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Abstract
Caching has long been recognized as a powerful performance enhancement technique in many

areas of computer design. Most modern computer systems include a hardware cache between the
processor and main memory, and many operating systems include a software cache between the
file system routines and the disk hardware.

In a distributed file system, where the file systems of several client machines are separated
from the server backing store by a communications network, it is desirable to have a cache of
recently used file blocks at the client, to avoid some of the communications overhead. In this
configuration, special care must be taken to maintain consistency between the client caches, as
some disk blocks may be in use by more than one client. For this reason, most current distributed
file systems do not provide a cache at the client machine. Those systems that do place restric-
tions on the types of file blocks that may be shared, or require extra communication to confirm
that a cached block is still valid each time the block is to be used.

The Caching Ring is a combination of an intelligent network interface and an efficient net-
work protocol that allows caching of all types of file blocks at the client machines. Blocks held
in a client cache are guaranteed to be valid copies. We measure the style of use and performance
improvement of caching in an existing file system, and develop the protocol and interface ar-
chitecture of the Caching Ring. Using simulation, we study the performance of the Caching Ring
and compare it to similar schemes using conventional network hardware.
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1. Introduction
The principle of locality of reference [41, 42] is the observation that computer programs ex-

hibit both spatial and temporal locality in referencing objects (such as memory words or disk
blocks). Temporal locality means that objects to be referenced in the near future are likely to
have been in use recently. Spatial locality means there is a high probability that objects needed in
the near future can be located near the objects currently in use. Less expensive access to recently
used objects increases program performance.

A cache is a device that exploits both spatial and temporal locality. It automatically maintains
a copy of recently referenced objects in a higher-performance storage medium than that in which
the objects themselves are stored. The program operates on copies that reside in the cache in-
stead of operating directly on the objects, with a resultant increase in performance. The cache is
responsible for propagating changes to the copies back to the stored objects. Figure 1-1 shows
the difference between systems with and without a cache. The function f(a) describes the cost of
accessing an object in the storage module. The function f ′(a) describes the cost of accessing an
object in the storage system that combines the storage module and the cache. Exploiting locality
of reference allows the values of f ′(a) to be less than f(a), for most a.
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Figure 1-1: Systems without and with a cache
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A cache system is coherent if, whenever an object is read, the returned value is the one most
recently written. A system with only one cache is coherent because there is only one path to and
from the objects ---- through the single cache. In a system with N processing elements, N>1,
sharing a common pool of objects, there are N paths to and from the objects. If each path con-
tains a cache holding copies of some of the objects, copies of the same objects can exist in more
than one cache. A mechanism to propagate updates from one cache to another is necessary to
insure coherence.

Several cache coherence mechanisms exist for systems of processors and caches that share a
common block of main memory. The machines operate in an environment where systems are
tightly coupled, highly synchronous, with reliable communication paths that are as fast as those
in the memory subsystem.

It is increasingly common to connect processors in more loosely coupled systems. The only
communication path between processors and the resources they share is a communications net-
work [55] that has transmission speeds several orders of magnitude slower than main memory.
We describe a mechanism for cache coherence in these systems.

1.1. Background
The idea that a computer should use a memory hierarchy dates back to at least the early por-

tion of the 20th century; it is suggested in the pioneering paper of von Neumann et al. [59]. The
motivation for a storage hierarchy in a processor is economic. The performance and cost of
various storage technologies varies widely. Usually, the fastest and most expensive technology is
used for the registers in the processor. Ideally, one would like to execute programs as if all data
existed in the processor registers. When more data are required, larger, lower-cost storage tech-
nologies are used for data and instruction storage, proceeding from fast semiconductor memory,
to slower semiconductor memory, to magnetic disk storage, and finally to magnetic tape or other
archival storage media.

Registers Cache Main Secondary Backing Archival
Memories Memories ‘‘Core’’ Stores Stores

3 7 8Access time 10 10 100 10 10 10
(ns)

3 4 5Transfer time 10 10 100 10 10 10
(ns)

0 10 5 14 16 24 20 26 25 30 25 40Addressable 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2
units

Technology Semiconductor Semiconductor Semiconductor Semiconductor Magnetic Magnetic
Optical

Table 1-1: Characteristics of various memory technologies

A memory level becomes a performance bottleneck in the system when the device accessing
the memory can generate access requests faster than the memory can service them. By adding a
small memory that fits the speed of the device, and using the small memory properly, one can
achieve a significant increase in performance. Copies of objects in the slower memory can be
temporarily placed in the faster memory. The accessor then operates only on the faster memory,
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eliminating the bottleneck while retaining the advantages of the larger, slower memory. The ob-
jects to be placed in the faster memory are selected to minimize the time the accessor spends
waiting for objects to be copied back and forth. The overhead of the copying operations is offset
by the performance advantage gained through repeated references to copies in the faster
memory.

The process of selecting which objects to move between levels in the memory hierarchy was
first automated in the ATLAS demand paging supervisor [22, 31]. The ATLAS machine had two
levels in its hierarchy − core memory and a drum. The demand paging supervisor moved
memory between the core memory and the drum in fixed-sized groups called pages. An
automatic system was built that allowed users to view the combination of the two storage sys-
tems as a single level (i.e., the operation of the mechanism was transparent). This ‘‘one-level
storage system’’ incorporated an automatic learning program that monitored the behavior of the
main program and attempted to select the correct pages to move to and from the drum.

The ATLAS one-level store was the first example of virtual memory − a mechanism that ex-
pands the space available for programs and data beyond the limits of physical main memory. In
fact, this mechanism is simply an environment where programs and data are stored in their en-
tirety outside of main memory, and main memory is a cache for the processor.

The IBM 360/85 [12] incorporated the first application of this idea to high speed devices. The
term cache was introduced in [34] to describe the high speed associative buffer in the memory
subsystem of the 360/85. This buffer was used to hold copies of recently referenced words from
main memory.

So far, we have discussed caching only in the context of managing the memory space of a
processor. Many other forms of caching exist. Caches of recently referenced disk blocks held in
main memory increase overall disk system performance [58, 51]. Digital typesetters cache font
information to reduce the amount of data transmitted over the communications channel from the
host computer [23]. Program execution times can be enhanced by precomputing and caching
values of expensive functions (e.g., trigonometric functions) and using table lookup rather than
run-time computation. Applicative language systems cache the result values of expressions to
avoid needless recomputation [30].

1.2. Caching in computer systems

1.2.1. Single cache systems
We now examine the most common type of cache in computer systems − that found in a

uniprocessor system between the central processor unit (CPU) and main memory. For example,
with a CPU cycle time of 60ns and memory access time of 150ns, there is a large disparity be-
tween the relative speeds of the CPU’s need to access memory and the ability of the memory
system to satisfy requests. In a configuration where the CPU directly accesses main memory, the
CPU will waste two to three cycles per memory reference, waiting for memory to respond. (See
Figure 1-2.) Wiecek measured CPU instruction set usage in a time-sharing environment on a
VAX-11 processor. This study showed that 50 − 60% of the executed instructions read memory,
and 30 − 40% wrote memory [60]. For the VAX-11, the average number of memory references
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per instruction is 1.18. McDaniel found similar results in his study of instruction set usage on a
personal workstation in [35]. Thus, in our example, lack of a cache would cause the CPU to wait
an average of 2.875 cycles for each memory reference, allowing an average 35% processor
utilization.

Processor

Module
Storage

LOADs, STOREs
and Data Blocks

Figure 1-2: Uniprocessor without cache

A cache is introduced as a small amount of high-speed memory between the CPU and
memory. (See Figure 1-3.) The cache memory has an access time comparable to the cycle time
of the CPU. The cache hardware contains control logic to manage a directory of the locations
stored in the cache, as well as the additional memory for cached values. When the CPU performs
a LOAD from memory, the cache first searches its directory for a copy of the desired location. If
found, the cache returns a copy of the contents. If the location is not cached, the CPU waits while
the cache fetches the location from slower main memory, copies the value into the cache, and
returns it to the CPU. In practice, the cache manipulates blocks of memory consisting of several
contiguous words, to reduce directory overhead. When the contents of a particular memory word
must be copied into the cache, the entire surrounding block is copied into memory.

The amount of storage in a cache is finite. If no free space remains in the cache to hold the
contents of the block just fetched, one of the currently held locations must be selected for
removal. Most systems remove the least recently used object under the assumption that the
entries in the cache not used for the longest period are the least likely to be re-used in the near
future.

When the CPU executes a STORE to memory, the cache checks its directory for a copy of the
referenced location. If found, the cache updates the copy, and does not write to main memory.
The cache writes the update to main memory when the block containing the location is selected
for removal from the cache. This minimizes the average access delays on a STORE. A cache that
uses this method of propagating updates is called a write-back cache.

A write-through cache copies the update to main memory at the same time that the copy in the
cache is modified. Updating main memory immediately generates more traffic to the memory,
since every STORE instruction generates a main memory reference. While the main memory ex-
ecutes the STORE, the CPU is blocked from making any other memory references.
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Figure 1-3: Uniprocessor with cache/directory

In a disk block cache, the file system portion of the operating system maintains copies of
recently accessed disk blocks. All disk operations search the disk cache for the desired block
before accessing the disk, yielding greatly improved disk subsystem performance.

1.2.2. Multiple cache systems
In a tightly coupled multiprocessor, N CPUs share the same main storage. If each CPU has a

private cache, there are now multiple access paths to main memory, and care must be taken to
preserve coherence.

Let us examine a specific example consisting of two tasks, T and T , running on processors1 2
P and P with caches C and C (see Figure 1-4). Let a be the address of a main memory1 2 1 2
location that is referenced and modified by both tasks. A modification of a by T is completed in1
C but not returned to main memory. Thus, a subsequent LOAD by T will return an obsolete1 2
value of a.

Even a write-through cache does not insure coherence. After both T and T have referenced1 2
a, subsequent references will be satisfied by the cache, so a new value written to main memory
by one processor will not be seen by the other.



6 Cache Coherence in Distributed Systems

Main Memory

a′

C1

a

C2

a′

P1

T1

P2

T2: a←a′

Figure 1-4: Two competing caches after T modifies a2

Sharing a single cache between the N processors eliminates coherence problems. But such a
cache is likely to be a performance bottleneck. The demands on it would be N times that of a
single cache, because it would handle all the data requests for each of the N processors. Also,
with all the processors sharing a single cache, much of the history of reference for each processor
will be lost, and with it, much of the performance advantage.

A mechanism is necessary to couple the caches and actively manage their contents. Several
such mechanisms have been devised, relying on the removal of memory blocks from caches
whenever there is a risk that their contents may have been modified elsewhere in the system.
Inappropriate (too frequent) removal will result in greatly decreased performance, because more
time will be spent waiting for blocks to be loaded into the cache.

1.2.2.1. Tang’s solution
Tang presented the first practical design for a multicache, multiprocessor system [56]. The

cache structure for each processor is the same as in a single cache system, with some additional
features to facilitate communication among caches.

Tang makes a distinction between cache entries that are private and shared. An entry is
private if it has been modified with respect to main memory, or is about to be modified by the
corresponding processor. A private entry can exist in only one cache so that, at any instant, there
is only one version of the data in the system.

A shared entry has not been modified by any processor. It is allowed to exist simultaneously in
several caches in the system, to allow ‘read only’ data to be accessed more efficiently.

Communication among the caches is controlled by a storage controller that maintains a
central directory of the contents of all the caches. All communication between the caches and
main memory passes through this storage controller. When the cache fetches a memory location,
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the cache controller alters the cache directory to show that a copy of the fetched memory loca-
tion is present in the cache. The storage controller also alters the central directory to show that a
copy of the memory location is in the cache.

Module
Storage

Controller
Storage

Directory
Central

Cache Cache Cache

Processor Processor Processor

Blocks
Data

and Data
Commands

STOREs
LOADs and

Figure 1-5: Tang’s multiprocessor

The normal LOAD and STORE instructions between the processor and the caches are aug-
mented with new commands sent from the caches to the storage controller and from the con-
troller to the caches. Using these commands, the storage controller ensures that the cache system
remains coherent. The controller converts shared blocks to private blocks when a processor is
about to write a location, then converts private blocks to shared blocks when another processor
attempts to read a location previously marked as private.

1.2.2.2. The Presence Bit solution
The Presence Bit solution for multicache coherence [44] is similar to Tang’s solution. Instead

of duplicating each cache’s directory in a central directory, main memory has N+1 extra bits per
block. N of these bits correspond to the caches in the system, and are set if and only if the cor-
responding cache has a copy of the block. The remaining bit is reset if and only if the contents of
the main memory block are identical to all cached copies. Each cache has, associated with each
block, a bit that is set to show that this cache has the only copy of this block.

The commands that are executed between the caches and main memory are essentially iden-
tical to those between Tang’s storage controller and caches. The advantage of the Presence Bit
solution is lower overhead per memory block.
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Figure 1-6: Presence Bit solution

1.2.2.3. The Snoopy or Two-Way cache
A snoopy cache is one that watches all transactions between processors and main memory and

can manipulate the contents of the cache based on these transactions.

Three kinds of snoopy cache mechanisms have been proposed. A write-through strategy
[2] writes all cache updates through to the main memory. Caches of the other processors
monitor these updates, and remove held copies of memory blocks that have been updated.

A second strategy is called write-first [24]. On the first STORE to a cached block, the update is
written through to main memory. The write forces other caches to remove any matching copies,
thus guaranteeing that the writing processor holds the only cached copy. Subsequent STOREs can
be performed in the cache. A processor LOAD will be serviced either by the memory or by a
cache, whichever has the most up-to-date version of the block.

The third strategy is called ownership. This strategy is used in the SYNAPSE
multiprocessor [54]. A processor must ‘‘own’’ a block of memory before it is allowed to update
it. Every main memory block or cache block has associated with it a single bit, showing whether
the device holding that block is the block’s owner. Originally, all blocks are owned by the shared
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Main Memory
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Figure 1-7: Snoopy Cache organization

main memory. When a cache needs to fetch a block, it issues a public read, to which the owner
of the block responds by returning a current copy. Ownership of the block does not change.

When a processor P desires to modify a block, ownership of the block is transferred from the
current owner (either main memory or another cache) to P’s cache. This further reduces the
number of STOREs to main memory. All other caches having a copy of this block notice the
change in ownership and remove their copy. The next reference causes the new contents of the
block to be transferred from the new owner. Ownership of a block is returned to main memory
when a cache removes the block in order to make room for a newly accessed block.

A snoopy cache has the smallest bit overhead of the discussed solutions, but the communica-
tion path must be fast and readily accessible by all potential owners of memory blocks. Opera-
tions between owners are tightly synchronized. The other solutions allow the caches and memory
to be more loosely coupled, but rely on a central controller for key data and arbitration of com-
mands.

1.3. Distributed Cache Systems
With the continuing decline in the cost of computing, we have witnessed a dramatic increase

in the number of independent computer systems. These machines do not compute in isolation,
but rather are often arranged into a distributed system consisting of single-user machines
(workstations) connected by a fast local-area network (LAN). The workstations need to share
resources, often for economic reasons. In particular, it is desirable to provide the sharing of disk
files. Current network technology does not provide sufficiently high transfer rates to allow a
processor’s main memory to be shared across the network.
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Management of shared resources is typically provided by a trusted central authority. The
workstations, being controlled by their users, cannot be guaranteed to be always available or be
fully trusted. The solution is to use server machines to administer the shared resources. A file
server is such a machine that makes available a large quantity of disk storage to the client
workstations. The clients have little, if any, local disk storage, relying on the server for all long-
term storage.

High Speed Interconnection Network

File Server

Printer

Workstations

Figure 1-8: Typical distributed system

The disparity in speeds between processor and remote disk make an effective caching scheme
desirable. However, no efficient, fully transparent solutions exist for coherence in a distributed
system. Distributed data base systems [13] use locking protocols to provide coherent sharing of
objects between clients on a network. These mechanisms are incorporated into the systems at a
very high level, built on a non-transparent network access mechanism, and are not concerned
with performance improvements. We prefer a solution that is integral to the network file system,
and provides the extra performance of an embedded cache.

Several distributed file systems that include some form of caching exist. The next sections
present a survey of their characteristic features.
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1.3.1. Sun Microsystems’ Network Disk
Sun Microsystems’ Network Disk [48] is an example of the simplest form of sharing a disk

across the network. The client workstation contains software that simulates a locally attached
disk by building and transmitting command packets to the disk server. The server responds by
transferring complete disk blocks. The client has a disk block caching system, keeping the most
recently used blocks in main memory. The server’s disk is partitioned into as many logical disks
as there are clients. No provision is made for communication among clients’ caches; clients can
only share read-only data.

1.3.2. CFS
The Cedar experimental programming environment [8] developed at the Xerox Palo Alto

Research Center supports a distributed file system called CFS [9]. Each of the Cedar worksta-
tions has a local disk, and this disk can be used for local private files or shared files copied from
a remote file server.

A file to be shared is first created as a file on the local disk. To make the file available for
sharing, the client transfers it to the remote file server. A client on another workstation can then
share the file by copying it to his local disk. The portion of the disk not occupied by local files is
used as a cache for remote files. Files are transferred between client and server as a whole.

Coherence of the cache of files on local disk is guaranteed because shared files may not be
modified. To update the contents of a shared file, a new version which reflects the updated infor-
mation is created on the server. This version has the same name as the original file upon which it
is based; only the version numbers differ. Thus, all cached copies of a particular version of a file
contain the same data. It is possible, however, to have a cached copy of a file that does not
reflect the latest version of the file.

1.3.3. The ITC Distributed File System
The Information Technology Center of Carnegie-Mellon University is building a campus-wide

distributed system. Vice, the shared component of the distributed system, implements a dis-
tributed file system that allows sharing of files [28]. Each client workstation has a local disk,
which is used for private files or shared files from a Vice file server. Shared files are copied as a
whole to the local disk upon open, and the client operating system uses this local copy as a cache
to satisfy disk requests. In this regard, the ITC caching mechanism is similar to that of CFS.

Cache validation is currently performed by the client querying the server before each use of
the cached copy. A future implementation will allow the server to invalidate the client’s cached
copy. Changes in the cached copy are stored back to the server when the file is closed.

1.3.4. Sun Microsystems Network File System
Sun Microsystems’ second generation distributed file system [49] allows full sharing of

remote files. Client workstations forward disk block requests to a file server. There, the ap-
propriate disk is read, and the data is returned to the client. The client can cache the returned data
and operate from the cache.
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Changed blocks are written back to the server on file close. At that time, all blocks associated
with the file are flushed from the cache. Each entry in the cache has an associated timeout; when
the timeout expires, the entry is automatically removed from the cache. Cached files also have an
associated timestamp. With each read from a remote file, the server returns the timestamp infor-
mation for that file. The client compares the current timestamp information with the information
previously held. If the two differ, all blocks associated with the file are flushed from the cache
and fetched again.

Coherence between client caches is achieved by ensuring that each client is coherent with the
server’s cache. However, because the changes made by a client are not seen until the client
closes the file, there can be periods of time when two clients caching the same file have different
values for the same cached block.

1.3.5. Apollo DOMAIN
The Apollo DOMAIN operating system embodies a distributed file system that allows loca-

tion transparent access of objects [16]. Each workstation acts as a client, and may act as a server
if it has local disk storage. Main memory is used as a cache for local and remote objects in the
file system.

The distributed file system does nothing to guarantee cache coherence between nodes. Client
programs are required to use locking primitives provided by the operating system to maintain
consistency of access. The designers decided that providing an automatic coherence mechanism
in the cache system was counter to their efficiency goals.

1.4. Memory systems vs. Distributed systems
Let us return to the memory subsystem solutions and examine the fundamental assumptions

that render them inappropriate for a distributed system environment. All the solutions require
reliable communications between the various components of the memory hierarchy. In addition,
the snoopy cache requires not only direct communications, but reliable receipt of broadcast mes-
sages. Reliable communication is achieved by building synchronous systems that allocate some
portion of the cycle time to doing nothing but receiving messages.

Because electrical disturbances may occur on local area networks, it is not possible to achieve
reliable communications without considerable overhead. Reliable stream-oriented protocols like
TCP [57] are required for point-to-point connections. A broadcast network such as the
Ethernet [61], on which hosts have the ability to receive all transmissions on the medium (i.e.,
hosts can be promiscuous), would seem ideal for a snoopy cache implementation. However, the
Ethernet provides only ‘‘best effort’’ delivery. To provide reliable broadcast communications, a
specialized protocol must be employed [10, 43], with much overhead. Even if cheap reliable
broadcast were available, processing every message on the network imposes a high load on sys-
tems.

Another problem is granularity of reference and locking. In a memory system, requests for a
particular block are serialized by hardware. The hardware allows only a single processor access
to a given main memory block at any time. While one processor is accessing the block, other
processors must stall, waiting their turn. However, the time involved is small, typically one or
two CPU cycle times, depending on the instruction that generated that access.
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In a distributed system, in the time that it takes processor P to send a message indicating aA
desire for a private read or an update, processor P may be updating its shared copy of that sameB
block (which should actually now be private to P and have been removed from P ’s cache).A B
Because a distributed system is asynchronous, access to shared blocks must be serialized by ex-
plicit locking mechanisms. These mechanisms involve sending messages between clients and
servers and encounter large communication delays. Because the communications delays are
large, the size of the blocks that are locked are large, to maximize the ratio of available data to
locking overhead. Unlike a memory system, locks are held for a long time (relative to processor
cycle time), and a processor may have to stall for a long time waiting for a shared block.

1.5. Our Solution: The Caching Ring
We propose a network environment that provides transparent caching of file blocks in a dis-

tributed system. The user is not required to do any explicit locking, as in traditional database
concurrency control algorithms, nor is there any restriction on the types of files that can be
shared.

The design is inspired by both the snoopy memory cache and the Presence Bit multicache
coherence solution. Caches that hold copies of a shared file object monitor all communications
involving that object. The file server maintains a list of which caches have copies of every object
that is being shared in the system, and issues commands to maintain coherence among the
caches.

Our environment retains many of the benefits of low-cost local area networks. It uses a low-
cost communications medium and is easily expandable. However, it allows us to create a more
efficient mechanism for reliable broadcast or multicast than is available using ‘‘conventional’’
methods previously mentioned. Operation of the caches relies on an intelligent network interface
that is an integral part of the caching system.

The network topology is a ring, using a token-passing access control strategy [19, 18, 45].
This provides a synchronous, reliable broadcast medium not normally found in networks such as
the Ethernet.

1.5.1. Broadcasts, Multicasts, and Promiscuity
Because it is undesirable to burden hosts with messages that do not concern them, a multicast

addressing mechanism is provided. Most multicast systems involve the dynamic assignment of
arbitrary multicast identifiers to groups of destination machines (stations) by some form of
centralized management. Each station must use a costly lookup mechanism to track the current
set of identifiers involving the station. On every packet receipt, the station must invoke this
lookup mechanism to determine if the packet should be copied from the network to the host.

The addressing mechanism in our network allows us to avoid the overhead of multicast iden-
tifier lookup, and avoid the requirement of central management. Addressing is based on an N-bit
field of recipients in the header of the packets. Each station is statically assigned a particular bit
in the bit field; if that bit is set, the station accepts the packet and acts on it. Each recipient resets
its address bit before forwarding the packet. This provides positive acknowledgement of recep-
tion. Retransmission to those hosts that missed a packet requires minimal computation. Thus, it
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nis possible to efficiently manage 2 multicast groups with reliable one ring cycle delay delivery,
as opposed to n point-to-point messages for a multicast group of size n, which is typical for
reliable multicast protocols on the Ethernet.

Missed packets are a rare problem, because the token management scheme controls when
packets can arrive, and the interface hardware and software is designed to be always ready to
accept the next possible packet, given the design parameters of the ring. The primary reasons for
missed packets are that stations crash or are powered down, or packets that are damaged due to
ring disturbances.

1.5.2. Ring Organization
Traffic on the ring consists of two types of packets: command and data. Each station intro-

duces a fixed delay of several bit times to operate on the contents of a packet as it passes by,
possibly recording results in the packet as it leaves. Command packets and their associated
operations are formulated to keep delays at each station to a minimum constant time. If, for
example, the appropriate response is to fetch a block of data from a backing store, the command
packet is released immediately, and the block is then fetched and forwarded in a separate data
packet.

The interface contains the names of the objects cached locally, while the objects themselves
are stored in memory shared between the interface and the host. Thus, status queries and com-
mands are quickly executed.

1.6. Previous cache performance studies
Many of the memory cache designs previously mentioned are paper designs and were never

built. Of the ones that were built, only a few have been evaluated and reported on.

Bell et al. investigated the various cache organizations using simulation during the design
process of a minicomputer [5]. Their results were the first comprehensive comparison of speed
vs. cache size, write-through vs. write-back, and cache line size, and provided the basis for much
of the ‘‘common knowledge’’ about caches that exists today.

Smith has performed a more modern and more comprehensive survey of cache organizations
in [50]. This exhaustive simulation study compares the performance of various cache organiza-
tions on program traces from both the IBM System/360 and PDP-11 processor families.

A number of current multiprocessors use a variation of the snoopy cache coherence
mechanism in their memory system. The primary differences are how and when writes are
propogated to main memory, whether misses can be satisfied from another cache or only from
memory, and how many caches can write a shared, cached block. Archibald and Baer have simu-
lated and compared the design and performance of six current variations of the snoopy cache for
use in multiprocessors [4]. In [33], Li and Hudak have studied a mechanism for a virtual memory
that is shared between the processors in a loosely coupled multiprocessor, where the processors
share physical memory that is distributed across a network and part of a global address space.
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1.7. Previous file system performance studies
There has been very little experimental data published on file system usage or performance.

This may be due to the difficulty of obtaining trace data, and the large amounts of trace data that
is likely to result. The published studies tend to deal with older operating systems, and may not
be applicable in planning future systems.

Smith studied the file access behavior of IBM mainframes to predict the effects of automatic
file migration [52]. He considered only those files used by a particular interactive editor, which
were mostly program files. The data were gathered as a series of daily scans of the disk, so they
do not include files whose lifetimes were less than a day, nor do they include information about
the reference patterns of the data within the files. Stritter performed a similar study covering all
files on a large IBM system, scanning the files once a day to determine whether or not a given
file had been accessed [53]. Satyanarayanan analyzed file sizes and lifetimes on a PDP-10 sys-
tem [46], but the study was made statically by scanning the contents of disk storage at a fixed
point in time. More recently, Smith used trace data from IBM mainframes to predict the perfor-
mance of disk caches [51].

Four recent studies contain UNIX measurements that partially overlap ours: Lazowska et al.
analyzed block size tradeoffs in remote file systems, and reported on the disk I/O required per
user [32], McKusick et al. reported on the effectiveness of current UNIX disk caches [36], and
Ousterhout et al. analyzed cache organizations and reference patterns in UNIX systems [38].
Floyd has reported extensively on short-term user file reference patterns in a university research
environment [21]. We compare our results and theirs in Section 3.6.

1.8. Plan of the thesis
After defining the terminology used in the rest of the work, we examine the use and perfor-

mance of a file system cache in a uniprocessor, first with local disks and then with remote disks.
We then proceed to investigate applications of the caching ring to a multiple CPU, multiple cache
system under similar loads.

Finally, we explore other areas in distributed systems where these solutions may be of use, as
well as methods of adapting the ideal environment of the caching ring to conventional network-
ing hardware.
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2. Definitions and Terminology
As mentioned in Chapter 1, we are concerned with caching in distributed systems, and in par-

ticular, in file systems. In this chapter, we define the fundamental components of distributed
systems, file systems, and cache systems, as well as a notation for discussing cache operations.
Since much of our work is centered around the UNIX file system, we briefly introduce some
details of that implementation.

2.1. Fundamental components of a distributed system
Physically, a distributed system consists of a set of processors, with a collection of local

storage mechanisms associated with each processor. A processor is able to execute programs that
access and manipulate the local storage, where the term process denotes the locus of control of
an executing program [17]. In addition, an interconnection network connects the processors and
allows them to communicate and share data via exchange of messages [55]. These messages are
encapsulated inside packets when transmitted on the network.

2.1.1. Objects
We conceptually view the underlying distributed system in terms of an object model [29] in

which the system is said to consist of a collection of objects. An object is either a physical
resource (e.g., a disk or processor), or an abstract resource (e.g., a file or process). Objects are
further characterized as being either passive or active, where passive objects correspond to stored
data, and active objects correspond to processes that act on passive resources. For the purposes
of this thesis, we use the term object to denote only passive objects.

The objects in a distributed system are partitioned into types. Associated with each object type
is a manager that implements the object type and presents clients throughout the distributed sys-
tem with an interface to the objects. The interface is defined by the set of operations that can be
applied to the object.

An object is identified with a name, where a name is a string composed of a set of symbols
chosen from a finite alphabet. For this thesis, all objects are identified by simple names, as
defined by Comer and Peterson in [39]. Each object manager provides a name resolution
mechanism that translates the name specified by the client into a name that the manager is able to
resolve and use to access the appropriate object. Because there is a different object manager for
each object type, two objects of different types can share the same name and still be properly
identifiable by the system. The collection of all names accepted by the name resolution
mechanism of a particular object manager constitutes the namespace of that object type.
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An object manager can treat a name as a simple or compound name. A compound name is
composed of one or more simple names separated by special delimiter characters. For example,
an object manager implementing words of shared memory might directly map the name provided
by the client into a hardware memory address. This is known as a flat namespace. On the other
hand, an object manager implementing a hierarchical namespace in which objects are grouped
together into directories of objects, provides a mechanism for adding structure to a collection of
objects. Each directory is a mapping of simple names to other objects. During the evaluation of a
name, a hierarchical evaluation scheme maintains a current evaluation directory out of the set of
directories managed by the naming system. Each step of hierarchical name evaluation includes
the following three steps:

1. Isolate the next simple name from the name being evaluated.

2. Determine the object associated with the simple name in the current evaluation
directory.

3. (If there are more name components to evaluate) Set the current evaluation direc-
tory to the directory identified in Step 2, and return to Step 1.

2.1.2. Clients, managers, and servers
Clients and managers that invoke and implement operations are physically implemented in

terms of a set of cooperating processes. Thus, they can be described by the model of distributed
processing and concurrent programming of remote procedure calls [37].

In particular, we divide processors into two classes: client machines that contain client
programs, and server machines that contain object manager programs. Each server has one or
more attached storage devices, which it uses as a repository for the data in the objects imple-
mented by the object managers. In our system, there are N client machines, denoted C . . . C ,1 N
and one server machine, denoted S.

2.2. Caches
Caches are storage devices used in computer systems to temporarily hold those portions of the

contents of an object repository that are (believed to be) currently in use. In general, we adhere to
the terminology used in [50], with extensions from main memory caching to caching of general-
ized objects. A cache is optimized to minimize the miss ratio, which is the probability of not
finding the target of an object reference in the cache.

The cache has three components: a collection of fixed-sized blocks of object storage (also
known in the literature as lines); the cache directory, a list of which blocks currently reside in the
cache, showing where each block is located in the cache; and the cache controller, which imple-
ments the various algorithms that characterize the operation of the cache.

Information is moved between the cache and object repository one block at a time. The fetch
algorithm determines when an object is moved from the object repository to the cache memory.
A demand fetch algorithm loads information when it is needed. A prefetch algorithm attempts to
load information before it is needed. The simplest prefetch algorithm is readahead: for each
block fetched on demand, a fixed number of extra blocks are fetched and loaded into the cache,
in anticipation of the next reference.
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When information is fetched from the object repository, if the cache is full, some information
in the cache must be selected for replacement. The replacement algorithm determines which
block is removed. Various replacement algorithms are possible, such as first in, first out (FIFO),
least recently used (LRU), and random.

When an object in the cache is updated, that update can be reflected in one of several ways.
The update algorithm determines the mechanism used. For example, a write-back algorithm has
the cache receive the update and update the object repository only when the modified block is
replaced. A write-through algorithm updates the object repository immediately.

2.3. Files and file systems
A file is an object used for long-term data storage. Its value persists longer than the processes

that create and use it. Files are maintained on secondary storage devices like disks. Conceptually,
a file consists of a sequence of data objects, such as integers. To provide the greatest utility, we
consider each object in a file to be a single byte. Any further structure must be enforced by the
programs using the file.

The file system is the software that manages these permanent data objects. The file system
provides operations that will create or delete a file, open a file given its name, read the next
object from an open file, write an object onto an open file, or close a file. If the file system
allows random access to the contents of the file, it may also provide a way to seek to a specified
location in a file. Two or more processes can share a file by having it open at the same time.
Depending on the file manager, one or more of these processes may be allowed to write the
shared file, while the rest may only read from it.

2.3.1. File system components
The file system software is composed of five different managers, each of which is used to

implement some portion of the file system primitives.

The access control manager maintains access lists that define which users may access a par-
ticular file, and in what way − whether to read, write, delete, or execute.

The directory manager implements the naming directories used to implement the name space
provided by the file system. It provides primitives to create and delete entries in the directories,
as well as to search through the existing entries.

The naming manager implements the name space provided by the file system. The name
evaluation mechanism is part of the naming manager, and uses the directory manager primitives
to translate file names into object references.

The file manager interacts with the disk manager to map logical file bytes onto physical disk
blocks. The disk manager manipulates the storage devices, and provides primitives to read or
write a single, randomly accessed disk block. The disk manager may implement a cache of
recently referenced disk blocks. Such a cache is called a disk block cache.

The file manager maintains the mapping of logical file bytes to physical disk blocks. The file
manager treats files as if they were composed of fixed-sized logical file blocks. These logical
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blocks can be larger or smaller than the hardware block size of the disk on which they reside.
The file manager may implement a file block cache of recently referenced logical file blocks.

The file manager maintains several files which are private to its implementation. One contains
the correspondence of logical file blocks to physical disk blocks for every file on the disk.
Another is a list of the physical disk blocks that are currently part of a file, and the disk blocks
that are free. These files are manipulated in response to file manager primitives which create or
destroy files or extend existing ones.

In a distributed file system implementation, where the disk used for storage is attached to a
server processor connected to the client only by a network, we distinguish between disk servers
and file servers. In a disk server, the disk manager resides on the server processor, and all other
file system components reside on the client. A disk server merely provides raw disk blocks to the
client processor, and the managers must retrieve all mapping and access control information
across the network.

In a file server, all five managers are implemented on the server processor. Client programs
send short network messages to the server, and receive only the requested information in return
messages. All access control computations, name translations, and file layout mappings are per-
formed on the server processor, without requiring any network traffic.

2.3.2. The UNIX file system
The UNIX file system follows this model, with some implementation differences [6]. The ac-

cess control lists are maintained in the same private file as the mappings between logical file
blocks and physical disk blocks. Together, the entries in this file are known as inodes.

The UNIX file name resolution mechanism implements a hierarchical naming system. Direc-
tories appear as normal files, and are generally readable. User programs may read and interpret
directly, or use system-provided primitives to treat the directories as a sequence of name objects.
Special privileges are required to write a directory, to avoid corruption by an incorrectly imple-
mented user program.

In UNIX, file names are composed of simple names separated by the delimiter character ‘/’.
Names are evaluated, as outlined in the hierarchical name evaluation given above, with the cur-
rent evaluation directory at each step being a directory in the naming hierarchy. Names are
finally translated into unique, numerical object indices. The object indices are then used as file
identifiers by the file manager. The namespace of the UNIX naming mechanism can also be
thought of as a tree-structured graph.

To improved file system performance, the disk manager implements a disk block cache.
Blocks in this cache are replaced according to a least recently used replacement policy [58].

2.3.3. Our view of file systems
For the purposes of this thesis, we are interested only in the operation of the file manager and

operations concerning logical file blocks. We do not consider the implementation of the name
evaluation mechanism or the mapping of logical file blocks to physical blocks. All names in the
Caching Ring system are considered to be simple names, and the mapping from the long name
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strings used in a hierarchical naming system to the numerical object identifiers used thereafter to
refer to file objects is not part of the caching mechanism.

Descriptions of file system alternatives can be found in Calingaert [7], Haberman [25], and
Peterson and Silberschatz [40]. Comer presents the complete implementation of a file system
which is a simplification of the UNIX file system described above in [11].
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3. Analysis of a Single-Processor System
There has been very little empirical data published on file system usage or performance. Ob-

taining trace data is difficult, typically requiring careful modifications to the operating system,
and the resulting data is voluminous. The published studies tend to deal with older operating
systems, and for this reason may not be applicable in planning future systems.

This chapter extends our understanding of caching to disk block caches in single processor
systems. We recorded the file system activity of a single processor timesharing system. We
analyzed this activity trace to measure the performance of the disk block cache, and performed
simulation experiments to determine the effects of altering the various parameters of the
processor’s disk block cache. We also measured the amount of shared file access that is actually
encountered. These measurements and simulation experiments allow us to characterize the
demands of a typical user of the file system, and the performance of the file system for a given
set of design parameters.

3.1. Introduction
Understanding the behavior of file block caching in a single processor system is fundamental

to designing a distributed file block caching system and analyzing the performance of that cach-
ing system. Using an accurate model of the activity of a single user on a client workstation, we
can build simulations of a collection of such workstations using a distributed file block caching
system. By analyzing the file activity on a single-processor system, we can develop such a
model. To this end, we designed experiments to collect enough information about an existing
system to allow us to answer questions such as:

• How much network bandwidth is needed to support a workstation?

• How much sharing of files between workstations should be expected?

• How should disk block caches be organized and managed?

• How much performance enhancement does a disk block cache provide?

The experiments are an independent effort to corroborate similar data reported by McKusick
[36], Lazowska et al. [32], and Ousterhout et al. [38], in a different environment, and with a
different user community and workload. We compare our results and theirs in Section 3.6.

The basis of the experiments is a trace of file system activity on a time-shared uniprocessor
running the 4.2BSD UNIX operating system [1]. The information collected consists of all read
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and write requests, along with the time of access. The amount of information is voluminous, but
allows us to perform a detailed analysis of the behavior and performance of the file and disk
subsystems.

We wrote several programs to process the trace files − an analysis program that extracts data
regarding cache effectiveness and file system activity, a data compression program, and a block
cache simulator. Using these programs, we were able to characterize the file system activities of
a single client, and the performance benefits of a disk block cache in various configurations.

3.2. Gathering the data
Our main concerns in gathering the data were the volume of the data and affecting the results

by logging them through the cache system under measurement. We wished to gather data over
several days to prevent temporary anomalies from biasing the data. We also wished to record all
file system activity, with enough information to accurately reconstruct the activity in a later
simulation. It quickly became obvious that it would not be feasible to log this data to disk − an
hour of typical disk activity generates approximately 8.6 Mbytes of data.

The method settled upon used the local area network to send the trace data to another system,
where it was written to magnetic tape. Logging routines inserted into the file system code placed
the trace records in a memory buffer. A daemon read the records from the trace buffer and sent
them to a logging process via a TCP connection. The logger simply wrote the records on tape. A
day’s activity fills a 2400 foot tape recorded at 6250 bpi.

In this manner, the buffers used in the disk subsystem are completely bypassed. The daemon
that reads and sends trace records consumed approximately 3% of the CPU, and the impact on
the performance of the disk subsystem is negligible.

3.3. The gathered data
We inserted probes to record activity in both the file manager and the disk manager. All event

records are marked with the time at which they occurred, to millisecond resolution.

In the file manager, we recorded all file open, close, read, and write events. Each event record
contains the name of the process and user that requested the action. Open events record the file
index that uniquely identifies the file on disk, and the inode information, but not the name by
which the user called it. Close event records contain the same data. Read and write event records
identify the affected file, the point in the file at which the transfer began, and how many bytes
were transferred.

In the disk manager, operations are performed on physical blocks. Only read and write events
occur at this level. Each event record contains the address of the first block used in the transfer,
how many bytes were transferred, and whether or not the block(s) were found in the disk block
cache.

The recorded data is sufficient to link file manager activity to the corresponding disk manager
activity. However, there is much disk manager activity that cannot be accounted for by file
manager read and write requests. This is from I/O that is performed by the directory manager
while resolving file names to file identifiers during file opens, and by the file manager when
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transferring inodes between disk and memory. Also, paging operations do not use the disk block
cache, and are not recorded in this trace. When a new program is invoked (via the exec system
call), the first few pages of the program are read through the disk block cache, and are recorded
in our trace data. The remaining pages are read on demand as a result of page faults, and this
activity does not appear in our trace data. We can estimate the overhead involved in file name
lookup by comparing the disk activity recorded in our traces and the simulated disk activity in
our simulations.

3.3.1. Machine environment
We collected our trace data on a timeshared Digital Equipment Corporation VAX-11/780 in

the Department of Computer Sciences at Purdue University. The machine is known as ‘‘Merlin’’
and is used by members of the TILDE project for program development and document editing, as
well as day-to-day housekeeping. Merlin has 4 Mbytes of primary memory, 576 Mbytes of disk,
and runs the 4.2BSD version of the UNIX operating system. The disk block cache is ap-
proximately 400 Kbytes in size.

Traces were collected for four days over the period of a week. We gathered data during the
hours when most of our users work, and specifically excluded the period of the day when large
system accounting procedures are run. Trace results are summarized in Table 3-1, where each
individual trace is given an identifying letter. During the peak hours of the day, 24 − 34 files
were opened per second, on average. The UNIX load average was typically 2 − 8, with under a
dozen active users.

3.4. Measured results
Our trace analysis was divided into two parts. The first part contains measurement of current

UNIX file system activity. We were interested in two general areas: how much file system ac-
tivity is generated by processes and system overhead, and how often files are shared between
processes, and whether processes that share files only read the data or update the data as well.
The second part of our analysis, examining the effectiveness of various disk cache organizations,
is presented in Section 3.5.

3.4.1. System activity
The first set of measurements concerns overall file system activity in terms of users, active

files, and bytes transferred (see Table 3-2). The most interesting result is the throughput per ac-
tive user. We consider a user to be active if he or she has any file system activity within a one-
minute interval. Averaged over a one-minute interval, active users tend to transfer only a few
kilobytes of data per second. If only one-second intervals are considered, users active in these
intervals tend to transfer much more data per second (approximately 10 Kbytes per second per
active user), but there are fewer active users.

In [32], Lazowska et al. reported about 4 Kbytes of I/O per active user. This is higher than our
figure, because their measurement includes additional activity not present in our analysis such as
directory searches and paging I/O, and was measured for a single user at a time of heavy usage.
Ousterhout et al. reported about 1.4 Kbytes of I/O per user in [38]. This is lower than our figure,
because their measurement does not include program loading I/O activity or the overhead of
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Trace A B C D

Duration (hours) 7.6 6.8 5.6 8.0

Number of trace 1,865,531 1,552,135 1,556,026 1,864,272
records

Size of trace file 66 55 55 66
(Mbytes)

Total data 402 330 334 405
transferred (Mbytes)

User data 126 110 120 135
transferred (Mbytes)

Disk cache miss ratio 10.10 10.03 10.67 9.82
(percent)

Blocks read ahead 9424 9143 10376 13933

open events 28,427 23,837 22,403 25,307

close events 28,194 23,772 22,227 25,162

read events 51,281 40,203 45,619 77,471

write events 23,689 18.972 18,834 26,073

shared file opens 5,015 3,919 4,240 3,628

shared read events 16,892 13,057 14,017 31,000

shared write events 717 695 827 995

inode lock events 911,151 778,208 762,563 906,140

Table 3-1: Description of activity traces

reading and writing inodes from disk. They also define a user as one who is active over a ten
minute interval, and the throughput figure is averaged over that time period.

Several of the statistics seem to be due to the heavy reliance that the UNIX system places on
the file system for storage of data. Executable versions of programs, directories, and system
databases are all accessible by programs as ordinary files, and utility programs access them
heavily. Information about users of the system is spread across several files, and must be
gathered up by programs that would use it. Utilities are typically written to keep their data in
several distinct files, rather than one monolithic one, or to themselves be made up of several
passes, each stored in a separate file. Programmers are encouraged to split their programs into
many smaller files, each of which may contain directives to the compiler to include up to a dozen
or more files that contain common structure definitions. For example, to compile a trivial C
program with the standard VAX compiler requires touching 11 files: three make up the C com-
piler; two more for assembler and loader; one for the standard library; the source file itself with a
standard definitions file; two temporary files; and finally the executable version of the program.
Invoking the optimizer adds two more files, the optimizer pass and an additional temporary.
Such a trivial compile can easily take less than six seconds of real time on an unloaded system
such as Merlin.
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Trace A B C D

Average throughput 4600 4500 5900 4700
(bytes/sec)

Unique users 20 18 19 17

Maximum active users 7 6 7 5
(per minute)

Average active users 2.05 ± 1.10 2.75± 1.05 2.70± 1.25 2.91± 1.32
per(minute)

Average throughput 2243 ± 782 1636± 451 2185± 691 1615± 504
per active user
(bytes/sec)

Average opens/sec 2.4 ± 1.8 2.2± 1.7 2.1± 1.6 2.0± 1.5
per active user

Average reads/sec 5.75 ± 8.7 3.89± 6.87 3.78± 6.22 5.40± 8.83
per active user

Average writes/sec 1.9 ± 5.46 1.02± 3.56 0.93± 2.48 1.42± 3.71
per active user

Table 3-2: Measurements of file system activity

However, the low average throughput per active user suggests that a single 10Mbit/second
network has enough bandwidth to support several hundred users using a network-based file sys-
tem. Transfer rates tended to be bursty in our measurements, with rates as high as 140
Kbytes/sec recorded for some users in some intervals, but such a network could support several
such bursts simultaneously without difficulty.

We performed simple analysis of access patterns to determine the percentage of files that are
simply read or written straight through, with no intermediate seeks. Table 3-3 summarizes our
results. The percentages are cumulative, i.e., 80.2% of the file accesses in trace A had two or
fewer seeks. These measurements confirm that file access is highly sequential. Ousterhout et al.
report that more than 90% of all files are processed sequentially in their computing environment.

Trace A B C D

Linear access 17634 (62.5%) 15118 (63.6%) 13776 (62.0%) 16683 (66.3%)

One seek 4889 (79.2%) 4119 (80.9%) 3561 (78.0%) 3952 (82.0%)

Two seeks 272 (80.2%) 265 (82.0%) 253 (79.1%) 271 (83.1%)

Three or more 5632 (100%) 4270 (100%) 4637 (100%) 4256 (100%)

Table 3-3: Linear access of files
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3.4.2. Level of sharing
After measuring the overall file system activity recorded in our traces, we turned our attention

to how files are shared. Table 3-4 reports our measurements of file sharing between processes.
Of the files accessed in the system, approximately 16.5% are opened simultaneously by more
than one process. Of those, approximately 75% are directories. Thus, approximately 4% of all
non-directory file opens are for shared access.

Directories are shared when two or more processes are opening files in the same section of the
file system name space. The directories must be searched for each file open. In a network file
system which locates the directory manager at the server, client processes will not share direc-
tories; rather, access to directories will be serialized at the server. The number of files shared
between workstations would then be the much lower figure of about 4% of all opened files.

Trace A B C D

File open events 28427 23837 22403 25307

Shared open events 5015 (17.6%) 3919 (16.4%) 4240 (18.9%) 3628 (14.3%)

Unique files shared 352 168 344 212

Shared directories 293 (83.2%) 114 (67.9%) 280 (81.4%) 150 (70.8%)

Shared read events 16892 13057 14017 31000

Shared write events 717 695 827 995

Table 3-4: Sharing of files between processes

Of the files that are shared, approximately 4% of the accesses involved modifying the contents
of the files. Removing directories from these statistics increases this to 8.8%, which is still a very
small percentage of all file activity.

Furthermore, analysis of the traces indicates that sharing access mainly occurs in system files.
Only approximately 10% of the shared files are user files. Files are shared by small groups of
processors, as shown in Table 3-5.

Size of group Frequency of Cumulative
occurrence frequency

2 62.8% 62.8%

3 17.4% 80.2%

4 9.4% 89.6%

5 5.4% 95.0%

6 0.9% 95.9%

7 1.4% 97.3%

8 1.6% 99.0%

9 1.1% 100.0%

Table 3-5: Size of processor groups sharing files
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It is commonly argued that caching is not used in distributed file systems because updating the
caches on writes is very expensive, both in terms of the data structures and communications
delay required to maintain coherence. From these data, we conclude that any coherence
mechanism for shared writes will seldom be invoked, and thus should have minimal impact on
the overall performance of the system. We also conclude that a caching mechanism for any file
system should be optimized to give the most performance benefit to the reading of file blocks.

3.5. Simulation results
In a network file system, one of the most interesting areas for study is the disk block cache.

Disk and network access speeds are limited to those available from hardware vendors. A cache
implemented in software, on the other hand, is extremely flexible. To optimize file system per-
formance, the designer can vary the percentage of available memory used for caching blocks,
and the algorithms to allocate and replace those blocks. With an appropriate set of algorithms,
performance can be increased simply by adding to the amount of available memory, even if the
algorithms are fixed in hardware.

The UNIX file system uses approximately 10% of main memory (typically 200 − 800 kbytes)
for a cache of recently used blocks. The blocks are maintained in least recently used fashion and
result in a substantial reduction in the number of disk operations (see Table 3-1).

For a network file system with much higher transfer latency, the role of the cache is more
important than in a system with locally attached disk storage. A well-organized cache in the
client workstation can hide many or all of the effects of a remote file system. With current
memory technology, it is reasonable to conceive of a cache of 2 − 8 Mbytes in the client, and
perhaps 32 − 64 Mbytes in a few years. Even though the general benefits of disk block caches
are already well known, we still wished to answer several questions:

• How do the benefits scale with the size of the cache?

• How should the cache be organized to maximize its effectiveness?

• How effective can a cache in the client be in overcoming the performance effects of
a remote disk?

3.5.1. The cache simulator
To answer these questions, we wrote a program to simulate the behavior of various types of

caches, using the trace data to drive the simulation. We used only the data collected from the file
manager level. This allowed us to simulate the effect of a cache on the I/O generated by user
processes, without including the effects of I/O generated for maintenance of the file system and
the naming system. For the measurements below, the four traces produced nearly indistinguish-
able results; we report only the results from trace A.

The simulated system mimics the data structures found in the UNIX file system. We simulated
only the file manager operations, and included a file block cache instead of a disk block cache.
This cache consisted of several fixed-sized blocks used to hold recently referenced portions of
file. We used an LRU algorithm for block replacement in the cache. There is a table of currently
open and recently closed files, where each entry in the table includes the file identifier, reference
count, file size, statistics about how the file was accessed, and a pointer to a doubly-linked list of
blocks from the file that reside in the cache.
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In the UNIX system, when a file is closed, any of its blocks that may reside in the cache are
not automatically flushed out. This results in a significant performance improvement, since many
files are opened again shortly after they are closed, and their blocks may still be found in the

1cache. We wished to preserve this aspect of the UNIX disk block cache in our simulated file
block cache.

As the trace is processed, an open record causes an entry in the file table to be allocated. If the
file is already in the file table, the associated reference count is incremented. A close record
causes the reference count to be decremented. When the reference count reaches zero, the file
table entry is placed on a free list. Any blocks in the file that still reside in the cache remain
associated with the file table entry. So, in fact, when the simulator must allocate a file table entry
to respond to an open record, it searches the free list first. If an entry for the file is found, it is
reclaimed, and any file blocks that still remain in the cache are also reclaimed.

For each read or write record, the range of affected bytes is converted to a logical block num-
ber or numbers. The simulator checks to see if the affected blocks are in the cache. If so, the
access is satisfied without any disk manager activity, and the block is brought to the head of the
linked list that indicates the LRU order of the cache blocks. If not, a block from the cache free
list is allocated. If the free list is empty, the block at the tail of the LRU list of the file block
cache is freed and allocated to this file. If the cache is simulating a write-back cache, any
changes to the block are written back at this time.

The principal metric for evaluating cache organization was the I/O ratio, which is similar to
the miss ratio. The I/O ratio is a direct indicator of the percentage of I/O avoided due to the
cache. It expresses the ratio of the number of block I/O operations performed to the number of
block I/O operations requested. An I/O operation was charged each time a block was accessed
and not in the cache, or when a modified block was written from the cache back to disk. The I/O
ratio is different from the miss ratio in that it effectively counts as missed those I/O operations
resulting from the write policy, even though those blocks appear in the cache.

A secondary metric was the effective access time. We assigned a time cost to each disk access
and computed the total delay that user programs would see when making accesses through the
cache. This allowed us to evaluate the effects of varying the access time to the disk storage on
performance.

Often in the traces, programs made requests in units much smaller than the block size. We
counted each of these requests as a separate access, usually satisfied from the cache. Because it
more closely simulates the actual performance that programs will see, we chose not to collapse
redundant requests from programs even though this results in lower miss and I/O ratios and ef-
fective access times.

The results are reported only after the simulator reaches steady state. That is, block accesses
and misses that occur before the cache has filled are ignored. Modified blocks left in the cache at
the end of the simulation are not forced out, because this would unrealistically increase the miss
and I/O ratios.

1See Section 3.5.2 for more discussion of this aspect of the cache.
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3.5.2. Cache size, write policy, and close policy
By varying parameters of the simulations, we investigated the effect on performance of

several cache parameters: cache size, write policy, close policy, block size, and read ahead
policy. Figure 3-1 and Table 3-6 show the effect of varying the cache size and write policy with
a block size of 4096 bytes (the most common size in 4.2BSD UNIX systems). We simulated both
the write-through and write-back cache policies.

Write-back results in much better performance for large caches. Unfortunately, it can leave
many modified blocks in the cache for long periods of time. For example, with a 4Mbyte cache,
about 20% of all blocks stay in the cache for longer than 20 minutes. If the workstation crashes,
many updates may have never made it back to the server, resulting in the loss of large amounts
of information.
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Figure 3-1: Cache size vs. write policy for trace A

Cache Size Write-through Write-back

256 Kbytes 37.1% 26.9%

512 Kbytes 32.7% 14.4%

1 Mbyte 29.5% 10.1%

2 Mbytes 28.0% 8.1%

4 Mbytes 27.7% 6.2%

8 Mbytes 27.1% 4.5%

Table 3-6: Cache size vs. write policy for trace A
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UNIX systems generally run a utility program that flushes modified blocks from the cache
every 30 seconds. This results in higher I/O ratios (though not as high as those exhibited with a
write-through policy), but the amount of information lost owing to a crash is greatly reduced.
Ousterhout et al. reported that a 30-second flush interval reduces the I/O ratio to approximately
25% below write-through, and a 5 minute flush interval results in a I/O ratio 50% below that of
write-through.

We also investigated the effect of flushing all blocks associated with a file when the file is
closed. Analysis of our traces indicated that many files are opened and closed repeatedly. This is
most noticeable in a trace that involves many program compiles. The files containing data struc-
ture definitions are opened and closed repeatedly as they are read into each individual program
file. Figure 3-2 and Table 3-7 show the effect on the overall I/O ratio of maintaining and flushing
file blocks after a close for a range of cache sizes in a write-back cache.

0 8192
0

75

2048 4096 6144
Cache Size (Kbytes)

20

40

60

I/
O

 R
at

io
 (

pe
rc

en
t)

flush on close

no flush on close

Figure 3-2: Effect of close policy on I/O ratio for trace A

Cache Size Write-through Write-back

256 Kbytes 40.1% 26.9%

512 Kbytes 40.5% 14.4%

1 Mbyte 40.3% 10.1%

2 Mbytes 40.1% 8.1%

4 Mbytes 39.6% 6.2%

8 Mbytes 39.3% 4.5%

Table 3-7: Effect of close policy on I/O ratio for trace A
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This shows the fundamental reason that the UNIX disk block cache works so well. File access
patterns are such that many files are reused before they would ordinarily leave the cache. Floyd
has found that most files in a UNIX environment are re-opened within 60 seconds of being
closed [21]. Maintaining blocks of closed files in the cache has a significant performance advan-
tage over having to re-fetch those blocks a short time after the close.

3.5.3. Block size
We also evaluated the effects of differing block sizes. The original UNIX file system used 512

byte blocks. The block size has since been expanded to 1024 bytes in AT&T System V [20] and
4096 bytes in most 4.2BSD systems. Figure 3-3 and Table 3-8 show the results of varying the
block size and cache size.
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Figure 3-3: I/O ratio vs. block size and cache size for trace A

Cache Size

Block size 400 Kbyte 1 Mbyte 2 Mbyte 4 Mbyte 8 Mbyte

512 bytes 24.5% 17.0% 14.9% 13.1% 8.2%

1024 bytes 21.5% 14.4% 12.6% 10.9% 6.9%

2048 bytes 18.2% 11.7% 10.1% 7.8% 5.3%

4096 bytes 16.4% 10.1% 8.1% 6.2% 4.5%

8192 bytes 18.4% 11.4% 8.2% 6.9% 5.0%

16384 bytes 21.8% 14.0% 9.2% 6.6% 5.2%

32768 bytes 30.2% 18.3% 12.7% 8.1% 5.7%

Table 3-8: I/O ratio vs. block size and cache size for trace A
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In general, large block sizes work well. They work well in small caches, and even better in
large ones. For our traces, the optimal block size, independent of cache size, is 4096 bytes. This
is an artifact of the system I/O library that rounds file system requests up to 1024 and 4096 bytes,
although there are still programs that make smaller requests. For very large block sizes, the
curves turn up because the cache has too few blocks to function effectively. Especially in smaller
caches, large block sizes are less effective because they result in fewer memory blocks available
to cache file blocks. Most of the memory space is wasted because short files only occupy the
first part of their blocks.

Although large blocks are attractive for a cache, they can result in wasted space on disk due to
internal fragmentation. 4.2BSD uses a mixed block size technique to minimize wasted space in
short files. A cache with a fixed block size still works well with a mixed block size file system,
though there may be wasted space within the cache blocks, as described above.

3.5.4. Readahead policy
The UNIX file system includes a heuristic to perform selective readahead of disk blocks. For

each open file, the file manager keeps track of the last block that was read by a user program. If,
when reading block b, the last block that was read is block b−1, the system fetches both block b
and b+1 into the cache, if they are not already in the cache (and block b+1 exists in the file). This
algorithm describes a readahead level of 1. We simulated with readahead levels of 0, 1, 2, and 3;
i.e., reading between 0 and 3 extra blocks in response to sequential access. Our results are sum-
marized in Figure 3-4 and Table 3-9.

A readahead of one block makes a small difference; additional readahead makes no apparent
difference. Large amounts of readahead, i.e., several blocks with a large block size, degrade per-
formance in a similar fashion to extremely large block sizes.

The readahead makes little difference because only a small percentage of the file references
result in blocks being read ahead. A sequence of small file accesses within the same logical file
block does not reference any new file blocks, thus no blocks are read ahead. This is consistent
with our trace data (see Table 3-1). A process reading a file sequentially in amounts smaller than
the block size will repeatedly access each of the blocks b−1, b, and b+1. At the transition from
accessing block b−1 to block b, block b+1 will also be fetched in accordance with the readahead
policy. However, the process will now continue to access b several times before reaching block
b+1, so the effect of the extra fetch is minimal. Most UNIX files are small enough to fit in one
block, so that in many cases there is no extra block to be read ahead.

The payoff of the readahead policy is based on the assumption that the time spent in reading
the extra block is not noticeable to the process requesting the original disk I/O. This is likely to
be true in an environment with a locally attached disk. With a remote disk, access time is ap-
proximately four to five times as great, and this assumption may not hold true.

3.5.5. Comparisons to measured data
Merlin runs with a disk block cache of about 100 − 200 blocks of different sizes, with a total

cache size of approximately 400 Kbytes. The cache is flushed of modified blocks every 30
seconds. According to our simulations, this should yield a I/O ratio of approximately 20%. The
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Figure 3-4: I/O ratio vs. cache size and readahead policy for trace A

actual I/O ratio, calculated from the trace data, is approximately 10%. Leffler et al. report a
measured cache I/O ratio of 15% [36]. The discrepancy results from differences in the actual
activity that is measured. The simulation results do not include activity for paging, searching
directories during name lookups, or inode fetches. Directory lookups and inode fetches are
reported to have low I/O ratios, and account for a significant amount of disk activity. The
recorded trace does not include activity for paging.



36 Cache Coherence in Distributed Systems

256 Kbytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

0
27.0%
18.9%
14.6%
13.1%
11.8%
7.4%

1
25.0%
17.6%
13.7%
12.4%
11.4%
7.2%

2
24.5%
17.2%
13.4%
12.1%
11.2%
7.0%

3
24.4%
17.1%
13.3%
12.0%
11.1%
6.9%

Cache Size Blocks read ahead

512 byte blocks

256 Kbytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

0
20.3%
13.3%
8.9%
7.3%
5.8%
4.3%

1
20.5%
14.4%
9.2%
7.0%
6.1%
4.3%

2
22.0%
16.1%
10.0%
7.3%
6.5%
4.9%

3
22.0%
16.1%
10.0%
7.3%
6.5%
5.0%

Cache Size Blocks read ahead

4096 byte blocks

Table 3-9: I/O ratio vs. cache size and readahead policy for trace A

3.5.6. Network latency
The stated intention of a cache is to decrease the effective access time to a set of objects. To

judge how well a large cache can improve the effective access time of cross-network disk ac-
cesses, we ran another set of simulations that varied the delay charged for each disk access from
30 ms (average time for a 4 Kbyte block from a fast disk) to 120 ms (average time for a 4 Kbyte
block across a 10 Mbit/sec network). The results are shown in Figure 3-5.

The surface shows that a sufficiently large cache allows a remote disk to perform as effec-
tively as a local disk with a smaller cache. Figure 3-6 shows the data in a different format.

From this graph, we see that a range of effective access times can be achieved at all four
transfer rates. For example, an effective access time of approximate 7 ms/block can be achieved
with a 700 Kbyte cache at a transfer rate of 30 ms/block, and with a 7 Mbyte cache at a transfer
rate of 120 ms/block. A cache of 7 Mbytes is feasible with today’s memory technology, and may
become commonplace in the next few years. Performance at the level of a 400 Kbyte cache at 30
ms is available at 120 ms with only a 2 Mbyte cache, which is easily within the reach of today’s
technology.

3.6. Comparisons to previous work
By recording the traffic demand on the UNIX file system, we have determined that the average

user, while active, uses approximately 2 Kbytes/sec of data from the file system. This amount is
exclusive of any overhead involved in managing the directory or file system structure, or page
replacement for memory management.
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Figure 3-5: Effect of cache size and transfer time on effective access time

In our measurements of the file system, we discovered that as much as 50% of the disk ac-
tivity is related to file system management: scanning directories to map file names to inodes, and
locking, unlocking, reading, and writing those inodes.

Measurements of shared file access revealed that our users seldom share files. Of those files
that are shared, most are shared for read-only data. Writes to shared files occur infrequently.

These results corroborate the measurements of Lazowska et al. [32] and Ousterhout et al. [38].
Lazowska et al. recorded about 4 Kbytes/sec of data demand per user, but their measurements
include directory, file system, and paging overhead, confirming our measurement that more than
50% of disk activity is due to these operations. Ousterhout et al. report per-user demands similar
to ours.

Our results concerning the level of sharing agree with those reported by Floyd [21]. He found
that while there is extensive sharing of some few files, this sharing is restricted to standard sys-
tem files. He saw very little sharing of user files.

Our simulations of various file block cache organizations indicate that a write-back cache with
a block size of 4096 bytes is optimal for our environment. The simulations also indicate that a
moderately sized block cache reduces disk traffic by as much as 85%. Increasing the amount of
memory in the caches continues to increase the performance benefits.
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Figure 3-6: Effective access time vs. cache size and transfer time

These results are similar to the previous studies of the UNIX file system reported by Lazowska
et al. and Ousterhout et al. Lazowska et al. measured a program development environment
similar to ours, while Ousterhout et al. measured both a program development environment and
a computer aided design environment.
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The results also corroborate those of Smith’s disk cache study, reported in [51]. His study used
IBM mainframes running variants of IBM’s OS operating system, and was based on physical
disk blocks rather than logical file accesses. The three measured systems performed banking
transactions, time sharing, and batch production work for administrative, scientific, development,
and engineering support applications workloads.

3.7. Conclusions
These results from a single processor system allow us to draw several important conclusions

concerning the design of a distributed file system. On the average, users demand fairly low data
rates from the file system. Thus, the bandwidth available in a conventional 10 Mbit/second local
area network should be sufficient to support several hundred active users, including the bursty
high traffic levels sometimes experienced.

Since much of the file system activity is associated with management of the on-disk structures
of the file system, a distributed file system which provides high-level file system access by
clients will greatly reduce the amount of network traffic. If the server is solely responsible for
management and access of these structures, network traffic can be cut by as much as 50%, com-
pared to a distributed file system in which each client reads and writes directories, and reads,
writes, locks, and unlocks inodes across the network.

A file block cache can eliminate as much as 85% of the remaining network traffic. Periodic
flushing of modified blocks in the cache will limit the amount of data lost in the event of a crash,
and will not severely degrade the performance benefits of the cache.

There are two ways to further increase the file system performance of a client workstation ----
adding local disk storage or greatly increasing the size of the cache memory. The current
economy of memory costs vs. disk costs indicate that adding more memory is the less expensive
way to increase performance.

Finally, since there is very little sharing of file data between clients, the mechanisms involved
in maintaining cache coherence should be designed to perform most efficiently for non-shared
data. The handling of shared data, especially writing of shared data, can be expensive without
causing a significant performance penalty.
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4. The Caching Ring
Based on the experiments presented in Chapter 3, we concluded that caching is essential for

adequate performance in a network file system. In this chapter, we present a combination of
hardware and software − the Caching Ring − that provides a generalized solution to the cache
coherence problem for distributed systems.

4.1. Underlying concepts of the Caching Ring
The Caching Ring is based on several fundamental concepts:

The first is an efficient mechanism for reliable multicast. This mechanism provides inexpen-
sive and accurate communication between those stations on the network that share an object, but
does not impose any burden on stations that are uninterested in transactions about an object.

2Since the group of processors concerned about an object is small, this eliminates a large amount
of unnecessary input processing at each network station.

The second concept is that caching is solely based on the names of objects. The cache
hardware and protocols need not have any specific knowledge about the structure of the objects
being cached. The hardware and protocols merely assume that the objects are made up of many
equal size blocks.

Third, we rely on hardware support for an efficient implementation of reliable multicast and
caching by name. The Caching Ring Interface (CRI) at each station on the ring manages the
communications hardware, the cache coherence algorithm, and all cache functions. Figure 4-1
shows a schematic diagram of the architecture of the CRI.

The cache directory and the memory used for cached objects are dual-ported between the CRI
and the CPU, i.e., the CPU can locate and access cached objects without intervention by the CRI.
The CPU may not, however, modify either of these data areas. The cache controller maintains
two private data stores, the status bits associated with each cache entry, and a cache of group
maps. Groups are discussed further in Section 4.2.2. The ring interface provides reliable mul-
ticast communication with the other stations on the Caching Ring.

The CRI provides four primitives for the client CPU: open, close, read, and write. These are
used to access objects that do not currently reside in the cache, and modify entries that already

2See Section 3.4.2.
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Figure 4-1: Block diagram of the Caching Ring Interface

exist. Direct modification of cached entries is not allowed, because the coherence algorithm must
first be exercised.

4.2. Organization and operation of the Caching Ring
Stations on the Caching Ring fall into one of two categories: client or server. Clients, denoted

C . . . C , rely on a single central server, S, for storage of all objects managed by the Caching1 N
Ring. Each client has a local cache of recently used object blocks, which is used, when possible,
to satisfy requests before transferring objects across the network. A client need not cache all the

3blocks of an object that it accesses. The cache coherence protocol is designed to allow the clients
to share only those blocks that are needed.

The server is the repository for all objects in the system. The same object name space is shared
by all clients in the system. Objects can be shared by any number of clients. The server holds all
access control information locally, and performs access control operations for the clients.

4.2.1. The interconnection network
The lowest level of the Caching Ring is the interconnection network. The interconnection net-

work is a ring, using a token-passing access control strategy [19, 18, 45]. The ring provides a
synchronous communication environment in which stations on the network clearly know when it
is their turn to transmit (and thus know that all other stations are ready to receive). It also
provides reliable communications, because a transmitted message is guaranteed to pass each sta-
tion before it returns to the originator. Each station that receives the message acknowledges
receipt by marking the packet.

The ring provides unicast, multicast, and broadcast addressing. Addressing is based on an
N-bit field of recipients in the header of the packets. Each station is statically assigned a par-
ticular bit in the bit field; if that bit is set, the station accepts the packet and acts on it. Positive
acknowledgement of reception is provided to the sender by each recipient resetting its address bit
before forwarding the packet. Without loss of generality, we always assign the server bit 0.

3In contrast to the ITC and CFS file systems.
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The use of a token-passing ring provides the Caching Ring with an efficient mutual exclusion
and serialization mechanism. Internal data structures are modified only while holding the ring
token. A station is thus guaranteed to have seen all messages previously transmitted which can
have an affect on the internal data structures. At any time, it is guaranteed that only one station
will be modifying its data structures. This is necessary for correct operation of the coherence
algorithm; Section 4.2.3 gives a further example. External requests have highest priorities, fol-
lowed by cache responses, and finally processor requests.

Traffic on the ring is divided into three categories: cache control, cache data, and command.
Cache control and cache data packets implement the cache operations and cache coherence algo-
rithm. Command packets are available for higher level protocols (such as a distributed file
system) to implement necessary functions.

4.2.2. Groups
We define a group to be the set of stations interested in transactions about a particular object

being cached. We denote the members of the group associated with object O as C (O). EachG
group is identified to the stations on the ring by a group identifier or groupID which is the bit
vector that forms the network multicast address that includes the stations in the groups. Several
groups may be identified by the same groupID. Groups are maintained strictly between the CRIs
in the system.

Each member of a group knows all members of the group. The CRI contains a cache of object
name to groupID mappings. When a message about an object is to be sent, it is multicast only to
the other members of the group, by using the groupID as the address field of the packet contain-
ing the message. These multicasts relieve uninvolved stations of the overhead of discarding the
excess messages.

We explicitly chose not to centralize the information about group members at the server, but
rather to distributed it among all interested clients. With a server-centralized mechanism, the
server must act as a relay for every message from a client to the appropriate group, demanding
much more of the bandwidth available at the server, and increasing the overall network load.

4.2.3. The coherence algorithm
The object caches in the clients are designed to minimize server demand, since this is the

limiting system resource in a distributed file system [32]. To further reduce server demand, the
caches implement a write-back server update policy instead of a write-through approach.

The object caches are managed using a block ownership protocol similar to that of the snoopy
cache, discussed in Section 1.2.2.3. The CRIs maintain cache coherence on the basis of infor-
mation stored locally at each cache. Each cache listens to transactions on the network and takes
action, if necessary, to maintain the coherence of those blocks of which it has copies.

Several stations in a group may hold cached copies of the same block, but only one cache,
denoted C , is the owner of the block. The owner responds to read requests for a block, and isO
the only station that may update the block.
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Initially, the server is the owner of all blocks. As clients need to update blocks, ownership is
transferred away from the server. The server is not guaranteed to have an up-to-date copy of
blocks that it does not own, as explained below.

A cached object block can be public or private. Public blocks are potentially shared between
several client caches. Private blocks are guaranteed to exist in only a single cache.

Finally, a cached block can be modified with respect to the copy at the server. Before modify-
ing a block, the client must become the owner of the block and make its copy private. The owner
then modifies the block. The owner responds to subsequent read requests with the latest data.
Responding to such a request changes the block’s status from private to public. Before making
further modifications to the block, the owner must once again convert the block from public to
private.

Based on the concepts of ownership, public vs. private, and modified, we can describe the
possible states of a cache entry. Table 4-1 shows the possible states.

State Description Private Modified Owner State Name

Clean, unowned, public false false false Shared-valid

Clean, owned, public false false true Valid

false true false

Modified, owned, public false true true Shared-dirty

true false false

Clean, owned, private true false true Transition

true true false

Modified, owned, private true true true Dirty

States without a name are not possible in the system.
The Valid state is possible only at the server.

Table 4-1: Possible states of cache entries

In addition to the six possible states above, there is a seventh: Invalid. This state describes a
cache entry that is not in use.

Modified blocks are not written-back to the server when they become shared. A block in either
the Dirty or Shared-dirty state must be written-back to the server if it is selected for replace-

4ment. It is also written-back to the server if ownership is transferred to another station. A block
in state Dirty can be in only one cache. A block can be in state Shared-dirty in only one cache,
but might at the same time be present in state Shared-valid in other caches.

To outline the Caching Ring cache coherence protocol, we consider the essential actions in
referencing block b from object O in the following four cases: read hit, read miss, write hit, and

4See Section 4.2.4.4.
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write miss. We use C to denote the referencing cache, and C (b) and C (b) to denote the stateR O R
of the copy of block b at the owner and referencing caches, respectively.

The coherence protocol works as follows (see also Figures 4-2 and 4-3):

• Read hit: If the object block is in the cache, it is guaranteed to be a valid copy of
the data. The processor can access the data through the shared cache directory and
shared cache memory with no action necessary by the CRI or the protocol.

• Read miss: C responds to C with a copy of b. If C ≠ S, C has most recentlyO R O O
modified b, and C (b) is either Dirty or Shared-dirty. C sets C (b) toO O O
Shared-dirty. If C = S, C (b) remains unchanged. C sets C (b) toO O R R
Shared-valid.

• Write hit: If C (b) is Dirty, the write proceeds with no delay. If C (b) isR R
Shared-valid or Shared-dirty, a message is sent to C (O). This message instructsG
all members of C (O) to change the state of their copy of b to Invalid. After thisG
message has circulated around the ring, C (b) is set to Transition. The write isR
immediately completed, and C (b) is changed to Dirty.R

• Write miss: Like a read miss, the object block comes directly from C . If C (b) isO O
Shared-dirty or Dirty, a copy of the block is also written-back to the server.  All
other caches in C (O) with copies of b change the state of their copy to Invalid andG
C (b) is set to Dirty.R

4.2.3.1. Client state transitions
The cache in a client station implements all the states except Valid. A client cache entry will

never be in the Valid state because a client only becomes the owner of a block when the block is
being updated. Thus, the block will be left in the Shared-dirty or Dirty state. If the client does
not own the block, the block is in the Shared-valid state. Figure 4-2 shows the possible tran-
sitions for entries in a client cache. Client cache entries are never in the Valid state because
client caches only request ownership when modifying a block. A modified cache entry remains
in the Shared-dirty or Dirty states until it is selected for replacement. At that time, ownership
and the modified contents of the block are returned to the server. When closing an object, the
cache returns to the server ownership of any associated cached blocks. To retain the performance
improvements of retaining blocks after close discussed in Section 3.5.2, these blocks are retained
in the cache in state Shared-valid.

When a cache entry that is in either the Shared-dirty or Dirty states is replaced in a client
cache, the modified data are written back to the server, and ownership of the block is transferred
to the server. When a cache entry that is in the Shared-valid state is replaced, no special action
need be taken.

4.2.3.2. Server state transitions
The cache in the server implements all the states, including Valid. Figure 4-3 shows the pos-

sible transitions for entries in a server cache.

Because the server is the repository for all shared objects in the system, the server must also
respond to requests for object blocks that do not appear in any cache. In the cache coherence
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Figure 4-2: States of cache entries in a client

protocol, these object blocks can be viewed as residing in the server cache, in state Valid. The
server responds to requests for these blocks by moving a copy from the object store into its
cache, and then sending a copy to the requesting cache.

When the server cache must replace a cache entry that is in either the Shared-dirty or Dirty
states, the modified copy is written-back to the object store. When replacing a cache entry that is
in either the Shared-valid or Valid, no special action is required. In either case, ownership of the
block remains at the server.

4.2.4. Cache-to-cache network messages
The block ownership protocol is implemented with eight cache control messages that are en-

capsulated in network packets and transmitted on the ring. The messages are designed so that
responses are fast to compute; packet formats provide space for the response to be inserted in the
original packet. The network interface contains enough delay that the packet is held at each sta-
tion while the response is computed and inserted. Responses that involve longer computation are
sent in a separate packet, as noted below. The original packet is marked by the station that will
respond stating that a response is forthcoming.
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Messages are divided into three categories: group and access control, cache control, and data
responses. Each category is described below.

4.2.4.1. Group and access control messages
To access an object, a client must satisfy the server that it has access rights to the object, and

join the pre-existing group concerned with that object. The open message accomplishes this.
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open(objectName, userName, accessMode)
The client sends an open message to the server to indicate that it wishes to access object
objectName in a manner described by accessMode. The server determines if the supplied
userName has sufficient rights to access objectName. If not, access is denied. If so, the server
returns the groupID of the group currently sharing objectName, and a unique objectID which is
subsequently used to refer to the specified object.

The server requires some time delay to check perform object name to objectID conversion and
access rights. The response message is always sent as a separate dataResponse message. The
server multicasts this response packet to all clients in the group associated with the resulting
objectID. Each recipient immediately adds the requesting client to the group. This avoids any
possibility of a client leaving the group in the interval between receipt of the dataResponse mes-
sage by the client and that client acquiring the token to send a message to the other clients in the
group indicating that it is joining the group.

When a client is finished referencing an object, it leaves the group. This is accomplished with
the leaveGroup message:

leaveGroup(objectID)
The client multicasts the leaveGroup message to the group associated with objectID. Each
recipient deletes the originating client from its stored copy of the group for objectID.

Because client caches retain blocks associated with an object after the last process closes the
object, there is no explicit message to close off access to an object. When the server receives a
leaveGroup message, it deletes the sender from the indicated group. If there are no more mem-
bers in the group, the object may not be accessed until the server receives another open message.

4.2.4.2. Cache control messages
Four messages implement the cache coherence protocol. Figures 4-2 and 4-3 show the actions

of the client and server caches, respectively, on receipt of any of these messages.

sfetch(objectID, blockNumber)
A client multicasts an sfetch (for shared fetch) message to the groupID associated with the object
referenced by objectID to receive a public copy of the logical block blockNumber. The current
owner of that block marks the original packet indicating that it will respond, and sends a copy of
the block in a separate dataResponse message. The owner converts the block to public status if
the block is private.

pfetch(objectID, blockNumber)
A client multicasts a pfetch (for private fetch) message to the groupID associated with the object
referenced by objectID to receive a private copy of the logical block blockNumber. The current
owner of that block marks the original packet indicating that it will respond, and sends a copy of
the block in a separate dataResponse message. If the block is modified, the dataResponse mes-
sage is multicast to both the requestor and the server, effecting a write-back of the new contents
to the object store. Ownership of the block is transferred to the requestor. All caches other than
the requestor invalidate the block, if it exists in their caches.



The Caching Ring 49

replace(objectID , blockNumber ,objectID , blockNumber )1 1 2 2
The owner of logical block blockNumber of the object referenced by objectID multicasts a1 1
replace message to the groupID associated with the object referenced by objectID to replace2
block blockNumber with logical block blockNumber of object objectID in its cache. Owner-1 2 2
ship of block blockNumber is transferred to the server. (Recall that the server is part of every1
groupID.) If block blockNumber is modified, the new contents are appended to the original1
packet for the server to read, effecting a write-back to the object store. The owner of block
blockNumber marks the packet indicating that it will respond and returns the contents of block2
blockNumber to the requestor in a separate dataResponse packet. Clients use a special case of2
the replace message, with both objectID and blockNumber set to zero, to return ownership of1 1
blocks to the server when closing an object.

The group associated with object objectID need not be involved in this transaction. Only the1
client and server are concerned with the transfer of ownership of this (or any) block, since the
owner of a block is responsible for responding to such requests. At the completion of this mes-
sage, the server owns block blockNumber , and will respond to any future requests for it.1

Alternatively, clients could replace owned blocks by sending a message to give ownership
back to the server, followed by an appropriate fetch message. The replace message saves one
message every time a block is replaced.

private(objectID, blockNumber)
A client multicasts a private message to the groupID associated with the object referenced by
objectID to convert the copy of block blockNumber that it holds from a public copy to a private
copy (which may subsequently be modified by the requestor). Ownership is transferred to the
requestor. If block blockNumber is modified, the current contents are sent to the server in a
separate dataResponse packet, effecting a write-back to the object store. All caches that hold a
copy of the block, other than the requestor, invalidate the block.

4.2.4.3. Data response messages
All responses that can not be included in the original message, because the response takes a

long time to compose, are returned in a separate dataResponse packet. An example is when the
server must respond with an object block that does not reside in the server’s cache, but must be
fetched from the backing store.

When a client sends a pfetch message, the client cache assumes ownership of the block as
soon as the message has completed transit of the ring. The client is now responsible for answer-
ing further fetch requests, but may not yet have the data for the object block. When this is the
case, the client marks the request to indicate that it will respond, and keeps track of which other
clients have requests pending for that block. When the owner finally receives the data for the
block, it sends a dataResponse message to all pending clients, indicating that they should resend
their request. At this point, the owner has the data and can satisfy the requests immediately.

Ownership transfer via a private message from another client during this pending period does
not cause a problem. Upon receipt of the original pfetch message, all caches that held copies of
the requested block, but were not the owner of the block, invalidated their copies. The time delay
in response occurs only because the server is the owner. While waiting for the data for the block
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to be returned, it is guaranteed that there are no other copies of the block in any cache. Thus, no
private message will be sent during this interval.

4.2.4.4. Emergencies
In an ideal situation, the above messages suffice to implement the cache coherence protocol of

the Caching Ring. However, the stations on the network can fail, and may fail while holding
ownership of some blocks. Thus, we add a ninth message:

bailout(objectID, blockNumber)
A client sends a bailout message to the server when it receives no response from the owner of
block blockNumber of the object referenced by objectID. The server also attempts to contact the
owner, and, if this fails, issues a private message to become the owner of the block, and falls
back to the most recently written-back copy of the block. The server returns this copy of the
block to the requestor in a separate dataResponse packet.

The server then sends private messages for all blocks that it knows are owned by any client.
After this, the server removes the failed station from the group by sending a leaveGroup message
on the behalf of the failed client.

Because the protocol includes a write-back of a modified block every time the ownership of
that block changes, the amount of data lost if a client crashes is, at most, the updates made by the
current owner.

We expect that stations will fail due to processor failure rather than network failure. The ar-
chitecture of ring networks does not allow continued communications when any ring interface
has failed. Clients can check that received messages are from a station that is recorded as a mem-
ber of the group. If the source is not a member of the group, the receiver can disregard the mes-
sage and notify the source that it is not part of the group. This prevents the client processor that
survives a network failure from disrupting the coherence protocol.

4.2.4.5. Cost of the messages
The absolute time delay for the delivery of a network message is dependent upon the number

of stations in the network, because each station adds a fixed delay to delivery times. However,
we can compare the cost of the various messages by expressing the delays in terms of ring
delays----the time required for a message to make one complete circuit of the network. Thus, we
can estimate the expected delay for various operations on the ring.

Again, we consider four possible cases: read hit, read miss, write hit, and write miss. Expected
delays for each case are as follows:

• Read hit: There is no network delay.

• Read miss: The expected delay for a read miss is one or two ring times. The client
first issues a sfetch, with a delay of one ring time.  If the owner is another client, the
block resides in the owner’s cache, and the contents can be appended to the original
packet. If the server is the owner, and the block is not in the server’s cache, there
will be a delay while the block is fetched from the object store. The server marks
the packet stating that it will respond, and fetches the block.  The server then sends a
dataResponse, with a delay of one ring time.  The delay of fetching the block from
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the object store can be partially overlapped with the delay for the sfetch, depending
on the relative locations of the client and server on the ring.

• Write hit: The expected delay for a write hit is zero or one ring time.  If the block is
in the Dirty state, no message need be sent.  The copy of the block is known to be
the only one in the system, and can be modified immediately.  If the block is in the
Shared-dirty state, other caches may hold a copy of the block, and a private mes-
sage must be sent, with a delay of one ring time, to invalidate those other copies.

• Write miss: The expected delay for a write miss is one or two ring times.  The
client first issues a pfetch message, with a delay of one ring time. If another client is
the owner, the block must reside in the owner’s cache, and the contents are ap-
pended to the original packet.  If the server owns the block, and the block is not in
the server’s cache, there will be a delay while the block is fetched from the object
store. The server marks the packet stating that it will respond, and fetches the block.
The server then sends a dataResponse, with a delay of one ring time. The delay of
fetching the block from the object store can be partially overlapped with the delay
for the pfetch, depending on the relative locations of the client and server on the
ring.

4.2.5. Semantics of shared writes
Since there can be a delay of up to one ring time between the time a client issues a private or

pfetch message and the holder of a copy of the block receives it, there is an interval during which
the holder of a copy may provide stale data. Consider two clients C and C , sharing block B of1 2
an object. C is the current owner of block B. A process on C writes into block B. In response,2 1
the CRI at C sends a private message to C , requesting ownership of B, and subsequent removal1 2
of B from the cache at C . Between the write and the time C receives the message, a process on2 2
C can read the cached block, and receive (now) stale data.2

A desirable solution would be for the write at C to fail in this case, since the write is stalled1
pending transfer of ownership. This requires that messages be timestamped, which further re-
quires that the stations in the distributed system have synchronized clocks. We prefer not to re-
quire these attributes. In essence, the semantics of writing on the Caching Ring are such that the
write is not complete until the private or pfetch message has completed its transit around the
ring. This is different from the immediately complete writes that many simple UNIX programs
assume, and can lead to problems as described here.

Since our evidence shows that shared access makes up only about 10% of the measured ac-
tivity on our UNIX system, and only 5% of those accesses involve writes, we require that a
higher-level locking protocol be enforced between the sharing clients. This is consistent with the
standard UNIX file system. Other systems built on top of the Caching Ring must adapt to these
semantics, perhaps by building a higher-level locking protocol using the command packets
provided by the CRI.
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Figure 4-4: Timeline showing contention problem

4.2.6. Motivation for this design
This algorithm reflects the results discussed in Chapter 3. Most importantly, it places the

naming, access control, directory, file, and disk managers at the server. This eliminates the net-
work traffic that would be required to transfer the contents of and serialize access to the data
structures used to implement the file system.

We concluded that performance of reads should be of the highest importance, so the CRI im-
poses no communications or synchronization delay on read hits. This, in turn, leads to the shared
write semantics discussed above. If shared writes were expected to occur more frequently, the
coherence algorithm could force clients to synchronize through the CRI on a read hit. Since
processor requests have the lowest priority in the CRI, all pending invalidation messages would
be processed first, and the stale data would not appear in the cache. However, this leads to a
higher average read access time.

Similarly, if writes occurred more often, we would consider transferring ownership with every
fetch message, be it pfetch or sfetch. This would eliminate some of the time spent waiting to
attain ownership of a block before writing it. This would lead to higher write-back traffic to the
server, since modified blocks are written back with every ownership change. Alternate strategies
to predict the need to make a block private would also need to be explored.
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4.3. Summary
We have presented the design of the Caching Ring, an intelligent, network-based caching sys-

tem for use in a distributed system. Utilizing the intelligent interface, a client workstation can
access objects from a central repository and share portions of these objects with other worksta-
tions. To improve performance, the intelligent interface contains memory to act as a cache of
recently used objects. This cache is used to satisfy requests to access objects whenever possible.

The intelligent interface implements a network protocol to maintain consistency among the
caches of clients sharing an object, and to minimize the amount of data lost if a client fails.
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5. A Simulation Study of the Caching Ring
To investigate the performance of the Caching Ring, we designed a simple distributed file

system in which disk files are the shared objects. Using the activity traces discussed in Chapter
3, we simulated the performance of the Caching Ring for several different system configurations.

This chapter extends our understanding of caching to the performance in distributed systems.
Using simulation, we were able to determine the effects of cache size and placement, and locate
the expected performance bottlenecks in a distributed caching system.

5.1. A file system built on the Caching Ring
We now present the design and analyze the performance of a distributed file system built

using the facilities provided by the Caching Ring. The file system has the semantics of the
4.2BSD UNIX file system, although we did not implement all the primitives. We did design
mechanisms for opening, closing, reading, writing, and seeking on files, as well as accessing and
maintaining the directory structure. The implementation of the remaining status and maintenance
primitives is straightforward using command packets, but these primitives do not play a part in
measuring the performance of the Caching Ring.

5.1.1. Architecture of the Caching Ring file system
The file system is based on a set of diskless clients and a single central file server. The server

maintains a complete file system that is shared by all clients. The same file name space is shared
by all clients in the system. Clients use file names to identify files when opening them. There-
after, the server and clients use objectIDs to identify open files.

The server also maintains the naming manager and the directory system, providing primitives
for atomic directory access and maintenance across the network, using command packets. In
using these primitives, the client operating systems do not need to know the structure of the
directory system, and do not transfer large amounts of data across the network while searching or
modifying the directory system. Updates to directories are guaranteed to be synchronized, be-
cause they are serialized at the server.



56 Cache Coherence in Distributed Systems

5.1.2. Implementation of the file system
The implementation of the file access primitives is a straightforward mapping onto the primi-

tives provided by the Caching Ring. To open a file, a client sends an open packet with the file
name, authentication information, and intended access mode. The server checks for access rights,
and returns an objectID that describes the file and a groupID that describes the group of clients
currently sharing the file. This response is multicast to the group, as described in Section 4.2.4.1.
If the open fails for any reason, the server returns a failure message to the client indicating the
reason for the failure.

To read a block from the file, the client operating system first checks the CRI cache directory
to see if the file is already in the cache. If so, the cached copy is used with no intervention by the
CRI. If not, a read request for the block is passed to the CRI. The CRI multicasts an sfetch mes-
sage to the groupID associated with the file, which is recorded in the group mapping cache in the
CRI, and waits for the response from the Caching Ring.

To write a block of the file, the client operating system issues a write command to the CRI. If a
copy of the block is already in the cache, and not in the Transition or Dirty state, the CRI
multicasts a private message to the file’s groupID, and sets the state of the entry to Transition.
If there is no copy of the block in the cache, the CRI sends a pfetch message to the corresponding
groupID and waits for the response. When the response arrives, it contains the current data for
the block. The CRI places this data in the cache, sets the entry state to Transition, writes the new
data, and sets the state to Dirty. Only then is the client operating system notified that the write
has completed.

To close a file, the client operating system decrements the file reference count. When the ref-
erence count reaches zero, the client operating system issues a close command to the CRI. The
CRI returns ownership of all cached blocks associated with the file to the server, as described in
Section 4.2.4.1. When all of these blocks are subsequently invalidated or replaced, the CRI mul-
ticasts a leaveGroup to the associated group, and is no longer party to messages concerning that
file.

The object names passed in an open message to the server are marked as names that come
from the file system portion of the shared object name space that the server provides to the sys-
tem. Once the file object has been opened, all transactions are in terms of objectID, and the
server need not differentiate between file objects and other objects that it provides to clients on
the Caching Ring.

5.1.3. Operating system view of the file system
To the higher level operating system routines that use the file system, this distributed file sys-

tem has the identical semantics as a file system implemented on a locally attached disk. Files
appear as an unformatted stream of bytes.

Files are named by text strings, and once open, referred to by small integers, known as file
descriptors. Internally, the file system maps these small integers into the objectIDs used by the
CRI.
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Requests to read and write from the file contain a file descriptor, the starting address of a
buffer in which to place or from which to copy the data, and the number of bytes to transfer. The
file system maintains the current offset in the file at which to begin operations. This offset can be
altered by the seek primitive. The file system computes the logical block numbers of the range of
bytes affected by the request, and uses the CRI to access those blocks.

5.2. Simulation studies
To evaluate the performance of the Caching Ring, we wrote a program to simulate this dis-

tributed file system. We drove it with the activity traces described in Chapter 3, and, by varying
parameters in the simulated system, gained insight into the performance effects of different por-
tions of the system. These simulations also allow us to compare the performance of a Caching
Ring distributed file system to the performance of other file systems.

5.2.1. Description of the simulator
The simulator is written in the CSIM simulation language [26]. CSIM is a process oriented

simulation language based on the C programming language. It supports quasi-parallel execution
of several software processes. The basic unit of execution is a process, and each process can
initiate sub-processes. Each process has both a private data store and access to global data.
Processes can cause events to happen, wait for events to happen, and cause simulated time to
pass. Much of the data gathering associated with simulation models is automated, and is easy to
extend. The language is implemented primarily as calls to procedures in a runtime library, so the
full power of the host operating system is available to support features such as I/O and dynamic
memory management.

The process model of the simulation language serves as a convenient environment in which to
do concurrent programming [27, 3]. The simulated processes can be thought of as executing in
parallel, sharing a common address space. CSIM directly provides events that are similar to
semaphores, and can be used for process synchronization [14, 15]. Some cooperating processes
need to pass data back and forth as well as synchronize. For them, we implemented message
passing queues on top of the primitives provided by CSIM.

The model of the caching ring contains a process for each client processor, each CRI, and the
server. These processes communicate through message passing queues, and synchronize by wait-
ing for access to the ring or for synchronization events to be set. Access to the ring is controlled
by a token, which is passed from cache to cache. When the ring is idle, any CRI can take the
token and send on the ring. The message is placed on the input queue of the next station on the
ring, and the token is passed to that station. Each CRI executes in the loop of ‘‘receive packet, act
on packet, forward packet’’ until the associated processor has some work to be done. A CRI
removes an inbound packet when it notices that it is the originator of that packet. The originator
of the packet advances simulated time by the appropriate amount for the length of the packet.
Unless mentioned otherwise below, the simulated transmission rate on the ring is 10 Mbits/sec,
the delay through each CRI is 32 bit times, and there are 32 stations on the ring.

A processor with a request for the CRI places a message on the CRI’s incoming request queue,
and resets and waits for a completion signal from the CRI. If the ring is currently idle, the CRI
forms an appropriate message, acquires the token, and transmits the message on the ring. When
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the response appears in the CRI input queue, the result is placed in the block cache, and the
processor is signalled to continue. If the ring is not idle, the CRI forms the message and waits for
the token to appear. After processing and forwarding all inbound messages, the CRI adds its
message to the next station’s input queue, and only then passes the token. This simple model of
the processor does not accurately model a multiprogrammed operating system. Once a processor
begins waiting for the CRI to respond, it is blocked from completing other operations that might
be satisfied from the cache. We have, however, found this model sufficient to discover many
factors affecting the performance of the Caching Ring.

The server is implemented as two processes with message queues between them. One process
simulates the server CRI, and the other manages the simulated disk at the processor. The CRI
places incoming open and block fetch requests on the disk queue, and continues network opera-
tions. The disk process delays for an amount of time appropriate to the request, and places a
response on the CRI incoming request queue. At the next opportunity, the CRI acquires the ring
token, composes a response, and sends it to the requesting client.

Each CRI maintains data structures similar to those used for the simulations in Chapter 3.
There is an open object table and a set of cache blocks that the CRI manages according to an
LRU replacement policy. These are shared by the processor and CRI. In addition, there is a table
mapping objectIDs to groupIDs, for composition of network addresses, and a table containing
the state of each entry in the cache block (Invalid, Shared-valid, etc.)

5.2.2. Using the trace data
To compare the simulated performance of the Caching Ring file system with the simulated

results in Chapter 3, we generated processor requests from the same activity traces. Once again,
we used only trace records generated by the file manager, thus simulating only I/O activity
generated by user processes. The original traces recorded the user and process identifier of the
process making each request, so it is straightforward to split the traces into separate streams, one
stream per simulated client. Unfortunately, there is a fair amount of file system activity due to
various system tasks. This activity must be accounted for in some manner. It cannot simply be
ignored, nor can it necessarily be duplicated and charged to each simulated client. We have used
the traces in the simulations reported below in ways that attempt to treat this system activity
fairly. As in Chapter 3, the four original traces produced nearly indistinguishable results; we
report only the results from trace A.

5.2.3. Miss ratio vs. cache size
In order to characterize the basic performance of the Caching Ring, we simulated a simple

system with one active client. We varied the cache size and network transmission parameters to
determine their effects on the miss ratio, effective access time, and utilization of the disk and
network. The block size is 4096 bytes and the cache is write-back, both of which were shown in
Chapter 3 to be optimal for this set of traces. The disk service time, exclusive of any network
delay, is 30 ms/block. To isolate the effects of the client cache and network, there is no cache at
the server. The results of the cache size vs. miss ratio experiments are shown in Figure 5-1 and
Table 5-1.
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Figure 5-1: Miss ratio and effective read access vs. cache size

The miss ratios are higher than those reported in Table 3-1. This is the effect of the block
replacement policy enforced by the CRI on file closes. Every modified block is written-back to
the server when the file is closed. Thus the write miss ratio is close to 100%, which affects the
overall miss ratio we report. Another cause of the increased miss ratio is the action of the
protocol on write misses. to be written would fully replace an existing block. In our simulation in
Chapter 3, if a block to be written was not in the cache, we did not charge a write miss or add
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Cache Size Miss ratio Effective read
access time
(ms/block)

256 Kbytes 31.7% 14.8

512 Kbytes 27.8% 10.8

1 Mbyte 22.0% 6.66

2 Mbytes 19.9% 4.61

4 Mbytes 17.5% 3.58

8 Mbytes 10.9% 3.07

Table 5-1: Miss ratio and effective read access vs. cache size

any delay to the total write delay; the cache merely allocated a block and filled in the new data.
In the Caching Ring coherence protocol, it is necessary to send a pfetch message and wait for a
response before writing the block. These differences add to both the overall delay experienced
and to the write miss ratio.

Because we compute the effective access time as the total delay seen by the processor when
reading divided by the number of bytes read, this policy has minimal effect on the effective
access time. The only effect would come from the slightly increased network traffic from return-
ing modified file blocks to the server on close. For comparison, the access time of the disk is 30
ms/block, and the access time of a typical network disk is typically 120 ms/block.

Our results show that the Caching Ring provides a great performance improvement over a
network disk access mechanism. We attribute this to several factors.

First, by placing the directory, access control and disk managers completely at the server, we
eliminate the communications overhead associated with accessing manipulating the data used by
these managers across the network. The managers can use a memory cache of recently used
objects to further enhance performance.

Second, the server contains the portion of the file manager that maps logical file blocks to
physical disk blocks and interacts with the disk manager. This eliminates the remaining overhead
associated with maintenance of the file system. This placement decision eliminates ap-

5proximately 50% of the traffic to the server .

Furthermore, the network protocols involved have very little transmission and processing
overhead. In contrast, a network disk access mechanism such as Sun Microsystems’ ND is
layered over several general-purpose protocols [48]. This layering incurs a costly checksum
computation at several points in the procedure of accessing a disk block. The Caching Ring
avoids this overhead by using a specialized lightweight protocol.

Lastly, the computing equipment servicing the protocol is required to do nothing else. In ND,
the server machine is running a timesharing operating system and has a slow response time to

5See Section 3.6.
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processing incoming network packets. The server in the Caching Ring need only concern itself
with processing client packets as quickly as possible.

We also measured the utilization of the network and server disk for the various cache sizes.
The results are shown in Table 5-2.

Utilization

Cache Size Disk Network

256 Kbytes 21.7% 0.5%

512 Kbytes 17.4% 0.5%

1 Mbyte 14.7% 0.4%

2 Mbytes 13.2% 0.4%

4 Mbytes 12.3% 0.4%

8 Mbytes 11.9% 0.4%

Table 5-2: Disk and network utilizations for various cache sizes

The disk at the server is the likely bottleneck, though no queueing occurs at this load. The
network is very lightly loaded.

5.2.4. Network latency
To determine the effects of the network subsystem, we repeated the previous experiment,

varying the delay through each processor and the number of stations on the ring.

The performance of the Caching Ring depends on the ability to respond to requests in the
original packet containing the request. The acceptable delay through the station has a great im-
pact on the technology used to implement the CRI and the resultant complexity and cost. For this
experiment, we found that a delay of 8 bits at each station instead of 32 reduced the utilization of
the network by 20%, and a delay of 64 bits increased the utilization by 20%. In either case, total
network traffic still demands less than 1% of the available network bandwidth. The effect on the
effective read access time in each case was less than 0.1%.

The number of stations on the ring affects the total delay experienced in a ring transit time.
We varied the number of stations on the ring from 1 to 32, and noticed effects on the ring utiliza-
tion and effective access time similar to those produced by varying the delay at each station.

We conclude that the transmission characteristics of the network are not a large consideration
in the performance of the Caching Ring. Adding more active stations to the network will of
course generate more traffic, which will increase utilization and delay at each point in the sys-
tem. We explore this more fully below.
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5.2.5. Two processors in parallel execution
To test the robustness of the cache coherence algorithm and load all components of the sys-

tem, we simulated a system in which two client processors execute exactly the same activity.
Operation of the system proceeded as follows: C would send an open to S and wait. C wouldA B
send an open to S and wait. S would complete the first open and send the result to C . C wouldA A
issue the first fetch operation and wait. S would complete the second open and send the result to
C . C would send its first fetch operation. If the first operation was a write, C has assumedB B A
ownership of the block, and would indicate that it will respond to C . Otherwise, S indicates thatB
it will respond. S completes the fetch and sends the block the C . If C is writing the block, itA A
does so and sends a resend to C . C reissues the pfetch. C responds, invalidating its copy andB B A
sending a copy to the server. C receives the block and writes it. This continues until the end ofB
the trace is reached.

Utilization of the disk is considerably higher, as high as 44% for a 256 Kbyte cache, primarily
because almost every write involves a write miss, and the frequent change of ownership of
blocks causes many more updates to be sent to the server. Network utilization is also higher, for
the same reason. This experiment shows that the coherence protocol is sound and does not reveal
any timing races under high sharing loads.

5.2.6. Simulating multiple independent clients
We now consider the performance of the Caching Ring system under a more typical load from

several independent users. Ideally, we would like to separate the individual activity streams into
the activity generated by each user of the system. However, as discussed earlier, we must ac-
count for file activity generated by system-owned processes. We also wish to place a heavier
load on the system than is recorded in our original traces.

To generate activity streams, we split the original stream into as many streams as necessary to
drive the desired number of simulated processors. We duplicated existing streams as necessary.
To avoid uncharacteristic levels of sharing activity, processors started at different places in the
activity stream and wrapped around to the beginning.

Our analysis of the traces in Chapter 3 showed that the majority of file sharing is in system
files. Those files live on a particular device on Merlin’s disks, and can easily be identified in the
trace. To further support the independence of the generated activity streams, referenced files that
do not lie on the system disks were renamed, so that the only candidates for sharing between
processors are the system files.

We generated simulations with two different classes of processors. The first replicated the
activity traces without separating out individual users. This simulates the effect of several
timesharing systems on the network, and accurately depicts the load offered by the system
processors. The second also separated out the individual activity traces, and assigned each to a
separate processor. The activity from the system tasks was randomly assigned to a processor.
The results from these two sets of simulations were nearly indistinguishable; we report only the
results of simulating timesharing systems, as they seem to be a more accurate use of the traces.

We simulated systems with one to six client processors, representing approximately two to
twelve active users. Our simulation results are shown in Figure 5-2.



A Simulation Study of the Caching Ring 63

Figure 5-2: Multiple timesharing systems on the Ring

The effective disk block access time rises sharply after adding the fourth system to the ring. It
flattens out almost completely after adding the fifth system to the ring. We inspected the utiliza-
tions of the various components of the system, and found the utilization of the disk to be high at
these points, with queue lengths at the disk growing to be larger than 1. Figure 5-3 shows the
server disk utilization percentages.

Comparing these two graphs, we see that as the utilization of the server disk increases, and
with it the queue length, the effective disk service time increases to above the hardware delay.
This causes the effective access time to rise. The effects of the client cache are still visible, since
the miss ratio at the cache does not change. Because the service time at the server has become
dependent on the load, the effective access time necessarily also changes.

At high loads, the size of the cache does not affect the server disk utilization. This is because
the disk is being saturated by open and close requests, and the cache can not affect the I/O re-
quired to perform these.

Depending on the cache size chosen for the client processors, we conclude that the system can
support approximately ten users on the ring before the server disk becomes a significant bot-
tleneck. At maximum load, the utilization of the network is only 1.8%. Thus, we expect that ring
throughput will not be a performance bottleneck without much heavier loads.



64 Cache Coherence in Distributed Systems

Figure 5-3: Server disk utilization vs. timesharing clients

5.2.7. Size of the server cache
How can we shift the bottleneck of the server disk? The service time can be decreased in

several ways. The first is by adding second disk to share the load. If properly managed, this can
reduce the disk service time by as much as 50%, but this figure can only be achieved if files are
arranged so that the load is always evenly balanced. Similarly, the disk can be replaced with a
faster one; however, there are limits to the transfer rate of current disk technology, and the figure
of 30 milliseconds per block used in this simulation is based on one of the fastest currently avail-
able devices.

Another way to decrease the disk service time is to add a disk block cache at the server. We
repeated the experiments of the previous section with a range of cache sizes at the server, and
discovered that even a modest cache has a significant effect on the location of the bottleneck.

We found that even a modest cache of 256 Kbytes provides a large improvement in perfor-
mance, pushing the bottleneck out to approximately 14 systems, or 28 users. A large cache
places the bottleneck beyond the largest system we were able to simulate (a system with twenty
timesharing systems on the ring). The cache at the server provides the same relative performance
enhancement that it provides at the client.
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These simulation results correspond well to those reported by Lazowska et al. in [32]. In the
most efficient configuration that they measured, they expect a single server to support ap-
proximately 48 clients before exhibiting response times above those that we consider typical for
a network disk. By adding the effects of large caches in the system, we can expect performance
to improve to the levels presented here.

Neither of these methods reduces the I/O load generated by the naming manager. This can be
reduced in several ways: moving the on-disk data structures used by the naming manager (the
directories) to a separate disk, locating the naming manager on a separate server machine that
does not handle file disk traffic, or using a cache of name lookup information. As we did not
simulate the performance of the naming manager, we did not investigate the effects of changes
of this type.

Again, we do not consider paging traffic to the server. A typical Caching Ring would probably
use the server for both file activity and paging activity, and utilizations would then be higher. It
may also be unwise to consider a configuration in which so many clients are dependent on a
single server for reliability reasons.

5.2.8. Comparison to conventional reliable broadcast
We now consider implementing the Caching Ring coherence protocol on a conventional

broadcast network such as the Ethernet. Both the Ethernet and the Caching Ring network have
transmission rates of 10 Mbits/sec, so the performance comparison is an interesting one to make.
Because the coherence protocol of the Caching Ring depends on reliable broadcast transmission
of packets, we must ensure reliable transmission on the Ethernet. The Ethernet has a ‘‘best-
effort’’ delivery policy; it will make a good effort to deliver packets reliably, but does not
guarantee delivery. To guarantee reliable transmission of broadcast, an additional protocol
mechanism must be introduced.

Chang and Maxemchuck describe an algorithm that is typical of such protocols used on an
Ethernet in [10]. The protocol constructs a logical ring of the hosts that wish to reliably broadcast
messages to one another, and uses point-to-point with acknowledgements to messages to move
the broadcast packets around this ring. For a group of N hosts, the protocol requires at least N
messages to be sent on the network for each reliable broadcast.

The Ethernet is known to have poor performance on small packets [47]. This is largely be-
cause the Ethernet channel acquisition protocol enforces a 9.6 µsec delay between the end of one
packet and the beginning of the next. Since the control packets in the Caching Ring are all small,
we expect this to have a serious effect on the performance.

The Ethernet limits packet sizes to 1536 bytes, including protocol overhead. Since the Ether-
net is designed to accomodate a wide variety of network applications, there is a large amount of
space for protocol headers in a packet, with room for approximately 1 Kbyte of data. For our
optimal block size of 4 Kbytes, it will take four Ethernet packets to transmit a single block. We
compose the following bit count for one of these packets: 1024 × 8 bits of data, 64 bits of
objectID, 96 bits of addressing information, 16 bits of packet type, and 32 bits of block number,
for a total of 8400 bits. Each Ethernet packet is preceded by a 64 bit preamble, and followed by a
96 bit delay, for a total of 8560 bits, or a total delay of 856 µsec. Four packets are needed to
transmit a cache block, for a total delay of 3424 µsec.
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To transmit the same amount of data on the Caching Ring, we build a single packet consisting
of: 4096 × 8 bits of data, 64 bits of objectID, 96 bits of addressing information, 16 bits of packet
type, and 32 bits of block number, for a total of 32976 bits, or a total delay of 3297.6 µsec. In
addition, the packet will experience a 32 bit delay through each of the 32 stations on our ring,
adding 102.4 µsec for a total delay of 3400 µsec. Thus, we see that the transmission delay for
large packets in the two network technologies is quite similar.

However, after this delay, all stations on the ring have seen the packet, and only one on the
Ethernet has. We must multiply the total delay on the Ethernet by the number of stations in the
group of clients sharing the file. The largest number of processors that had a file open simul-
taneously in any of our traces is nine. Sharing levels of two or three are more typical, making up
over 80% of all shared accesses.

We thus conclude that the Caching Ring protocol can be implemented on an Ethernet using a
reliable broadcast protocol. We expect that this implementation would perform at one-half to
one-third of the simulated performance reported here.

5.3. Conclusions
We have presented the design of a distributed file system that uses the Caching Ring to allow

workstations to access remote files efficiently and share portions of files among themselves. This
file system implements the semantics of an existing well-known operating system, 4.2BSD
UNIX.

We used a simulation of this file system to examine the performance characteristics of the
caching ring. The primary result is that the performance of the disk at the server is the bot-
tleneck. A server with a high-performance disk can serve approximately 24 active users before
those users see a degradation in throughput to levels below those of a typical remote disk. This
can be extended to 32 users by adding small a disk block cache at the server, and 40 or more
users by adding a large disk block cache at the server.

The simulations show that the Caching Ring hardware, with a sufficiently large cache at each
CRI, can provide clients with access to a remote disk at performance levels similar to those of a
locally attached disk with a small cache.

When the server is not the bottleneck, the performace of the file system appears to the client
only slightly worse than the performance of a local disk accessed through a cache of the same
size. When the server bottleneck is reached, performance quickly degrades to the performance of
a typical remote disk, as described in Chapter 3. A large cache at the client keeps even perfor-
mance of this configuration similar to the performance of a locally attached disk with a cache the
size of that used in our VAX timesharing systems.

We attribute the performance of the Caching Ring to the large caches at each client, and the
low overhead imposed by the protocol and hardware implementing the cache coherence algo-
rithm. The amount of network traffic generated by the cache coherence messages is small
enough that we believe there to be enough communication bandwidth to support a hundred or
more workstations. This is primarily because there is so little sharing of files; most communica-
tions are simply between a client and the server, and the low overhead communications add little
penalty to the basic operation of reading or writing the disk.
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Furthermore, we conclude that the Caching Ring protocol can be implemented on a conven-
tional broadcast network such as the Ethernet, but we expect that performance will be two to five
times less than the performance on the Caching Ring.
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6. Summary and Conclusions
Our research has been directed toward an understanding of caching in distributed systems.

After surveying previous work, we measured and analyzed the effects of caching in the UNIX
file system to extend our understanding of caching beyond just caching in memory systems. We
then designed a caching system, the Caching Ring, that provides a general solution to caching of
objects in distributed systems. We analyzed the performance of the Caching Ring under simu-
lated loads based on trace data taken from an existing system, and discussed how the Caching
Ring addresses the problems of caching in distributed systems. The remainder of this chapter
summarizes the contributions of this research and proposes future directions for the investigation
of distributed caching systems.

6.1. Caching in the UNIX file system
On the average, active UNIX users demand low data rates from the file system. But the traffic

pattern is bursty. UNIX depends heavily on objects stored in the file system, so an active user can
have short periods of activity that demand as much as ten times the average data rate. A
moderately sized disk block cache greatly reduces the total disk traffic required to satisfy the
user requests.

More than 50% of the total disk traffic is file system overhead. This is the cost of managing
on-disk data structures that map logical file blocks to physical disk blocks, implement the
naming hierarchy, and provide access control information.

We used simulation to show that the economics of current memory and disk technologies
provide two alternatives for increasing the file system performance of a processor. By adding a
large memory to be used as a file block cache, the effective performance of a disk with a slow
access time can be increased to compare to that of a disk with a faster access time.

UNIX users rarely share disk files. Of all file accesses in our sample, only 4% were to files
opened simultaneously by more than one user. Most of those were read-only uses of system files;
of the accesses to shared files, only 8.8% were writes.

6.2. Caching in distributed systems
Based on the low demand placed on the file system by active users, we would expect that the

network bandwidth available from a conventional network such as an Ethernet would support
many users. Further simulation showed that the bandwidth implied by the transmission speed of
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the network is not necessarily available for the transmission of information. Delay through inter-
faces or in the medium access protocol can greatly reduce the bandwidth available to a particular
workstation, with a significant effect on the performance of a distributed file system.

6.2.1. Location of managers
Our model of a file system divides the activity into five separate managers, each handling a

different type of object related to the operation of the file system as perceived by the clients. The
placement of the processes implementing each of these managers, either local to the client or
remote on a server, can have a significant impact on the amount of traffic on the network, the
CPU overhead on the client, and the performance of the server.

6.2.2. Cache coherence
The low general level of sharing of file blocks among client workstations lead us to conclude

that a cache coherence mechanism is not as expensive to provide as was previously thought. In
our data, most applications use private files, and reads outnumber writes by 2:1. Sharing, when it
occurs, is largely for files that are read only. Thus, we presented the design of an efficient cache
coherence protocol, based on earlier multiprocessor cache coherence mechanisms, which is op-
timized for the reading of private files. This protocol guarantees that blocks that exist in a cache
are valid, and therefore incurs no communications cost on a read hit. Miss operations are in-
expensive in terms of communications. Caching and writing of shared objects is fully supported,
with no special locking action required by the client.

6.3. The Caching Ring
We present the Caching Ring as a high performance, general purpose solution for the caching

of objects in a distributed system. The Caching Ring uses current technology to implement the
coherence protocol discussed above, thus relieving the client processors of the overhead of main-
taining the cache and network. The Caching Ring network hardware itself presents a novel ad-
dressing scheme, providing low-cost reliable broadcast to the clients.

In contrast to the other systems discussed in Chapter 1, the Caching Ring provides a general
purpose mechanism for caching objects in distributed systems. It supports partial caching of ob-
jects, no delay on read hits, and the ability to cache shared objects. Updates to shared objects are
immediately available to the other processors.

6.4. Future directions
Traces from other environments. Our trace data was taken from large processors running a

timesharing system. We recorded the activities of each individual user, and used the activity of
each user as an indication of the demand generated by a single workstation in a distributed sys-
tem. There is some reason to believe that this is not a totally accurate representation of a client in
a distributed system environment. For example, it ignores all the traffic generated by tasks that
are considered system overhead, such as mail, news, and routine file system housekeeping tasks.

It would be instructive to obtain a set of activity traces taken from a set of workstations, and
use the traces to drive this simulation of the Caching Ring, and compare the results to those
presented here.
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It would also be valuable to obtain traces from an environment in which large databases are
used by many programs. In such an environment, we would expect readahead to have a more
dramatic effect on the miss ratio, and perhaps see higher miss ratios over all.

Distribution of file system tasks. The experimental results presented in Chapter 3 led us to
conclude that a distributed file system that uses file servers will perform more effectively than
one that uses disk servers. This conclusion is based on the goal of minimizing network traffic,
because we believe that network throughput is one of the most likely bottlenecks in a distributed
system. The results show that more than 50% of the disk traffic in the UNIX file system is over-
head due to user requests, rather than data needed for user programs. Eliminating this overhead
traffic from the network allows more users to be served before the network reaches saturation.

This places an additional computational burden on the file server machines. Lazowska et al.
concluded that in a distributed system using disk servers, the CPU of the disk server is the bot-
tleneck [32]. With a higher performance CPU at the disk server, the disk then becomes the bot-
tleneck. In a file server, we expect disk traffic to be reduced, because the server can keep a local
cache of the information used by the access control, directory, and file managers. A large cache
of recently accessed disk blocks used for files also reduces the total disk traffic.

A complete trace of the disk traffic generated by the file system managers and by paging
would allow the tradeoffs of locating the different managers locally or remotely to be studied. A
simulation could be built that implements each manager and allows them to be individually
placed at the client or server. Driving this simulation with the complete trace would provide a
total characterization of the necessary disk and network traffic in a distributed system.

Caching of other objects. Our study has centered around the sharing of file objects. We
believe that the Caching Ring can be applied to the caching and sharing of other objects, such as
virtual memory pages. A virtual memory system designed around the Caching Ring would
provide the interconnection mechanism for a large scale, loosely coupled multiprocessor. The
semantics of writing shared objects would have to be carefully defined, because the write seman-
tics of the Caching Ring are not those typically found in memory systems. Li and Hudak indicate
that the performance of a shared virtual memory system where the physical memory is dis-
tributed across a network should be adequate for general use [33].

Since the cache only knows the names of objects, it can be applied to objects of any type. In
addition, the quick response of the ring for objects in the cache may lend itself to other dis-
tributed algorithms that need to collect small pieces of data or status information from several
cooperating processors. For example, a distributed voting algorithm could be easily implemented
using the basic packet mechanism provided by the CRI, with some changes in the message
semantics to collect several responses in one packet.

Network issues. The current design of the Caching Ring network hardware and software is
rather simplistic. It makes no provision for security of the communications on the ring. Intrusion
to a ring network is more difficult than on a passive bus, but a malicious user of a workstation on
the Ring could easily spoof the server into accessing any desired data. Mechanisms for insuring
the authentication of clients and the accurate transmittal of data should be studied.
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The protocols as described allow only one server node in the system. The server is the likely
bottleneck in a large system, and it would be desirable to have more than one, to provide both
additional performance and some measure of reliability or fault tolerance. One possibility is to
include multiple servers in the system, each responsible for a subset of the object store. This is
easily achieved by adding functionality to the naming manager. The naming manager currently
translates object names to object identifiers. It could be extended to keep track of which portion
of the object name space is handled by which server. The naming manager would then forward
the open request to the appropriate server. The server would include itself in the original group,
and the algorithm then proceeds as before.

The system is currently limited in size to the number of bits in an address vector. Since inter-
face delay is such a large factor in the upper bound of system throughput, we would like the size
of an address vector to be no larger than necessary, yet provide sufficient room for future expan-
sion of an initial system. It is difficult to conceive of a Caching Ring system as large as the

47loosely coupled distributed systems built on Ethernets, where the available address space is 2 ,
yet a moderately sized research facility might have a hundred or so researchers that desire to
share data. Mechanisms for scaling the system other than increasing the number of stations on
the ring should be investigated.

An investigation into implementing the Caching Ring protocols on a conventional network
such as the Ethernet would be most interesting. We envision a dedicated interface similar to the
CRI described in Chapter 4, with a reliable broadcast protocol implemented in the interface. We
feel that the use of multicast addressing is important to performance of the system, as a high
percentage of the network traffic concerns only a few processors at any time. Burdening all the
other processors with broadcast of this information would impact them heavily. Some efficient
mechanism for allocating and managing the Ethernet’s multicast address space must be
developed.

In Chapter 5, we estimated the expected difference in performance between the Caching Ring
and an implementation of the Caching Ring coherence protocol on the Ethernet using a reliable
broadcast protocol. This estimate is based solely on the transmission characteristics of the two
communication networks. The error characteristics of the Ethernet and ring networks are also
different. In particular, high traffic loads on the Ethernet tend to cause a higher rate of collisions.
This results in more delay in acquisition of the network channel for sending packets, and more
errors once the packets have been placed on the network. A complete simulation of the Ethernet-
based Caching Ring that included collision and other error conditions would be interesting.

Cache issues. Several multiprocessors are under development with cache subsystems that al-
low multiple writers − the data for each write to a shared memory block is transmitted to each
cache that has a copy of the block [4]. As a result, there is no Invalid state in the coherence
protocol. The performance of a Caching Ring using this type of protocol, with various object
repository update policies, would be of great interest. We expect that performance would be im-
proved, because the all misses resulting from the invalidation of updated blocks would be
eliminated from the system.

Schemes for more frequent updates of modified blocks from caches to the object repository
are also of interest. The simple scheme of periodically flushing the modified blocks from the
buffer can increase the miss ratio by as much as 35%, which can have a significant impact on
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network and server load during periods of high file traffic. A mechanism that sensed network
load and only flushed modified blocks when the network is idle would be useful.

An alternate architecture for the CRI would make the shared cache directory and block cache
private to the CRI, and require the processor to request blocks through the CRI. The CRI could
synchronize with the system by acquiring the ring token before responding to the processor, thus
ensuring that the data received by the processor is not stale. We believe that this will increase the
effective access time, perhaps appreciably in a large system with many stations and much net-
work traffic. A simulation study of this CRI architecture would be instructive.

A more efficient crash recovery mechanism could be developed. The server is perfectly lo-
cated to act as a recorder of all transactions that take place on the ring. A station that experiences
a network failure but not a total crash can, on being reconnected to the network, query the server
for all missed transactions. Powell describes such a mechanism, known as Publishing, in [43]. In
this mechanism, all transactions are recorded on disk, that would add to the disk bottleneck al-
ready present at the server. We propose, instead, a set of messages that allow the recovering CRI
to query the server about the status of all blocks that it holds in the cache. A straightforward
design would have the recovering CRI flush all non-owned blocks, and determine which of the
blocks it believes are owned are still owned. Perhaps a more efficient solution can be found,
which allows the recovering CRI to flush only those blocks that are no longer valid copies.

6.5. Summary
In this thesis, we have explored the issues involved in caching shared objects in a distributed

system. We designed a mechanism for managing a set of distributed caches that takes advantage
of current hardware technology. The advent of powerful inexpensive microprocessors,
memories, and network interfaces leads us to conclude that we can devote a large amount of
computing power to the cache coherence algorithm for each workstation in a distributed system.

The Caching Ring combines a powerful hardware interface, software, and network protocols
to efficiently manage a collection of shared objects in a distributed system. Our experiments with
this design have extended the understanding of caching in a distributed system, and we propose
the Caching Ring as an alternative to the less general solutions previously used in distributed
systems.
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