW 13
2.5.2 Flush 13

2.6 Test-And-Set Register 13
2.6.1 LoadTAS 13
2.6.2 StoreTAS 14
2.6.3 TestAndSet 14
2.6.4 Clear 15

2.7 Remote Register 15
2.7.1 Send 15
2.7.2 Receive 15

3. Interrupts 17
4. Instruction Timing 19
5. Cache Control Unit Organization 21
6. Cache Control Unit Pins 23

ii MULTITITAN CCU

List of Figures iii

List of Figures
Figure 1-1: Address Translation 2
Figure 1-2: Address Translation Pipeline 4
Figure 2-1: CCU Instructions 7
Figure 2-2: Translation Buffer Tag Register Format 7
Figure 2-3: Interpretation of a Virtual Address as a TB entry 8
Figure 2-4: Translation Buffer Data Register Format 9
Figure 2-5: IO Control Word Format 10
Figure 2-6: CCU Fault Register Format 11
Figure 2-7: CCU PSW Register Format 12
Figure 2-8: Test-And-Set Register Format 14
Figure 5-1: CCU Floor Plan 21

MultiTitan Local & Global Bus
Definition and Timing

David Boggs

Jeremy Dion

Michael J.K. Nielsen

Digital Equipment Corporation

Western Research Laboratory

100 Hamilton Avenue

Palo Alto, CA 94301

Version of 7 April 1988

Copyright  1988
Digital Equipment Corporation

Local Bus 1

1. Local Bus
The MultiTitan Local bus is the group of signals that interconnect the CPU, FPU, CCU, cache rams, and memory
interface of one processor in a MultiTitan; see figure 1-1.

1.1 Pipeline Stages
The CPU has a four-stage instruction pipeline. The pipeline stages affect the local bus signals in the following
ways:

IF Instruction fetch stage. The CPU uses the PC to read the on-chip instruction buffer,
decodes the register file addresses, and reads two register file operands. The instruction’s
opcode and one of its register numbers are driven onto the Op and Reg buses; its
PSW.kernel bit is driven to the Kernel signal.

ALU Arithmetic and logical unit stage. Performs arithmetic operations, logical operations,
shift operations, branch comparisons, and computes branch PCs. Instructions in this
stage have no external effects.

MEM Memory operation stage. A load- or store-class instruction drives its effective address
onto the Address bus. An instruction buffer load (as opposed to an operand load or store)
asserts InsAddr. Cached memory data must return by the end of this cycle on the Data
bus, or else WB must be held in the next cycle. Coprocessor ALU instructions are
themselves driven onto the Address bus.

WB Result write-back stage. Arithmetic, logical, and shift instructions write results into the
register file but have no external effects. Load instructions write the register file with
memory data latched at the end of the last cycle. Store instructions read the register file
and drive memory data onto the Data bus. Trap instructions assert ~Interrupt here.

1.2 Pipeline Control
The pipeline control signals coordinate the pipelines inside the CPU, FPU, and CCU on a cycle-by-cycle basis. The
signals are driven by one or more of the chips and received by all.

At the end of each cycle, each pipe stage does one of three things:

• load the stage, so that in the next cycle, the instruction from the previous stage will be in this stage.

• hold the stage, so that in the next cycle, the same instruction will be in this stage.

• kill the stage, so that in the next cycle, a null instruction will be in this stage.

Each chip internally decodes the pipeline control signals every cycle to decide on one of these three actions for each
of its pipeline stages as shown in Figure 1-3.

In normal operation, all pipeline stages load on each cycle, so a new instruction starts down the pipeline on every
cycle. However, due to interactions between consecutive instructions in the pipeline, or to external causes such as
cache faults, delays must sometimes be injected at some point in the pipeline. When this happens, the pipeline
breaks into three parts: upstream of the bubble, all stages hold; at the stage where the bubble is to be injected, that
stage kills; downstream of the bubble, all stages load. By holding upstream stages, and by advancing downstream
stages, a killed stage can be created at any point in the pipeline. These actions are encoded in the four control
signals: LoadIF, LoadALU, LoadMEM and LoadWB.

Resets and interrupts kill all pipe stages and jump to low memory. In the absence of resets and interrupts, the four

2 LOCAL & GLOBAL BUSES

32 MB

32 MB

32 MB

32 MB

IO DEV

IO DEV

IO DEV

IO DEV

IO DEV

IO DEV

I
O

B
U
S

A
R
R
A
Y

B
U
S

MEMORY
CONTROL

F
R
O
M

M
E
M

T
O

M
E
M

L
C
L

B
U
S

L
C
L

B
U
S

L
C
L

B
U
S

L
C
L

B
U
S

6
4
6

3
7
4

3
7
4

6
4
6

CCU

FPU

CPU

RAC

3
7
4

6
4
6

CCU

CPU

FPU

6
4
6

RAC

3
7
4

CCU

FPU

CCU

FPU

CPU

RAC

RAC

CPU

B
U
S

G
L
O
B
A
L

L
C
L

B
U
S

L
C
L

B
U
S

L
C
L

B
U
S

B
U
S

L
C
L

6
4
6

3
7
4

3
7
4

6
4
6

CCU

CPU

FPU

6
4
6

RAC

3
7
4

CCU

FPU

CPU

RAC

3
7
4

6
4
6

CCU

FPU

CPU

RAC

RAC

CCU

FPU

CPU

Figure 1-1: System Buses

Local Bus 3

LoadXXX signals are combined to produce an appropriate action for each stage. For stage , the appropriate actioni
can be determined by examining Load and Load , the signal for the next stage upstream.i i-1

Load Load Action for stagei-1 i i
F F hold
F T kill
T F (illegal)
T T load

Figure 1-2: Generation of pipeline actions from load signals

Note that there is one illegal state: an instruction leaves stage but isn’t loaded into stage . Whenever Load isi-1 i i-1
true, Load must also be true. This simplifies decoding the LoadXXX signals into pipeline actions. Figure 1-3i
shows how to generate the kill, hold, and load actions for a stage from the pipeline control signals.

Let Abort = Reset + (AllowInt * Interrupt).

Abort LoadIF LoadALU LoadMEM LoadWB	IF ALU MEM WB cause
T X X X X | kill kill kill kill interrupt
F F F F F | hold hold hold hold cache miss
F F F F T | hold hold hold kill miss retire
F F F T T | hold hold kill load IBuff miss
F F T T T | hold kill load load interlock
F T T T T | load load load load normal case

ALU:
kill = Abort + LoadALU * ~LoadIF
hold = ~Abort * ~LoadALU
load = ~Abort * LoadIF

MEM:
kill = Abort + LoadMEM * ~LoadALU
hold = ~Abort * ~LoadMEM
load = ~Abort * LoadALU

WB:
kill = Abort + LoadWB * ~LoadMEM
hold = ~Abort * ~LoadWB
load = ~Abort * LoadMEM

Figure 1-3: Next States from Pipeline Control Signals

The truth table above summarizes the normal combinations of the pipeline control signals. When an interrupt
happens, all pipe stages kill. When an external cache misses, the CCU holds the entire pipeline until data is
available from memory. At the end of a cache miss sequence, the CCU sometimes has to kill WB. During an
instruction buffer miss sequence, the CPU kills MEM for several reasons. When an instruction interlock is detected,
the CPU separates the instructions by killing ALU. In the normal case, all pipe stages load and the entire pipeline
advances.

Note that the Kernel bit is not in the next state equations. Kernel is driven by the instruction in IF and must be
forwarded through WB, during which time it prevents assertion of ~Interrupt. The CCU may deassert AllowInt in
the same phase that the CPU or FPU may assert ~Interrupt. Therefore, each stage of each chip must look at
AllowInt to decide whether or not to believe the ~Interrupt signal.

4 LOCAL & GLOBAL BUSES

1.3 Memory System Issues
The IF stage drives the Kernel signal and the Op and Reg buses. The ALU stage does not drive any external signals.
The MEM stage drives the Address bus and receives the Data bus. The WB stage drives the Address and Data
buses.

MicroTitan’s sixteen opcodes can be divided into memory- and nonmemory-class instructions, and the memory
class can be further divided into load- and store-class instructions. When a memory-class instruction is in the MEM
pipe stage, it drives the Address bus and receives the Data bus. Additionally, a store-class memory instruction
drives the Address and Data buses when it is in the WB stage. A store instruction reads the target location during
MEM and then writes it during WB. The cache drives the "old" data onto the Data bus during MEM and the CPU
drives the "new" data onto the bus during WB. Trap, both Extracts, CPU ALU, Conditional Jump, Add Immediate,
and the undefined opcodes are non-memory class instructions. Cop to CPU transfer, Cop Load, CPU Load, and Cop
ALU are load-class memory instructions. CPU to Cop transfer, Cop Store, and CPU Store are store-class memory
instructions. Cop ALU is a load-class instruction because it uses the Address bus during MEM to transfer itself to a
coprocessor.

A data reference starts when a memory-class instruction advances to MEM. An instruction fetch starts when
InsAddr is asserted; they come in pairs and the effective address is the IF-stage PC both times. The missed half-line
is written first; in the next cycle the CCU asserts AltAddr to invert Address[3] during the second write. (Actually,
the CCU detects the start of an IBuff sequence when MEM is killed and WB doesn’t contain a store instruction; this
happens one phase before InsAddr.)

Figure 1-4 shows what happens when a memory-class instruction follows a store-class instruction in the executing
program. A store-class instruction drives the Address bus in MEM and WB and a memory-class instruction drives
the Address bus in MEM. Their uses of the Address (and Data) buses conflict and so the CPU inserts a null
instruction between them by killing ALU. The second memory instruction stays in IF, a null instruction materializes
in ALU and the store instruction advances to MEM.

IF store load load -- -- --
ALU -- store null load -- --
MEM -- -- store null load --
WB -- -- -- store null load

PipeCtl load killALU load load load load
Address -- -- store store load --

Figure 1-4: Store interlock

Figure 1-5 shows the simplest case when an instruction fetch misses in the CPU’s IBuff and hits in the external
cache. The ALU stage holds and IF’s fetch is discarded. Then the CPU inserts two load-class pseudo-instructions
into MEM. These instructions drive the PC onto the Address bus while asserting InsAddr and load the IBuff
half-lines from the Data bus. IF fetches the missed instruction, ins2, while WB writes it. In the next cycle, WB
writes the alternate IBuff half-line while IF is fetching ins3.

IF ins1 miss miss ins2 ins3 -- -- --
ALU -- ins1 ins1 ins1 ins2 ins3 -- --
MEM -- -- IBuf1 IBuf2 ins1 ins2 ins3 --
WB -- -- -- IBuf1 IBuf2 ins1 ins2 ins3

PipeCtl load load killMEM killMEM load load load load
Address -- -- PC PC ins1 ins2 ins3 --

Figure 1-5: Simple IBuff miss

Local Bus 5

Figure 1-6 shows what happens when an IBuff miss happens and a store instruction is in MEM. The CPU wants to
insert two IBuff-load instructions into MEM, but it must insert a null instruction first or else there will be a conflict
on the Address bus between the store in WB and the first IBuff-load in MEM (like the store interlock above).

IF store ins1 miss miss miss ins2 -- -- --
ALU -- store ins1 ins1 ins1 ins1 ins2 -- --
MEM -- -- store null IBuf1 IBuf2 ins1 ins2 --
WB -- -- -- store null IBuf1 IBuf2 ins1 ins2

PipeCtl load load load killMEM killMEM killMEM load load load
Address -- -- store store PC PC ins1 ins2 --

Figure 1-6: IBuff miss with store in MEM interlock

Figure 1-7 shows what happens when the instruction after an instruction that misses in the IBuff could possibly be in
a different cache line. There are two cases when this could happen. If the instruction that missed was in the last
word of a cache line, then incrementing the PC will cross a cache line boundary. If the instruction that missed
follows a jump instruction, then the next PC could be anything and it is pessimistically assumed to address a
different cache line. The conflict causing the interlock occurs on the IBuff address lines. IF refetches the missed
instruction in the same cycle that it is being written by the first IBuff-load. In the next cycle, the second IBuff-load
writes the other IBuff half-line and IF fetches the instruction after the one that missed. IF’s PC drives the IBuff
address lines directly, so IF must be held if it tries to cross a cache-line boundary before the second IBuff-load
completes, or else the wrong cache line will be written. If IF is held, ALU must also be held (or else the address of a
taken branch in ALU would be lost), so the null is inserted by killing MEM.

IF jump miss miss ins2 ins2 -- -- --
ALU -- jump jump jump jump ins2 -- --
MEM -- -- IBuf1 IBuf2 null jump ins2 --
WB -- -- -- IBuf1 IBuf2 null jump ins2

PipeCtl load load killMEM killMEM killMEM load load load
Address -- -- PC PC null jump ins2 --

Figure 1-7: IBuff miss with refill interlock

Figure 1-8 shows the simplest case when a load instruction misses in the external cache. The instruction advances to
WB where the CCU holds it, stalling the entire pipe. Many cycles pass (shown by a column of *’s) during which
the CCU references main memory. The requested half-line is on the Data bus during the last *’ed cycle, and the
missed load instruction’s destination register is written during the last held cycle

IF load ins -- -- -- * -- --
ALU -- load ins -- -- * -- --
MEM -- -- load ins ins * ins --
WB -- -- -- load load * load ins

*
PipeCtl load load load load hold * hold load
Address -- -- load ins load * load --

Figure 1-8: Simple cache miss

Figure 1-9 shows what happens when the instruction following one that misses in the external cache is also a
memory-class instruction. In the cycle before releasing the pipe, the CCU kills WB. This allows the Address bus to
switch back to the effective address of the load instruction after the miss (i.e. load2)

Figure 1-10 shows how the CPU forms a Local bus address. The IF-stage Program Counter is output when an IBuff
miss happens. A memory-class instruction adds a register to its displacement field, forming an effective address,

6 LOCAL & GLOBAL BUSES

IF load1 load2 -- -- -- * -- -- --
ALU -- load1 load2 -- -- * -- -- --
MEM -- -- load1 load2 load2 * load2 load2 --
WB -- -- -- load1 load1 * load1 null load2

*
PipeCtl load load load load hold * hold killWB load
Address -- -- load1 load2 load1 * load1 load2 --

Figure 1-9: Cache miss followed by a memory instruction

which it outputs when it is in MEM. A store instruction continues to output its effective address when it is in WB.
A load instruction held in WB because of a cache miss outputs its effective address.

The Address bus is always driven by the CPU; it is not tri-state. The low-order address bits (word within page)
directly drive the cache rams (and the CPU’s internal instruction buffer). The CCU can cause the CPU to invert
Address[3] by asserting the AltAddr signal. A memory reference transfers 128 bits of data and this is also the cache
line size. However, the memory data bus is 32 bits wide and the cache data bus is 64 bits wide. So the CCU makes
two cache references to read or write a line, and the references are separated by one cycle. The "alternate" half-line
is written first, then the "requested" half-line (containing the missed address) is written.

The CPU latches the Data bus at the end of phase 4 of each cycle and writes the destination (register file or IBuff)
during phase 2 of the next cycle, regardless of any pipeline holds. When a cache misses, the instruction in WB is
held, causing it to repeatedly write back its result. At the end of the miss sequence, when the requested half-line is
on the Data bus and is being written into the cache, the CCU holds the pipe for one more cycle. During that last
held cycle, the instruction in WB writes its destination once more, this time with the data latched in the previous
cycle, when the requested half-line was on the bus.

To reduce di/dt and improve noise margins, the CPU drives only 32 bits (plus parity) of the 64-bit Data bus in any
cycle. During a CPU to COP transfer instruction, the CPU drives the high half of the Data bus. During a CPU store
instruction, Address[2] determines which half of the Data bus is driven. During a COP store instruction, all 64 bits
of the Data bus are driven (by the FPU or the cache rams). During a COP to CPU transfer instruction, the FPU
drives the high half of the Data bus.

1.4 Signal Definitions
Control signals are treated as boolean variables. A high-true signal is positive when it is asserted or true, and ground
when it is deasserted or false. A low-true signal is ground when it is asserted or true, positive when it is deasserted
or false, and has "~" as the first character of its name.

LoadIF Load the IF stage. High-true open-collector with external pull-up resistor. Driven and
received by all three chips. When false (i.e. somebody grounding it), the IF-stage PC is
not updated and on the next cycle the same instruction will be refetched. When true (i.e.
nobody grounding it), IF’s PC is either incremented or loaded from the branch address
computed by the jump instruction in ALU.

LoadALU Load the ALU stage. High-true open-collector with external pull-up resistor. Driven and
received by all three chips. When false (i.e. somebody grounding it), the instruction in
ALU is held there on the next cycle. When true (i.e. nobody grounding it), ALU should
either be killed or loaded in the next cycle from the current contents of IF, depending on
LoadIF.

LoadMEM Load the MEM stage. High-true open-collector with external pull-up resistor. Driven by
FPU and CCU, received by all three chips. When false (i.e. somebody grounding it), the

Local Bus 7

Register
 File

 Instr
Buffer

Phi1Latch

Addr
Pads

IF PC

Address
Effective

Store
Address

ALU

Cache miss
Address

Default
Address

IBuff miss
Address

Latch

Latch

Mux

Mux

IR.DispLatch

Figure 1-10: CPU Address paths

8 LOCAL & GLOBAL BUSES

instruction in MEM is held there on the next cycle. When true (i.e. nobody grounding it),
MEM should either be killed or loaded in the next cycle from the current contents of
ALU, depending on LoadALU.

LoadWB Load the WB stage. High-true open-collector with external pull-up resistor. Driven by
FPU and CCU, received by all three chips. When false (i.e. somebody grounding it), the
instruction in WB is held there on the next cycle. When true (i.e. nobody grounding it),
WB should either be killed or loaded in the next cycle from the current contents of MEM,
depending on LoadMEM.

~Interrupt Interrupt the instruction stream. Low-true open-collector with external pull-up resistor.
Driven and received by all three chips. (Interrupt and AllowInt) kills all pipeline stages,
sets the PC to low memory, and puts the CPU in kernel mode. ~Interrupt must not be
asserted when a kernel-mode instruction is in any pipe stage.

AllowInt Allow interrupts. High-true totem-pole. Driven by the CCU, received by all. While
AllowInt is false, ~Interrupt is ignored. De-asserted by the CCU during multiple-cycle
interactions with the memory controller to prevent an interrupt from killing a memory
reference in MEM or WB.

Kernel Kernel mode. High-true totem-pole. Driven by the CPU from the PSW.kernel bit of the
instruction in IF. Received by coprocessors to track the kernel bit in the instruction
pipeline. ~Interrupt must not be asserted when a kernel-mode instruction is in any pipe
stage.

Op Instruction opcode. High-true totem-pole, 4-bit bus. Driven by the CPU with the opcode
of the instruction in IF. Received by coprocessors to track instructions in the pipeline.

Reg Instruction operand register. High-true totem-pole, 6-bit bus. Driven by the CPU with
either RR or RA of the instruction in IF. Received by coprocessors to address internal
registers.

Address 32-bit virtual byte address. High-true totem-pole. A load- or store-class instruction in
MEM drives its effective address onto the Address bus. A store instruction in WB also
drives its effective address onto the Address bus. A coprocessor ALU instruction in
MEM is itself driven onto the address bus by the CPU for decoding by the relevant
coprocessor.

InsAddr Instruction address. High-true totem-pole. Driven by the CPU to the CCU and cache
rams. This signal starts a memory reference to reload the instruction buffer. It is directly
used as an address bit to the cache rams, thereby separating the instruction from the data
cache. InsAddr has the same timing as an address bus bit.

AltAddr Address alternate double word. High-true totem-pole. Driven by the CCU only to the
CPU. The CPU always XORs the address[3] bus signal with the AltAddr signal. The
CCU asserts AltAddr to access the alternate doubleword of a cache line.

Data 64-bit data bus with byte-parity. High-true tri-state. Driven by the CPU, CCU, FPU,
cache rams, and the memory interface to transfer data.

DataEnable Enable Data bus drivers. High-true totem-pole. Driven by the CCU to the CPU and
FPU. Deasserted by the CCU to disable the CPU and FPU Data bus drivers. Prevents
instructions stalled in the pipeline during a cache miss from driving the Data bus, which
the CCU uses to speak to main memory.

CheckParity Check Data bus parity. High-true totem-pole. Driven from the CCU’s PSW; received by

Local Bus 9

all three chips. When asserted, a parity error sets a bit in the PSW of the chip detecting
the error, causing an interrupt.

Reset Processor reset. High-true totem-pole. Asserted by the clock/scan module to restart the
processor. Reset kills all pipeline stages, sets the PC to a low address, and puts the CPU
in kernel mode. Used by the CPU as bit 7 of the PC after a reset. This signal allows a
distinction to be made between a trap and a power-on reset.

Save Save processor state over reset. High-true totem-pole. Asserted by the clock/scan
module in conjunction with reset. Prevents the CCU from invalidating the caches during
a reset. Used by the CPU as bit 8 of the PC after a reset. This signal allows a distinction
to be made between resets after power-on, when memory should be cleared, and resets
after crashes, when memory should be preserved.

Clock Master clock oscillator. TTL-level sine wave at four times the cycle rate. A 100 MHz
master clock frequency yields a 40 ns cycle time.

1.5 Timing
All chips operate synchronously using the same four-phase non-overlapping clocks, called Phi1 through Phi4. The
rising edge of the Reset signal synchronizes the phase generators in the three chips. Each clock phase is nominally
10ns, and a cycle of four clock phases is nominally 40ns. The boundary between one cycle and the next occurs
between the end of Phi4 and the start of Phi1.

Most output signals come from latches with less than half a phase of delay between latch output and chip pin. Most
input signals go to latches with less than half a phase of delay between chip pin and latch input. A signal can be
driven by one chip and received by the other two chips in one phase.

Figures 1-11 and 1-12 show the Local bus timing. Reset falls at the start of Phi3, and should be sampled at the end
of Phi3 or Phi4. ~Interrupt, LoadMEM and LoadWB precharge during Phi2 and should be sampled at the end of
Phi3 or Phi4. The CCU should drive AllowInt at the start of Phi3; the CPU and FPU sample it at the end of Phi3.
The CPU can’t drive LoadIF and LoadALU until the start of Phi4, so coprocessors should sample these two signals
at the end of Phi4. The CPU samples the pipeline control signals at the end of Phi3 and drives what it saw back out
during Phi4 and Phi1. Coprocessors should drive LoadIF and LoadALU starting in Phi3, since the CPU (when it
isn’t driving them) samples them at the end of Phi3. During Phi4, all chips compute in parallel the hold, load, or kill
action for each pipeline stage. (Since LoadIF and LoadALU are arriving during this phase, the calculation for the
ALU and MEM stages are incomplete.) The next state of the instruction pipeline is known early in Phi1 and it
advances in all chips in parallel (with some late multiplexing to fix up the late arrival of LoadIF and LoadALU).
The new value of PSW.kernel for the instruction being fetched is driven at the start of Phi1. The CPU fetches a new
instruction from IBuff during Phi1-3, and drives the Opcode and Register fields at the start of Phi4. The Address
bus is driven as early as possible in a cycle to allow the maximum time for cache ram access. InsAddr, which is
used as an address bit for the cache rams, has the same timing as the Address bus. AltAddr, which affects
Address[3], is sampled at the start of Phi1, so it must be driven at the start of Phi4 of the previous cycle. The CPU
samples the Data bus at the end of Phi4 of every cycle and writes what it got into a register or IBuff half-line during
Phi2 of the next cycle if WB contains a load-class instruction. Write data to the cache should be valid as early in
Phi3 as possible, and should remain stable through the end of Phi4. DataEnable is de-asserted by the CCU in Phi1
to prevent the CPU or FPU driving the Data bus in this cycle (it must also stall the pipeline).

10 LOCAL & GLOBAL BUSES

Signal Driven Sampled Notes

Reset Start phi1 special assert
Reset Start phi3 end phi3 deassert
~Interrupt start phi3 end phi3
AllowInt start phi3 end phi3
LoadIF start phi4 end phi4 CPU driving
LoadALU start phi4 end phi4 CPU driving
LoadIF start phi3 end phi3 FPU+CCU driving
LoadALU start phi3 end phi3 FPU+CCU driving
LoadMEM start phi3 end phi3
LoadWB start phi3 end phi3
Kernel start phi1 end phi4
Op bus start phi4 end phi4
Reg bus start phi4 end phi4
Address start phi1 end phi4
InsAddr start phi1 end phi4
AltAddr start phi4 end phi1
Data (Read) start phi1 end phi4
Data (Write) start phi3 end phi4
DataEnable start phi1 phi1
CheckParity start phi3 end phi3

Figure 1-11: Local bus timing table

Local Bus 11

AllowInt

Reset

Phi1Phi3 Phi4Phi3Phi2Phi1Phi4

Interrupt

CCU
FPU

CPU

LoadALU
LoadIF

LoadALU
LoadIF

Data (read)

DataEnable

Data (write)

AltAddr

InsAddr
Address

Kernel

Reg
Op

LoadWB
LoadMEM

Figure 1-12: Local bus timing diagram

12 LOCAL & GLOBAL BUSES

Global Bus 13

2. Global Bus
The MultiTitan Global bus is the group of signals that interconnects the CCUs and main memory in a
multiprocessor; see figure 1-1.

2.1 Bus Access Control
Access to the Global bus is controlled by a finite state machine which implements a quasi round robin service
policy. Each processor has a request and a grant line to the bus controller. A processor gains control of the Global
bus by asserting its request line and waiting for its grant line to be asserted. A processor relinquishes control of the
bus by deasserting its request line one cycle before it stops using the bus. The bus controller latches the request
lines each cycle when it is idle. Once one or more asserted request lines are latched, the controller becomes busy,
stops latching requests, and grants bus access to the latched requests in priority order. When all of the latched
requests have been granted, the controller becomes idle and starts latching the request lines again. This algorithm is
simple to implement and fair under heavy load.

Figure 2-1 shows how this works for three requestors. (This drawing assumes zero combinatorial and propagation
delays.) Three arbitration cycles are shown: first, all three simultaneously request access; then as soon as they are
served they request again; finally, 0 and 2 request again but 1 does not. Requestor 0 has highest priority, so the
order of service is 0, 1, 2, 0, 1, 2, 0, 2.

CYCLE

GRANT2

REQ2

GRANT1

REQ1

GRANT0

REQ0

BUSY

Figure 2-1: Global bus access

2.2 Remote Send and Receive
The CCU implements a pair of interruptible blocking instructions with which processors can exchange cache lines at
low cost. A CCU executing a receive instruction stalls its CPU and asserts the ~Receive signal to notify senders of
its presence. A CCU executing a send instruction stalls its CPU, becomes master of the Global bus and then
broadcasts the instruction’s effective address and cache line data while asserting the Send signal. If another CCU
blocked in a receive instruction matches the send address, it loads a cache line and asserts the ~Match signal.
Senders and receivers that match stop stalling their pipelines. Each time ~Receive is asserted, stalled senders
contend for the Global bus and rebroadcast their addresses and cache lines, hoping that the new receiver will assert
~Match. Multiple senders and one receiver may share an address, but only the first successful sender will transfer

14 LOCAL & GLOBAL BUSES

data and stop stalling. Multiple receivers and one sender may share an address, but the sender can’t tell which
receivers stopped stalling.

Figure 2-2 shows a cache line being exchanged over the global bus. The sending processor requests bus control and
it is granted on the next cycle. The Send signal is asserted as the remote address is driven onto the global data bus.
Four 32-bit words are driven onto the data bus in consecutive cycles. At the end of the second data cycle, the sender
samples the ~Match signal.

DDDDA

~MATCH

CYCLE

DATA

SEND

GRANT

REQ

Figure 2-2: Exchanging a cache line between processors

2.3 Memory Control
The MultiTitan will use the (ECL) Titan memory and I/O system. The memory controller maintains the memory
arrays and serves as an interface between the processors and the I/O adaptors. The memory controller supports from
one to four memory modules of 32M bytes each, performing the ECC generation and checking as well as ram
refresh functions. All memory transactions are in units of four 32-bit words.

The memory controller performs read, read/write, and write operations to service processor cache clean miss, dirty
miss and flush operations, respectively. During a dirty miss, the write data is received from the processor during the
ram read access time to minimize cache miss overhead.

The Titan memory controller performs direct memory access (DMA) read and write operations for I/O adaptors. It
also performs 32-bit reads and writes to I/O adaptor registers in response to processor I/O instructions. See the Titan
System Manual for more details.

Figure 2-3 shows a memory read/write cycle. The CCU requests global bus control and it is granted on the next
cycle. Since MemRdy is true, MemRead is immediately asserted to start the read reference, and the read address is
driven onto the global bus (and repeated onto the ToMem bus) in the next cycle. MemWrite is asserted in the cycle
after MemRead to start an overlapped write cycle as well, and the write address is driven to memory in the next
cycle. After the write address come the four 32-bit words to be written and then the global bus is released. Some
time later, when the read data is available, the memory controller asserts DataRdy and drives four 32-bit words onto
the FromMem bus.

Figure 2-4 shows a memory read-only cycle. The CCU requests global bus control and it is granted on the next
cycle. Since MemRdy is true, MemRead is immediately asserted to start the read reference, and the read address is
driven onto the global bus in the next cycle. Global bus control is released in the next cycle, and some time later,

Global Bus 15

DDDD

DDDDWR

FromMem

DataRdy

ToMem

MemWrite

MemRead

MemRdy

Grant

Request

Figure 2-3: Memory Read/Write cycle

when the read data is available, the memory controller asserts DataRdy and drives four 32-bits words onto the
FromMem bus.

D D DD

R

FromMem

DataRdy

ToMem

MemWrite

MemRead

MemRdy

Grant

Request

Figure 2-4: Memory Read-only cycle

2.4 Signal Definitions
Control signals are treated as boolean variables. A high-true signal is positive when it is asserted or true and ground
when it is deasserted or false. A low-true signal is ground when it is asserted or true, positive when it is deasserted
or false, and has "~" as the first character of its name.

BusReq Request Global Bus control. High-true totem-pole. Eight of these, one per processor, are
received by the bus access control machine. Asserted by a CCU when it wants to control
the Global bus. Deasserted one cycle before the CCU relinquishes control.

16 LOCAL & GLOBAL BUSES

BusGrant Grant Global Bus control. High-true totem-pole. Eight of these, one per processor, are
driven by the bus access control machine. At most one of these eight signals is asserted
at any time. The CCU corresponding to the asserted bit is master of the Global bus and
may drive Data, Send, and the memory control signals.

Data multiplexed address and data with byte parity. High-true tri-state 32-bit bus. Driven by
the bus master CCU and received by the memory controller during a cache reference;
received by other CCUs during a remote reference.

~Interrupt Interrupt a processor. Low-true open-collector 8-bit bus with external pull-up resistor.
Asserted to cause an external interrupt to a processor. The CCU corresponding to the
asserted bit of the global ~Interrupt bus asserts the ~Interrupt signal on its Local bus and
records an external interrupt in its PSW. Memory system interrupts (errors and device
interrupts) assert ~Interrupt[0].

Send Send a remote address. High-true totem-pole. Asserted by the Global bus master when it
executes a Send instruction. The remote address and cache line are broadcast on the
global bus; the ~Match signal is asserted if another CCU matches the address.

~Receive Receive a remote address. Low-true open-collector with external pull-up resistor.
Asserted by a CCU when it begins to execute a Receive instruction. Sending CCUs
should gain global bus control, rebroadcast their remote addresses, and check for ~Match
asserted.

~Match Match a remote address. Low-true open-collector with external pull-up resistor.
Asserted by a CCU when it matches the remote address sent by the current bus master.

MemRead Start memory read reference. High-true tri-state. Asserted by the Global bus master to
start a memory read. The read address is driven onto the Global bus in the next cycle.

MemWrite Start memory write reference. High-true tri-state. Asserted by the Global bus master to
start a memory write. This should only be asserted if MemRead was asserted in the
previous cycle. The write address is driven onto the Global bus in the next cycle.

MemRdy Memory control is ready to start a memory reference. High-true totem-pole. Driven by
the memory controller and received by the global bus master. The global bus master
must continue to assert MemRead and drive the Address bus until MemRdy is true.
MemRdy goes false when the controller accepts a command. The memory controller
stays busy after a reader has released the Global bus. This signal prevents the next bus
master from starting another memory reference until the controller has finished the
previous reference.

DataRdy Memory read data is ready. High-true totem-pole. Driven by the memory controller and
received by whichever CCU last started a memory read reference. Asserted during the
cycle that the first word of memory read data is on the FromMem bus.

IORdy Memory control is ready to start an I/O reference. High-true totem-pole. Driven by the
memory controller and received by the global bus master. IORdy goes true one cycle
after the memory controller drives the FromMem bus with the selected control register
value.

IOInst Perform an I/O operation. High-true tri-state. Driven by the global bus master and
received by the memory controller. When asserted, the memory controller drives the
contents of one of its internal registers onto the FromMem bus. The control register was
specified by the CtlReg bus value during the previous assertion of IOInst. Zero or one of
IORead, IOWrite, and SetCtlReg may also be asserted.

Global Bus 17

IORead Start an I/O read reference. High-true tri-state. Driven by the global bus master and
received by the memory controller. When asserted with IOInst, an I/O read reference is
started.

IOWrite Start an I/O write reference. High-true tri-state. Driven by the global bus master and
received by the memory controller. When asserted with IOInst, an I/O write reference is
started and the value on the ToMem bus is written to an IO device.

setCtlReg Load a controller register. High-true tri-state. Driven by the global bus master and
received by the memory controller. When asserted with IOInst, a memory controller
register is loaded from the value on the ToMem bus.

CtlReg Control register number. High-true 3-bit tri-state bus. Driven by the Global bus master
and received by the memory controller. This value is remembered each time IOInst is
asserted, and used to select the controller register returned on the FromMem bus the next
time IOInst is asserted.

ToMem Data bus to memory. High-true 32-bit bus with byte parity. The global Data bus is
repeated to the memory controller as the ToMem bus.

FromMem Data bus from memory. High-true 32-bit bus with byte parity. Driven by the memory
controller and received by all processors. Data from the memory and IO system arrive
over this bus.

2.5 Timing
Figure 2-5 shows the Global bus timing. The Global bus is long and crosses the backplane so its signals are driven
early in Phi1 and sampled at the end of Phi4.

Signal Driven Sampled

BusReq start phi3 end phi4
BusGrant start phi1 end phi4
Data start phi1 end phi4
~Interrupt start phi1 end phi4
Send start phi1 end phi4
~Receive start phi1 end phi4
~Match start phi1 end phi4
MemRead start phi1 end phi4
MemWrite start phi1 end phi4
MemRdy start phi1 end phi4
DataRdy start phi1 end phi4
IORead start phi1 end phi4
IOWrite start phi1 end phi4
IORdy start phi1 end phi4
SpecialOp start phi1 end phi4
SetCtlReg start phi1 end phi4
CtlReg start phi1 end phi4
From Mem start Phi1 end phi4

Figure 2-5: Global Bus Timing Constraints

18 LOCAL & GLOBAL BUSES

Table of Contents i

Table of Contents
1. Local Bus 1

1.1 Pipeline Stages 1
1.2 Pipeline Control 1
1.3 Memory System Issues 4
1.4 Signal Definitions 6
1.5 Timing 9

2. Global Bus 13
2.1 Bus Access Control 13
2.2 Remote Send and Receive 13
2.3 Memory Control 14
2.4 Signal Definitions 15
2.5 Timing 17

ii LOCAL & GLOBAL BUSES

List of Figures iii

List of Figures
Figure 1-1: System Buses 2
Figure 1-2: Generation of pipeline actions from load signals 3
Figure 1-3: Next States from Pipeline Control Signals 3
Figure 1-4: Store interlock 4
Figure 1-5: Simple IBuff miss 4
Figure 1-6: IBuff miss with store in MEM interlock 5
Figure 1-7: IBuff miss with refill interlock 5
Figure 1-8: Simple cache miss 5
Figure 1-9: Cache miss followed by a memory instruction 6
Figure 1-10: CPU Address paths 7
Figure 1-11: Local bus timing table 10
Figure 1-12: Local bus timing diagram 11
Figure 2-1: Global bus access 13
Figure 2-2: Exchanging a cache line between processors 14
Figure 2-3: Memory Read/Write cycle 15
Figure 2-4: Memory Read-only cycle 15
Figure 2-5: Global Bus Timing Constraints 17

